WO2015024344A1 - 光栅透镜、透镜式光栅及显示装置 - Google Patents

光栅透镜、透镜式光栅及显示装置 Download PDF

Info

Publication number
WO2015024344A1
WO2015024344A1 PCT/CN2013/089547 CN2013089547W WO2015024344A1 WO 2015024344 A1 WO2015024344 A1 WO 2015024344A1 CN 2013089547 W CN2013089547 W CN 2013089547W WO 2015024344 A1 WO2015024344 A1 WO 2015024344A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
lens
grating lens
arc
point
Prior art date
Application number
PCT/CN2013/089547
Other languages
English (en)
French (fr)
Inventor
魏伟
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/355,578 priority Critical patent/US10520653B2/en
Publication of WO2015024344A1 publication Critical patent/WO2015024344A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/29Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays characterised by the geometry of the lenticular array, e.g. slanted arrays, irregular arrays or arrays of varying shape or size
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0037Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration with diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/06Simple or compound lenses with non-spherical faces with cylindrical or toric faces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • G02B5/1819Plural gratings positioned on the same surface, e.g. array of gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a grating lens, a lens grating, and a display device. Background technique
  • the 3D raster is usually placed on the light exit side (i.e., the viewing side) of the display panel to form a 3D display device.
  • Existing lenticular gratings are used to tilt the cylindrical lens relative to the rows and columns of pixels in the display panel.
  • the lens grating is designed and fabricated such that the lens in the grating is a part of the cylindrical lens (a portion cut along the axial direction of the cylinder), and includes: a side surface formed by the plane 110 and the curved surface 120, and Two bottom surfaces 130 perpendicular to the plane 110 and the curved surface 120.
  • the curved surface 120 is a part of the side surface of the cylinder.
  • the rectangles labeled 1, 2, and 3 represent viewpoint images displayed by different sub-pixels, and the sub-pixels of the same label form a complete viewpoint image, and different viewpoint images are taken from different angles of the same object.
  • the cylindrical lens of the lenticular grating is tilted, at this time, from the viewing side of the screen (the screen is perpendicular to the horizontal plane), the cross section formed by the intersection of the horizontal plane and the lens intersects the curved surface 120
  • the line is an elliptical arc, that is, a predetermined angle with the axial direction of the lens (the direction connecting the centers of the two bottom surfaces 130), and the intersection of the section perpendicular to the plane 110 and the curved surface 120 is an elliptical arc.
  • the technical problem to be solved by the present invention is: How to reduce the penetration of light through the lenticular grating The spherical aberration caused by the mirror.
  • the present invention provides a grating lens, wherein the grating lens is a uniform columnar body, and the shape and size of each cross section perpendicular to the axis of the grating lens are the same, and the grating lens includes a plane and a side surface formed by the curved surface, an intersection line of the oblique section of the grating lens and the curved surface is an arc, the oblique section is a predetermined angle with the axis of the grating lens and perpendicular to the plane a section, where 0. ⁇ 90. .
  • intersection of any cross section perpendicular to the axis of the grating lens and the curved surface is a non-circular arc, the point on the circular arc (X, and the point on the non-arc ( ⁇ ', y' ) to satisfy the following relationship:
  • the present invention also provides a lens grating comprising a grating substrate, and further comprising an array of the above-described grating lenses on the grating substrate.
  • the plane of the grating lens is in contact with the surface of the grating substrate Face.
  • the present invention also provides a display device including a display panel, and further comprising the above-described lenticular grating on a light exiting side of the display panel.
  • the grating lens is located on a side of the grating substrate facing away from the display panel;
  • the grating lens is located on a side of the grating substrate adjacent to the display panel.
  • the axial direction of the lenticular lens is at a predetermined angle with the lateral direction of the pixel array in the display panel.
  • the invention changes the surface shape of the grating lens in the prior art, that is, the intersection line between the oblique section of the grating lens and the arc surface of the grating lens is an arc, thereby reducing the spherical aberration caused by the light passing through the grating lens, and further The 3D crosstalk phenomenon is alleviated and the viewing angle is increased.
  • FIG. 1 is a schematic view of a lens used in a prior art lens grating
  • FIG. 2 is a schematic view showing a lens disposed in a prior art lens grating
  • FIG. 3 is a schematic view showing a principle of a spherical aberration generated by a lens in a prior art lens grating
  • FIG. 4 is a schematic view of a grating lens according to an embodiment of the present invention
  • FIG. 5 is a schematic view showing the arrangement of a grating lens in a lens grating according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram for deriving a radius of an arc of an oblique section intersecting a curved surface of a grating lens according to an embodiment of the present invention
  • Figure 7 is a schematic diagram of a method of calculating a radius of a circle
  • FIG. 8 is a schematic diagram of the principle of the lenticular lens mitigating the spherical aberration phenomenon according to the embodiment of the present invention
  • FIG. 9 is a light path diagram of the display device of the lenticular lens according to the embodiment of the present invention on the light exiting side;
  • Figure 10 is a schematic diagram of a 3D raster display
  • Figure 11 is a light path diagram of another display device including a grating lens according to an embodiment of the present invention on the light exiting side. detailed description
  • This embodiment provides a grating lens, i.e., a lens used as a 3D grating, and the specific shape of the grating lens is as shown in FIG.
  • the grating lens of this embodiment is a uniform columnar body, and the shapes and sizes of the respective cross sections perpendicular to the axis of the grating lens are the same, that is, the surface shape is uniform.
  • the lenticular lens comprises: a side surface formed by a plane 210 and a curved surface 220, and of course each of the grating lens has a bottom surface 230 at each end. As shown in FIG.
  • the oblique cross section and the arc of the grating lens of the present embodiment are used in order to reduce the spherical aberration caused by the light passing through the grating lens.
  • the intersection line of the face 220 is an arc, that is, an arc of a circle, and the oblique section is any section perpendicular to the axis of the grating lens and perpendicular to the plane 210, where 0° ⁇ ⁇ ⁇ 90°
  • the axis of the grating lens is a line connecting the centers of the two bottom surfaces 230 of the grating lens (uniform columnar body). At this time, the intersection line of any cross section perpendicular to the axis of the grating lens and the curved surface 220 is a non-arc.
  • the present embodiment determines the radius r of the intersection arc of the oblique section and the curved surface 220, the pitch P of the grating lens, and the angle. ⁇ to determine the shape of the above non-circular arc, thereby determining the shape of the entire curved surface 220.
  • the points on the arc (X, ;) and the points on the non-arc ( ⁇ ' , y' :) satisfy the following relationship:
  • the third coordinate system X0 3 Y may be established in the oblique section with the center of the arc as the origin 0 3 , as shown in FIG. 7 , in the third coordinate system X0 3 Y, Any point on the arc ( , ⁇ satisfies:
  • the surface shape of the grating lens can be determined by a predetermined angle.
  • the surface shape of the lens of the present embodiment is not a part of the cylindrical side (circular surface) with respect to the existing lens. It is a curved surface of a non-arc. Since the grating lens is obliquely disposed during use, and the intersection line between the oblique section and the curved surface 220 is an arc, it is equivalent to providing a lens having a surface shape of a circular arc surface on the light outgoing side of the display panel.
  • the grating lens of the embodiment can make the light passing through itself substantially gather at one point, thereby reducing the spherical aberration phenomenon caused by the light passing through the grating lens, thereby reducing the 3D crosstalk phenomenon and increasing the viewing angle. .
  • the embodiment provides a lens grating comprising an array of grating substrates and grating lenses on the grating substrate.
  • the grating lens is the grating lens in the first embodiment, that is, the grating lens in FIG.
  • the lenticular lens array on the grating substrate corresponds to a pixel array in the corresponding display device.
  • the plane 210 of the grating lens is the contact surface that contacts the surface of the grating substrate. Since the grating lens of Embodiment 1 is used, the lens grating of the present embodiment alleviates the 3D crosstalk phenomenon in use.
  • the embodiment provides a display device, including a display panel, and further includes a lens grating on a viewing side of the display panel, and the lens in the lens grating is the grating in Embodiment 1.
  • Lens the axial direction of the grating lens is at a predetermined angle A with the lateral direction of the pixel array in the display panel, wherein the predetermined angle ⁇ is usually 70° to 85°.
  • the grating lens is located on a side of the grating substrate facing away from the display panel.
  • the optical path diagram of the display device on the light exiting side is as shown in FIG. 9, where e is the sum of the thicknesses of the color filter substrate and the polarizer, g is the pitch of the grating substrate and the polarizer, and w is the thickness of the grating substrate (and the size)
  • e is the sum of the thicknesses of the color filter substrate and the polarizer
  • g is the pitch of the grating substrate and the polarizer
  • w is the thickness of the grating substrate (and the size)
  • r is an arc formed by the intersection of the oblique section of the grating lens and the arc surface of the grating lens.
  • the radius of the corresponding circle, O is the center of the circle corresponding to the arc formed by the oblique line of the grating lens and the intersection of the arcuate faces of the grating lens.
  • / is the distance from the grating lens to the display panel
  • s is the distance of the lens grating from the human eye
  • Subp is the width of the sub-pixel in the device as the pitch (the horizontal spacing of the adjacent two grating lens axes) ), «For the number of viewpoint images, "can be a natural number greater than or equal to 2. You can get /, f _ Subp by the following formula
  • Equations (12) ⁇ (15) illustrate the relationship between ⁇ and
  • equations (16) ⁇ (21) illustrate the relationship of ⁇ , ⁇ , «, and ⁇ .
  • the angle 3 can be obtained according to the angular relationship of the light refraction and the formulas (22) and (23) (3 is the center of the circle and the edge of the grating lens The angle between the line and the horizontal direction, wherein the center ⁇ is the center of the circle corresponding to the arc formed by the oblique section of the grating lens and the intersection of the arcuate faces of the grating lens, and thus can be calculated according to the formula (24)
  • r can be determined by the pitch, which is equivalent to determining the size of the grating lens.
  • This embodiment provides another display device including a display panel, and further includes a lens grating on a viewing side of the display panel, and the lens in the lens grating is the grating lens in Embodiment 1.
  • the axial direction of the grating lens is at a predetermined angle A with the lateral direction of the pixel array in the display panel, and the predetermined angle ⁇ is usually 70° to 85°.
  • the grating lens is located on the side of the grating substrate which is adjacent to the display panel. Since the shape of the grating lens according to Embodiment 1 approximates the shape of an ideal lens, the reverse focusing of the lens on the grating substrate (i.e., the curved surface toward the display panel) also serves the same convergence.
  • the optical path diagram of the display device in the present embodiment on the light exiting side is as shown in FIG.
  • the grating lens of the above embodiment 4 is located on the side of the grating substrate close to the display panel, and the light passing through the grating lens is affected by the reflection and refraction of the grating substrate, which affects the 3D viewing angle and contrast to some extent, and the embodiment
  • the lenticular lens of the 3 is located on the side of the grating substrate facing away from the display panel, and the light transmitted through the grating lens is no longer affected by the reflection and refraction of the grating substrate, and the 3D viewing angle and contrast are improved compared with the embodiment 4.
  • the required r can be obtained by the optical path diagram in Embodiment 3 or Embodiment 4.
  • P, in combination with the predetermined angle ⁇ , the coordinates ( ⁇ ', y ') on the non-circular arc can be obtained by the formula in Embodiment 1, thereby producing a grating lens.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

公开了一种光栅透镜,包括光栅透镜的透镜式光栅及显示装置。光栅透镜为均匀柱状体,垂直于光栅透镜轴线的各个横截面的形状和大小均相同。光栅透镜包括由平面(210)和弧面(220)形成的侧面。光栅透镜的斜截面与弧面(220)的相交线为圆弧,其中斜截面为与光栅透镜的轴线呈预定A夹角且垂直于平面(210)的任一截面,0°<A<90°。通过改变光栅透镜的表面形状,即光栅透镜的斜截面与光栅透镜的弧面的相交线为圆弧,减轻了光线通过光栅透镜后产生的球差现象,从而减轻了3D串扰现象,增大了观看视角。

Description

光栅透镜、 透镜式光栅及显示装置 技术领域
本发明涉及显示技术领域, 特别涉及一种光栅透镜、 透镜式光栅及 显示装置。 背景技术
3D光栅通常置于显示面板的出光侧 (即观看侧) 以形成 3D显示装 置。 现有的透镜式光栅( 3D光栅的一种)在使用时均将柱透镜相对与显 示面板中像素的行和列倾斜设置。 具体如图 1所示, 透镜式光栅设计、 制作时使光栅中的透镜为圆柱透镜的一部分 (沿圆柱轴向方向切下的一 部分) , 包括: 由平面 110和弧面 120形成的侧面, 及与平面 110和弧 面 120垂直的两个底面 130。 其中, 弧面 120为圆柱体侧面的一部分。 如图 2所示(标有 1、 2和 3的矩形表示不同亚像素显示的视点图像, 相 同标号的亚像素组成一幅完整的视点图像, 不同的视点图像为对同一物 体从不同角度拍摄的图像) , 在应用时, 由于会将透镜式光栅的柱透镜 倾斜设置, 此时从屏幕(屏幕与水平面垂直) 的观看侧来看, 水平面与 透镜相交形成的截面与所述弧面 120的相交线为椭圆弧, 即与透镜的轴 向方向 (两个底面 130的中心连线的方向)呈预定夹角 ^且垂直于所述 平面 110的截面与所述弧面 120的相交线为椭圆弧。由于透镜倾斜设置, 相当于在显示面板前面设置了一椭圆弧面的透镜, 椭圆弧面透镜也会对 平行光起到汇聚作用, 但汇聚焦距不一致, 焦点范围较大 (平行光不能 汇聚到一点) , 使得显示面板出射的光线通过透镜后产生较大的球差。 如图 3中虛线椭圆框处所示, 通过透镜的光线不能汇聚在一点上。 该球 差会引起 3D串扰增加, 进而影响 3D视角, 使观看视角变窄。 发明内容
(一) 要解决的技术问题
本发明要解决的技术问题是: 如何减轻光线通过透镜式光栅中的透 镜后产生的球差现象。
(二)技术方案
为解决上述技术问题, 本发明提供了一种光栅透镜, 所述光栅透镜 为均匀柱状体, 垂直于所述光栅透镜轴线的各个横截面的形状、 大小均 相同, 所述光栅透镜包括由平面和弧面形成的侧面, 所述光栅透镜的斜 截面与所述弧面的相交线为圆弧, 所述斜截面为与所述光栅透镜的轴线 呈预定夹角 ^且垂直于所述平面的任一截面, 其中, 0。<^<90。。
其中, 垂直于所述光栅透镜轴线的任一横截面与弧面的交线为非圆 弧, 所述圆弧上的点 (X, 和所述非圆弧上的点 (χ' , y' )满足如下关系:
' = sin^4 (1) =y (2) 其中, 点 (X, 是以所述斜截面与所述平面的交线的中点为原点, 在斜截面内建立的第一坐标系中的点, 点 (χ' , y' )是以所述横截面与 所述平面的交线的中点为原点, 在横截面内建立的第二坐标系中的点, 以所述圆弧的圆心为原点, 在所述斜截面内建立第三坐标系, 在所 述第三坐标系下, 圆弧上任一点 ( ,} 满足:
X2 + Y2=r2 (3)
Y = (r2-X25 (4)
L = (r2-P2/4†5 (5) x = X (6) 从而得到:
' = sin^4 (7) 由公式 (2)、 (3)、 (4)和 (5), 可推得:
= y = Y_L = )0.5— ( — 4)。5 (g)
Figure imgf000003_0001
由上述公式 (7)和 (8)可得到在所述第二坐标系下所述非圆弧上的点 的坐标。
本发明还提供了一种透镜式光栅, 包括光栅基板, 还包括位于所述 光栅基板上的上述的光栅透镜形成的阵列。
其中, 所述光栅透镜的平面为与所述光栅基板的表面相接触的接触 面。
本发明还提供了一种显示装置, 包括显示面板, 还包括位于所述显 示面板出光侧的上述的透镜式光栅。
其中,所述光栅透镜位于所述光栅基板上背离所述显示面板的一侧; 或者
所述光栅透镜位于所述光栅基板上靠近所述显示面板的一侧。
其中, 所述光栅透镜的轴向方向与所述显示面板中像素阵列的横向 方向呈所述预定夹角 A
(三) 有益效果
本发明通过改变现有技术中光栅透镜的表面形状, 即, 使光栅透镜 的斜截面与光栅透镜的弧面的相交线为圆弧, 从而减轻了光线通过光栅 透镜后产生的球差现象, 进而减轻了 3D串扰现象, 增大了观看视角。 附图说明
图 1是现有技术的透镜式光栅中釆用的透镜的示意图;
图 2是现有技术的透镜式光栅中设置透镜的示意图;
图 3是现有技术的透镜式光栅中透镜产生球差的原理的示意图; 图 4是本发明实施例的一种光栅透镜的示意图;
图 5是本发明实施例的光栅透镜在透镜式光栅中设置的示意图; 图 6是推导本发明实施例的光栅透镜的斜截面与弧面相交的圆弧的 半径的示意图;
图 7是圆弧半径的计算方法的示意图;
图 8是本发明实施例的光栅透镜减轻球差现象的原理的示意图; 图 9是包括本发明实施例的光栅透镜的一种显示装置在出光侧的光 路图;
图 10是 3D光栅显示原理图;
图 11是包括本发明实施例的光栅透镜的另一种显示装置在出光侧的 光路图。 具体实施方式
下面结合附图和实施例, 对本发明作进一步详细描述。 以下实施例 用于说明本发明, 但不用来限制本发明的范围。
实施例 1
本实施例提供了一种光栅透镜, 即, 用作 3D光栅的透镜, 所述光栅 透镜的具体形状如图 4所示。本实施例的光栅透镜为均匀柱状体, 垂直于 所述光栅透镜轴线的各个横截面的形状、大小均相同, 即表面形状均匀。 该光栅透镜包括: 由平面 210和弧面 220形成的侧面, 当然光栅透镜两端 还各有一底面 230。 如图 5所示, 由于在使用时光栅透镜会相对与显示装 置中像素的行和列倾斜设置, 为了减轻通过光栅透镜的光产生的球差现 象, 本实施例的光栅透镜的斜截面与弧面 220的相交线为圆弧, 即圆的一 段弧, 所述斜截面为与该光栅透镜的轴线呈预定夹角 ^且垂直于平面 210 的任一截面, 其中, 0° < ^ < 90°, 光栅透镜的轴线为光栅透镜 (均匀柱 状体)的两个底面 230的中心的连线。 此时, 垂直于所述光栅透镜轴线的 任一横截面与弧面 220的相交线为非圆弧。
由于本实施例的光栅透镜的弧面 220不再是圆柱的弧面, 因此, 本实 施例通过预先确定上述斜截面与弧面 220的相交圆弧的半径 r、 光栅透镜 的栅距 P及角度 ^来确定上述非圆弧的形状, 从而确定整个弧面 220的形 状。 如图 6所示, 圆弧上的点 (X, ;)和非圆弧上的点 (χ ' , y' :)满足如下 关系:
x' = xsin^4 (1) r= y (2) 其中, 点 (X, 是以所述斜截面与所述平面 210的交线的中点为原点 015 在斜截面内(图 6中, XC^Y所在的平面)建立的第一坐标系中的点, 点 (χ ' , y' )是以所述横截面与所述平面 210的交线的中点为原点 02, 在 横截面内 (图 6中, ΧΌ2Υ,所在的平面)建立的第二坐标系中的点。
在制作该光栅透镜时, 可以以所述圆弧的圆心为原点 03, 在所述斜 截面内建立第三坐标系 X03Y, 如图 7所示, 在所述第三坐标系 X03Y下, 圆弧上任一点 ( , } 满足:
X2 + Y2 = r2 (3) Y = (r2 -X25 (4) L = (r2 -P2 /4 5 (5) 由图 6和图 7对比, 可知:
x = X (6) 从而得到:
' = sin^4 (7) 由公式 (2)、 (3)、 (4)和 (5), 可推得:
= y = Y-L = Y-(r2 -P2 / 4)。·5 = (r2 -X2广 -(r2 -P2 / (8) 由上述公式 (7)和 (8)可得到在所述第二坐标系下非圆弧上的点的坐 标。
本实施例中, 通过预定角度 ^可确定光栅透镜的表面形状, 如图 8所 示, 相对于现有的透镜, 本实施例的透镜的表面形状不是圆柱侧面 (圆 弧面)的一部分, 而是非圆弧的弧面。 由于在使用时光栅透镜倾斜设置, 且斜截面与弧面 220的相交线为圆弧,相当于在显示面板的出光侧设置了 表面形状为圆弧面的透镜。 相对于椭圆弧面的透镜, 本实施例的光栅透 镜使得通过自身的光线能够基本汇集在一点, 减轻了光线通过光栅透镜 后产生的球差现象, 从而减轻了 3D串扰现象, 增大了观看视角。
实施例 2
本实施例提供了一种透镜式光栅, 包括光栅基板及位于光栅基板上 的光栅透镜形成的阵列,该光栅透镜为上述实施例 1中的光栅透镜, 即图 4中的光栅透镜。光栅基板上的光栅透镜阵列和相应的显示装置中的像素 阵列对应。 为了方便制作, 光栅透镜的平面 210为与光栅基板的表面相接 触的接触面。 由于釆用了实施例 1中的光栅透镜,本实施例的透镜式光栅 在使用时减轻了 3D串扰现象。
实施例 3
本实施例提供了一种显示装置, 包括显示面板, 还包括位于所述显 示面板观看侧的透镜式光栅, 透镜式光栅中的透镜为实施例 1中的光栅 透镜。 其中, 光栅透镜的轴向方向与显示面板中像素阵列的横向方向呈 预定夹角 A 其中, 预定夹角 ^通常为 70° ~ 85°。
本实施例中, 光栅透镜位于光栅基板上背离显示面板的一侧。 该显 示装置在出光侧的光路图如图 9所示, 其中, e为彩膜基板及偏光片的 厚度之和, g为光栅基板和偏光片的间距, w为光栅基板的厚度( 和 的大小根据实际情况而定, 例如在没有光栅基板, 即光栅透镜直接贴到 偏光片上时, g和 w均为 0) , r为光栅透镜的斜截面与光栅透镜的弧面 的相交线形成的圆弧所对应的圆的半径, O为光栅透镜的斜截面与光栅 透镜的弧面的相交线形成的圆弧所对应的圆的圆心。 如图 10所示, /为 光栅透镜到显示面板的距离, s为透镜式光栅距人眼的距离, Subp为 示装置中亚像素的宽度 为栅距(相邻两个光栅透镜轴线的水平间距), «为视点图像数,《可以为大于等于 2的自然数。通过以下公式可得到 /、 f _ Subp
(9)
7 s ~ II
P s
10) n - Subp s + f
p— n- Subp
11)
1 + Subp/ 1
sin or = « sin Θ 12) sinor = sin^ 13) 1 + cot2 a = csc2 a 14) tan or = 15)
1+ l-«2 tan2^
Figure imgf000007_0001
X = etan0 17) Y = g tan a 18)
Ζ = >\ΆΠβ 19) e ariO + g tan a + wtan β - P/2 20) g-ntan0 „, 、丄— n
21) sinS = n sin γ 22) δ = β + γ 23)
Figure imgf000008_0001
如图 10所示, s、 1、 "、 及 Sub/?确定后, 通过公式 (9 ) 可得到 /、 通过公式 (10 )和(11 )可得到 根据附图 9所示的光路及公式 (12 ) ~ ( 24 ) 可得到 r。 具体求解过程如下:
由于彩膜基板、 偏光片及光栅基板的形状都是确定的, 因此光线通 过三者时发生折射的入射角和出射角都是已知的, 即 θ、 «及^都是已知 的。 公式 (12 ) ~ ( 15 )说明了 ^ α和 的关系, 公式 (16 ) ~ ( 21 ) 说明了 Ρ、 θ、 «和^的关系。 在确定栅距 Ρ及入射到彩膜基板的入射光 的折射角 0后, 根据光线折射的角度关系及公式 (22 )和 (23 ) 可得到 角度 3 ( 3为圆心 Ο和光栅透镜边缘的连线与水平方向的夹角, 其中圆 心 ο为光栅透镜的斜截面与光栅透镜的弧面的相交线形成的圆弧所对应 的圆的圆心) , 从而根据公式 (24 ) 可计算出 ^
本实施例中, 通过栅距 可确定 r, 相当于确定了光栅透镜的大小。 实施例 4
本实施例提供了另一种显示装置, 包括显示面板, 还包括位于所述 显示面板观看侧的透镜式光栅, 透镜式光栅中的透镜为实施例 1中的光 栅透镜。 其中, 光栅透镜的轴向方向与显示面板中像素阵列的横向方向 呈预定夹角 A 预定夹角 ^通常为 70° ~ 85°。
本实施例的显示装置中, 光栅透镜位于光栅基板上靠近所述显示面 板的一侧。 由于根据实施例 1的光栅透镜的形状近似于理想透镜的形状, 因此将透镜反向放置在光栅基板上 (即弧面朝向显示面板) , 也会起到 同样的汇聚作用。本实施例中的显示装置在出光侧的光路图如图 11所示。
上述实施例 4的光栅透镜位于所述光栅基板上靠近所述显示面板的 一侧, 通过光栅透镜的光线受光栅基板的反射及折射影响, 在一定程度 上会影响 3D视角和对比度, 而实施例 3中光栅透镜位于光栅基板上背离 显示面板的一侧, 透过光栅透镜的光线不再受光栅基板的反射及折射影 响, 相对与实施例 4提高了 3D视角和对比度。
在实际应用中,通过实施例 3或实施例 4中的光路图可以得到需要的 r 及 P, 再结合预定角度 ^由实施例 1中的公式可得到非圆弧上的坐标 (χ ' , y ' ) , 从而制得光栅透镜。
以上实施方式仅用于说明本发明, 而并非对本发明的限制, 有关技 术领域的普通技术人员, 在不脱离本发明的精神和范围的情况下, 还可 以做出各种变化和变型,因此所有等同的技术方案也属于本发明的范畴, 本发明的专利保护范围应由权利要求限定。

Claims

权利要求书
1、 一种光栅透镜, 所述光栅透镜为均匀柱状体, 垂直于所述光栅透 镜轴线的各个横截面的形状、 大小均相同, 所述光栅透镜包括由平面和 弧面形成的侧面, 其特征在于, 所述光栅透镜的斜截面与所述弧面的相 交线为圆弧, 所述斜截面为与所述光栅透镜的轴线呈预定夹角 ^且垂直 于所述平面的任一截面, 其中, 0°<^<90°。
2、 如权利要求 1所述的光栅透镜, 其特征在于, 垂直于所述光栅透 镜轴线的任一横截面与弧面的交线为非圆弧, 所述圆弧上的点 (X, ;)和 所述非圆弧上的点 (χ' , y' )满足如下关系:
' = sin^4 (1)
Figure imgf000010_0001
其中, 点 (X, 是以所述斜截面与所述平面的交线的中点为原点, 在斜截面内建立的第一坐标系中的点, 点 (χ' , y' )是以所述横截面与 所述平面的交线的中点为原点, 在横截面内建立的第二坐标系中的点, 以所述圆弧的圆心为原点, 在所述斜截面内建立第三坐标系, 在所 述第三坐标系下, 所述圆弧上任一点 ( ,} 满足:
X2 + Y2=r2 (3)
Y = (r2-X25 (4) L = (r2-P2/4†5 (5) x^X (6) 从而得到:
' = sin^4 (7) 由公式 (2)、 (3)、 (4)和 (5), 可推得:
= y = Y-L = Y-(r2-P2/ 4)。·5 =(r2-X25 -(r2-P2/ (8) 由上述公式 (7)和 (8)可得到在所述第二坐标系下所述非圆弧上的点 的坐标。
3、 一种透镜式光栅, 包括光栅基板, 其特征在于, 还包括位于所述 光栅基板上的如权利要求 1或 2所述的光栅透镜形成的阵列。
4、 如权利要求 3所述的透镜式光栅, 其特征在于, 所述光栅透镜的 平面为与所述光栅基板的表面相接触的接触面。
5、 一种显示装置, 包括显示面板, 其特征在于, 还包括位于所述显 示面板出光侧的如权利要求 3或 4所述的透镜式光栅。
6、 如权利要求 5所述的显示装置, 其特征在于, 所述光栅透镜位于 所述光栅基板上背离所述显示面板的一侧。
7、 如权利要求 5所述的显示装置, 其特征在于, 所述光栅透镜位于 所述光栅基板上靠近所述显示面板的一侧。
8、 如权利要求 5~7中任一项所述的显示装置, 其特征在于, 所述光 栅透镜的轴向方向与所述显示面板中像素阵列的横向方向呈所述预定夹 角
PCT/CN2013/089547 2013-08-19 2013-12-16 光栅透镜、透镜式光栅及显示装置 WO2015024344A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/355,578 US10520653B2 (en) 2013-08-19 2013-12-16 Grating lens, lens-type grating, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310362439.4 2013-08-19
CN201310362439.4A CN103412359B (zh) 2013-08-19 2013-08-19 光栅透镜、透镜式光栅及显示装置

Publications (1)

Publication Number Publication Date
WO2015024344A1 true WO2015024344A1 (zh) 2015-02-26

Family

ID=49605386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089547 WO2015024344A1 (zh) 2013-08-19 2013-12-16 光栅透镜、透镜式光栅及显示装置

Country Status (3)

Country Link
US (1) US10520653B2 (zh)
CN (1) CN103412359B (zh)
WO (1) WO2015024344A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112011282A (zh) * 2020-08-17 2020-12-01 深圳市方胜光学材料科技有限公司 一种3d保护膜及其制备工艺

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103412359B (zh) * 2013-08-19 2015-04-29 京东方科技集团股份有限公司 光栅透镜、透镜式光栅及显示装置
CN104317061A (zh) 2014-11-14 2015-01-28 深圳市华星光电技术有限公司 立体显示装置
WO2021141730A1 (en) * 2020-01-10 2021-07-15 Applied Materials, Inc. A method to determine line angle and rotation of multiple patterning

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102053379A (zh) * 2010-11-09 2011-05-11 友达光电股份有限公司 立体图像显示装置
CN102331626A (zh) * 2011-09-23 2012-01-25 深圳超多维光电子有限公司 立体显示装置
CN102338951A (zh) * 2010-07-14 2012-02-01 三星电子株式会社 立体图像显示器
CN103412359A (zh) * 2013-08-19 2013-11-27 京东方科技集团股份有限公司 光栅透镜、透镜式光栅及显示装置
CN203433136U (zh) * 2013-08-19 2014-02-12 京东方科技集团股份有限公司 光栅透镜、透镜式光栅及显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2486443A1 (en) * 2001-06-08 2002-12-19 Lenticlear Lenticular Lens, Inc. Lenticular lens array and tool for making a lenticular lens array
US6741395B1 (en) * 2001-06-08 2004-05-25 Lenticlear Lenticular Lens, Inc. Elliptically-shaped tool
KR100841321B1 (ko) * 2006-09-29 2008-06-26 엘지전자 주식회사 입체영상 표시장치
JP5803242B2 (ja) * 2010-04-28 2015-11-04 大日本印刷株式会社 面光源装置及び液晶表示装置
CN102981196A (zh) * 2012-12-11 2013-03-20 南京中电熊猫液晶显示科技有限公司 柱透镜光栅、光栅视差屏障式立体显示装置及视差屏障

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102338951A (zh) * 2010-07-14 2012-02-01 三星电子株式会社 立体图像显示器
CN102053379A (zh) * 2010-11-09 2011-05-11 友达光电股份有限公司 立体图像显示装置
CN102331626A (zh) * 2011-09-23 2012-01-25 深圳超多维光电子有限公司 立体显示装置
CN103412359A (zh) * 2013-08-19 2013-11-27 京东方科技集团股份有限公司 光栅透镜、透镜式光栅及显示装置
CN203433136U (zh) * 2013-08-19 2014-02-12 京东方科技集团股份有限公司 光栅透镜、透镜式光栅及显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112011282A (zh) * 2020-08-17 2020-12-01 深圳市方胜光学材料科技有限公司 一种3d保护膜及其制备工艺

Also Published As

Publication number Publication date
US10520653B2 (en) 2019-12-31
CN103412359A (zh) 2013-11-27
US20150205018A1 (en) 2015-07-23
CN103412359B (zh) 2015-04-29

Similar Documents

Publication Publication Date Title
JP6262671B2 (ja) レンチキュラーレンズ、液晶回折格子及びディスプレー装置
US10007122B2 (en) Three-dimensional display substrate, its Manufacturing method and three-dimensional display device
WO2016110162A1 (zh) 一种近眼显示器
WO2021258873A1 (zh) 光场显示装置
US10324303B2 (en) Stereoscopic display device
WO2014153878A1 (zh) 显示面板及3d显示装置
WO2013029283A1 (zh) 液晶透镜及3d显示装置
TWI497116B (zh) 立體影像顯示裝置及立體影像顯示方法
WO2013159264A1 (zh) 立体焦场式眼镜显示器
US10197886B2 (en) Display spectacles having microprism structures and driving method thereof
JP2020020860A5 (zh)
WO2018076878A1 (zh) 一种显示装置及其显示方法以及近眼式显示装置及其显示方法
WO2015106507A1 (zh) 液晶透镜及三维显示装置
WO2013029280A1 (zh) 液晶透镜及液晶显示装置
TWI568240B (zh) 3d影像顯示裝置
WO2015024344A1 (zh) 光栅透镜、透镜式光栅及显示装置
JP2009276699A (ja) 2面コーナーリフレクタアレイ
JP2014240960A (ja) 空間映像投映装置
JP2020024377A5 (zh)
US11294183B2 (en) VR lens structure and display device
WO2018014619A1 (zh) 一种反光微结构、投影屏幕和投影系统
CN103984111A (zh) 实现裸眼3d功能的偏光结构及其制作方法
CN105093531A (zh) 显示装置
JP2019510996A (ja) 複数のディスプレイを含むディスプレイシステムにおいてモアレ干渉を低減するために矩形要素プロファイルを有する屈折ビームマッパーを用いる方法及びシステム
US9778472B2 (en) Stereoscopic display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14355578

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.04.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13891961

Country of ref document: EP

Kind code of ref document: A1