WO2013159264A1 - 立体焦场式眼镜显示器 - Google Patents

立体焦场式眼镜显示器 Download PDF

Info

Publication number
WO2013159264A1
WO2013159264A1 PCT/CN2012/001415 CN2012001415W WO2013159264A1 WO 2013159264 A1 WO2013159264 A1 WO 2013159264A1 CN 2012001415 W CN2012001415 W CN 2012001415W WO 2013159264 A1 WO2013159264 A1 WO 2013159264A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection
light
display
lens
light source
Prior art date
Application number
PCT/CN2012/001415
Other languages
English (en)
French (fr)
Inventor
覃政
Original Assignee
Qin Zheng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qin Zheng filed Critical Qin Zheng
Priority to CN201280072291.4A priority Critical patent/CN104285176B/zh
Priority to EP12875089.0A priority patent/EP2866073A4/en
Publication of WO2013159264A1 publication Critical patent/WO2013159264A1/zh
Priority to US14/500,514 priority patent/US9507174B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C11/00Non-optical adjuncts; Attachment thereof
    • G02C11/10Electronic devices other than hearing aids
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0127Head-up displays characterised by optical features comprising devices increasing the depth of field
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0132Head-up displays characterised by optical features comprising binocular systems
    • G02B2027/0134Head-up displays characterised by optical features comprising binocular systems of stereoscopic type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes

Definitions

  • the present invention relates to a spectacles display, also referred to as a head mounted display (HMD) or near-eye display, and more particularly to a spectacles display that can simultaneously display virtual images of different distances.
  • HMD head mounted display
  • near-eye display a spectacles display that can simultaneously display virtual images of different distances.
  • the focus distance of the human eye is usually 10 cm to infinity, so the human eye cannot see objects within 10 cm.
  • the display content of the display device that is very close there are many solutions in the field of glasses display.
  • the existing eyeglass display products are mainly divided into two types: transmissive and non-transmissive.
  • the transmissive glasses display allows external ambient light to enter the human eye through the glasses, so that the displayed virtual image is integrated with the external scene.
  • the images displayed on the existing glasses display products on the market are all on the same virtual image plane, and the function of simultaneously displaying virtual images at different distances cannot be realized.
  • a spectacles display made by a varifocal lens scanning method can display virtual images of different distances at different times.
  • the scanning speed is very fast, it can be considered that at the same time interval that the human eye cannot distinguish, Displaying virtual images at different distances, but this solution requires a lens with a voltage-controlled curvature, which is complicated in structure and still does not actually realize virtual images that simultaneously display different distances.
  • the maximum viewing angle of the human eye is about 120°, while the display angle range of the existing eyeglass display is limited by the optical structure, usually only about 50°, so the visual experience of its integration is poor.
  • the present invention has developed a "stereo focus field type glasses display".
  • the present invention is directed to the above-mentioned deficiencies of the prior art, and the technical problem to be solved is to provide a glasses display solution capable of simultaneously displaying virtual images of different distances, which can be used for making frame glasses or contact lens displays. .
  • a stereo-focus field type glasses display comprises a projection component and a display control device, and is shaped as a frame type glasses or a contact lens.
  • the projection component is composed of a plurality of projection units, and a single projection unit projects a plurality of meta-beams.
  • the meta-beams emitted by the same projection unit are in a divergent relationship before the lens and do not intersect each other.
  • the extension line meets behind the retina.
  • the actual focus is that the meta-beams emitted by different projection units pass through the lens and intersect near the retina to form a cluster focus. All the cluster focal points form a stereo focal field that hangs over the retina. When the lens diopter changes, the stereo focal field also shifts and deforms, causing different cluster focus to fall in view.
  • the projection unit is composed of a projection light source and a display layer
  • the display layer can be any dot-matrix display device with controllable light transmittance, such as a liquid crystal display, and the projection source emits light similar to a point source, after being displayed through the display layer, Divided into several meta-beams that are independent of each other and whose color brightness is controllable.
  • the projection light source in the projection unit can increase the beam guiding filter so that the surface light source is closer to the point source.
  • the projection light source in the projection unit can increase the divergence of the inner adjustment lens for adjusting the projection light, and the inner adjustment lens can be a condenser lens or a astigmatism lens.
  • the back side of the projection light source in the projection unit can add a spherical mirror, and can more utilize the light emitted by the projection light source.
  • An external adjustment lens may be added outside the display layer of the projection unit for adjusting the divergence of the projected light.
  • the external adjustment lens may be a condensing lens or a astigmatic lens.
  • the liquid crystal display (referred to as a single polarization display layer) including only one polarizer can be used in the projection unit, and has no control ability for external light, thereby allowing external light to pass through, and the projection light source is provided with a local polarizer, so The light emitted by the projection source becomes light that can be controlled by the single polarization display layer after passing through the local polarizer, thereby forming a transmissive glasses display.
  • the projection unit may adopt a reflective light source, and the light source is provided by the side light source. After passing through the side light mirror, a reflective light source is formed, and the light provided by the side light source may be polarized light, which is polarized by the side polarizing film, and passes through the side. The polarization of the light mirror after reflection is unchanged, and a single-polarization display layer can be used to form a transmissive glasses display.
  • the input light of the projection unit may be quasi-parallel light in which parallel light or light does not cross each other, and the input light may pass through the display layer and then pass through the exit lens, or may pass through the entrance lens and then pass through the display layer, and finally emit the scattered element.
  • Beam family If the input light itself is an independent family of meta-beams modulated by an external display device, the display layer is not required and only the exit lens is used to adjust the beam divergence.
  • a condensing lens or a astigmatic lens may be used for the exit lens and the entrance lens.
  • the external display device can input a light generating structure using a direct projection component, or can input a light generating structure using a reflective projection component.
  • the projection assembly can be disposed on the side of the human eye, adopts a reflective structure, and uses a side mirror to reflect the projected light into the human eye.
  • the side mirror can be a plane mirror or a non-planar mirror, or can be a total reflection or a semi-reflection. When a semi-reflective mirror is used, a transmissive glasses display can be fabricated.
  • the multi-projection unit combined projection assembly effectively reduces the axial dimension of the display device, making it easier to manufacture a thinner frame-type eyeglass display with a smaller lens size, which can be used to manufacture a contact lens display when the size is small enough.
  • the multi-projection unit combined projection assembly can produce a wide-angled glasses display, even reaching the extreme viewing angle of the human eye of about 120°, which brings a good integration visual experience.
  • 1 is a schematic diagram of the principle of a stereo focus field type glasses display.
  • FIGS. 2A, 2B, and 2C are schematic views of a state of a stereoscopic focal field when the lens is in a different state.
  • FIG. 3 is a schematic structural view of a projection unit.
  • FIG. 4 is a schematic structural view of a projection unit with a beam guiding filter.
  • Fig. 5 is a schematic structural view of a projection unit with an internal adjustment lens.
  • Fig. 6 is a schematic structural view of a projection unit with a spherical mirror.
  • Fig. 7 is a schematic structural view of a projection unit with an external adjustment lens.
  • Fig. 8 is a schematic structural view of a transmissive projection unit.
  • Fig. 9A is a schematic structural view of a light source reflection type stereo-focus field type glasses display.
  • 9B is a schematic view showing the structure of a transmissive light source reflective type stereo focal field type glasses display.
  • FIGS. 10A, 10B, 10C, and 10D are four applicable structural diagrams of a projection unit in which a projection light is externally input.
  • Figure 11 is a schematic view showing the structure of a mirror reflection type stereo focal field type glasses display.
  • Figure 12 is a schematic illustration of three cases of cluster focus.
  • 13A, 13B, and 13C are detailed perspective views of three cases of cluster focus.
  • 14A and 14B are schematic diagrams showing projections of a projection unit on a retina when the human lens is in a different state.
  • 15A, 15B, and 15C are schematic views showing the overlapping effect of adjacent projection circles arranged in a hexagon at different densities.
  • Fig. 16A is a diagram showing the hexagonal arrangement of adjacent seven projection circles and their schematic views in the near state of the lens.
  • Fig. 16B is a schematic view of the seven projection circles in Fig. 16A in a state of far vision of the lens.
  • Figure 17 is a schematic illustration of the structure of a contact lens display made using the principles of the present invention.
  • 18A and 18B are schematic diagrams showing the input light generating structure of the direct projection type assembly.
  • Figure 19 is a schematic diagram of the input light generating structure of the reflective projection assembly.
  • Projection component 1 Projection unit 2, Yuan beam 3, lens 4, retina 5, cluster focus 6, solid focus field 7, actual focus 8, actual focal plane 9, projection light source 10, display layer 11 , beam steering filter 12, inner adjustment lens 13, spherical mirror 14, outer adjustment lens 15, single polarization display layer 16, external light 17, local polarizer 18, side light source 19, side light mirror 20, side polarizing film 21.
  • the display principle shown in FIG. 1 is that the stereo-focus field type glasses display includes a projection assembly (1) and a display control device.
  • the projection assembly (1) is located in the lens of the frame glasses or contact lens and is placed in front of the human eye.
  • the projection assembly (1) contains a plurality of (11 in Fig. 1, which can be extended in the vertical direction of the paper, not shown in the drawing), and a single projection unit (2) projects a plurality of beams (1) In Figure 1, there are three beams) of the beam (3). After passing through the lens (4), the three beams (3) are refocused at the actual focus (8).
  • the actual focus (8) of the different projection units is the same.
  • the actual focal plane (9) the actual focal plane (9) is located behind the retina (5).
  • the actual focal plane (9) does not exist, just a theoretical one. flat.
  • the cluster focus (6) is the intersection of the three-beam beams (3).
  • the points are distributed in front of the retina (three are marked in the figure) on mutually parallel focal planes, which form a space called the stereo focal field (7).
  • a solid focal field (7) consisting of 15 cluster focal points (6) is indicated in Figure 1.
  • Fig. 2A, Fig. 2B, and Fig. 2C show the relationship between the stereo focal field (7) and the retina (5) when the lens (4) is in different states.
  • the solid focal field (7) is displaced and deformed as a whole.
  • the front end face of the solid focus field (7) coincides with the retina (5);
  • the lens (4) is in the medium distance visual state, as shown in Fig. 2B The central plane of the solid focal field (7) coincides with the retina (5); when the lens (4) is in a myopic state, as shown in Fig.
  • the posterior end of the solid focal field (7) coincides with the retina (5).
  • the lens (4) determines which focal plane of the retina (5) intersects the stereo focal field (7). It can be seen from the state of the lens (4) in Figs. 2A, 2B, and 2C that the lens (4) changes its caliber when deformed, which is determined by the physiological structure of the human eye, and therefore, in order to ensure all projections. Light can enter the eyeball.
  • the light emitted by the projection unit (2) is always contained in the smallest diameter of the lens (4).
  • the minimum diameter of the lens (4) is the closest to the human eye. Reached when the object is in focus.
  • Figure 3 shows the internal structure of the projection unit (2).
  • the projection unit (2) is composed of a projection light source (10) and a display layer (11), and the display layer (11) may be any dot-matrix display device with controllable light transmittance, and the projection light source (10) emits light similar to a point source. After passing through the display layer (11), it is divided into meta-beams (3) that are independent of each other and whose color brightness is controllable.
  • Figure 4 shows a modification of the projection unit (2).
  • the projection source (10) in the projection unit (2) adds a beam steering filter (12) to bring the surface source closer to the point source.
  • Figure 5 shows a modification of the projection unit (2).
  • the projection light source (10) in the projection unit (2) is provided with an inner adjustment lens (13), and the inner adjustment lens (13) may be a condensing lens or a astigmatism lens, and a condensing lens is illustrated.
  • Figure 6 shows a modification of the projection unit (2).
  • a spherical mirror (14) is added to the back of the projection source (10) in the projection unit (2) to make more use of the light from the projection source (10).
  • Figure 7 shows a modification of the projection unit (2).
  • An outer adjustment lens (15) is added to the display layer (11) of the projection unit (2), and the outer adjustment lens (15) may be a condensing lens or a astigmatism lens, and a condensing lens is illustrated.
  • Figure 8 shows a modification of the projection unit (2).
  • the single polarization display layer (16) used in the projection unit (2) is a liquid crystal display comprising only one layer of polarizer, which has no control ability for external light ( ⁇ ), thereby allowing external light to pass through, and the projection light source (10)
  • a local polarizer (18) is attached, so that the light emitted by the projection light source (10) becomes light that can be controlled by the single polarization display layer (16) after passing through the local polarizer (18), thereby making a transmissive glasses display.
  • Figure 9A shows a modification of the projection unit (2).
  • the projection unit (2) uses a reflective light source to provide light from the side light source (19). After passing through the side light mirror (20), a reflective light source is formed.
  • Fig. 9B shows a modification of Fig. 9A in which the light supplied from the side light source (19) is polarized by the side polarizing film (21), and the polarization is unchanged after being reflected by the side light reflecting mirror (20).
  • a transmissive eyeglass display can be made using a single polarized display layer (16).
  • FIG. 10A shows a modification of the projection unit (2) in which the input rays are quasi-parallel light in which the parallel light or the rays do not cross each other, and the input rays are divided into mutually independent colors by the display layer (11) in the projection unit.
  • the brightness controlled beam (3) family after passing through the exit lens (22), the exit lens (22) may be a concentrating lens or a astigmatic lens.
  • Fig. 10B shows a modification of Fig. 10A in which the input light is a mutually independent beam (3) group modulated by an external display device, thus eliminating the need for the display layer (11).
  • 10C and 10D illustrate two other modifications of FIG. 10A, in which a condensing lens and an astigmatic lens are respectively used as an entrance lens (23) to adjust the divergence of the input light, and then form a element through the display layer (11).
  • Beam (3) family illustrate two other modifications of FIG. 10A, in which a condensing lens and an astigmatic lens are respectively used as an entrance
  • Figure 11 shows the structure of a mirror-reflective stereo-focus field-type eyeglass display.
  • the projection assembly (1) is disposed on the side of the human eye, and the projection light is reflected into the human eye by the side mirror (24).
  • the side mirror (24) may be a plane mirror or a non-planar mirror, or may be a total reflection or a half. Reflective, when a semi-reflective mirror is used, it can be made into a transmissive glasses display.
  • Figure 12 shows three cases of cluster focus.
  • the adjacent three projection units (2) respectively emit a 3-beam beam (3), and after the above-mentioned 9-beam beam (3) passes through the lens (4), the focus is on the actual focal plane (9), and the actual focus is Before the plane (9), 9 bundles
  • the meta-beam (3) forms three converging points near the retina (5), which are the focus of the cluster concentrated on the retina (25), the focus of the cluster concentrated behind the retina (26), and the focus of the cluster concentrated in front of the retina ( 27), the projection pattern of the above three cluster focuss on the retina (5) is drawn at the bottom of Fig. 12. It can be seen that only the projection pattern formed by the cluster focus (25) concentrated on the retina is a single spot, the other two In the case, the projection pattern is three spots that are mutually misaligned.
  • Figures 13A, 13B, and 13C detail three cases of cluster focus.
  • the 5-beam beam (3) meets at the focus of the cluster (25) concentrated on the retina, forming a single high-brightness spot as shown in Fig. 13A; in Figure 13B, the 5-beam beam (3) meets at the retina
  • the subsequent cluster focus (26) forms five scattered dim spots as shown in Fig. 13B; in Fig. 13C, the 5 beam beams (3) meet at the cluster focus (27) concentrated in front of the retina, forming a Fig. 13C. 5 scattered dim spots below.
  • Fig. 14A and Fig. 14B show the unit projection regions of the projection unit (2) produced on the retina (5) and their mutual relationship when the lens (4) is in different states.
  • the unit projection area may be of any shape, represented in the figure as a projection circle (29) of a single projection unit on the retina, and thus the projection area is referred to below by the projection circle.
  • the three-beam beam (3) produces three spots on the retina, that is, the spot of the single element beam on the retina (28), and the diameter of the spot is the size of the display pixel of the glasses display.
  • the projection unit (2) when the lens (4) is in a far vision state, the projection unit (2) produces a large projection circle on the retina (5) and overlaps with other projection circles; as shown in Fig.
  • the projection unit (2) produces a smaller projection circle on the retina (5) and has less overlap with other projection circles. Further analysis of the difference between the projection circle in different states of the lens (4), it can be seen that the distance d between the centers of the two projection circles is the same in FIGS. 14A and 14B, except that the projection circle size is different, according to FIG. 14A and FIG. 14B. It can be seen from the position of the three spots in the projection circle that the process of changing the size of the projection circle is a scaling process in which the position of the center of the circle is constant.
  • Figure 15A shows the overlapping effect of adjacent projection circles arranged in a hexagonal shape with a 1/2 radius overlap.
  • the area in the hexagon is a standard display area, where each point has at least 3 overlaps;
  • 15B draws the overlapping effect of adjacent projection circles arranged in a hexagonal shape with a 2/3 radius overlap.
  • the area in the hexagon is a standard display area, where each point has at least 7 overlaps;
  • Figure 15C The overlapping effect of adjacent projection circles arranged in a hexagonal shape with a 3/4 radius overlap is shown.
  • the area in the hexagon is a standard display area, where each point has at least 12 overlaps. In order to achieve a better display effect, each point of the display area needs to achieve at least 7 overlaps.
  • FIG. 16A and 16B illustrate how the display of virtual images of different distances can be realized by using 7 overlapping projection circles in a hexagonal arrangement.
  • Figure 16A shows an image displayed by each of the seven adjacent projection circles and an image in which the seven projection circles overlap when the lens (4) is in a nearsighted state. It can be seen that the overlapping area forms a clear "+" pattern and The surrounding blurred image, that is, the human eye will feel that the virtual "+" image is located near, and the virtual image is located at a distant location;
  • Figure 16B shows the seven projection circles in Figure 16A in the lens (4 The superimposed image in the far-view state, compared with Fig. 16A, the seven projection circles in Fig.
  • 16B are scaled up by a certain multiple (1.2 times in the figure), and the position of the center of the circle is unchanged, which can be seen, overlapping at this time.
  • the area forms a clear figure and a blurred "+" figure, that is, the human eye feels that the virtual image is located at a distance, and the virtual "+" image is not visible in the vicinity.
  • Figure ⁇ depicts a contact lens display made using the principle of stereo focal field display.
  • the projection unit (2) is integrated in the lens of the contact lens (30), and the gap between the projection units (2) is large, allowing external light (17) to pass, thereby allowing the wearer to see the outside environment.
  • the scheme of FIG. 8 can be used to make the projection unit (2) itself have a certain light transmissivity, which further improves the transmittance of the contact lens display.
  • FIGS. 18A and 18B show the input light generating structure of the direct projection type assembly.
  • Figure 18A depicts Figure 10A, Figure 10C, Figure
  • the input light generation scheme of the projection component (1) The light generated by the assembly light source (31) passes through the parallel light generating lens (32) and becomes parallel light or quasi-parallel light as a projection component (1)
  • Figure 18B depicts the input ray generation scheme of the projection assembly (1) in the case of Figure 10B:
  • the ray generated by the assembly source (31) becomes parallel or quasi-parallel after passing through the parallel light generating lens (32)
  • Light, and then through the transmissive assembly display layer (33) forms a family of elementary beams (3) as input rays to the projection assembly (1).
  • the transmissive assembly display layer (33) may be a liquid crystal display or other dot-matrix display device with controllable transmission properties.
  • Figure 19 shows the input projection ray generation structure of the reflective projection assembly, and depicts another generation scheme for the input ray of the projection assembly (1) in the case of Fig. 10B:
  • the ray generated by the assembly source (31) is generated by parallel light generation.
  • the lens (32) then becomes parallel light or quasi-parallel light, and then is reflected by the half lens (34) and then injected into the reflective assembly display layer (35), and the reflected element beam (3) is transmitted through the half lens (34).
  • the reflective assembly display layer (35) can be an LCOS-type display or other dot-matrix display device with controllable reflective properties.

Abstract

一种立体焦场式眼镜显示器,可以同时显示不同距离的虚拟图像,并由人眼晶状体(4)的屈光度来决定能看清的图像内容。显示器外形为框架式眼镜或角膜接触镜。显示器包含投影组件(1)及显示控制器件,投影组件(1)由若干个投影单元(2)组成,单个投影单元(2)投射出若干元光束(3)。同一投影单元(2)发出的元光束(3)呈发散关系且互不相交。不同投影单元(2)发出的元光束(3)经过晶状体(4)后,在视网膜(5)附近相交,形成集束焦点(6),所有集束焦点(6)组成笼罩着视网膜的立体焦场(7)。当晶状体(4)屈光度改变时,立体焦场(7)也随之发生位移和形变,从而使不同的集束焦点(6)落在视网膜(5)上而被人看清,而之前能被看清的集束焦点(6)则趋于发散。

Description

立体焦场式眼镜显示器
技术领域
本发明涉及一种眼镜显示器, 也称作头戴式显示器 (head mounted display, HMD) 或近眼显示器, 尤其是涉及到一种可同时显示不同距离的虚拟图像的眼镜显示器。
背景技术
人眼的聚焦距离通常为 10cm到无穷远, 因此, 人眼无法看清距离 10cm以内的物体。 为了让人眼 看清距离很近的显示设备显示的内容, 眼镜显示器领域有很多解决方案。
现有的眼镜显示器产品主要分为透射式和非透射式两种,透射式眼镜显示器允许外界环境光线透过 眼镜进入人眼, 从而使得显示的虚拟图像与外界景物融为一体。
现有市面上的眼镜显示器产品显示的图像都处在同一个虚拟像平面上,无法实现同时显示不同距离 虚拟图像的功能。
有专利文献显示,釆用变焦距透镜扫描法制成的眼镜显示器可以在不同时间显示不同距离的虚拟图 像, 当扫描速度非常快时, 在人眼无法区分的时间间隔之内,可认为实现了同时显示不同距离的虚拟图 像,但此方案需采用电压控制曲率的透镜,结构复杂,且仍没有真正实现同时显示不同距离的虚拟图像。
人眼的最大视角约为 120° , 而现有眼镜显示器其显示视角范围受到光学结构的限制, 通常只有 50° 左右, 因此其融入性的视觉体验较差。
基于上述眼镜显示器产品及其不足之处, 为了开发可同时显示不同距离的虚拟图像的眼镜显示器, 本发明研发了 "立体焦场式眼镜显示器"。
发明内容
本发明针对上述现有技术的不足之处,所要解决的技术问题是:提供一种可同时显示不同距离的虚 拟图像的眼镜显示器方案, 这种方案可以用来制作框架式眼镜或角膜接触镜显示器。
本发明主要通过以下技术方案实施:
一种立体焦场式眼镜显示器, 包括投影组件及显示控制器件, 外形为框架式眼镜或角膜接触镜。所 述的投影组件由若干个投影单元组成,单个投影单元投射出若干元光束, 同一投影单元发出的元光束在 晶状体之前呈发散关系而互不相交,在晶状体之后其延长线交汇于视网膜之后的实际焦点,不同投影单 元发出的元光束经过晶状体后在视网膜附近相交,形成集束焦点,所有集束焦点组成了笼罩着视网膜的 立体焦场。当晶状体屈光度改变时, 立体焦场也随之发生位移和变形, 从而使得不同的集束焦点落在视
1
替换页 (细则第 26条) 网膜上而被看清, 而之前能被看清的集束焦点则趋向于发散。
所述的投影单元由投影光源和显示层组成,显示层可以是任何透光性能可控的点阵显示器件,如液 晶显示器,投影^:源发出类似点光源的光线, 经过显示层之后, 被分割为相互独立且颜色亮度可控的若 干元光束。
所述的投影单元内的投影光源可增加光束导向滤镜, 使得面光源更加接近点光源。
所述的投影单元内的投影光源可增加内调节透镜用来调节投影光线的发散度,内调节透镜可以是聚 光透镜或散光透镜。
所述的投影单元内的投影光源背面可增加球面反射镜, 可更多地利用投影光源发出的光线。
所述的投影单元的显示层外可增加外调节透镜用来调节投影光线的发散度,外调节透镜可以是聚光 透镜或散光透镜。
所述的投影单元中可采用只包含一层偏光片的液晶显示器 (称为单偏振显示层), 对外部光线不具 有控制能力, 从而允许外部光线透过,投影光源附有局部偏光片, 因此投影光源发出的光线在经过局部 偏光片后变为可被单偏振显示层控制的光线, 从而制成透射式眼镜显示器。
所述的投影单元可采用反射式光源, 由侧面光源提供光线, 经过侧光反射镜之后, 形成了反射式光 源,侧面光源提供的光线可以是偏振光,由侧面偏振膜实现偏振化,经过侧光反射镜反射后偏振性不变, 此时可采用单偏振显示层制成透射式眼镜显示器。
所述的投影单元的输入光线可以是平行光或光线互不交叉的准平行光,输入光线可以先经过显示层 然后经过出口透镜, 也可以先经过入口透镜然后经过显示层, 最终射出发散的元光束族。若输入光线本 身即为经过外部显示器件调制成的相互独立的元光束族,则无需显示层,只需出口透镜来调节光束发散 度。出口透镜和入口透镜可选用聚光透镜或散光透镜。外部显示器件可以采用直射型投影组件输入光线 生成结构, 也可以采用反射型投影组件输入光线生成结构。
所述的投影组件可被安置在人眼的侧面,采用反射式结构,利用侧面反射镜将投影光线反射进入人 眼, 侧面反射镜可以是平面镜或非平面镜, 也可为全反射式或半反射式, 当采用半反射式反射镜时, 可 制成透射式眼镜显示器。
本发明的有益效果是:
1 ) 较好地模拟了人眼对不同距离物体光线的聚焦和散焦机制, 使得显示器同时显示出不同距离的 虚拟图像, 由人眼自主控制晶状体的屈光度来决定能看清的部分,而不需要其他光学或机械组件单独对 显示距离进行控制。
2) 采用多投影单元组合式投影组件, 有效降低了显示器件的视线轴向尺寸, 易于制造出重量更轻 镜片更薄的框架式眼镜显示器, 当尺寸足够小时可用于制造角膜接触式眼镜显示器。
2 3 )采用多投影单元组合式投影组件, 可制作出视角很大的眼镜显示器, 甚至达到人眼的极限视角 120° 左右, 带来良好的融入性视觉体验。
4)无论采用直射型、 光源反射型或反射镜反射型, 都易于根据相应方案制成透射式眼镜显示器, 使得虚拟图像融合在实景画面中, 同时其显示距离也与实景环境相匹配,真正发挥立体焦场式眼镜显示 器的显示优势。
附图说明
图 1是立体焦场式眼镜显示器的原理示意图。
图 2A、 图 2B、 图 2C是晶状体处于不同状态时的立体焦场状态示意图。
图 3是投影单元的结构示意图。
图 4是附有光束导向滤镜的投影单元的结构示意图。
图 5是附有内调节透镜的投影单元的结构示意图。
图 6是附有球面反射镜的投影单元的结构示意图。
图 7是附有外调节透镜的投影单元的结构示意图。
图 8是透射式投影单元的结构示意图。
图 9A是光源反射型立体焦场式眼镜显示器的结构示意图。
图 9B是透射式光源反射型立体焦场式眼镜显示器的结构示意图。
图 10A、 图 10B、 图 10C、 图 10D是投影光线由外部输入的投影单元的四种适用结构示意图。 图 11是反射镜反射型立体焦场式眼镜显示器的结构示意图。
图 12是集束焦点三种情况的示意图。
图 13A、 图 13B、 图 13C是集束焦点三种情况的细节立体示意图。
图 14A、 图 14B是人眼晶状体处于不同状态时投影单元在视网膜上产生的投影圆示意图。
图 15A、 图 15B、 图 15C是相邻投影圆以不同密度呈六边形排列的重叠效果示意图。
图 16A是相邻 7个投影圆的六边形排列方式及其在晶状体近视状态下的示意图。
图 16B是图 16A中 7个投影圆在晶状体远视状态下的示意图。
图 17是用本发明原理制成的角膜接触镜显示器的结构示意图。
图 18A、 图 18B是直射型投影组件输入光线生成结构示意图。
图 19是反射型投影组件输入光线生成结构示意图。
3 替换页 (细则第 26条) 图中示意元素及编号: 投影组件 1、 投影单元 2、 元光束 3、 晶状体 4、 视网膜 5、 集束焦点 6、 立 体焦场 7、 实际焦点 8、 实际焦平面 9、 投影光源 10、 显示层 11、 光束导向滤镜 12、 内调节透镜 13、 球面反射镜 14、 外调节透镜 15、 单偏振显示层 16、 外部光线 17、 局部偏光片 18、 侧面光源 19、 侧光 反射镜 20、 侧面偏振膜 21、 出口透镜 22、 入口透镜 23、 侧面反射镜 24、 汇聚在视网膜上的集束焦点 25、汇聚在视网膜后的集束焦点 26、汇聚在视网膜前的集束焦点 27、单个元光束在视网膜上的光斑 28、 单个投影单元在视网膜上的投影圆 29、角膜接触镜 30、总成光源 31、平行光生成透镜 32、透射型总成 显示层 33、 半透镜 34、 反射型总成显示层 35。
具体实施方式
下面通过实施例, 结合附图, 对本发明的技术方案进行进一步具体的说明:
实施例:
如图 1所示的显示原理:立体焦场式眼镜显示器包括投影组件(1 )及显示控制器件。投影组件(1 ) 位于框架式眼镜或角膜接触镜的镜片内, 置于人眼前方。 投影组件(1 ) 中包含若干(图 1中为 11个, 沿纸面垂直方向还可以延伸, 在图中暂不画出)投影单元 (2), 单个投影单元 (2) 投射出若干束 (图 1 中为三束) 元光束 (3 ), 这三束元光束 (3) 在经过晶状体 (4)后, 重新聚焦于实际焦点 (8 ) 处, 不同投影单元的实际焦点(8 )处于同一个平面上, 称为实际焦平面(9), 实际焦平面(9)位于视网膜 (5 ) 的后方, 由于视网膜 (5 ) 的阻挡, 实际焦平面 (9) 并不存在, 只是理论上的一个平面。 考虑不 同投影单元 (2) 发出的元光束 (3), 在实际焦平面 (9)之前会发生一些交叉, 图〗中集束焦点 (6) 为三束元光束 (3 ) 的交叉点, 这些交叉点分布在视网膜前后的若干 (图中标出了三个) 相互平行的焦 平面上, 这些焦平面组成了一个空间, 称为立体焦场(7)。 图 1中标出了由 15个集束焦点(6)组成的 立体焦场 (7)。
图 2A、 图 2B、 图 2C画出了晶状体 (4) 处于不同状态时, 立体焦场 (7) 与视网膜 (5 ) 的关系。 当晶状体(4) 屈光度发生变化时, 立体焦场 (7) 整体发生位移和变形。 当晶状体(4) 处于远视状态 时, 如图 2A所示, 立体焦场 (7 ) 的前端面与视网膜 (5) 重合; 当晶状体 (4 ) 处于中等距离视觉状 态时, 如图 2B所示, 立体焦场 (7) 的中部平面与视网膜 (5 ) 重合; 当晶状体 (4) 处于近视状态时, 如图 2C所示, 立体焦场 (7) 的后端面与视网膜 (5 ) 重合。 综上, 在投影组件 (1 ) 发出相同光线的 情况下, 由晶状体(4) 决定视网膜(5 ) 与立体焦场 (7) 的哪个焦平面相交。 由图 2A、 图 2B、 图 2C 中的晶状体(4)的状态可以看出, 晶状体(4)在变形时口径会发生变化, 这是由人眼的生理结构决定 的, 因此, 为了保证所有投影光线都能射入眼球中, 在图 2A、 图 2B、 图 2C中, 投影单元 (2) 发出 的光线都始终包含在晶状体(4)最小口径内, 晶状体(4)的最小口径为人眼对最近处物体聚焦时达到。
4 替 ( 第 26条) 图 3画出了投影单元(2) 的内部结构。 投影单元 (2) 由投影光源 (10)和显示层(11 )组成, 显 示层(11 )可以是任何透光性能可控的点阵显示器件, 投影光源(10)发出类似点光源的光线, 经过显 示层 (11 )之后, 被分割为相互独立且颜色亮度可控的元光束 (3)。
图 4画出了投影单元(2)的一种改型。投影单元(2)内的投影光源 ( 10)增加了光束导向滤镜( 12), 使得面光源更加接近点光源。
图 5画出了投影单元(2)的一种改型。投影单元(2)内的投影光源(10)增加了内调节透镜(13 ), 内调节透镜 ( 13 ) 可以是聚光透镜或散光透镜, 图中画出的是聚光透镜。
图 6画出了投影单元(2)的一种改型。投影单元(2) 内的投影光源(10)背面增加了球面反射镜 ( 14), 可更多地利用投影光源 (10) 发出的光线。
图 7画出了投影单元(2)的一种改型。投影单元(2) 的显示层(11 )外增加了外调节透镜 ( 15 ), 外调节透镜 ( 15) 可以是聚光透镜或散光透镜, 图中画出的是聚光透镜。
图 8画出了投影单元(2)的一种改型。 投影单元(2) 中所采用的单偏振显示层(16)为只包含一 层偏光片的液晶显示器, 对外部光线 (Π)不具有控制能力, 从而允许外部光线透过, 投影光源 (10) 附有局部偏光片 (18), 因此投影光源 (10) 发出的光线在经过局部偏光片 (18 ) 后变为可被单偏振显 示层 ( 16)控制的光线, 从而制成透射式眼镜显示器。
图 9A画出了投影单元(2) 的一种改型, 投影单元(2)采用反射式光源, 由侧面光源 (19)提供 光线, 经过侧光反射镜 (20) 之后, 形成了反射式光源。 图 9B画出了图 9A的一种改型, 其中側面光 源(19)提供的光线由侧面偏振膜 (21 )进行偏振化, 经过侧光反射镜(20)反射后偏振性不变, 此吋 可采用单偏振显示层 (16)制成透射式眼镜显示器。 图 10A画出了投影单元(2) 的一种改型, 其中输入光线为平行光或光线互不交叉的准平行光, 输 入光线在投影单元内被显示层 (11 ) 分割为相互独立且颜色亮度可控的元光束 (3 )族, 之后经过出口 透镜(22), 出口透镜(22)可以是聚光透镜也可以是散光透镜。 图 10B画出了图 10A的一种改型, 其 中输入光线为经过外部显示器件调制成的相互独立的元光束(3 )族, 因而不需要显示层(11 )。 图 10C、 图 10D画出了图 10A的另两种改型, 分别采用聚光透镜和散光透镜作为入口透镜 (23 ) 来对输入光线 进行发散度的调节, 之后经过显示层 (11 )形成元光束 (3 )族。
图 11画出了反射镜反射型立体焦场式眼镜显示器的结构。其中投影组件(1 )被安置在人眼的侧面, 利用侧面反射镜(24)将投影光线反射进入人眼, 侧面反射镜(24)可以是平面镜或非平面镜, 也可为 全反射式或半反射式, 当采用半反射式反射镜时, 可制成透射式眼镜显示器。
图 12画出了集束焦点的三种情况。 相邻的三个投影单元 (2) 分别发出 3束元光束 (3), 以上 9 束元光束 (3)在经过晶状体 (4) 后, 焦点位于实际焦平面(9) 上, 而在实际焦平面 (9)之前, 9束
5 替换页 (细则第 26条) 元光束 (3)在视网膜 (5) 附近形成了三个汇聚点, 分别是汇聚在视网膜上的集束焦点 (25)、 汇聚在 视网膜后的集束焦点 (26)、 汇聚在视网膜前的集束焦点 (27), 图 12下方画出了以上三种集束焦点在 视网膜(5)上的投影图案, 可以看出, 只有汇聚在视网膜上的集束焦点 (25 )形成的投影图案为单一 光斑, 其他两种情况下, 投影图案均为三个相互错幵的光斑。
图 13A、 图 13B、 图 13C详细描述了集束焦点的三种情况。 图 13A中 5束元光束(3 )交汇于汇聚 在视网膜上的集束焦点 (25), 形成了如图 13A下方的单一高亮度光斑; 图 13B中 5束元光束 (3 ) 交 汇于汇聚在视网膜后的集束焦点(26), 形成了如图 13B下方的 5个分散的昏暗光斑; 图 13C中 5束元 光束 (3 )交汇于汇聚在视网膜前的集束焦点 (27), 形成了如图 13C下方的 5个分散的昏暗光斑。
图 14A、 图 14B画出了晶状体(4) 处于不同状态时, 投影单元(2)在视网膜(5 )上产生的单元 投影区域及其相互间的关系。单元投影区域可以是任意形状,在图中表现为单个投影单元在视网膜上的 投影圆(29), 因而下文均以投影圆代指单元投影区域。 图中三束元光束(3)在视网膜上产生了三个光 斑, 即单个元光束在视网膜上的光斑(28),光斑的直径即眼镜显示器显示像素的大小。如图 14A所示, 当晶状体(4) 处于远视状态时, 投影单元(2) 在视网膜 (5) 上产生较大的投影圆, 且与其他投影圆 之间重叠部分较多; 如图 14B所示, 当晶状体(4)处于近视状态时, 投影单元 (2)在视网膜(5)上 产生较小的投影圆, 且与其他投影圆之间重叠部分较少。 进一步分析投影圆在晶状体 (4) 不同状态时 的区别, 可以看出两个投影圆圆心之间的距离 d在图 14A和图 14B中相同, 只是投影圆大小不同, 根 据图 14A和图 14B中投影圆内三个光斑的位置可以看出, 投影圆的大小变化过程是圆心位置不变的等 比例縮放过程。
图 15A画出了相邻投影圆以 1/2半径重叠度呈六边形排列的重叠效果,图中六边形中的区域为一个 标准显示区域,其中每个点至少有 3次重叠; 图 15B画出了相邻投影圆以 2/3半径重叠度呈六边形排列 的重叠效果, 图中六边形中的区域为一个标准显示区域, 其中每个点至少有 7次重叠; 图 15C画出了 相邻投影圆以 3/4半径重叠度呈六边形排列的重叠效果, 图中六边形中的区域为一个标准显示区域, 其 中每个点至少有 12次重叠。 为了实现较好的显示效果, 显示区域的每个点至少需要达到 7次重叠。
图 16A、 图 16B描述了如何利用六边形排列下的 7次重叠投影圆实现不同距离虚拟图像的显示。 图 16A画出了相邻的 7个投影圆各自显示的图像及在晶状体 (4) 处于近视状态时, 7个投影圆重叠后 的图像, 可以看到重叠区域形成了清晰的 "+" 图形及周围模糊的 图形, 即人眼会感觉此时虚拟 的 "+"图像位于近处, 而虚拟的 图像位于远处无法看清; 图 16B画出了图 16A中的 7个投影圆 在晶状体(4)处于远视状态时的重叠图像, 与图 16A相比较, 图 16B中的 7个投影圆等比例放大了一 定倍数(图中为 1.2倍), 而圆心位置不变, 可以看到, 此时重叠区域形成了清晰的 图形及周围模 糊的 "+"图形, 即人眼会感觉此时虚拟的 图像位于远处, 而虚拟的 "+"图像位于近处无法看清。
6 替 ( 第 26条) 图 Π画出了利用立体焦场显示原理制成的角膜接触镜显示器。投影单元(2)被集成在角膜接触镜 (30) 的镜片内, 投影单元 (2)之间的间隙较大, 允许外部光线 (17) 通过, 因而可使佩戴者看清外 界环境。 使用图 8的方案可使得投影单元 (2) 本身也具有一定的透光性, 进一步提高了角膜接触镜显 示器的透光度。
图 18A、 图 18B画出了直射型投影组件输入光线生成结构。 图 18A描述了在图 10A、 图 10C、 图
10D三种情况下, 投影组件 (1 ) 的输入光线生成方案: 总成光源 (31 ) 产生的光线经过平行光生成透 镜(32)之后变为平行光或准平行光, 作为投影组件(1 )的输入光线; 图 18B描述了在图 10B情况下, 投影组件(1 ) 的输入光线生成方案: 总成光源 (31 ) 产生的光线经过平行光生成透镜 (32)之后变为 平行光或准平行光, 然后又经过透射型总成显示层(33 )形成元光束(3 )族, 作为投影组件(1 ) 的输 入光线。 透射型总成显示层 (33 ) 可以是液晶显示器或其他透射性能可控的点阵显示器件。
图 19画出了反射型投影组件输入光线生成结构, 描述了在图 10B情况下, 投影组件 (1 ) 的输入 光线的另一种生成方案: 总成光源 (31 )产生的光线经过平行光生成透镜 (32)之后变为平行光或准平 行光, 然后经过半透镜 ( 34)反射后射入反射型总成显示层(35 ), 反射出的元光束(3)族透过半透镜 (34), 作为投影组件 (1 ) 的输入光线。 反射型总成显示层 (35 ) 可以是 LCOS类显示器或其他反射 性能可控的点阵显示器件。
以上对本发明实施例的多种选型方案进行了描述, 但是, 对于本领域的普通技术人员来说, 在不脱 离本发明的设计思想和构思的基础上仍可以作出其他变型或者改型,应当说,这样一些变型或改型都属 于本发明的保护范围。
替换页 (细则第 26条)

Claims

WO 2013/159264 权 利 要 求 书 PCT/CN2012/001415
1.一种立体焦场式眼镜显示器, 包括投影组件 (1 )及显示控制器件, 外形为框架式眼镜或角膜接 触镜, 其特征是: 投影组件 (1 ) 由若干个投影单元 (2) 组成, 单个投影单元 (2)投射出若干元光束
(3 ), 同一投影单元 (2)发出的元光束(3)在晶状体(4)之前呈发散关系而互不相交, 在晶状体(4) 之后其延长线交汇于视网膜 (5)之后的实际焦点 (8), 不同投影单元 (2)发出的元光束 (3) 经过晶 状体 (4)后在视网膜 (5) 附近相交, 形成集束焦点 (6), 所有集束焦点 (6) 组成了笼罩着视网膜的 立体焦场(7), 当晶状体(4)屈光度改变时, 立体焦场(7)也随之发生位移和变形, 从而使得不同的 集束焦点 (6)落在视网膜 (5)上而被看清, 而之前能被看清的集束焦点 (6) 则趋向于发散。
2.根据权利要求 1所述的立体焦场式眼镜显示器, 其特征是: 投影单元 (2) 由投影光源 (10)和 显示层(11 )组成, 显示层(11 )可以是任何透光性能可控的点阵显示器件, 投影光源(10)发出类似 点光源的光线, 经过显示层 (11 )之后, 被分割为相互独立且颜色亮度可控的若干元光束 (3 )。
3.根据权利要求 1或 2所述的立体焦场式眼镜显示器,其特征是:投影单元(2)内的投影光源(10) 增加了光束导向滤镜 (12), 使得面光源更加接近点光源。
4.根据权利要求 1或 2所述的立体焦场式眼镜显示器,其特征是:投影单元(2)内的投影光源(10) 增加了内调节透镜 ( 13) 用来调节投影光线的发散度。
5.根据权利要求 1或 2所述的立体焦场式眼镜显示器,其特征是:投影单元(2)内的投影光源(10) 背面增加了球面反射镜 (14), 可更多地利用投影光源 ( 10) 发出的光线。
6.根据权利要求 1或 2所述的立体焦场式眼镜显示器, 其特征是: 投影单元 (2) 的显示层 (11 ) 外增加了外调节透镜 (15) 用来调节投影光线的发散度。
7.根据权利要求 1或 2所述的立体焦场式眼镜显示器, 其特征是: 投影单元(2) 中所采用的单偏 振显示层(16)为只包含一层偏光片的液晶显示器, 对外部光线(17)不具有控制能力, 从而允许外部 光线透过, 投影光源 (10) 附有局部偏光片 (18), 因此投影光源 (10) 发出的光线在经过局部偏光片 ( 18)后变为可被单偏振显示层 (16)控制的光线, 从而制成透射式眼镜显示器。
8.根据权利要求 1或 2所述的立体焦场式眼镜显示器, 其特征是: 投影单元(2)采用反射式光源, 由侧面光源(19)提供光线, 经过侧光反射镜(20)之后, 形成了反射式光源, 侧面光源 ( 19)提供的 光线可以是偏振光, 由侧面偏振膜(21 )实现偏振化, 经过侧光反射镜(20)反射后偏振性不变, 此时 可采用单偏振显示层 (16) 制成透射式眼镜显示器。
9.根据权利要求 1所述的立体焦场式眼镜显示器, 其特征是: 投影单元 (2) 的输入光线为平行光 或光线互不交叉的准平行光, 输入光线可以先经过显示层 (11 )然后经过出口透镜 (22), 也可以先经 过入口透镜(23)然后经过显示层(11 ), 最终射出发散的元光束(3 )族, 若输入光线本身即为经过外 部显示器件调制成的相互独立的元光束(3)族, 则无需显示层(11 ), 只需出口透镜(22)来调节光束 发散度。
8 替换页 (细则第 26条)
10. 根据权利要求 1所述的立体焦场式眼镜显示器, 其特征是: 投影组件 (1 )被安置在人眼的侧 面, 采用反射式结构, 利用侧面反射镜(24)将投影光线反射进入人眼, 侧面反射镜(24)可以是平面 镜或非平面镜, 也可为全反射式或半反射式, 当采用半反射式反射镜时, 可制成透射式眼镜显示器。
9 替换页 (细则第 26条)
PCT/CN2012/001415 2012-04-23 2012-10-23 立体焦场式眼镜显示器 WO2013159264A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280072291.4A CN104285176B (zh) 2012-04-23 2012-10-23 立体焦场式眼镜显示器
EP12875089.0A EP2866073A4 (en) 2012-04-23 2012-10-23 GOGGLES WITH THREE-DIMENSIONAL FOCUS FIELD
US14/500,514 US9507174B2 (en) 2012-04-23 2014-09-29 Spatial focal field type glasses display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210119666.X 2012-04-23
CN201210119666.XA CN103376551B (zh) 2012-04-23 2012-04-23 小孔投射式近眼显示器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/500,514 Continuation US9507174B2 (en) 2012-04-23 2014-09-29 Spatial focal field type glasses display

Publications (1)

Publication Number Publication Date
WO2013159264A1 true WO2013159264A1 (zh) 2013-10-31

Family

ID=49461919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/001415 WO2013159264A1 (zh) 2012-04-23 2012-10-23 立体焦场式眼镜显示器

Country Status (4)

Country Link
US (1) US9507174B2 (zh)
EP (1) EP2866073A4 (zh)
CN (3) CN107153270B (zh)
WO (1) WO2013159264A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016080708A1 (en) * 2014-11-18 2016-05-26 Samsung Electronics Co., Ltd. Wearable device and method for outputting virtual image
CN114545625A (zh) * 2020-11-26 2022-05-27 驻景(广州)科技有限公司 一种解除固定聚焦面约束的近眼显示模组

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106896524B (zh) 2012-12-06 2021-01-01 E-视觉有限公司 提供影像的系统、装置、和/或方法
US9699433B2 (en) * 2013-01-24 2017-07-04 Yuchen Zhou Method and apparatus to produce re-focusable vision with detecting re-focusing event from human eye
JP6539672B2 (ja) * 2013-11-25 2019-07-03 テッセランド・エルエルシーTesseland Llc 没入型コンパクトディスプレイグラス
US9971153B2 (en) * 2014-03-29 2018-05-15 Frimory Technologies Ltd. Method and apparatus for displaying video data
US10816798B2 (en) 2014-07-18 2020-10-27 Vuzix Corporation Near-eye display with self-emitting microdisplay engine
US10338451B2 (en) 2015-08-03 2019-07-02 Facebook Technologies, Llc Devices and methods for removing zeroth order leakage in beam steering devices
US10297180B2 (en) 2015-08-03 2019-05-21 Facebook Technologies, Llc Compensation of chromatic dispersion in a tunable beam steering device for improved display
US10042165B2 (en) 2015-08-03 2018-08-07 Oculus Vr, Llc Optical system for retinal projection from near-ocular display
US10552676B2 (en) 2015-08-03 2020-02-04 Facebook Technologies, Llc Methods and devices for eye tracking based on depth sensing
US10459305B2 (en) 2015-08-03 2019-10-29 Facebook Technologies, Llc Time-domain adjustment of phase retardation in a liquid crystal grating for a color display
US10416454B2 (en) 2015-10-25 2019-09-17 Facebook Technologies, Llc Combination prism array for focusing light
US10247858B2 (en) 2015-10-25 2019-04-02 Facebook Technologies, Llc Liquid crystal half-wave plate lens
US10203566B2 (en) 2015-12-21 2019-02-12 Facebook Technologies, Llc Enhanced spatial resolution using a segmented electrode array
KR20180104056A (ko) 2016-01-22 2018-09-19 코닝 인코포레이티드 와이드 필드 개인 디스플레이
US10324355B2 (en) * 2016-04-21 2019-06-18 Ohio State Innovation Foundation Devices and methods for implementing an optical switching engine
CN105824137A (zh) * 2016-05-25 2016-08-03 北京联合大学 可视化智能眼镜
CN110114710B (zh) 2016-10-31 2020-11-27 德遁公司 毫微微投影仪光学系统
CN110431840B (zh) * 2017-03-28 2021-12-21 索尼公司 图像处理装置、方法以及存储介质
US10546518B2 (en) * 2017-05-15 2020-01-28 Google Llc Near-eye display with extended effective eyebox via eye tracking
US10629105B2 (en) 2017-06-15 2020-04-21 Google Llc Near-eye display with frame rendering based on reflected wavefront analysis for eye characterization
US10859834B2 (en) 2017-07-03 2020-12-08 Holovisions Space-efficient optical structures for wide field-of-view augmented reality (AR) eyewear
US10338400B2 (en) 2017-07-03 2019-07-02 Holovisions LLC Augmented reality eyewear with VAPE or wear technology
US10976551B2 (en) 2017-08-30 2021-04-13 Corning Incorporated Wide field personal display device
CN107582237A (zh) * 2017-09-28 2018-01-16 深圳市华星光电技术有限公司 可穿戴式显示装置及视力矫正方法
CN109725441A (zh) * 2017-10-28 2019-05-07 郑克立 一种全息眼镜片
US10409068B1 (en) 2018-03-27 2019-09-10 Tectus Corporation Binocular femtoprojector layouts
WO2019209911A1 (en) * 2018-04-24 2019-10-31 Lc-Tec Displays Ab Viewing direction independent single-layer, pixelated light dimming filter
US10613334B2 (en) * 2018-05-21 2020-04-07 Tectus Corporation Advanced femtoprojector optical systems
CN108919484A (zh) * 2018-06-22 2018-11-30 平行现实(杭州)科技有限公司 一种隐形眼镜式放大模组及近眼放大系统
KR102437814B1 (ko) 2018-11-19 2022-08-29 이-비전 스마트 옵틱스, 아이엔씨. 빔 조향 장치
CN110634415B (zh) * 2019-09-25 2021-08-06 京东方科技集团股份有限公司 一种显示装置
CN112925098B (zh) * 2019-12-06 2022-09-27 驻景(广州)科技有限公司 基于光出射受限像素块-孔径对的近眼显示模组
CN111443488A (zh) * 2020-03-30 2020-07-24 Oppo广东移动通信有限公司 虚拟显示器
CN114326118A (zh) * 2020-05-15 2022-04-12 华为技术有限公司 一种多焦图像生成装置、抬头显示装置、相关方法及设备
CN113759554B (zh) * 2021-09-13 2023-10-10 京东方科技集团股份有限公司 投影显示系统、方法及存储介质
TWI812062B (zh) * 2021-11-05 2023-08-11 大立光電股份有限公司 光學鏡頭及電子裝置
CN117518519B (zh) * 2023-12-29 2024-03-05 成都工业学院 一种弧形视点排布的立体显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085957A (ja) * 1994-06-20 1996-01-12 Sanyo Electric Co Ltd メガネ無し立体表示装置
CN1813213A (zh) * 2003-04-25 2006-08-02 微型光学公司 双目镜观察系统
CN1890988A (zh) * 2003-12-03 2007-01-03 皇家飞利浦电子股份有限公司 2d/3d图像显示器
CN101788711A (zh) * 2009-01-28 2010-07-28 奥林巴斯株式会社 头部佩戴型图像显示装置
JP2010271505A (ja) * 2009-05-21 2010-12-02 Sony Corp 立体表示装置
CN102132193A (zh) * 2008-11-19 2011-07-20 株式会社日立制作所 裸眼立体视觉显示器
CN102193196A (zh) * 2010-03-16 2011-09-21 奥林巴斯株式会社 显示装置及单元、电子设备、便携设备及电话、摄像装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2957910B2 (ja) * 1994-07-08 1999-10-06 大日本スクリーン製造株式会社 照明装置
WO1997022964A1 (en) * 1995-12-18 1997-06-26 Bell Communications Research, Inc. Flat virtual displays for virtual reality
US6160667A (en) * 1997-08-11 2000-12-12 Telcordia Technologies, Inc. Apparatus and method for creating and displaying planar virtual images
JP2002333618A (ja) * 2001-05-07 2002-11-22 Nitto Denko Corp 反射型液晶表示装置
US6879443B2 (en) * 2003-04-25 2005-04-12 The Microoptical Corporation Binocular viewing system
EP1784988A1 (en) * 2004-08-06 2007-05-16 University of Washington Variable fixation viewing distance scanned light displays
JP2006154482A (ja) * 2004-11-30 2006-06-15 Ricoh Co Ltd 画像表示装置
CN101414425B (zh) * 2007-10-16 2013-07-17 宋学锋 显示装置及其显示方法
KR20090101084A (ko) * 2008-03-21 2009-09-24 후지논 가부시키가이샤 촬상 필터
US20110122051A1 (en) * 2008-08-13 2011-05-26 Postech Academy Industry Foundation Head-mounted display
US8643950B2 (en) * 2012-03-15 2014-02-04 Blackberry Limited Lens-based image augmenting optical window with intermediate real image

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085957A (ja) * 1994-06-20 1996-01-12 Sanyo Electric Co Ltd メガネ無し立体表示装置
CN1813213A (zh) * 2003-04-25 2006-08-02 微型光学公司 双目镜观察系统
CN1890988A (zh) * 2003-12-03 2007-01-03 皇家飞利浦电子股份有限公司 2d/3d图像显示器
CN102132193A (zh) * 2008-11-19 2011-07-20 株式会社日立制作所 裸眼立体视觉显示器
CN101788711A (zh) * 2009-01-28 2010-07-28 奥林巴斯株式会社 头部佩戴型图像显示装置
JP2010271505A (ja) * 2009-05-21 2010-12-02 Sony Corp 立体表示装置
CN102193196A (zh) * 2010-03-16 2011-09-21 奥林巴斯株式会社 显示装置及单元、电子设备、便携设备及电话、摄像装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016080708A1 (en) * 2014-11-18 2016-05-26 Samsung Electronics Co., Ltd. Wearable device and method for outputting virtual image
US10175485B2 (en) 2014-11-18 2019-01-08 Samsung Electronics Co., Ltd. Wearable device and method for outputting virtual image
US10802283B2 (en) 2014-11-18 2020-10-13 Samsung Electronics Co., Ltd. Wearable device and method for outputting virtual image
CN114545625A (zh) * 2020-11-26 2022-05-27 驻景(广州)科技有限公司 一种解除固定聚焦面约束的近眼显示模组

Also Published As

Publication number Publication date
CN107153270A (zh) 2017-09-12
US9507174B2 (en) 2016-11-29
CN107153270B (zh) 2019-11-22
EP2866073A1 (en) 2015-04-29
CN103376551A (zh) 2013-10-30
CN104285176B (zh) 2018-02-06
EP2866073A4 (en) 2016-03-02
CN103376551B (zh) 2017-04-19
CN104285176A (zh) 2015-01-14
US20150015814A1 (en) 2015-01-15

Similar Documents

Publication Publication Date Title
WO2013159264A1 (zh) 立体焦场式眼镜显示器
US11733516B2 (en) Augmented reality display comprising eyepiece having a transparent emissive display
JP6763070B2 (ja) 仮想現実および拡張現実のシステムおよび方法
JP6821574B2 (ja) 全反射を有するディスプレイ装置
JP7446620B2 (ja) オーバーラップするプロジェクター組立体を有するニアアイディスプレイ
US20170059869A1 (en) Optical system for head mount display
CN105492957B (zh) 采用成对眼镜形式的图像显示设备
WO2020123528A1 (en) Ar headsets with improved pinhole mirror arrays
WO2017181590A1 (zh) 显示装置及显示方法
US10600352B1 (en) Display device with a switchable window and see-through pancake lens assembly
WO2009066408A4 (en) Display device, display method and head-up display
US20200301239A1 (en) Varifocal display with fixed-focus lens
CN106461941A (zh) 用于能够佩戴到使用者头上且产生图像的显示装置的镜片
CN107111138A (zh) 包括交叉光学部件的头戴式观察系统
CN107076986A (zh) 成像光学器件和数据眼镜
JP3623265B2 (ja) 映像表示装置
TW202141115A (zh) 頭戴式顯示裝置及場曲消除方法
WO2020248535A1 (zh) 一种纳米波导镜片及ar显示装置
CN114200679A (zh) 光学模组/系统、显示装置、头戴式显示设备和显示系统
KR102216588B1 (ko) 증강 현실용 광학 장치
TWI841258B (zh) 頭戴式顯示器之光學組件
CN116699853B (zh) 一种大视场角光学系统及ar设备
TWI770812B (zh) 頭戴式顯示裝置
CN112969956B (zh) 用于增强现实的光学装置
TW202340804A (zh) 頭戴式顯示器之光學組件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12875089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012875089

Country of ref document: EP