WO2015024309A1 - 涡轮式空气发动机总成 - Google Patents

涡轮式空气发动机总成 Download PDF

Info

Publication number
WO2015024309A1
WO2015024309A1 PCT/CN2013/087097 CN2013087097W WO2015024309A1 WO 2015024309 A1 WO2015024309 A1 WO 2015024309A1 CN 2013087097 W CN2013087097 W CN 2013087097W WO 2015024309 A1 WO2015024309 A1 WO 2015024309A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
groove
rotating shaft
air
controller
Prior art date
Application number
PCT/CN2013/087097
Other languages
English (en)
French (fr)
Inventor
谢坤
Original Assignee
Xie Kun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xie Kun filed Critical Xie Kun
Publication of WO2015024309A1 publication Critical patent/WO2015024309A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/32Non-positive-displacement machines or engines, e.g. steam turbines with pressure velocity transformation exclusively in rotor, e.g. the rotor rotating under the influence of jets issuing from the rotor, e.g. Heron turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K3/00Arrangement or mounting of steam or gaseous-pressure propulsion units
    • B60K3/04Arrangement or mounting of steam or gaseous-pressure propulsion units of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/02Adaptations for driving vehicles, e.g. locomotives

Definitions

  • the present invention relates to an air engine, and more particularly to a turbine air engine assembly. Background technique
  • Cars are one of the most widely used products in modern society. Today, with the rapid population growth, the number of cars has increased dramatically. However, most of the current cars still use traditional fossil energy engines, which results in The consumption of fossil energy is large, and cars using traditional fossil energy engines emit a large amount of toxic gases during driving, and the pollution to the environment is quite serious.
  • air-powered vehicles that use air energy as power in the prior art. These vehicles use a different aerodynamic engine than a fossil energy engine, relying on the energy provided by high-pressure air to drive the engine and the car. This emerging air-energy vehicle does not rely on burning traditional fossil energy to obtain power. It uses only compressed air. It achieves zero emissions to the outside world during driving, and it is pollution-free and in line with development trends. However, these aerodynamic engines still use piston engines, which have complicated structure and difficult control, which makes the production cost high, which is not conducive to the promotion and application of air-powered vehicles.
  • a turbine air engine assembly provided by the present invention includes a gas storage tank, a constant pressure gas tank, a pressure controller, an air distributor, a turbine engine, an electromagnetic booster, an angular displacement sensor, a solar device, and a controller.
  • the gas storage tank is connected to the constant pressure gas tank through an air valve, the constant pressure gas tank is in communication with the pressure controller, the turbine engine has at least two turbine chambers, and the air distributor respectively Communicating with the pressure controller and the turbine chamber, the electromagnetic booster is disposed on a rotating shaft of the turbine engine and applies a force to the rotating shaft, and the angular displacement sensor detects an angular displacement of the rotating shaft,
  • a solar device is electrically coupled to the controller, the controller controlling operation of the air valve, pressure controller, air distributor, electromagnetic booster, and angular displacement sensor.
  • the turbine engine includes a body and the rotating shaft, the body has the turbine chamber, the rotating shaft is pivotally connected to the turbine chamber, and an outer side wall of the rotating shaft is formed with an annular rolling groove, the turbine The inner side wall of the turbine has an arc-shaped groove corresponding to the annular rolling groove, and the arc-shaped groove is arranged along the circumferential direction of the rotating shaft and has a deep gradient.
  • the groove bottom of the arcuate groove is a tooth surface structure
  • a roller is movably disposed between the annular groove groove and the arc groove, a bottom surface of the shallow end of the arc groove and a bottom surface of the annular groove groove
  • the distance between the two is smaller than the diameter of the roller, and the distance between the bottom surface of the deeper end of the arcuate groove and the bottom surface of the annular groove is larger than the diameter of the roller
  • the body also has exhaust An interface and an air inlet port for blowing a gas to the turbine, wherein the exhaust port and the air inlet port are respectively in communication with the turbine chamber.
  • an annular rolling groove is provided on the rotating shaft, an arcuate groove is provided on the inner side of the turbine, and a roller is disposed between the annular rolling groove and the curved groove, and the depth of the curved groove is gradually changed. Causing a smaller distance between the annular groove and the arcuate groove, so that one end of the arcuate groove can freely accommodate the roller, and the other end can press the roller, therefore,
  • the turbine rotates to press the groove bottom of the arcuate groove against the roller, the rotating shaft is driven by a clamping force to drive the rotating shaft to convert the kinetic energy of the high-pressure air into mechanical energy;
  • the other end of the arcuate groove cannot press the roller, when a plurality of the turbines are simultaneously driven, mutual interference between the turbines is not generated, and energy loss is avoided;
  • the groove bottom surface of the arcuate groove is provided with a tooth surface, thereby facilitating clamping of the roller, preventing the roller from slipping with the turbine and failing to drive the rotating shaft, and ensuring the effectiveness
  • the turbine has a plurality of blades, the blades having a windward side, and an air inlet direction of the air inlet interface faces the windward surface and forms an acute angle with a direction from the mounting position to the center of the rotating shaft.
  • an air inlet direction of the air inlet interface faces the windward surface and forms an acute angle with a direction from the mounting position to the center of the rotating shaft.
  • the rotating shaft is fixedly sleeved with a connecting ring, and the annular rolling groove is disposed on an outer sidewall of the connecting ring. Opening the annular groove on the connecting ring and mounting the connecting ring outside the rotating shaft, thereby avoiding directly opening the annular rolling groove on the rotating shaft, thereby ensuring the mechanical strength of the rotating shaft. And make processing and assembly more convenient.
  • the groove bottom of the annular rolling groove is a tooth surface structure.
  • the tooth surface can increase the friction of the roller when the groove bottom of the arc groove and the annular groove bottom sandwich the roller
  • the force and the clamping force prevent the roller from slipping between the annular groove and the curved groove, ensure the effectiveness of driving the rotating shaft, and improve the stability of the engine.
  • the electromagnetic booster comprises a stator fixed disc, a stator electromagnet, a rotor fixed disc and a rotor electromagnet, wherein the stator electromagnets are circumferentially distributed on the stator fixed disc, the rotor electromagnet And uniformly distributed on the rotor fixing plate and corresponding to the stator electromagnet, wherein the stator fixing plate is fixed in a body of the turbine engine, and the rotor fixing plate is fixedly sleeved in the The stator electromagnet and the rotor electromagnet are electrically connected to the controller, respectively, on the rotating shaft.
  • the repulsive force between the opposing electric fields is utilized to assist the rotation shaft, thereby reducing the consumption of high pressure gas and improving the endurance of the vehicle.
  • an angle between a central axis of the iron core of the stator electromagnet and a center axis of the iron core of the rotor electromagnet is an acute angle.
  • the turbo air motor assembly further includes an exhaust gas recovery device, wherein the exhaust gas recovery device is in communication with an exhaust port of the engine and a gas storage tank, respectively. Since the exhaust gas discharged from the turbine engine also has a certain pressure, setting the exhaust gas recovery device to recover this part of the energy and reuse it is advantageous for improving the endurance of the automobile.
  • a supercharging device is further disposed between the exhaust gas recovery device and the gas storage tank, and the supercharging device is electrically connected to the control device.
  • the exhaust gas is pressurized by the supercharging device to realize recycling, thereby improving the endurance of the automobile.
  • the boosting device is a booster pump or a heater.
  • the present invention distributes high-pressure air in the air tank to each turbine chamber of the turbine engine by providing a constant pressure gas tank, a pressure controller, and an air distributor, thereby a turbine driving shaft rotates in the turbine chamber to realize a power output of the turbine engine; and, by providing an electromagnetic booster and an angular displacement sensor on a rotating shaft of the turbine engine, the angular displacement sensor is used to detect a rotation angle of the rotating shaft to thereby control the
  • the electromagnetic booster assists the shaft, from The turbine engine has more power, and the consumption of the high-pressure air can be reduced, and the endurance capability of the vehicle can be improved.
  • the entire system can be realized only by automatic control of the controller, and the structure is simple and the control is convenient.
  • Figure 1 is a schematic view showing the structure of a turbo air motor assembly of the present invention.
  • FIG 2 is a side view of a turbine engine in a turbine air engine assembly of the present invention.
  • FIG 3 is a cross-sectional view of a turbine engine in a turbine air engine assembly of the present invention.
  • FIG. 4 is a schematic structural view of an electromagnetic booster in a turbo air motor assembly of the present invention. detailed description
  • the turbo air motor assembly 100 of the present invention includes a gas storage tank 1, a constant pressure gas tank 2, a pressure controller 3, an air distributor 4, a turbine engine 5, an electromagnetic booster 6, and an angular displacement sensor ( Not shown in the drawing, solar device 7, exhaust gas recovery device 8, supercharging device 9, and controller (not shown).
  • the air tank 1 and the constant pressure gas tank 2 communicate with each other through the air valve 10, and the air valve 10 is opened or closed to connect or disconnect the gas storage tank 1 and the constant pressure gas tank 2; the constant pressure gas tank 2 and the pressure controller 3, the high pressure gas in the constant pressure gas tank 2 has a constant pressure to ensure the supply is stable; the pressure controller 3 can control the high pressure gas to be delivered to have a certain pressure value, thereby controlling the output driving force of the turbine engine 5.
  • the turbine engine 5 has at least two turbine chambers 51a, the input of which is in communication with a pressure controller 3 having a plurality of outputs, the output of which is in communication with the respective turbine chambers 51a .
  • the electromagnetic booster 6 is disposed on the rotating shaft 52 of the turbine engine 5 and applies a force to the rotating shaft 52.
  • the angular displacement sensor detects the angular displacement of the rotating shaft 52.
  • the solar device 7 can be a pressure controller 3, an air distributor 4, an electromagnetic booster 6, The supercharging device 9 and the controller supply power, and the controller controls the operation of the air valve 10, the pressure controller 3, the air distributor 4, the electromagnetic booster 6, the angular displacement sensor, and the supercharging device 9.
  • the turbine engine 5 includes a body 51 and a rotating shaft 52.
  • the body 51 has four turbine chambers 51a.
  • the rotating shaft 52 is pivotally connected to each of the turbine chambers 51a and each of the turbine chambers 51a.
  • the outer side wall of the inner rotating shaft 52 is fixedly sleeved with a connecting ring 521, and the outer side wall of the connecting ring 521 is provided with an annular rolling groove 521a.
  • the turbine chamber 51a has a turbine 53 that is sleeved on the rotating shaft 52.
  • the inner side wall of the turbine 53 is provided with an arcuate groove 531 corresponding to the annular rolling groove 521a.
  • the arcuate groove 531 is disposed along the circumferential direction of the rotating shaft 52 and has a deep gradient.
  • the groove bottom of the groove 531 is a tooth surface 531a
  • the groove bottom of the annular groove 521a is a tooth surface 521b
  • a roller 54 is movably disposed between the annular groove 521a and the curved groove 531, and the annular groove 521a and the arc are formed.
  • the groove bottom of the groove 531 is provided in a tooth surface structure, and the tooth surface can increase the friction force and the clamping force on the roller 54 when the groove bottom of the arc groove 531 and the groove bottom of the annular groove groove 531a sandwich the roller 54.
  • the roller 54 is prevented from slipping between the annular rolling groove 521a and the curved groove 531, thereby ensuring the effectiveness of the driving shaft 52 and improving the stability of the turbine engine 5. Further, the distance between the shallower end surface of the arcuate groove 531 and the bottom surface of the annular rolling groove 521a is smaller than the diameter of the roller 54, and the distance between the bottom surface of the deep end of the arcuate groove 531 and the bottom surface of the annular rolling groove 521a Greater than the diameter of the roller 54.
  • the body 51 further has an intake port 51b and an exhaust port 51c, and the exhaust port 51c and the intake port 51b communicate with the turbine chamber 51a.
  • annular groove 521a is provided on the rotating shaft 52, an arcuate groove 531 is provided inside the turbine 53, and a roller 54 is disposed between the annular groove 521a and the curved groove 531, by making the curved groove 531 deep gradient The distance between the annular groove 521a and the curved groove 531 is gradually reduced, so that one end of the curved groove 531 can freely accommodate the roller 54, and the other end can press the roller 54, so that when the turbine 53 rotates
  • the rotating shaft 52 is driven by the clamping force, thereby driving the rotating shaft 52 to rotate, thereby realizing the conversion of the kinetic energy of the high-pressure air into mechanical energy; and, since the other end of the curved groove 531 cannot Since the roller 54 is pressed, when the plurality of turbines 53 are simultaneously driven, mutual interference does not occur between the turbines 53, and energy loss is avoided.
  • the turbine 53 has a plurality of blades 532 having a windward surface 532a, and the air inlet direction of the air inlet interface 51b faces the windward surface 532a and is at an acute angle to the direction of its mounting position to the center of the rotating shaft 52.
  • the high pressure that can be ejected from the air inlet port 51b can be made. Air is maximally applied to the blade 532.
  • the electromagnetic booster 6 includes a stator fixing plate 61, a stator electromagnet 62, a rotor fixing plate 63 and a rotor electromagnet 64.
  • the stator electromagnets 62 are circumferentially distributed on the stator fixing plate 61, and the rotor is electromagnetically
  • the iron 64 is circumferentially distributed on the rotor fixing plate 63 and corresponds to the stator electromagnet 62.
  • the stator fixing plate 61 is fixed in the body 51 of the turbine engine 5, and the rotor fixing plate 63 is fixedly sleeved on the rotating shaft 52.
  • the stator electromagnet 62 and the rotor electromagnet 64 are electrically connected to the controller, respectively.
  • the angle between the central axis of the iron core of the stator electromagnet 62 and the central axis of the iron core of the rotor electromagnet 64 is an acute angle.
  • the exhaust gas recovery device 8 is in communication with the exhaust port 51c of the engine and the gas storage tank 1, respectively. Since the exhaust gas discharged from the turbine engine 5 also has a certain pressure, it is advantageous to set the exhaust gas recovery device 8 to recover this part of the energy and reuse it in order to improve the endurance of the automobile.
  • the supercharging device 9 is a booster pump or a heater, and the supercharging device 9 is electrically connected to the control device. The exhaust gas is pressurized by the supercharging device 9 to realize recycling, thereby improving the endurance of the automobile.
  • the controller controls the air valve 10 to open, the high pressure gas in the gas storage tank 1 enters the constant pressure gas tank 2, and the controller controls the pressure control.
  • the device 3 is turned on, and the gas in the constant pressure gas tank 2 is delivered to the air distributor 4 by the pressure set by the pressure controller 3; the controller can determine the number of turbines to be operated according to the required power, thereby controlling the air distribution.
  • the device 4 delivers high pressure gas into the working turbine chamber 51a to convert the air energy into mechanical energy.
  • the exhaust gas recovery device 8 recovers the exhaust gas, pressurizes the exhaust gas through the pressurizing device 9, and then returns it to the gas storage tank 1 for recycling; the high-pressure gas is pushed in the turbine chamber 51a.
  • the controller controls the stator electromagnet 62 and the rotor electromagnet 64 to be energized or de-energized according to the angular displacement of the rotating shaft 52 detected by the angular displacement sensor.
  • the present invention has four stator electromagnets 62 and four rotor electromagnets 64. The angle between each two stator electromagnets 62 and each of the two rotor electromagnets 64 is 90 degrees.
  • the controller controls energization, so that the stator electromagnet 62 and the rotor electromagnet 64 pass opposite currents, thereby causing a repulsive force, thereby causing the rotor electromagnet 64 to drive the rotating shaft 52 to rotate.
  • the displacement sensor detects that the rotating shaft 52 is rotated by 90 degrees. At this time, the rotor electromagnet 64 is rotated to the stator.
  • the electromagnet 62 is again facing up, and the controller is energized again, whereby the rotor electromagnet 64 is continuously pushed, thereby assisting the rotation shaft 52.
  • the present invention distributes the high pressure air in the air tank 1 into the turbine chambers 51a of the turbine engine 5 by providing the constant pressure gas tank 2, the pressure controller 3, and the air distributor 4,
  • the turbine 53 in the turbine chamber 51a is driven to rotate the rotating shaft 52 to realize the power output of the turbine engine 5; and, by providing the electromagnetic booster 6 and the angular displacement sensor on the rotating shaft 52 of the turbine engine 5, the angular displacement sensor is used to detect the rotating shaft 52.
  • the rotation angle further controls the electromagnetic booster 6 to assist the rotation shaft 52, so that the turbine engine 5 has stronger power, and the consumption of high-pressure air can be reduced, and the endurance of the vehicle can be improved.
  • the entire system only needs to be automatically controlled by the controller. It can be realized, the structure is simple, and the control is convenient.
  • control methods of the controllers involved in the turbo-type air engine assembly 100 of the present invention are well known to those of ordinary skill in the art and will not be described in detail herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Supercharger (AREA)

Abstract

一种涡轮式空气发动机总成,包括储气罐、恒压气罐、压力控制器、空气分配器、涡轮发动机、电磁助力器、角位移传感器、太阳能装置及控制器,所述储气罐与所述恒压气罐之间通过空气阀连通,所述恒压气罐与所述压力控制器连通,所述涡轮发动机具有至少两个涡轮室,所述空气分配器分别与所述压力控制器及所述涡轮室连通,所述电磁助力器设置于所述涡轮发动机的转轴上并对所述转轴增力,所述角位移传感器检测所述转轴的角位移,所述太阳能装置与所述控制器电连接,所述控制器控制所述空气阀、压力控制器、空气分配器、电磁助力器及角位移传感器的运作。本发明涡轮式空气发动机总成结构简单,控制方便,可提高汽车的续航能力。

Description

涡轮式空气发动机总成 技术领域
本发明涉及一种空气发动机, 尤其涉及一种涡轮式空气发动机总成。 背景技术
汽车是现代社会中被使用最广泛的科技产物之一, 在人口高速增长的今天, 汽车的数量也急剧增加, 但是, 目前绝大多数的汽车, 依然是使用传统的化石 能源发动机, 这就造成了对化石能源的大量消耗, 并且, 使用传统化石能源发 动机的汽车, 在行驶过程中排放了大量的有毒气体, 对环境的污染相当严重。 现有技术中已经存在着一些利用空气能作为动力的空气能动力汽车, 这些汽车 使用的是与化石能源发动机不同的空气动力发动机, 依靠高压空气提供的能量 来驱动发动机及汽车工作。 这种新兴的空气能动力汽车, 不依赖于燃烧传统化 石能源而获取动力, 使用的仅仅是压缩过的空气, 行驶过程中对外界实现零排 放, 无污染, 符合发展潮流。 但是, 上述这些空气动力发动机釆用的依然是活 塞式发动机, 其结构复杂, 控制困难, 使得生产成本较高, 不利于空气能动力 汽车的推广应用。
发明内容
本发明的目的在于提供一种结构简单, 控制方便的涡轮式空气发动机总成。 为了实现上述目的, 本发明提供的涡轮式空气发动机总成包括储气罐、 恒 压气罐、 压力控制器、 空气分配器、 涡轮发动机、 电磁助力器、 角位移传感器、 太阳能装置及控制器, 所述储气罐与所述恒压气罐之间通过空气阀连通, 所述 恒压气罐与所述压力控制器连通, 所述涡轮发动机具有至少两个涡轮室, 所述 空气分配器分别与所述压力控制器及所述涡轮室连通, 所述电磁助力器设置于 所述涡轮发动机的转轴上并对所述转轴增力, 所述角位移传感器检测所述转轴 的角位移, 所述太阳能装置与所述控制器电连接, 所述控制器控制所述空气阀、 压力控制器、 空气分配器、 电磁助力器及角位移传感器的运作。 较佳地, 所述涡轮发动机包括机体及所述转轴, 所述机体具有所述涡轮室, 所述转轴枢接于所述涡轮室内且所述转轴的外侧壁形成有环形滚槽, 所述涡轮 室内具有活动套设于所述转轴的涡轮, 所述涡轮的内侧壁开设有与所述环形滚 槽对应的弧形槽, 所述弧形槽沿所述转轴的周向设置并且深度渐变, 所述弧形 槽的槽底为齿面结构, 所述环形滚槽与所述弧形槽之间活动地设有一滚子, 所 述弧形槽的较浅端的底面与所述环形滚槽的底面之间的距离小于所述滚子的直 径, 且所述弧形槽的较深端的底面与所述环形滚槽的底面之间的距离大于所述 滚子的直径, 所述机体还具有排气接口及向所述涡轮吹送气体的入气接口, 所 述排气接口及所述入气接口分别与所述涡轮室连通。 由于在所述转轴上设置环 形滚槽, 在所述涡轮的内侧设有弧形槽, 并且在所述环形滚槽及弧形槽之间设 置一滚子, 通过使所述弧形槽深度渐变, 导致所述环形滚槽与所述弧形槽之间 的距离渐渐变小, 从而使所述弧形槽的一端能自由容纳所述滚子, 另一端能抵 压所述滚子, 因此, 当所述涡轮转动而使所述弧形槽的槽底抵压所述滚子时, 利用夹持力带动所述转轴, 从而驱动所述转轴转动, 实现将高压空气的动能转 化成机械能; 并且, 由于所述弧形槽的另一端不能抵压所述滚子, 因此, 设置 多个所述涡轮同时驱动时, 所述涡轮之间不会产生相互干扰, 避免能量的损耗; 另外, 由于在所述弧形槽的槽底面设置齿面, 因此, 有利于夹紧所述滚子, 防 止所述滚子与所述涡轮打滑而对所述转轴驱动失效, 保证驱动所述转轴的有效 性, 提高发动机的稳定性。
具体地, 所述涡轮具有多个叶片, 所述叶片具有迎风面, 所述入气接口的 入气方向面向所述迎风面且与其安装位置到所述转轴中心的方向成锐角。 通过 使所述入气接口的入气方向面对所述迎风面, 并且使入气方向与所述入气接口 的安装位置到所述转轴中心的方向成一定角度设置, 从而可以使所述入气接口 喷出的高压空气最大化地施加于所述叶片上。
具体地, 所述转轴外固定地套设有一连接圈, 所述环形滚槽设置于所述连 接圈的外侧壁。 将环形滚槽开设于所述连接圈上再将所述连接圈安装于所述转 轴之外, 可以避免在所述转轴之上直接开设所述环形滚槽, 保证了所述转轴的 机械强度, 且使得加工及装配更加方便。 具体地, 所述环形滚槽的槽底为齿面结构。 通过将所述环形滚槽底设置成 齿面结构, 所述齿面可以在所述弧形槽的槽底与所述环形滚槽底相互夹持滚子 时, 增加对所述滚子的磨擦力及夹持力, 防止所述滚子与所述环形滚槽及弧形 槽之间打滑, 保证驱动所述转轴的有效性, 提高发动机的稳定性。
较佳地, 所述电磁助力器包括定子固定盘、 定子电磁铁、 转子固定盘及转 子电磁铁, 所述定子电磁铁均勾地周向分布于所述定子固定盘上, 所述转子电 磁铁均勾地周向分布于所述转子固定盘上且与所述定子电磁铁——对应, 所述 定子固定盘固定于所述涡轮发动机的机体内, 所述转子固定盘固定地套接于所 述转轴上, 所述定子电磁铁及所述转子电磁铁分别与所述控制器电连接。 通过 向定子电磁铁及转子电磁铁通反方向的电流使其产生相反的电场, 从而利用反 向电场之间的排斥力实现对转轴的进行助力, 可以减少对高压气体的消耗, 提 高汽车的续航能力。
具体地, 所述定子电磁铁的铁芯的中心轴线与所述转子电磁铁的铁芯的中 心轴线之间的夹角为锐角。 通过将所述定子电磁铁及转子电磁铁设成锐角, 使 其通电后各自产生的排斥力呈一定夹角, 从而得到切向力并推动所述转轴转动。
较佳地, 所述涡轮式空气发动机总成还包括尾气回收装置, 所述尾气回收 装置分别与所述发动机的排气接口及储气罐连通。 由于所述涡轮发动机排出的 尾气还具有一定的压力, 因此, 设置所述尾气回收装置回收这部分能量并重复 利用有利于提高汽车的续航能力。
具体地, 所述尾气回收装置与所述储气罐之间还设有增压装置, 所述增压 装置与所述控制装置电连接。 通过所述增压装置, 使所述尾气增压后实现循环 利用, 从而提高汽车的续航能力。
更具体地, 所述增压装置为增压泵或加热器。
与现有技术相比, 由于本发明通过设置恒压气罐、 压力控制器及空气分配 器, 使所述储气罐内的高压空气分配到所述涡轮发动机的各涡轮室内, 从而使 所述涡轮室内的涡轮驱动转轴转动, 实现涡轮发动机的动力输出; 并且, 通过 在所述涡轮发动机的转轴上设置电磁助力器及角位移传感器, 利用所述角位移 传感器检测转轴的转动角度进而控制所述电磁助力器对转轴进行助力驱动, 从 而使所述涡轮发动机具有更强的动力, 并且可减少对所述高压空气的消耗, 提 高汽车的续航能力, 整个系统只需要由控制器自动控制即可实现, 结构简单, 而且控制方便。 附图说明
图 1是本发明涡轮式空气发动机总成的结构示意图。
图 2是本发明涡轮式空气发动机总成中涡轮发动机的侧视图。
图 3是本发明涡轮式空气发动机总成中涡轮发动机的剖视图。
图 4是本发明涡轮式空气发动机总成中电磁助力器的结构示意图。 具体实施方式
为详细说明本发明的技术内容、 构造特征、 所实现的效果, 以下结合实施 方式并配合附图详予说明。
如图 1所示,本发明涡轮式空气发动机总成 100包括储气罐 1、恒压气罐 2、 压力控制器 3、 空气分配器 4、 涡轮发动机 5、 电磁助力器 6、 角位移传感器(图 中未示)、 太阳能装置 7、 尾气回收装置 8、 增压装置 9及控制器(图中未示)。 储气罐 1与恒压气罐 2之间通过空气阀 10连通, 空气阀 10打开或关闭而使储 气罐 1及恒压气罐 2连通或断开; 恒压气罐 2与压力控制器 3连通, 恒压气罐 2 内的高压气体具有恒定的压力, 从而保证供给稳定; 压力控制器 3 能控制所输 送的高压气体具有某个压力值, 从而实现控制涡轮发动机 5 的输出驱动力。 涡 轮发动机 5具有至少两个涡轮室 51a,空气分配器 4的输入端与压力控制器 3连 通, 空气分配器 4具有多个输出端, 空气分配器 4的输出端分别与各个涡轮室 51a的连通。 电磁助力器 6设置于涡轮发动机 5的转轴 52上并对转轴 52增力, 角位移传感器检测转轴 52的角位移, 太阳能装置 7能为压力控制器 3、 空气分 配器 4、 电磁助力器 6、 增压装置 9及控制器供电, 控制器控制空气阀 10、 压力 控制器 3、 空气分配器 4、 电磁助力器 6、 角位移传感器及增压装置 9的运作。
如图 2及图 3所示, 具体地, 涡轮发动机 5包括机体 51及转轴 52, 机体 51具有四个涡轮室 51a, 转轴 52贯穿地枢接于各涡轮室 51a内且各涡轮室 51a 内的转轴 52的外侧壁固定地套设有一连接圈 521 , 连接圈 521的外侧壁设置环 形滚槽 521a。 涡轮室 51a内具有活动套设于转轴 52的涡轮 53 , 涡轮 53的内侧 壁开设有与环形滚槽 521a对应的弧形槽 531 ,弧形槽 531沿转轴 52的周向设置 并且深度渐变, 弧形槽 531 的槽底为齿面 531a, 环形滚槽 521a的槽底为齿面 521b,环形滚槽 521a与弧形槽 531之间活动地设有一滚子 54,将环形滚槽 521a 及弧形槽 531的槽底设置成齿面结构, 齿面可以在弧形槽 531 的槽底与环形滚 槽 531a的槽底相互夹持滚子 54时, 增加对滚子 54的磨擦力及夹持力, 防止滚 子 54在环形滚槽 521a及弧形槽 531之间打滑, 保证驱动转轴 52的有效性, 提 高涡轮发动机 5的稳定性。 另外, 弧形槽 531的较浅端的底面与环形滚槽 521a 的底面之间的距离小于滚子 54的直径, 且弧形槽 531的较深端的底面与环形滚 槽 521a的底面之间的距离大于滚子 54的直径。 机体 51还具有入气接口 51b及 排气接口 51c, 排气接口 51c及入气接口 51b分别与涡轮室 51a连通。 由于在转 轴 52上设置环形滚槽 521a, 在涡轮 53的内侧设有弧形槽 531 , 并且在环形滚 槽 521a及弧形槽 531之间设置一滚子 54, 通过使弧形槽 531深度渐变, 导致环 形滚槽 521a与弧形槽 531之间的距离渐渐变小, 从而使弧形槽 531的一端能自 由容纳滚子 54, 另一端能抵压滚子 54, 因此, 当涡轮 53转动而使弧形槽 531 的槽底抵压滚子 54时, 利用夹持力带动转轴 52, 从而驱动转轴 52转动, 实现 将高压空气的动能转化成机械能; 并且, 由于弧形槽 531 的另一端不能抵压滚 子 54, 因此, 设置多个涡轮 53同时驱动时, 涡轮 53之间不会产生相互干扰, 避免能量的损耗。
再请参阅图 3 , 具体地, 涡轮 53具有多个叶片 532, 叶片 532具有迎风面 532a,入气接口 51b的入气方向面向迎风面 532a且与其安装位置到转轴 52中心 的方向成锐角 Θ。 通过使入气接口 51b的入气方向面对迎风面 532a, 并且使入 气方向与入气接口 51b 的安装位置到转轴中心的方向成一定角度设置, 从而可 以使入气接口 51b喷出的高压空气最大化地施加于叶片 532上。
如图 4所示, 电磁助力器 6包括定子固定盘 61、 定子电磁铁 62、 转子固定 盘 63及转子电磁铁 64, 定子电磁铁 62均勾地周向分布于定子固定盘 61上, 转 子电磁铁 64均勾地周向分布于转子固定盘 63上且与定子电磁铁 62——对应, 定子固定盘 61固定于涡轮发动机 5的机体 51内, 转子固定盘 63固定地套接于 转轴 52上, 定子电磁铁 62及转子电磁铁 64分别与控制器电连接。 通过向定子 电磁铁 62及转子电磁铁 64通反方向的电流或使线圈的绕线方向相反使其产生 相反的电场, 从而利用反向电场之间的排斥力实现对转轴 52的进行助力, 可以 减少对高压气体的消耗, 提高汽车的续航能力。 定子电磁铁 62的铁芯的中心轴 线与转子电磁铁 64的铁芯的中心轴线之间的夹角为锐角。通过将定子电磁铁 62 及转子电磁铁 64设成锐角 α , 使其通电后各自产生的排斥力呈一定夹角, 从而 得到切向力并推动转轴 52转动。
再如图 1所示, 尾气回收装置 8分别与发动机的排气接口 51c及储气罐 1 连通。 由于涡轮发动机 5排出的尾气还具有一定的压力, 因此, 设置尾气回收 装置 8回收这部分能量并重复利用有利于提高汽车的续航能力。尾气回收装置 8 与储气罐 1之间还设有增压装置 9, 增压装置 9为增压泵或加热器, 增压装置 9 与控制装置电连接。 通过增压装置 9使尾气增压后实现循环利用, 从而提高汽 车的续航能力。
综合上述并结合附图, 本发明涡轮式空气发动机总成 100输出动力时, 控 制器控制空气阀 10打开, 储气罐 1内的高压气体进入恒压气罐 2内, 同时控制 器控制压力控制器 3打开, 使恒压气罐 2内的气体以压力控制器 3设定的压力 输送到空气分配器 4 中; 控制器可根据所需要的动力来判定需要工作的涡轮数 目, 从而控制空气分配器 4将高压气体输送到工作的涡轮室 51a内, 实现空气 能转化成机械能。 当高压气体做功后从排气接口 51c排出时, 尾气回收装置 8 将尾气回收, 将通过增压装置 9对尾气增压后输送回储气罐 1内进行循环使用; 高压气体在涡轮室 51a推动涡轮 53转动的过程中, 控制器根据角位移传感器所 检测到的转轴 52的角位移控制定子电磁铁 62及转子电磁铁 64通电或断电。 具 体地, 本发明具有四个定子电磁铁 62及四个转子电磁铁 64,每两个定子电磁铁 62及每两个转子电磁铁 64之间的夹角为 90度,当转子电磁铁 64转动到与定子 电磁铁 62正对时, 控制器控制通电, 使定子电磁铁 62及转子电磁铁 64通过方 向相反电流, 从而使其产生排斥力, 进而使转子电磁铁 64驱动转轴 52转动, 当角位移传感器检测到转轴 52转动 90度, 这时, 转子电磁铁 64转动到与定子 电磁铁 62再次正对, 控制器再次通电, 依此进行, 使得转子电磁铁 64不断被 推动, 从而实现对转轴 52助力。
与现有技术相比, 由于本发明通过设置恒压气罐 2、压力控制器 3及空气分 配器 4, 使储气罐 1内的高压空气分配到涡轮发动机 5的各涡轮室 51a内, 从而 使涡轮室 51a内的涡轮 53驱动转轴 52转动, 实现涡轮发动机 5的动力输出; 并且, 通过在涡轮发动机 5的转轴 52上设置电磁助力器 6及角位移传感器, 利 用角位移传感器检测转轴 52的转动角度进而控制电磁助力器 6对转轴 52进行 助力驱动, 从而使涡轮发动机 5 具有更强的动力, 并且可减少对高压空气的消 耗, 提高汽车的续航能力, 整个系统只需要由控制器自动控制即可实现, 结构 简单, 而且控制方便。
本发明涡轮式空气发动机总成 100所涉及到的控制器的控制方法均为本领 域普通技术人员所熟知, 在此不再做详细的说明。
以上所揭露的仅为本发明的较佳实例而已, 当然不能以此来限定本发明之 权利范围, 因此依本发明申请专利范围所作的等同变化, 仍属于本发明所涵盖 的范围。

Claims

权 利 要 求
1.一种涡轮式空气发动机总成, 其特征在于: 包括储气罐、 恒压气罐、 压力控制 器、 空气分配器、 涡轮发动机、 电磁助力器、 角位移传感器、 太阳能装置及控 制器, 所述储气罐与所述恒压气罐之间通过空气阀连通, 所述恒压气罐与所述 压力控制器连通, 所述涡轮发动机具有至少两个涡轮室, 所述空气分配器分别 与所述压力控制器及所述涡轮室连通, 所述电磁助力器设置于所述涡轮发动机 的转轴上并对所述转轴增力, 所述角位移传感器检测所述转轴的角位移, 所述 太阳能装置与所述控制器电连接, 所述控制器控制所述空气阀、 压力控制器、 空气分配器、 电磁助力器及角位移传感器的运作。
2.如权利要求 1所述的涡轮式空气发动机总成, 其特征在于: 所述涡轮发动机包 括机体及所述转轴, 所述机体具有所述涡轮室, 所述转轴枢接于所述涡轮室内 且所述转轴的外侧壁形成有环形滚槽, 所述涡轮室内具有活动套设于所述转轴 的涡轮, 所述涡轮的内侧壁开设有与所述环形滚槽对应的弧形槽, 所述弧形槽 沿所述转轴的周向设置并且深度渐变, 所述弧形槽的槽底为齿面结构, 所述环 形滚槽与所述弧形槽之间活动地设有一滚子, 所述弧形槽的较浅端的底面与所 述环形滚槽的底面之间的距离小于所述滚子的直径, 且所述弧形槽的较深端的 底面与所述环形滚槽的底面之间的距离大于所述滚子的直径, 所述机体还具有 排气接口及向所述涡轮吹送气体的入气接口, 所述排气接口及所述入气接口分 别与所述涡轮室连通。
3.如权利要求 2所述的涡轮式空气发动机,其特征在于:所述涡轮具有多个叶片, 所述叶片具有迎风面, 所述入气接口的入气方向面向所述迎风面且与其安装位 置到所述转轴中心的方向成锐角。
4.如权利要求 2所述的涡轮式空气发动机, 其特征在于: 所述转轴外固定地套设 有一连接圈, 所述环形滚槽设置于所述连接圈的外侧壁。
5.如权利要求 2所述的涡轮式空气发动机, 其特征在于: 所述环形滚槽的槽底为 齿面结构。
6.如权利要求 1所述的涡轮式空气发动机, 其特征在于: 所述电磁助力器包括定 子固定盘、 定子电磁铁、 转子固定盘及转子电磁铁, 所述定子电磁铁均勾地周 向分布于所述定子固定盘上, 所述转子电磁铁均勾地周向分布于所述转子固定 盘上且与所述定子电磁铁——对应, 所述定子固定盘固定于所述涡轮发动机的 机体内, 所述转子固定盘固定地套接于所述转轴上, 所述定子电磁铁及所述转 子电磁铁分别与所述控制器电连接。
7.如权利要求 6所述的涡轮式空气发动机, 其特征在于: 所述定子电磁铁的铁芯 的中心轴线与所述转子电磁铁的铁芯的中心轴线之间的夹角为锐角。
8.如权利要求 1所述的涡轮式空气发动机总成, 其特征在于: 所述涡轮式空气发 动机总成还包括尾气回收装置, 所述尾气回收装置分别与所述发动机的排气接 口及所述储气罐连通。
9.如权利要求 8所述的涡轮式空气发动机总成, 其特征在于: 所述尾气回收装置 与所述储气罐之间还设有增压装置, 所述增压装置与所述控制装置电连接。
10.如权利要求 9所述的涡轮式空气发动机总成, 其特征在于: 所述增压装置为 增压泵或加热器。
PCT/CN2013/087097 2013-08-21 2013-11-14 涡轮式空气发动机总成 WO2015024309A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2013103675663A CN103437832A (zh) 2013-08-21 2013-08-21 涡轮式空气发动机总成
CN201310367566.3 2013-08-21

Publications (1)

Publication Number Publication Date
WO2015024309A1 true WO2015024309A1 (zh) 2015-02-26

Family

ID=49691537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087097 WO2015024309A1 (zh) 2013-08-21 2013-11-14 涡轮式空气发动机总成

Country Status (2)

Country Link
CN (1) CN103437832A (zh)
WO (1) WO2015024309A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104929689A (zh) * 2014-03-19 2015-09-23 宋德中 空气式发动机
CN107181386B (zh) * 2017-06-24 2019-01-11 林渊震 一种旋转轴用增压器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3958419A (en) * 1972-11-28 1976-05-25 Nikolaus Laing Drive engine for motor car accessory units
US4043126A (en) * 1976-06-29 1977-08-23 Jaime Rios Santos Turbine engine for automotive vehicles
CN87202976U (zh) * 1987-03-12 1987-12-31 张志强 一种自行车后轴上的离合装置
CN202641361U (zh) * 2012-05-18 2013-01-02 周登荣 具有电控系统的压缩空气动力汽车
CN103133037A (zh) * 2011-11-22 2013-06-05 周登荣 电磁助力空气动力发电机系统
CN203515685U (zh) * 2013-08-21 2014-04-02 谢坤 涡轮式空气发动机系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101440720B (zh) * 2008-12-09 2013-01-30 常州市维益科技有限公司 涡轮式调速空气动力发动机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3958419A (en) * 1972-11-28 1976-05-25 Nikolaus Laing Drive engine for motor car accessory units
US4043126A (en) * 1976-06-29 1977-08-23 Jaime Rios Santos Turbine engine for automotive vehicles
CN87202976U (zh) * 1987-03-12 1987-12-31 张志强 一种自行车后轴上的离合装置
CN103133037A (zh) * 2011-11-22 2013-06-05 周登荣 电磁助力空气动力发电机系统
CN202641361U (zh) * 2012-05-18 2013-01-02 周登荣 具有电控系统的压缩空气动力汽车
CN203515685U (zh) * 2013-08-21 2014-04-02 谢坤 涡轮式空气发动机系统

Also Published As

Publication number Publication date
CN103437832A (zh) 2013-12-11

Similar Documents

Publication Publication Date Title
CN103842632B (zh) 电动增压装置
CN108321978A (zh) 一种飞轮储能磁力耦合传动装置
RU2562684C2 (ru) Двигатель внутреннего сгорания с турбонагнетателем, приводная система и способ работы двигателя внутреннего сгорания с турбонагнетателем (варианты)
CN103089407A (zh) 转子离合式电动发电涡轮增压器及其辅助控制电路与控制方法
CN206360776U (zh) 涡轮增压装置及汽车
US20180001984A1 (en) Device and method for starting internal combustion engine
WO2015024309A1 (zh) 涡轮式空气发动机总成
CN204591462U (zh) 一种发动机增压装置
CN206246558U (zh) 一种二速水泵电磁离合器
CN101440720B (zh) 涡轮式调速空气动力发动机
CN204726244U (zh) 一种具备能量回收功能的电动汽车驱动装置
CN208299604U (zh) 一种利用飞轮储能的磁力耦合传动装置
CN101949323A (zh) 可调压轴流式汽车发动机增压器
WO2014121655A1 (zh) 子母式双轮转子汽动力机
CN202325690U (zh) 低能耗气动机
CN201661317U (zh) 可屈伸轮叶、海螺式工作腔直轴高压流体旋转动力机
WO2021032210A1 (zh) 涡扇换能器及其发电系统和发电方法
CN207278355U (zh) 一种带有可控制转速压气机的自供电增压汽油机
CN204472781U (zh) 一种电动真空泵
CN203515685U (zh) 涡轮式空气发动机系统
CN202031691U (zh) 利用发动机的废气进行发电的装置
CN105697073A (zh) 一种利用废气、热气推进的气压气轮机
WO2005088120A1 (fr) Moteur hydraulique a huile de type non polluant
WO2015024302A1 (zh) 具有尾气回收功能的空气发动机总成
CN206158848U (zh) 双电机涡轮增压发电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/07/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13891972

Country of ref document: EP

Kind code of ref document: A1