WO2015020085A1 - 環境監視システム - Google Patents

環境監視システム Download PDF

Info

Publication number
WO2015020085A1
WO2015020085A1 PCT/JP2014/070723 JP2014070723W WO2015020085A1 WO 2015020085 A1 WO2015020085 A1 WO 2015020085A1 JP 2014070723 W JP2014070723 W JP 2014070723W WO 2015020085 A1 WO2015020085 A1 WO 2015020085A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
gas detection
detection means
oxide
semiconductor
Prior art date
Application number
PCT/JP2014/070723
Other languages
English (en)
French (fr)
Inventor
大石達也
三橋弘和
中川博司
長井孝行
Original Assignee
新コスモス電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013167084A external-priority patent/JP2015034796A/ja
Priority claimed from JP2013233540A external-priority patent/JP6442754B2/ja
Application filed by 新コスモス電機株式会社 filed Critical 新コスモス電機株式会社
Priority to CN201480044439.2A priority Critical patent/CN105492896A/zh
Priority to KR1020167006050A priority patent/KR20160042951A/ko
Publication of WO2015020085A1 publication Critical patent/WO2015020085A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/16Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by burning or catalytic oxidation of surrounding material to be tested, e.g. of gas

Definitions

  • the present invention relates to an environment monitoring system including a gas detection unit that detects a gas component existing inside a closed space.
  • VOC gas volatile organic compound
  • VOC gas contains, for example, formaldehyde, toluene and the like, and may cause symptoms such as irritation to eyes, nose and throat.
  • VOC gas can be detected by, for example, a gas detection device including a semiconductor type gas detection element.
  • alcohol for disinfection or cleaning was frequently used, particularly in a clean clean room in which air with controlled temperature and humidity is circulated.
  • a gas such as VOC gas or ethanol may float in the atmosphere.
  • VOC gas when the VOC gas is detected by the gas detection device, ethanol is detected as an interference gas, It may be difficult to selectively detect VOC gas.
  • ethanol when trying to detect a desired gas to be detected in addition to the VOC gas, ethanol is detected as an interference gas, and there is a problem that the gas to be detected cannot be accurately detected.
  • an object of the present invention is to provide an environmental monitoring system that can identify a plurality of gas components.
  • the atmosphere around the gas detection means that has detected the detection value greater than or equal to the predetermined value is collected and collected. It is possible to detect and analyze (identify) the type and concentration of gas components by introducing the atmosphere into the analysis unit.
  • the timing which analyzes the said gas component by an analysis part can be prescribed
  • any of the gas detection means detects a detection value that is equal to or greater than a predetermined value, it means that a desired gas component has been detected.
  • the atmosphere around the gas detection means is analyzed by the analysis unit. In this case, since the desired gas component is analyzed by the analysis unit, the analysis of the gas component can be reliably performed in detail.
  • the gas detection unit includes a first gas detection unit and a second gas detection unit, both of which have different detection characteristics of the gas to be detected.
  • a desired gas component is detected, analyzed and monitored based on the detection output of the one gas detection means and the detection output of the second gas detection means.
  • the first gas detection means and the second gas detection means are provided, and the gas components corresponding to the characteristics of the detection means can be detected by making the detection characteristics of the gas to be detected different in both. .
  • the detection output for the alcohol component of the first gas detection means is lower than that in the second gas detection means when the alcohol concentration increases in the detection target space.
  • the detection output for the alcohol component of the second gas detection means is high.
  • the output of the first gas detection means is larger than the predetermined detection output, it is identified that gas components other than alcohol can be detected, and the output of the second gas detection means is larger than the predetermined detection output. If a value is obtained, it can be identified that alcohol has been detected, so that alcohol and other gas components can be simultaneously detected, analyzed and monitored.
  • alcohol and other gas components can be simultaneously identified only by providing two detection means (first gas detection means and second gas detection means) having different alcohol detection sensitivities. It is possible to detect, analyze and monitor, and it is possible to construct an environmental monitoring system that is simple and excellent in cost performance.
  • the third characteristic configuration of the environmental monitoring system according to the present invention is that the gas detection means in the gas detection unit sets a zero point using clean gas. Also, since the zero point state becomes the ideal state of the closed space, it is possible to set the zero point as a target and easily understand how far the current state is from the ideal state can do.
  • a fourth characteristic configuration of the environmental monitoring system is a monitoring unit that monitors the change of the gas component, and captures the atmosphere around the gas detection unit, and sends the collected atmosphere to the analysis unit.
  • a collecting means and when any of the gas detection means detects a detection value greater than or equal to a predetermined value, the monitoring unit instructs the collection means to collect the atmosphere around the gas detection means that has detected a predetermined value or more.
  • the analysis unit is instructed to analyze the atmosphere sent from the collecting means.
  • the monitoring unit can control to issue an atmosphere analysis command to the analysis unit after issuing the collection command. That is, if the monitoring unit is configured so that these collection commands and analysis commands can be executed, for example, the monitoring unit may be provided in the vicinity of the gas detection unit or in a separated position. Even when provided outside the closed space, the collection command and the analysis command can be executed at a desired timing.
  • the first gas detection means includes a noble metal wire, a metal oxide that covers the noble metal wire, and that includes tin oxide or indium oxide as a main component and molybdenum oxide added thereto.
  • a gas sensitive part formed using a semiconductor, and a catalyst layer having at least one selected from alumina, silica, silica alumina, and zeolite as a support are provided on the outer peripheral side of the gas sensitive part.
  • the first semiconductor gas detection element has at least one of tungsten oxide and molybdenum oxide supported on the layer.
  • Example 3 changes in gas sensitivity in an environment where silicone gas was present were examined for Invention Example 2 and Comparative Example 1.
  • the semiconductor gas detection element of Comparative Example 1 shows unstable gas sensitivity particularly in the initial exposure of the silicone gas (FIG. 6), whereas the semiconductor gas detection element of Invention Example 2 has a silicone sensitivity. It was recognized that stable (substantially constant) gas sensitivity could be obtained even in the presence of gas (FIG. 5).
  • the semiconductor gas detection element of this configuration can detect the odor component with high sensitivity by adding molybdenum oxide to the gas sensitive part, and can accurately detect the odor component even in an environment where silicone gas exists. It can be detected.
  • the catalyst layer is composed of a carrier using at least one selected from alumina, silica, silica alumina, and zeolite, and at least one of tungsten oxide or molybdenum oxide is supported on the catalyst layer.
  • the semiconductor gas detection element of this configuration can detect an odor component with high sensitivity while suppressing the sensitivity to alcohol.
  • the sixth characteristic configuration of the environmental monitoring system according to the present invention is that the second gas detection means is configured not to include a catalyst layer in the first gas detection means.
  • This configuration makes it possible for the second gas detection means to be more sensitive to alcohol components than the first gas detection means.
  • the seventh characteristic configuration of the environmental monitoring system according to the present invention is that at least one of lanthanum oxide and lead oxide is added to the metal oxide semiconductor.
  • the metal oxide semiconductor part by adding at least one of lanthanum oxide and lead oxide to the metal oxide semiconductor part, for example, it is highly sensitive to odor components such as toluene and acetone, and also has hydrogen, methane.
  • a semiconductor type gas detection element excellent in selectivity with other gas such as ethylene can be obtained.
  • FIG. 6 is a graph showing measurement results of various gases by a semiconductor type gas detection element of Inventive Example 2 (tin oxide-molybdenum oxide). It is the graph which showed the measurement result of various gases by the semiconductor type gas detection element of the comparative example 1 (tin oxide). It is the graph which showed the measurement result of various gas by the semiconductor type gas detection element of the example 2 of this invention in silicone gas presence. 6 is a graph showing measurement results of various gases by the semiconductor gas detection element of Comparative Example 1 in the presence of silicone gas.
  • FIG. 6 is a graph showing measurement results of various gases by a semiconductor type gas detection element of Inventive Example 3 (indium oxide-molybdenum oxide). It is the graph which showed the measurement result of various gases by the semiconductor type gas detection element of the comparative example 2 (indium oxide). It is the graph which investigated the gas sensitivity at the time of detecting ethanol and acetone with the semiconductor type gas detection element of the example 2 of this invention, respectively. It is the graph which showed the change rate of the gas sensitivity at the time of detecting ethanol by the semiconductor type gas detection element of this invention example 2 in presence of silicone gas. It is the table
  • the semiconductor type gas detection element of this invention it is the graph which investigated about the relationship between the sensitivity with respect to 9 types of gas, and gas concentration.
  • the semiconductor type gas detection element of Example 2 of this invention it is the graph which investigated about the relationship between the sensitivity with respect to 9 types of gas, and gas concentration. It is the graph which showed the result when installing an environmental monitoring system in the clean room of a semiconductor manufacturing factory, and detecting the gas which exists in the said clean room. It is the schematic of a bridge circuit.
  • the environmental monitoring system Z of the present invention includes a gas detection unit A that detects gas components existing in a closed space, and the gas detection unit A is located in different regions of the closed space.
  • a plurality of gas detection means 10 and 20 disposed, and when any of the gas detection means 10 and 20 detects a detection value greater than or equal to a predetermined value, the gas detection means detects a detection value greater than or equal to the predetermined value;
  • the analysis part E which analyzes the gas component contained in the atmosphere around 10 and 20 is provided.
  • the environment monitoring system Z of the present invention includes a monitoring unit F that monitors a change in the component amount of the gas component.
  • Closed space refers to a closed space in which the atmosphere inside and outside is controlled.
  • the environment monitoring system Z of this invention demonstrates the case where it installs in the clean clean room which the air by which the temperature and humidity were controlled circulates as the said closed space, for example.
  • the clean room is, for example, equipment installed in a semiconductor manufacturing factory.
  • the gas detection part A of the present invention includes the first gas detection means 10 and the second gas detection means 20, and the detection sensitivity of alcohol is different between the two.
  • the gas detection part A of this embodiment demonstrates the case where the 2nd gas detection means 20 has higher alcohol detection sensitivity, and alcohol is ethanol, it is not limited to this aspect. In this embodiment, the case where two gas detection means are provided will be described. However, the number of gas detection means is not limited to this mode.
  • One first gas detection means 10 includes one first semiconductor gas detection element X
  • one second gas detection means 20 includes one second semiconductor gas detection element X '.
  • Each of the first semiconductor gas detection element X and the second semiconductor gas detection element X ′ is a detection element that can detect a plurality of gas components with one detection element.
  • the first gas detection means 10 and the second gas detection means 20 can be installed apart from each other. In this case, the first gas detection means 10 and the second gas detection means 20 are close to each other so that the gas existing in the same area can be detected in the clean room. It is good to arrange.
  • the first gas detection means 10 has a first semiconductor type gas detection element X.
  • the first semiconductor gas sensing element X includes a noble metal wire 1 and a gas sensitive part formed by using a metal oxide semiconductor that covers the noble metal wire 1 and contains tin oxide or indium oxide as a main component and molybdenum oxide added. 2 and a catalyst layer 3 using at least one selected from alumina, silica, silica alumina, and zeolite as a support on the outer peripheral side of the gas sensitive portion 2, and tungsten oxide is provided on the catalyst layer 3. Alternatively, at least one of molybdenum oxide is supported.
  • Examples of the first semiconductor gas detection element X include, but are not limited to, a hot wire semiconductor gas detection element and a substrate type semiconductor gas detection element. This embodiment demonstrates the case where it is set as a hot wire type
  • the hot wire type semiconductor gas detection element X includes a coil-like noble metal wire 1 and a gas sensitive portion 2.
  • a noble metal wire for example, a wire such as platinum, palladium, platinum-palladium alloy, or the like can be used.
  • the wire diameter, the coil diameter, the number of coil turns, etc. of the noble metal wire 1 are the same as those used in the conventional hot-wire semiconductor gas detection element, and are not particularly limited.
  • the content of lead oxide (PbO) is preferably 0.01 to 1 mol%, for example.
  • sensitivity other than VOC gas such as hydrogen, methane, and ethylene, can be reduced, and an odor component can be detected with higher sensitivity.
  • a catalyst layer 3 having at least one selected from alumina, silica, silica alumina, and zeolite as a carrier is provided on the outer peripheral side of the gas sensitive portion 2, and tungsten oxide (WO 3 ) or At least one of the molybdenum oxides is supported.
  • the content of tungsten oxide or molybdenum oxide is 0.1 to 10 mol%, the sensitivity of alcohol can be sufficiently suppressed.
  • the alcohol that has reached the surface of the catalyst layer 3 is decomposed by tungsten oxide or molybdenum oxide contained in the catalyst layer 3. Thereby, even when alcohol is mixed in the gas to be detected, the sensitivity of the sensor to alcohol can be suppressed. Therefore, the first semiconductor gas detection element X of this configuration can detect the odor component with high sensitivity while suppressing the sensitivity to alcohol.
  • the hot-wire semiconductor gas detection element X can be incorporated into a bridge circuit together with fixed resistors R0, R1, and R2 to constitute a gas sensor.
  • the bridge circuit is energized constantly or intermittently by a power source E so that the hot-wire semiconductor gas detection element X has a temperature suitable for detection.
  • the resistance value of the hot-wire semiconductor gas sensing element X changes when the gas to be sensed is adsorbed. For this reason, in the gas sensor according to the present embodiment, the change in resistance value of the hot-wire semiconductor gas detection element X is extracted as a deviation voltage, and this is used as the sensor output V to measure the concentration of the detected gas (odor component). can do.
  • the second gas detection means 20 also has a second semiconductor type gas detection element X ′.
  • the second semiconductor type gas detection element X ′ includes the above-described noble metal wire 1 and the gas sensitive part 2.
  • the second semiconductor type gas detection element X ′ used for the second gas detection means 20 does not include the catalyst layer 3, the sensitivity to the alcohol component is higher than that of the first gas detection means 10.
  • both the first gas detection means 10 and the second gas detection means 20 are arranged in the detection target space, and based on the gas detection output of each detection means, a plurality of gas components (in the detection target space ( Alcohol and other gas components) can be discriminated.
  • the environmental monitoring system Z is configured so that when any one of the gas detection means 10 and 20 detects a detection value greater than or equal to a predetermined value, An analysis unit E for analyzing gas components contained in the atmosphere is provided.
  • the analysis unit E may be in any form as long as it can analyze (identify) a plurality of gas components contained in the atmosphere.
  • the analysis unit E includes a gas chromatogram separation column, a suction pump for circulating a gas such as carrier gas through the gas chromatogram separation column, an introduction path for introducing gas into the gas chromatogram separation column, and an exhaust path for discharging gas.
  • a gas component detection means for detecting a gas component separated by the gas chromatogram separation column.
  • Gas components contained in the atmosphere around the gas detection means 10 and 20 are transported to the analysis unit E and analyzed by the analysis unit E.
  • a collecting means (not shown) may be provided that collects the atmosphere around the gas detection means 10 and 20 and sends the collected atmosphere to the analysis unit E.
  • the collecting means may be any means as long as it can collect atmospheric gas and transport it to a desired site.
  • the atmosphere around each gas detecting means 10 and 20 by a syringe or the like. Can be configured to include a pump device and a pipe that can collect the collected atmosphere and send the collected atmosphere to the analysis unit E under positive pressure or negative pressure.
  • the atmosphere around the gas detection means 10 or 20 that has detected the detection value greater than or equal to the predetermined value is collected and collected.
  • the atmosphere is sent to the analysis unit E by, for example, collection means.
  • the atmosphere sent at this time is introduced into the analysis unit E from the introduction path of the collecting means, the atmosphere is developed in the gas chromatogram separation column, and is sequentially separated for each contained gas component. Is eluted and discharged. Each eluted gas component is sequentially input to the gas component detection means, and the type of the gas component can be detected and analyzed (identified).
  • the concentration of the gas component can be configured to be performed by, for example, a calculation unit B described later.
  • the timing at which the gas component is analyzed by the analysis unit E can be defined. That is, when any of the gas detection means 10 and 20 detects a detection value that is equal to or greater than a predetermined value, a desired gas component (either alcohol or any other gas component) can be detected. If the atmosphere around the gas detection means 10 and 20 is analyzed at the timing by the analysis unit E, a desired gas component (either alcohol or any other gas component) is analyzed by the analysis unit E. The analysis can be performed in detail reliably.
  • the monitoring unit F By providing the monitoring unit F as in this configuration, it is possible to easily grasp the change in the gas component inside the closed space.
  • the monitoring unit F may be provided inside the closed space or may be provided outside the closed space.
  • the gas component inside the closed space can be easily changed regardless of whether the monitoring unit F is provided in the vicinity of the gas detection unit A or in a separated position. Can grasp.
  • the monitoring unit F is provided outside the closed space, it is possible to easily grasp the change in the gas component inside the closed space even outside the closed space.
  • the monitoring unit F instructs the collection means to collect the atmosphere around the gas detection means that has detected the predetermined value or more.
  • the analysis unit E may be instructed to analyze the atmosphere sent from the collecting means.
  • the monitoring unit F can recognize the detection values of the gas detection means 10 and 20 and control the desired gas detection means to issue an atmosphere collection command to the collection means according to the detection values. . Further, the monitoring unit F can be controlled to issue an atmosphere analysis command to the analysis unit E after issuing a collection command. That is, if the monitoring unit F is configured so that these collection commands and analysis commands can be executed, for example, the monitoring unit F is provided in the vicinity of the gas detection unit A or in a separated position, or Even when the monitoring unit F is provided outside the closed space, the collection command and the analysis command can be executed at a desired timing.
  • the monitoring unit F may be configured to have a microcomputer that can execute these collection commands and analysis commands.
  • the environment monitoring system Z of the present invention can be configured to detect, analyze and monitor a desired gas component based on the detection output of the first gas detection means 10 and the detection output of the second gas detection means 20.
  • the difference between the outputs of the first gas detection means 10 and the second gas detection means 20 may be calculated to determine the detected gas component.
  • both normal outputs ( ⁇ V sensitivity) are about 0 to 300 and the alarm level is set to 1000 or more.
  • the detected gas component is an alcohol such as ethanol. If it is determined to be 400 or less, it can be determined that it is other than the alcohol.
  • the gas detection means 10 and 20 in the gas detection unit A may set a zero point using clean gas. Thereby, the zero point adjustment of the gas detection means 10 and 20 can be performed reliably.
  • the environmental monitoring system Z includes a calculation unit B that calculates a gas concentration based on an output from which the gas detection unit A detects a desired gas component.
  • the calculation unit B may use a microcomputer that can calculate the gas concentration based on the output signal from the gas detection unit A.
  • the notification unit C receives the warning signal from the calculation unit B and issues a warning by sound based on the selected warning sound signal.
  • the alarm sound can be set differently when the detected gas component is alcohol such as ethanol and when it is other than alcohol. Thereby, since the user can recognize the gas component detected easily, the cause of an alarm can be identified quickly.
  • the notification unit C is composed of a speaker and its drive circuit, and converts an alarm sound signal into an alarm sound and outputs it.
  • the environmental monitoring system Z of the present invention displays each of the first gas detection means 10 and the second gas detection means 20 in association with each other, the respective detection output values, and the respective detection dates and times. Part D is provided. With this configuration, the user can easily grasp the status of each detection means.
  • the gas component in the atmosphere around the gas detection means that is detected more or less times the predetermined value or more is analyzed. Also good.
  • gas detection means when there are a plurality of gas detection means that detect a detection value that is equal to or greater than a predetermined value, it may be determined based on the past detection tendency which gas detection means is to be analyzed. .
  • the gas components in the atmosphere around the gas detection means are analyzed in the set order.
  • the ambient atmosphere around the gas detection means may be temporarily collected by the collection means and stored until the turn is reached.
  • all or part of the collected atmosphere may be accommodated in a storage unit having an appropriate space.
  • the semiconductor gas detection element includes a first gas detection means 10 (invention example 1) including a noble metal wire 1, a gas sensitive portion 2 and a catalyst layer 3, and a second gas including a noble metal wire 1 and a gas sensitive portion 2.
  • a first gas detection means 10 invention example 1
  • a second gas including a noble metal wire 1 and a gas sensitive portion 2.
  • a tin oxide (SnO 2 ) semiconductor paste doped with 0.1 mol% of antimony (Sb + 5) to obtain a predetermined conductivity is applied to a platinum coil to form a sphere with a diameter of about 0.5 mm. After drying, the platinum coil was energized and heated by Joule heat, and tin oxide was sintered at 650 ° C. for 1 hour.
  • a tin oxide semiconductor was impregnated with 1 mol / L of ammonium molybdate droplets and dried at 20 ° C. for 60 minutes. After drying, the platinum coil was energized (for 1 hour) and subjected to heat decomposition treatment at about 600 ° C., and molybdenum oxide was supported on the surface of the metal oxide semiconductor (gas sensitive part).
  • the thus obtained second semiconductor type gas sensing element X ′ (Invention Example 2: Used for the second gas detection means 20) was incorporated in a bridge circuit and used for sensitivity evaluation with respect to the gas to be detected.
  • a tin oxide semiconductor when adding a lanthanum oxide to a metal oxide semiconductor, a tin oxide semiconductor is impregnated with, for example, a 1 mol / L lanthanum nitrate aqueous solution, and when a lead oxide is added to a metal oxide semiconductor, tin oxide is added.
  • the semiconductor may be impregnated with a 0.5 mol / L aqueous lead nitrate solution.
  • the catalyst layer 3 was produced as follows. To 100 g of alumina powder, an aqueous solution of ammonium tungstate (0.1 mol / L) was added by an impregnation method so as to be 0.1 to 10 mol% (optimum addition amount 2 mol%), dried, and then dried in an electric furnace at 700 Baked at 2 ° C. for 2 hours. This is pulverized and kneaded with water to form a paste, which is applied to the entire surface of the metal oxide semiconductor. Further, after drying at room temperature, it is heated at 600 ° C. for 1 hour to be sintered and formed.
  • the thus obtained first semiconductor type gas sensing element X of the present invention (invention example 1: used in the first gas detection means 10) was incorporated into a bridge circuit and used for sensitivity evaluation with respect to the gas to be detected.
  • Example 2 Second semiconductor gas detection element X ′ of Invention Example 2 (adding 2 mol% of molybdenum oxide to the gas sensitive part) and semiconductor gas having a gas sensitive part mainly composed of tin oxide as Comparative Example 1 With respect to the sensing element (without adding molybdenum oxide to the gas sensitive part), the detection sensitivity of various gases (at the time of DC 2.4 V energization (10 ohm load)) was examined.
  • the gases used were ethanol, methane, isobutane, hydrogen, carbon monoxide, toluene, acetone, and ethyl acetate.
  • FIG. 3 shows the measurement result of the second semiconductor type gas detection element X ′ of Example 2 of the present invention
  • FIG. 4 shows the measurement result of the semiconductor type gas detection element of Comparative Example 1.
  • Example 3 A change in gas sensitivity in an environment where silicone gas (OMCTS: Octamethylcyclotetrasiloxane, 10 ppm) was present in the second semiconductor gas detection element X ′ of Invention Example 2 and the semiconductor gas detection element of Comparative Example 1 was examined.
  • the gas to be detected was air and ethanol (5 to 100 ppm).
  • FIG. 5 shows the measurement results of the second semiconductor gas detection element X ′ of Example 2 of the present invention
  • FIG. 6 shows the measurement results of the semiconductor gas detection element of Comparative Example 1.
  • Example 4 In the manufacturing method of the second semiconductor type gas detecting element X ′ according to Example 2 of the present invention described in Example 1, the semiconductor gas used instead of the semiconductor paste of tin oxide used was replaced with the semiconductor paste of indium oxide (In 2 O 3 ). A sensing element was produced.
  • the second semiconductor type gas sensing element X ′ thus obtained (Example 3 of the present invention: 2 mol% molybdenum oxide added to the gas sensitive part) is incorporated in the bridge circuit and used for the sensitivity evaluation for the gas to be sensed. did.
  • Example 5 Second semiconductor gas detection element X ′ of Invention Example 3, and semiconductor gas detection element having a gas sensitive part mainly composed of indium oxide as Comparative Example 2 (no molybdenum oxide added to the gas sensitive part) , The sensitivity of various gases (DC 2.4 V energized (10 ohm load)) was examined.
  • the gases used were ethanol, hydrogen, toluene, acetone and ethyl acetate.
  • FIG. 7 shows the measurement results obtained by using the second semiconductor type gas detection element X ′ of Invention Example 3
  • FIG. 8 shows the measurement results obtained by the semiconductor type gas detection element of Comparative Example 2.
  • Example 8 In the second semiconductor type gas detection element X ′ of Invention Example 2, the effective concentration of molybdenum oxide added to the gas sensitive part was examined.
  • the rate of change in gas sensitivity is about 1.0 to 1.5 before and after the semiconductor gas detection element is exposed to silicone gas, it is recognized that the gas detection element has good gas sensitivity.
  • the rate of change in gas sensitivity was within the range of 1.0 to 1.5.
  • the rate of change in gas sensitivity was within the range of 1.0 to 1.2, and thus it was recognized that the gas sensitivity was better. Therefore, it has been found that when the molybdenum oxide content is 0.5 to 10 mol%, the odor component can be accurately detected even in an environment where silicone gas is present.
  • Example 9 In the second semiconductor gas sensing element X ′ of Invention Example 2, the effective concentration of lanthanum oxide added to the gas sensitive part was examined.
  • the rate of change in gas sensitivity (after exposure to silicone gas) before and after exposure to silicone gas (10 ppm, 100 hours exposure) with 0 to 3 mol% lanthanum oxide added to a metal oxide semiconductor with molybdenum oxide added (100 ppm sensitivity / 100 ppm sensitivity before exposure to silicone gas) was examined in the range of 1.0 to 1.5. As described above, if the rate of change in gas sensitivity is about 1.0 to 1.5 before and after the semiconductor gas sensing element is exposed to the silicone gas, it is recognized that the gas is not affected by the silicone gas.
  • the rate of change is 1.0 to 1.5 because the content of lanthanum oxide is generally in the range of 0.05 to 1 mol%. Therefore, when the content of the lanthanum oxide is in the range of 0.05 to 1 mol%, it is recognized that it is not affected by the silicone gas.
  • the sensitivity (mV) to 100 ppm of ethanol was measured in the range of 0 to 3 mol% of lanthanum oxide.
  • the metal oxide semiconductor is added with 2 mol% of molybdenum oxide, and the catalyst layer 3 with 2 mol% of tungsten oxide is used.
  • the presence or absence of the catalyst layer 3 and the content of lead oxide are set to 0.
  • Measurements were made using a semiconductor gas sensing element varied between 0.01 and 1 mol%. The results are shown in FIG.
  • the highest sensitivity of ethanol was 251 mV measured when the lanthanum oxide was 0.1 mol% in the second semiconductor gas sensing element X ′ without the catalyst layer 3 (Invention Example 2).
  • the sensitivity is good if it is 70% (175 mV) or more of this measured value, and the sensitivity of the first semiconductor gas detection element X with the catalyst layer 3 (Invention Example 1) is high.
  • the ethanol removal performance was excellent when it was 1 ⁇ 2 or less of the second semiconductor type gas detection element X ′ without the catalyst layer 3 (Example 2 of the present invention).
  • the content of lanthanum oxide was in the range of 0.05 to 1 mol%, these conditions were satisfied and the ethanol removal performance was excellent.
  • Example 10 In the second semiconductor type gas sensing element X ′ of Invention Example 2, the effective concentration of lead oxide added to the gas sensitive part was examined.
  • the content of molybdenum oxide supported on the surface of the gas sensitive part is 0.5, 2.0, and 10 mol%
  • the content of lead oxide is in the range of 0.005 to 5 mol%.
  • 7 types (Table 3) of the second semiconductor type gas detection elements X ′ were manufactured in each case (21 types in total). With respect to these second semiconductor type gas detection elements X ', the gas sensitivities when ethanol 100 ppm and hydrogen 100 ppm were detected were examined.
  • the effective concentration of the lead oxide may be in a range where the selectivity of the odor component is excellent. In the range where the selectivity of the odor component is excellent, the ratio of combustible gas sensitivity / ethanol sensitivity is set to 1 or less. The results are shown in Table 3.
  • the ratio of hydrogen sensitivity / ethanol sensitivity was 1 or less when the content of lead oxide was in the range of 0.01 to 5 mol%.
  • the upper limit of the lead oxide content is the highest sensitivity of the odor component (ethanol) (when the molybdenum oxide content is 0.5 mol% and the lead oxide content is 0.5 mol%).
  • the maximum is preferable.
  • the lead oxide content is preferably in the range of 0.01 to 1 mol%.
  • Example 11 It was examined how the sensitivity to 100 ppm of ethanol and the sensitivity to 100 ppm of acetone change when the amount of tungsten oxide added to the catalyst layer 3 is changed between 0 to 10 mol%.
  • the metal oxide semiconductor one containing 2 mol% molybdenum oxide, 0.5 mol% lanthanum oxide and 0.5 mol% lead oxide was used. The results are shown in Table 4.
  • Example 12 First semiconductor type gas sensing element X of Invention Example 1 (Invention Example 1, metal oxide semiconductor: 2 mol% of molybdenum oxide, 1 mol% of lanthanum oxide, 0.5 mol% of lead oxide, catalyst In the layer: containing 2 mol% of tungsten oxide, the relationship between the gas concentration and the sensitivity to nine gases (ethanol, styrene, xylene, toluene, trimethylamine, ammonia, isobutanol, methyl acetate, acetone) was examined ( FIG. 12). From FIG. 12, it was recognized that sufficient sensitivity was obtained from 1 ppm for all gases, ethanol sensitivity was the lowest, and separation between ethanol and other gases was sufficiently good. Thus, the 1st semiconductor type gas detection element X of this structure can detect an odor component (hydrogen sulfide) with a sufficient sensitivity in the state which suppressed the sensitivity with respect to alcohol.
  • an odor component hydrogen sulfide
  • Example 13 First semiconductor type gas sensing element X (Invention Example 1: used for first gas detection means 10) and second semiconductor type gas detection element X ′ (Invention Example 2: used for second gas detection means 20) ), And an environmental monitoring system Z having the gas detector A is installed in a clean room of a semiconductor manufacturing factory, and gas present in the clean room is detected (FIG. 14).
  • VOC gas as an odor component was always detected at a low level ( ⁇ V sensitivity of about 200 to 600).
  • ethanol was used for cleaning between AM 10:00 and 12:00.
  • the ethanol component was detected by the second gas detection means 20 in this time zone with an output having a ⁇ V sensitivity of about 1500.
  • this environmental monitoring system Z was able to identify and detect both ethanol and VOC gas at the same time by installing it in a clean room.
  • the alarm level is when the ⁇ V sensitivity is 1000 or more. Therefore, in order to analyze the gas component contained in the atmosphere around the second gas detection means 20 that has detected the detection value above the alarm level, the atmosphere around the second gas detection means 20 is collected by the collection means. The collected atmosphere was sent to the analysis unit E for analysis.
  • the analysis section E as a gas chromatogram separation column, a fluororesin column tube having an inner diameter of 4 mm and a total length of 20 cm is packed with a polyphenyl ether (PPE) packing material 5 ring Uniport-HP (manufactured by GL Science) with a particle diameter of 80 to 100 ⁇ m.
  • PPE polyphenyl ether
  • the analysis result of the gas component obtained by the analysis of the analysis unit E was monitored by the monitoring unit F in real time. In this way, by monitoring the analysis result with the monitoring unit F, it is possible to easily grasp the change in the gas component inside the closed space.
  • the present invention can be used for an environmental monitoring system including a gas detection unit that detects a gas component existing inside a closed space.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

 閉鎖空間の内部に存在するガス成分を検知するガス検知部Aを備えた環境監視システムZであって、ガス検知部Aは、閉鎖空間の異なった領域に配設される複数のガス検出手段10,20を備え、ガス検出手段10,20のいずれかが所定値以上の検出値を検出した場合に、当該所定値以上の検出値を検出したガス検出手段10,20の周囲の雰囲気に含まれるガス成分を分析する分析部Eを備える。

Description

環境監視システム
 本発明は、閉鎖空間の内部に存在するガス成分を検知するガス検知部を備えた環境監視システムに関する。
 例えば半導体製造工場などにおいて、製品の乾燥設備や排水中に微量含まれる有機溶剤分を除去する設備などがあり、これらの設備からは、におい成分である揮発性有機化合物(VOC)ガスが発生する場合があった。VOCガスには、例えばホルムアルデヒド、トルエン等が含まれ、目、鼻、喉への刺激等の症状が生じる虞がある。
 VOCガスは、例えば半導体式ガス検知素子を備えたガス検知装置で検知することができる。
 尚、本発明における従来技術となる上述した半導体式ガス検知素子を備えたガス検知装置は、一般的な技術であるため、特許文献等の従来技術文献は示さない。
 上述した半導体製造工場において、特に、温度および湿度の管理された空気が循環する清浄なクリーンルーム内では、消毒用或いは清掃用のアルコール(エタノール)が頻繁に使用されていた。
 このように半導体製造工場には、VOCガスやエタノールなどのガスが雰囲気中に浮遊することがあり、例えばVOCガスをガス検知装置で検知しようとした場合、エタノールが妨害ガスとして検知されてしまい、VOCガスを選択的に検知するのが困難となることがあった。VOCガスの他、対象となる所望の被検知ガスを検知しようとする場合も同様に、エタノールが妨害ガスとして検知されてしまい、被検知ガスを正確に検知できないという問題点があった。
 従って、本発明の目的は、複数のガス成分を識別できる環境監視システムを提供することにある。
 上記目的を達成するための本発明に係る環境監視システムは、閉鎖空間の内部に存在するガス成分を検知するガス検知部を備えた環境監視システムであって、その第一特徴構成は、前記ガス検知部は、前記閉鎖空間の異なった領域に配設される複数のガス検出手段を備え、前記ガス検出手段のいずれかが所定値以上の検出値を検出した場合に、当該所定値以上の検出値を検出したガス検出手段の周囲の雰囲気に含まれるガス成分を分析する分析部を備えた点にある。
 本構成によれば、ガス検出手段のいずれかが所定値以上の検出値を検出した場合に、当該所定値以上の検出値を検出したガス検出手段の周囲の雰囲気を捕集し、捕集した雰囲気を分析部に投入して、ガス成分の種類や濃度などを検知、分析(識別)することができる。
 このようにガス検出手段のいずれかが所定値以上の検出値を検出した場合に、当該所定値以上の検出値を検出したガス検出手段の周囲の雰囲気に含まれるガス成分を分析するように構成することで、当該ガス成分を分析部によって分析するタイミングを規定することができる。即ち、ガス検出手段のいずれかが所定値以上の検出値を検出した場合には、所望のガス成分が検知できた場合であり、このタイミングでガス検出手段の周囲の雰囲気を分析部で分析すれば、所望のガス成分が分析部によって分析されるため、ガス成分の分析を確実に詳細に行うことができる。
 本発明に係る環境監視システムの第二特徴構成は、前記ガス検知部が、第一ガス検出手段および第二ガス検出手段を備え、両者において被検知ガスの検知特性を異ならせてあり、前記第一ガス検出手段の検知出力および前記第二ガス検出手段の検知出力に基づいて所望のガス成分を検知、分析および監視する点にある。
 本構成のように第一ガス検出手段および第二ガス検出手段を備え、両者において被検知ガスの検知特性を異ならせることで、それぞれの検出手段の特性に応じたガス成分を検知することができる。
 例えば第二ガス検出手段の方がアルコールの検知感度が高い場合、検知対象空間においてアルコールの濃度が高まると、第一ガス検出手段のアルコール成分に対する検知出力は第二ガス検出手段に比べて低いが、第二ガス検出手段のアルコール成分に対する検知出力は高くなる。このとき、第一ガス検出手段の出力が所定の検知出力より大きな値が得られればアルコール以外のガス成分が検知できたものと識別し、第二ガス検出手段の出力が所定の検知出力より大きな値が得られればアルコールが検知できたものと識別することができるため、アルコールとそれ以外のガス成分を同時に識別検知、分析および監視することができる。
 即ち、アルコール以外のガス成分を検出したい場合、アルコールが存在するとアルコールが妨害ガスとなってアルコール以外のガス成分を検出し難くなる。この場合、フィルタ等を用いてアルコールをカットした状態でアルコール以外のガス成分を検出すると、フィルタ等のランニングコストが嵩むこととなる。しかし、本発明の環境監視システムであれば、例えばアルコールの検出感度が異なる二つの検出手段(第一ガス検出手段および第二ガス検出手段)を備えるだけでアルコールとそれ以外のガス成分を同時に識別検知、分析および監視することができることとなり、簡便かつコストパフォーマンスに優れた環境監視システムを構築することができる。
 本発明に係る環境監視システムの第三特徴構成は、前記ガス検知部におけるガス検出手段は、清浄ガスを用いてゼロ点を設定する点にある。また、ゼロ点の状態が閉鎖空間の理想の状態となるので、当該ゼロ点を設定して目標とすることができ、現在の状態が理想の状態とどの程度乖離しているのかを容易に理解することができる。
 これにより、確実にガス検出手段のゼロ点調整を行うことができる。
 本発明に係る環境監視システムの第四特徴構成は、前記ガス成分の変化を監視する監視部と、前記ガス検出手段の周囲の雰囲気を捕集し、捕集した雰囲気を前記分析部に送る捕集手段を備え、何れかのガス検出手段が所定値以上の検出値を検出すると、前記監視部は、前記捕集手段に所定値以上を検出したガス検出手段の周囲の雰囲気の捕集を指示し、前記捕集手段から送られる雰囲気の分析を前記分析部に指示する点にある。
 本構成によれば、監視部においてガス検出手段の検出値を認識させ、当該検出値に応じて所望のガス検出手段に対して雰囲気の捕集指令を捕集手段へ出すように制御できる。さらに、監視部は、捕集指令を出した後で、分析部に雰囲気の分析指令を出すように制御できる。即ち、監視部においてこれら捕集指令や分析指令を実行できるように構成すれば、例えば監視部をガス検知部の近傍あるいは離間した位置の何れに設けた場合であっても、或いは、監視部を閉鎖空間の外部に設けた場合であっても、所望のタイミングで捕集指令や分析指令を実行することができる。
 本発明に係る環境監視システムの第五特徴構成は、前記第一ガス検出手段が、貴金属線材と、当該貴金属線材を覆い、酸化スズあるいは酸化インジウムを主成分としてモリブデン酸化物を添加した金属酸化物半導体を用いて形成したガス感応部と、当該ガス感応部の外周側に、アルミナ、シリカ、シリカアルミナ、ゼオライトの中から選択された少なくとも1種を担体とする触媒層と、を設け、当該触媒層にタングステン酸化物或いはモリブデン酸化物の少なくとも一方を担持させた第一半導体式ガス検知素子を有する点にある。
 後述の実施例2(金属酸化物半導体の主成分が酸化スズ),実施例5(金属酸化物半導体の主成分が酸化インジウム)において、ガス感応部にモリブデン酸化物を添加した半導体式ガス検知素子(本発明例2,3)と、ガス感応部にモリブデン酸化物を添加しない半導体式ガス検知素子(比較例1,2)とについて、におい成分の検知感度を調べた。
 この結果、比較例1,2の半導体式ガス検知素子では、におい成分と可燃性ガスとにおいて、ガス感度の明瞭な差異は認められなかったのに対して(図4,8)、本発明例2,3の半導体式ガス検知素子では、エタノール、トルエン、アセトン、酢酸エチルといったにおい成分の検知感度を増感できたと認められた(図3,7)。
 また、後述の実施例3において、シリコーンガスが存在する環境におけるガス感度の変化を、本発明例2および比較例1について調べた。
 この結果、比較例1の半導体式ガス検知素子では、特にシリコーンガスの曝露初期において不安定なガス感度を示す(図6)のに対して、本発明例2の半導体式ガス検知素子では、シリコーンガス存在下であっても安定した(ほぼ一定の)ガス感度が得られるものと認められた(図5)。
 従って、本構成の半導体式ガス検知素子は、ガス感応部にモリブデン酸化物を添加することにより、におい成分を感度よく検出することができ、かつ、シリコーンガスが存在する環境でもにおい成分を正確に検出できる。
 また、触媒層を、アルミナ、シリカ、シリカアルミナ、ゼオライトの中から選択された少なくとも1種を担体とするもので構成し、当該触媒層にタングステン酸化物或いはモリブデン酸化物の少なくとも一方を担持させることで、検知対象ガス中にアルコールがある場合にも、センサのアルコールに対する感度を抑制することができる(実施例12、図12参照)。即ち、タングステン酸化物或いはモリブデン酸化物により、触媒層の表面に到達したアルコールは分解(いわゆる酸性金属酸化物によるアルコールの分子内脱水反応と呼ばれるもの)を受ける。
 この反応(C25OH→C24+H2O)は比較的高温(300℃程度以上)で起こる。このときエチレンが生成されるが、エチレンに対する本願のセンサの感度は非常に低いため、本願のセンサはアルコールに対する感度は極めて低い。
 従って、本構成の半導体式ガス検知素子は、アルコールに対する感度を抑制した状態で、におい成分を感度よく検出することができるものとなる。
 本発明に係る環境監視システムの第六特徴構成は、前記第二ガス検出手段を、前記第一ガス検出手段における触媒層を含まない構成とした点にある。
 本構成により、第二ガス検出手段は第一ガス検出手段に比べてアルコール成分に対する感度を高くすることができる。
 本発明に係る環境監視システムの第七特徴構成は、前記金属酸化物半導体にランタン酸化物および鉛酸化物の少なくとも何れかを添加した点にある。
 本構成によれば、金属酸化物半導体部に、ランタン酸化物および鉛酸化物の少なくとも何れかを添加することにより、例えばにおい成分であるトルエンやアセトンに対して高感度であるとともに、水素、メタン、エチレンなどの他のガスとの選択性に於いて優れた半導体式ガス検知素子が得られる。
本発明の環境監視システムの概略図である。 第一ガス検出手段の半導体式ガス検知素子の概要を示す図である。 本発明例2(酸化スズ-モリブデン酸化物)の半導体式ガス検知素子による各種ガスの測定結果を示したグラフである。 比較例1(酸化スズ)の半導体式ガス検知素子による各種ガスの測定結果を示したグラフである。 シリコーンガス存在下において、本発明例2の半導体式ガス検知素子による各種ガスの測定結果を示したグラフである。 シリコーンガス存在下において、比較例1の半導体式ガス検知素子による各種ガスの測定結果を示したグラフである。 本発明例3(酸化インジウム-モリブデン酸化物)の半導体式ガス検知素子による各種ガスの測定結果を示したグラフである。 比較例2(酸化インジウム)の半導体式ガス検知素子による各種ガスの測定結果を示したグラフである。 本発明例2の半導体式ガス検知素子によってエタノールおよびアセトンをそれぞれ検出した場合のガス感度を調べたグラフである。 シリコーンガス存在下において、本発明例2の半導体式ガス検知素子によってエタノールを検出した場合のガス感度の変化率を示したグラフである。 ランタン酸化物の含有量、モリブデン酸化物の含有量およびガス感度の変化率を示した表である。 本発明の半導体式ガス検知素子において、9種のガスに対する感度とガス濃度との関係について調べたグラフである。 本発明例2の半導体式ガス検知素子において、9種のガスに対する感度とガス濃度との関係について調べたグラフである。 環境監視システムを半導体製造工場のクリーンルーム内に設置し、当該クリーンルーム内に存在するガスを検知したときの結果を示したグラフである。 ブリッジ回路の概略図である。
 以下、本発明の実施形態を図面に基づいて説明する。
 図1に示したように、本発明の環境監視システムZは、閉鎖空間の内部に存在するガス成分を検知するガス検知部Aを備え、当該ガス検知部Aは、閉鎖空間の異なった領域に配設される複数のガス検出手段10,20を備え、ガス検出手段10,20のいずれかが所定値以上の検出値を検出した場合に、当該所定値以上の検出値を検出したガス検出手段10,20の周囲の雰囲気に含まれるガス成分を分析する分析部Eを備える。
 また、本発明の環境監視システムZは、ガス成分の成分量の変化を監視する監視部Fを備える。
 閉鎖空間は、例えば内部と外部との雰囲気の出入りがコントロールされる閉鎖された空間のことをいう。本発明の環境監視システムZは、当該閉鎖空間として、例えば温度および湿度の管理された空気が循環する清浄なクリーンルーム内に設置される場合について説明する。当該クリーンルームは、例えば半導体製造工場に設けられる設備である。
 本発明のガス検知部Aにおいては、第一ガス検出手段10および第二ガス検出手段20を備え、両者においてアルコールの検出感度を異ならせてある。本実施形態のガス検知部Aは第二ガス検出手段20の方がアルコールの検出感度が高く、アルコールがエタノールである場合について説明するが、この態様に限定されるものではない。尚、本実施形態では二つのガス検出手段を備えた場合について説明するが、ガス検出手段の数はこの態様に限定されるものではない。
 1つの第一ガス検出手段10は、1つの第一半導体式ガス検知素子Xを備え、1つの第二ガス検出手段20は、1つの第二半導体式ガス検知素子X’を備える。第一半導体式ガス検知素子Xおよび第二半導体式ガス検知素子X’は、それぞれ1つの検知素子で複数のガス成分を検知することができる検知素子である。
 また、第一ガス検出手段10および第二ガス検出手段20は、離間して設置することが可能であるが、この場合、クリーンルーム内で同じ領域に存在するガスを検知できるように、ある程度近傍に配設するのがよい。
 クリーンルームは、ダウンフロー気流で空調管理される場合があり、この場合、上層階から下層階へ気流が拡散するため、例えば上層階と下層階との境界部にガス検知部Aを配設するとよい。
 図2に示したように、第一ガス検出手段10は第一半導体式ガス検知素子Xを有する。当該第一半導体式ガス検知素子Xは、貴金属線材1と、当該貴金属線材1を覆い、酸化スズあるいは酸化インジウムを主成分としてモリブデン酸化物を添加した金属酸化物半導体を用いて形成したガス感応部2と、当該ガス感応部2の外周側に、アルミナ、シリカ、シリカアルミナ、ゼオライトの中から選択された少なくとも1種を担体とする触媒層3と、を設け、当該触媒層3にタングステン酸化物或いはモリブデン酸化物の少なくとも一方を担持させてある。
 第一半導体式ガス検知素子Xとして、熱線型半導体式ガス検知素子、基板型半導体式ガス検知素子が挙げられるが、これに限られるものではない。本実施形態では、熱線型半導体式ガス検知素子とした場合について説明する。
 熱線型半導体式ガス検知素子Xは、コイル状の貴金属線材1にガス感応部2が設けてある。貴金属線材1は、例えば白金、パラジウム、白金-パラジウム合金等の線材を使用できる。貴金属線材1の線径、コイル径、コイル巻数等は、従来の熱線型半導体式ガス検知素子に使用するものと同様で、特に限定されない。
 ガス感応部2は、酸化スズあるいは酸化インジウムを主成分とする金属酸化物半導体を塗布して覆い、乾燥後、焼結成型したものである。当該金属酸化物半導体には、モリブデン酸化物(MoO、MoO)を添加してある。モリブデン酸化物の含有量は、例えば0.5~10モル%、好ましくは1~10モル%とするとよい。これにより、エタノール、トルエン、アセトン、酢酸エチル等の所謂におい成分を感度よく検出することができ、かつ、シリコーンガスが存在する環境でもにおい成分を正確に検出できる。
 金属酸化物半導体には、モリブデン酸化物に加えて、ランタン酸化物や鉛酸化物を添加してもよい。金属酸化物半導体に、ランタンや鉛の酸化物を添加することにより、例えばにおい成分であるトルエンやアセトンに対して高感度であるとともに、水素、メタン、エチレンなどの他のガスとの選択性に於いて優れた第一半導体式ガス検知素子Xが得られる。
 ランタン酸化物(La)の含有量は、例えば0.05~1モル%とすれば、良好なガス感度を有する。
 また、鉛酸化物(PbO)の含有量は、例えば0.01~1モル%とするのがよい。これにより、水素、メタン、エチレンなどVOCガス以外の感度を低下させ、におい成分をより感度よく検出することができる。
 ガス感応部2の外周側には、アルミナ、シリカ、シリカアルミナ、ゼオライトの中から選択された少なくとも1種を担体とする触媒層3を設け、当該触媒層3にタングステン酸化物(WO)或いはモリブデン酸化物の少なくとも一方を担持させている。
 タングステン酸化物或いはモリブデン酸化物の含有量は、0.1~10モル%となるようにすれば、アルコールの感度を十分抑制することができる。
 触媒層3に含まれるタングステン酸化物或いはモリブデン酸化物により、触媒層3の表面に到達したアルコールは分解を受ける。これにより、被検知ガスにアルコールが混入している場合においても、センサのアルコールに対する感度を抑制することができる。従って、本構成の第一半導体式ガス検知素子Xは、アルコールに対する感度を抑制した状態で、におい成分を感度よく検出することができるものとなる。
 図15に示すように、熱線型半導体式ガス検知素子Xは、固定抵抗R0,R1,R2とともにブリッジ回路に組み込んでガスセンサを構成できる。ブリッジ回路は電源Eによって常時または間欠的に通電してあり、熱線型半導体式ガス検知素子Xが検知の際に適した温度となるようにしてある。また、熱線型半導体式ガス検知素子Xは被検知ガスが吸着すると抵抗値が変化する。このため、本実施形態に係るガスセンサでは、熱線型半導体式ガス検知素子Xの抵抗値の変化を偏差電圧として取り出し、これをセンサ出力Vとすることで被検知ガス(におい成分)の濃度を測定することができる。
 第二ガス検出手段20においても第二半導体式ガス検知素子X’を有する。当該第二半導体式ガス検知素子X’は、上述した貴金属線材1および、ガス感応部2を備える。
 第二ガス検出手段20に使用する第二半導体式ガス検知素子X’は触媒層3を含まないため、第一ガス検出手段10に比べてアルコール成分に対する感度が高くなる。この場合、第一ガス検出手段10および第二ガス検出手段20の両者を、検知対象空間に配置し、それぞれの検知手段のガス検知出力に基づいて、検知対象空間に存在する複数のガス成分(アルコールとそれ以外のガス成分)を識別することが可能となる。
 即ち、検知対象空間において、アルコールの濃度が高まると、第一ガス検出手段10のアルコール成分に対する検知出力は殆ど無いが、第二ガス検出手段20のアルコール成分に対する検知出力は高くなる。このとき、第一ガス検出手段10の出力が所定の検知出力より大きな値が得られればアルコール以外のガス成分が検知できたものと識別し、第二ガス検出手段20の出力が所定の検知出力より大きな値が得られればアルコールが検知できたものと識別することができるため、アルコールとそれ以外のガス成分を同時に識別検知することができる。
 本発明の環境監視システムZは、ガス検出手段10,20のいずれかが所定値以上の検出値を検出した場合に、当該所定値以上の検出値を検出したガス検出手段10,20の周囲の雰囲気に含まれるガス成分を分析する分析部Eを備える。
 分析部Eは、当該雰囲気中に含まれる複数のガス成分を分析(識別)できるものであればどのような態様であってもよい。例えば分析部Eは、ガスクロマトグラム分離カラムと、ガスクロマトグラム分離カラムにキャリアガスなどのガスを流通させるための吸引ポンプと、ガスクロマトグラム分離カラムにガスを導入する導入路と、ガスを排出する排出路と、を備え、さらに、ガスクロマトグラム分離カラムにて分離されたガス成分を検出するガス成分検出手段を備えた構成とすることができる。
 ガスクロマトグラム分離カラムは、公知のガスクロマトグラフィー用の分離カラムを使用すればよい。また、ガス成分検出手段は、上述した半導体式ガス検知素子など、公知のガス検出手段を使用すればよい。
 ガス検出手段10,20の周囲の雰囲気に含まれるガス成分は、分析部Eに搬送して当該分析部Eで分析される。このような搬送を行うため、例えばガス検出手段10,20の周囲の雰囲気を捕集し、捕集した雰囲気を分析部Eに送る捕集手段(図外)を備えるとよい。
 当該捕集手段は、雰囲気ガスを捕集して、所望の部位に搬送できる態様であればどのようなものであってもよく、例えばシリンジ等によってそれぞれのガス検出手段10,20の周囲の雰囲気を吸引して捕集し、捕集した雰囲気を陽圧あるいは負圧で分析部Eに送れるポンプ装置およびパイプを備えて構成することができる。
 ガス検出手段10,20のいずれかが所定値以上の検出値を検出した場合に、当該所定値以上の検出値を検出したガス検出手段10,20の周囲の雰囲気を捕集し、捕集した雰囲気を例えば捕集手段によって分析部Eに送る。このとき送られた雰囲気が当該捕集手段の導入路から分析部Eに投入されると、ガスクロマトグラム分離カラムにて雰囲気が展開され、含まれたガス成分毎に順次分離され、排出路の側に溶離されて排出される。この溶離された各ガス成分が、順次ガス成分検出手段に投入され、ガス成分の種類などを検知、分析(識別)することができる。ガス成分の濃度は、例えば後述の演算部Bで行うように構成できる。
 このようにガス検出手段10,20のいずれかが所定値以上の検出値を検出した場合に、当該所定値以上の検出値を検出したガス検出手段10,20の周囲の雰囲気に含まれるガス成分を分析するように構成することで、ガス成分を分析部Eによって分析するタイミングを規定することができる。即ち、ガス検出手段10,20のいずれかが所定値以上の検出値を検出した場合には、所望のガス成分(アルコールやそれ以外のガス成分のいずれか)が検知できた場合であり、このタイミングでガス検出手段10,20の周囲の雰囲気を分析部Eで分析すれば、所望のガス成分(アルコールやそれ以外のガス成分のいずれか)が分析部Eによって分析されるため、ガス成分の分析を確実に詳細に行うことができる。
 また、監視部Fは、例えば分析部Eの分析結果に基づいて、ガス成分の変化を監視する。監視部Fは、例えばガス成分の成分量をリアルタイムでモニタリングできる表示手段などが使用できるが、このような態様に限定されるものではない。
 本構成のように監視部Fを設けることで、当該閉鎖空間の内部のガス成分の変化を容易に把握することができる。監視部Fは、閉鎖空間の内部に設けてもよいし、閉鎖空間の外部に設けてもよい。監視部Fを閉鎖空間の内部に設けた場合は、監視部Fをガス検知部Aの近傍あるいは離間した位置の何れに設けた場合であっても、閉鎖空間の内部のガス成分の変化を容易に把握することができる。また、監視部Fを閉鎖空間の外部に設けた場合は、閉鎖空間から離間した外部であっても閉鎖空間の内部のガス成分の変化を容易に把握することができる。
 また、監視部Fは、何れかのガス検出手段10,20が所定値以上の検出値を検出すると、捕集手段に所定値以上を検出したガス検出手段の周囲の雰囲気の捕集を指示し、捕集手段から送られる雰囲気の分析を分析部Eに指示するように構成するとよい。
 本構成では、監視部Fにおいてガス検出手段10,20の検出値を認識させ、当該検出値に応じて所望のガス検出手段に対して雰囲気の捕集指令を捕集手段へ出すように制御できる。さらに、監視部Fは、捕集指令を出した後で、分析部Eに雰囲気の分析指令を出すように制御できる。即ち、監視部Fにおいてこれら捕集指令や分析指令を実行できるように構成すれば、例えば監視部Fをガス検知部Aの近傍あるいは離間した位置の何れに設けた場合であっても、或いは、監視部Fを閉鎖空間の外部に設けた場合であっても、所望のタイミングで捕集指令や分析指令を実行することができる。
 監視部Fは、これら捕集指令や分析指令を実行できるマイコンなどを有するように構成すればよい。
 本発明の環境監視システムZは、第一ガス検出手段10の検知出力および第二ガス検出手段20の検知出力に基づいて所望のガス成分を検知、分析および監視するように構成できる。
 例えば、第一ガス検出手段10および第二ガス検出手段20の両者の出力の差を算出して、検知されたガス成分の判定を行えばよい。この場合、例えば、両者の通常出力(ΔV感度)がともに0~300程度であり、警報レベルを1000以上に設定した場合があるとする。このとき、第二ガス検出手段20の出力より第一ガス検出手段10の出力を引算することによって求められた値が600以上であれば、検知されたガス成分がエタノール等のアルコールであると判定し、400以下であれば当該アルコール以外であると判定するように実施することができる。
 このように判定された結果を、監視部Fにてモニタリングすることで、ガス成分の成分量の変化を容易に監視することができる。
 ガス検知部Aにおけるガス検出手段10,20は、清浄ガスを用いてゼロ点を設定するとよい。これにより、確実にガス検出手段10,20のゼロ点調整を行うことができる。
 本発明の環境監視システムZは、ガス検知部Aが所望のガス成分を検知した出力に基づき、ガス濃度を算出する演算部Bを備える。当該演算部Bは、ガス検知部Aからの出力信号に基づいてガス濃度を算出できるマイコンなどを使用するとよい。
 演算部Bは、第一ガス検出手段10および第二ガス検出手段20の少なくとも一方が警報レベル以上の前記ガス成分を検知した場合、警報信号を、ガス検知部Aの検知出力が所定値以上であった場合に警報出力を出力する報知部Cに送って当該報知部Cにより警報を発するように制御する。
 第二ガス検出手段20のみが、警報レベル以上のガス成分を検知している場合には、アルコールを検知していると判断し、報知部Cから警報を発さない構成としてもよい。また、第一ガス検出手段10および第二ガス検出手段20の少なくとも一方が、警報レベル以上のガス成分を所定時間以上継続して検知した場合に、警報を発する態様としてもよい。
 報知部Cは、演算部Bから警報信号を受け取り、選択された警報音信号に基づいて音により警報を発する。警報音は、例えば検知されたガス成分がエタノール等のアルコールである場合と、アルコール以外である場合とで異なるように設定することができる。これにより、使用者は容易に検知されたガス成分を認識することができるため、警報の原因特定を迅速に行うことができる。報知部Cはスピーカおよびその駆動回路で構成され、警報音信号を警報音に変換して出力する。
 また、本発明の環境監視システムZは、第一ガス検出手段10および第二ガス検出手段20のそれぞれの設置位置、それぞれの検知出力値、および、それぞれの検出日時などを対応付けて表示する表示部Dを備える。本構成により、使用者は、各検出手段の状況を容易に把握することができる。
〔別実施形態〕
 上述した実施形態において、複数のガス検出手段10,20のいずれかが所定値以上の検出値を検出した場合に、当該所定値以上の検出値を検出したガス検出手段10,20の周囲の雰囲気に含まれるガス成分を分析する態様について説明した。しかし、所定値以上の検出値を検出したガス検出手段が複数存在する場合は、前回の捕集から最も期間があいているガス検出手段の周囲の雰囲気のガス成分を分析するようにしてもよい。
 また、所定値以上の検出値を検出したガス検出手段が複数存在する場合は、所定値以上を検出した回数が多い(或いは少ない)ガス検出手段の周囲の雰囲気のガス成分を分析するようにしてもよい。
 さらに、所定値以上の検出値を検出したガス検出手段が複数存在する場合は、過去の検出傾向に基づいて、いずれのガス検出手段の周囲の雰囲気を分析するかを決定するようにしてもよい。
 上述したように所定値以上の検出値を検出したガス検出手段が複数存在する場合は、設定した順番でガス検出手段の周囲の雰囲気のガス成分を分析するようになるが、このとき、後の順番となったガス検出手段の周囲の雰囲気は、一旦捕集手段で捕集しておいて順番が回ってくるまで貯蔵しておいてもよい。当該貯蔵は、適当な空間を備えた貯蔵部に、捕集した雰囲気の全て或いは一部を収容すればよい。
〔実施例1〕
 本発明の環境監視システムZで使用する半導体式ガス検知素子の製造方法を以下に説明する。当該半導体式ガス検知素子は、貴金属線材1、ガス感応部2および触媒層3を備える第一ガス検出手段10(本発明例1)、および、貴金属線材1およびガス感応部2を備える第二ガス検出手段20(本発明例2)に使用するものをそれぞれ作製した。
 アンチモン(Sb+5)を0.1モル%ドープして所定の電導度を得た酸化スズ(SnO)半導体のペーストを、白金コイルに塗布して直径が約0.5mmの球状になるように形成し、乾燥後、白金コイルに通電してジュール熱により加熱し、650℃で1時間、酸化スズを焼結させた。
 酸化スズの半導体に、1モル/Lのモリブデン酸アンモン水溶液の液滴を含浸させ、20℃で60分乾燥させた。乾燥後、白金コイルに通電(1時間)して約600℃で加熱分解処理を行い、モリブデン酸化物を金属酸化物半導体(ガス感応部)の表面に担持させた。このようにして得られた第二半導体式ガス検知素子X’(本発明例2:第二ガス検出手段20に使用する)をブリッジ回路に組み込み、被検知ガスに対する感度評価に使用した。
 尚、金属酸化物半導体にランタン酸化物を添加する場合は、酸化スズの半導体に例えば1mol/Lの硝酸ランタン水溶液を含浸させ、金属酸化物半導体に鉛酸化物を添加する場合は、酸化スズの半導体に例えば0.5mol/Lの硝酸鉛水溶液を含浸させるとよい。
 触媒層3は、以下のようにして作製した。
 アルミナの粉末100gに、タングステン酸アンモニウムの水溶液(0.1mol/L)を含浸法により0.1~10mol%(最適添加量2mol%)になるように添加した後、乾燥し、電気炉で700℃で2時間焼成した。これを粉砕し、水で練ってペースト状とし前述の金属酸化物半導体の表面全周に塗布する。さらに室温で乾燥後、600℃で1時間加熱し、焼結させ形成する。
 このようにして得られた本発明の第一半導体式ガス検知素子X(本発明例1:第一ガス検出手段10に使用する)をブリッジ回路に組み込み、被検知ガスに対する感度評価に使用した。
〔実施例2〕
 本発明例2の第二半導体式ガス検知素子X’(ガス感応部に2モル%のモリブデン酸化物を添加)と、比較例1として酸化スズを主成分とするガス感応部を有する半導体式ガス検知素子(ガス感応部にモリブデン酸化物を添加しない)とにおいて、各種ガスの検知感度(DC2.4V通電時(10オーム負荷))を調べた。使用したガスは、エタノール、メタン、イソブタン、水素、一酸化炭素、トルエン、アセトン、酢酸エチルであった。
 本発明例2の第二半導体式ガス検知素子X’による測定結果を図3、比較例1の半導体式ガス検知素子による測定結果を図4に示した。
 図3より、本発明例2の第二半導体式ガス検知素子X’では、におい成分であるエタノール、トルエン、アセトン、酢酸エチルに対するガス感度は、メタン、一酸化炭素に比べて増感されたと認められた。一方、図4より、比較例1の半導体式ガス検知素子では、何れのガスのガス感度も明確に増感せず、におい成分と可燃性ガスとにおいて、ガス感度の明瞭な差異は認められなかった。
 よって、第二半導体式ガス検知素子X’において、ガス感応部にモリブデン酸化物を添加することにより、におい成分を感度よく検出することができるものと認められた。
〔実施例3〕
 本発明例2の第二半導体式ガス検知素子X’と、比較例1の半導体式ガス検知素子とにおいて、シリコーンガス(OMCTS:Octamethylcyclotetrasiloxane、10ppm)が存在する環境におけるガス感度の変化を調べた。検知対象のガスは、空気、エタノール(5~100ppm)とした。
 本発明例2の第二半導体式ガス検知素子X’による測定結果を図5、比較例1の半導体式ガス検知素子による測定結果を図6に示した。
 図5より、本発明例2の第二半導体式ガス検知素子X’では、シリコーンガス存在下であっても安定した(ほぼ一定の)ガス感度が得られるものと認められた。一方、図6より、比較例1の半導体式ガス検知素子では、特にシリコーンガスの曝露初期において、ガス感度が急変するため、シリコーンガス存在下では不安定なガス感度を示すものと認められた。
〔実施例4〕
 実施例1で説明した本発明例2の第二半導体式ガス検知素子X’の作製方法において、使用した酸化スズの半導体ペーストを酸化インジウム(In)の半導体ペーストに替えて半導体式ガス検知素子を作製した。このようにして得られた第二半導体式ガス検知素子X’(本発明例3:ガス感応部に2モル%のモリブデン酸化物を添加)をブリッジ回路に組み込み、被検知ガスに対する感度評価に使用した。
〔実施例5〕
 本発明例3の第二半導体式ガス検知素子X’と、比較例2として酸化インジウムを主成分とするガス感応部を有する半導体式ガス検知素子(ガス感応部にモリブデン酸化物を添加しない)とにおいて、各種ガスの感度(DC2.4V通電時(10オーム負荷))を調べた。使用したガスは、エタノール、水素、トルエン、アセトン、酢酸エチルであった。
 本発明例3の第二半導体式ガス検知素子X’による測定結果を図7、比較例2の半導体式ガス検知素子による測定結果を図8に示した。
 図7より、本発明例3の第二半導体式ガス検知素子X’では、におい成分であるエタノール、トルエン、アセトン、酢酸エチルに対するガス感度は増感されたものと認められた。一方、図8より、比較例2の半導体式ガス検知素子では、何れのガスのガス感度も殆ど増感せず、におい成分と可燃性ガスとにおいて、ガス感度の明瞭な差異は認められなかった。
〔実施例8〕
 本発明例2の第二半導体式ガス検知素子X’において、ガス感応部に添加するモリブデン酸化物の有効濃度を調べた。
 ガス感応部の表面に担持されるモリブデン酸化物の含有量が0.001~30モル%となるように、11種類(表1)の半導体式ガス検知素子を製造した。これら半導体式ガス検知素子について、におい成分であるエタノール100ppm、アセトン100ppmをそれぞれ検出した場合のガス感度を調べた。結果を表1および図9示した。
Figure JPOXMLDOC01-appb-T000001
 
 
 この結果、モリブデン酸化物の含有量が0.1モル%以上、特に0.5モル%以上において優れたガス感度を有するものと認められた。
 また、上記11種類の半導体式ガス検知素子において、シリコーンガス(OMCTS)が存在する環境におけるガス感度の変化を調べた。ガス感度の変化は、半導体式ガス検知素子をシリコーンガス10ppmに対して20時間曝露したときの、エタノール100ppmの感度変化率(20時間暴露時の測定値/初期測定値)で表した。結果を表2および図10に示した。
Figure JPOXMLDOC01-appb-T000002
 
 
 
 
 半導体式ガス検知素子がシリコーンガスに曝露した前後において、ガス感度の変化率は1.0~1.5程度であれば、良好なガス感度を有するものと認められる。モリブデン酸化物の含有量が0.5~10モル%の場合に、ガス感度の変化率が1.0~1.5の範囲に収まるものと認められた。また、モリブデン酸化物の含有量が1~10モル%の場合に、ガス感度の変化率が1.0~1.2の範囲に収まるため、より良好なガス感度を有するものと認められた。
 従って、モリブデン酸化物の含有量が0.5~10モル%であれば、シリコーンガスが存在する環境でもにおい成分を正確に検出できることが判明した。
〔実施例9〕
 本発明例2の第二半導体式ガス検知素子X’において、ガス感応部に添加するランタン酸化物の有効濃度を調べた。
 モリブデン酸化物を添加した金属酸化物半導体に対してランタン酸化物0~3モル%を添加し、シリコーンガスに曝露(10ppm、100時間曝露)した前後において、ガス感度の変化率(シリコーンガス暴露後の100ppm感度/シリコーンガス暴露前の100ppm感度)が1.0~1.5の範囲に収まるものを調べた。上述したように、半導体式ガス検知素子がシリコーンガスに曝露した前後において、ガス感度の変化率は1.0~1.5程度であれば、シリコーンガスに対して影響されないものと認められる。
 結果を図11(a)に示した。図11(a)より、当該変化率が1.0~1.5を示すのは、概ねランタン酸化物の含有量が0.05~1モル%の範囲となっている。従って、ランタン酸化物の含有量が0.05~1モル%の範囲であれば、シリコーンガスに対して影響されないものと認められる。
 また、ランタン酸化物が0~3モル%の範囲において、エタノール100ppmに対する感度(mV)を測定した。金属酸化物半導体にはモリブデン酸化物2モル%添加し、触媒層3にはタングステン酸化物2モル%を添加したものを使用し、触媒層3の有無、および、鉛酸化物の含有量を0.01~1モル%の間で変化させた半導体式ガス検知素子を使用して測定を行った。結果を図11(b)に示した。
 エタノールの最高感度は、触媒層3なしの第二半導体式ガス検知素子X’(本発明例2)において、ランタン酸化物が0.1モル%の場合の測定値251mVであった。本実施例ではこの測定値の7割(175mV)以上であれば良好な感度であると判断し、かつ、触媒層3ありの第一半導体式ガス検知素子X(本発明例1)の感度が、触媒層3なしの第二半導体式ガス検知素子X’(本発明例2)の1/2以下となるときにエタノールの除去性能が優れたものと判断した。その結果、ランタン酸化物の含有量が0.05~1モル%の範囲であればこれらの条件を満たし、エタノールの除去性能が優れていると認められた。
〔実施例10〕
 本発明例2の第二半導体式ガス検知素子X’において、ガス感応部に添加する鉛酸化物の有効濃度を調べた。
 ガス感応部の表面に担持されるモリブデン酸化物の含有量を、0.5,2.0,10モル%とした場合に、鉛酸化物の含有量を0.005~5モル%の範囲となるようにそれぞれ7種類(表3)の第二半導体式ガス検知素子X’を製造した(合計21種類)。これら第二半導体式ガス検知素子X’について、エタノール100ppm、水素100ppmをそれぞれ検出した場合のガス感度を調べた。鉛酸化物の有効濃度は、におい成分の選択性が優れている範囲を適用すればよい。におい成分の選択性が優れている範囲は、可燃性ガス感度/エタノール感度の比を1以下とする。結果を表3に示した。
Figure JPOXMLDOC01-appb-T000003
 
 
 
 
 この結果、鉛酸化物の含有量を0.01~5モル%の範囲とすれば、水素感度/エタノール感度の比が1以下となるものと認められた。ただし、水素感度/エタノール感度の比が1以下となる場合であっても、におい成分(エタノール)の感度が低いのは好ましくない。従って、鉛酸化物の含有量の上限値は、におい成分(エタノール)の最高感度(モリブデン酸化物の含有量が0.5モル%、鉛酸化物の含有量が0.5モル%の場合の感度170mV)の50%以上を有する感度となる鉛酸化物の含有量のうち、最大とするのが好ましい。これらのことから、鉛酸化物の含有量は、0.01~1モル%の範囲とするのが好ましい。
 従って、鉛酸化物の含有量が0.01~1モル%の範囲であれば、水素の感度を低下させ、におい成分をより感度よく検出することができることが判明した。尚、結果は示さないが、水素だけでなく、メタンやエチレンなどのVOCガス以外の感度についても同様に低下させることができる。
〔実施例11〕
 触媒層3に添加したタングステン酸化物の添加量を0~10モル%の間で変化させた場合に、エタノール100ppmに対する感度およびアセトン100ppmに対する感度がどのように変化するかを調べた。金属酸化物半導体にはモリブデン酸化物2モル%、ランタン酸化物0.5モル%および鉛酸化物0.5モル%を添加したものを使用した。結果を表4に示した。
Figure JPOXMLDOC01-appb-T000004
 
 
 この結果、タングステン酸化物の添加量を変化させた場合においてもアセトン100ppmに対する感度は顕著な変化が認められなかったのに対して、エタノール100ppmに対する感度は、タングステン酸化物の添加量を0.1~10モル%とした場合にはタングステン酸化物の添加量が0である場合に比べて、顕著に抑制されているものと認められた。
 尚、本実施例では触媒層3に担持される担持物としてタングステン酸化物を使用した場合について説明したが、モリブデン酸化物であっても同様の結果を示した(結果は示さない)。
〔実施例12〕
 本発明例1の第一半導体式ガス検知素子X(本発明例1、金属酸化物半導体:モリブデン酸化物2モル%、ランタン酸化物1モル%、鉛酸化物0.5モル%を含有、触媒層:タングステン酸化物2モル%を含有)において、9種のガス(エタノール、スチレン、キシレン、トルエン、トリメチルアミン、アンモニア、イソブタノール、酢酸メチル、アセトン)に対する感度とガス濃度との関係について調べた(図12)。図12より、全てのガスに対して1ppmから感度が十分得られ、また、エタノールの感度が最も低く、エタノールと他のガスとの分離も十分良いものと認められた。
 このように本構成の第一半導体式ガス検知素子Xは、アルコールに対する感度を抑制した状態で、におい成分(硫化水素)を感度よく検出することができる。
 また、本発明例2の第二半導体式ガス検知素子X’(金属酸化物半導体:モリブデン酸化物2モル%、ランタン酸化物1モル%、鉛酸化物0.5モル%を含有)において、9種のガス(エタノール、スチレン、キシレン、トルエン、トリメチルアミン、アンモニア、イソブタノール、酢酸メチル、アセトン)に対する感度とガス濃度との関係について調べた(図13)。この結果、エタノールは他のガスと全く分離されないものと認められた。
 尚、本実施例では、触媒層3の担体としてアルミナを使用した場合について説明したが、シリカ、シリカアルミナ、ゼオライトのいずれか、あるいはこれらの複数からこの担体を構成しても同様の結果を示した。さらに、触媒層3に担持される担持物としてタングステン酸化物を使用した場合について説明したが、これはモリブデン酸化物であっても同様の結果を示した(何れも結果は示さない)。
〔実施例13〕
 第一半導体式ガス検知素子X(本発明例1:第一ガス検出手段10に使用する)と、第二半導体式ガス検知素子X’(本発明例2:第二ガス検出手段20に使用する)とを備えたガス検知部Aを作製し、このガス検知部Aを有する環境監視システムZを半導体製造工場のクリーンルーム内に設置し、当該クリーンルーム内に存在するガスを検知した(図14)。
 第一ガス検出手段10においては、におい成分としてVOCガスが常時低レベル(ΔV感度200~600程度)で検知されていた。クリーンルーム内では、AM10:00~12:00の間に清掃のためエタノールを使用した。このとき、この時間帯において第二ガス検出手段20にてエタノール成分が、ΔV感度が1500程度の出力で検知された。
 即ち、この環境監視システムZは、クリーンルーム内に設置することで、エタノールとVOCガスの両方を同時に識別検知することができた。
 尚、第一ガス検出手段10および第二ガス検出手段20の何れにおいても、ΔV感度が1000以上となったときが警報レベルとなっている。
 そのため、警報レベル以上の検出値を検出した第二ガス検出手段20の周囲の雰囲気に含まれるガス成分を分析するべく、捕集手段によって第二ガス検出手段20の周囲の雰囲気を捕集して捕集した雰囲気を分析部Eに送って分析を行った。分析部Eにおいて、ガスクロマトグラム分離カラムとして、内径4mm全長20cmのフッ素樹脂製カラム管に、粒径80~100μmのポリフェニルエーテル(PPE)製充填材5ring Uniport-HP(GLサイエンス社製)を充填したものを用い、カラム温度25℃、キャリアガス流量60ml/分の条件でガス成分の分析を行った。
 分析部Eの分析によって得られたガス成分の分析結果を、リアルタイムで監視部Fによってモニタリングを行った。このように監視部Fに当該分析結果をモニタリングすることで、当該閉鎖空間の内部のガス成分の変化を容易に把握することができる。
 本発明は、閉鎖空間の内部に存在するガス成分を検知するガス検知部を備えた環境監視システムに利用できる。
Z    環境監視システム
X     第一半導体式ガス検知素子
X’    第二半導体式ガス検知素子
A    ガス検知部
E    分析部
F    監視部
1     貴金属線材
2     ガス感応部
3     触媒層
10    第一ガス検出手段
20    第二ガス検出手段
 

Claims (7)

  1.  閉鎖空間の内部に存在するガス成分を検知するガス検知部を備えた環境監視システムであって、
     前記ガス検知部は、前記閉鎖空間の異なった領域に配設される複数のガス検出手段を備え、
     前記ガス検出手段のいずれかが所定値以上の検出値を検出した場合に、当該所定値以上の検出値を検出したガス検出手段の周囲の雰囲気に含まれるガス成分を分析する分析部を備える環境監視システム。
  2.  前記ガス検知部は、第一ガス検出手段および第二ガス検出手段を備え、両者において被検知ガスの検知特性を異ならせてあり、
     前記第一ガス検出手段の検知出力および前記第二ガス検出手段の検知出力に基づいて所望のガス成分を検知、分析および監視する請求項1に記載の環境監視システム。
  3.  前記ガス検知部におけるガス検出手段は、清浄ガスを用いてゼロ点を設定する請求項1または2に記載の環境監視システム。
  4.  前記ガス成分の変化を監視する監視部と、
     前記ガス検出手段の周囲の雰囲気を捕集し、捕集した雰囲気を前記分析部に送る捕集手段を備え、
     何れかのガス検出手段が所定値以上の検出値を検出すると、前記監視部は、前記捕集手段に所定値以上を検出したガス検出手段の周囲の雰囲気の捕集を指示し、前記捕集手段から送られる雰囲気の分析を前記分析部に指示する請求項1~3の何れか一項に記載の環境監視システム。
  5.  前記第一ガス検出手段は、
     貴金属線材と、
     当該貴金属線材を覆い、酸化スズあるいは酸化インジウムを主成分としてモリブデン酸化物を添加した金属酸化物半導体を用いて形成したガス感応部と、
     当該ガス感応部の外周側に、アルミナ、シリカ、シリカアルミナ、ゼオライトの中から選択された少なくとも1種を担体とする触媒層と、を設け、当該触媒層にタングステン酸化物或いはモリブデン酸化物の少なくとも一方を担持させた第一半導体式ガス検知素子を有する請求項2に記載の環境監視システム。
  6.  前記第二ガス検出手段は、前記第一ガス検出手段における触媒層を含まない構成とした第二半導体式ガス検知素子を有する請求項5に記載の環境監視システム。
  7.  前記金属酸化物半導体にランタン酸化物および鉛酸化物の少なくとも何れかを添加してある請求項5または6に記載の環境監視システム。
     
PCT/JP2014/070723 2013-08-09 2014-08-06 環境監視システム WO2015020085A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480044439.2A CN105492896A (zh) 2013-08-09 2014-08-06 环境监测系统
KR1020167006050A KR20160042951A (ko) 2013-08-09 2014-08-06 환경 감시 시스템

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-167084 2013-08-09
JP2013167084A JP2015034796A (ja) 2013-08-09 2013-08-09 半導体式ガス検知素子
JP2013-233540 2013-11-11
JP2013233540A JP6442754B2 (ja) 2013-11-11 2013-11-11 環境監視システム

Publications (1)

Publication Number Publication Date
WO2015020085A1 true WO2015020085A1 (ja) 2015-02-12

Family

ID=52461416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070723 WO2015020085A1 (ja) 2013-08-09 2014-08-06 環境監視システム

Country Status (4)

Country Link
KR (1) KR20160042951A (ja)
CN (1) CN105492896A (ja)
TW (1) TWI688766B (ja)
WO (1) WO2015020085A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111474215A (zh) * 2020-06-01 2020-07-31 中国科学技术大学 一种半导体-固体电解质型双模式传感器及其在气体识别中的应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107315033B (zh) * 2016-04-26 2021-08-06 新唐科技日本株式会社 气体检测装置以及氢检测方法
CN109085211B (zh) * 2018-08-07 2021-03-26 亚翔系统集成科技(苏州)股份有限公司 一种洁净室受害区检测方法
CN108982621B (zh) * 2018-09-21 2021-05-18 京东方科技集团股份有限公司 一种污染物检测装置、穿戴设备
CN110632265A (zh) * 2019-11-07 2019-12-31 徐州台江生物科技有限公司 一种便携式食品安全检测装置
CN112285218B (zh) * 2020-09-04 2021-08-31 东风汽车集团有限公司 一种车内气味溯源方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001033437A (ja) * 1999-07-26 2001-02-09 Mitsubishi Heavy Ind Ltd 金属中の微量ヘリウム測定方法
JP2003232761A (ja) * 2001-12-07 2003-08-22 Osaka Gas Co Ltd 油脂火災防止用ガス検知器
JP2011232300A (ja) * 2010-04-30 2011-11-17 Shimizu Corp モニタリングシステムおよびモニタリング方法
JP2013164349A (ja) * 2012-02-10 2013-08-22 New Cosmos Electric Corp 半導体式ガス検知素子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1184252A (zh) * 1996-11-29 1998-06-10 黄添财 携带式气体警示装置
JP2001318069A (ja) * 2000-05-10 2001-11-16 Matsushita Electric Ind Co Ltd 呼気ガス分析装置
CN1244812C (zh) * 2002-04-10 2006-03-08 陈利平 便携式智能组合气体检测报警仪
US7140229B2 (en) * 2004-06-29 2006-11-28 Mst Technology Gmbh Gas-monitoring assembly comprising one or more gas sensors and one or more getters, and method of using same
CN1821779A (zh) * 2006-03-20 2006-08-23 中山大学 一种空气质量监测和控制系统
TW201115140A (en) * 2009-10-23 2011-05-01 Metal Ind Res & Dev Ct Gas sensor capable of simultaneously sensing oxygen and carbon dioxide, manufacturing method thereof and its gas sensor system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001033437A (ja) * 1999-07-26 2001-02-09 Mitsubishi Heavy Ind Ltd 金属中の微量ヘリウム測定方法
JP2003232761A (ja) * 2001-12-07 2003-08-22 Osaka Gas Co Ltd 油脂火災防止用ガス検知器
JP2011232300A (ja) * 2010-04-30 2011-11-17 Shimizu Corp モニタリングシステムおよびモニタリング方法
JP2013164349A (ja) * 2012-02-10 2013-08-22 New Cosmos Electric Corp 半導体式ガス検知素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111474215A (zh) * 2020-06-01 2020-07-31 中国科学技术大学 一种半导体-固体电解质型双模式传感器及其在气体识别中的应用
CN111474215B (zh) * 2020-06-01 2022-01-14 中国科学技术大学 一种半导体-固体电解质型双模式传感器及其在气体识别中的应用

Also Published As

Publication number Publication date
TW201522958A (zh) 2015-06-16
TWI688766B (zh) 2020-03-21
KR20160042951A (ko) 2016-04-20
CN105492896A (zh) 2016-04-13

Similar Documents

Publication Publication Date Title
WO2015020085A1 (ja) 環境監視システム
US9945803B2 (en) Gas detecting device and method thereof
US9651531B2 (en) Air sampling system providing compound discrimination via comparative PID approach
JP2019511692A (ja) 空気清浄機及び空気清浄方法
US11181497B2 (en) System and methods for chemical detection and amplification
Asbach et al. Silicone sampling tubes can cause drastic artifacts in measurements with aerosol instrumentation based on unipolar diffusion charging
JP6442754B2 (ja) 環境監視システム
KR20190082470A (ko) 전자 장치 및 그의 제어방법
EP3308138B1 (en) Method of designing a particle sensor and particle sensing method
WO1994000854A1 (en) Halogenated compounds sensor
JP2015034796A (ja) 半導体式ガス検知素子
KR101751449B1 (ko) 휘발성 유기화합물의 분별 감지를 위한 그래핀옥사이드와 금속산화물 기반 센싱레이어 제조 방법 및 이에 의해 제조된 센서
US11486846B2 (en) Method and device for analyzing a gas
JP7126238B2 (ja) 可燃性ガスの分析方法
JP5866713B2 (ja) ガス検知器
JP6710826B2 (ja) 可燃性ガスの分析方法
JP3171745B2 (ja) 基板型半導体式ガスセンサ及びガス検出器
JP5906531B2 (ja) 半導体式ガス検知素子
JP3203120B2 (ja) 基板型半導体式ガスセンサ及びガス検出器
JP2009244073A (ja) イオン化式ガスセンサ
KR20150005361A (ko) 호흡 가스 분석 장치 및 방법
Lozanoa et al. Detection of pollutants in water using a wireless network of electronic noses
JP2011202993A (ja) 感応部に酸化セリウムを含むガスセンサの初期安定化状態の判定方法
JP5798508B2 (ja) ガス検知装置
Khaldi et al. ANN modeling of electronic nose based on co-doped SnO2 nanofiber sensor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480044439.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14834246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167006050

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14834246

Country of ref document: EP

Kind code of ref document: A1