JP2011202993A - 感応部に酸化セリウムを含むガスセンサの初期安定化状態の判定方法 - Google Patents

感応部に酸化セリウムを含むガスセンサの初期安定化状態の判定方法 Download PDF

Info

Publication number
JP2011202993A
JP2011202993A JP2010068265A JP2010068265A JP2011202993A JP 2011202993 A JP2011202993 A JP 2011202993A JP 2010068265 A JP2010068265 A JP 2010068265A JP 2010068265 A JP2010068265 A JP 2010068265A JP 2011202993 A JP2011202993 A JP 2011202993A
Authority
JP
Japan
Prior art keywords
value
cerium oxide
gas sensor
resistance value
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010068265A
Other languages
English (en)
Inventor
Toshio Ito
敏雄 伊藤
Noriya Izu
伊豆  典哉
Ichiro Matsubara
一郎 松原
Usoku Shin
申  ウソク
Maiko Nishibori
麻衣子 西堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2010068265A priority Critical patent/JP2011202993A/ja
Priority to US13/138,950 priority patent/US20120115837A1/en
Publication of JP2011202993A publication Critical patent/JP2011202993A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

【課題】酸化セリウムによるガスセンサにおける初期安定化状態を、測定対象ガスを用いることなく短時間で簡便に判定する方法を提供する。
【解決手段】感応部に酸化セリウムを含むガスセンサにおける前記感応部の初期化安定化状態を判定する方法であって、交流インピーダンス法を用い、交流電圧を印加しながら周波数を断続的に変化させて少なくとも2点の特定の周波数の測定で得られる実抵抗値を求め、特定の1点の周波数の実抵抗値を基準値とし、この基準値と他の周波数の実抵抗値の比または差を判定値とし、この判定値に基づいて前記感応部の初期安定化状態を判定することを特徴とする。
【選択図】図2

Description

本発明は、ガスセンサの初期安定化状態を簡便に見極める方法に関し、特に感応部に酸化セリウムを含むガスセンサの初期安定化状態を簡便に見極める方法に関する。
近年、安心・安全な生活環境や作業環境を守ることが強く求められており、その一つとして、空気質を管理するための高性能かつ高安定性ガスセンサの開発が進められている。測定対象となるガスは有害な無機ガスやVOC(揮発性有機化合物)で、これらは急性中毒やシックハウス症候群を引き起こす恐れがある。このような症状の誘発を未然に防ぐためのガスセンサが求められており、このような利用法を可能とするには、リアルタイムに濃度値を得ることが出来、算出した濃度値の変動が小さく長期的に安定なガスセンサが不可欠である。
従来から利用されている有害なガス濃度の測定法の一例としては、検知管法およびガスクロマトグラフィー測定等がある。検知管法は、予め測定対象ガスに対して反応性を有する試薬を収容した容器中に、測定対象ガスを吸引させ、この試薬の色の変化から、測定対象ガスの有無およびその濃度を判定する測定法である。この方法は、瞬時の測定が可能である反面、その性質上、正確な濃度の判定が難しいという問題がある。また、この方法で用いる試薬を収容した容器は使い捨てで、1つの容器につき1回の測定しかできないため、経済的に効率が悪い。ガスクロマトグラフィーによる分析では、様々なガス種に対して、極低濃度の測定が可能であるという利点があるが、分析機器が高価である上、分析機器の性質上、リアルタイムに濃度値を得ることが出来ないという問題がある。
一方、感応部にn型半導体金属酸化物を用いたガスセンサも、従来から利用されている。このようなガスセンサでは、金属酸化物表面で測定対象ガスが燃焼反応することによって、金属酸化物表面の酸素を消費することで生じる金属酸化物の電気抵抗変化を測定することにより、測定対象ガスの有無およびその濃度を検知することができる。
このような金属酸化物によるガスセンサは、その原理上、リアルタイムに計測を行うことに適しており、1つの素子当たりに使用する金属酸化物の感応部を1mg以下の微量とした小型化された素子の作製が可能であり、安価であるという特徴がある。
とりわけ、金属酸化物の一種である酸化セリウムは、高い酸素拡散係数を有するという特異的な材料であることから、酸素センサや一酸化炭素センサの感応部に用いることが可能な材料である(非特許文献1)。更には、酸化セリウムは、分子構造に硫黄原子もしくは酸素原子を含む有機化合物のガスに対する応答も良好で、加えて、測定環境の湿度による抵抗値変化やガスに対する応答値変化の影響を受け難いという性質も持ち合わせている(非特許文献2,3)。
ただし、金属酸化物を感応部に用いたガスセンサは、センサ素子作製直後の状態では、濃度値の再現性の確保が難しいといった面があり、酸化セリウムも例外ではない。これは、センサとしての感度を良くする目的で感応部の表面積を増加させる為に、金属酸化物微粒子を使用しており、微粒子の表面状態や、粒子間の接合状態等の変化が、使用履歴に伴い生じる為である。金属酸化物によるガスセンサの濃度値の算出は、一般的には、純空気中における抵抗値と一定のガス濃度中の抵抗値の比を応答値とし、事前に得ている濃度が既知のガスに対する応答値と比較して算出する方法が採られる。この場合、純空気中と同濃度の測定対象ガス中における抵抗値の比が常に一定であること、好適には、純空気中、もしくは、同濃度の測定対象ガス中における抵抗値が変動しないことが求められる。
このような性能を得る為、金属酸化物によるガスセンサは、感応部である金属酸化物の状態がこれ以上変化しない段階に予めしておくことが必要である(以降、この状態を、初期安定化状態とする)。一般的に、作製直後から、何らかの形で事前に処理を行い、金属酸化物の状態がこれ以上変化しない初期安定化状態の段階にまで変化させる手法が採用される。その処理方法は、ガスセンサを使用することであり、例として、通電、加熱、高湿度曝露など、初期安定化状態まで到達させるには、多様な方法が行われる。何れにしろ、最終的にガスセンサ素子が初期安定化状態に達したかどうかを判定するには、従来では、純空気中、もしくは、一定濃度の測定対象ガス中において抵抗値が安定しているか、また、同濃度の測定対象のガスに対する応答値について、再現性が確保されているかを確認する方法が行われる。金属酸化物が酸化セリウムの場合においても例外ではない。
特開2009−264996号公報 特開2007−147383号公報 特開2007−147384号公報 特開2007−147386号公報 特開2009−222708号公報 特開2006−317196号公報 特開2006−090812号公報 特開2004−109035号公報
Adv.Mater.Res.,Vol.47−50,1522(2008) 第46回化学センサ研究発表会予稿集(2008年) 日本セラミックス協会第21回秋季シンポジウム予稿集(2008年)
上記に示した、金属酸化物によるガスセンサが、作製直後から、初期安定化状態に達したかどうかを確認する従来の方法は、時には有害である測定対象のガスをその都度使用しなければならないことや、判定に時間が掛かるといった問題があり、より簡便な初期安定化状態の判定が可能な方法が望まれる。
また、このような作製直後の状態から初期安定化状態に達するまでの変動は、上述の通り、微粒子の表面状態や、粒子間の接合状態等の変化によって生じるものである。従来の判定方法は、抵抗値や応答値を確認するものであって、微粒子の表面状態や、粒子間の接合状態等を直接確認するものではない。すなわち、間接的な判定方法である。微粒子の表面状態や、粒子間の接合状態等の変化から初期安定化状態を直接判定する方法が好適である。
以上より、測定対象ガスを用いることなく、微粒子の表面状態や粒子間の接合状態等の変化から直接、初期安定化状態を見極め、かつ、短時間で簡便に処理の終点を判定する方法が望まれる。
なお、センサ素子を初期安定化状態にする方法については、例えば、特許文献1のような各種センサ素子材料に対する適切な方法が示されている。しかしながら、初期安定化状態に到達したか見極める方法では、測定対象ガスを使用しており、また、見極めの測定に数週間の期間を要している。これらは従来の見極め方法である。
また、特許文献2から4には、センサ素子の状態を見極める方法が開示されている。しかし、これらの文献が示す方法は、センサ素子の劣化状態を確認するものであって、センサ素子の作製直後から初期安定化状態に到達するまでの間を見極める手法にはなり得ない。
また、特許文献5から8には、交流インピーダンス測定を応用したガス濃度の検出方法が提案されている。特許文献5は、出力値の補正について記したものであり、すなわち、センサとしての応答に関する内容である。特許文献6は、水素センサとしての材料に関する内容で、電気的物性値の変化の計測に交流インピーダンスを用いたものであり、本文献もセンサとしての応答に関する内容である。特許文献7は、水蒸気濃度の計測のために交流インピーダンスを用いたものであり、本文献もセンサとしての応答に関する内容である。また、特許文献8は、センサ素子の劣化状態を交流インピーダンスで診断する方法について記したものであるが、バルクの抵抗および粒界の抵抗(バルクの抵抗と粒界の抵抗については後述する)の成分から一点以上の周波数の実数部分の値を定期的に確認する方法である。何れの文献においても、センサ素子の作製直後から初期安定化状態に到達する迄の間を見極める手法は提案されていない。
このように、従来提案されたいずれの技術においても現状の課題を満たすことは難しいのが現状である。
本発明は、このような背景に鑑みなされたものであり、本発明では、測定対象ガスを用いることなく、短時間で簡便に、酸化セリウムを感応部に含むガスセンサの初期安定化状態を判定する方法を提供することを目的とする。
本発明では、感応部に酸化セリウムを含むガスセンサにおける前記感応部の初期化安定化状態を判定する方法であって、交流インピーダンス法を用い、交流電圧を印加しながら周波数を断続的に変化させて少なくとも2点の特定の周波数の測定で得られる実抵抗値を求め、特定の1点の周波数の実抵抗値を基準値とし、この基準値と他の周波数の実抵抗値の比または差を判定値とし、この判定値に基づいて前記感応部の初期安定化状態を判定することを特徴とする判定方法が提供される。
本発明による判定方法において、前記少なくとも2点の特定の周波数は、1桁毎に異なる値であっても良い。
本発明による判定方法において、前記特定の1点の周波数の実抵抗値である基準値は、粒界の抵抗値成分または電極界面の抵抗値成分であっても良い。
本発明による判定方法において、前記判定値は、既に初期安定化状態に達したことが既知の、感応部に酸化セリウムを含むガスセンサより予め求めておいた判定値と比較するための判定値であっても良い。
本発明では、金属酸化物を含むガスセンサの感応部の、ガスセンサ作製直後から初期安定化状態に到達する迄の判定で、測定対象のガスをその都度使用することなく、短時間に、高精度に判定する方法を提供することができる。
交流測定結果の一例を示した模式図である。 酸化セリウムによるガスセンサの交流測定結果の一例を示した図である。 酸化セリウムによるガスセンサの交流測定結果の一例を示した図である。 実施例1における酸化セリウム微粒子厚膜を感応部とするガスセンサ素子の模式図である。 実施例1において使用される装置を概略的に示したブロック図である。 実施例1における酸化セリウム微粒子厚膜を感応部とするガスセンサ素子で、既に予め安定化状態であることが既知のセンサ素子の交流測定結果を示した図である。 比較例1において使用される装置を概略的に示したブロック図である。 比較例1における酸化セリウム微粒子厚膜を感応部とするガスセンサ素子で、既に予め安定化状態であることが既知のセンサ素子の直流測定結果を示した図である。 比較例1における酸化セリウム微粒子厚膜を感応部とするガスセンサ素子で、作製後から未使用のセンサ素子の直流測定結果を示した図である。 比較例2における酸化セリウム微粒子厚膜を感応部とするガスセンサ素子の直流測定結果を示した図である。
以下、本発明によるガスセンサの初期安定化状態の判定方法について詳細に説明する。
まず、感応部に金属酸化物を含むガスセンサの交流インピーダンス測定(本明細書では「交流測定」とも称する)の原理について簡単に説明する。
交流測定は、周波数を断続的に変化させて計測させる測定法である。この測定法では、金属酸化物感応部の電気的抵抗(R)を、微粒子内(以下、バルクと表記する)の電気的抵抗に相当するバルクの抵抗(R)、微粒子間の電気的抵抗に相当する粒界の抵抗(Rgb)、微粒子と電極間の電気的抵抗に相当する電極界面の抵抗(Rei)に分離することが出来る。これにより、以下の式のように定義することが出来る。
R=R+Rgb+Rei 式(1)
電気的抵抗値は、電圧値と電流値の商で求められる。一定の電圧を印加すると、まず、バルクの電子移動が追随する。一方、微粒子間の電子移動は、微粒子内の電子移動に対してポテンシャル障壁が高く、バルクの電子移動より遅れて生じる。一般的に、微粒子と電極間の電子移動はさらに遅れて生じる。すなわち、一定の電圧印加直後の電流値を計測することで、各成分を検出することが出来るが、それには数マイクロ秒レベルの分解能を有する電流計が必要であり、技術的に難しい。交流測定は、微少の時間差で計測する代わりに、周波数を断続的に変化させることで前記計測を可能にした測定法である。
図1に、交流測定結果の模式図を示す。この図は複素平面であり、横軸が実数、縦軸が虚数である。各プロットが縦軸に値を持つのは、各成分が電気容量を有する為である。各成分が電気抵抗と電気容量を有する場合、複素平面の図では、プロットが描く曲線は半円またはこれに準ずる形状となる。着目すべきは横軸の値で、半円またはこれに準ずる形状の横軸の幅が電気抵抗値に相当する。上述の通り、バルク、粒界、電極界面のうち、バルクが最も早く電子移動が追随するため、高周波数側にバルクの抵抗値成分(以下、成分とも称する)が検出される。周波数を下げていくと、一般的に、次いで粒界の成分、電極界面の成分の順に検出される。バルク、粒界、電極界面の各成分の実抵抗値の値は、半円またはこれに準ずる形状を基準として、理想的には横軸と交わる位置(虚数値がゼロ)の値から求められるが、実際には図1の模式図のように横軸と交わることなく、半円またはこれに準ずる形状が接合したような状態になることが主である為、半円またはこれに準ずる形状を基に外挿して得る。図1の場合、R=a、Rgb=b−a、Rei=c−bとなる。
図2に、酸化セリウムを感応部に持つガスセンサの交流測定結果の一例を示す。図2では、バルクの成分が支配的であり、粒界、電極界面の成分が殆ど存在しない程極端に小さい。この場合、バルクの抵抗は、半円の終端を外挿して、R=6.2×10Ωとなる。粒界の抵抗と電極界面の抵抗は区別することが難しいが、それぞれの和は、Rgb+Rei=0.6×10Ωとみられる。
一方、図3のように、全く同条件で作製した酸化セリウムを感応部に持つガスセンサにも関わらず、交流測定結果が異なる形状を示すことがある。この場合、バルクの抵抗は半円終端を外挿してR=1.45×10Ω、粒界の抵抗は、半円に準ずる形状より両終端を外挿してRgb=0.15×10Ωである。尚、電極界面の抵抗Reiは、終端に到達する前に計測が終了しているので、この場合、Rei値は得られない。
このように、酸化セリウムは、粒界の抵抗、電極界面の抵抗が一定の値を有する場合と殆ど存在しない場合があるという、他の材料では見られない特異的な性質を有する。本発明者らは、この現象に着目し、さらに検討を重ねた結果、図2のように粒界の抵抗・電極界面の抵抗が殆ど存在しない程極端に小さい結果は、既にガスセンサとして初期安定化状態に到達した試料でしか見られず、また、センサ素子作製直後の試料は、必ず図3のように粒界の抵抗、電極界面の抵抗が一定の値を有する結果が得られ、さらに、センサ素子作製直後から初期安定化状態に近づくに連れて、粒界の抵抗、電極界面の抵抗が徐々に小さくなることを見いだし、粒界の抵抗・電極界面の抵抗と、初期安定化状態への到達には、相関があることを突き止めた。
よって、交流測定を実施することで、初期安定化状態に到達したかどうかの判定が可能であるが、多くの周波数で測定を実施し、複素平面の図から判定する方法では、短時間での判定が困難である。そこで、さらに測定周波数に着目し、同じ周波数で得られたプロットは、センサ素子がどのような状態であるかに依らず、バルク、粒界、電極界面の3成分の何れに相当するかは、決まって同一になることを見いだした。例として、図2と図3の場合では、100Hzで測定したときのプロットの位置は、共にバルク成分と粒界成分の境界付近に相当し、10Hzで測定したときのプロットは、粒界または電極界面の成分内に相当する。また、10Hz近傍とそれ以下の周波数で測定したプロットは、粒界と電極界面の成分に相当する。粒界と電極界面の成分が微少である図2ではプロットが収束するが、粒界と電極界面の成分が充分に存在する図3では、10Hz以下にするに連れてプロットが発散する。
よって、特定の周波数を基準とし、これより低周波数側でプロットが発散したか収束したかを見てやれば良く、特定の1点の周波数で測定した実数値を基準値(R;単位はΩ)とし、Rよりも低周波数側の特定の周波数の実数値(R;単位はΩ)、もしくは、Rよりも低周波数側の特定の周波数2点の実数値(R、R;単位はΩ)を測定し、基準値からの変化量を求め、変化量が一定の値以下に収まる時点で充分に初期安定化状態に到達した、というように判定する方法を見いだし、本発明に至った。
この場合、判定値(D;単位は%)は、以下の式のように求められる。
D={(R−R)/R}×100 式(2)
または
D=〔{(R−R)+(R−R)}/R〕×100 式(3)
この判定値を用いた酸化セリウムによるガスセンサの初期安定化状態の判定方法は以下の通りである。
まず、初期安定化状態にあるか否かを確認したいセンサ素子と同等の条件で作製され、既に予め初期安定化状態であることが既知のセンサ素子の交流測定を行う。これにより得た複素平面の図から、実数値の基準値(R)、特定の周波数の実数値(RまたはRとR)を得る。R,R,Rを得る周波数を、順に、f、f,fとする。好適には、f、f,fは、順に1桁毎小さい値で良いが、これに限るものではない。これら実数値から、初期安定化状態にあるか否かを見極めるための判定値Dを得る。以降、初期安定化状態であることが既知のセンサ素子のDをDとする。
次に、初期安定化状態にあるか否かを確認したいセンサ素子を計測する。このときの計測は、f,fまたはf,f,fのみで良く、これで確認したいセンサ素子のR,RまたはR,R,Rが得られ、判定値Dを求める。このときの判定値が、D≒DまたはD<Dであれば、初期安定化状態にあると判定できる。このような方法であれば、予めDを得ておけば、特定の周波数f,fまたはf,f,fのみ計測するだけで、酸化セリウムによるガスセンサが初期安定化状態に到達したかどうかを簡便に判定することが出来る。
なお、本発明で初期安定状態を判定するガスセンサは、例えば図4に示すような公知の構成のものであってよく、もちろんこれに限定されない。ガスの感応部における酸化セリウムは、例えば粒径20〜200nm程度の微粒子を焼成させたものを用いる。ガスの感応部を構成する酸化セリウム厚膜の厚みは例えば5〜100μm程度のものを用いることができる。交流測定は、例えば図4に示すような白金製等の櫛型電極を設けたものを用いて行う。
以下、本発明の実施例について説明する。
(実施例1)
酸化セリウム微粒子厚膜を感応部とするガスセンサ素子を作製した(図4)。基板は、表面に白金製の櫛形電極、裏面に白金製のヒータを予め作製し、配線を施したアルミナ製基板を用いた。硝酸セリウム水溶液にアンモニア水を加え、生成したゲル状の沈殿物を濾過により回収した。これにカーボンパウダーを添加して混練した後、乾燥、900℃で4時間の焼成を経て酸化セリウム微粒子を得た。酸化セリウム微粒子に有機バインダーを加え、白金電極とヒータを有するアルミナ基板上に塗布し、900℃を超えない温度で焼結させることで、酸化セリウム厚膜センサ素子を得た。
交流測定は、試料室にセンサ素子を設置してセンサ素子が約500℃の動作温度となるよう白金ヒータに通電し加熱させた後に実施した。なお、本実施例では、測定雰囲気条件を統一するために、雰囲気の空気は20℃換算で60%の相対湿度を含む状態とし、これを常に試料室へ100mL/minの流速で流した。センサ素子の特定の周波数による測定に使用した測定器は、Solatron社製1260型とし、交流電圧は50mV、各プロットは、1Hz以上は1秒間の積算、1Hz未満は積算なし(1回の測定)とした(図5)。
まず、酸化セリウム微粒子厚膜を感応部とするガスセンサ素子で、既に予め安定化状態であることが既知のセンサ素子の交流測定を行った(図6)。この交流測定では、10MHzから0.01Hzまで周波数を断続的に変化させて測定した。周波数を変化させる間隔は、1桁当たり10プロット(例:10kHzから1kHzまで10プロット)となるようにした。
その結果、バルク成分の半円の形状を基に横軸へ外挿すると、実数値(即ち、バルク成分の実抵抗値)は7.5×10Ωとなり、この値に相当する周波数は約200Hzである。この値より更に1桁以上小さい10Hzで測定したときのプロットは、確実に粒界または電極界面の成分内に相当する。本実施例では、10Hzの実数値を基準値とする。また、10Hzよりも低周波数側の特定の周波数の実数値は、順に1桁毎小さい1Hz、0.1Hzのときの実数値とする。各実数値は、10Hzが7.835×10Ω、1Hzが7.962×10Ω、0.1Hzが8.038×10Ωであるため、R=7.84×10Ω、R=7.96×10Ω、R=8.04×10Ωとなる。これにより、Dは、式2の場合D=1.6%、式3の場合D=4.2%となる。
次に、初期安定化状態にあるか否かを確認したいセンサ素子を、10Hz、1Hz、0.1Hzで測定した。このセンサ素子は作製後からこの測定までの間、未使用である。その結果、10Hzが9.821×10Ω、1Hzが1.098×10Ω、0.1Hzが1.352×10Ωであるため、R=9.821×10Ω、R=1.098×10Ω、R=1.352×10Ωとなる。これにより、Dは、式2の場合D=11.8%、式3の場合D=49.5%となる。式2、式3の何れの場合もD>Dであり、初期安定化状態ではないことが確認された。
(比較例1)
酸化セリウム微粒子厚膜を感応部とするガスセンサ素子で、実施例1で使用した既に予め初期安定化状態であることが既知のセンサ素子と、作製後から未使用のセンサ素子を、測定対象ガスに曝露し、その間の抵抗値の変化を直流で計測した。センサ素子が初期安定化状態に到達しているか否かを判定する従来法に相当する。試料室にセンサ素子を設置してセンサ素子が約500℃の動作温度となるよう白金ヒータに通電し加熱させた後に実施した。雰囲気の空気は加湿器によって20℃換算で60%の相対湿度を含む状態とし、測定対象ガスを硫化水素とし、ガス発生器で濃度が試料室到達時に0.2、0.5、1ppmとなるようにした。試料室への流速は常に100mL/minとし、センサ素子の直流による抵抗値の計測のための測定器は、KEITHLEY社製2700型を使用した(図7)。
初期安定化状態であることが既知のセンサ素子の計測結果が図8、作製後から未使用のセンサ素子の計測結果が図9である。図8,図9とも、横軸が時間、縦軸が抵抗値の対数と硫化水素濃度である。図8の初期安定化状態であるセンサ素子は、硫化水素濃度の増加に伴い直ちに抵抗値が減少し、硫化水素濃度減少に伴い直ちに抵抗値が増加した。また、同硫化水素濃度で、濃度を増加させる時と減少させる時での抵抗値がほぼ等しい。これにより、確かに初期安定化状態に到達していることが分かる。一方、図9の作製後から未使用のセンサ素子は、硫化水素濃度の増加に伴い、抵抗値は減少するものの徐々に減少するような傾向にあり、また、同硫化水素濃度で、濃度を増加させる時と減少させる時での抵抗値が一致しない。これにより、初期安定化状態ではないことが分かる。
(実施例2)
実施例2では実施例1と同等の酸化セリウム微粒子厚膜を感応部とするガスセンサ素子を使用し、判定方法も同一とした。よって、実施例1と同じく、Dは、式2の場合D=1.6%、式3の場合D=4.2%となり、測定の周波数は10Hz、1Hz、0.1Hzである。実施例2で判定するセンサ素子は作製後からの使用履歴がある。ただし、使用期間は不明である。
測定結果は、10Hzが1.447×10Ω、1Hzが1.461×10Ω、0.1Hzが1.464×10Ωである。よって、R=1.447×10Ω、R=1.461×10Ω、R=1.464×10Ωとなる。これにより、Dは、式2の場合D=1.0%、式3の場合D=2.1%となる。式2、式3の何れの場合もD<Dであり、初期安定化状態に達していることが確認された。
(比較例2)
酸化セリウム微粒子厚膜を感応部とするガスセンサ素子で、実施例2で使用した作製後からの使用履歴があるセンサ素子を、測定対象ガスに曝露し、その間の抵抗値の変化を直流で計測した。条件は比較例1と同一であり、センサ素子が初期安定化状態に到達しているか否かを判定する従来法に相当する。計測結果が図10である。図10の横軸が時間、縦軸が抵抗値の対数と硫化水素濃度である。硫化水素濃度の増加に伴い直ちに抵抗値が減少し、硫化水素濃度減少に伴い直ちに抵抗値が増加した。また、同硫化水素濃度で、濃度を増加させる時と減少させる時での抵抗値がほぼ等しい。これにより、確かに初期安定化状態に達していることが分かる。
本発明により、感応部に酸化セリウムを含むガスセンサの初期安定化状態に達したか否かの評価を、測定対象のガスを用いることなく短時間で行うことが出来る。本発明は、感応部に酸化セリウムを含むガスセンサ素子の製品出荷前の簡便な試験法として利用することが出来る。

Claims (4)

  1. 感応部に酸化セリウムを含むガスセンサにおける前記感応部の初期化安定化状態を判定する方法であって、交流インピーダンス法を用い、交流電圧を印加しながら周波数を断続的に変化させて少なくとも2点の特定の周波数の測定で得られる実抵抗値を求め、特定の1点の周波数の実抵抗値を基準値とし、この基準値と他の周波数の実抵抗値の比または差を判定値とし、この判定値に基づいて前記感応部の初期安定化状態を判定することを特徴とする判定方法。
  2. 前記少なくとも2点の特定の周波数は、1桁毎に異なる値であることを特徴とする請求項1の判定方法。
  3. 前記特定の1点の周波数の実抵抗値である基準値は、粒界の抵抗値成分または電極界面の抵抗値成分であることを特徴とする請求項1または2の判定方法。
  4. 前記判定値は、既に初期安定化状態に達したことが既知の、感応部に酸化セリウムを含むガスセンサより予め求めておいた判定値と比較するための判定値であることを特徴とする請求項1ないし3のいずれかの判定方法。
JP2010068265A 2009-04-30 2010-03-24 感応部に酸化セリウムを含むガスセンサの初期安定化状態の判定方法 Pending JP2011202993A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010068265A JP2011202993A (ja) 2010-03-24 2010-03-24 感応部に酸化セリウムを含むガスセンサの初期安定化状態の判定方法
US13/138,950 US20120115837A1 (en) 2009-04-30 2010-04-28 Solid Preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010068265A JP2011202993A (ja) 2010-03-24 2010-03-24 感応部に酸化セリウムを含むガスセンサの初期安定化状態の判定方法

Publications (1)

Publication Number Publication Date
JP2011202993A true JP2011202993A (ja) 2011-10-13

Family

ID=44879816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010068265A Pending JP2011202993A (ja) 2009-04-30 2010-03-24 感応部に酸化セリウムを含むガスセンサの初期安定化状態の判定方法

Country Status (1)

Country Link
JP (1) JP2011202993A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018017539A (ja) * 2016-07-26 2018-02-01 ミナト医科学株式会社 ガス濃度測定装置
JP2021173535A (ja) * 2020-04-20 2021-11-01 フィガロ技研株式会社 ガス検出装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018017539A (ja) * 2016-07-26 2018-02-01 ミナト医科学株式会社 ガス濃度測定装置
JP2021173535A (ja) * 2020-04-20 2021-11-01 フィガロ技研株式会社 ガス検出装置
JP7408093B2 (ja) 2020-04-20 2024-01-05 フィガロ技研株式会社 ガス検出装置

Similar Documents

Publication Publication Date Title
TWI314989B (en) Humidity sensor having temperature compensation self-comparing and manufacturing method therefore
JP7143218B2 (ja) 空気清浄機及び空気清浄方法
US9746438B2 (en) Humidity sensor with temperature compensation
Malyshev et al. Investigation of gas-sensitivity of sensor structures to carbon monoxide in a wide range of temperature, concentration and humidity of gas medium
CN105806899A (zh) Pt-SnO2氧化物半导体一氧化碳传感器制备与应用
TW201522958A (zh) 環境監視系統
JPS60228949A (ja) 被検混合ガス中の還元ガスを検知する方法及びそのための装置
JP2011202993A (ja) 感応部に酸化セリウムを含むガスセンサの初期安定化状態の判定方法
US9304098B2 (en) Capacitive humidity sensor with hysteresis compensation
Contaret et al. Physical-based characterization of noise responses in metal-oxide gas sensors
TWI841738B (zh) 雙成分氣體的濃度比計算方法及檢測對象氣體的濃度計算方法
US20200209176A1 (en) Method and device for analyzing a gas
JP2013113778A (ja) 露点センサ及び露点の測定方法
JP6775814B2 (ja) ガス濃度測定装置
JP7403232B2 (ja) 半導体式ガス検知素子
JP6073062B2 (ja) ガス検知装置
RU2540450C1 (ru) Способ измерения кислородосодержания и влажности газа
RU2403563C1 (ru) Дифференциальный сенсорный датчик для газоанализатора
JP5216434B2 (ja) 半導体式ガス検知装置
JP5501901B2 (ja) 窒素酸化物センサおよび窒素酸化物検出方法
Ivančo et al. A marked change in electrical resistivity of alumina upon exposure to trace concentration of acetone vapours
JP2018017539A5 (ja)
JP6309062B2 (ja) ガス検知装置
JPH07260726A (ja) 炭酸ガス検出装置及び検出方法
Garg et al. Real-time monitoring of semiconductor gas sensor