WO2015020018A1 - ユーザ端末、無線アクセスネットワーク、及び通信制御方法 - Google Patents

ユーザ端末、無線アクセスネットワーク、及び通信制御方法 Download PDF

Info

Publication number
WO2015020018A1
WO2015020018A1 PCT/JP2014/070531 JP2014070531W WO2015020018A1 WO 2015020018 A1 WO2015020018 A1 WO 2015020018A1 JP 2014070531 W JP2014070531 W JP 2014070531W WO 2015020018 A1 WO2015020018 A1 WO 2015020018A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
user terminal
base station
physical uplink
control channel
Prior art date
Application number
PCT/JP2014/070531
Other languages
English (en)
French (fr)
Inventor
憲由 福田
智春 山▲崎▼
ヘンリー チャン
アミット カルハン
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2015530891A priority Critical patent/JP6282656B2/ja
Priority to EP14834127.4A priority patent/EP3032905A4/en
Priority to US14/910,871 priority patent/US9992002B2/en
Publication of WO2015020018A1 publication Critical patent/WO2015020018A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures

Definitions

  • the present invention relates to a user terminal, a radio access network, and a communication control method that perform radio communication using a plurality of carriers simultaneously.
  • 3GPP 3rd Generation Partnership Project
  • carrier aggregation has been introduced (see Non-Patent Document 1).
  • introduction of a dual connection is being studied.
  • a user terminal performs radio communication with a radio access network using a plurality of carriers (multiple frequency bands) simultaneously.
  • the plurality of carriers include a first carrier used for mobility control of the user terminal and a second carrier that provides wireless communication in cooperation with the first carrier.
  • one base station that is, one scheduler performs scheduling for each carrier.
  • scheduling in each carrier is performed by different base stations (that is, different schedulers).
  • the user terminal transmits a control signal (for example, HARQ Ack / Nack, downlink channel state report) corresponding to the second carrier in the physical uplink control channel region of the first carrier.
  • a control signal for example, HARQ Ack / Nack, downlink channel state report
  • the first base station connected to the user terminal via the first carrier sends a control signal corresponding to the second carrier to the user terminal via the second carrier. There is a need to transfer to the connected second base station.
  • an object of the present invention is to enable efficient communication control when a plurality of carriers are simultaneously used for wireless communication.
  • the user terminal performs uplink communication with the radio access network using a plurality of carriers simultaneously.
  • the plurality of carriers include a first carrier used for mobility control of the user terminal and a second carrier that provides wireless communication in cooperation with the first carrier.
  • the first carrier includes first physical uplink control channel regions provided at both ends in the frequency direction of the first carrier.
  • the second carrier includes a second physical uplink control channel region provided closer to the center frequency of the second carrier than both ends in the frequency direction of the second carrier.
  • the communication control method is a method in a user terminal that has established an RRC connection with a master base station and is assigned radio resources from each of the master base station and the secondary base station.
  • the communication control method includes a step A for detecting a radio link failure between the user terminal and the secondary base station, and a step B for transmitting a radio link failure report relating to the detected failure to the master base station, Have
  • the communication control method is a method in a user terminal that has established an RRC connection with a master base station.
  • the communication control method includes a step A for transmitting a random access print for random access to a secondary base station, and a random access response corresponding to the random access print is not received from the master base station. And B receiving the random access response from the secondary base station.
  • the communication control method includes a step A in which a user terminal that establishes an RRC connection with a master base station performs random access to a secondary base station, and the user terminal or the secondary base station includes: A step B of detecting a failure in the random access, and a step C in which the user terminal or the secondary base station transmits a random access failure notification regarding the detected failure to the master base station.
  • FIG. 1 is a configuration diagram of an LTE system (mobile communication system) according to an embodiment. It is a block diagram of UE (user terminal) concerning an embodiment. It is a block diagram of eNB (base station) concerning an embodiment. It is a protocol stack figure of the radio
  • FIG. 4 is a configuration diagram of an uplink subframe according to the embodiment. It is a figure for demonstrating the notification operation
  • the user terminal performs uplink communication with a radio access network using a plurality of carriers simultaneously.
  • the plurality of carriers include a first carrier used for mobility control of the user terminal and a second carrier that provides wireless communication in cooperation with the first carrier.
  • the first carrier includes first physical uplink control channel regions provided at both ends in the frequency direction of the first carrier.
  • the second carrier includes a second physical uplink control channel region provided closer to the center frequency of the second carrier than both ends in the frequency direction of the second carrier.
  • the user terminal receives setting information related to the second physical uplink control channel region via the first carrier or a downlink carrier paired with the first carrier. Is provided.
  • the physical uplink control channel format applied to the second physical uplink control channel region is different from the physical uplink control channel format applied to the first physical uplink control channel region.
  • the user terminal includes a transmission unit that transmits HARQ Ack / Nack corresponding to the second carrier in the second physical uplink control channel region.
  • the user terminal includes a transmission unit that transmits a downlink channel state report corresponding to the second carrier in the second physical uplink control channel region.
  • the user terminal sends a downlink channel state report corresponding to the second carrier to the second physical uplink control channel after the wireless communication using the second carrier is enabled.
  • a control unit that performs transmission control in the area is further provided.
  • the transmission unit further transmits a downlink channel state report corresponding to the first carrier in the first physical uplink control channel region.
  • the transmission period of the downlink channel state report corresponding to the second carrier is different from the transmission period of the downlink channel state report corresponding to the first carrier.
  • the second carrier further includes first physical uplink control channel regions provided at both ends in the frequency direction of the second carrier.
  • the second physical uplink control channel region is provided adjacent to the first physical uplink control channel region included in the second carrier.
  • the second physical uplink control channel region is provided in the second carrier only when the bandwidth of the second carrier is wider than a predetermined bandwidth.
  • the second carrier can operate as a first carrier used for mobility control of other user terminals.
  • the second carrier further includes a first physical uplink control channel region provided at both ends of the second carrier in the frequency direction.
  • the other user terminal transmits a HARQ Ack / Nack corresponding to the second carrier and / or a downlink channel state report corresponding to the second carrier to the first physical included in the second carrier. Transmit in uplink control channel region.
  • the user terminal can be connected to the radio access network to which the other user terminal is connected.
  • the radio access network performs uplink communication with a user terminal using a plurality of carriers simultaneously.
  • the plurality of carriers include a first carrier used for mobility control of the user terminal and a second carrier that provides wireless communication in cooperation with the first carrier.
  • the first carrier includes first physical uplink control channel regions provided at both ends in the frequency direction of the first carrier.
  • the second carrier includes a second physical uplink control channel region provided closer to the center frequency of the second carrier than both ends in the frequency direction of the second carrier.
  • the processor according to the embodiment is provided in a user terminal that performs uplink communication with a radio access network by using a plurality of carriers simultaneously.
  • the plurality of carriers include a first carrier used for mobility control of the user terminal and a second carrier that provides wireless communication in cooperation with the first carrier.
  • the first carrier includes first physical uplink control channel regions provided at both ends in the frequency direction of the first carrier.
  • the second carrier includes a second physical uplink control channel region provided closer to the center frequency of the second carrier than both ends in the frequency direction of the second carrier.
  • the communication control method is a method in a user terminal that establishes an RRC connection with a master base station and is assigned radio resources from each of the master base station and the secondary base station.
  • the communication control method includes a step A for detecting a radio link failure between the user terminal and the secondary base station, and a step B for transmitting a radio link failure report relating to the detected failure to the master base station, Have
  • the specific cell is a cell in which a physical uplink control channel of the user terminal is set among the cells of the secondary base station.
  • the communication control method is a method in a user terminal that has established an RRC connection with a master base station.
  • the communication control method includes a step A for transmitting a random access print for random access to a secondary base station, and a random access response corresponding to the random access print is not received from the master base station. And B receiving the random access response from the secondary base station.
  • step A the user terminal transmits the random access print to a specific cell of the secondary base station.
  • step B the user terminal receives the random access response from the specific cell.
  • the specific cell is a cell in which a physical uplink control channel of the user terminal is set among the cells of the secondary base station.
  • the communication control method includes a step A in which a user terminal that establishes an RRC connection with a master base station performs random access to a secondary base station, and the user terminal or the secondary base station A step B of detecting a failure in access; and a step C in which the user terminal or the secondary base station transmits a random access failure notification regarding the detected failure to the master base station.
  • the specific cell is a cell in which a physical uplink control channel of the user terminal is set among the cells of the secondary base station.
  • FIG. 1 is a configuration diagram of an LTE system according to the embodiment.
  • the LTE system according to the embodiment includes a UE (User Equipment) 100, an E-UTRAN (Evolved-UMTS Terrestrial Radio Access Network) 10, and an EPC (Evolved Packet Core) 20.
  • UE User Equipment
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • EPC Evolved Packet Core
  • the UE 100 corresponds to a user terminal.
  • the UE 100 is a mobile communication device, and performs wireless communication with a connection destination cell (serving cell).
  • the configuration of the UE 100 will be described later.
  • the E-UTRAN 10 corresponds to a radio access network.
  • the E-UTRAN 10 includes an eNB 200 (evolved Node-B).
  • the eNB 200 corresponds to a base station.
  • the eNB 200 is connected to each other via the X2 interface. The configuration of the eNB 200 will be described later.
  • the eNB 200 manages one or a plurality of cells and performs radio communication with the UE 100 that has established a connection with the own cell.
  • the eNB 200 has a radio resource management (RRM) function, a user data routing function, a measurement control function for mobility control / scheduling, and the like.
  • RRM radio resource management
  • Cell is used as a term indicating a minimum unit of a radio communication area, and is also used as a term indicating a function of performing radio communication with the UE 100.
  • the EPC 20 corresponds to a core network.
  • the LTE system network is configured by the E-UTRAN 10 and the EPC 20.
  • the EPC 20 includes an MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300.
  • the MME performs various mobility controls for the UE 100.
  • the S-GW controls user data transfer.
  • the MME / S-GW 300 is connected to the eNB 200 via the S1 interface.
  • FIG. 2 is a block diagram of the UE 100.
  • the UE 100 includes an antenna 101, a radio transceiver 110, a user interface 120, a GNSS (Global Navigation Satellite System) receiver 130, a battery 140, a memory 150, and a processor 160.
  • the memory 150 and the processor 160 constitute a control unit of the UE 100.
  • the UE 100 may not have the GNSS receiver 130.
  • the memory 150 may be integrated with the processor 160, and this set (that is, a chip set) may be used as the processor 160 '.
  • the antenna 101 and the wireless transceiver 110 are used for transmitting and receiving wireless signals.
  • the radio transceiver 110 converts the baseband signal (transmission signal) output from the processor 160 into a radio signal and transmits it from the antenna 101. Further, the radio transceiver 110 converts a radio signal received by the antenna 101 into a baseband signal (received signal) and outputs the baseband signal to the processor 160.
  • the user interface 120 is an interface with a user who owns the UE 100, and includes, for example, a display, a microphone, a speaker, and various buttons.
  • the user interface 120 receives an operation from the user and outputs a signal indicating the content of the operation to the processor 160.
  • the GNSS receiver 130 receives a GNSS signal and outputs the received signal to the processor 160 in order to obtain location information indicating the geographical location of the UE 100.
  • the battery 140 stores power to be supplied to each block of the UE 100.
  • the memory 150 stores a program executed by the processor 160 and information used for processing by the processor 160.
  • the processor 160 includes a baseband processor that modulates / demodulates and encodes / decodes a baseband signal, and a CPU (Central Processing Unit) that executes programs stored in the memory 150 and performs various processes. .
  • the processor 160 may further include a codec that performs encoding / decoding of an audio / video signal.
  • the processor 160 executes various processes and various communication protocols described later.
  • FIG. 3 is a block diagram of the eNB 200.
  • the eNB 200 includes an antenna 201, a radio transceiver 210, a network interface 220, a memory 230, and a processor 240.
  • the memory 230 and the processor 240 constitute a control unit of the eNB 200.
  • the antenna 201 and the wireless transceiver 210 are used for transmitting and receiving wireless signals.
  • the radio transceiver 210 converts the baseband signal (transmission signal) output from the processor 240 into a radio signal and transmits it from the antenna 201.
  • the radio transceiver 210 converts a radio signal received by the antenna 201 into a baseband signal (received signal) and outputs the baseband signal to the processor 240.
  • the network interface 220 is connected to the neighboring eNB 200 via the X2 interface and is connected to the MME / S-GW 300 via the S1 interface.
  • the network interface 220 is used for communication performed on the X2 interface and communication performed on the S1 interface.
  • the memory 230 stores a program executed by the processor 240 and information used for processing by the processor 240.
  • the processor 240 includes a baseband processor that performs modulation / demodulation and encoding / decoding of a baseband signal, and a CPU that executes a program stored in the memory 230 and performs various processes.
  • the processor 240 executes various processes and various communication protocols described later.
  • FIG. 4 is a protocol stack diagram of a radio interface in the LTE system.
  • the radio interface protocol is divided into first to third layers (L1 to L3) of the OSI reference model, and the first layer is a physical (PHY) layer.
  • the second layer includes a MAC (Media Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • the third layer includes an RRC (Radio Resource Control) layer.
  • the physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping. Between the physical layer of UE100 and the physical layer of eNB200, user data and a control signal are transmitted via a physical channel.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), and the like. Between the MAC layer of the UE 100 and the MAC layer of the eNB 200, user data and control signals are transmitted via a transport channel.
  • the MAC layer of the eNB 200 includes a uplink / downlink transport format (transport block size, modulation / coding scheme), resource blocks allocated to the UE 100, and a scheduler that determines (schedules) transmission power.
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Between the RLC layer of the UE 100 and the RLC layer of the eNB 200, user data and control signals are transmitted via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the RRC layer is defined only in the control plane that handles control signals. Control signals (RRC messages) for various settings are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200.
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer.
  • RRC connection When there is a connection (RRC connection) between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in a connection state (RRC connection state). Otherwise, the UE 100 is in an idle state (RRC idle state).
  • the NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
  • FIG. 5 is a configuration diagram of a radio frame used in the LTE system.
  • OFDMA Orthogonal Frequency Division Multiplexing Access
  • SC-FDMA Single Carrier Frequency Multiple Access
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the radio frame is composed of 10 subframes arranged in the time direction.
  • Each subframe is composed of two slots arranged in the time direction.
  • the length of each subframe is 1 ms, and the length of each slot is 0.5 ms.
  • Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction.
  • Each resource block includes a plurality of subcarriers in the frequency direction.
  • a resource element is composed of one subcarrier and one symbol.
  • frequency resources are configured by resource blocks, and time resources are configured by subframes (or slots).
  • the section of the first few symbols of each subframe is a PDCCH region mainly used as a physical downlink control channel (PDCCH) for transmitting a downlink control signal.
  • the remaining part of each subframe is a PDSCH region that can be used as a physical downlink shared channel (PDSCH) mainly for transmitting downlink user data.
  • PDSCH physical downlink shared channel
  • both ends in the frequency direction in each subframe are mainly PUCCH regions (first physical uplink control channel regions) used as physical uplink control channels (PUCCHs) for transmitting uplink control signals.
  • PUCCH regions first physical uplink control channel regions
  • PUCCHs physical uplink control channels
  • the remaining part in each subframe is a PUSCH region that can be used as a physical uplink shared channel (PUSCH) mainly for transmitting uplink user data.
  • PUSCH physical uplink shared channel
  • the PUCCH carries a control signal.
  • the control signal is, for example, CQI (Channel Quality Indicator), PMI (Precoding Matrix Indicator), RI (Rank Indicator), SR (Scheduling Request), HARQ Ack / Nack (hereinafter simply referred to as “Ack / Nack”).
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indicator
  • SR Service Request
  • HARQ Ack / Nack hereinafter simply referred to as “Ack / Nack”.
  • CQI is information indicating downlink channel quality, and is used for determining a recommended modulation scheme and coding rate to be used for downlink transmission.
  • PMI is information indicating a precoder matrix that is preferably used for downlink transmission.
  • the RI is information indicating the number of layers (number of streams) that can be used for downlink transmission.
  • CQI / PMI / RI corresponds to a downlink channel state (CSI: Channel State Information) report.
  • the downlink CSI report is generated based on a downlink reference signal or the like.
  • the downlink reference signal is a cell-specific reference signal (CRS) or a CSI reference signal (CSI-RS).
  • SR is information for requesting allocation of uplink radio resources (resource blocks).
  • Ack / Nack is information indicating whether or not a signal transmitted via a downlink physical channel (for example, PDSCH) has been successfully decoded.
  • FIG. 6 is a configuration diagram of an uplink subframe in the LTE system.
  • each subframe includes two slots, and each slot includes a number of resource blocks corresponding to the uplink bandwidth (one carrier bandwidth) of the cell.
  • the resource block is composed of 12 subcarriers and 7 SC-FDMA symbols in the case of normal CP (Cyclic Prefix) setting.
  • PUCCH regions R1 are provided at both ends in the frequency direction in each subframe. Radio resources included in the PUCCH region R1 are allocated to the UE 100 as PUCCH resources. A PUSCH region is provided in the remaining part of each subframe. Radio resources included in the PUSCH region R2 are allocated to the UE 100 as PUSCH resources.
  • One PUCCH resource uses one resource block of two slots in a subframe. Further, frequency hopping is applied between slots in the subframe, and a diversity effect is obtained between the slots.
  • a PUCCH resource is identified by a resource index m.
  • a plurality of formats (PUCCH format) are supported, and different types of control signals are transmitted in each PUCCH format as follows. Further, the number of bits of the control signal that can be transmitted in one subframe is different for each PUCCH format.
  • -PUCCH format 1 SR -PUCCH format 1a / 1b: Ack / Nack -PUCCH format 2: CQI / PMI / RI PUCCH format 2a / 2b: CQI / PMI / RI and Ack / Nack
  • PUCCH format 3 for transmitting a large number of Ack / Nack is defined.
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • the resource index m is used for the PUCCH formats 2, 2a, 2b in order from the smallest resource index m, and subsequently used for the PUCCH formats 1, 1a, 1b. That is, the PUCCH resources to which the PUCCH formats 2, 2a, 2b are applied are provided outside the PUCCH resources to which the PUCCH formats 1, 1a, 1b are applied.
  • FIG. 7 is a diagram illustrating an operating environment according to the embodiment. In the embodiment, description will be made focusing on the uplink.
  • the macro eNB (MeNB) 200-1 manages the cell 1 belonging to the carrier 1 (first carrier).
  • the small eNB (SeNB) 200-2 manages the cell 2 belonging to the carrier 2 (second carrier).
  • the MeNB may be referred to as a master eNB (master base station).
  • the SeNB may be referred to as a secondary eNB (secondary base station).
  • the carrier 2 corresponds to a “specific cell” managed by the SeNB.
  • the carrier 2 (specific cell) may be one of a plurality of carriers (a plurality of cells) of the SeNB.
  • carrier 1 is a common carrier for uplink and downlink
  • carrier 2 is a common carrier for uplink and downlink.
  • carrier 1 is uplink carrier f UL1
  • MeNB 200-1 further manages downlink carrier f DL1 paired with carrier 1.
  • the carrier 2 is the uplink carrier f UL2
  • the SeNB 200-2 further manages the downlink carrier f DL2 paired with the carrier 2.
  • the cell 2 is a small cell having a smaller coverage than the cell 1 (macro cell) and may be referred to as a pico cell or a femto cell.
  • the SeNB 200-2 may be a home eNB (HeNB). Cell 2 is provided in the coverage of cell 1.
  • the MeNB 200-1 and the SeNB 200-2 are adjacent to each other and are connected to each other.
  • the LTE system supports dual connection (Dual connectivity).
  • the UE 100-1 has established a double connection with a pair of eNBs 200 (MeNB 200-1 and SeNB 200-2).
  • the UE 100-1 can perform high-speed and large-capacity wireless communication as compared with the case of performing wireless communication with only one eNB 200.
  • the MeNB 200-1 performs mobility management (Mobility management) of the UE 100-1.
  • the MeNB 200-1 establishes an RRC connection with the UE 100-1, and performs handover control of the UE 100-1.
  • the SeNB 200-2 does not perform mobility control of the UE 100-1.
  • the SeNB 200-2 only needs to establish a connection (L2 connection) at least to the MAC layer or the RLC layer with the UE 100-1, and does not need to establish an RRC connection (L3 connection).
  • the UE 100-1 performs uplink communication with the E-UTRAN 10 using a plurality of carriers (carrier 1 and carrier 2) simultaneously.
  • the scheduling in each carrier is performed by different eNBs 200 (MeNB 200-1 and SeNB 200-2). That is, each of the MeNB 200-1 and the SeNB 200-2 performs radio resource scheduling for the UE 100-1.
  • carrier 1 is used for mobility control of UE 100-1. Focusing on the UE 100-1, the carrier 1 corresponds to a PCC (Primary Component Carrier), and the cell 1 corresponds to a PCell (Primary Cell).
  • PCC Primary Component Carrier
  • PCell Primary Cell
  • Carrier 2 provides radio communication to UE 100-1 in cooperation with carrier 1.
  • the carrier 2 corresponds to an SCC (Secondary Component Carrier)
  • the SeNB 200-2 corresponds to an SCell (Secondary Cell).
  • the UE 100-2 establishes a connection (RRC connection) only with the SeNB 200-2. Focusing on the UE 100-2, the carrier 2 corresponds to PCC, and the cell 2 corresponds to PCell.
  • PUCCH region (PUCCH region according to the embodiment)
  • the carrier is not provided with a PUCCH region that can be used by the UE 100. Therefore, UE100 transmits the control signal (Ack / Nack, downlink CSI report) corresponding to SCell (SCC) in the PUCCH area
  • the MeNB 200-1 that manages the PCell (PCC) of the UE 100-1 receives the control signal corresponding to the SCell (SCC) of the UE 100-1 from the UE 100-1, and then receives the SCell (SCC).
  • the control signal needs to be transferred to the managed SeNB 200-2. Therefore, since the amount of signaling and delay increase with such transfer, efficient communication control cannot be realized.
  • a control signal corresponding to the SCell can be transmitted in the new PUCCH region.
  • FIG. 8 is a configuration diagram of an uplink subframe according to the embodiment. Here, the configuration of the subframe of carrier 2 shown in FIG. 7 will be described.
  • the subframe of carrier 2 is provided on the center frequency side of carrier 2 from both ends of carrier 2 in the frequency direction in addition to PUCCH region R1 provided at both ends of carrier 2 in the frequency direction.
  • the PUCCH region R1 corresponds to a first physical uplink control channel region
  • the PUCCH region R3 for SeNB corresponds to a second physical uplink control channel region.
  • a control signal can be transmitted from the UE 100-1 to the SeNB 200-2 in the PUCCH region R3 for SeNB while coexisting with the existing PUCCH region R1.
  • the UE 100-1 transmits a control signal (Ack / Nack, downlink CSI report) corresponding to the carrier 2 in the PUCCH region R3 for SeNB included in the carrier 2.
  • UE 100-2 using carrier 2 as a PCell (PCC) transmits a control signal (Ack / Nack, downlink CSI report) corresponding to carrier 2 in PUCCH region R1 included in carrier 2.
  • the PUCCH region R3 for SeNB is provided adjacent to the PUCCH region R1 included in the carrier 2.
  • region R2 is not divided
  • the PUCCH format applied to the PUCCH region R3 for SeNB is different from the PUCCH format applied to the PUCCH region R1.
  • the PUCCH formats applied to the existing PUCCH region R1 are PUCCH formats 1, 1a, 1b, 2, 2a, 2b, and 3.
  • PUCCH formats applied to the PUCCH region R3 for SeNB are, for example, PUCCH formats 4, 4a, 4b, 5, 5a, and 5b.
  • PUCCH formats 4, 4a and 4b correspond to PUCCH formats 1, 1a and 1b, respectively.
  • PUCCH formats 5, 5a and 5b correspond to PUCCH formats 2, 2a and 2b, respectively.
  • the PUCCH format applied to the SeNB PUCCH region R3 is, for example, the s-PUCCH formats 1, 1a, 1b, 2, 2a, 2b.
  • the s-PUCCH formats 1, 1a, 1b correspond to the PUCCH formats 1, 1a, 1b, respectively.
  • the s-PUCCH formats 2, 2a, 2b correspond to the PUCCH formats 2, 2a, 2b, respectively.
  • the existing PUCCH region R1 and the SeNB PUCCH region R3 can be appropriately coexisted.
  • FIG. 9 is a diagram for explaining a notification operation of the PUCCH region R3 for SeNB.
  • the MeNB 200-1 transmits an RRC message including setting information (PUCCH-Config) indicating the PUCCH region R3 for SeNB to the UE 100-1.
  • the setting information (PUCCH-Config) indicating the PUCCH region R3 for SeNB includes various parameters for determining resource blocks that constitute the PUCCH region.
  • Various parameters are set (notified) for each PUCCH format. Paying attention to the PUCCH region R3 for SeNB, the various parameters are, for example, parameters for PUCCH format 4 (Scheduling request, Ack / Nack) or parameters for PUCCH format 5 (CSI, Ack / Nack).
  • the MeNB 200-1 transmits an RRC message including setting information (for example, CQI-ReportConfig) of downlink CSI report in the PUCCH region R3 for SeNB to the UE 100-1.
  • the downlink CSI report setting information (for example, CQI-ReportConfig) includes a parameter indicating a downlink CSI report period.
  • RRC message for example, SIB (System Information Block) type 2 which is a kind of common control signal, RRC Connection Setup or RRC Connection Reconfiguration which is a kind of individual control signal can be used.
  • SIB System Information Block
  • the MeNB 200-1 transmits the RRC message to the UE 100-1 via the carrier 1.
  • the MeNB 200-1 transmits the RRC message to the UE 100-1 via the downlink carrier f DL1 paired with the carrier 1 (f UL1 ).
  • the UE 100-1 receives an RRC message including setting information (PUCCH-Config) indicating the PUCCH region R3 for SeNB from the MeNB 200-1.
  • the UE 100-1 identifies the PUCCH region R3 for SeNB based on the setting information (PUCCH-Config).
  • the UE 100-1 receives from the MeNB 200-1 an RRC message including setting information (for example, CQI-ReportConfig) of downlink CSI report in the PUCCH region R3 for SeNB.
  • the UE 100-1 performs downlink CSI reporting to the SeNB 200-2 in the SeNB PUCCH region R3 based on the setting information (for example, CQI-ReportConfig).
  • the UE 100-1 performs control to transmit a downlink CSI report corresponding to the carrier 2 in the PUCCH region R3 for SeNB after wireless communication using the carrier 2 becomes possible. That is, when the carrier 100 becomes available when the carrier 1 is used, the UE 100-1 validates the downlink CSI report setting information (for example, CQI-ReportConfig) corresponding to the carrier 2.
  • the downlink CSI report setting information for example, CQI-ReportConfig
  • the UE 100-1 uses the connection with the MeNB 200-1 as a main connection and temporarily communicates with the SeNB 200-2 as a connection according to the connection with the SeNB 200-2. Therefore, the MeNB 200-1 can control the communication settings of the UE 100-1 in an integrated manner by transmitting the setting information regarding the PUCCH region R3 for SeNB from the MeNB 200-1 to the UE 100-1.
  • the MeNB 200-1 shares the setting information (PUCCH-Config, CQI-ReportConfig, etc.) to the SeNB 200-2 in order to share the setting information (PUCCH-Config, CQI-ReportConfig, etc.) transmitted to the UE 100-1 with the SeNB 200-2. May be notified.
  • SeNB200-2 may determine the setting information regarding PUCCH area
  • FIG. 10 is a diagram for explaining a control signal transmission operation by the UE 100-1. First, Ack / Nack will be described.
  • UE 100-1 transmits Ack / Nack corresponding to carrier 1 to MeNB 200-1 in the PUCCH region of carrier 1.
  • MeNB 200-1 receives Ack / Nack corresponding to carrier 1 from UE 100-1 in the PUCCH region of carrier 1.
  • Ack / Nack corresponding to carrier 1 is Ack / Nack for user data received by UE 100-1 from MeNB 200-1 via carrier 1.
  • Ack / Nack corresponding to carrier 1 is Ack / Nack for user data received from MeNB 200-1 via downlink carrier f DL1 that UE 100-1 is paired with carrier 1 (f UL1 ). It is.
  • UE 100-1 transmits Ack / Nack corresponding to carrier 2 to SeNB 200-2 in PUCCH region R3 for SeNB of carrier 2.
  • SeNB 200-2 receives Ack / Nack corresponding to carrier 2 from UE 100-1 in PUCCH region R3 for SeNB of carrier 2.
  • Ack / Nack corresponding to carrier 2 is Ack / Nack for user data received by UE 100-1 from SeNB 200-2 via carrier 2.
  • Ack / Nack corresponding to carrier 2 is Ack / Nack for user data received from SeNB 200-2 via downlink carrier f DL2 that UE 100-1 is paired with carrier 2 (f UL2 ). It is.
  • downlink CSI reporting periodic downlink CSI reporting
  • UE 100-1 transmits a downlink CSI report corresponding to carrier 1 to MeNB 200-1 in the PUCCH region of carrier 1.
  • MeNB 200-1 receives the downlink CSI report corresponding to carrier 1 from UE 100-1 in the PUCCH region of carrier 1.
  • the downlink CSI report corresponding to the carrier 1 is a CSI report for a reference signal or the like received from the MeNB 200-1 by the UE 100-1 via the carrier 1.
  • the downlink CSI report corresponding to carrier 1 is the CSI for the reference signal received from MeNB 200-1 via downlink carrier f DL1 that UE 100-1 is paired with carrier 1 (f UL1 ). It is a report.
  • the UE 100-1 transmits a downlink CSI report corresponding to the carrier 2 to the SeNB 200-2 in the PUCCH region R3 for SeNB of the carrier 2.
  • the SeNB 200-2 receives the downlink CSI report corresponding to the carrier 2 from the UE 100-1 in the PUCCH region R3 for SeNB of the carrier 2.
  • the downlink CSI report corresponding to the carrier 2 is a CSI report for a reference signal or the like received from the SeNB 200-2 by the UE 100-1 via the carrier 2.
  • the downlink CSI report corresponding to carrier 2 is the CSI for the reference signal received from the SeNB 200-2 via the downlink carrier f DL2 that the UE 100-1 is paired with the carrier 2 (f UL2 ). It is a report.
  • the transmission period of the downlink CSI report corresponding to the carrier 2 is different from the transmission period of the downlink CSI report corresponding to the carrier 1.
  • the transmission cycle of the downlink CSI report corresponding to the carrier 2 is shorter than the transmission cycle of the downlink CSI report corresponding to the carrier 1.
  • the transmission cycle of the downlink CSI report corresponding to carrier 2 is a cycle that is half or less of the transmission cycle of the downlink CSI report corresponding to carrier 1.
  • the channel state between the UE 100-1 and the SeNB 200-2 is better than the channel state between the UE 100-1 and the MeNB 200-1. Therefore, by making the transmission cycle of the downlink CSI report corresponding to carrier 2 shorter than the transmission cycle of the downlink CSI report corresponding to carrier 1, UE 100-1 actively uses communication with SeNB 200-2. it can.
  • the PUCCH region R3 for SeNB is provided adjacent to the PUCCH region R1 included in the carrier 2 (see FIG. 8). However, the PUCCH region R3 for SeNB may be provided separately from the PUCCH region R1.
  • FIG. 11 is a configuration diagram of an uplink subframe for explaining a first modification of the SeNB PUCCH region R3. As shown in FIG. 11, the PUCCH region R3 for SeNB is the same as the above-described embodiment in that it extends along the time direction over the entire one subframe. However, the PUCCH region R3 for SeNB illustrated in FIG. 11 is different from the above-described embodiment in that it is provided apart from the PUCCH region R1.
  • the PUCCH region R3 for SeNB extends along the time direction (see FIG. 8). However, the PUCCH region R3 for SeNB may extend along the frequency direction.
  • FIG. 12 is a configuration diagram of an uplink subframe for explaining a modification example 2 of the PUCCH region R3 for SeNB. As illustrated in FIG. 12, the SeNB PUCCH region R3 extends in the frequency direction between the pair of PUCCH regions R1 in each of the first slot and the second slot. In FIG. 12, the PUCCH region R3 for SeNB extends over the whole between the pair of PUCCH regions R1, but may be divided into a plurality of regions as indicated by broken lines. This is because, when the UL bandwidth is wide, there is a UE 100 that is subject to the upper limit of transmission power when a signal is transmitted over the entire wide band depending on the path loss with the eNB 200 and the transmission power control parameter setting.
  • the bandwidth of the carrier 2 is not particularly considered. However, when the bandwidth of the carrier 2 is narrow, it may be impossible to provide the PUSCH region R2 in the carrier 2 by providing the PUCCH region R3 for SeNB in the carrier 2.
  • the minimum carrier bandwidth according to the current specifications is 1.4 MHz, which is the bandwidth for 6 resource blocks.
  • the PUCCH region R1 occupies the bandwidth of 4 resource blocks, if the remaining bandwidth of 2 resource blocks is set as the PUCCH region R3 for SeNB, the PUSCH region R2 cannot be provided on the carrier 2. Therefore, it is not preferable to provide the SeNB PUCCH region R3 for such a carrier bandwidth.
  • the E-UTRAN 10 provides the SeNB PUCCH region R3 in the carrier 2 only when the bandwidth of the carrier 2 is wider than a predetermined bandwidth.
  • the predetermined bandwidth is a bandwidth that allows the PUSCH region R2 to be provided in the carrier 2 even if the PUCCH region R1 and the SeNB PUCCH region R3 are provided in the carrier 2.
  • the predetermined bandwidth is a bandwidth corresponding to the total bandwidth of the minimum PUCCH region R1, the minimum PUSCH region R2, and the minimum SeNB PUCCH region R3.
  • FIG. 13 is a diagram showing an example of changing the operating environment. As illustrated in FIG. 13, the eNB 200 manages the cell 1 belonging to the carrier 1 (first carrier) and the cell 2 belonging to the carrier 2 (second carrier). In the example of FIG. 13, cell 1 and cell 2 have the same coverage size.
  • carrier 1 is a common carrier for uplink and downlink
  • carrier 2 is a common carrier for uplink and downlink.
  • the carrier 1 is the uplink carrier f UL1
  • the eNB 200 further manages the downlink carrier f DL1 paired with the carrier 1.
  • the carrier 2 is the uplink carrier f UL2
  • the eNB 200 further manages the downlink carrier f DL2 paired with the carrier 2.
  • the eNB 200 performs mobility management for the UE 100-1.
  • the eNB 200 establishes an RRC connection with the UE 100-1, and performs handover control of the UE 100-1.
  • the UE 100-1 performs uplink communication with the E-UTRAN 10 using a plurality of carriers (carrier 1 and carrier 2) simultaneously, and one eNB 200 performs scheduling for each carrier.
  • Carrier 1 is used for mobility control of UE 100-1. Focusing on the UE 100-1, the carrier 1 corresponds to a PCC (Primary Component Carrier), and the cell 1 corresponds to a PCell (Primary Cell).
  • the carrier 2 provides radio communication to the UE 100-1 in cooperation with the carrier 1. Focusing on the UE 100-1, the carrier 2 corresponds to an SCC (Secondary Component Carrier), and the eNB 200 corresponds to an SCell (Secondary Cell).
  • the UE 100-1 may be in the carrier 2 (SCell).
  • a corresponding control signal can be transmitted in the SCell PUCCH region R3.
  • the transmission period of the downlink CSI report corresponding to the carrier 2 is set shorter than the transmission period of the downlink CSI report corresponding to the carrier 1 has been described.
  • the transmission cycle of the downlink CSI report corresponding to carrier 2 is longer than the transmission cycle of the downlink CSI report corresponding to carrier 1. It may be set. This is because, in the operating environment shown in FIG. 13, the channel quality of each of carrier 1 and carrier 2 is the same, so it is preferable to prioritize the downlink CSI report corresponding to carrier 1 as the main carrier.
  • the case where the UE 100-1 transmits the control signal and the user data at the same time in the carrier 2 is not particularly mentioned.
  • the allocation of the PUCCH resource in the PUCCH region for SeNB (carrier PUCCH region) R3 of carrier 2 and the allocation of the PUSCH resource in PUSCH region R2 of carrier 2 can occur simultaneously.
  • the UE 100-1 preferably performs any one of the following first operation and second operation.
  • movement is operation
  • movement is operation
  • the LTE system has been described as an example of a cellular communication system.
  • the present invention is not limited to the LTE system, and the present invention may be applied to a system other than the LTE system.
  • Both double connection and CA have the advantage of increasing user throughput by connecting the UE 100 to multiple cells simultaneously.
  • the reuse of the CA procedure should be performed with care so as not to significantly reduce the performance of the dual connection.
  • RLF the problem regarding RLF in the double connection is considered in comparison with the existing procedure used for CA.
  • SeNB RLM In CA, RLM is not supported in SCell because the PCell uses CQI and measurement reports to determine the state of SCell, including SCell addition / activation and potential RLF in SCell. With a double connection, the situation is not easy. This is because it is assumed that the SeNB 200-2 has its own scheduler and the delay in the Xn interface is excessive, so that it is reasonable for the UE 100 to transmit CQI to the MeNB 200-1 and the SeNB 200-2. Because it is. Further, even if the radio link of the UE 100 to the MeNB 200-1 fails, the radio link of the UE 100 to the SeNB 200-2 may not have any problem. If the UE 100 applies RLM only to the MeNB 200-1, the UE 100 will need to declare RLF only when the link to the MeNB 200-1 fails. Therefore, it is beneficial to apply the RLM of the SeNB 200-2 to the UE 100.
  • Proposal 1 As a baseline, the UE 100 should transmit CQI to the MeNB 200-1 and SeNB 200-2.
  • Proposal 2 UE100 should apply RLM to SeNB200-2.
  • Proposal 2 it is necessary to determine whether MeNB 200-1 needs to know the state of RLM. As explained, if UL transmission to SeNB 200-2 is allowed, it is necessary for MeNB 200-1 to remove SeNB 200-2 as soon as possible to prevent UE 100 from further transmitting SRS to SeNB 200-2. Will. Furthermore, if the MeNB 200-1 knows the state of the RLF of the SeNB 200-2, the MeNB 200-1 will be able to set the measurement of other inter-frequency SeNB candidates for the UE 100.
  • the SeNB 200-2 or the UE 100 notifies the MeNB 200-1 of the RLF status of the SeNB 200-2, but when the backhaul delay is excessive, the UE 100 provides the MeNB 200-1 with the RLF status of the SeNB 200-2. It may be preferable to do this.
  • Proposal 3 MeNB 200-1 should be notified of the RLF status of SeNB 200-2.
  • Proposal 3 has been agreed, and it is also necessary to determine the mode for notifying MeNB 200-1 of the RLF status of SeNB 200-2.
  • the UE 100 or the SeNB 200-2 transmits an instruction to the MeNB 200-1 only after the UE 100 declares the RLF to the SeNB 200-2.
  • the MeNB 200-1 is responsible for addition / exclusion / switching of the SeNB 200-2, it is beneficial for the MeNB 200-1 to obtain the CQI information of the SeNB 200-2 and to monitor the link to the SeNB 200-2 well. I will.
  • the UP (user plane) architecture is still uncertain, but if one of the Alt3 options with the bearer split option is adopted, it is the MeNB 200 that determines the steered traffic for the SeNB 200-2. It will be up to -1. Having the CQI of the SeNB 200-2 has an advantage that the MeNB 200-1 can make a decision regarding the bearer split.
  • Proposal 4 As a baseline, the UE 100 should transmit the CQI of the SeNB 200-2 to the MeNB 200-1. Whether information other than CQI is necessary among the information included in CSI needs to be studied in the future.
  • the CP architecture is based on option C1.
  • Proposal 1 is agreed, the UE 100 will also monitor the radio link of the SeNB 200-2. This means that there is a possibility that the UE 100 has a connection only with the SeNB 200-2 because the link state with the MeNB 200-1 is poor.
  • option C1 it is necessary to determine whether the UE 100 can continue to maintain a connection only with the SeNB 200-2. This issue has already been addressed.
  • the SeNB 200-2 needs to have means for maintaining the RRC function with the UE 100 so that the SeNB 200-2 can provide a service to the UE 100 having the mobility function.
  • the following options are possible:
  • the SeNB 200-2 should be excluded and the UE 100 can attempt to re-establish with the MeNB 200-1. This is the same as the CA case in which the UE 100 stops the operation of the SCell using the RLF with the PCell in the UE 100 as a trigger.
  • the MeNB 200-1 should notify the SeNB 200-2 of the RLF status of the UE 100 with the MeNB 200-1. This will trigger SeNB 200-2 to establish an SRB (signaling radio bearer) with UE 100 so that the RRC function is restored to SeNB 200-2.
  • the MeNB 200-1 should also transmit the context of the UE 100 to the SeNB 200-2.
  • Option 1 is the same as the CA case in which the UE 100 stops the operation of the SCell using the RLF with the PCell in the UE 100 as a trigger. Contrary to the reason for monitoring the radio link of SeNB 200-2, the connection of UE 100 to SeNB 200-2 needs to be excluded.
  • Proposal 5 With the CP architecture option C1, when an RLF with the MeNB 200-1 occurs in the UE 100, the SeNB 200-2 establishes an SRB with the UE 100 and can recover the RRC function with the MeNB 200-1. 1 should notify the SeNB 200-2 of the RLF status of the UE 100 with the MeNB 200-1.
  • option C1 is considered a baseline CP architecture
  • option C2 is that the UE 100 can operate in a SeNB 200 ⁇ without requiring major changes to the currently assumed option C2 architecture.
  • the main intent of the RRC connection of the SeNB 200-2 is to fulfill a function specific to the SeNB 200-2 (for example, RRM for the SeNB 200-2 instead of the MeNB 200-1).
  • RRM for the SeNB 200-2 instead of the MeNB 200-1
  • an abnormal condition such as RLF with the MeNB 200-1 can be dealt with.
  • the UE 100 may be able to return to single cell operation with the SeNB 200-2, while the UE 100 may be able to maintain a connection with the MeNB 200-1 through a Uu interface with the SeNB 200-2.
  • Proposal 6 When RLF with MeNB200-1 occurs in UE100, it should be examined whether option C2 is more beneficial than option C1.
  • Option C1 and option C2 should also be compared for the activation of the double connection.
  • the dual connection activation procedure differs depending on whether the UE 100 first connects to a small cell or a macro cell.
  • option C1 when the UE 100 is first located in the small cell, the UE 100 has only an RRC connection with the MeNB 200-1, so the small cell hands over the UE 100 to the MeNB 200-1 before the dual connection. It is likely that you need to One way to avoid the need for handover from the small cell to the MeNB 200-1 before the dual connection is that only the MeNB 200-1 can configure the dual connection, so that the UE 100 is always in the MeNB 200-1. It is to make sure that you are in the area.
  • Proposal 7 Whether to further improve the cell reselection procedure in the UE 100 capable of dual connection should be examined.
  • option C2 the same procedure as in option C1 was applied, but since the small cell has an RRC connection with UE 100 via the Uu interface, the small cell is not handed over to MeNB 200-1 first. There is a possibility that a double connection between the UE 100 and the MeNB 200-1 can be established. This makes it possible to simplify the idle mobility procedure since there is no difference whether the UE 100 first connects to the MeNB 200-1 or the SeNB 200-2 before the dual connection is activated. Therefore, RAN2 should introduce a procedure that allows UE100 to maintain an RRC connection with one node when UE100 starts operating a double connection in option C2. Whether such a procedure is feasible depends on which entity is allowed to initiate a duplex connection. This kind of improvement is not possible if only MeNB 200-1 can configure a double connection.
  • Proposal 8 If option C2 is adopted, the possibility of allowing small cells to initiate a double connection with MeNB 200-1 should be considered.
  • RACH Random Access Response
  • the UE 100 transmits the RACH preamble to the SeNB 200-2 when the UE 100 can transmit to both the MeNB 200-1 and the SeNB 200-2.
  • the UE 100 receives the RAR from the MeNB 200-1, depending on the delay of the Xn interface, there is a possibility of adversely affecting the determination of an appropriate value of the T300 timer by the network. Therefore, it seems that it is better for the SeNB 200-2 to transmit the RAR to the UE 100.
  • the MeNB 200-1 When the RAR is transmitted from the MeNB 200-1, the MeNB 200-1 is in charge of setting up the double connection, and therefore, especially if there is a failure in the RACH, the MeNB 200-1 will also need to know the state of the RACH. . Then, the SeNB 200-2 or the UE 100 should notify the MeNB 200-1 of the RACH failure (failure).
  • Proposal 9 When the UE 100 transmits the RACH preamble to the SeNB 200-2, the SeNB 200-2 should transmit the RAR to the UE 100.
  • Proposal 10 The SeNB 200-2 or the UE 100 should notify the MeNB 200-1 of the RACH failure.
  • the present invention is useful in the mobile communication field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 第1の特徴に係るユーザ端末は、複数のキャリアを同時に使用して無線アクセスネットワークとの上りリンク通信を行う。前記複数のキャリアは、前記ユーザ端末のモビリティ制御に使用される第1のキャリアと、前記第1のキャリアと協調して無線通信を提供する第2のキャリアと、を含む。前記第1のキャリアは、前記第1のキャリアの周波数方向の両端部に設けられる第1の物理上りリンク制御チャネル領域を含む。前記第2のキャリアは、前記第2のキャリアの周波数方向の両端部よりも前記第2のキャリアの中心周波数側に設けられる第2の物理上りリンク制御チャネル領域を含む。

Description

ユーザ端末、無線アクセスネットワーク、及び通信制御方法
 本発明は、複数のキャリアを同時に使用して無線通信を行うユーザ端末、無線アクセスネットワーク、及び通信制御方法に関する。
 移動通信システムの標準化プロジェクトである3GPP(3rd Generation Partnership Project)では、キャリアアグリゲーションが導入されている(非特許文献1参照)。また、3GPPでは、二重接続(Dual connectivity)の導入が検討されている。
 キャリアアグリゲーション及び二重接続では、ユーザ端末が複数のキャリア(複数の周波数帯)を同時に使用して無線アクセスネットワークとの無線通信を行う。複数のキャリアは、ユーザ端末のモビリティ制御に使用される第1のキャリアと、第1のキャリアと協調して無線通信を提供する第2のキャリアと、を含む。
 キャリアアグリゲーションでは、各キャリアにおけるスケジューリングを1つの基地局(すなわち、1つのスケジューラ)が行う。これに対し、二重接続では、各キャリアにおけるスケジューリングを異なる基地局(すなわち、異なるスケジューラ)が行う。
3GPP技術仕様書「TS36.300 V11.6.0」 2013年7月
 ところで、ユーザ端末は、第2のキャリアに対応する制御信号(例えばHARQ Ack/Nack、下りリンクチャネル状態報告)を、第1のキャリアの物理上りリンク制御チャネル領域において送信する。
 しかしながら、上述した二重接続では、第1のキャリアを介してユーザ端末と接続された第1の基地局は、第2のキャリアに対応する制御信号を、第2のキャリアを介してユーザ端末と接続された第2の基地局に転送する必要がある。
 従って、かかる転送に伴ってシグナリング量及び遅延が増大するため、効率的な通信制御を実現できない問題がある。
 そこで、本発明は、複数のキャリアを同時に無線通信に使用する場合において、効率的な通信制御を実現可能とすることを目的とする。
 第1の特徴に係るユーザ端末は、複数のキャリアを同時に使用して無線アクセスネットワークとの上りリンク通信を行う。前記複数のキャリアは、前記ユーザ端末のモビリティ制御に使用される第1のキャリアと、前記第1のキャリアと協調して無線通信を提供する第2のキャリアと、を含む。前記第1のキャリアは、前記第1のキャリアの周波数方向の両端部に設けられる第1の物理上りリンク制御チャネル領域を含む。前記第2のキャリアは、前記第2のキャリアの周波数方向の両端部よりも前記第2のキャリアの中心周波数側に設けられる第2の物理上りリンク制御チャネル領域を含む。
 第2の特徴に係る通信制御方法は、マスタ基地局とRRC接続を確立しており、前記マスタ基地局及びセカンダリ基地局のそれぞれから無線リソースが割り当てられるユーザ端末における方法である。前記通信制御方法は、自ユーザ端末と前記セカンダリ基地局との間の無線リンクの障害を検出するステップAと、前記検出した障害に関する無線リンク障害報告を前記マスタ基地局に送信するステップBと、を有する。
 第3の特徴に係る通信制御方法は、マスタ基地局とRRC接続を確立しているユーザ端末における方法である。前記通信制御方法は、セカンダリ基地局に対して、ランダムアクセスのためのランダムアクセスプリンブルを送信するステップAと、前記ランダムアクセスプリンブルに対応するランダムアクセス応答を前記マスタ基地局から受信せずに、前記セカンダリ基地局から前記ランダムアクセス応答を受信するステップBと、を有する。
 第4の特徴に係る通信制御方法は、マスタ基地局とRRC接続を確立しているユーザ端末が、セカンダリ基地局に対してランダムアクセスを行うステップAと、前記ユーザ端末又は前記セカンダリ基地局が、前記ランダムアクセスにおける障害を検出するステップBと、前記ユーザ端末又は前記セカンダリ基地局が、前記検出した障害に関するランダムアクセス障害通知を前記マスタ基地局に送信するステップCと、を有する。
実施形態に係るLTEシステム(移動通信システム)の構成図である。 実施形態に係るUE(ユーザ端末)のブロック図である。 実施形態に係るeNB(基地局)のブロック図である。 実施形態に係る無線インターフェイスのプロトコルスタック図である。 実施形態に係る無線フレームの構成図である。 LTEシステムにおける上りリンクサブフレームの構成図である。 実施形態に係る動作環境を示す図である。 実施形態に係る上りリンクサブフレームの構成図である。 実施形態に係るSeNB用PUCCH領域の通知動作を説明するための図である。 実施形態に係るUEによる制御信号の送信動作を説明するための図である。 実施形態に係るSeNB用PUCCH領域の変更例1を説明するための上りリンクサブフレームの構成図である。 実施形態に係るSeNB用PUCCH領域の変更例2を説明するための上りリンクサブフレームの構成図である。 実施形態に係る動作環境の変更例を示す図である。
 [実施形態の概要]
 実施形態に係るユーザ端末は、複数のキャリアを同時に使用して無線アクセスネットワークとの上りリンク通信を行う。前記複数のキャリアは、前記ユーザ端末のモビリティ制御に使用される第1のキャリアと、前記第1のキャリアと協調して無線通信を提供する第2のキャリアと、を含む。前記第1のキャリアは、前記第1のキャリアの周波数方向の両端部に設けられる第1の物理上りリンク制御チャネル領域を含む。前記第2のキャリアは、前記第2のキャリアの周波数方向の両端部よりも前記第2のキャリアの中心周波数側に設けられる第2の物理上りリンク制御チャネル領域を含む。
 実施形態では、前記ユーザ端末は、前記第2の物理上りリンク制御チャネル領域に関する設定情報を、前記第1のキャリア、又は前記第1のキャリアと対をなす下りリンクキャリアを介して受信する受信部を備える。
 実施形態では、前記第2の物理上りリンク制御チャネル領域に適用される物理上りリンク制御チャネルフォーマットは、前記第1の物理上りリンク制御チャネル領域に適用される物理上りリンク制御チャネルフォーマットとは異なる。
 実施形態では、前記ユーザ端末は、前記第2のキャリアに対応するHARQ Ack/Nackを前記第2の物理上りリンク制御チャネル領域において送信する送信部を備える。
 実施形態では、前記ユーザ端末は、前記第2のキャリアに対応する下りリンクチャネル状態報告を前記第2の物理上りリンク制御チャネル領域において送信する送信部を備える。
 実施形態では、前記ユーザ端末は、前記第2のキャリアを使用した前記無線通信が可能となった後に、前記第2のキャリアに対応する下りリンクチャネル状態報告を前記第2の物理上りリンク制御チャネル領域において送信する制御を行う制御部をさらに備える。
 実施形態では、前記送信部は、前記第1のキャリアに対応する下りリンクチャネル状態報告を前記第1の物理上りリンク制御チャネル領域においてさらに送信する。前記第2のキャリアに対応する下りリンクチャネル状態報告の送信周期は、前記第1のキャリアに対応する下りリンクチャネル状態報告の送信周期とは異なる周期である。
 実施形態では、前記第2のキャリアは、前記第2のキャリアの周波数方向の両端部に設けられる第1の物理上りリンク制御チャネル領域をさらに含む。前記第2の物理上りリンク制御チャネル領域は、前記第2のキャリアに含まれる前記第1の物理上りリンク制御チャネル領域と隣接して設けられる。
 実施形態では、前記第2のキャリアの帯域幅が所定の帯域幅よりも広い場合にのみ、前記第2の物理上りリンク制御チャネル領域が前記第2のキャリアに設けられる。
 実施形態では、前記第2のキャリアは、他のユーザ端末のモビリティ制御に使用される第1のキャリアとして動作可能である。前記第2のキャリアは、前記第2のキャリアの周波数方向の両端部に設けられる第1の物理上りリンク制御チャネル領域をさらに含む。前記他のユーザ端末は、前記第2のキャリアに対応するHARQ Ack/Nack及び/又は前記第2のキャリアに対応する下りリンクチャネル状態報告を、前記第2のキャリアに含まれる前記第1の物理上りリンク制御チャネル領域において送信する。前記ユーザ端末は、前記他のユーザ端末が接続する前記無線アクセスネットワークに接続可能である。
 実施形態に係る無線アクセスネットワークは、複数のキャリアを同時に使用してユーザ端末との上りリンク通信を行う。前記複数のキャリアは、前記ユーザ端末のモビリティ制御に使用される第1のキャリアと、前記第1のキャリアと協調して無線通信を提供する第2のキャリアと、を含む。前記第1のキャリアは、前記第1のキャリアの周波数方向の両端部に設けられる第1の物理上りリンク制御チャネル領域を含む。前記第2のキャリアは、前記第2のキャリアの周波数方向の両端部よりも前記第2のキャリアの中心周波数側に設けられる第2の物理上りリンク制御チャネル領域を含む。
 実施形態に係るプロセッサは、複数のキャリアを同時に使用して無線アクセスネットワークとの上りリンク通信を行うユーザ端末に備えられる。前記複数のキャリアは、前記ユーザ端末のモビリティ制御に使用される第1のキャリアと、前記第1のキャリアと協調して無線通信を提供する第2のキャリアと、を含む。前記第1のキャリアは、前記第1のキャリアの周波数方向の両端部に設けられる第1の物理上りリンク制御チャネル領域を含む。前記第2のキャリアは、前記第2のキャリアの周波数方向の両端部よりも前記第2のキャリアの中心周波数側に設けられる第2の物理上りリンク制御チャネル領域を含む。
 実施形態に係る通信制御方法は、マスタ基地局とRRC接続を確立しており、前記マスタ基地局及びセカンダリ基地局のそれぞれから無線リソースが割り当てられるユーザ端末における方法である。前記通信制御方法は、自ユーザ端末と前記セカンダリ基地局との間の無線リンクの障害を検出するステップAと、前記検出した障害に関する無線リンク障害報告を前記マスタ基地局に送信するステップBと、を有する。
 前記ステップAにおいて前記ユーザ端末が前記セカンダリ基地局の特定のセルにおける前記障害を検出した場合にのみ、前記ステップBにおいて前記ユーザ端末が前記無線リンク障害報告を前記マスタ基地局に送信する。前記特定のセルは、前記セカンダリ基地局のセルのうち、前記ユーザ端末の物理上りリンク制御チャネルが設定されるセルである。
 実施形態に係る通信制御方法は、マスタ基地局とRRC接続を確立しているユーザ端末における方法である。前記通信制御方法は、セカンダリ基地局に対して、ランダムアクセスのためのランダムアクセスプリンブルを送信するステップAと、前記ランダムアクセスプリンブルに対応するランダムアクセス応答を前記マスタ基地局から受信せずに、前記セカンダリ基地局から前記ランダムアクセス応答を受信するステップBと、を有する。
 前記ステップAにおいて、前記ユーザ端末は、前記セカンダリ基地局の特定のセルに対して前記ランダムアクセスプリンブルを送信する。前記ステップBにおいて、前記ユーザ端末は、前記特定のセルから前記ランダムアクセス応答を受信する。前記特定のセルは、前記セカンダリ基地局のセルのうち、前記ユーザ端末の物理上りリンク制御チャネルが設定されるセルである。
 実施形態に係る通信制御方法は、マスタ基地局とRRC接続を確立しているユーザ端末が、セカンダリ基地局に対してランダムアクセスを行うステップAと、前記ユーザ端末又は前記セカンダリ基地局が、前記ランダムアクセスにおける障害を検出するステップBと、前記ユーザ端末又は前記セカンダリ基地局が、前記検出した障害に関するランダムアクセス障害通知を前記マスタ基地局に送信するステップCと、を有する。
 前記ステップBにおいて前記ユーザ端末が前記セカンダリ基地局の特定のセルにおける前記障害を検出した場合にのみ、前記ステップCにおいて前記ユーザ端末が前記ランダムアクセス障害通知を前記マスタ基地局に送信する。前記特定のセルは、前記セカンダリ基地局のセルのうち、前記ユーザ端末の物理上りリンク制御チャネルが設定されるセルである。
[実施形態]
 以下において、本発明をLTEシステムに適用する場合の実施形態を説明する。
 (システム構成)
 図1は、実施形態に係るLTEシステムの構成図である。図1に示すように、実施形態に係るLTEシステムは、UE(User Equipment)100、E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network)10、及びEPC(Evolved Packet Core)20を備える。
 UE100は、ユーザ端末に相当する。UE100は、移動型の通信装置であり、接続先のセル(サービングセル)との無線通信を行う。UE100の構成については後述する。
 E-UTRAN10は、無線アクセスネットワークに相当する。E-UTRAN10は、eNB200(evolved Node-B)を含む。eNB200は、基地局に相当する。eNB200は、X2インターフェイスを介して相互に接続される。eNB200の構成については後述する。
 eNB200は、1又は複数のセルを管理しており、自セルとの接続を確立したUE100との無線通信を行う。eNB200は、無線リソース管理(RRM)機能、ユーザデータのルーティング機能、モビリティ制御・スケジューリングのための測定制御機能などを有する。「セル」は、無線通信エリアの最小単位を示す用語として使用される他に、UE100との無線通信を行う機能を示す用語としても使用される。
 EPC20は、コアネットワークに相当する。E-UTRAN10及びEPC20によりLTEシステムのネットワークが構成される。EPC20は、MME(Mobility Management Entity)/S-GW(Serving-Gateway)300を含む。MMEは、UE100に対する各種モビリティ制御などを行う。S-GWは、ユーザデータの転送制御を行う。MME/S-GW300は、S1インターフェイスを介してeNB200と接続される。
 図2は、UE100のブロック図である。図2に示すように、UE100は、アンテナ101、無線送受信機110、ユーザインターフェイス120、GNSS(Global Navigation Satellite System)受信機130、バッテリ140、メモリ150、及びプロセッサ160を備える。メモリ150及びプロセッサ160は、UE100の制御部を構成する。UE100は、GNSS受信機130を有していなくてもよい。また、メモリ150をプロセッサ160と一体化し、このセット(すなわち、チップセット)をプロセッサ160’としてもよい。
 アンテナ101及び無線送受信機110は、無線信号の送受信に用いられる。無線送受信機110は、プロセッサ160が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナ101から送信する。また、無線送受信機110は、アンテナ101が受信する無線信号をベースバンド信号(受信信号)に変換してプロセッサ160に出力する。
 ユーザインターフェイス120は、UE100を所持するユーザとのインターフェイスであり、例えば、ディスプレイ、マイク、スピーカ、及び各種ボタンなどを含む。ユーザインターフェイス120は、ユーザからの操作を受け付けて、該操作の内容を示す信号をプロセッサ160に出力する。GNSS受信機130は、UE100の地理的な位置を示す位置情報を得るために、GNSS信号を受信して、受信した信号をプロセッサ160に出力する。バッテリ140は、UE100の各ブロックに供給すべき電力を蓄える。
 メモリ150は、プロセッサ160により実行されるプログラム、及びプロセッサ160による処理に使用される情報を記憶する。プロセッサ160は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ150に記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。プロセッサ160は、さらに、音声・映像信号の符号化・復号を行うコーデックを含んでもよい。プロセッサ160は、後述する各種の処理及び各種の通信プロトコルを実行する。
 図3は、eNB200のブロック図である。図3に示すように、eNB200は、アンテナ201、無線送受信機210、ネットワークインターフェイス220、メモリ230、及びプロセッサ240を備える。メモリ230及びプロセッサ240は、eNB200の制御部を構成する。
 アンテナ201及び無線送受信機210は、無線信号の送受信に用いられる。無線送受信機210は、プロセッサ240が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナ201から送信する。また、無線送受信機210は、アンテナ201が受信する無線信号をベースバンド信号(受信信号)に変換してプロセッサ240に出力する。
 ネットワークインターフェイス220は、X2インターフェイスを介して隣接eNB200と接続され、S1インターフェイスを介してMME/S-GW300と接続される。ネットワークインターフェイス220は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信に用いられる。
 メモリ230は、プロセッサ240により実行されるプログラム、及びプロセッサ240による処理に使用される情報を記憶する。プロセッサ240は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ230に記憶されるプログラムを実行して各種の処理を行うCPUと、を含む。プロセッサ240は、後述する各種の処理及び各種の通信プロトコルを実行する。
 図4は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。図4に示すように、無線インターフェイスプロトコルは、OSI参照モデルの第1層乃至第3層(L1乃至L3)に区分されており、第1層は物理(PHY)層である。第2層は、MAC(Media Access Control)層、RLC(Radio Link Control)層、及びPDCP(Packet Data Convergence Protocol)層を含む。第3層は、RRC(Radio Resource Control)層を含む。
 物理層は、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100の物理層とeNB200の物理層との間では、物理チャネルを介してユーザデータ及び制御信号が伝送される。
 MAC層は、データの優先制御、及びハイブリッドARQ(HARQ)による再送処理などを行う。UE100のMAC層とeNB200のMAC層との間では、トランスポートチャネルを介してユーザデータ及び制御信号が伝送される。eNB200のMAC層は、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式)、UE100への割当リソースブロック、及び送信電力を決定(スケジューリング)するスケジューラを含む。
 RLC層は、MAC層及び物理層の機能を利用してデータを受信側のRLC層に伝送する。UE100のRLC層とeNB200のRLC層との間では、論理チャネルを介してユーザデータ及び制御信号が伝送される。
 PDCP層は、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 RRC層は、制御信号を取り扱う制御プレーンでのみ定義される。UE100のRRC層とeNB200のRRC層との間では、各種設定のための制御信号(RRCメッセージ)が伝送される。RRC層は、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間に接続(RRC接続)がある場合、UE100は接続状態(RRC接続状態)であり、そうでない場合、UE100はアイドル状態(RRCアイドル状態)である。
 RRC層の上位に位置するNAS(Non-Access Stratum)層は、セッション管理及びモビリティ管理などを行う。
 図5は、LTEシステムで使用される無線フレームの構成図である。LTEシステムは、下りリンクにはOFDMA(Orthogonal Frequency Division Multiplexing Access)、上りリンクにはSC-FDMA(Single Carrier Frequency Division Multiple Access)がそれぞれ適用される。複信方式としては、TDD(Time Division Duplex)又はFDD(Frequency Division Duplex)が適用される。
 図5に示すように、無線フレームは、時間方向に並ぶ10個のサブフレームで構成される。各サブフレームは、時間方向に並ぶ2個のスロットで構成される。各サブフレームの長さは1msであり、各スロットの長さは0.5msである。各サブフレームは、周波数方向に複数個のリソースブロック(RB)を含み、時間方向に複数個のシンボルを含む。各リソースブロックは、周波数方向に複数個のサブキャリアを含む。1つのサブキャリア及び1つのシンボルによりリソースエレメントが構成される。
 UE100に割り当てられる無線リソースのうち、周波数リソースはリソースブロックにより構成され、時間リソースはサブフレーム(又はスロット)により構成される。
 下りリンクにおいて、各サブフレームの先頭数シンボルの区間は、主に下りリンク制御信号を伝送するための物理下りリンク制御チャネル(PDCCH)として使用されるPDCCH領域である。また、各サブフレームの残りの部分は、主に下りリンクユーザデータを伝送するための物理下りリンク共有チャネル(PDSCH)として使用できるPDSCH領域である。
 上りリンクにおいて、各サブフレームにおける周波数方向の両端部は、主に上りリンク制御信号を伝送するための物理上りリンク制御チャネル(PUCCH)として使用されるPUCCH領域(第1の物理上りリンク制御チャネル領域)である。各サブフレームにおける残りの部分は、主に上りリンクユーザデータを伝送するための物理上りリンク共有チャネル(PUSCH)として使用できるPUSCH領域である。
 PUCCHは、制御信号を搬送する。制御信号は、例えば、CQI(Channel Quality Indicator)、PMI(Precoding Matrix Indicator)、RI(Rank Indicator)、SR(Scheduling Request)、HARQ Ack/Nack(以下、単に「Ack/Nack」という)などである。
 CQIは、下りリンクのチャネル品質を示す情報であり、下りリンク伝送に使用すべき推奨変調方式及び符号化速度の決定等に使用される。PMIは、下りリンクの伝送の為に使用することが望ましいプリコーダマトリックスを示す情報である。RIは、下りリンクの伝送に使用可能なレイヤ数(ストリーム数)を示す情報である。CQI/PMI/RIは、下りリンクチャネル状態(CSI:Channel State Information)報告に相当する。下りリンクCSI報告は、下りリンクの参照信号等に基づき生成される。下りリンクの参照信号とは、セル固有参照信号(CRS)又はCSI参照信号(CSI-RS)などである。
 SRは、上りリンク無線リソース(リソースブロック)の割当てを要求する情報である。Ack/Nackは、下りリンクの物理チャネル(例えば、PDSCH)を介して送信される信号の復号に成功したか否かを示す情報である。
 図6は、LTEシステムにおける上りリンクサブフレームの構成図である。
 図6に示すように、各サブフレームは2つのスロットを含み、各スロットはセルの上りリンク帯域幅(1キャリア帯域幅)に応じた数のリソースブロックを含む。リソースブロックは、通常のCP(Cyclic Prefix)設定の場合に、12個のサブキャリアと7個のSC-FDMAシンボルとから構成される。
 各サブフレームにおける周波数方向の両端部にはPUCCH領域R1が設けられる。PUCCH領域R1に含まれる無線リソースは、PUCCHリソースとしてUE100に割り当てられる。各サブフレームにおける残りの部分にはPUSCH領域が設けられる。PUSCH領域R2に含まれる無線リソースは、PUSCHリソースとしてUE100に割り当てられる。
 1つのPUCCHリソースは、サブフレーム内の2つのスロットの1リソースブロックずつを使用する。また、サブフレーム内のスロット間で周波数ホッピングが適用されており、スロット間でダイバシティ効果を得ている。PUCCHリソースは、リソースインデックスmにより識別される。また、複数のフォーマット(PUCCHフォーマット)がサポートされており、各PUCCHフォーマットでは以下のように異なる種類の制御信号が伝送される。また、1サブフレーム内で送信可能な制御信号のビット数は、PUCCHフォーマットごとに異なる。
 ・PUCCHフォーマット1: SR
 ・PUCCHフォーマット1a/1b: Ack/Nack
 ・PUCCHフォーマット2: CQI/PMI/RI
 ・PUCCHフォーマット2a/2b: CQI/PMI/RI及びAck/Nack
 さらに、LTE-Advancedにおいては、多数のAck/Nackを伝送するためのPUCCHフォーマット3が規定されている。
 変調方式に着目すると、PUCCHフォーマット1aにはBPSK(Binary Phase Shift Keying)が適用され、他のPUCCHフォーマットには主としてQPSK(Quadrature Phase Shift Keying)が適用される。
 図6の例では、リソースインデックスmが小さい順にPUCCHフォーマット2,2a,2bに使用され、続いてPUCCHフォーマット1,1a,1bに使用される。すなわち、PUCCHフォーマット2,2a,2bが適用されるPUCCHリソースは、PUCCHフォーマット1,1a,1bが適用されるPUCCHリソースの外側に設けられる。
 (実施形態に係る動作環境)
 図7は、実施形態に係る動作環境を示す図である。実施形態では、上りリンクを中心に説明する。
 図7に示すように、マクロeNB(MeNB)200-1は、キャリア1(第1のキャリア)に属するセル1を管理する。小型eNB(SeNB)200-2は、キャリア2(第2のキャリア)に属するセル2を管理する。MeNBは、マスタeNB(マスタ基地局)と称されてもよい。SeNBは、セカンダリeNB(セカンダリ基地局)と称されてもよい。キャリア2は、SeNBが管理する「特定のセル」に相当する。キャリア2(特定のセル)は、SeNBの複数のキャリア(複数のセル)のうち1つであってもよい。
 TDDの場合、キャリア1は上りリンク及び下りリンクで共通のキャリアであり、キャリア2は上りリンク及び下りリンクで共通のキャリアである。
 一方、FDDの場合、キャリア1は上りリンクキャリアfUL1であり、MeNB200-1は、キャリア1と対をなす下りリンクキャリアfDL1をさらに管理する。また、FDDの場合、キャリア2は上りリンクキャリアfUL2であり、SeNB200-2は、キャリア2と対をなす下りリンクキャリアfDL2をさらに管理する。
 セル2は、セル1(マクロセル)よりもカバレッジの小さい小セルであり、ピコセル又はフェムトセルと称されることがある。SeNB200-2は、ホームeNB(HeNB)であってもよい。セル2は、セル1のカバレッジ内に設けられる。MeNB200-1及びSeNB200-2は、相互に隣接する関係にあり、相互に接続されている。
 また、実施形態に係るLTEシステムは、二重接続(Dual connectivity)をサポートする。UE100-1は、一対のeNB200(MeNB200-1及びSeNB200-2)との二重接続を確立している。UE100-1が一対のeNB200との無線通信を行うことにより、1つのeNB200とのみ無線通信を行う場合に比べて、高速・大容量の無線通信を行うことができる。
 MeNB200-1は、UE100-1のモビリティ制御(Mobility management)を行う。MeNB200-1は、UE100-1とのRRC接続を確立し、UE100-1のハンドオーバ制御などを行う。これに対し、SeNB200-2は、UE100-1のモビリティ制御を行わない。SeNB200-2は、少なくともMAC層又はRLC層までの接続(L2接続)をUE100-1と確立すればよく、RRC接続(L3接続)を確立しなくてもよい。
 UE100-1は、複数のキャリア(キャリア1及びキャリア2)を同時に使用してE-UTRAN10との上りリンク通信を行う。各キャリアにおけるスケジューリングは、異なるeNB200(MeNB200-1、SeNB200-2)が行う。すなわち、MeNB200-1及びSeNB200-2のそれぞれは、UE100-1のために無線リソースのスケジューリングを行う。
 このように、キャリア1は、UE100-1のモビリティ制御に使用される。UE100-1に着目すると、キャリア1はPCC(Primary Component Carrier)に相当し、セル1はPCell(Primary Cell)に相当する。
 キャリア2は、キャリア1と協調してUE100-1に無線通信を提供する。UE100-1に着目すると、キャリア2はSCC(Secondary Component Carrier)に相当し、SeNB200-2はSCell(Secondary Cell)に相当する。
 一方、UE100-2は、SeNB200-2とのみ接続(RRC接続)を確立している。UE100-2に着目すると、キャリア2はPCCに相当し、セル2はPCellに相当する。
 (実施形態に係るPUCCH領域)
 現行の仕様では、あるキャリアをSCell(SCC)として使用するUE100について、当該キャリアには、当該UE100が使用可能なPUCCH領域が設けられない。よって、UE100は、SCell(SCC)に対応する制御信号(Ack/Nack、下りリンクCSI報告)を、PCell(PCC)のPUCCH領域において送信する。
 しかしながら、二重接続では、UE100-1のPCell(PCC)を管理するMeNB200-1は、UE100-1のSCell(SCC)に対応する制御信号をUE100-1から受信すると、当該SCell(SCC)を管理するSeNB200-2に対して、当該制御信号を転送する必要がある。従って、かかる転送に伴ってシグナリング量及び遅延が増大するため、効率的な通信制御を実現できない。
 そこで、実施形態では、SCell(SCC)に新たなPUCCH領域を設けることにより、SCellに対応する制御信号を当該新たなPUCCH領域において送信可能とする。
 図8は、実施形態に係る上りリンクサブフレームの構成図である。ここでは、図7に示すキャリア2のサブフレームの構成を説明する。
 図8に示すように、キャリア2のサブフレームは、キャリア2の周波数方向の両端部に設けられるPUCCH領域R1に加えて、キャリア2の周波数方向の両端部よりもキャリア2の中心周波数側に設けられるSeNB用PUCCH領域(SCell用PUCCH領域)R3を含む。実施形態では、PUCCH領域R1は第1の物理上りリンク制御チャネル領域に相当し、SeNB用PUCCH領域R3は第2の物理上りリンク制御チャネル領域に相当する。
 SeNB用PUCCH領域R3をキャリア2に設けることにより、既存のPUCCH領域R1との共存を図りながら、SeNB用PUCCH領域R3においてUE100-1からSeNB200-2に制御信号を送信できる。
 このように、UE100-1は、キャリア2に対応する制御信号(Ack/Nack、下りリンクCSI報告)を、キャリア2に含まれるSeNB用PUCCH領域R3において送信する。一方、キャリア2をPCell(PCC)として使用するUE100-2は、キャリア2に対応する制御信号(Ack/Nack、下りリンクCSI報告)を、キャリア2に含まれるPUCCH領域R1において送信する。
 図8の例では、SeNB用PUCCH領域R3は、キャリア2に含まれるPUCCH領域R1と隣接して設けられる。これにより、SeNB用PUCCH領域R3によりPUSCH領域R2が分断されることがないので、PUSCHリソースの割り当てに与える影響を小さくすることができる。
 また、SeNB用PUCCH領域R3に適用されるPUCCHフォーマットは、PUCCH領域R1に適用されるPUCCHフォーマットとは異なる。
 上述したように、既存のPUCCH領域R1に適用されるPUCCHフォーマットは、PUCCHフォーマット1,1a,1b,2,2a,2b,3である。
 これに対し、SeNB用PUCCH領域R3に適用されるPUCCHフォーマットは、例えばPUCCHフォーマット4,4a,4b,5,5a,5bである。PUCCHフォーマット4,4a,4bは、PUCCHフォーマット1,1a,1bにそれぞれ対応する。PUCCHフォーマット5,5a,5bは、PUCCHフォーマット2,2a,2bにそれぞれ対応する。
 或いは、SeNB用PUCCH領域R3に適用されるPUCCHフォーマットは、例えばs-PUCCHフォーマット1,1a,1b,2,2a,2bである。s-PUCCHフォーマット1,1a,1bは、PUCCHフォーマット1,1a,1bにそれぞれ対応する。s-PUCCHフォーマット2,2a,2bは、PUCCHフォーマット2,2a,2bにそれぞれ対応する。
 このように、SeNB用PUCCH領域R3のためのPUCCHフォーマットを新たに規定することにより、既存のPUCCH領域R1とSeNB用PUCCH領域R3とを適切に共存させることができる。
 (実施形態に係る動作シーケンス)
 図9は、SeNB用PUCCH領域R3の通知動作を説明するための図である。
 図9に示すように、MeNB200-1は、SeNB用PUCCH領域R3を示す設定情報(PUCCH-Config)を含んだRRCメッセージをUE100-1に送信する。SeNB用PUCCH領域R3を示す設定情報(PUCCH-Config)は、PUCCH領域を構成するリソースブロックを定めるための各種パラメータを含む。各種パラメータは、PUCCHフォーマット毎に設定(通知)される。SeNB用PUCCH領域R3に着目すると、各種パラメータは、例えばPUCCHフォーマット4用パラメータ(Scheduling request, Ack/Nack)又はPUCCHフォーマット5用パラメータ(CSI, Ack/Nack)などである。
 また、MeNB200-1は、SeNB用PUCCH領域R3における下りリンクCSI報告の設定情報(例えばCQI-ReportConfig)を含んだRRCメッセージをUE100-1に送信する。下りリンクCSI報告の設定情報(例えばCQI-ReportConfig)は、下りリンクCSIの報告周期を示すパラメータなどを含む。
 RRCメッセージとしては、例えば、共通制御信号の一種であるSIB(System Information Block) type2、個別制御信号の一種であるRRC Connection Setup又はRRC Connection Reconfigurationが利用できる。
 TDDの場合、MeNB200-1は、キャリア1を介して当該RRCメッセージをUE100-1に送信する。FDDの場合、MeNB200-1は、キャリア1(fUL1)と対をなす下りリンクキャリアfDL1を介して当該RRCメッセージをUE100-1に送信する。
 UE100-1は、SeNB用PUCCH領域R3を示す設定情報(PUCCH-Config)を含んだRRCメッセージをMeNB200-1から受信する。UE100-1は、当該設定情報(PUCCH-Config)に基づいて、SeNB用PUCCH領域R3を識別する。
 また、UE100-1は、SeNB用PUCCH領域R3における下りリンクCSI報告の設定情報(例えばCQI-ReportConfig)を含んだRRCメッセージをMeNB200-1から受信する。UE100-1は、当該設定情報(例えばCQI-ReportConfig)に基づいて、SeNB用PUCCH領域R3においてSeNB200-2に対する下りリンクCSI報告を行う。
 実施形態では、UE100-1は、キャリア2を使用した無線通信が可能となった後に、キャリア2に対応する下りリンクCSI報告を、SeNB用PUCCH領域R3において送信する制御を行う。すなわち、UE100-1は、キャリア1を利用している際にキャリア2も利用可能になった場合に、キャリア2に対応する下りリンクCSI報告の設定情報(例えばCQI-ReportConfig)を有効化する。
 二重接続において、UE100-1は、MeNB200-1との接続を主たる接続とし、SeNB200-2との接続を従たる接続として、SeNB200-2との通信を一時的に行う。よって、SeNB用PUCCH領域R3に関する設定情報をMeNB200-1からUE100-1に送信することにより、UE100-1の通信設定をMeNB200-1が統括して制御できる。
 MeNB200-1は、UE100-1に送信する設定情報(PUCCH-Config、CQI-ReportConfigなど)をSeNB200-2と共有するために、当該設定情報(PUCCH-Config、CQI-ReportConfigなど)をSeNB200-2に通知してもよい。もしくは、SeNB200-2がPUCCH領域R3に関する設定情報を決定し、MeNB200に通知してもよい。
 図10は、UE100-1による制御信号の送信動作を説明するための図である。まず、Ack/Nackに関して説明する。
 図10に示すように、UE100-1は、キャリア1に対応するAck/Nackをキャリア1のPUCCH領域においてMeNB200-1に送信する。MeNB200-1は、キャリア1に対応するAck/Nackをキャリア1のPUCCH領域においてUE100-1から受信する。TDDの場合、キャリア1に対応するAck/Nackとは、UE100-1がキャリア1を介してMeNB200-1から受信したユーザデータについてのAck/Nackである。FDDの場合、キャリア1に対応するAck/Nackとは、UE100-1がキャリア1(fUL1)と対をなす下りリンクキャリアfDL1を介してMeNB200-1から受信したユーザデータについてのAck/Nackである。
 また、UE100-1は、キャリア2に対応するAck/Nackをキャリア2のSeNB用PUCCH領域R3においてSeNB200-2に送信する。SeNB200-2は、キャリア2に対応するAck/Nackをキャリア2のSeNB用PUCCH領域R3においてUE100-1から受信する。TDDの場合、キャリア2に対応するAck/Nackとは、UE100-1がキャリア2を介してSeNB200-2から受信したユーザデータについてのAck/Nackである。FDDの場合、キャリア2に対応するAck/Nackとは、UE100-1がキャリア2(fUL2)と対をなす下りリンクキャリアfDL2を介してSeNB200-2から受信したユーザデータについてのAck/Nackである。
 次に、下りリンクCSI報告(周期的な下りリンクCSI報告)に関して説明する。
 図10に示すように、UE100-1は、キャリア1に対応する下りリンクCSI報告をキャリア1のPUCCH領域においてMeNB200-1に送信する。MeNB200-1は、キャリア1に対応する下りリンクCSI報告をキャリア1のPUCCH領域においてUE100-1から受信する。TDDの場合、キャリア1に対応する下りリンクCSI報告とは、UE100-1がキャリア1を介してMeNB200-1から受信した参照信号等についてのCSI報告である。FDDの場合、キャリア1に対応する下りリンクCSI報告とは、UE100-1がキャリア1(fUL1)と対をなす下りリンクキャリアfDL1を介してMeNB200-1から受信した参照信号等についてのCSI報告である。
 また、UE100-1は、キャリア2に対応する下りリンクCSI報告をキャリア2のSeNB用PUCCH領域R3においてSeNB200-2に送信する。SeNB200-2は、キャリア2に対応する下りリンクCSI報告をキャリア2のSeNB用PUCCH領域R3においてUE100-1から受信する。TDDの場合、キャリア2に対応する下りリンクCSI報告は、UE100-1がキャリア2を介してSeNB200-2から受信した参照信号等についてのCSI報告である。FDDの場合、キャリア2に対応する下りリンクCSI報告とは、UE100-1がキャリア2(fUL2)と対をなす下りリンクキャリアfDL2を介してSeNB200-2から受信した参照信号等についてのCSI報告である。
 キャリア2に対応する下りリンクCSI報告の送信周期は、キャリア1に対応する下りリンクCSI報告の送信周期とは異なる周期である。実施形態では、キャリア2に対応する下りリンクCSI報告の送信周期は、キャリア1に対応する下りリンクCSI報告の送信周期よりも短い。例えば、キャリア2に対応する下りリンクCSI報告の送信周期は、キャリア1に対応する下りリンクCSI報告の送信周期の半分以下の周期である。
 二重接続において、UE100-1とSeNB200-2との間のチャネル状態は、UE100-1とMeNB200-1との間のチャネル状態よりも良好であることが想定される。よって、キャリア2に対応する下りリンクCSI報告の送信周期を、キャリア1に対応する下りリンクCSI報告の送信周期よりも短くすることにより、UE100-1がSeNB200-2との通信を積極的に利用できる。
 [第1変更例]
 上述した実施形態では、SeNB用PUCCH領域R3は、キャリア2に含まれるPUCCH領域R1と隣接して設けられていた(図8参照)。しかしながら、SeNB用PUCCH領域R3は、PUCCH領域R1と離間して設けられてもよい。図11は、SeNB用PUCCH領域R3の変更例1を説明するための上りリンクサブフレームの構成図である。図11に示すように、SeNB用PUCCH領域R3は、1サブフレームの全体に亘って、時間方向に沿って延びる点で上述した実施形態と同様である。但し、図11に示すSeNB用PUCCH領域R3は、PUCCH領域R1と離間して設けられている点で上述した実施形態とは異なる。
 また、上述した実施形態では、SeNB用PUCCH領域R3は、時間方向に沿って延びていた(図8参照)。しかしながら、SeNB用PUCCH領域R3は、周波数方向に沿って延びてもよい。図12は、SeNB用PUCCH領域R3の変更例2を説明するための上りリンクサブフレームの構成図である。図12に示すように、SeNB用PUCCH領域R3は、第1スロット及び第2スロットのそれぞれにおいて、一対のPUCCH領域R1の間で、周波数方向に沿って延びる。図12では、SeNB用PUCCH領域R3が一対のPUCCH領域R1の間で全体に亘って延びているが、破線で示すように複数の領域に区切って使用してもよい。UL帯域幅が広い場合、eNB200との間のパスロスや送信電力制御パラメータの設定によっては広い帯域全体で信号を送信すると送信電力の上限にかかってしまうUE100も存在するからである。
 [第2変更例]
 上述した実施形態では、キャリア2の帯域幅について特に考慮していなかった。しかしながら、キャリア2の帯域幅が狭い場合には、SeNB用PUCCH領域R3をキャリア2に設けることにより、キャリア2にPUSCH領域R2を設けることができなくなり得る。
 現行の仕様上、最小のキャリア帯域幅は1.4MHzであり、6リソースブロック分の帯域幅である。例えばPUCCH領域R1が4リソースブロック分の帯域幅を占める場合に、残る2リソースブロック分の帯域幅をSeNB用PUCCH領域R3として設定すると、キャリア2にPUSCH領域R2を設けることができない。よって、このようなキャリア帯域幅については、SeNB用PUCCH領域R3を設けることは好ましくない。
 従って、E-UTRAN10は、キャリア2の帯域幅が所定の帯域幅よりも広い場合にのみ、SeNB用PUCCH領域R3をキャリア2に設ける。所定の帯域幅とは、PUCCH領域R1及びSeNB用PUCCH領域R3をキャリア2に設けても、PUSCH領域R2をキャリア2に設けることができる帯域幅である。具体的には、所定の帯域幅とは、最小限のPUCCH領域R1、最小限のPUSCH領域R2、及び最小限のSeNB用PUCCH領域R3の総帯域幅に相当する帯域幅である。
 [第3変更例]
 上述した実施形態では、UE100-1に二重接続が適用される動作環境を想定していた。しかしながら、UE100-1にキャリアアグリゲーション(CA)が適用される動作環境であってもよい。
 図13は、動作環境の変更例を示す図である。図13に示すように、eNB200は、キャリア1(第1のキャリア)に属するセル1、及びキャリア2(第2のキャリア)に属するセル2を管理する。図13の例では、セル1及びセル2は、同等のカバレッジサイズを有する。
 TDDの場合、キャリア1は上りリンク及び下りリンクで共通のキャリアであり、キャリア2は上りリンク及び下りリンクで共通のキャリアである。一方、FDDの場合、キャリア1は上りリンクキャリアfUL1であり、eNB200は、キャリア1と対をなす下りリンクキャリアfDL1をさらに管理する。また、FDDの場合、キャリア2は上りリンクキャリアfUL2であり、eNB200は、キャリア2と対をなす下りリンクキャリアfDL2をさらに管理する。
 eNB200は、UE100-1のモビリティ制御(Mobility management)を行う。eNB200は、UE100-1とのRRC接続を確立し、UE100-1のハンドオーバ制御などを行う。UE100-1は、複数のキャリア(キャリア1及びキャリア2)を同時に使用してE-UTRAN10との上りリンク通信を行い、各キャリアにおけるスケジューリングを1つのeNB200が行う。
 キャリア1は、UE100-1のモビリティ制御に使用される。UE100-1に着目すると、キャリア1はPCC(Primary Component Carrier)に相当し、セル1はPCell(Primary Cell)に相当する。キャリア2は、キャリア1と協調してUE100-1に無線通信を提供する。UE100-1に着目すると、キャリア2はSCC(Secondary Component Carrier)に相当し、eNB200はSCell(Secondary Cell)に相当する。
 このような動作環境において、上述した実施形態と同様に、キャリア2にSCell用PUCCH領域R3(第2の物理上りリンク制御チャネル領域)を設けることにより、UE100-1は、キャリア2(SCell)に対応する制御信号をSCell用PUCCH領域R3において送信できる。
 [その他の実施形態]
 上述した実施形態では、キャリア2に対応する下りリンクCSI報告の送信周期が、キャリア1に対応する下りリンクCSI報告の送信周期よりも短く設定される一例について説明した。しかしながら、第3変更例で説明したようにキャリアアグリゲーションが適用される場合には、キャリア2に対応する下りリンクCSI報告の送信周期が、キャリア1に対応する下りリンクCSI報告の送信周期よりも長く設定されてもよい。図13に示した動作環境では、キャリア1及びキャリア2それぞれのチャネル品質は同等であるため、主たるキャリアであるキャリア1に対応する下りリンクCSI報告を優先することが好ましいからである。
 上述した実施形態では、UE100-1がキャリア2において制御信号及びユーザデータを同時に送信するケースについて特に触れなかった。しかしながら、キャリア2のSeNB用PUCCH領域(SCell用PUCCH領域)R3におけるPUCCHリソースの割り当てと、キャリア2のPUSCH領域R2におけるPUSCHリソースの割り当てとは、同時に発生し得る。このような同時発生の場合には、UE100-1は、以下の第1の動作及び第2の動作の何れかを行うことが好ましい。
 第1の動作は、UE100-1が、PUSCH上で制御信号も含めて全て送信(PUCCH上では無送信)する動作である。これにより、PUSCH上で制御信号及びユーザデータを一括送信できる。
 第2の動作は、PUSCHとPUCCHの同時送信を行う動作である。これにより、PUSCHリソースを有効活用できる。
 また、上述した各実施形態では、セルラ通信システムの一例としてLTEシステムを説明したが、LTEシステムに限定されるものではなく、LTEシステム以外のシステムに本発明を適用してもよい。
 [付記]
 以下において、上述した実施形態の補足事項について付記する。
 二重接続におけるCP(制御プレーン)アーキテクチャは、ベースラインとして、オプションC1に基づくことが合意されている。オプションC2は除外されたわけではないが、オプションC1の代わりにオプションC2の導入を検討するには、事前にオプションC2の実質的な利点を明確にするべきである。解決すべき二重接続の1つの側面は、RLF(無線リンク障害)の状況への対処である。以下において、SeNB200-2のRLM(無線リンク監視)に関連したRLF、MeNBとの接続断、二重接続の起動、RACH障害(ランダムアクセス障害)の問題について検討する。
 二重接続及びCAはどちらもUE100を複数のセルに同時に接続をさせることによってユーザ・スループットを増大させる利点がある。UE100及びネットワークの両方に対する不必要な複雑性を避けるため、CAのCPアーキテクチャを二重接続のCPアーキテクチャにおいて可能な限り再利用することが好ましいと思われる。しかしながら、CA手順の再利用は、二重接続の性能に大きな低下をもたらさないよう注意して実施されるべきである。RLFに関する以下の判断において、二重接続におけるRLFに関する問題は、CAに用いられる既存の手順と比較した考察が行われている。
 (SeNBのRLM)
 CAでは、SCellの追加/起動、及びSCellにおける潜在的なRLFを含め、PCellが、CQI及び測定報告を使ってSCellの状態を判定するため、RLMは、SCellではサポートされない。二重接続では、状況は簡単ではない。というのは、SeNB200-2が自身のスケジューラを有し、Xnインターフェイスにおける遅延が過剰である想定されるので、UE100がMeNB200-1及びSeNB200-2に対してCQIを送信することが合理的と考えられるからである。また、UE100のMeNB200-1に対する無線リンクが失敗しても、UE100のSeNB200-2に対する無線リンクは全く問題がない場合もある。UE100がRLMをMeNB200-1にだけ適用する場合、UE100は、MeNB200-1に対するリンクが失敗したときだけRLFを宣言する必要があるであろう。従って、UE100にSeNB200-2のRLMも適用させることは有益である。
 提案1: ベースラインとして、UE100は、MeNB200-1及びSeNB200-2に対し、CQIを送信するべきである。
 提案2: UE100は、RLMをSeNB200-2に対しても適用するべきである。
 提案2が同意可能な場合、MeNB200-1がRLMの状態を知る必要があるかどうかを判断する必要がある。説明したように、もしSeNB200-2へのUL送信が許可される場合、UE100がさらにSRSをSeNB200-2に送信することを防ぐためにMeNB200-1ができるだけ早くSeNB200-2を取り除くことが必要になるであろう。さらに、MeNB200-1がSeNB200-2のRLFの状態を知っている場合、MeNB200-1は、他の周波数間SeNB候補の測定をUE100に対して設定できるであろう。SeNB200-2又はUE100がMeNB200-1に対してSeNB200-2のRLFの状態を通知する場合があるが、バックホール遅延が過剰な場合、UE100がSeNB200-2のRLFの状態をMeNB200-1に提供する方が好ましい場合もある。
 提案3: MeNB200-1は、SeNB200-2のRLFの状態を通知されるべきである。
 提案3が同意されたとして、SeNB200-2のRLFの状態をMeNB200-1に通知する際の形態もまた決める必要がある。1つの可能性として、UE100がSeNB200-2に対してRLFを宣言した後にのみ、UE100又はSeNB200-2がMeNB200-1に指示を送信することが考えられる。しかしながら、MeNB200-1はSeNB200-2の追加/除外/切替を担当するので、MeNB200-1がSeNB200-2のCQI情報を得てSeNB200-2に対するリンクを良好に監視できるようにすることが有益であろう。現在では、UP(ユーザプレーン)アーキテクチャはいまだに不確実であるが、もしベアラスプリットオプションを有する、Alt3オプションの1つが採用されたならば、SeNB200-2に対してステアリングされるトラフィックを決めるのはMeNB200-1次第となるであろう。SeNB200-2のCQIを有するということは、MeNB200-1がベアラスプリットに関する決定ができる利点があるといえる。
 提案4: ベースラインとして、UE100は、MeNB200-1に対して、SeNB200-2のCQIを送信するべきである。CSIに含まれる情報の中で、CQI以外の情報が必要かどうかは、今後の検討が必要である。
 (MeNB200-1に対するRLF)
 これまで、CPアーキテクチャがオプションC1に基づくと仮定された。つまりUE100には1つだけRRCエンティティが存在するという意味であり、MeNB200-1はアンカーeNBであるので、全てのモビリティ機能をUE100に対してコーディネートできる。もし提案1が同意されれば、UE100はSeNB200-2の無線リンクも監視することになる。これは、MeNB200-1とのリンク状態が悪いので、UE100がSeNB200-2とのみ接続を有する状態が存在する可能性があることを意味する。このシナリオでは、オプションC1において、UE100がSeNB200-2とだけ接続を維持し続けることができるかどうかを決める必要がある。この問題はすでに取り組まれている。SeNB200-2がモビリティ機能を有するUE100に対してサービスを提供できるように、SeNB200-2は、UE100とRRC機能を維持する手段を有する必要がある。以下のオプションが考えられる。
  オプション1.SeNB200-2が除外されるべきであり、そうすればUE100がMeNB200-1と再確立を試みることができる。これは、UE100におけるPCellとのRLFをトリガーとして、UE100がSCellの作動を停止するCAのケースと同様である。
  オプション2.MeNB200-1は、MeNB200-1とのUE100のRLFの状況をSeNB200-2に通知するべきである。これによって、RRC機能がSeNB200-2に対して回復するようにSeNB200-2がUE100とのSRB(シグナリング無線ベアラ)を確立する契機となるであろう。MeNB200-1はまた、SeNB200-2に対してUE100のコンテキストも送信するべきである。
 上記オプション1は、UE100におけるPCellとのRLFをトリガーとして、UE100がSCellの作動を停止するCAのケースと同様である。SeNB200-2の無線リンクを監視する理由には反するがUE100のSeNB200-2に対する接続も除外される必要がある。
 オプション2では、UE100のSeNB200-2との接続は維持されるであろうが、MeNB200-1がSeNB200-2に対してRLFの状況を通知する必要があると思われる。UE100は、SeNB200-2とのRRC機能をもはや有しないので、UE100がSeNB200-2に対してRLFの状況を通知する手段がない。オプション2では、SeNB200-2がUE100とSRBを確立さえすれば、MeNB200-1がSeNB200-2のUuインターフェイスを介して、UE100に対してRRCメッセージを送信することが可能である。
 提案5: CPアーキテクチャのオプションC1では、UE100においてMeNB200-1とのRLFが発生した場合、SeNB200-2がUE100とのSRBを確立し、MeNB200-1とのRRC機能を回復できるように、MeNB200-1は、MeNB200-1とのUE100のRLFの状況をSeNB200-2に通知するべきである。
 オプションC1はベースラインのCPアーキテクチャと考えられているが、オプションC2の1つの潜在的な利点は、現在想定されているオプションC2のアーキテクチャに大規模な変更を加えなくても、UE100がSeNB200-2とのRRC接続を維持できる可能性である。SeNB200-2のRRC接続の主な意図は、SeNB200-2特有の機能(例えば、MeNB200-1ではなく、SeNB200-2に対するRRM)を果たすことであるが、SeNB200-2のRRC機能を拡大して、MeNB200-1とのRLFなどの異常な条件に対処できる可能性がある。例えば、UE100は、SeNB200-2との単一セルオペレーションに戻ることができる一方、UE100はSeNB200-2とのUuインターフェイスを通してMeNB200-1との接続を維持することができる可能性がある。
 提案6: UE100においてMeNB200-1とのRLFが発生した場合、オプションC2がオプションC1よりも有益かどうかを検討するべきである。
 (二重接続の起動)
 二重接続の起動についても、オプションC1及びオプションC2を比較検討すべきである。二重接続起動手順はUE100が最初に小セルに接続するかマクロセルに接続するかによって異なる。オプションC1では、UE100が小セルに最初に在圏した場合、UE100はMeNB200-1とのRRC接続しか有さないため、小セルは、二重接続の前にUE100をMeNB200-1に対してハンドオーバさせる必要がある可能性が高い。二重接続の前に小セルからMeNB200-1へのハンドオーバに対する必要性を避ける1つの方法は、MeNB200-1だけが二重接続を構成することが可能であるため、UE100が常にMeNB200-1に在圏していることを確実にすることである。しかしながら、小セルがレガシーUEをサポートする必要があるため、レガシーUEをスタンドアローン型のセルとしてサポートできる必要がある。従って、UE100が小セルに在圏することを防ぐことが難しい可能性がある。二重接続可能なUE100に対するセル再選択手順を更に向上すべきかについては今後の検討が必要である。
 提案7: 二重接続可能なUE100におけるセル再選択手順を更に向上すべきかを検討するべきである。
 オプションC2では、オプションC1と同じ手順が適用されたが、小セルはUuインターフェイスを介してUE100とRRC接続を有するので、最初にUE100をMeNB200-1に対してハンドオーバ―させずに、小セルがUE100のMeNB200-1との二重接続を確立できる可能性がある。二重接続が作動する前にUE100が最初にMeNB200-1に接続するか、又はSeNB200-2と接続するかに差異はないので、これにより、アイドルモビリティ手順を簡素化することができる。従って、RAN2は、UE100がオプションC2において二重接続の運用を開始したとき、UE100が1つのノードとRRC接続を維持することを許可する手順を導入するべきである。そのような手順が実行可能かどうかは、どのエンティティが二重接続を開始することを許可されるかにかかっている。MeNB200-1だけが二重接続を構成することができる場合、この種の向上は不可能である。
 提案8: オプションC2を採用する場合、小セルがMeNB200-1との二重接続を開始することを許可する可能性を検討するべきである。
 (RACH)
 現在、CAにおいてRAR(ランダムアクセス応答)はPCellから送られるが、これは、二重接続のケースに当てはまらない理想的なバックホールに基づくものである。二重接続では、UE100はMeNB200-1及びSeNB200-2の両方に対して送信可能となった場合、UE100がSeNB200-2に対してRACHプリアンブルを送信するものだと仮定している。しかしながら、UE100がMeNB200-1からRARを受信した場合、Xnインターフェイスの遅延次第では、ネットワークによるT300タイマの適切な値の決定について悪影響を及ぼす可能性がある。従って、SeNB200-2がUE100に対してRARを送信するほうが良いと思われる。RARがMeNB200-1から送信された場合、MeNB200-1は二重接続の設定を担当するので、特に、RACHに障害があれば、MeNB200-1はRACHの状態を把握する必要もあるであろう。そして、SeNB200-2又はUE100は、MeNB200-1に対してRACHの障害(失敗)を通知するべきである。
 提案9: UE100がSeNB200-2に対してRACHプリアンブルを送信する場合、SeNB200-2はRARをUE100に対して送信するべきである。
 提案10: SeNB200-2又はUE100は、MeNB200-1に対してRACHの障害を通知するべきである。
 (まとめ)
 付記では、二重接続におけるRLFに関連する問題を考察した。特に、オプションC1をベースラインと仮定して、RLFの対処をCAの同様の手順と比較した。場合によっては、オプションC1よりオプションC2を使用する方が有益な場合もある。
 [相互参照]
 米国仮出願第61/864186号(2013年8月9日出願)の全内容及び米国仮出願第61/883619号(2013年9月27日出願)の全内容が、参照により、本願明細書に組み込まれている。
 本発明は、移動通信分野において有用である。

Claims (17)

  1.  複数のキャリアを同時に使用して無線アクセスネットワークとの上りリンク通信を行うユーザ端末であって、
     前記複数のキャリアは、前記ユーザ端末のモビリティ制御に使用される第1のキャリアと、前記第1のキャリアと協調して無線通信を提供する第2のキャリアと、を含み、
     前記第1のキャリアは、前記第1のキャリアの周波数方向の両端部に設けられる第1の物理上りリンク制御チャネル領域を含み、
     前記第2のキャリアは、前記第2のキャリアの周波数方向の両端部よりも前記第2のキャリアの中心周波数側に設けられる第2の物理上りリンク制御チャネル領域を含むことを特徴とするユーザ端末。
  2.  前記第2の物理上りリンク制御チャネル領域に関する設定情報を、前記第1のキャリア、又は前記第1のキャリアと対をなす下りリンクキャリアを介して受信する受信部を備えることを特徴とする請求項1に記載のユーザ端末。
  3.  前記第2の物理上りリンク制御チャネル領域に適用される物理上りリンク制御チャネルフォーマットは、前記第1の物理上りリンク制御チャネル領域に適用される物理上りリンク制御チャネルフォーマットとは異なることを特徴とする請求項1に記載のユーザ端末。
  4.  前記第2のキャリアに対応するHARQ Ack/Nackを前記第2の物理上りリンク制御チャネル領域において送信する送信部を備えることを特徴とする請求項1に記載のユーザ端末。
  5.  前記第2のキャリアに対応する下りリンクチャネル状態報告を前記第2の物理上りリンク制御チャネル領域において送信する送信部を備えることを特徴とする請求項1に記載のユーザ端末。
  6.  前記第2のキャリアを使用した前記無線通信が可能となった後に、前記第2のキャリアに対応する下りリンクチャネル状態報告を前記第2の物理上りリンク制御チャネル領域において送信する制御を行う制御部をさらに備えることを特徴とする請求項5に記載のユーザ端末。
  7.  前記送信部は、前記第1のキャリアに対応する下りリンクチャネル状態報告を前記第1の物理上りリンク制御チャネル領域においてさらに送信し、
     前記第2のキャリアに対応する下りリンクチャネル状態報告の送信周期は、前記第1のキャリアに対応する下りリンクチャネル状態報告の送信周期とは異なる周期であることを特徴とする請求項6に記載のユーザ端末。
  8.  前記第2のキャリアは、前記第2のキャリアの周波数方向の両端部に設けられる第1の物理上りリンク制御チャネル領域をさらに含み、
     前記第2の物理上りリンク制御チャネル領域は、前記第2のキャリアに含まれる前記第1の物理上りリンク制御チャネル領域と隣接して設けられることを特徴とする請求項1に記載のユーザ端末。
  9.  前記第2のキャリアの帯域幅が所定の帯域幅よりも広い場合にのみ、前記第2の物理上りリンク制御チャネル領域が前記第2のキャリアに設けられることを特徴とする請求項1に記載のユーザ端末。
  10.  前記第2のキャリアは、他のユーザ端末のモビリティ制御に使用される第1のキャリアとして動作可能であり、
     前記第2のキャリアは、前記第2のキャリアの周波数方向の両端部に設けられる第1の物理上りリンク制御チャネル領域をさらに含み、
     前記他のユーザ端末は、前記第2のキャリアに対応するHARQ Ack/Nack及び/又は前記第2のキャリアに対応する下りリンクチャネル状態報告を、前記第2のキャリアに含まれる前記第1の物理上りリンク制御チャネル領域において送信し、
     前記ユーザ端末は、前記他のユーザ端末が接続する前記無線アクセスネットワークに接続可能であることを特徴とする請求項1に記載のユーザ端末。
  11.  複数のキャリアを同時に使用してユーザ端末との上りリンク通信を行う無線アクセスネットワークであって、
     前記複数のキャリアは、前記ユーザ端末のモビリティ制御に使用される第1のキャリアと、前記第1のキャリアと協調して無線通信を提供する第2のキャリアと、を含み、
     前記第1のキャリアは、前記第1のキャリアの周波数方向の両端部に設けられる第1の物理上りリンク制御チャネル領域を含み、
     前記第2のキャリアは、前記第2のキャリアの周波数方向の両端部よりも前記第2のキャリアの中心周波数側に設けられる第2の物理上りリンク制御チャネル領域を含むことを特徴とする無線アクセスネットワーク。
  12.  マスタ基地局とRRC接続を確立しており、前記マスタ基地局及びセカンダリ基地局のそれぞれから無線リソースが割り当てられるユーザ端末における通信制御方法であって、
     自ユーザ端末と前記セカンダリ基地局との間の無線リンクの障害を検出するステップAと、
     前記検出した障害に関する無線リンク障害報告を前記マスタ基地局に送信するステップBと、
    を有することを特徴とする通信制御方法。
  13.  前記ステップAにおいて前記ユーザ端末が前記セカンダリ基地局の特定のセルにおける前記障害を検出した場合にのみ、前記ステップBにおいて前記ユーザ端末が前記無線リンク障害報告を前記マスタ基地局に送信し、
     前記特定のセルは、前記セカンダリ基地局のセルのうち、前記ユーザ端末の物理上りリンク制御チャネルが設定されるセルであることを特徴とする請求項12に記載の通信制御方法。
  14.  マスタ基地局とRRC接続を確立しているユーザ端末における通信制御方法であって、
     セカンダリ基地局に対して、ランダムアクセスのためのランダムアクセスプリンブルを送信するステップAと、
     前記ランダムアクセスプリンブルに対応するランダムアクセス応答を前記マスタ基地局から受信せずに、前記セカンダリ基地局から前記ランダムアクセス応答を受信するステップBと、
    を有することを特徴とする通信制御方法。
  15.  前記ステップAにおいて、前記ユーザ端末は、前記セカンダリ基地局の特定のセルに対して前記ランダムアクセスプリンブルを送信し、
     前記ステップBにおいて、前記ユーザ端末は、前記特定のセルから前記ランダムアクセス応答を受信し、
     前記特定のセルは、前記セカンダリ基地局のセルのうち、前記ユーザ端末の物理上りリンク制御チャネルが設定されるセルであることを特徴とする請求項14に記載の通信制御方法。
  16.  マスタ基地局とRRC接続を確立しているユーザ端末が、セカンダリ基地局に対してランダムアクセスを行うステップAと、
     前記ユーザ端末又は前記セカンダリ基地局が、前記ランダムアクセスにおける障害を検出するステップBと、
     前記ユーザ端末又は前記セカンダリ基地局が、前記検出した障害に関するランダムアクセス障害通知を前記マスタ基地局に送信するステップCと、
    を有することを特徴とする通信制御方法。
  17.  前記ステップBにおいて前記ユーザ端末が前記セカンダリ基地局の特定のセルにおける前記障害を検出した場合にのみ、前記ステップCにおいて前記ユーザ端末が前記ランダムアクセス障害通知を前記マスタ基地局に送信し、
     前記特定のセルは、前記セカンダリ基地局のセルのうち、前記ユーザ端末の物理上りリンク制御チャネルが設定されるセルであることを特徴とする請求項16に記載の通信制御方法。
PCT/JP2014/070531 2013-08-09 2014-08-04 ユーザ端末、無線アクセスネットワーク、及び通信制御方法 WO2015020018A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015530891A JP6282656B2 (ja) 2013-08-09 2014-08-04 ユーザ端末、無線アクセスネットワーク、及び通信制御方法
EP14834127.4A EP3032905A4 (en) 2013-08-09 2014-08-04 User terminal, wireless access network, and communication control method
US14/910,871 US9992002B2 (en) 2013-08-09 2014-08-04 User terminal, radio access network, and communication control method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201361864186P 2013-08-09 2013-08-09
US61/864,186 2013-08-09
US201361883619P 2013-09-27 2013-09-27
US61/883,619 2013-09-27

Publications (1)

Publication Number Publication Date
WO2015020018A1 true WO2015020018A1 (ja) 2015-02-12

Family

ID=52461350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070531 WO2015020018A1 (ja) 2013-08-09 2014-08-04 ユーザ端末、無線アクセスネットワーク、及び通信制御方法

Country Status (4)

Country Link
US (1) US9992002B2 (ja)
EP (1) EP3032905A4 (ja)
JP (1) JP6282656B2 (ja)
WO (1) WO2015020018A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018511267A (ja) * 2015-04-10 2018-04-19 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 複数のサービングセルをサポートするワイヤレス通信システムにおけるキャリアに関する制御情報のマッピング
JP2020504941A (ja) * 2016-12-23 2020-02-13 オッポ広東移動通信有限公司 情報伝送方法、ネットワーク装置及び端末装置
KR20230024952A (ko) * 2015-08-06 2023-02-21 씨스코 시스템즈, 인코포레이티드 상향링크 제어 채널 포맷을 동적으로 스위칭하는 장치 및 방법
US11974346B2 (en) 2015-08-06 2024-04-30 Cisco Technology, Inc. Apparatus and method for transmitting uplink control information through a physical uplink control channel

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9838901B2 (en) * 2013-10-23 2017-12-05 Lg Electronics Inc. Method for reporting a radio link problem and a device therefor
US20150133122A1 (en) * 2013-11-08 2015-05-14 Industrial Technology Research Institute Method of Handling Radio Link Failure
KR102285852B1 (ko) * 2013-12-17 2021-08-05 삼성전자 주식회사 전차원 다중입력 다중출력 이동통신 시스템에서 통신방법 및 장치
CN104812003A (zh) * 2014-01-28 2015-07-29 上海贝尔股份有限公司 用于主基站和辅基站的流控制方法和设备
JP6031555B2 (ja) * 2014-05-13 2016-11-24 宏達國際電子股▲ふん▼有限公司 測定構成を処理する装置
JP2018032887A (ja) 2015-01-08 2018-03-01 シャープ株式会社 端末装置、基地局装置、制御方法及び集積回路
CN107710807B (zh) * 2015-07-08 2021-08-10 夏普株式会社 终端装置、基站装置、通信方法以及集成电路
CN113556818B (zh) * 2015-08-12 2024-02-20 Lg电子株式会社 用于执行通信的方法和基站
KR102183826B1 (ko) * 2016-05-12 2020-11-30 주식회사 케이티 단말의 듀얼 커넥티비티 구성 방법 및 그 장치
CN109314959A (zh) * 2016-12-02 2019-02-05 华为技术有限公司 一种多载波系统中控制信道的发送方法及装置
JP7121031B2 (ja) * 2017-10-06 2022-08-17 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
CN110649949B (zh) * 2018-06-27 2021-07-09 华为技术有限公司 一种通信方法及装置
CN111050419B (zh) * 2018-10-11 2022-03-22 维沃移动通信有限公司 一种无线链路恢复方法、终端、辅基站及存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA024340B1 (ru) * 2010-02-09 2016-09-30 Шарп Кабусики Кайся Способ связи, устройство мобильной станции, устройство базовой станции и система мобильной связи
US8867548B2 (en) * 2010-03-22 2014-10-21 Lg Electronics Inc. Method and user equipment for transmitting uplink control information
KR101191216B1 (ko) * 2010-11-24 2012-10-16 엘지전자 주식회사 상향링크 제어정보 전송방법 및 사용자기기와, 상향링크 제어정보 수신방법 및 기지국
KR101919780B1 (ko) * 2011-03-03 2018-11-19 엘지전자 주식회사 무선 통신 시스템에서 확인응답 정보를 전송하는 방법 및 장치
JP5940850B2 (ja) * 2012-03-19 2016-06-29 株式会社Nttドコモ 通信システム、基地局装置、移動端末装置及び通信方法
US9504037B2 (en) * 2012-08-01 2016-11-22 Lg Electronics Inc. Method and apparatus for transmitting and receiving data
GB2522377B (en) * 2012-10-21 2019-03-27 Goldhamer Mariana Improved utilization of the uplink FDD channel

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"TS 36.300 VI 1.6.0", 3GPP TECHNICAL SPECIFICATION, July 2013 (2013-07-01)
HITACHI LTD.: "Discussion on uplink aspect for carrier aggregated NCT", 3GPP TSG RAN WG1 MEETING #73,R1-132263, 20 May 2013 (2013-05-20), pages 1 - 3, XP050698033 *
IAESI ET AL,CZECH TECHNICAL UNIVERSITY IN PRAGUE: "Asymmetry-based spectrum utilization and coordination: TDD within FDD,", 3GPP TSG-RAN WG1 MEETING #72BIS, R1-131356, 15 April 2013 (2013-04-15), pages 1 - 8, XP050697211 *
INTEL CORPORATION: "Radio link failure handling for dual connectivity", 3GPP TSG RAN WG2 MEETING #82,R2-131990, 20 May 2013 (2013-05-20), pages 1 - 4, XP050700115 *
NTT DOCOMO: "Physical Layer Design for Dual Connectivity", 3GPP TSG RAN WG1 MEETING #72, RL-130409, 28 January 2013 (2013-01-28), pages 1 - 3, XP050663693 *
PANTECH: "Remaining details for UCI transmission on PUCCH", 3GPP TSG RAN1 #65,RL-111644, 9 May 2011 (2011-05-09), pages 1 - 3, XP050491018 *
See also references of EP3032905A4
SHARP: "PCell vs. SCell with PUCCH for inter-eNB CA", 3GPP TSG-RAN WG2#82,R2-132052, 20 May 2013 (2013-05-20), pages 1 - 6, XP050700141 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018511267A (ja) * 2015-04-10 2018-04-19 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 複数のサービングセルをサポートするワイヤレス通信システムにおけるキャリアに関する制御情報のマッピング
KR20230024952A (ko) * 2015-08-06 2023-02-21 씨스코 시스템즈, 인코포레이티드 상향링크 제어 채널 포맷을 동적으로 스위칭하는 장치 및 방법
KR102618954B1 (ko) * 2015-08-06 2023-12-27 씨스코 시스템즈, 인코포레이티드 상향링크 제어 채널 포맷을 동적으로 스위칭하는 장치 및 방법
US11974346B2 (en) 2015-08-06 2024-04-30 Cisco Technology, Inc. Apparatus and method for transmitting uplink control information through a physical uplink control channel
JP2020504941A (ja) * 2016-12-23 2020-02-13 オッポ広東移動通信有限公司 情報伝送方法、ネットワーク装置及び端末装置
JP7097890B2 (ja) 2016-12-23 2022-07-08 オッポ広東移動通信有限公司 情報伝送方法、ネットワーク装置及び端末装置
US11777684B2 (en) 2016-12-23 2023-10-03 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Information transmission method, network device and terminal device

Also Published As

Publication number Publication date
US9992002B2 (en) 2018-06-05
JP6282656B2 (ja) 2018-02-21
EP3032905A1 (en) 2016-06-15
US20160191221A1 (en) 2016-06-30
JPWO2015020018A1 (ja) 2017-03-02
EP3032905A4 (en) 2017-07-19

Similar Documents

Publication Publication Date Title
JP6282656B2 (ja) ユーザ端末、無線アクセスネットワーク、及び通信制御方法
US9844047B2 (en) Mobile communication system that supports a dual connectivity management
JP6243067B2 (ja) 基地局及び方法
WO2015064679A1 (ja) 移動通信システム及びユーザ端末
TW202008806A (zh) 用於交遞增強的方法和裝置
JP6189400B2 (ja) ユーザ端末、基地局、及びプロセッサ
WO2014017478A1 (ja) 基地局及び通信制御方法
JP5842061B2 (ja) 移動通信システム、ユーザ端末、及びプロセッサ
JP6829208B2 (ja) 無線端末及び基地局
JP6174141B2 (ja) 通信制御方法及び基地局
JP6158309B2 (ja) 基地局、プロセッサ、及び通信制御方法
WO2015125717A1 (ja) 移動体通信システム、特定基地局、及びユーザ端末
JP6538026B2 (ja) ネットワーク選択制御方法、基地局、及びユーザ端末
JP6268320B2 (ja) 通信制御方法、ユーザ端末及びプロセッサ
JP6034956B2 (ja) 移動通信システム、基地局及びユーザ端末
JP6398032B2 (ja) 移動通信システム、ユーザ端末、基地局、及びプロセッサ
WO2014157397A1 (ja) 通信制御方法、ユーザ端末、及び基地局
WO2015046138A1 (ja) 基地局及びユーザ端末
WO2016148221A1 (ja) 通信装置及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14834127

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015530891

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14910871

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014834127

Country of ref document: EP