WO2015019406A1 - 基地局装置、移動端末、および、無線通信システム - Google Patents

基地局装置、移動端末、および、無線通信システム Download PDF

Info

Publication number
WO2015019406A1
WO2015019406A1 PCT/JP2013/071184 JP2013071184W WO2015019406A1 WO 2015019406 A1 WO2015019406 A1 WO 2015019406A1 JP 2013071184 W JP2013071184 W JP 2013071184W WO 2015019406 A1 WO2015019406 A1 WO 2015019406A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
mobile terminal
base station
information
unit
Prior art date
Application number
PCT/JP2013/071184
Other languages
English (en)
French (fr)
Inventor
品田優貴
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2013/071184 priority Critical patent/WO2015019406A1/ja
Priority to EP13891077.3A priority patent/EP3032876A4/en
Priority to JP2015530573A priority patent/JP6123898B2/ja
Publication of WO2015019406A1 publication Critical patent/WO2015019406A1/ja
Priority to US14/988,282 priority patent/US9832702B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/322Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by location data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00835Determination of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/04Reselecting a cell layer in multi-layered cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0061Transmission or use of information for re-establishing the radio link of neighbour cell information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present invention relates to communication between a mobile terminal and a base station.
  • the “small cell” refers to a cell having a smaller cell radius and the number of simultaneously accessible users compared to a macro cell.
  • a small cell may be installed in a macro cell in order to cope with an increase in the number of macro cell users and an increase in the amount of communication per user.
  • the small cell is set to communicate using a frequency band different from the frequency band used in the macro cell including the small cell. There are many.
  • the mobile terminal specifies a physical cell ID (PCI, physical cell identifier) assigned to the small cell of the handover destination in order to perform handover to the small cell base station.
  • PCI physical cell ID
  • the mobile terminal performs processing in the frequency band used for communication by the small cell of the handover destination. Therefore, a mobile terminal that wants to acquire information of a handover-destination small cell during communication with a macro cell can use both the frequency band used for communication via the macro cell and the frequency band used for communication in the small cell. Will be processed.
  • the power consumption of the mobile terminal increases. Furthermore, since the mobile terminal located at a position away from the small cell repeats the process until the physical cell ID can be acquired, the power consumed for searching for the small cell is further increased.
  • the mobile terminal determines whether there is a small cell in the vicinity of the mobile terminal using the fingerprint information.
  • the fingerprint information is information that is generated when the small cell is located and is stored in the storage medium of the mobile terminal, and the position related to the small cell such as the location information of the mobile terminal when the small cell is located Contains information.
  • the mobile terminal compares the location information in the fingerprint stored in the storage medium with the current location of the mobile terminal to identify the physical cell ID for the small cell determined to be in the vicinity.
  • a mobile terminal that stores a list indicating accessible small cells has been devised.
  • the mobile terminal receives the network policy from the base station, the mobile terminal determines whether the small cell is accessible from the information regarding the accessible small cells included in the list. At this time, fingerprint information is used as information on accessible small cells.
  • the mobile terminal notifies the determination result to the base station (for example, Patent Document 1).
  • a method has been proposed in which a base station determines a handover destination of a mobile terminal. In this method, the base station that determines the handover destination reduces the list of base stations that transfer the same physical cell identifier using the fingerprint table, and specifies the handover destination (for example, Patent Document 2).
  • the mobile terminal determines that the small cell is in the vicinity using the fingerprint information, the mobile terminal starts searching for the small cell.
  • the conventional fingerprint information does not include information on a cell in which the mobile terminal has never been located. For this reason, when the conventional fingerprint method is used, it is difficult for the mobile terminal to efficiently find a small cell in which the mobile terminal has never been located.
  • searching for a small cell of a handover destination without using the fingerprint method even if the mobile terminal is located away from the small cell, the search process is performed, so that the search efficiency is poor and the mobile terminal Power consumption will increase. Note that a method for allowing a mobile terminal to efficiently search for a cell set in a frequency band different from the frequency band used for communication has not been obtained for a macro cell.
  • An object of the present invention is, as one aspect, to enable a mobile terminal to efficiently find a cell.
  • the base station apparatus is capable of wireless communication with a mobile terminal located in the first cell, and includes a storage unit and a transmission unit.
  • the storage unit stores position information of a second cell that can be a destination of the mobile terminal.
  • the transmission unit transmits the location information of the second cell to the mobile terminal, and causes the mobile terminal to detect approach to the second cell using the location information.
  • the mobile terminal can efficiently find the cell.
  • FIG. 1 is a diagram illustrating an example of communication between a base station and a mobile terminal.
  • the base station 10x forms a cell X.
  • the cell X may be a macro cell or a small cell.
  • the cell X is a macro cell.
  • a cell smaller than a macro cell is referred to as a “small cell”.
  • the small cell can be a micro cell, a pico cell, a femto cell, or the like.
  • the base station 10a is a small cell A base station
  • the base station 10b is a small cell B base station
  • the base station 10c is a small cell C base station.
  • FIG. 1 is a diagram illustrating an example of communication between a base station and a mobile terminal.
  • the base station 10x forms a cell X.
  • the cell X may be a macro cell or a small cell.
  • the cell X is a macro cell.
  • a cell smaller than a macro cell is referred to as
  • the frequency band used for communication in the small cells A to C is set to a frequency band different from that of the cell X.
  • the mobile terminal 5 has communicated with the cell X, but has not accessed any of the small cells A to C, and any location information of the small cells A to C It shall not be held.
  • the base station 10x stores cell location information that can be a handover destination of a mobile terminal communicating with the base station 10x.
  • a cell that can be a destination of a mobile terminal communicating with the base station 10x is a cell of any size sharing at least one point with the cell X.
  • a cell that can be a destination of a mobile terminal communicating with the base station 10x includes a cell included in the cell X, a cell formed in a region including a part of the cell X, and a cell X. Cell is included.
  • the cells that can be the destination of the mobile terminal communicating with the base station 10 x are the small cell A, the small cell B, and the small cell C.
  • the base stations 10a to 10c are assumed to hold cell location information that can be the destination of a mobile terminal communicating with the base station 10x.
  • the mobile terminal 5 is located in the cell X and is communicating with the base station 10x.
  • the base station 10 x transmits the location information of the small cell A, the small cell B, and the small cell C to the mobile terminal 5.
  • the mobile terminal 5 compares the position information acquired from the cell X with the position of the mobile terminal 5 to detect approach to a cell that can be a destination. For example, it is assumed that the mobile terminal 5 detects the small cell B as a destination candidate. Then, the mobile terminal 5 specifies the physical cell ID of the small cell B after acquiring information used for acquiring the physical cell ID of the small cell from the base station 10x.
  • the mobile terminal 5 notifies the physical cell ID of the small cell B to the base station 10 x and moves from the cell X to the small cell B.
  • the base station 10 b When communication with the mobile terminal 5 is started, the base station 10 b notifies the mobile terminal 5 of the location information of the cell that can be the destination of the mobile terminal 5. For example, the base station 10b can notify the mobile terminal of the location information of the small cells A and C. The mobile terminal 5 can detect that it has approached the small cell A or the small cell C using the information acquired from the base station 10b. The mobile terminal 5 can appropriately request the handover process from the base station 10b using the physical cell ID assigned to the small cell that has detected the approach.
  • the mobile terminal can acquire the location information of the cell that can be the destination from the communicating base station. For this reason, the mobile terminal can efficiently discover even a small cell that has never been in the area by comparing the location information of the mobile terminal itself with the location information acquired from the base station.
  • a base station of a small cell may hold information on a base station that can be a destination from a macro cell that shares one or more points with the small cell.
  • the small cell A in FIG. Therefore, the base station 10a forming the small cell A can store the location information of the small cells B and C that can be moved to by the mobile terminal communicating using the cell X. Even in this case, since the mobile terminal 5 communicating with the base station 10a can acquire the location information of the small cells B and C from the base station 10a, it is possible to efficiently discover even a small cell that has never been in the area. Can do.
  • each of the base stations 10a to 10c, 10x may store the small cell position information in advance, and acquire the small cell position information from a server or the like that can communicate via the network as appropriate. Also good.
  • the base station 10 acquires the position information of the small cell from the server will be described as an example.
  • FIG. 2 shows an example of the configuration of the mobile terminal 5 and the base stations 10 (10a to 10c).
  • the base stations 10 a to 10 c can access the server 30 via the network 1.
  • the base station 10 includes a signal processing unit 11, a radio processing unit 12, an update unit 15, a handover processing unit 16, an adjustment unit 17, and a storage unit 20.
  • the wireless processing unit 12 includes a reception unit 13 and a transmission unit 14.
  • the storage unit 20 holds a position information table 21. The configuration of the base station 10 that forms the macro cell and the configuration of the base station 10 that forms the small cell are the same.
  • the signal processing unit 11 processes a signal used in communication via the network 1.
  • the receiving unit 13 receives information transmitted from the mobile terminal 5.
  • the transmission unit 14 transmits information such as position information to the mobile terminal 5.
  • the location information table 21 includes location information of small cells that can be the destination of the mobile terminal 5 communicating with the base station 10.
  • the update unit 15 updates the position information table 21 when the position information of the small cell is updated.
  • the update unit 15 acquires the location information of the small cell from the server 30 via the signal processing unit 11.
  • the handover processing unit 16 is a process for the mobile terminal 5 in communication to start communication with another base station 10 or a process for starting communication with the mobile terminal 5 in communication with another base station 10. I do.
  • the adjustment unit 17 generates a message for notifying the mobile terminal 5 of small cell information that can be the destination of the mobile terminal 5.
  • the adjustment unit 17 outputs the generated message to the transmission unit 14. Furthermore, the adjustment unit 17 can adjust the timing of transmitting a message including position information. The operation of the adjustment unit 17 will be described later.
  • the base station 10 may further include a calculation unit 18.
  • the calculation unit 18 can calculate the moving speed of the mobile terminal 5 and output the calculation result to the adjustment unit 17 in association with the identifier of the mobile terminal 5.
  • the mobile terminal 5 includes a receiving unit 51, a transmitting unit 52, an updating unit 61, a specifying unit 62, a detecting unit 63, a handover processing unit 64, and a storage unit 70.
  • the receiving unit 51 receives information such as position information from the base station 10.
  • the transmission unit 52 transmits information to the base station 10.
  • the update unit 61 updates the position information table 71 using the position information received from the base station 10.
  • the specifying unit 62 specifies the position of the mobile terminal 5.
  • the specifying unit 62 can specify the position of the mobile terminal 5 using GPS (Global Positioning System) or the like.
  • the detecting unit 63 compares the information obtained by the specifying unit 62 with the position information in the position information table 71 to detect that the small cell that can be the destination is approached.
  • the detection unit 63 stores a threshold value Thd in advance. For example, when the distance from the position of the mobile terminal 5 to the base station 10 of the small cell is equal to or less than the threshold value Thd, the detection unit 63 can determine that the small cell has been approached. For example, when the cell radius is included in the position information table 71, the detection unit 63 approaches the small cell when the distance from the position of the mobile terminal 5 to the boundary of the small cell is equal to or less than the threshold Thd. You may determine that you did.
  • the detection unit 63 generates a message (notification information) for notifying the handover source base station 10 of the approach to the small cell, and transmits the message via the transmission unit 52.
  • the handover processing unit 64 performs processing related to handover.
  • the storage unit 70 holds a position information table 71.
  • the server 30 includes a reception unit 31, an update unit 32, a search unit 33, a selection unit 34, a transmission unit 35, and a storage unit 40.
  • the storage unit 40 holds a macro cell information table 41, a small cell information table 42, a macro cell management table 43, and a small cell management table 44.
  • the receiving unit 31 receives macro cell information and small cell information.
  • the receiving unit 31 may acquire, from each base station 10, position information of the base station 10 and information on a frequency band used for communication.
  • the receiving unit 31 may acquire information on each base station 10 via the network 1 from a device that previously holds information such as the installation position of the base station 10.
  • the update unit 32 updates the macro cell information table 41 and the small cell information table 42 using the information acquired via the reception unit 31.
  • the macro cell information table 41 holds information such as the position of the base station forming the macro cell and the frequency band used for communication in the macro cell.
  • the small cell information table 42 holds information such as the position of the base station forming the small cell and the frequency band used for communication in the small cell. Examples of the macro cell information table 41 and the small cell information table 42 will be described later.
  • the search unit 33 updates the macro cell management table 43 and the small cell management table 44 using the updated macro cell information table 41 and the small cell information table 42.
  • the search unit 33 searches for a small cell that can be a destination of the mobile terminal 5 for each macro cell, using information such as the position of the macro cell, the cell radius of the macro cell, the position of the small cell, and the cell radius of the small cell.
  • the search unit 33 records the obtained result in the macro cell management table 43 in association with the physical cell ID of the macro cell.
  • the search unit 33 searches for a small cell that may be the destination of movement by the mobile terminal 5 that is communicating with the small cell.
  • the search unit 33 records the search result for each small cell in the small cell management table 44 in association with the physical cell ID of the small cell.
  • An example of the macro cell management table 43 and the small cell management table 44 and a specific example of processing of the search unit 33 will be described later.
  • the selection unit 34 generates destination cell information for notifying the base station 10 of location information.
  • the “destination cell information” includes location information of a cell that can be a destination for the mobile terminal 5 communicating with the destination base station 10 of the destination cell information.
  • the selection unit 34 selects information to be transmitted according to the transmission destination base station 10. For example, when the information transmission destination is the base station 10 of the macro cell, the selection unit 34 uses the macro cell management table 43 to select a small cell associated with the identifier of the macro cell formed by the base station 10 of the transmission destination. To select. On the other hand, when the small cell base station 10 is the transmission destination, the selection unit 34 uses the small cell management table 44 to select the small cell associated with the identifier of the transmission destination base station 10.
  • the selection unit 34 acquires information on the selected small cell from the small cell information table 42 and generates destination cell information to be transmitted to the base station 10.
  • the selection unit 34 outputs the movement destination cell information to the transmission unit 35 together with information for identifying the transmission destination base station 10.
  • the transmission unit 35 transmits the destination cell information to the base station 10.
  • FIG. 3 shows an example of the hardware configuration of the base station 10.
  • the base station 10 includes an antenna 101, an amplifier 102, a baseband processing circuit 103, a processor 104, a memory 105, and a transmission path interface 106.
  • the base station 10 communicates with the mobile terminal 5 via the antenna 101.
  • the antenna 101 and the amplifier 102 operate as the wireless processing unit 12.
  • the baseband processing circuit 103 processes a baseband signal.
  • the processor 104 can be any processing circuit including Central Processing Unit (CPU).
  • the processor 104 operates as the update unit 15, the handover processing unit 16, the adjustment unit 17, and the calculation unit 18 by executing a program stored in the memory 105.
  • the memory 105 operates as the storage unit 20 and stores data, programs, and the like used for processing of the base station 10 as appropriate.
  • the transmission path interface 106 implements the signal processing unit 11.
  • the base station 10 performs communication with the network 1 via the transmission path interface 106 and communication via the interoffice line.
  • FIG. 4 shows an example of the hardware configuration of the mobile terminal 5.
  • the mobile terminal 5 includes an antenna 111, an amplifier 112, a baseband processing circuit 113, a processor 114, and a memory 115.
  • the mobile terminal 5 communicates with the base station 10 via the antenna 111.
  • the antenna 111 and the amplifier 112 operate as the reception unit 51 and the transmission unit 52.
  • the baseband processing circuit 113 processes the baseband signal.
  • the processor 114 is an arbitrary processing circuit including a CPU.
  • the processor 114 operates as the updating unit 61, the specifying unit 62, the detecting unit 63, and the handover processing unit 64 by executing a program stored in the memory 115.
  • the memory 115 operates as the storage unit 70 and stores data, programs, and the like used for processing of the mobile terminal 5 as appropriate.
  • FIG. 5 shows an example of the hardware configuration of the server 30.
  • the server 30 includes a processor 121, a memory 122, a bus 125, an external storage device 126, and a network connection device 129.
  • the server 30 may further include an input device 123, an output device 124, and a medium driving device 127.
  • the processor 121 is an arbitrary processing circuit including a CPU.
  • the processor 121 operates as the update unit 32, the search unit 33, and the selection unit 34.
  • the processor 121 can execute a program stored in the external storage device 126, for example.
  • the memory 122 operates as the storage unit 40. Furthermore, the memory 122 also appropriately stores data obtained by the operation of the processor 121 and data used for the processing of the processor 121.
  • the network connection device 129 is used for communication with other devices, and operates as the reception unit 31 and the transmission unit 35.
  • the input device 123 is realized as, for example, a button, a keyboard, or a mouse
  • the output device 124 is realized as a display or the like.
  • the bus 125 connects the processor 121, the memory 122, the input device 123, the output device 124, the external storage device 126, the medium drive device 127, and the network connection device 129 so that data can be exchanged between them.
  • the external storage device 126 stores programs, data, and the like, and provides the stored information to the processor 121 as appropriate.
  • the medium driving device 127 can output data in the memory 122 and the external storage device 126 to the portable storage medium 128, and can read programs, data, and the like from the portable storage medium 128.
  • the portable storage medium 128 may be any portable storage medium including a floppy disk, a Magneto-Optical (MO) disk, a Compact-Disc-Recordable (CD-R) and a Digital-Versatile-Disk-Recordable (DVD-R). It can be a medium.
  • a floppy disk a Magneto-Optical (MO) disk
  • CD-R Compact-Disc-Recordable
  • DVD-R Digital-Versatile-Disk-Recordable
  • FIG. 6 shows an example of the arrangement of macro cells and small cells.
  • the identifier of the macro cell is represented by a character string in which uppercase letters of three letters are continuous
  • the identifier of the small cell is represented by a character string in which lowercase letters of three letters are consecutive.
  • cell AAA and cell BBB in FIG. 6 are macro cells
  • cells aaa and bbb are small cells.
  • the physical cell ID and the identifier of each cell are represented by the same character string.
  • the physical cell ID of the cell AAA is AAA.
  • FIG. 6 shows an example of the arrangement of macro cells and small cells.
  • the macro cell AAA includes a small cell aaa and a small cell bbb, and shares a part of the area with the small cell ccc. Furthermore, since the macro cell AAA is in contact with the small cell ddd and the small cell ee, it can be said that the small cell ddd and the small cell ee share at least one point.
  • the macro cell BBB includes a small cell ddd and a small cell fff, and further shares a partial area with the small cell bbb.
  • the communication method according to the first embodiment will be described by taking as an example the case where the macro cell and the small cell are arranged as shown in FIG.
  • the following is divided into a method of identifying a cell that can be the destination of the mobile terminal 5, notification of location information to the base station 10, notification of location information from the base station 10 to the mobile terminal 5, and processing at the mobile terminal 5 explain.
  • FIG. 7 shows an example of the macro cell information table 41 and the small cell information table 42.
  • both the macro cell information table 41 and the small cell information table 42 are associated with the physical cell ID assigned to each cell, and are used for the installation position and communication of the base station that forms the cell.
  • the frequency band and cell radius are recorded.
  • the position information is a combination of latitude and longitude, and the value with xx at the end is latitude (north latitude) and the value with yy at the end is longitude (east longitude)
  • the macro cell AAA and the macro cell BBB use the same frequency band.
  • each of the small cells aaa to fff uses a frequency band different from that of the macro cell AAA or the macro cell BBB for communication. Furthermore, between small cells, the frequency band used for communication may be the same or different. In the example of FIG. 7, both the macro cell AAA and the macro cell BBB communicate in the 2.2 GHz band.
  • the small cells aaa, ccc, ddd, and eee use a frequency band of 800 MHz, while the small cells bbb and fff use a frequency band of 900 MHz.
  • FIG. 8 is a flowchart for explaining an example of processing of the updating unit 32.
  • the macro cell information table 41 and the small cell information table 42 are updated by the procedure shown in FIG.
  • the receiving unit 31 of the server 30 associates the location information of the base station 10 and information such as the cell radius with the physical cell ID from the device or the base station 10 that holds information such as the location of the base station 10. get.
  • the receiving unit 31 outputs the acquired information to the updating unit 32 (step S1).
  • the update unit 32 specifies whether the information input from the reception unit 31 is information of a macro cell or a small cell.
  • the method by which the update unit 32 specifies the cell size is arbitrary.
  • the update unit 32 may store a physical cell ID assigned to the macro cell in advance.
  • the updating unit 32 may specify whether the input information is a macro cell or a small cell using, for example, a cell radius or transmission power value. If the update unit 32 determines that the input information is macro cell information, the update unit 32 searches the macro cell information table 41 using the physical cell ID associated with the notified information as a key (step S2).
  • the updating unit 32 creates a new entry in the macro cell information table 41 and registers the input information in the macro cell information table 41 (step S2). No, step S3).
  • the updating unit 32 determines that there is a difference between the information recorded in the macro cell information table 41 and the information input from the receiving unit 31. It is determined whether or not there is (Yes in Step S2, Step S4). When it is determined that there is a difference between the two, the updating unit 32 updates the macro cell information table 41 using the information notified from the receiving unit 31 (Yes in Step S4, Step S5).
  • step S1 if there is no difference between the information associated with the physical cell ID as a key and the information in the macro cell information table 41 and the information input from the receiving unit 31, the updating unit 32 ends the process (step S1). No in S4, step S6).
  • step S6 By performing the processing described with reference to FIG. 8, when the macro cell is arranged as shown in FIG. 6, the macro cell information table 41 shown in FIG. 7 is obtained.
  • the update unit 32 performs the same processing as the processing described with reference to FIG. 8 on the information input from the receiving unit 31 as well as the information determined to be small cell information.
  • the small cell information table 42 shown in FIG. 7 is obtained.
  • the macro cell information table 41 and / or the small cell information table 42 are changed in the cell installation status by the process shown in FIG. Will be updated accordingly.
  • FIG. 9 is a flowchart for explaining an example of a method for updating the macro cell management table 43.
  • FIG. 10 is an example of the macro cell management table 43.
  • the search unit 33 searches for a small cell that can be the destination of the mobile terminal 5 for each macro cell, and records the obtained result in the macro cell management table 43. To do.
  • a small cell that can be a destination of the mobile terminal 5 may be referred to as an “assigned small cell”.
  • the allocated small cell is a small cell allocated to each base station 10 as a target for notifying the mobile terminal 5 in communication of location information.
  • the order of step S11 and step S12 can be changed according to the implementation.
  • the search unit 33 acquires the number of entries (M) included in the macro cell information table 41 and the number of entries (N) included in the small cell information table 42 (step S11).
  • the constant M is the total number of macro cells
  • the constant N is the total number of small cells.
  • the search part 33 sets the variable m and the variable n to 1 (step S12, S13). Note that m is a variable that identifies an entry in the macro cell information table 41, and n is a variable that identifies an entry in the small cell information table 42.
  • the search unit 33 acquires the macro cell information recorded in the m-th entry from the macro cell information table 41 and records it in the macro cell management table 43 (step S14).
  • a physical cell ID, position information, a frequency band, and a cell radius are recorded in each entry.
  • R be the cell radius of the mth macro cell.
  • the search unit 33 acquires the following information about the cell AAA from the first entry of the macro cell information table 41 shown in FIG. Physical cell ID: AAA Position information: North latitude 35.730541 degrees, East longitude 139.77124 degrees Frequency band: 2.2 GHz Cell radius: 500m
  • the search unit 33 generates the macro cell management table 43a shown in FIG. 10 using the acquired information.
  • the search unit 33 acquires the position information and the cell radius of the small cell recorded in the nth entry from the small cell information table 42 (step S15).
  • the cell radius of the nth small cell is assumed to be r.
  • the search unit 33 calculates the distance (D) between the mth macro cell and the nth small cell using the position information of the mth macrocell and the position information of the nth small cell (step S16).
  • the calculation of the distance by the search unit 33 can be an arbitrary calculation method using information on the latitude and longitude of two points.
  • the distance D calculated in the example of FIG. 9 is the distance between the base station of the mth macro cell and the base station of the nth small cell.
  • the search unit 33 compares the distance D with the total value of the cell radius of the mth macro cell and the cell radius of the nth small cell (step S17). When the distance D is less than or equal to the total value, the mth macro cell and the nth small cell share at least one point. For example, when the distance D is equal to the total value, the mth macro cell and the nth small cell are in contact with each other. When the distance D is smaller than the total value, there is an area where the mth macro cell and the nth small cell overlap.
  • the search unit 33 determines that the nth small cell can be a destination from the mth macrocell, and records it in the macrocell management table 43 (Yes in step S17). Step S18). For example, as shown in FIG. 6, the distance between the macro cell AAA and the small cell aaa is smaller than the sum of the cell radius of the macro cell AAA and the cell radius of the small cell aaa. Then, the search unit 33 updates the macro cell management table 43a to the macro cell management table 43b (FIG. 10) with the small cell aaa as the allocated small cell of the macro cell AAA.
  • the search unit 33 determines that the nth small cell cannot be a destination from the mth macrocell, and does not record it in the macrocell management table 43 (No in step S17). Step S19).
  • step S18 or step S19 the search unit 33 increments the variable n by 1, and then compares the variable n with the total number N of small cells (steps S20 and S21).
  • step S15 the processes after step S15 are repeated (No in step S21). That is, it is determined whether each small cell can be a destination cell for the macro cell specified by the variable m.
  • the search unit 33 increments the variable m by 1, and then compares the variable m with the total number M of macro cells (steps S22 and S23).
  • the variables m is equal to or less than the total number M of macro cells, the processes after step S13 are repeated (No in step S23). Therefore, the data in the macro cell management table 43 is updated for all macro cells.
  • the search unit 33 ends the process (Yes in step S23). For this reason, when cells are arranged as shown in FIG. 6, the macro cell management table 43c (FIG. 10) is obtained by the processing described with reference to FIG.
  • FIG. 11 is a flowchart for explaining an example of a method for updating the small cell management table 44.
  • FIG. 12 is an example of the small cell management table 44.
  • the search unit 33 searches for a small cell that can be the destination of the mobile terminal 5 for each small cell, and records the obtained result in the small cell management table 44.
  • FIG. 12 an example of processing of the search unit 33 when generating the small cell management table 44 illustrated in FIG. 12 will be described with reference to FIG.
  • the order of step S31 and step S32 can be changed with each other according to the implementation.
  • the search unit 33 acquires the number of macro cell entries (M) included in the macro cell management table 43 and the number of entries (N) included in the small cell information table 42 (step S31).
  • the constant M is the total number of macro cells
  • the constant N is the total number of small cells.
  • the search part 33 sets the variable p and the variable q to 1 (step S32, S33).
  • p is a variable that identifies a small cell
  • q is a variable that identifies a macro cell.
  • the search unit 33 acquires information on the small cell recorded in the p-th entry from the small cell information table 42 and records it in the small cell management table 44 (step S34). For example, the search unit 33 records the physical cell ID, position information, frequency band, and cell radius of the small cell in the small cell management table 44.
  • the search unit 33 refers to the entry of the qth macro cell in the macro cell management table 43, and determines whether or not the allocated small cell includes the pth small cell (step S35).
  • the p-th small cell is included, information on small cells other than the p-th small cell among the assigned small cells of the q-th macro cell is set as the allocated small cell of the p-th small cell (step) Yes in S35, step S36).
  • the search unit 33 specifies the allocated small cell of the macro cell AAA using the macro cell management table 43c (FIG. 10).
  • the allocated small cells of the macro cell AAA are the cell aaa, the cell bbb, the cell ccc, the cell ddd, and the cell eeee. Since the small cell aaa is included in the allocated small cell of the macro cell AAA, the search unit 33 sets a cell other than the small cell aaa among the allocated small cells of the macro cell AAA as the allocated small cell of the small cell aaa. Accordingly, as shown in the small cell management table 44a (FIG. 12), the search unit 33 records that the allocated small cells of the cell aaa are the cell bbb, the cell ccc, the cell ddd, and the cell eeee.
  • the search unit 33 increments the variable q by 1, and then compares the variable q with the total number M of macro cells (steps S37 and S38). If the variable q is less than or equal to the total number M of macrocells, the processes after step S35 are repeated (No in step S38). For this reason, when specifying an allocation small cell about one small cell, the information on the allocation small cell of all the macro cells is used. Therefore, when a certain small cell is an allocated small cell of a plurality of macro cells, the allocated small cell of the small cell is specified using information on the plurality of macro cells. For example, the small cell bbb is an allocated small cell of the macro cell AAA, and is also an allocated small cell of the macro cell BBB.
  • the cell aaa, the cell ccc, the cell ddd, and the cell eeee are the allocated small cells of the cell bbb. Furthermore, since the allocated small cells of the macro cell BBB are the cell bbb, the cell ddd, and the cell fff, the cell fff is also an allocated small cell of the cell bbb.
  • the search unit 33 increments the variable p by 1, and then compares the variable p with the total number N of small cells (steps S39 and S40).
  • the variables p is less than or equal to the total number N of small cells, the processes after step S33 are repeated (No in step S40). For this reason, the data of the small cell management table 44 are updated about all the small cells.
  • the search unit 33 ends the process (Yes in step S40). For this reason, when cells are arranged as shown in FIG. 6, the small cell management table 44b shown in FIG. 12 is obtained by the processing described with reference to FIG.
  • FIG. 13 is a sequence diagram illustrating an example of a method for identifying a cell that can be a destination of a mobile terminal. This process is executed by the server 30, for example.
  • the arrow shown in FIG. 13 shows the example of the flow of information.
  • FIG. 13 is an example, and the order of operations can be changed according to the implementation. For example, procedures (3) and (4) may be performed before procedures (1) and (2).
  • the receiving unit 31 When receiving the information of the base station 10, the receiving unit 31 outputs the received information to the updating unit 32.
  • the updating unit 32 determines whether the information input from the receiving unit 31 is information of the base station 10 of the macro cell or the small cell. Here, it is assumed that information on a macro cell base station is input. Then, the update unit 32 updates the macro cell information table 41.
  • the update unit 32 performs the same determination as in the procedure (2). Here, it is assumed that information of a small cell base station is input. Then, the update unit 32 updates the small cell information table 42.
  • the storage unit 40 holds the updated macro cell information table 41 and small cell information table 42.
  • the search unit 33 accesses the storage unit 40 and acquires information of the macro cell information table 41 and the small cell information table 42.
  • the search unit 33 uses the macro cell information table 41 and the small cell information table 42 to specify a small cell that can be a destination from each cell.
  • the search unit 33 updates the macro cell management table 43 and the small cell management table 44. At this time, the search unit 33 records a small cell that can be a destination from each cell in the macro cell management table 43 or the small cell management table 44 as an allocated small cell.
  • the server 30 notifies the base station 10 of the destination cell information.
  • destination cell information includes location information of a cell that can be a destination for the mobile terminal 5 communicating with the destination base station 10 of the destination cell information.
  • movement destination cell information it is assumed that arbitrary information including position information of each cell is associated with the physical cell ID of the allocated small cell of the base station 10 serving as the destination.
  • the first letter alphabet of the physical cell ID formed by the operating base station 10 is described at the end of the code.
  • the base station 10A forms a macro cell AAA
  • the base station 10b forms a small cell bbb.
  • the location information table 21A is the location information table 21 held in the base station 10A.
  • the selection unit 34 identifies an allocated small cell for the base station 10 that is the transmission destination of the movement destination cell information from the macro cell management table 43. Furthermore, the selection unit 34 selects position information about the specified allocated small cell from the small cell management table 44. Note that the selection unit 34 may acquire the position information about the allocated small cell from the small cell information table 42.
  • the selection unit 34 when generating the movement destination cell information to be transmitted to the base station 10A of the macro cell AAA, specifies the allocated small cell associated with the cell AAA from the macro cell management table 43c (FIG. 10).
  • the allocated small cells associated with the cell AAA are the cell aaa, the cell bbb, the cell ccc, the cell ddd, and the cell eeee.
  • the selection unit 34 obtains location information and the like for each identified cell from the small cell management table 44, thereby generating destination cell information.
  • FIG. 14 shows an example of the movement destination cell information transmitted to the base station 10A of the macro cell AAA.
  • the destination cell information is generated by the same process.
  • the selection unit 34 specifies an allocated small cell for the base station 10 that is the transmission destination of the movement destination cell information from the small cell management table 44. Further, the selection unit 34 also selects position information about the specified allocated small cell from the entries in the small cell management table 44. Note that the selection unit 34 may also obtain location information about the allocated small cell from the small cell information table 42 when generating the destination cell information addressed to the base station 10 of the small cell.
  • the selection unit 34 when generating destination cell information to be transmitted to the base station 10d of the macro cell ddd, specifies an allocated small cell associated with the cell ddd from the small cell management table 44b (FIG. 12). .
  • the allocated small cells associated with the cell ddd are cell aaa, cell bbb, cell ccc, cell eeee, and cell fff.
  • the selection unit 34 obtains location information and the like for each identified cell from the small cell management table 44, thereby generating destination cell information.
  • the selection unit 34 also generates destination cell information for the base stations 10 of other small cells by the same process.
  • FIG. 15 is a sequence diagram illustrating an example of a process of notifying the base station 10 of the movement destination cell information.
  • FIG. 15 illustrates an example of communication processing when the server 30 notifies the destination cell information to the base station 10A forming the macro cell AAA. However, between the server 30 and the base station 10 of another macro cell, The same applies to communication in
  • the selection unit 34 acquires information on the macro cell management table 43 and the small cell management table 44 from the storage unit 40.
  • the selection unit 34 searches the macro cell management table 43 using the physical cell ID of the cell formed by the transmission destination base station 10A as a key.
  • the physical cell ID of the cell formed by the base station 10A is AAA.
  • the selection unit 34 generates destination cell information addressed to the base station 10A. The method of generating the destination cell information is as described with reference to FIG.
  • the selection unit 34 outputs the generated destination cell information to the transmission unit 35 by designating the base station 10A as a destination.
  • the transmission unit 35 transmits the destination cell information input from the selection unit 34 to the base station 10A.
  • the signal processing unit 11A of the base station 10A receives a signal from the server 30.
  • the signal processing unit 11A acquires the destination cell information from the received signal and outputs it to the update unit 15A.
  • the updating unit 15A compares the destination cell information with the position information table 21A. If there is a difference between the location information table 21A and the destination cell information, the updating unit 15A updates the location information table 21A according to the destination cell information. At this time, the updating unit 15A may update only the information about the base station that has a difference between the location information table 21A and the destination cell information. Further, the information in the location information table 21A that is already held may be deleted, and the information included in the destination cell information may be used as the location information table 21A.
  • FIG. 16 shows an example of the location information table 21A when the destination cell information shown in FIG. 14 is transmitted to the base station 10A.
  • the update unit 15A outputs the updated position information table 21A to the storage unit 20A.
  • the storage unit 20A holds the updated position information table 21A.
  • the server 30 generates and notifies the destination cell information by the same method. For this reason, when the server 30 holds the macro cell management table 43c (FIG. 10) and the small cell management table 44b (FIG. 12), the base station 10B holds the position information table 21B shown in FIG.
  • the process performed when notifying the destination cell information to the small cell base station 10 is also the same.
  • the macro cell management table 43 is not used when generating the destination cell information to be transmitted to the base station 10 of the small cell, the selection unit 34 does not access the macro cell management table 43 in the procedure (11).
  • the server 30 holds the small cell management table 44b (FIG. 12)
  • the base station 10a holds the position information table 21a of FIG.
  • the base station 10b holds the position information table 21b of FIG.
  • FIG. 17 is a sequence diagram illustrating an example of processing performed when the base station 10 notifies the mobile terminal 5 of position information.
  • the handover processing unit 16 of the base station 10 performs a process for handover of the mobile terminal 5.
  • the entry of the mobile terminal 5 into the cell of the base station 10 is referred to as “hand-in”.
  • the handover processing unit 16 detects hand-in when communication with the mobile terminal 5 is started.
  • the base station 10 can use transmission / reception of an arbitrary message performed after the synchronization process between the mobile terminal 5 and the handover destination base station 10 for hand-in detection. A specific example of the hand-in detection method will be described later.
  • the handover processing unit 16 Upon detecting the hand-in, the handover processing unit 16 notifies the adjustment unit 17 of the occurrence of the hand-in.
  • the adjustment unit 17 obtains position information by accessing the position information table 21 in the storage unit 20.
  • the adjustment unit 17 generates a message to be transmitted to the mobile terminal 5 using the acquired position information.
  • the adjustment unit 17 can use, as position information, a list in which physical cell IDs and position information are associated with each other for all small cells included in the position information table 21.
  • the adjustment unit 17 can also include information on the cell radius and frequency of each small cell in the message addressed to the mobile terminal 5 together with the position information.
  • the adjustment unit 17 outputs the generated message to the transmission unit 14.
  • the transmission unit 14 transmits the message input from the adjustment unit 17 to the mobile terminal 5.
  • the mobile terminal 5 updates the location information table 71 using the message received from the base station 10. Processing in the mobile terminal 5 will be described later.
  • FIG. 18 is a sequence diagram illustrating an example of handover. An example of a hand-in detection method will be described with reference to FIG. FIG. 18 shows an example of processing performed when the mobile terminal 5 is handed over from the base station 10B to the base station 10A.
  • the handover destination base station 10A receives a request message for requesting the start of communication using the macro cell AAA formed by the base station 10A from the mobile terminal 5, a hand to the macro cell AAA is received. Detect in.
  • the mobile terminal 5 When the mobile terminal 5 receives the Measurement Control from the communicating base station 10B, the mobile terminal 5 measures the received intensity from the surrounding base stations (procedure (31)). The mobile terminal 5 reports the obtained result to the base station 10B using Measurement Report (procedure (32)). The base station 10B determines that the mobile terminal 5 is handed over from the base station 10B to the base station 10A using the Measurement Report, and transmits a Handover Request to the handover destination base station 10A (procedure (33)). The handover destination base station 10A, after performing the process associated with the reception of the Handover Request, transmits a Handover Request ACK to the base station 10B (procedure (34)).
  • the base station 10B requests the mobile terminal 5 for a handover by transmitting the RRC Connection Reconfiguration to the mobile terminal 5 (procedure (35)). Furthermore, the base station 10B notifies the sequence number of the packet to be transmitted next to the mobile terminal 5 by sending the SN Status Transfer to the base station 10A (procedure (36)). Thereafter, synchronization processing is performed between the base station 10A and the mobile terminal 5 (procedure (37)).
  • RRC Connection Reconfiguration Complete is an example of a request message. That is, when the process of the procedure (37) fails and the mobile terminal 5 cannot hand-in to the macrocell AAA, the mobile terminal 5 does not transmit the RRC Connection Reconfiguration Complete. For this reason, when the handover processing unit 16A of the base station 10A receives the RRC Connection Reconfiguration Complete, it determines that the hand-in has been detected.
  • the handover processing unit 16A notifies the adjustment unit 17A of the hand-in, and the adjustment unit 17A uses the position information to transmit to the mobile terminal 5 according to the procedure described with reference to FIG. Is generated.
  • This message may include, for example, information recorded in the position information table 21A shown in FIG.
  • the base station 10A notifies the location information by transmitting the generated message to the mobile terminal 5 (procedure (39)).
  • the base station 10A requests path switching by transmitting a Path Switch Request to the Mobility Management Entity (MME) (procedure (40)).
  • MME Mobility Management Entity
  • the MME notifies the Serving Gateway (SGW) that the mobile terminal 5 communicates with the base station 10A by transmitting the User Plane Update Request (procedure (41)).
  • SGW Serving Gateway
  • the MME transmits a Path Switch Request ACK to the base station 10A (procedures (42) and (43)).
  • the base station 10A transmits a UE Context Release to the base station 10B (procedure (44)).
  • FIG. 18 is an example of a hand-in detection method, and the hand-in detection method may be changed depending on the implementation.
  • the processing after the procedure (38) is not performed when the mobile terminal 5 cannot be handed over. Therefore, for example, the handover processing unit 16 of the handover destination base station 10 may be modified so as to detect hand-in when transmitting a message in the procedure (40) or the procedure (44). Similarly, the handover processing unit 16 may be modified so as to detect a hand-in when receiving a Path Switch Request ACK from the MME.
  • the base station 10 transmits a message including position information to the mobile terminal 5 after detecting the hand-in.
  • the position information table 71a in FIG. 19 is an example of the position information table 71 held by the mobile terminal 5 when processing for performing hand-in to the macro cell AAA is started.
  • the mobile terminal 5 starts a handover to the base station 10A
  • the mobile terminal 5 holds the position information of small cells that can move from the cell BBB formed by the base station 10B.
  • the position information table 71a holds the information of the cell bbb, the cell ddd, and the cell fff, similarly to the position information table 21B of FIG.
  • the base station 10A generates a message including the position information with reference to the position information table 21A (FIG. 19), and transmits the message to the mobile terminal 5.
  • the receiving unit 51 of the mobile terminal 5 outputs the message to the updating unit 61.
  • the update unit 61 determines whether the position information included in the message received from the base station 10 is the same information as the position information table 71a. When there is a difference between the position information included in the message received from the base station 10 and the information in the position information table 71a, the update unit 61 deletes the information recorded in the position information table 71.
  • the updating unit 61 records the position information input from the receiving unit 51 in the position information table 71.
  • the update unit 61 updates the position information table 71a to the position information table 71b using the information input from the base station 10A.
  • the update unit 61 not only adds the newly notified small cell information, but is not notified from the base station. Small cell information has been deleted. For this reason, the mobile terminal 5 can erase the information of the small cells that can no longer be the destination after the handover among the small cells that could be the destination before the handover.
  • FIG. 20 is a flowchart for explaining an example of the update process of the position information table 71.
  • the receiving unit 51 receives a message including position information from the base station 10 (step S51).
  • the receiving unit 51 outputs the message to the updating unit 61.
  • the update unit 61 determines whether the position information notified from the base station 10 using the message matches the contents of the position information table 71 (step S52).
  • the update unit 61 updates the contents of the position information table 71 so as to match the received position information (inconsistency in step S52, step S53).
  • the updating unit 61 ends the process without updating the position information table 71 (matching in step S52, step S54).
  • FIG. 21 is a sequence diagram illustrating an example of handover using a location information table.
  • FIG. 21 shows an example of processing when the mobile terminal 5 is handed in to the macro cell AAA, then moves in the macro cell AAA, and is handed over to the base station 10c due to the proximity of the small cell ccc.
  • the mobile terminal 5 uses the position information table 71b (FIG. 19).
  • the specifying unit 62 specifies the current position of the mobile terminal 5.
  • the specifying unit 62 includes, for example, GPS, and obtains the latitude and longitude of the position of the mobile terminal 5 using GPS data.
  • the identification unit 62 outputs the latitude and longitude values of the position of the mobile terminal 5 to the detection unit 63.
  • the detection unit 63 calculates the distance between the position of the base station 10 and the position of the mobile terminal 5 of each cell recorded in the position information table 71 using the values of latitude and longitude. It is assumed that the distance between the mobile terminal 5 and the base station 10c becomes equal to or less than the threshold due to the movement of the mobile terminal 5.
  • the detection unit 63 notifies the base station 10A that has established communication that it has approached the small cell ccc by transmitting notification information.
  • the notification information can be any message that can be used to notify the approach to a cell that can be a destination.
  • the detection unit 63 can notify the base station 10A using Proximity Indication.
  • the detection unit 63 generates a message to be transmitted to the base station 10 ⁇ / b> A and outputs the message to the transmission unit 52.
  • the transmission unit 52 transmits the message input from the detection unit 63 to the base station 10A.
  • the handover processing unit 16 ⁇ / b> A of the base station 10 ⁇ / b> A provides information for acquiring the physical cell ID of the base station 10 that forms a cell that can be the destination of movement Send to.
  • 10 A of base stations transmit the information used when acquiring physical cell ID of the small cell ccc to the mobile terminal 5.
  • the frequency band of the macro cell AAA is 2.2 GHz
  • the small cell ccc uses 800 MHz.
  • the physical cell ID is used for the mobile terminal 5 to start communication via the small cell ccc. Therefore, the base station 10A notifies the mobile terminal 5 of information used for starting communication in the frequency band used by the mobile terminal 5 for communication in the small cell ccc by the procedure (53). It can be said.
  • the handover processing unit 64 acquires the physical cell ID of the small cell ccc using the information notified from the base station 10A, and notifies the base station 10A of it.
  • the handover processing unit 16A of the base station 10A requests the mobile terminal 5 to report information on the small cell of the movement destination (System Information, SI).
  • the handover processing unit 64 of the mobile terminal 5 receives the broadcast information broadcast from the base station 10c, and acquires information such as CGI (Cell Global Identity) and TAI (Tracking Area Identify) from the broadcast information.
  • CGI Cell Global Identity
  • TAI Track Area Identify
  • the handover processing unit 64 transmits the acquired information to the base station 10A.
  • FIG. 22 is a diagram illustrating an example of communication according to the first embodiment.
  • the macro cell DDD and the macro cell EEE are adjacent to each other.
  • the macro cell DDD includes a small cell ggg and a small cell hhh
  • the macro cell EEE includes a small cell jjj and a small cell kkk.
  • FIG. 22 shows the trajectory of movement of the mobile terminal 5 at times T1 to T3. For example, T1 indicates the position of the mobile terminal 5 at time T1.
  • the mobile terminal 5 is located in the macro cell DDD, and acquires information on a small cell that can be a destination from the base station 10D. Therefore, at time T1, the mobile terminal 5 acquires the location information of the small cells ggg, hhh, and jjj from the base station 10D, and discards the information on other small cells. For this reason, even if the mobile terminal 5 has not been in the small cell hhh, the mobile terminal 5 can detect that the small cell hh is nearby when it comes close to the small cell hhh.
  • the mobile terminal 5 moves from the macro cell DDD to the small cell hh at time T2.
  • the base station 10h notifies the mobile terminal 5 of the location information of the small cells ggg, jjj as small cells that can be the destination, and the mobile terminal 5 updates the location information table 71.
  • the mobile terminal 5 can delete the location information about the cell hhh in communication and use the memory efficiently.
  • the mobile terminal 5 moves from the small cell hhh to the small cell jjj at time T3.
  • the base station 10j notifies the mobile terminal 5 of the position information of the small cells hhh and kkk as small cells that can be the destination of movement.
  • the mobile terminal 5 updates the location information table 71 with the content notified from the base station 10j, and deletes the information on the small cell ggg. Therefore, the mobile terminal 5 does not have to hold information on cells that are unlikely to move directly from the cell used for communication at the time T3.
  • the mobile terminal 5 can acquire information on the small cell that can be the movement destination from the base station 10 that is the handover destination. For this reason, the mobile terminal 5 can discover efficiently even if it is a small cell that has never been in the area. Further, since the mobile terminal 5 updates the contents of the location information table 71 in accordance with the notification from the base station 10, it holds the location information of small cells that are unlikely to move from the cell in which the mobile terminal 5 is located. You don't have to. For this reason, the mobile terminal 5 can effectively use the memory. Further, the mobile terminal 5 performs processing such as measurement of received power and acquisition of a physical cell ID when the distance to the small cell is equal to or less than a predetermined threshold. For this reason, it is possible to avoid a situation where power is consumed by trying to acquire a physical cell ID of a small cell that is so far away that communication is impossible.
  • the macro cell base station 10 often manages the macro cell by dividing it into a plurality of sectors.
  • 2nd Embodiment demonstrates the case where each base station 10 memorize
  • the second embodiment is effective when it is desired to limit the amount of location information notified to the mobile terminal 5 due to reasons such as small cells being densely installed.
  • the second embodiment will be described by taking as an example a case where the server 30 specifies a small cell that can be a destination for each sector and notifies each base station 10 of the small cell.
  • the sector arrangement method in one macro cell is common to each base station 10 in advance, and the server 30 also has information for specifying the sector arrangement method. Assume that it is held in advance.
  • each macro cell is divided into six sectors of 60 degrees with reference to the north direction from the base station installation position.
  • the sector number is assumed to increase by one in the clockwise direction, assuming that the sector in the range of 60 degrees clockwise from the true north of the installation position of the base station is “1”.
  • FIG. 23 shows an example of arrangement of macro cell sectors and small cells.
  • the sector 1 and the sector 2 share a partial area with the small cell bbb, and the sector 4 shares a partial area with the small cell ccc.
  • Sector 2 of the macro cell AAA is in contact with the small cell ddd.
  • the sector 3 is in contact with the small cell eeee, and the sector 6 is in contact with the small cell aaa.
  • the sector 5 of the macro cell AAA includes a small cell aaa.
  • the sector 1 includes the small cell fff.
  • the sector 5 of the macro cell BBB includes the small cell ddd, and further shares a part of the area with the small cell bbb.
  • the sector 2 of the macro cell BBB is in contact with the small cell fff.
  • the update unit 32 of the server 30 updates the macro cell information table 41 and the small cell information table 42 by the same method as in the first embodiment.
  • the search unit 33 obtains the macro cell management table 43 by assigning a small cell (assigned small cell) that can be a destination of movement from the macro cell to each macro cell by the procedure described with reference to FIG. Next, the search unit 33 determines whether the number of allocated small cells exceeds a predetermined threshold for each macro cell. When the number of allocated small cells exceeds a predetermined threshold, the search unit 33 maps each sector in the macro cell and the small cell, and specifies a small cell sharing one or more points for each sector. The search unit 33 records information in which the identified small cell is associated with each sector of the macro cell in the macro cell management table 43.
  • the update unit 32 and the search unit 33 perform the same process as in the first embodiment to create the macro cell management table 43c shown in FIG. Generate.
  • the search unit 33 is set to manage the allocated small cells for each sector when the allocated small cells for each macro cell are 3 or more. Then, since the allocated small cells are 3 or more for both the macro cell AAA and the macro cell BBB, the search unit 33 determines to manage the allocated small cells for each sector.
  • the search unit 33 identifies the arrangement shown in FIG. 23 by mapping the sector of the macro cell AAA and the macro cell BBB and the position of the small cell.
  • the small cell shared at least one point with the sector 1 of the macro cell AAA is the small cell bbb. Similar processing is performed for other sectors as well, and the macro cell management table 43c (FIG. 10) is updated to the macro cell management table 43d shown in FIG.
  • the server 30 manages small cells in units of sectors even when it is requested to switch the small cells to management in units of sectors for a certain macro cell.
  • the method for generating the macro cell management table 43 and the small cell management table 44 is the same as when the number of allocated small cells exceeds the threshold.
  • the server 30 may receive a request for switching to management in units of sectors from another device, or may receive a request from an operator via the input device 123.
  • FIG. 25 is a flowchart for explaining an example of processing of the search unit 33 in the second embodiment.
  • FIG. 25 shows an example of a method for updating the macro cell management table 43. Note that FIG. 25 is an example, and for example, it is possible to change the order of step S62 and step S63.
  • variables r, s, and t are used.
  • r is a variable that identifies a macro cell
  • s is a variable that identifies a sector
  • t is a variable that identifies a small cell.
  • the search unit 33 determines an allocated small cell for each macro cell (step S61). The process in step S61 is as described with reference to FIG.
  • the search unit 33 acquires the total number M of macro cells and sets the variable r to 1 (steps S62 and S63).
  • the search unit 33 determines whether the allocated small cell exceeds a predetermined threshold for the r-th macro cell (step S64). If the allocated small cell does not exceed the predetermined threshold value, the search unit 33 further determines whether or not sector-by-sector management is requested for the r-th macro cell (No in step S64, step S65).
  • the search unit 33 acquires the number of sectors (X) in the r-th macro cell and the number of allocated small cells (Y) in the r-th macro cell ( Yes in step S64, step S66). Similarly, also when management in units of sectors is requested for the r-th macro cell, the search unit 33 acquires the number of sectors and the number of allocated small cells for the r-th macro cell (Yes in step S65, step S66). .
  • the search unit 33 sets both the variable s and the variable t to 1 (steps S67 and S68).
  • the search unit 33 determines whether the sth sector and the tth allocated small cell share one or more points (step S69). When the sth sector and the tth allocated small cell share one or more points, the search unit 33 sets the tth small cell as the allocated small cell to the sth sector (Yes in step S69). Step S70).
  • the search unit 33 increments the value of the variable t by 1, and determines whether the variable t is larger than the number of allocated small cells (Y) in the macro cell to be processed (steps S71 and S72).
  • the search unit 33 repeats the processing after step S69 (No in step S72).
  • the search unit 33 increments the value of the variable s by 1, and determines whether the variable s is larger than the number of sectors (X) in the macro cell to be processed (Yes in step S72). Steps S73 and S74).
  • the search unit 33 repeats the processing after step S68 (No in step S74).
  • the search unit 33 increments the value of the variable r by 1 and determines whether the variable r is larger than the number of macro cells (M) (Yes in step S74, steps S75, S76). When the variable r is equal to or smaller than M, the search unit 33 repeats the processing after step S64 (No in step S76). On the other hand, when the variable r exceeds M, the search unit 33 ends the process (Yes in step S76). If it is determined in step S65 that the sector unit management is not requested for the r-th macro cell, the search unit 33 performs the processing from step S75 onward in order to change the processing target macro cell (in step S65). No).
  • the search unit 33 updates the small cell management table 44.
  • the search unit 33 sets the allocated small cell for a certain small cell as a small cell that can move from the same sector as the sector to which the small cell is allocated. For example, it is assumed that the macro cell management table 43d (FIG. 24) is obtained. In this case, even if the search unit 33 searches the allocated small cell column using the small cell aaa as a key, it cannot find a sector in which a plurality of small cells are assigned small cells.
  • the search unit 33 determines that there is no small cell that can be a destination from the small cell aaa, and does not set an allocated small cell in the small cell aaa as shown in FIG.
  • the search unit 33 performs the same process for the small cell ccc, the small cell eeee, and the small cell fff.
  • the search unit 33 searches the allocated small cell column using the small cell bbb as a key, in the sector 2 of the macro cell AAA, it is possible to specify that the small cell bbb and the small cell ddd are allocated small cells. For this reason, the search unit 33 determines that there is a possibility that the mobile terminal 5 may move from the small cell bbb to the small cell ddd, and sets the allocated small cell of the small cell bbb as the small cell ddd as illustrated in FIG. . The search unit 33 specifies that the small cell bbb and the small cell ddd are allocated small cells even in the sector 5 of the macro cell BBB.
  • the small cell ddd is already a small cell assigned to the small cell bbb, so the small cell management table 44 is not changed.
  • the search unit 33 performs the same process for the small cell ddd.
  • FIG. 27 is a flowchart for explaining an example of processing of the search unit 33 in the second embodiment.
  • FIG. 27 shows an example of a method for updating the small cell management table 44.
  • the processing in steps S81 to S85 in FIG. 27 is the same as that in steps S31 to S35 in FIG.
  • the search unit 33 specifies the small cell assigned to the same sector as the pth small cell. (Yes in step S85).
  • the search unit 33 assigns small cells other than the pth small cell to small cells assigned to the same sector of the same macrocell as the sector to which the pth small cell is assigned, and assigns the small cell to the pth small cell.
  • Step S86 Steps S87 to S90 are the same as steps S37 to S40 in FIG.
  • the notification of the destination cell information from the server 30 to each base station 10, the notification of the location information from the base station 10 to the mobile terminal 5, and the processing at the mobile terminal 5 are the same as in the first embodiment.
  • the server 30 notifies the allocated small cell for each sector.
  • the base station 10 specifies the identifier of the sector used for communication with the mobile terminal 5 and transmits the positional information held in association with the sector corresponding to the mobile terminal 5 as the communication destination. To do. For this reason, for example, in the arrangement shown in FIG.
  • the base station 10A notifies the mobile terminal 5 communicating in the sector 1 of the macro cell AAA, but informs the information of the small cell bbb. Will not notify you.
  • the information of the sector that the base station 10 uses for communication with the mobile terminal 5 is specified by an arbitrary method such as specifying from the position information of the mobile terminal 5, for example.
  • the case where one macro cell is divided into six sectors has been described as an example.
  • the number of sectors included in one macro cell can be arbitrarily changed according to the implementation.
  • a threshold used when determining whether to change the management of the small cell from the cell unit to the sector unit is arbitrarily set according to the implementation.
  • each base station 10 stores a small cell that the mobile terminal 5 may be a destination for each sector, so the amount of position information to be notified to the mobile terminal 5 is stored. Can be suppressed. Therefore, the base station 10 can notify the mobile terminal 5 by focusing on the position information of the small cell that is relatively likely to be the destination of the mobile terminal 5.
  • the allocation small cell determination method in the server 30 may be any of the first and second embodiments.
  • the notification of the destination cell information from the server 30 to each base station 10 and the processing at the mobile terminal 5 are the same as in the first embodiment.
  • the adjustment unit 17 of the base station 10 obtains the position information after the mobile terminal 5 is handed in.
  • the period until transmission can be set in the information transmission list.
  • the mobile terminal 5 having a high moving speed has a short stay time in a cell formed by the base station 10 and is not likely to access a nearby small cell.
  • the adjustment unit 17 can adjust the timing for transmitting the position information according to the number of handovers to the base station 10 and the moving speed of the mobile terminal 5.
  • FIG. 28 is an example of an information transmission list.
  • the information transmission list includes information for determining the timing for transmitting the position information for each mobile terminal 5 that has handed in the cell formed by the base station 10.
  • the priority timer is information indicating which of the two types of timers is preferentially used.
  • the timer is a count value of the elapsed time from the hand-in. When the set time of the timer used preferentially and the count value (elapsed time) in the timer become the same value, the adjustment unit 17 transmits the position information to the mobile terminal 5.
  • the base station timer is a common value determined for each base station 10.
  • the adjustment unit 17 of the base station 10 counts the number of handovers generated in the base station 10 and compares the number of handovers that occurred within a certain time with a threshold Th.
  • the adjustment unit 17 increases the value of the base station timer when the number of handovers occurring within a certain time exceeds the threshold Th. For example, in the initial setting of the base station 10, the value of the base station timer is 0 seconds. Then, when the base station timer is prioritized, the base station 10 transmits position information to the mobile terminal 5 with the mobile terminal 5 having been handed in as a trigger. When the number of handovers occurring within a certain time exceeds the threshold Th, the adjustment unit 17 increases the value of the base station timer.
  • the adjustment unit 17 sets the value of the base station timer to 5 seconds as shown in FIG. Then, even if the mobile terminal 5 has handed in, the adjustment unit 17 does not notify the mobile terminal 5 of position information until 5 seconds have passed since the hand-in. Note that the number of handovers that occur during a certain period of time may be compared with a plurality of threshold values. In this case, it is assumed that the set value of the base station timer becomes larger as the value of the handover occurring within a certain time is larger.
  • the speed timer is a timer set for each mobile terminal 5.
  • the adjustment unit 17 acquires the moving speed of the mobile terminal 5 that has been handed in.
  • the method for acquiring the moving speed of the mobile terminal 5 is arbitrary.
  • the base station 10 includes the calculation unit 18, the calculation unit 18 calculates the speed of the mobile terminal 5 at the timing of hand-in, and associates the obtained value with the identifier of the mobile terminal 5.
  • the base station 10 may acquire the moving speed of the mobile terminal 5 from the handover source base station 10 during the handover process.
  • the adjustment unit 17 holds information in which the moving speed of the mobile terminal 5 is associated with the set value of the speed timer in advance.
  • the adjustment unit 17 sets the speed timer to 0 seconds for the terminals identified by the terminal identifiers of 11111111 and 44444444, and sets the speed timer of the terminal identified by the terminal identifier of 222222222 to 5 seconds. ing. Further, since the moving speed of the terminal identified by the terminal identifier of 333333333 is faster than the moving speed of other terminals, the speed timer is set to 10 seconds.
  • the priority timer is a speed timer for any terminal. Therefore, when the elapsed time from the hand-in becomes the same value as the speed timer setting time for each mobile terminal 5, the adjustment unit 17 transmits position information to the mobile terminal 5. Accordingly, the adjustment unit 17 transmits the position information to the terminals identified by the terminal identifiers 11111111 and 44444444 at the time of hand-in. On the other hand, the adjustment unit 17 transmits position information to the terminal identified by the terminal identifier of 222222222 after 5 seconds from the hand-in, and to the terminal identified by the terminal identifier of 111111111, the position after 10 seconds from the hand-in. Send information.
  • FIG. 29 is a sequence diagram illustrating an example of a position information notification method according to the third embodiment.
  • Procedures (61) and (62) are the same as procedures (21) and (22) described with reference to FIG.
  • the adjustment unit 17 adds the information of the mobile terminal 5 that has handed in to the information transmission list.
  • the information transmission list setting method is as described with reference to FIG.
  • the adjustment unit 17 acquires the location information by accessing the location information table 21 in the storage unit 20.
  • the adjustment unit 17 generates a message to be transmitted to the mobile terminal 5 using the acquired position information.
  • the adjustment unit 17 refers to the information transmission list and holds the message until the transmission timing of the generated message comes.
  • the adjustment unit 17 When the timer value becomes the same as the set time of the timer used preferentially, the adjustment unit 17 outputs a message including position information to the transmission unit 14.
  • the transmission unit 14 transmits the message input from the adjustment unit 17 to the mobile terminal 5.
  • the mobile terminal 5 updates the location information table 71 using the message received from the base station 10.
  • the base station 10 determines, using the moving speed of the mobile terminal 5 or the like, whether the mobile terminal 5 is likely to use the notified location information. Furthermore, the adjustment unit 17 sets a long time from the hand-in to the transmission of the position information for the mobile terminal 5 that is unlikely to use the position information. For this reason, the mobile terminal 5 having a high moving speed may have moved out of the communication area of the base station 10 before receiving the position information from the base station 10. In this case, the mobile terminal 5 uses Do not perform processing such as receiving location information that is not expected or holding location information. For this reason, the processing burden of the mobile terminal 5 can be reduced.
  • the base station 10 acquires position information from the server 30 has been described as an example, but the base station 10 can also acquire position information from a device other than the server 30.
  • the server 30 and the base station 10 may acquire transmission power at each base station 10 instead of the cell radius.
  • the value of the received power P R can be a cell radius up to a distance below a predetermined threshold.
  • P T transmitted power (W)
  • G R is the received gain
  • G T is transmission gain
  • lambda is the wavelength
  • D is the distance.
  • the mobile terminal 5 may be modified to determine whether to update the location information table 71 using the number of handover occurrences per unit time. .
  • the update unit 61 counts the number of handover occurrences per unit time. If the number of handover occurrences per unit time exceeds a predetermined threshold, the updating unit 61 does not update the location information table 71 even if the location information is notified from the base station 10. If the location information table 71 is not updated, the small cell may not be detected correctly. However, the load on the mobile terminal 5 is reduced by not performing the process associated with the location information table 71 update.
  • the updating unit 61 monitors the remaining amount of power of the mobile terminal 5, and can reduce power consumption by stopping the updating of the position information table 71 when the remaining amount of power decreases.
  • the mobile terminal 5 modified in this way is suitable for use in a place where the number of small cells is so large that a small cell can be found without updating the location information table 71 at every handover, for example. Further, the mobile terminal 5 modified in this way can be used in combination with the third embodiment.
  • the adjustment unit 17 can also be modified to transmit a message including location information to the mobile terminal 5 after determining whether the mobile terminal 5 exists in the cell when the timer expires. .
  • the adjustment unit 17 can search a list in which the identification information of the mobile terminal 5 in communication is recorded, using the identification information of the mobile terminal 5 to which the message is transmitted as a key.
  • the adjustment unit 17 transmits a message to the mobile terminal 5.
  • the adjustment unit 17 stops transmitting the message to the mobile terminal 5 and discards the message.
  • the base station 10 does not need to transmit the position information to the mobile terminal 5 that is unlikely to use the position information, so the processing load on the base station 10 is reduced.
  • the small cell base station can also be modified so as to retain information on a macro cell that shares one or more points with the small cell.
  • information on the macro cell sharing one or more points with the small cell is also notified to the mobile terminal 5.
  • the mobile terminal 5 handed in to the small cell b included in the macro cell A can acquire the small cell sharing one or more points with the macro cell A, the position information of the macro cell A, the cell radius, and the like. Then, the mobile terminal 5 can determine whether to enter the area of the macro cell A when leaving the small cell b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephone Function (AREA)

Abstract

 移動端末がセルを効率的に発見できるようにする。基地局装置は、第1のセルに在圏する移動端末と無線通信が可能であり、記憶部と送信部を備える。記憶部は、移動端末の移動先となり得る第2のセルの位置情報を記憶する。送信部は、移動端末に第2のセルの位置情報を送信し、移動端末に位置情報を用いて第2のセルへの接近を検知させる。

Description

基地局装置、移動端末、および、無線通信システム
 本発明は、移動端末と基地局の間の通信に関する。
 近年、データ通信量の増加に対応するために、スモールセルを活用することが試みられてきている。ここで、「スモールセル」は、セル半径や同時にアクセス可能なユーザ数がマクロセルに比べて小さいセルを指す。スモールセルは、マクロセルのユーザ数の増加やユーザ1人あたりの通信量の増加に対応するために、マクロセル内に設置されることがある。この場合、マクロセルとスモールセルの間での干渉を軽減するために、スモールセルは、そのスモールセルを含むマクロセルで使用される周波数帯域と異なる周波数帯域を使用して通信するように設定されることが多い。
 移動端末は、スモールセルの基地局へのハンドオーバを行うために、ハンドオーバ先のスモールセルに割り当てられている物理セルID(PCI、physical cell identifier)を特定する。このとき、移動端末は、ハンドオーバ先のスモールセルが通信に使用している周波数帯域での処理を行う。従って、マクロセルとの通信中にハンドオーバ先のスモールセルの情報を取得しようとする移動端末は、マクロセルを介した通信に使用する周波数帯域と、スモールセルでの通信に使用される周波数帯域の両方での処理を行うことになる。しかし、移動端末が複数の周波数帯域での通信処理を行うと、移動端末の消費電力が増大する。さらに、スモールセルから離れた位置にいる移動端末では、物理セルIDを取得できるまで、処理を繰り返してしまうため、スモールセルの検索のために消費する電力がさらに大きくなってしまう。
 そこで、移動端末が、フィンガープリント情報を用いて、移動端末の近傍にスモールセルがあるかを判定する方法が提案されている。フィンガープリント情報は、スモールセルに在圏した際に生成され移動端末の記憶媒体に格納される情報であって、当該スモールセルに在圏した際の移動端末の位置情報などの当該スモールセルに関する位置情報を含む。移動端末は、記憶媒体に格納されているフィンガープリント中の位置情報と、現時点の移動端末の位置を比較することにより、近傍にあると判定したスモールセルについて、物理セルIDの特定を行う。
 関連する技術として、アクセス可能なスモールセルを示すリストを記憶する移動端末が考案されている。この移動端末は、基地局からネットワークポリシを受信すると、リストに含まれるアクセス可能なスモールセルに関する情報から、スモールセルが位置的にアクセス可能であるかを判定する。このとき、アクセス可能なスモールセルに関する情報として、フィンガープリント情報が使用される。移動端末は、判定結果を基地局に通知する(例えば、特許文献1など)。さらに、移動端末のハンドオーバ先を基地局が決定する方法についても提案されている。この方法では、ハンドオーバ先を決定する基地局は、同じ物理セル識別子を転送する基地局のリストを、フィンガープリントテーブルを用いて縮小し、ハンドオーバ先を特定する(例えば、特許文献2など)。
特開2013-31224号公報 特開2011-109666号公報
 フィンガープリント情報を用いる通信方式では、移動端末は、フィンガープリント情報を用いてスモールセルが近傍にあると判定した場合、当該スモールセルの検索を開始する。しかし、従来のフィンガープリント情報は、移動端末が在圏したことが無いセルに関する情報を含まない。このため、従来のフィンガープリント方式を用いると、移動端末は、移動端末が在圏したことが無いスモールセルを効率的に発見することが難しい。一方、フィンガープリント方式を用いずにハンドオーバ先のスモールセルを検索すると、移動端末はスモールセルから離れたところに位置している場合でも、検索処理を行ってしまうので検索効率が悪い上、移動端末の消費電力が大きくなってしまう。なお、移動端末に、通信に使用している周波数帯域とは異なる周波数帯域に設定されているセルを効率的に検索させる方法は、マクロセルについても得られていない。
 本発明は、1つの側面として、移動端末がセルを効率的に発見できるようにすることを目的とする。
 本発明の1つの態様の基地局装置は、第1のセルに在圏する移動端末と無線通信が可能であり、記憶部と送信部を備える。記憶部は、前記移動端末の移動先となり得る第2のセルの位置情報を記憶する。送信部は、前記移動端末に前記第2のセルの位置情報を送信し、前記移動端末に前記位置情報を用いて前記第2のセルへの接近を検知させる。
 上述の態様によれば、移動端末は、セルを効率的に発見できる。
基地局と移動端末の間の通信の例を説明する図である。 移動端末と基地局の構成の例を示す図である。 基地局のハードウェア構成の例を示す図である。 移動端末のハードウェア構成の例を示す図である。 サーバのハードウェア構成の例を示す図である。 マクロセルとスモールセルの配置の例を示す図である。 マクロセル情報テーブルとスモールセル情報テーブルの例を示す図である。 更新部の処理の例を説明するフローチャートである。 マクロセル管理テーブルの更新方法の例を説明するフローチャートである。 マクロセル管理テーブルの例を示す図である。 スモールセル管理テーブルの更新方法の例を説明するフローチャートである。 スモールセル管理テーブルの例を示す図である。 移動端末の移動先となり得るセルの特定方法の例を説明するシーケンス図である。 移動先セル情報の例を示す図である。 基地局に移動先セル情報を通知する処理の例を説明するシーケンス図である。 位置情報テーブルの例を示す図である。 基地局が移動端末に位置情報を通知する際に行う処理の例を説明するシーケンス図である。 ハンドオーバの例を説明するシーケンス図である。 位置情報テーブルの例を示す図である。 位置情報テーブルの更新処理の例を説明するフローチャートである。 位置情報テーブルを用いたハンドオーバの例を示すシーケンス図である。 第1の実施形態の通信例を示す図である。 マクロセルのセクタとスモールセルの配置の例を示す図である。 マクロセル管理テーブルの例を示す図である。 第2の実施形態での検索部の処理の例を説明するフローチャートである。 スモールセル管理テーブルの例を示す図である。 第2の実施形態での検索部の処理の例を説明するフローチャートである。 情報送信リストの例を示す図である。 第3の実施形態での位置情報の通知方法の例を説明するシーケンス図である。
 図1は、基地局と移動端末の間の通信の例を説明する図である。図1の例では、基地局10xはセルXを形成しているものとする。ここで、セルXは、マクロセルであってもスモールセルであっても良い。図1の例では、セルXはマクロセルである。以下、マクロセルよりも小さいセルのことを「スモールセル」と記載する。例えば、スモールセルは、マイクロセル、ピコセル、フェムトセルなどとすることができる。基地局10aはスモールセルAの基地局であり、基地局10bはスモールセルBの基地局、基地局10cはスモールセルCの基地局であるものとする。図1の例では、スモールセルAおよびスモールセルBはセルXに包含されており、スモールセルCはセルXに接しているものとする。また、スモールセルA~Cで通信に使用される周波数帯域は、セルXとは異なる周波数帯域に設定されている。
 さらに、図1の例では、移動端末5は、セルXとは通信したことがあるが、スモールセルA~Cのいずれにもアクセスしたことがなく、スモールセルA~Cのいずれの位置情報も保持していないものとする。
 基地局10xは、基地局10xと通信している移動端末のハンドオーバ先となり得るセルの位置情報を記憶している。ここで、基地局10xと通信している移動端末の移動先となり得るセルは、セルXと少なくとも1点を共有している任意の大きさのセルである。基地局10xと通信している移動端末の移動先となり得るセルには、セルX中に包含されているセル、セルXの一部を含む領域に形成されているセル、および、セルXに接しているセルが含まれる。図1の例では、基地局10xと通信している移動端末の移動先となり得るセルは、スモールセルA、スモールセルB、および、スモールセルCである。基地局10a~10cも、基地局10xと同様に、自装置と通信している移動端末の移動先となり得るセルの位置情報を保持しているものとする。
 移動端末5は、セルXの中に位置しており、基地局10xと通信しているものとする。基地局10xは、スモールセルA、スモールセルB、および、スモールセルCの位置情報を、移動端末5に送信する。移動端末5は、セルXから取得した位置情報と、移動端末5の位置を比較することにより、移動先となり得るセルへの接近を検知する。例えば、移動端末5は、スモールセルBを移動先の候補として検知したとする。すると、移動端末5は、スモールセルの物理セルIDの取得に使用する情報を基地局10xから取得した上で、スモールセルBの物理セルIDを特定する。移動端末5は、スモールセルBの物理セルIDを基地局10xに通知し、セルXからスモールセルBに移動する。
 移動端末5と通信を開始すると、基地局10bは、移動端末5の移動先となり得るセルの位置情報を、移動端末5に通知する。例えば、基地局10bは、スモールセルAとスモールセルCの位置情報を移動端末に通知することができる。移動端末5は、基地局10bから取得した情報を用いて、スモールセルAやスモールセルCに接近したことを検知できる。移動端末5は、接近を検知したスモールセルに割り当てられている物理セルIDを用いて、適宜、ハンドオーバ処理を基地局10bに要求できる。
 このように、移動端末は、通信中の基地局から移動先となり得るセルの位置情報を取得することができる。このため、移動端末は、移動端末自身の位置情報と、基地局から取得した位置情報を比較することにより、在圏したことの無いスモールセルであっても、効率的に発見することができる。
 なお、スモールセルの基地局は、そのスモールセルと1点以上を共有しているマクロセルからの移動先となり得る基地局の情報を保持していても良い。例えば、図1のスモールセルAはセルXに含まれている。そこで、スモールセルAを形成している基地局10aは、セルXを用いて通信している移動端末が移動先とすることができるスモールセルB、Cの位置情報を記憶することができる。この場合においても、基地局10aと通信している移動端末5は、基地局10aからスモールセルB、Cの位置情報を取得できるので、在圏したことの無いスモールセルでも効率的に発見することができる。
 さらに、基地局10a~10c、10xは、それぞれ、スモールセルの位置情報を予め記憶していても良く、また、適宜、ネットワークを介して通信可能なサーバなどからスモールセルの位置情報を取得しても良い。以下の例では、基地局10がサーバからスモールセルの位置情報を取得する場合を例として説明する。
 <装置構成>
 図2は、移動端末5と基地局10(10a~10c)の構成の例を示す。図2に示す例では、基地局10a~10cは、ネットワーク1を介してサーバ30にアクセスすることができる。
 基地局10は、信号処理部11、無線処理部12、更新部15、ハンドオーバ処理部16、調整部17、記憶部20を備える。無線処理部12は、受信部13と送信部14を有する。記憶部20は、位置情報テーブル21を保持する。なお、マクロセルを形成する基地局10の構成と、スモールセルを形成する基地局10の構成は同様である。
 信号処理部11は、ネットワーク1を介した通信で使用される信号を処理する。受信部13は、移動端末5から送信された情報を受信する。送信部14は、移動端末5に位置情報などの情報を送信する。位置情報テーブル21は、基地局10と通信している移動端末5の移動先となり得るスモールセルの位置情報を含む。更新部15は、スモールセルの位置情報が更新されると、位置情報テーブル21を更新する。ここで、更新部15は、スモールセルの位置情報等を、信号処理部11を介して、サーバ30から取得する。ハンドオーバ処理部16は、通信中の移動端末5が他の基地局10との通信を開始するための処理や、他の基地局10と通信中の移動端末5との通信を開始するための処理を行う。調整部17は、移動端末5の移動先となり得るスモールセルの情報を、移動端末5に通知するためのメッセージを生成する。調整部17は、生成したメッセージを送信部14に出力する。さらに、調整部17は、位置情報を含むメッセージを送信するタイミングを調整することができる。調整部17の動作については、後述する。基地局10は、さらに計算部18を備えても良い。計算部18は、移動端末5の移動速度を計算し、移動端末5の識別子に対応付けて計算結果を調整部17に出力できる。
 移動端末5は、受信部51、送信部52、更新部61、特定部62、検出部63、ハンドオーバ処理部64、記憶部70を備える。受信部51は、基地局10から位置情報などの情報を受信する。送信部52は、基地局10に情報を送信する。更新部61は、基地局10から受信した位置情報を用いて、位置情報テーブル71を更新する。特定部62は、移動端末5の位置を特定する。例えば、特定部62は、GPS(Global Positioning System)などを用いて、移動端末5の位置を特定できる。
 検出部63は、特定部62で得られた情報と、位置情報テーブル71中の位置情報を比較することにより、移動先とすることができるスモールセルに接近したことを検出する。検出部63は、予め、閾値Thdを記憶している。例えば、検出部63は、移動端末5の位置からスモールセルの基地局10までの距離が、閾値Thd以下である場合、スモールセルに接近したと判定できる。また、例えば、位置情報テーブル71にセル半径が含まれている場合、検出部63は、移動端末5の位置からスモールセルの境界までの距離が閾値Thd以下となったときに、スモールセルに接近したと判定しても良い。検出部63は、スモールセルへの接近をハンドオーバ元の基地局10に通知するためのメッセージ(通知情報)を生成し、送信部52を介して送信する。ハンドオーバ処理部64は、ハンドオーバに関する処理を行う。記憶部70は、位置情報テーブル71を保持する。
 サーバ30は、受信部31、更新部32、検索部33、選択部34、送信部35、記憶部40を備える。記憶部40は、マクロセル情報テーブル41、スモールセル情報テーブル42、マクロセル管理テーブル43、スモールセル管理テーブル44を保持する。受信部31は、マクロセルの情報やスモールセルの情報を受信する。ここで、受信部31は、各基地局10から、その基地局10の位置情報や通信に使用している周波数帯域の情報を取得しても良い。また、受信部31は、予め基地局10の設置位置等の情報を保持している装置から、ネットワーク1を介して、各基地局10の情報を取得しても良いものとする。
 更新部32は、受信部31を介して取得した情報を用いて、マクロセル情報テーブル41とスモールセル情報テーブル42を更新する。マクロセル情報テーブル41は、マクロセルを形成している基地局の位置や、マクロセルで通信に使用されている周波数帯域などの情報を保持する。スモールセル情報テーブル42は、スモールセルを形成している基地局の位置や、スモールセルで通信に使用されている周波数帯域などの情報を保持する。マクロセル情報テーブル41とスモールセル情報テーブル42の例については後述する。
 検索部33は、更新後のマクロセル情報テーブル41とスモールセル情報テーブル42を用いて、マクロセル管理テーブル43とスモールセル管理テーブル44を更新する。検索部33は、マクロセルの位置、マクロセルのセル半径、スモールセルの位置、スモールセルのセル半径などの情報を用いて、各マクロセルについて、移動端末5の移動先となり得るスモールセルを検索する。検索部33は、得られた結果をマクロセルの物理セルIDに対応付けて、マクロセル管理テーブル43に記録する。同様に、検索部33は、各スモールセルについても、そのスモールセルを用いて通信している移動端末5が移動先とする可能性があるスモールセルを検索する。さらに、検索部33は、スモールセルごとの検索結果を、スモールセルの物理セルIDに対応付けてスモールセル管理テーブル44に記録する。マクロセル管理テーブル43とスモールセル管理テーブル44の例と、検索部33の処理の具体例についても後述する。
 選択部34は、位置情報を基地局10に通知するための移動先セル情報を生成する。「移動先セル情報」は、移動先セル情報の宛先の基地局10と通信中の移動端末5にとって、移動先となり得るセルの位置情報を含むものとする。選択部34は、送信先の基地局10に合わせて、送信する情報を選択する。選択部34は、例えば、情報の送信先がマクロセルの基地局10である場合、送信先の基地局10が形成しているマクロセルの識別子に対応付けられたスモールセルを、マクロセル管理テーブル43を用いて選択する。一方、選択部34は、スモールセルの基地局10が送信先である場合、スモールセル管理テーブル44を用いて、送信先の基地局10の識別子に対応付けられたスモールセルを選択する。さらに、選択部34は、選択したスモールセルの情報をスモールセル情報テーブル42から取得し、基地局10に送信する移動先セル情報を生成する。選択部34は、移動先セル情報を、送信先の基地局10を識別する情報とともに送信部35に出力する。送信部35は、基地局10に移動先セル情報を送信する。
 図3は、基地局10のハードウェア構成の例を示す。基地局10は、アンテナ101、アンプ102、ベースバンド処理回路103、プロセッサ104、メモリ105、伝送路インタフェース106を備える。基地局10は、アンテナ101を介して移動端末5と通信する。また、アンテナ101とアンプ102は、無線処理部12として動作する。ベースバンド処理回路103は、ベースバンド信号を処理する。プロセッサ104は、Central Processing Unit(CPU)を含む任意の処理回路とすることができる。プロセッサ104は、メモリ105に記憶されているプログラムを実行することにより、更新部15、ハンドオーバ処理部16、調整部17、計算部18として動作する。メモリ105は、記憶部20として動作し、適宜、基地局10の処理に使用されるデータやプログラム等を記憶する。伝送路インタフェース106は、信号処理部11を実現する。基地局10は、伝送路インタフェース106を介してネットワーク1との通信や局間回線を介した通信を行う。
 図4は、移動端末5のハードウェア構成の例を示す。移動端末5は、アンテナ111、アンプ112、ベースバンド処理回路113、プロセッサ114、メモリ115を備える。移動端末5は、アンテナ111を介して基地局10と通信する。また、アンテナ111とアンプ112は、受信部51および送信部52として動作する。ベースバンド処理回路113は、ベースバンド信号を処理する。プロセッサ114は、CPUを含む任意の処理回路である。プロセッサ114は、メモリ115に記憶されているプログラムを実行することにより、更新部61、特定部62、検出部63、および、ハンドオーバ処理部64として動作する。メモリ115は、記憶部70として動作し、適宜、移動端末5の処理に使用されるデータやプログラム等を記憶する。
 図5は、サーバ30のハードウェア構成の例を示す。サーバ30は、プロセッサ121、メモリ122、バス125、外部記憶装置126、ネットワーク接続装置129を備える。サーバ30は、さらに、入力装置123、出力装置124、媒体駆動装置127を備えても良い。
 プロセッサ121は、CPUを含む任意の処理回路である。プロセッサ121は、更新部32、検索部33、選択部34として動作する。なお、プロセッサ121は、例えば、外部記憶装置126に記憶されたプログラムを実行することができる。メモリ122は、記憶部40として動作する。さらに、メモリ122は、プロセッサ121の動作により得られたデータや、プロセッサ121の処理に用いられるデータも、適宜、記憶する。ネットワーク接続装置129は、他の装置との通信に使用され、受信部31、送信部35として動作する。
 入力装置123は、例えば、ボタン、キーボードやマウスとして実現され、出力装置124は、ディスプレイなどとして実現される。バス125は、プロセッサ121、メモリ122、入力装置123、出力装置124、外部記憶装置126、媒体駆動装置127、ネットワーク接続装置129の間を相互にデータの受け渡しが行えるように接続する。外部記憶装置126は、プログラムやデータなどを格納し、格納している情報を、適宜、プロセッサ121などに提供する。媒体駆動装置127は、メモリ122や外部記憶装置126のデータを可搬記憶媒体128に出力することができ、また、可搬記憶媒体128からプログラムやデータ等を読み出すことができる。ここで、可搬記憶媒体128は、フロッピイディスク、Magneto-Optical(MO)ディスク、Compact Disc Recordable(CD-R)やDigital Versatile Disk Recordable(DVD-R)を含む、持ち運びが可能な任意の記憶媒体とすることができる。
 <第1の実施形態>
 図6は、マクロセルとスモールセルの配置の例を示す。以下、マクロセルの識別子は、3文字のアルファベットの大文字が連続した文字列で表し、スモールセルの識別子は、3文字のアルファベットの小文字が連続した文字列で表す。例えば、図6のセルAAAやセルBBBはマクロセルであり、セルaaa、bbbなどは、スモールセルである。また、理解しやすくするために、物理セルIDと各セルの識別子を同じ文字列で表す。例えば、セルAAAの物理セルIDはAAAである。図6の例では、マクロセルAAAは、スモールセルaaaとスモールセルbbbを包含しており、スモールセルcccと一部の領域を共有している。さらに、マクロセルAAAは、スモールセルdddとスモールセルeeeに接しているので、スモールセルdddおよびスモールセルeeeとも少なくとも1点を共有しているといえる。一方、マクロセルBBBは、スモールセルdddとスモールセルfffを包含しており、さらに、スモールセルbbbと一部の領域を共有している。
 以下、マクロセルとスモールセルが図6に示すように配置されている場合を例として、第1の実施形態に係る通信方法を説明する。以下、移動端末5の移動先となり得るセルの特定方法、基地局10への位置情報の通知、基地局10から移動端末5への位置情報の通知、および、移動端末5での処理に分けて説明する。
 〔移動端末の移動先となり得るセルの特定方法〕
 図7は、マクロセル情報テーブル41とスモールセル情報テーブル42の例を示す。図7の例では、マクロセル情報テーブル41とスモールセル情報テーブル42のいずれも、各セルに割り当てられた物理セルIDに対応付けて、そのセルを形成する基地局の設置位置、通信に使用される周波数帯域、セル半径が記録されている。図7の例では、位置情報は、緯度と経度の組み合わせであり、末尾にxxが付されている値が緯度(北緯)、末尾にyyが付されている値が経度(東経)であるものとする。以下の説明では、マクロセルAAAとマクロセルBBBは、同じ周波数帯域を使用しているものとする。一方、スモールセルaaa~fffは、いずれも、マクロセルAAAやマクロセルBBBとは異なる周波数帯域を通信に使用する。さらに、スモールセル同士では、通信に使用される周波数帯域は同じであっても異なっていても良い。図7の例では、マクロセルAAAとマクロセルBBBはいずれも、2.2GHzの帯域で通信を行う。一方、スモールセルaaa、ccc、ddd、eeeは、800MHzの周波数帯域を使用するが、スモールセルbbbとfffは、900MHzの周波数帯域を使用する。
 図8は、更新部32の処理の例を説明するフローチャートである。マクロセル情報テーブル41やスモールセル情報テーブル42は、図8に示す手順で更新される。まず、サーバ30の受信部31は、基地局10の位置などの情報を保持している装置または基地局10から、基地局10の位置情報やセル半径などの情報を物理セルIDに対応付けて取得する。受信部31は、取得した情報を更新部32に出力する(ステップS1)。更新部32は、受信部31から入力された情報について、マクロセルとスモールセルのいずれの情報であるかを特定する。更新部32がセルの大きさを特定する方法は任意である。例えば、更新部32は、マクロセルに割り当てられる物理セルIDを予め記憶していても良い。また、更新部32は、例えば、セル半径や送信電力の値を用いて、入力された情報がマクロセルとスモールセルのいずれの情報であるかを特定しても良いものとする。更新部32は、入力された情報がマクロセルの情報であると判定すると、通知された情報に対応付けられている物理セルIDをキーとしてマクロセル情報テーブル41を検索する(ステップS2)。
 キーとした物理セルIDがマクロセル情報テーブル41に含まれていない場合、更新部32は、マクロセル情報テーブル41に新たなエントリを作成し、入力された情報をマクロセル情報テーブル41に登録する(ステップS2でNo、ステップS3)。一方、キーとした物理セルIDがマクロセル情報テーブル41に含まれている場合、更新部32は、マクロセル情報テーブル41に記録されている情報と、受信部31から入力された情報の間に差があるかを判定する(ステップS2でYes、ステップS4)。両者に差があると判定した場合、更新部32は、マクロセル情報テーブル41を、受信部31から通知された情報を用いて更新する(ステップS4でYes、ステップS5)。一方、キーとした物理セルIDに対応付けられた情報について、マクロセル情報テーブル41中の情報と受信部31から入力された情報の間で差がない場合、更新部32は処理を終了する(ステップS4でNo、ステップS6)。図8を参照しながら説明した処理を行うことにより、図6に示すようにマクロセルが配置されている場合、図7に示すマクロセル情報テーブル41が得られる。
 更新部32は、受信部31から入力された情報のうちで、スモールセルの情報であると判定した情報についても、図8を用いて説明した処理と同様の処理を行う。図8を参照しながら説明した処理を行うことにより、図6に示すようにスモールセルが配置されている場合、図7に示すスモールセル情報テーブル42が得られる。なお、マクロセルやスモールセルが新たに設置された場合や、設置位置が変更された場合、図8に示す処理により、マクロセル情報テーブル41および/またはスモールセル情報テーブル42が、セルの設置状況の変化に応じて更新される。
 図9は、マクロセル管理テーブル43の更新方法の例を説明するフローチャートである。図10は、マクロセル管理テーブル43の例である。マクロセル情報テーブル41とスモールセル情報テーブル42が更新されると、検索部33は、マクロセルごとに、移動端末5の移動先となり得るスモールセルを検索し、得られた結果をマクロセル管理テーブル43に記録する。以下、図9を参照しながら、図10に示すマクロセル管理テーブル43を生成するときの検索部33の処理の例を説明する。以下の例では、移動端末5の移動先となり得るスモールセルのことを、「割り当てスモールセル」と記載することがある。割り当てスモールセルは、各基地局10に、通信中の移動端末5に位置情報を通知する対象として割り当てられているスモールセルであるともいえる。なお、図9の例では、ステップS11とステップS12は、実装に応じて互いに順序を変更することができる。
 検索部33は、マクロセル情報テーブル41に含まれているエントリの数(M)と、スモールセル情報テーブル42に含まれているエントリの数(N)を取得する(ステップS11)。なお、定数Mはマクロセルの総数であり、定数Nはスモールセルの総数である。次に、検索部33は、変数mと変数nを1に設定する(ステップS12、S13)。なお、mは、マクロセル情報テーブル41のエントリを識別する変数であり、nは、スモールセル情報テーブル42のエントリを識別する変数である。
 検索部33は、マクロセル情報テーブル41からm番目のエントリに記録されているマクロセルの情報を取得し、マクロセル管理テーブル43に記録する(ステップS14)。ここで、各エントリには、物理セルID、位置情報、周波数帯域、セル半径が記録されているものとする。また、m番目のマクロセルのセル半径をRとする。例えば、検索部33は、図7に示すマクロセル情報テーブル41の1番目のエントリから、セルAAAについて、以下の情報を取得する。
  物理セルID:AAA
  位置情報  :北緯35.730541度、東経139.71294度
  周波数帯域 :2.2GHz
  セル半径  :500m
検索部33は、取得した情報を用いて、図10に示すマクロセル管理テーブル43aを生成する。
 次に、検索部33は、スモールセル情報テーブル42から、n番目のエントリに記録されているスモールセルの位置情報とセル半径を取得する(ステップS15)。以下、n番目のスモールセルのセル半径をrとする。例えば、検索部33は、セルaaaについて、位置が北緯35.730542度、東経139.71295度であり、セル半径r=10mであるという情報を取得する。検索部33は、m番目のマクロセルの位置情報とn番目のスモールセルの位置情報を用いて、m番目のマクロセルとn番目のスモールセルの間の距離(D)を計算する(ステップS16)。検索部33による距離の計算は、2点の緯度と経度の情報を用いた任意の計算方法とすることができる。なお、図9の例で計算される距離Dは、m番目のマクロセルの基地局とn番目のスモールセルの基地局の間の距離である。
 検索部33は、距離Dを、m番目のマクロセルのセル半径とn番目のスモールセルのセル半径の合計値と比較する(ステップS17)。距離Dが合計値以下である場合、m番目のマクロセルとn番目のスモールセルは少なくとも1点を共有していることになる。例えば、距離Dと合計値が等しい場合、m番目のマクロセルとn番目のスモールセルは、互いに接している。また、距離Dが合計値より小さい場合、m番目のマクロセルとn番目のスモールセルが重なる領域がある。そこで、距離Dが合計値以下である場合、検索部33は、n番目のスモールセルがm番目のマクロセルからの移動先となり得ると判定して、マクロセル管理テーブル43に記録する(ステップS17でYes、ステップS18)。例えば、図6に示すように、マクロセルAAAとスモールセルaaaの間の距離は、マクロセルAAAのセル半径とスモールセルaaaのセル半径の合計よりも小さい。すると、検索部33は、スモールセルaaaをマクロセルAAAの割り当てスモールセルとして、マクロセル管理テーブル43aをマクロセル管理テーブル43b(図10)に更新する。一方、距離Dが合計値より大きい場合、検索部33は、n番目のスモールセルはm番目のマクロセルからの移動先となり得ないと判定し、マクロセル管理テーブル43に記録しない(ステップS17でNo、ステップS19)。
 ステップS18かステップS19の処理が終わると、検索部33は、変数nを1つインクリメントした後で、変数nをスモールセルの総数Nと比較する(ステップS20、S21)。変数nがスモールセルの総数N以下である場合、ステップS15以降の処理が繰り返される(ステップS21でNo)。すなわち、変数mにより特定されるマクロセルに対して、各スモールセルがそれぞれ移動先のセルとなり得るかが判定される。
 変数nがスモールセルの総数Nを超えると、検索部33は、変数mを1つインクリメントした後で、変数mをマクロセルの総数Mと比較する(ステップS22、S23)。変数mがマクロセルの総数M以下である場合、ステップS13以降の処理が繰り返される(ステップS23でNo)。このため、全てのマクロセルについてマクロセル管理テーブル43のデータが更新される。変数mがマクロセルの総数Mを超えると、検索部33は処理を終了する(ステップS23でYes)。このため、図6に示すようにセルが配置されている場合、図9を参照しながら説明した処理により、マクロセル管理テーブル43c(図10)が得られる。
 図11は、スモールセル管理テーブル44の更新方法の例を説明するフローチャートである。図12は、スモールセル管理テーブル44の例である。マクロセル管理テーブル43の更新が終わると、検索部33は、スモールセルごとに、移動端末5の移動先となり得るスモールセルを検索し、得られた結果をスモールセル管理テーブル44に記録する。以下、図11を参照しながら、図12に示すスモールセル管理テーブル44を生成するときの検索部33の処理の例を説明する。なお、図11の例では、ステップS31とステップS32は、実装に応じて互いに順序を変更することができる。
 検索部33は、マクロセル管理テーブル43に含まれているマクロセルのエントリの数(M)と、スモールセル情報テーブル42に含まれているエントリの数(N)を取得する(ステップS31)。なお、定数Mはマクロセルの総数であり、定数Nはスモールセルの総数である。次に、検索部33は、変数pと変数qを1に設定する(ステップS32、S33)。なお、pは、スモールセルを識別する変数であり、qは、マクロセルを識別する変数である。検索部33は、スモールセル情報テーブル42からp番目のエントリに記録されているスモールセルの情報を取得し、スモールセル管理テーブル44に記録する(ステップS34)。例えば、検索部33は、スモールセルの物理セルID、位置情報、周波数帯、セル半径を、スモールセル管理テーブル44に記録する。
 検索部33は、マクロセル管理テーブル43中のq番目のマクロセルのエントリを参照し、割り当てスモールセルにp番目のスモールセルが含まれているかを判定する(ステップS35)。p番目のスモールセルが含まれている場合、q番目のマクロセルの割り当てスモールセルのうちで、p番目のスモールセル以外のスモールセルの情報を、p番目のスモールセルの割り当てスモールセルとする(ステップS35でYes、ステップS36)。例えば、スモールセルaaaの割り当てスモールセルを検索する場合、検索部33は、マクロセル管理テーブル43c(図10)を用いて、マクロセルAAAの割り当てスモールセルを特定する。ここで、マクロセルAAAの割り当てスモールセルは、セルaaa、セルbbb、セルccc、セルddd、および、セルeeeである。検索部33は、マクロセルAAAの割り当てスモールセルにスモールセルaaaが含まれているので、マクロセルAAAの割り当てスモールセルのうち、スモールセルaaa以外のセルを、スモールセルaaaの割り当てスモールセルとする。従って、検索部33は、スモールセル管理テーブル44a(図12)に示すように、セルaaaの割り当てスモールセルは、セルbbb、セルccc、セルddd、および、セルeeeであることを記録する。
 ステップS36の処理が終わると、検索部33は、変数qを1つインクリメントした後で、変数qをマクロセルの総数Mと比較する(ステップS37、S38)。変数qがマクロセルの総数M以下である場合、ステップS35以降の処理が繰り返される(ステップS38でNo)。このため、1つのスモールセルについて割り当てスモールセルを特定するときには、全てのマクロセルの割り当てスモールセルの情報が使用される。従って、あるスモールセルが複数のマクロセルの割り当てスモールセルとなっている場合、そのスモールセルの割り当てスモールセルは、複数のマクロセルの情報を用いて特定される。例えば、スモールセルbbbは、マクロセルAAAの割り当てスモールセルであり、かつ、マクロセルBBBの割り当てスモールセルでもある。そこで、マクロセルAAAの割り当てスモールセルのうち、セルaaa、セルccc、セルddd、および、セルeeeが、セルbbbの割り当てスモールセルとなる。さらに、マクロセルBBBの割り当てスモールセルが、セルbbb、セルddd、および、セルfffであることから、セルfffもセルbbbの割り当てスモールセルとなる。
 変数qがマクロセルの総数Mを超えると、検索部33は、変数pを1つインクリメントした後で、変数pをスモールセルの総数Nと比較する(ステップS39、S40)。変数pがスモールセルの総数N以下である場合、ステップS33以降の処理が繰り返される(ステップS40でNo)。このため、全てのスモールセルについてスモールセル管理テーブル44のデータが更新される。変数pがスモールセルの総数Nを超えると、検索部33は処理を終了する(ステップS40でYes)。このため、図6に示すようにセルが配置されている場合、図11を参照しながら説明した処理により、図12に示すスモールセル管理テーブル44bが得られる。
 図13は、移動端末の移動先となり得るセルの特定方法の例を説明するシーケンス図である。この処理は、例えば、サーバ30により実行される。なお、図13に示す矢印は、情報の流れの例を示す。図13は一例であり、実装に応じて動作の順序は変更されうる。例えば、手順(1)、(2)の前に手順(3)、(4)が行われても良い。
 (1)受信部31は基地局10の情報を受信すると、受信した情報を更新部32に出力する。
 (2)更新部32は、受信部31から入力された情報がマクロセルとスモールセルのいずれの基地局10の情報であるかを判定する。ここでは、マクロセルの基地局の情報が入力されたとする。すると、更新部32は、マクロセル情報テーブル41を更新する。
 (3)手順(1)と同様に、更新部32に情報が出力される。
 (4)更新部32は、手順(2)と同様の判定を行う。ここでは、スモールセルの基地局の情報が入力されたとする。すると、更新部32は、スモールセル情報テーブル42を更新する。
 (5)記憶部40は、更新後のマクロセル情報テーブル41とスモールセル情報テーブル42を保持する。
 (6)検索部33は、記憶部40にアクセスして、マクロセル情報テーブル41とスモールセル情報テーブル42の情報を取得する。
 (7)検索部33は、マクロセル情報テーブル41とスモールセル情報テーブル42を用いて、各セルからの移動先となり得るスモールセルを特定する。
 (8)検索部33は、マクロセル管理テーブル43とスモールセル管理テーブル44を更新する。このとき、検索部33は、各セルからの移動先となり得るスモールセルを、マクロセル管理テーブル43またはスモールセル管理テーブル44に、割り当てスモールセルとして記録する。
 〔基地局10への位置情報の通知〕
 マクロセル管理テーブル43とスモールセル管理テーブル44の更新処理が終わると、サーバ30は、移動先セル情報を基地局10に通知する。ここで、「移動先セル情報」は、移動先セル情報の宛先の基地局10と通信中の移動端末5にとって、移動先となり得るセルの位置情報を含む。移動先セル情報には、宛先となる基地局10の割り当てスモールセルの物理セルIDに、各セルの位置情報を含む任意の情報が対応付けられているものとする。以下の説明では、移動先セル情報の宛先の区別を容易にするために、動作を行っている基地局10が形成している物理セルIDの1文字目のアルファベットを、符号の最後に記載することがある。例えば、基地局10AはマクロセルAAAを形成しており、基地局10bはスモールセルbbbを形成している。また、位置情報テーブル21Aは、基地局10Aに保持されている位置情報テーブル21である。
 まず、マクロセルの基地局10に送信するための移動先セル情報の生成方法について述べる。選択部34は、マクロセル管理テーブル43から、移動先セル情報の送信先の基地局10についての割り当てスモールセルを特定する。さらに、選択部34は、特定した割り当てスモールセルについての位置情報などをスモールセル管理テーブル44から選択する。なお、選択部34は、割り当てスモールセルについての位置情報を、スモールセル情報テーブル42から取得しても良い。
 例えば、マクロセルAAAの基地局10Aに送信する移動先セル情報を生成する場合、選択部34は、マクロセル管理テーブル43c(図10)から、セルAAAに対応付けられている割り当てスモールセルを特定する。セルAAAに対応付けられている割り当てスモールセルは、セルaaa、セルbbb、セルccc、セルddd、セルeeeである。選択部34は、特定したセルの各々について、位置情報などをスモールセル管理テーブル44から取得することにより、移動先セル情報を生成する。図14に、マクロセルAAAの基地局10Aに送信される移動先セル情報の例を示す。マクロセルBBBの基地局10Bについても、同様の処理により、移動先セル情報が生成される。
 次に、スモールセルの基地局10に送信するための移動先セル情報の生成方法について述べる。選択部34は、スモールセル管理テーブル44から、移動先セル情報の送信先の基地局10についての割り当てスモールセルを特定する。さらに、選択部34は、特定した割り当てスモールセルについての位置情報などについても、スモールセル管理テーブル44中のエントリから選択する。なお、スモールセルの基地局10宛ての移動先セル情報の生成のときも、選択部34は、割り当てスモールセルについての位置情報を、スモールセル情報テーブル42から取得しても良い。
 例えば、マクロセルdddの基地局10dに送信する移動先セル情報を生成する場合、選択部34は、スモールセル管理テーブル44b(図12)から、セルdddに対応付けられている割り当てスモールセルを特定する。セルdddに対応付けられている割り当てスモールセルは、セルaaa、セルbbb、セルccc、セルeee、セルfffである。選択部34は、特定したセルの各々について、位置情報などをスモールセル管理テーブル44から取得することにより、移動先セル情報を生成する。選択部34は、他のスモールセルの基地局10についても、同様の処理により、移動先セル情報を生成する。
 図15は、基地局10に移動先セル情報を通知する処理の例を説明するシーケンス図である。図15では、サーバ30が、マクロセルAAAを形成している基地局10Aに移動先セル情報を通知する場合の通信処理の例を説明するが、サーバ30と他のマクロセルの基地局10との間での通信も同様である。
 (11)選択部34は、記憶部40からマクロセル管理テーブル43とスモールセル管理テーブル44の情報を取得する。
 (12)選択部34は、送信先の基地局10Aで形成されているセルの物理セルIDをキーとして、マクロセル管理テーブル43を検索する。ここで、基地局10Aで形成されているセルの物理セルIDはAAAである。選択部34は、基地局10A宛の移動先セル情報を生成する。移動先セル情報の生成方法は、図14を参照しながら説明した通りである。
 (13)選択部34は、生成した移動先セル情報を、基地局10Aを宛先に指定して、送信部35に出力する。
 (14)送信部35は、選択部34から入力された移動先セル情報を基地局10Aに送信する。
 (15)基地局10Aの信号処理部11Aは、サーバ30からの信号を受信する。信号処理部11Aは、受信した信号から移動先セル情報を取得し、更新部15Aに出力する。
 (16)更新部15Aは、移動先セル情報と位置情報テーブル21Aを比較する。位置情報テーブル21Aと移動先セル情報に差がある場合、更新部15Aは、移動先セル情報に合わせて位置情報テーブル21Aを更新する。このとき、更新部15Aは、位置情報テーブル21Aと移動先セル情報の間で差分がある基地局についての情報だけを更新しても良い。また、すでに保持している位置情報テーブル21Aの情報を消去して、移動先セル情報に含まれている情報を、位置情報テーブル21Aとしても良い。図14に示す移動先セル情報が基地局10Aに送信された場合の位置情報テーブル21Aの例を、図16に示す。
 (17)更新部15Aは、更新後の位置情報テーブル21Aを記憶部20Aに出力する。記憶部20Aは、更新後の位置情報テーブル21Aを保持する。
 マクロセルBBBを形成している基地局10Bに対しても、サーバ30は、同様の方法で移動先セル情報を生成し、通知する。このため、サーバ30がマクロセル管理テーブル43c(図10)とスモールセル管理テーブル44b(図12)を保持している場合、基地局10Bは、図16に示す位置情報テーブル21Bを保持する。
 図15を用いてマクロセルの基地局10に移動先セル情報を通知するときの動作を説明したが、スモールセルの基地局10に移動先セル情報を通知するときに行われる処理も同様である。ただし、スモールセルの基地局10に送信する移動先セル情報の生成の際には、マクロセル管理テーブル43は使用されないので、手順(11)において、選択部34はマクロセル管理テーブル43にアクセスしない。このため、サーバ30がスモールセル管理テーブル44b(図12)を保持している場合、移動先セル情報の通知により、基地局10aは、図16の位置情報テーブル21aを保持する。同様に、基地局10bは、図16の位置情報テーブル21bを保持する。
 〔移動端末5への位置情報の通知〕
 図17は、基地局10が移動端末5に位置情報を通知する際に行う処理の例を説明するシーケンス図である。
 (21)基地局10のハンドオーバ処理部16は、基地局10が形成しているセルに移動端末5が近づいてくると、移動端末5のハンドオーバのための処理をする。以下の説明では、基地局10のセルに移動端末5が侵入してくることを「ハンドイン」と記載する。ハンドオーバ処理部16は、移動端末5との間で通信を開始すると、ハンドインを検知する。基地局10は、移動端末5とハンドオーバ先の基地局10の間の同期処理以後に行われる任意のメッセージの送受信をハンドインの検知のために使用することができる。ハンドインの検知方法の具体例は後述する。
 (22)ハンドオーバ処理部16は、ハンドインを検知すると、ハンドインの発生を調整部17に通知する。
 (23)調整部17は、ハンドインが通知されると、記憶部20中の位置情報テーブル21にアクセスすることにより、位置情報を取得する。調整部17は、取得した位置情報を用いて、移動端末5宛に送信するメッセージを生成する。このとき、調整部17は、位置情報テーブル21に含まれている全てのスモールセルについて、物理セルIDと位置情報を対応付けたリストを、位置情報として使用することができる。さらに、調整部17は、各スモールセルのセル半径や周波数の情報も、位置情報とともに、移動端末5宛てのメッセージに含めることができる。
 (24)調整部17は、生成したメッセージを送信部14に出力する。
 (25)送信部14は、調整部17から入力されたメッセージを移動端末5に送信する。移動端末5は、基地局10から受信したメッセージを用いて位置情報テーブル71を更新する。移動端末5での処理については、後述する。
 図18は、ハンドオーバの例を説明するシーケンス図である。図18を参照しながらハンドインの検知方法の例を説明する。図18は、移動端末5が基地局10Bから基地局10Aにハンドオーバする場合に行われる処理の例を示す。図18に示す例では、ハンドオーバ先の基地局10Aは、移動端末5から、基地局10Aが形成しているマクロセルAAAを用いた通信の開始を要求する要求メッセージを受信すると、マクロセルAAAへのハンドインを検知する。
 移動端末5は、通信中の基地局10BからMeasurement Controlを受信すると、周辺の基地局からの受信強度などの測定を行う(手順(31))。移動端末5は、得られた結果をMeasurement Reportを用いて基地局10Bに報告する(手順(32))。基地局10Bは、Measurement Reportを用いて、移動端末5が基地局10Bから基地局10Aにハンドオーバすると判定し、ハンドオーバ先の基地局10AにHandover Requestを送信する(手順(33))。ハンドオーバ先の基地局10Aは、Handover Requestの受信に伴う処理を行った後で、Handover Request ACKを基地局10Bに送信する(手順(34))。すると、基地局10Bは、RRC Connection Reconfigurationを移動端末5に送信することにより、移動端末5にハンドオーバを要求する(手順(35))。さらに、基地局10Bは、基地局10AにSN Status Transferを送ることにより、次に移動端末5に送信するパケットのシーケンス番号を通知する(手順(36))。その後、基地局10Aと移動端末5の間で同期処理が行われる(手順(37))。
 移動端末5は、基地局10Aが形成するセルへのハンドインに成功すると、基地局10AにRRC Connection Reconfiguration Completeを送信する(手順(38))。ここで、RRC Connection Reconfiguration Completeは、要求メッセージの例である。すなわち、手順(37)の処理に失敗して移動端末5がマクロセルAAAにハンドインできない場合、移動端末5は、RRC Connection Reconfiguration Completeを送信しない。このため、基地局10Aのハンドオーバ処理部16Aは、RRC Connection Reconfiguration Completeを受信すると、ハンドインを検知したと判定する。そこで、ハンドオーバ処理部16Aは、調整部17Aにハンドインを通知し、調整部17Aは、図17を参照しながら説明した手順により、位置情報を用いて、移動端末5宛に送信するためのメッセージを生成する。このメッセージには、例えば、図16に示す位置情報テーブル21Aに記録されている情報が含まれても良い。基地局10Aは、生成したメッセージを移動端末5に送信することにより、位置情報を通知する(手順(39))。
 その後、基地局10Aは、Mobility Management Entity(MME)にPath Switch Requestを送信することによりパスの切り替えを要求する(手順(40))。MMEは、Serving Gateway(SGW)に、User Plane Update Requestを送信することにより、移動端末5が基地局10Aと通信することを通知する(手順(41))。MMEは、SGWからUser Plane Update Responseを受信すると、基地局10AにPath Switch Request ACKを送信する(手順(42)、(43))。すると、基地局10Aは、基地局10BにUE Context Releaseを送信する(手順(44))。
 なお、図18は、ハンドインの検出方法の一例であり、実装に応じて、ハンドインの検知方法は変更されても良い。手順(38)以降の処理は、移動端末5がハンドオーバできない場合には、行われない。このため、例えば、ハンドオーバ先の基地局10のハンドオーバ処理部16は、手順(40)か手順(44)でメッセージを送信するときに、ハンドインを検知するように変形されても良い。同様に、ハンドオーバ処理部16は、MMEからPath Switch Request ACKを受信したときに、ハンドインを検知するように変形されても良い。手順(38)以外でハンドインが検知される場合、基地局10は、ハンドインを検知した後で、位置情報を含むメッセージを移動端末5に送信する。
 〔移動端末5での処理〕
 次に、基地局10から位置情報を受信した後で移動端末5によって行われる処理の例を説明する。以下の説明でも、移動端末5は、基地局10Bから基地局10Aにハンドオーバしてきたとする。この場合、移動端末5は、マクロセルAAAにハンドインする。なお、以下の説明では、基地局10は、移動端末5に対して移動先となり得るスモールセルの位置情報の他に、周波数帯域やセル半径も通知する場合を例として説明するが、基地局10がセル半径などを通知しない場合も、以下と同様の処理が行われる。
 図19の位置情報テーブル71aは、マクロセルAAAへのハンドインを行うための処理を開始したときに移動端末5が保持している位置情報テーブル71の例である。移動端末5が基地局10Aへのハンドオーバを開始したとき、移動端末5は、基地局10Bが形成するセルBBBから移動し得るスモールセルの位置情報を保持している。このため、位置情報テーブル71aは、図16の位置情報テーブル21Bと同様に、セルbbb、セルddd、および、セルfffの情報を保持している。
 図18を参照しながら説明したように、移動端末5は、マクロセルAAAにハンドインしたとする。すると、基地局10Aは、位置情報テーブル21A(図19)を参照して位置情報を含むメッセージを生成し、移動端末5に送信する。移動端末5の受信部51は、基地局10から位置情報を含むメッセージを受信すると、更新部61に出力する。更新部61は、基地局10から受信したメッセージに含まれている位置情報が、位置情報テーブル71aと同じ情報であるかを判定する。基地局10から受信したメッセージに含まれている位置情報と、位置情報テーブル71aの情報に差がある場合、更新部61は、位置情報テーブル71に記録されている情報を消去する。さらに、更新部61は、受信部51から入力された位置情報を位置情報テーブル71に記録する。図19の例では、移動端末5に保持されている位置情報テーブル71aと位置情報テーブル21Aは異なる情報であるので、移動端末5には、位置情報テーブル71aと異なる位置情報が通知される。そこで、更新部61は、基地局10Aから入力された情報を用いて、位置情報テーブル71aを位置情報テーブル71bに更新する。ここで、更新部61は、基地局10から受信した位置情報が位置情報テーブル71の内容と異なる場合、新たに通知されたスモールセルの情報を追加するだけではなく、基地局から通知されていないスモールセルの情報を削除している。このため、移動端末5は、ハンドオーバ前には移動先となり得たスモールセルのうち、ハンドオーバ後は移動先とすることができなくなったスモールセルの情報を消去することができる。
 図20は、位置情報テーブル71の更新処理の例を説明するフローチャートである。受信部51は、基地局10から位置情報を含むメッセージを受信する(ステップS51)。受信部51はメッセージを更新部61に出力する。更新部61は、メッセージを用いて基地局10から通知された位置情報と、位置情報テーブル71の内容が一致するかを判定する(ステップS52)。通知された位置情報と、位置情報テーブル71の内容が一致しない場合、更新部61は、位置情報テーブル71の内容を、受信した位置情報と一致するように更新する(ステップS52で不一致、ステップS53)。一方、通知された位置情報と、位置情報テーブル71の内容が一致する場合、更新部61は位置情報テーブル71を更新せずに処理を終了する(ステップS52で一致、ステップS54)。
 図21は、位置情報テーブルを用いたハンドオーバの例を示すシーケンス図である。図21は、移動端末5がマクロセルAAAにハンドインした後、マクロセルAAA内を移動し、スモールセルcccの近傍に来たことにより、基地局10cにハンドオーバするときの処理の例を示す。なお、図21では、移動端末5は、位置情報テーブル71b(図19)を用いる。
 (51)特定部62は、移動端末5の現在位置を特定する。特定部62は、例えば、GPSを含んでおり、GPSのデータを用いて移動端末5の位置の緯度と経度を求める。特定部62は、移動端末5の位置の緯度と経度の値を検出部63に出力する。検出部63は、位置情報テーブル71に記録されている各セルの基地局10の位置と移動端末5の位置の間の距離を、緯度と経度の値を用いて計算する。移動端末5の移動により、移動端末5と基地局10cの間の距離が閾値以下になったとする。
 (52)検出部63は、通信を確立している基地局10Aに対して、通知情報を送信することによりスモールセルcccに接近したことを通知する。ここで、通知情報は、移動先となり得るセルへの接近を通知するために使用可能な任意のメッセージとすることができる。例えば、検出部63は、Proximity Indicationを用いて、基地局10Aに対する通知を行うことができる。検出部63は、基地局10Aに送信するメッセージを生成し、送信部52に出力する。送信部52は、検出部63から入力されたメッセージを、基地局10Aに送信する。
 (53)基地局10Aのハンドオーバ処理部16Aは、移動端末5からの通知に応じて、移動先となり得るセルを形成している基地局10の物理セルIDを取得するための情報を移動端末5に送信する。ここでは、基地局10Aは、スモールセルcccの物理セルIDを取得するときに使用する情報を、移動端末5に送信する。
 ところで、図7などを参照して述べたとおり、マクロセルAAAの周波数帯域は2.2GHzであるのに対し、スモールセルcccでは800MHzが使用されている。また、物理セルIDは、スモールセルcccを介した通信を移動端末5が開始するために使用される。このため、基地局10Aは、手順(53)により、移動端末5がスモールセルcccでの通信に使用されている周波数帯域での通信の開始に使用する情報を、移動端末5に通知しているといえる。
 (54)ハンドオーバ処理部64は、基地局10Aから通知された情報を用いて、スモールセルcccの物理セルIDを取得し、基地局10Aに通知する。
 (55)基地局10Aのハンドオーバ処理部16Aは、移動端末5に、移動先のスモールセルについての情報(System Information、SI)の報告を要求する。
 (56)移動端末5のハンドオーバ処理部64は、基地局10cから報知されている報知情報を受信し、報知情報からCGI(Cell Global Identity)、TAI(Tracking Area Identify)などの情報を取得する。
 (57)ハンドオーバ処理部64は、取得した情報を基地局10Aに送信する。
 (58)移動端末5が基地局10Aから基地局10cにハンドオーバするための処理が行われる。ここでの処理は、図18を参照しながら説明した処理と同様である。基地局10cは、移動端末5がスモールセルcccにハンドインしたことを検知すると、基地局10cが保持している位置情報を含むメッセージを、移動端末5に送信する。このため、移動端末5では、基地局10Aから基地局10cへのハンドオーバにより、位置情報テーブル71b(図19)が、位置情報テーブル71c(図19)に示すように更新される。このため、移動端末5は、さらに移動しても、スモールセルcccからの移動先となり得るスモールセルを検出できる。
 図22は、第1の実施形態の通信例を示す図である。図22の例では、マクロセルDDDとマクロセルEEEが互いに隣接している。また、マクロセルDDDの中にスモールセルgggとスモールセルhhhがあり、マクロセルEEEの中にスモールセルjjjとスモールセルkkkがある。図22は、時刻T1~T3における移動端末5の移動の軌跡を示している。例えば、T1は、時刻T1での移動端末5の位置を示す。
 時刻T1では、移動端末5はマクロセルDDDに在圏しており、基地局10Dから移動先となり得るスモールセルの情報を取得する。従って、時刻T1には、移動端末5は、スモールセルggg、hhh、jjjの位置情報を、基地局10Dから取得し、その他のスモールセルの情報を廃棄する。このため、スモールセルhhhに在圏したことがなくても、移動端末5は、スモールセルhhhの近傍に来たときに、スモールセルhhhが近くにあることを検出できる。
 時刻T2に、移動端末5がマクロセルDDDからスモールセルhhhに移動したとする。このとき、基地局10hは、移動先となり得るスモールセルとして、スモールセルggg、jjjの位置情報を移動端末5に通知し、移動端末5は位置情報テーブル71を更新する。この処理により、移動端末5は通信中のセルhhhについての位置情報を削除し、メモリを効率的に使用することができる。
 時刻T3に、移動端末5がスモールセルhhhからスモールセルjjjに移動したとする。このとき、基地局10jは、移動先となり得るスモールセルとして、スモールセルhhh、kkkの位置情報を移動端末5に通知する。すると、移動端末5は、位置情報テーブル71を基地局10jから通知された内容に更新し、スモールセルgggの情報を削除する。従って、移動端末5は、T3の時点で通信に使用しているセルから直接移動する可能性の低いセルの情報を保持しなくても良い。
 このように、移動端末5は、ハンドオーバ先の基地局10から、移動先となり得るスモールセルの情報を取得できる。このため、移動端末5は、在圏したことのないスモールセルであっても、効率的に発見することができる。また、移動端末5は、基地局10からの通知に合わせて位置情報テーブル71の内容を更新するので、移動端末5が位置しているセルから移動する可能性の低いスモールセルの位置情報を保持しなくても良い。このため、移動端末5は、メモリを有効に活用できる。さらに、移動端末5は、スモールセルとの間の距離が所定の閾値以下になったときに受信電力の測定や物理セルIDの取得などの処理を行う。このため、通信ができないほど遠いスモールセルの物理セルIDの取得を試みて電力を消費してしまう事態も回避できる。
 <第2の実施形態>
 マクロセルの基地局10は、マクロセルを複数のセクタに分けて管理することが多い。第2の実施形態では、各基地局10が、セクタごとに、移動端末5が移動先とする可能性があるスモールセルを記憶する場合について説明する。第2の実施形態は、スモールセルが密集して設置されているなどの理由により、移動端末5に通知する位置情報の量を限定したい場合に効果的である。
 以下、サーバ30がセクタごとに、移動先となり得るスモールセルを特定し、各基地局10に通知する場合を例として、第2の実施形態を説明する。なお、この例では、説明を簡単にするために、1つのマクロセル中のセクタの配置方法は、予め各基地局10で共通しており、サーバ30もセクタの配置方法を特定するための情報を予め保持しているものとする。例えば、以下の例では、各マクロセルにおいて、基地局の設置位置から北の方角を基準として、60度ずつの6つのセクタに分けられているものとする。また、セクタ番号は、基地局の設置位置の真北から時計回りに60度の範囲のセクタを「1」として、時計回りに1つずつ大きくなるものとする。
 図23に、マクロセルのセクタとスモールセルの配置の例を示す。図23の例では、マクロセルAAAでは、セクタ1とセクタ2がスモールセルbbbと一部の領域を共有し、セクタ4がスモールセルcccと一部の領域を共有している。マクロセルAAAのセクタ2は、スモールセルdddと接している。さらに、マクロセルAAAでは、セクタ3がスモールセルeeeに接しており、セクタ6がスモールセルaaaに接している。また、マクロセルAAAのセクタ5は、スモールセルaaaを包含している。マクロセルBBBでは、セクタ1がスモールセルfffを包含している。マクロセルBBBのセクタ5は、スモールセルdddを包含し、さらに、スモールセルbbbと一部の領域を共有している。マクロセルBBBのセクタ2は、スモールセルfffに接している。
 サーバ30の更新部32は、第1の実施形態と同様の方法でマクロセル情報テーブル41とスモールセル情報テーブル42を更新する。検索部33は、図9を参照しながら説明した手順により、各マクロセルについて、そのマクロセルからの移動先となり得るスモールセル(割り当てスモールセル)を割り当てることにより、マクロセル管理テーブル43を得る。次に、検索部33は、各マクロセルについて、割り当てスモールセルの数が所定の閾値を超えたかを判定する。割り当てスモールセルの数が所定の閾値を超えた場合、検索部33は、マクロセル中の各セクタとスモールセルをマッピングし、セクタごとに、1点以上を共有しているスモールセルを特定する。検索部33は、特定したスモールセルを、マクロセルのセクタごとに対応付けた情報をマクロセル管理テーブル43に記録する。
 例えば、図23に示すようにマクロセルの各セクタとスモールセルが配置されている場合、更新部32と検索部33が第1の実施形態と同様の処理により、図10に示すマクロセル管理テーブル43cを生成する。ここで、検索部33は、マクロセルごとの割り当てスモールセルが3以上のときにセクタごとに割り当てスモールセルを管理するように設定されているとする。すると、マクロセルAAAとマクロセルBBBのいずれについても、割り当てスモールセルが3以上であるので、検索部33は、セクタごとに割り当てスモールセルを管理することを決定する。検索部33は、マクロセルAAAとマクロセルBBBのセクタと、スモールセルの位置をマッピングすることにより、図23に示す配置を特定する。さらに、例えば、マクロセルAAAのセクタ1と1点以上共有しているスモールセルはスモールセルbbbであることを特定する。他のセクタについても同様に特定処理を行い、マクロセル管理テーブル43c(図10)を、図24に示すマクロセル管理テーブル43dに更新する。
 また、サーバ30は、あるマクロセルについて、スモールセルをセクタ単位での管理に切り替えることが要求された場合も、セクタ単位でスモールセルを管理する。マクロセル管理テーブル43やスモールセル管理テーブル44の生成方法は、割り当てスモールセルの数が閾値を超えたときと同様である。サーバ30は、他の装置からセクタ単位での管理への切り替えの要求を受信してもよく、また、入力装置123を介してオペレータから要求を受け付けても良い。
 図25は、第2の実施形態での検索部33の処理の例を説明するフローチャートである。図25は、マクロセル管理テーブル43の更新方法の例を示す。なお、図25は一例であり、例えば、ステップS62とステップS63の順序を入れ替えるなどの変更が可能である。また、図25の処理では、変数r、s、tが使用される。ここで、rはマクロセルを識別する変数であり、sはセクタを識別する変数であり、tはスモールセルを識別する変数である。
 検索部33は、各マクロセルについて割り当てスモールセルを決定する(ステップS61)。ステップS61の処理は、図9を参照しながら説明したとおりである。検索部33は、マクロセルの総数Mを取得し、変数rを1に設定する(ステップS62、S63)。検索部33は、r番目のマクロセルについて、割り当てスモールセルが予め決定された閾値を超えているかを判定する(ステップS64)。割り当てスモールセルが予め決定された閾値を超えていない場合、検索部33は、さらに、r番目のマクロセルについてセクタ単位の管理が要求されたかを判定する(ステップS64でNo、ステップS65)。
 割り当てスモールセルが予め決定された閾値を超えている場合、検索部33は、r番目のマクロセル中のセクタ数(X)と、r番目のマクロセルの割り当てスモールセルの数(Y)を取得する(ステップS64でYes、ステップS66)。同様に、r番目のマクロセルについてセクタ単位の管理が要求された場合も、検索部33は、r番目のマクロセルについて、セクタ数と割り当てスモールセルの数を取得する(ステップS65でYes、ステップS66)。検索部33は、変数sと変数tをいずれも1に設定する(ステップS67、S68)。検索部33は、s番目のセクタとt番目の割り当てスモールセルが1点以上を共有しているかを判定する(ステップS69)。s番目のセクタとt番目の割り当てスモールセルが1点以上を共有している場合、検索部33は、t番目のスモールセルをs番目のセクタへの割り当てスモールセルとする(ステップS69でYes、ステップS70)。
 その後、検索部33は、変数tの値を1つインクリメントし、変数tが処理対象のマクロセルでの割り当てスモールセルの数(Y)よりも大きいかを判定する(ステップS71、S72)。変数tがY以下の場合、検索部33は、ステップS69以降の処理を繰り返す(ステップS72でNo)。変数tがYを超えると、検索部33は、変数sの値を1つインクリメントし、変数sが処理対象のマクロセルでのセクタ数(X)よりも大きいかを判定する(ステップS72でYes、ステップS73、S74)。変数sがX以下の場合、検索部33は、ステップS68以降の処理を繰り返す(ステップS74でNo)。変数sがXを超えると、検索部33は、変数rの値を1つインクリメントし、変数rがマクロセル数(M)よりも大きいかを判定する(ステップS74でYes、ステップS75、S76)。変数rがM以下の場合、検索部33は、ステップS64以降の処理を繰り返す(ステップS76でNo)。一方、変数rがMを越えると、検索部33は、処理を終了する(ステップS76でYes)。なお、ステップS65において、r番目のマクロセルについてセクタ単位の管理が要求されていないと判定すると、検索部33は、処理対象のマクロセルを変更するために、ステップS75以降の処理を行う(ステップS65でNo)。
 マクロセル管理テーブル43の更新が終わると、検索部33は、スモールセル管理テーブル44を更新する。マクロセルのセクタごとに割り当てスモールセルを決定した場合、検索部33は、あるスモールセルに対する割り当てスモールセルは、そのスモールセルが割り当てられたセクタと同じセクタから移動可能なスモールセルとする。例えば、マクロセル管理テーブル43d(図24)が得られているとする。この場合、検索部33は、スモールセルaaaをキーとして割り当てスモールセルの欄を検索しても、複数のスモールセルが割り当てスモールセルとなっているセクタを発見できない。このため、検索部33は、スモールセルaaaからの移動先となり得るスモールセルはないと判定し、図26に示すように、スモールセルaaaには、割り当てスモールセルを設定しない。検索部33は、スモールセルccc、スモールセルeee、スモールセルfffに対しても、同様に処理を行う。
 検索部33がスモールセルbbbをキーとして割り当てスモールセルの欄を検索すると、マクロセルAAAのセクタ2では、スモールセルbbbとスモールセルdddが、割り当てスモールセルであることを特定できる。このため、検索部33は、スモールセルbbbからスモールセルdddに移動端末5が移動する可能性があると判定し、図26に示すように、スモールセルbbbの割り当てスモールセルをスモールセルdddとする。検索部33は、マクロセルBBBのセクタ5でも、スモールセルbbbとスモールセルdddが割り当てスモールセルであることを特定する。このときは、マクロセルAAAのセクタ2のデータを処理したことにより、既にスモールセルdddはスモールセルbbbの割り当てスモールセルであるので、スモールセル管理テーブル44を変更しない。検索部33は、スモールセルdddについても同様の処理を行う。
 図27は、第2の実施形態での検索部33の処理の例を説明するフローチャートである。図27は、スモールセル管理テーブル44の更新方法の例を示す。図27のステップS81~S85の処理は、図11のステップS31~S35と同様である。検索部33は、マクロセル管理テーブル43中のq番目のマクロセルのエントリの割り当てスモールセルにp番目のスモールセルが含まれている場合、p番目のスモールセルと同じセクタに割り当てられたスモールセルを特定する(ステップS85でYes)。検索部33は、p番目のスモールセルが割り当てられたセクタと同じマクロセルの同じセクタに割り当てられたスモールセルのうち、p番目のスモールセル以外のスモールセルを、p番目のスモールセルの割り当てスモールセルとする(ステップS86)。ステップS87~S90は、図11のステップS37~S40と同様である。
 サーバ30から各基地局10への移動先セル情報の通知、基地局10から移動端末5への位置情報の通知、移動端末5での処理は、第1の実施形態と同様である。ただし、第2の実施形態では、サーバ30は、セクタごとの割り当てスモールセルを通知する。このため、例えば、基地局10Aは、図24のうち、物理セルID=AAAに対応付けられた情報を、サーバ30から取得する。また、基地局10は、移動端末5との通信に使用しているセクタの識別子を特定し、通信先の移動端末5に応じたセクタに対応付けて保持している位置情報を送信するものとする。このため、例えば、図23に示す配置において、マクロセルAAAのセクタ1で通信している移動端末5に対して、基地局10Aは、スモールセルbbbの情報を通知するが、他のスモールセルの情報は通知しない。基地局10が移動端末5との通信に使用しているセクタの情報は、例えば、移動端末5の位置情報から特定するなどの任意の方法により、特定される。
 なお、第2の実施形態では、1つのマクロセルが6セクタに分けられる場合を例として説明したが、1つのマクロセルに含まれるセクタ数は、実装に応じて任意に変更され得る。また、スモールセルの管理をセル単位からセクタ単位に変更するかを判定するときに用いる閾値も、実装に合わせて任意に設定される。
 このように、第2の実施形態では、各基地局10は、セクタごとに移動端末5が移動先とする可能性があるスモールセルを記憶するので、移動端末5に通知する位置情報の量を抑制することができる。このため、基地局10は、移動端末5が移動先とする可能性が相対的に高いスモールセルの位置情報に絞って、移動端末5に通知することができる。
 <第3の実施形態>
 第3の実施形態では、基地局10が移動端末5へ位置情報を通知するタイミングを変更可能な場合について説明する。なお、第3の実施形態では、サーバ30での割り当てスモールセルの決定方法は、第1および第2の実施形態のいずれでもよい。また、サーバ30から各基地局10への移動先セル情報の通知、および、移動端末5での処理は、第1の実施形態と同様である。
 基地局10の調整部17は、基地局10から送信された位置情報を使用する可能性が低い移動端末5への位置情報の送信を防ぐために、移動端末5がハンドインしてから位置情報を送信するまでの期間を情報送信リストに設定することができる。例えば、移動速度が速い移動端末5は、基地局10が形成しているセルでの滞在時間が短く、近傍のスモールセルにアクセスしない可能性が高い。また、基地局10が駅や高速道路の近くなどに設置されている場合、ハンドインしてくる移動端末5の滞在時間は短く、スモールセルにアクセスしない可能性が高い。そこで、調整部17は、基地局10へのハンドオーバ数や移動端末5の移動速度に合わせて、位置情報を送信するタイミングを調整できる。
 図28は、情報送信リストの例である。情報送信リストには、基地局10が形成しているセルにハンドインしてきた移動端末5ごとに、位置情報を送信するタイミングを決定するための情報が含まれている。図28の例では、基地局タイマと速度タイマの2種類のタイマが使用される。優先タイマは、2種類のうちのいずれのタイマを優先的に使用するかを示す情報である。タイマは、ハンドインからの経過時間のカウント値である。優先的に使用されるタイマの設定時間と、タイマでのカウント値(経過時間)が同じ値になると、調整部17は、位置情報を移動端末5に送信する。
 基地局タイマは、基地局10ごとに決定される共通の値である。基地局10の調整部17は、その基地局10でのハンドオーバの発生数をカウントしており、一定時間以内に発生したハンドオーバ数を閾値Thと比較する。調整部17は、一定時間以内に発生したハンドオーバ数が閾値Thを越えると、基地局タイマの値を大きくする。例えば、基地局10の初期設定では、基地局タイマの値は0秒であるとする。すると、基地局タイマが優先されている場合、基地局10は、移動端末5がハンドインしてきたことをトリガとして、移動端末5に位置情報を送信する。一定時間以内に発生したハンドオーバ数が閾値Thを越えると、調整部17は、基地局タイマの値を大きくする。例えば、調整部17は、図28に示すように、基地局タイマの値を5秒に設定したとする。すると、調整部17は、移動端末5がハンドインしてきても、ハンドインから5秒が経過するまでは、位置情報を移動端末5に通知しない。なお、一定時間中に発生するハンドオーバの数は、複数の閾値と比較されても良い。この場合、基地局タイマの設定値は、一定時間以内に発生したハンドオーバの値が大きいほど、大きな値となるものとする。
 速度タイマは、移動端末5ごとに設定するタイマである。調整部17は、ハンドインしてきた移動端末5の移動速度を取得する。移動端末5の移動速度の取得方法は、任意である。例えば、基地局10に計算部18が含まれている場合、計算部18は、ハンドインしたタイミングでの移動端末5の速度を計算し、得られた値を移動端末5の識別子に対応付けて調整部17に出力する。また、基地局10は、ハンドオーバの処理の際に、ハンドオーバ元の基地局10から移動端末5の移動速度を取得しても良いものとする。調整部17は、予め、移動端末5の移動速度と速度タイマの設定値を対応付けた情報を保持している。なお、速度タイマの設定値は、移動端末5の移動速度が速いほど、大きな値となるものとする。図28の例では、11111111と44444444の端末識別子で識別される端末の移動速度は、22222222の端末識別子で識別される端末の移動速度よりも小さい。このため、調整部17は、11111111と44444444の端末識別子で識別される端末に対して、速度タイマを0秒に設定し、22222222の端末識別子で識別される端末の速度タイマを5秒に設定している。さらに、333333333の端末識別子で識別される端末の移動速度は、他の端末の移動速度よりも速いため、速度タイマを10秒に設定している。
 図28の例では、いずれの端末についても優先タイマは速度タイマである。そこで、調整部17は、各移動端末5について、ハンドインからの経過時間が、速度タイマの設定時間と同じ値になると、位置情報を移動端末5に送信する。従って、11111111と44444444の端末識別子で識別される端末には、調整部17は、ハンドインしたタイミングで、位置情報を送信する。一方、調整部17は、22222222の端末識別子で識別される端末には、ハンドインから5秒後に位置情報を送信し、111111111の端末識別子で識別される端末には、ハンドインから10秒後に位置情報を送信する。
 図29は、第3の実施形態での位置情報の通知方法の例を説明するシーケンス図である。手順(61)、(62)は、図17を参照しながら説明した手順(21)、(22)と同様である。
 (63)調整部17は、ハンドインが通知されると、ハンドインしてきた移動端末5の情報を情報送信リストに追加する。情報送信リストの設定方法は、図28を参照しながら説明したとおりである。
 (64)調整部17は、情報送信リストへの登録が終わると、記憶部20中の位置情報テーブル21にアクセスすることにより、位置情報を取得する。調整部17は、取得した位置情報を用いて、移動端末5宛に送信するためのメッセージを生成する。
 (65)調整部17は、情報送信リストを参照し、生成したメッセージの送信タイミングになるまで、メッセージを保持する。
 (66)タイマの値が、優先的に使用されるタイマの設定時間と同じ値になると、調整部17は、位置情報を含むメッセージを送信部14に出力する。
 (67)送信部14は、調整部17から入力されたメッセージを移動端末5に送信する。移動端末5は、基地局10から受信したメッセージを用いて位置情報テーブル71を更新する。
 第3の実施形態では、基地局10は、移動端末5の移動速度などを用いて、その移動端末5が通知された位置情報を使用する可能性が高いかを判定する。さらに、調整部17は、位置情報を使用する可能性が低い移動端末5については、ハンドインから位置情報を送信するまでの時間を長く設定する。このため、移動速度の速い移動端末5は、基地局10から位置情報を受信する前に基地局10の通信エリアの外へ移動していることがあり、この場合、移動端末5は、使用する見込みのない位置情報の受信処理や位置情報の保持などの処理を行わない。このため、移動端末5の処理負担を軽くすることができる。
 <その他>
 なお、本発明の実施形態は、上述の構成又は方法に限られるものではなく、様々に変形可能である。以下にその例をいくつか述べる。
 第1~第3の実施形態では、基地局10は位置情報をサーバ30から取得する場合を例として説明したが、基地局10は、サーバ30以外の装置から位置情報を取得することもできる。
 例えば、サーバ30や基地局10は、セル半径の代わりに各基地局10での送信電力を取得しても良いものとする。この場合、以下の式を用いて、受信電力Pの値が所定の閾値を下回る距離までをセル半径とすることができる。
Figure JPOXMLDOC01-appb-M000001
ここで、Pは送信電力(W)、Gは受信利得、Gは送信利得、λは波長、Dは距離である。
 ハンドオーバが頻発することによる処理負荷を軽減するために、移動端末5が位置情報テーブル71の更新処理を行うかを、単位時間当たりのハンドオーバの発生回数を用いて判定するように変形しても良い。この場合、更新部61は、単位時間当たりのハンドオーバの発生回数をカウントするものとする。更新部61は、単位時間当たりのハンドオーバの発生回数が所定の閾値を越えると、基地局10から位置情報を通知されても、位置情報テーブル71を更新しない。位置情報テーブル71の更新を行わない場合、スモールセルを正確に検出できない場合があり得るが、位置情報テーブル71の更新などに伴う処理を行わないことにより、移動端末5の負荷は軽減される。また、更新部61は、移動端末5の電源の残量をモニタしていて、電源の残量が少なくなると、位置情報テーブル71の更新を停止することにより、消費電力を抑えることができる。このように変形された移動端末5は、例えば、ハンドオーバのたびに位置情報テーブル71を更新しなくてもスモールセルを発見できるほどスモールセルの設置数が多い場所での使用に適している。また、このように変形された移動端末5を、第3の実施形態と組み合わせて使用することができる。
 第3の実施形態において、調整部17は、タイマ満了時に移動端末5がセル内に存在するかを判定してから、位置情報を含むメッセージを移動端末5に送信するように変形することもできる。この場合、例えば、調整部17は、通信中の移動端末5の識別情報を記録したリストを、メッセージを送信しようとする移動端末5の識別情報をキーとして検索することができる。タイマの満了時に送信先の移動端末5が在圏している場合、調整部17は、メッセージを移動端末5に送信する。一方、タイマの満了時に送信先の移動端末5が在圏していない場合、調整部17は、移動端末5へのメッセージの送信を中止し、メッセージを破棄する。このように変形すると、基地局10は、位置情報を使用する見込みの無い移動端末5に位置情報を送信しないですむので、基地局10の処理負担も軽くなる。
 さらに、スモールセルの基地局が、そのスモールセルと1点以上を共有するマクロセルの情報も保持するように変形することもできる。この場合、移動端末5がスモールセルへハンドインすると、そのスモールセルと1点以上を共有するマクロセルの情報も、移動端末5に通知される。例えば、マクロセルAに含まれているスモールセルbにハンドインした移動端末5は、マクロセルAと1点以上を共有するスモールセルと、マクロセルAの位置情報やセル半径などを取得できる。すると、移動端末5は、スモールセルbから出るときに、マクロセルAのエリアに入るかを判定することができる。
   1 ネットワーク
   5 移動端末
  10 基地局
  11 信号処理部
  12 無線処理部
  13、31、51 受信部
  14、35、52 送信部
  15、32、61 更新部
  16、64 ハンドオーバ処理部
  17 調整部
  18 計算部
  20、40、70 記憶部
  21、71 位置情報テーブル
  30 サーバ
  33 検索部
  34 選択部
  41 マクロセル情報テーブル
  42 スモールセル情報テーブル
  43 マクロセル管理テーブル
  44 スモールセル管理テーブル
  62 特定部
  63 検出部
 101、111 アンテナ
 102、112 アンプ
 103、113 ベースバンド処理回路
 104、114、121 プロセッサ
 105、115、122 メモリ
 106 伝送路インタフェース
 123 入力装置
 124 出力装置
 125 バス
 126 外部記憶装置
 127 媒体駆動装置
 128 可搬記憶媒体
 129 ネットワーク接続装置

Claims (12)

  1.  第1のセルに在圏する移動端末と無線通信が可能な基地局装置であって、
     前記移動端末の移動先となり得る第2のセルの位置情報を記憶する記憶部と、
     前記移動端末に前記第2のセルの位置情報を送信し、前記移動端末に前記位置情報を用いて前記第2のセルへの接近を検知させる送信部
     を備える基地局装置。
  2.  第1の周波数帯域での通信が行われる前記第1のセルから、前記第1の周波数帯域とは異なる第2の周波数帯域での通信が行われる前記第2のセルへ、前記移動端末がハンドオーバするための処理を行うハンドオーバ処理部
     をさらに備え、
     前記ハンドオーバ処理部は、前記移動端末が前記第2のセルへの接近を検知したことを前記移動端末から通知された後に、前記移動端末が前記第2の周波数帯域での通信の開始に使用する情報を、前記送信部を介して、前記移動端末に送信する
     ことを特徴とする請求項1に記載の基地局装置。
  3.  前記第1のセルを用いた通信の開始を要求する要求メッセージを、前記移動端末から受信する受信部
     をさらに備え、
     前記送信部は、前記受信部が前記要求メッセージを受信すると、前記位置情報を前記移動端末に送信する
     ことを特徴とする請求項1または2に記載の基地局装置。
  4.  前記第1のセルを用いた通信の開始を要求する要求メッセージを、前記移動端末から受信する受信部と、
     前記移動端末の移動速度を計算する計算部と、
     前記要求メッセージの受信から、前記位置情報の送信を行うまでの時間間隔を、前記移動速度が速いほど長くなるように調整する調整部
     をさらに備え、
     前記送信部は、前記時間間隔が経過すると、前記位置情報を前記移動端末に送信する
     ことを特徴とする請求項1または2に記載の基地局装置。
  5.  前記記憶部は、前記第1のセルを分割することにより得られる複数のセクタの各々を識別するセクタ識別子と、前記セクタ識別子で識別されるセクタと少なくとも1点を共有するセルを対応付けて記憶し、
     前記送信部は、前記移動端末が位置するセクタと少なくとも1点を共有するセルの位置情報を、前記移動端末に通知する
     ことを特徴とする請求項1~4のいずれか1項に記載の基地局装置。
  6.  第1のセルで基地局装置と通信可能な移動端末であって、
     前記第1のセルからの移動先となり得る第2のセルの位置情報を前記基地局装置から受信する受信部と、
     前記移動端末の位置を特定する特定部と、
     前記位置情報および前記移動端末の位置を用いて前記第2のセルへの接近を検出する検出部と、
     前記第2のセルへの接近を通知する通知情報を、前記基地局装置に送信する送信部
     を備える移動端末。
  7.  第1の周波数帯域での通信が行われる前記第1のセルから、第2の周波数帯域で通信が行われる前記第2のセルへハンドオーバするための処理を行うハンドオーバ処理部
     を備え、
     前記送信部は、前記第1の周波数帯域を使用して、前記通知情報を前記基地局装置に送信し、
     前記受信部は、前記第2の周波数帯域での通信の開始に用いる開始情報を、前記送信部が前記通知情報を送信した後に、前記基地局装置から受信し、
     前記ハンドオーバ処理部は、前記開始情報を用いて、前記第1のセルから前記第2のセルへのハンドオーバを行う
     ことを特徴とする請求項6に記載の移動端末。
  8.  前記第1のセルが複数のセクタに分割されており、前記移動端末は、前記複数のセクタのうちの通信対象のセクタに位置し、
     前記受信部は、前記通信対象のセクタと少なくとも1点を共有するセルの位置情報を、取得する
     ことを特徴とする請求項6または7に記載の移動端末。
  9.  前記検出部は、前記移動端末の位置との距離が閾値以下のセルを検出することにより、前記第2のセルを検出する
     ことを特徴とする請求項6~8のいずれか1項に記載の移動端末。
  10.  第1のセルを提供する基地局装置と、
     前記第1のセルで基地局装置と通信可能な移動端末、
     を備え、
     前記基地局装置は、前記移動端末の移動先となり得る第2のセルの位置情報を、前記移動端末に送信し、
     前記移動端末は、
      前記移動端末の位置を特定し、
      前記位置情報および前記移動端末の位置を用いて前記第2のセルへの接近を検出し、
      前記第2のセルへの接近を通知する通知情報を、前記基地局に送信する
     ことを特徴とする無線通信システム。
  11.  前記第1のセルで第1の周波数帯域を用いた通信が行われ、
     前記第2のセルで第2の周波数帯域での通信が行われ、
     前記基地局装置は、前記通知情報を受信すると、前記移動端末が前記第2の周波数帯域での通信の開始に使用する開始情報を、前記移動端末に送信し、
     前記移動端末は、前記開始情報を用いて、前記第2のセルを用いた通信を開始する
     ことを特徴とする請求項10に記載の無線通信システム。
  12.  前記基地局装置は、
      前記基地局装置との通信の開始を要求する要求メッセージを、前記移動端末から受信すると、前記移動端末の移動速度を計算し、
      前記要求メッセージの受信から、前記位置情報の送信を行うまでの時間間隔を、前記移動速度が速いほど長くなるように調整し、
      前記要求メッセージの受信から前記時間間隔が経過すると、前記位置情報を前記移動端末に送信する
     ことを特徴とする請求項10または11に記載の無線通信システム。
PCT/JP2013/071184 2013-08-05 2013-08-05 基地局装置、移動端末、および、無線通信システム WO2015019406A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2013/071184 WO2015019406A1 (ja) 2013-08-05 2013-08-05 基地局装置、移動端末、および、無線通信システム
EP13891077.3A EP3032876A4 (en) 2013-08-05 2013-08-05 BASE STATION APPARATUS, MOBILE TERMINAL AND WIRELESS COMMUNICATION SYSTEM
JP2015530573A JP6123898B2 (ja) 2013-08-05 2013-08-05 基地局装置、移動端末、および、無線通信システム
US14/988,282 US9832702B2 (en) 2013-08-05 2016-01-05 Base station device, mobile terminal, and radio communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/071184 WO2015019406A1 (ja) 2013-08-05 2013-08-05 基地局装置、移動端末、および、無線通信システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/988,282 Continuation US9832702B2 (en) 2013-08-05 2016-01-05 Base station device, mobile terminal, and radio communication system

Publications (1)

Publication Number Publication Date
WO2015019406A1 true WO2015019406A1 (ja) 2015-02-12

Family

ID=52460779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071184 WO2015019406A1 (ja) 2013-08-05 2013-08-05 基地局装置、移動端末、および、無線通信システム

Country Status (4)

Country Link
US (1) US9832702B2 (ja)
EP (1) EP3032876A4 (ja)
JP (1) JP6123898B2 (ja)
WO (1) WO2015019406A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020202382A1 (ja) * 2019-03-29 2020-10-08 本田技研工業株式会社 端末装置、通信システム、通信方法、及びプログラム
JP2021087088A (ja) * 2019-11-27 2021-06-03 パナソニックIpマネジメント株式会社 通信制御装置、通信制御方法、及び、通信システム
WO2023188143A1 (ja) * 2022-03-30 2023-10-05 日本電気株式会社 通信制御装置、端末装置、移動体、通信システム、通信制御商法、及びプログラム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016184889A (ja) * 2015-03-26 2016-10-20 キヤノン株式会社 通信装置、通信装置の制御方法及びプログラム
US10397840B2 (en) 2016-11-15 2019-08-27 At&T Intellectual Property I, L.P. Method and apparatus for communication device handover
US10278108B2 (en) 2017-07-17 2019-04-30 At&T Intellectual Property I, L.P. Method and apparatus for coordinating wireless resources in a communication network
US10085199B1 (en) 2017-07-17 2018-09-25 At&T Intellectual Property I, L.P. Method and apparatus for directing wireless resources in a communication network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011109666A (ja) 2009-11-18 2011-06-02 Mitsubishi Electric R & D Centre Europe Bv 無線セルラー通信ネットワークにおいて移動端末のハンドオーバーを行わなければならないハンドオーバー先の無線通信デバイスを決定するための方法及びデバイス、並びに該方法のコンピュータープログラム
JP2013031224A (ja) 2012-10-24 2013-02-07 Panasonic Corp 無線送受信装置および無線送受信方法
WO2013065842A1 (ja) * 2011-11-03 2013-05-10 京セラ株式会社 通信制御方法、基地局、及びユーザ端末
JP2013526239A (ja) * 2010-05-28 2013-06-20 サムスン エレクトロニクス カンパニー リミテッド セルが重畳される無線通信システムにおける移動性を支援するための装置及びその方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3820981B2 (ja) * 2001-12-20 2006-09-13 日本電気株式会社 無線通信システム及び発信側携帯端末における相手先携帯端末の時刻識別方法
US8391872B1 (en) * 2007-07-17 2013-03-05 Sprint Spectrum L.P. Use of call drop and re-origination data to trigger handoff
JP2012010065A (ja) * 2010-06-24 2012-01-12 Fujitsu Ltd 基地局装置およびハンドオーバ方法
WO2012105391A1 (en) * 2011-02-04 2012-08-09 Nec Corporation Radio communication system, base station apparatus, radio resource control method, and non-transitory computer readable medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011109666A (ja) 2009-11-18 2011-06-02 Mitsubishi Electric R & D Centre Europe Bv 無線セルラー通信ネットワークにおいて移動端末のハンドオーバーを行わなければならないハンドオーバー先の無線通信デバイスを決定するための方法及びデバイス、並びに該方法のコンピュータープログラム
JP2013526239A (ja) * 2010-05-28 2013-06-20 サムスン エレクトロニクス カンパニー リミテッド セルが重畳される無線通信システムにおける移動性を支援するための装置及びその方法
WO2013065842A1 (ja) * 2011-11-03 2013-05-10 京セラ株式会社 通信制御方法、基地局、及びユーザ端末
JP2013031224A (ja) 2012-10-24 2013-02-07 Panasonic Corp 無線送受信装置および無線送受信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3032876A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020202382A1 (ja) * 2019-03-29 2020-10-08 本田技研工業株式会社 端末装置、通信システム、通信方法、及びプログラム
JPWO2020202382A1 (ja) * 2019-03-29 2020-10-08
CN113574933A (zh) * 2019-03-29 2021-10-29 本田技研工业株式会社 终端装置、通信系统、通信方法以及程序
JP7285918B2 (ja) 2019-03-29 2023-06-02 本田技研工業株式会社 端末装置、通信システム、通信方法、及びプログラム
CN113574933B (zh) * 2019-03-29 2023-12-12 本田技研工业株式会社 终端装置、通信系统、通信方法以及存储介质
JP2021087088A (ja) * 2019-11-27 2021-06-03 パナソニックIpマネジメント株式会社 通信制御装置、通信制御方法、及び、通信システム
JP7373742B2 (ja) 2019-11-27 2023-11-06 パナソニックIpマネジメント株式会社 通信制御装置、通信制御方法、及び、通信システム
WO2023188143A1 (ja) * 2022-03-30 2023-10-05 日本電気株式会社 通信制御装置、端末装置、移動体、通信システム、通信制御商法、及びプログラム

Also Published As

Publication number Publication date
US9832702B2 (en) 2017-11-28
EP3032876A4 (en) 2016-07-20
JPWO2015019406A1 (ja) 2017-03-02
US20160135106A1 (en) 2016-05-12
JP6123898B2 (ja) 2017-05-10
EP3032876A1 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
JP6123898B2 (ja) 基地局装置、移動端末、および、無線通信システム
TWI503022B (zh) 偵測網路中之鄰近存取點
JP6019233B2 (ja) 端末アクセス方法、システム及び端末
JP4248542B2 (ja) 無線ネットワークにおける無線移動端末がハンドオーバーするときのコンテクスト転送システム及びコンテクスト転送方法
WO2019179350A1 (zh) 资源选择方法、用户设备和网络侧设备
CN101656941B (zh) 更新邻区信息的方法、装置以及基站
JP2006217051A (ja) 無線通信システム及び無線基地局制御装置
JP2002198900A (ja) 下り送信電力制御方法、移動通信システム、基地局、移動局、交換局側装置
JP2011217058A (ja) 通信制御装置、通信制御方法、プログラム、端末装置および無線通信システム
JP2011501506A (ja) フェムト・システム内のアクセス制御の方法
WO2017177940A1 (zh) 核心网的选择方法、装置及系统
CN107211337A (zh) 通信方法、核心网控制面节点设备和基站
JPWO2016051546A1 (ja) 無線通信システム、無線通信装置、基地局、及び、無線通信方法
CN104270788B (zh) 一种异系统切换的方法及设备
JP6190477B2 (ja) ページング方法およびページング装置
KR100718097B1 (ko) 개인영역 무선네트워크에서의 주소 관리 방법 및 경로 설정방법
JP5589067B2 (ja) 異なる無線技術の周辺セルのシグナリングの連続する検索の間の時間間隔の増加
KR20200011497A (ko) 핸드오버 방법, 디바이스 및 시스템
JP2015211237A (ja) 無線端末装置および無線通信システム
WO2015139752A1 (en) User handoff mechanism for cell splitting in wireless network
US20160037407A1 (en) Radio Network Node, a Base Station and Methods Therein
EP3275242B1 (en) Determination of a re-establishment cell
JP2017103785A (ja) 位置情報サービスのための端末、無線信号検知装置及びサーバー
US11723117B2 (en) Mobility level control device and mobility level control method
JP2016046662A (ja) 通信システムおよび通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891077

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015530573

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013891077

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013891077

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE