WO2015015865A1 - Conductive paste, ceramic electronic component, and method for producing ceramic electronic component - Google Patents

Conductive paste, ceramic electronic component, and method for producing ceramic electronic component Download PDF

Info

Publication number
WO2015015865A1
WO2015015865A1 PCT/JP2014/062882 JP2014062882W WO2015015865A1 WO 2015015865 A1 WO2015015865 A1 WO 2015015865A1 JP 2014062882 W JP2014062882 W JP 2014062882W WO 2015015865 A1 WO2015015865 A1 WO 2015015865A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
conductive paste
electronic component
powder
alkaline earth
Prior art date
Application number
PCT/JP2014/062882
Other languages
French (fr)
Japanese (ja)
Inventor
隆宏 岡
鷲見 高弘
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2015529416A priority Critical patent/JP6020728B2/en
Publication of WO2015015865A1 publication Critical patent/WO2015015865A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/043Printed circuit coils by thick film techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/046Printed circuit coils structurally combined with ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • H01G4/0085Fried electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics

Definitions

  • the present invention relates to a conductive paste, a ceramic electronic component, and a method for manufacturing a ceramic electronic component.
  • Patent Document 1 in order to strengthen the bonding strength between the ceramic substrate and the conductor pattern, there are a Cu powder having a proper composition, a Cu 2 O powder having a proper composition, a CuO powder having a proper composition, and a softening point.
  • a conductive paste composed of a glass frit having a proper composition not containing Pb and Cd at 650 ° C. or less, a compound having a proper composition containing Mn, Ni, or Bi, and an organic vehicle having a proper composition is described. .
  • the conductive paste of Patent Document 1 contains a low softening point glass and an oxide, it is a conductor pattern that bonds with a ceramic substrate with sufficient strength only when fired at a low temperature of 700 ° C. or lower. It becomes.
  • an object of the present invention is to provide a conductive paste, a ceramic electronic component, and a method for manufacturing a ceramic electronic component that can sufficiently obtain a bonding strength between a ceramic substrate and a conductor pattern even when the firing temperature is 800 ° C. or higher. That is.
  • the present invention includes a CuMn alloy powder, an alkaline earth metal compound powder, and an organic vehicle.
  • the CuMn alloy powder has a Mn content of 0.1 to 5.0% by volume, and the volume V of the alkaline earth metal compound powder.
  • the conductive paste is characterized in that the relationship between RO and the volume V alloy of the CuMn alloy powder is 1.0 ⁇ 100 ⁇ V RO / (V RO + V alloy ) ⁇ 20.
  • the ceramic paste since a low softening point glass is not included in the conductive paste, when a ceramic electronic component is produced using this conductive paste, even if the firing temperature of the ceramic electronic component is 800 ° C. or higher, the ceramic paste A conductor pattern with sufficiently strong bonding strength can be formed.
  • the present invention is a conductive paste characterized in that the alkaline earth metal compound is selected from at least one of barium carbonate, calcium carbonate, and magnesium carbonate.
  • the alkaline earth metal compound is a carbonate, it becomes easy to paste the conductive paste.
  • the present invention is a ceramic electronic component characterized in that a conductor pattern is produced using the conductive paste described above.
  • the present invention also includes a step of forming a raw conductor pattern with the above-mentioned conductive paste on the surface of the ceramic green sheet, and laminating and pressing the ceramic green sheet and the ceramic green sheet on which the raw conductor pattern is formed.
  • ceramic electronic components having a conductor pattern with sufficiently high bonding strength between the ceramic and the conductor pattern and a low specific resistance can be reliably mass-produced.
  • a ceramic electronic component having a sufficiently strong bonding strength between the ceramic and the conductor pattern can be obtained even when the firing temperature when producing the ceramic electronic component is 800 ° C. or higher.
  • FIG. 1 It is sectional drawing which shows one Embodiment of the ceramic electronic component which concerns on this invention. It is a flowchart for demonstrating the manufacturing method of the ceramic electronic component shown in FIG. It is a graph which shows the relationship between baking temperature and baking time. It is a graph which shows the correlation of a calcination temperature and oxygen partial pressure.
  • the ceramic electronic component is, for example, a passive element such as a multilayer ceramic capacitor or a multilayer ceramic inductor, or a multilayer ceramic substrate on which a wiring conductor that electrically connects the elements is formed.
  • a multilayer ceramic capacitor will be described as an example of a ceramic electronic component.
  • the conductive paste contains CuMn alloy powder, alkaline earth metal compound powder, and organic vehicle.
  • the Mn content of the CuMn alloy powder is 0.1 to 5.0% by volume.
  • the relationship between the volume V RO of the alkaline earth metal compound powder and the volume V alloy of the CuMn alloy powder is 1.0 ⁇ 100 ⁇ V RO / (V RO + V alloy ) ⁇ 20.
  • the alkaline earth metal compound is selected from at least one of barium carbonate, calcium carbonate, and magnesium carbonate that melts at a temperature equal to or lower than the firing temperature when the multilayer ceramic capacitor 1 is manufactured.
  • FIG. 1 is a vertical sectional view in the length direction showing a multilayer ceramic capacitor 1 in which internal electrodes are formed using the above-described conductive paste.
  • the present invention can also be applied to multilayer ceramic LC filters, multilayer ceramic multilayer modules, and the like.
  • the multilayer ceramic capacitor 1 includes a ceramic body 10 and external electrodes 20 and 22 formed on left and right ends of the ceramic body 10.
  • the ceramic body 10 is vertically moved so as to sandwich the plurality of inner layer ceramic layers 11, the plurality of inner electrodes 12 and 13 disposed at the interfaces between the plurality of inner layer ceramic layers 11, and the plurality of inner layer ceramic layers 11.
  • the outer layer ceramic layers 15a and 15b are arranged in a rectangular parallelepiped structure.
  • the internal electrode 12 and the internal electrode 13 are opposed to each other through the inner ceramic layer 11 made of a dielectric material in the thickness direction. Capacitance is formed in a portion where the internal electrode 12 and the internal electrode 13 are opposed to each other with the inner ceramic layer 11 interposed therebetween.
  • the internal electrodes 12 and 13 are produced using the conductive paste described above.
  • the left end of the internal electrode 12 is drawn out to the left end face of the ceramic body 10 and is electrically connected to the external electrode 20.
  • the right end of the internal electrode 13 is drawn out to the right end surface of the ceramic body 10 and is electrically connected to the external electrode 22.
  • the inner ceramic layer 11 is made of a dielectric material (BAS material) containing Ba, Al, and Si as main components.
  • BAS material a dielectric material containing Ba, Al, and Si as main components.
  • the same dielectric material as that of the inner ceramic layer 11 is used for the outer ceramic layers 15a and 15b disposed above and below, respectively.
  • the internal electrodes 12 and 13 are manufactured using the conductive paste containing the CuMn alloy powder, the alkaline earth metal compound, and the organic vehicle. Even if the firing temperature at the time of manufacturing the capacitor 1 is 800 ° C. or higher, the ceramic body 10 has the internal electrodes 12 and 13 with sufficiently high bonding strength and low specific resistance. A multilayer ceramic capacitor 1 can be obtained.
  • the Mn component in the CuMn alloy is oxidized during the firing process, and a Mn oxide film is formed on the surface of the CuMn alloy.
  • This Mn oxide film is delayed by the sintering of the CuMn alloy and then melted by the alkaline earth metal compound to become a glass containing Mn and the alkaline earth metal compound.
  • This glass causes liquid phase sintering of the internal electrodes 12 and 13. Further, the glass flows to the interface between the internal electrodes 12 and 13 and the ceramic body 10 to form a strong bonding layer. As a result, internal electrodes 12 and 13 having high bonding strength are obtained.
  • the bonding layer does not contain an alkali metal component, it has excellent chemical durability. Therefore, even if the multilayer ceramic capacitor 1 is left in a humid atmosphere, the high bonding strength between the ceramic of the ceramic body 10 and the internal electrodes 12 and 13 can be maintained.
  • the melting temperature of the alkaline earth metal compound is about 800 ° C., and until this temperature, the sintering of the internal electrodes 12 and 13 is delayed by the Mn oxide film on the surface of the CuMn alloy. As a result, since the sintering of the internal electrodes 12 and 13 is delayed, the deviation from the ceramic sintering time of the ceramic body 10 is reduced. Therefore, structural defects (delamination and cracks between the ceramic layers of the ceramic body 10) due to the internal electrodes 12 and 13 being sintered faster than the ceramic of the ceramic body 10 can be suppressed.
  • the Mn oxide film on the surface of the CuMn alloy does not have a crystallization effect on the alkaline earth metal compound and does not inhibit the sintering of the CuMn alloy. Therefore, finally, almost all of the glass component is pushed out of the internal electrodes 12 and 13, so that the internal electrodes 12 and 13 having excellent electrical characteristics (low resistance characteristics) can be obtained.
  • a material (BAS material) containing Ba, Al, and Si as main components is prepared as a dielectric material.
  • Each material is prepared to have a predetermined composition and calcined at 800 to 1000 ° C.
  • the obtained calcined powder is pulverized with a zirconia ball mill for 12 hours to obtain a dielectric powder.
  • an organic solvent such as toluene and echinene is added and mixed. Thereafter, a binder and a plasticizer are further added and mixed to prepare a slurry.
  • This slurry is formed into an inner layer or outer layer ceramic green sheet having a thickness of 50 ⁇ m by a doctor blade method.
  • step S2 CuMn alloy powder, alkaline earth metal compound powder, and organic vehicle are prepared.
  • the alkaline earth metal compound is selected from at least one of barium carbonate, calcium carbonate, and magnesium carbonate.
  • These CuMn alloy powders, alkaline earth metal compound powders and organic vehicles have a Mn content of the CuMn alloy powder of 0.1 to 5.0% by volume, and the alkaline earth compound volume V RO and the CuMn alloy.
  • the powder is mixed so that the relationship with the volume V alloy is 1.0 ⁇ 100 ⁇ V RO / (V RO + V alloy ) ⁇ 20, and then dispersed to prepare a conductive paste.
  • step S3 a conductive paste is screen-printed on the inner layer ceramic green sheet to form a conductive paste film (conductor pattern before firing) to be the internal electrodes 12 and 13.
  • step S4 a plurality of ceramic green sheets for the inner layer on which the conductive paste film is formed are laminated so that the drawing directions of the ends of the conductive paste film are alternate. Furthermore, the ceramic green sheet layer for outer layers is laminated
  • step S5 the green ceramic body 10 is cut into a predetermined product size.
  • the cut unfired ceramic body 10 is fired at a firing temperature of 800 ° C. or higher in an oxygen partial pressure atmosphere in which Cu is not oxidized but carbon is oxidized to be a sintered ceramic body 10.
  • the inner layer and outer layer ceramic green sheets and the conductive paste film are fired at the same time, the inner layer ceramic green sheet becomes the inner layer ceramic layer 11, and the outer layer ceramic green sheet becomes the outer layer ceramic layers 15a and 15b.
  • the film becomes the internal electrodes 12 and 13.
  • step S6 Cu paste is applied and baked on both ends of the sintered ceramic body 10 to form external electrodes 20 and 22 electrically connected to the internal electrodes 12 and 13, respectively.
  • step S6 Ni—Sn plating is formed on the surface layers of the external electrodes 20 and 22 by wet plating. In this way, the multilayer ceramic capacitor 1 is obtained.
  • the multilayer ceramic capacitor 1 having the internal electrodes 12 and 13 having sufficiently high bonding strength between the ceramic of the ceramic body and the internal electrodes 12 and 13 and low specific resistance can be reliably mass-produced.
  • a material (BAS material) containing Ba, Al, and Si as main components was prepared. Each material was formulated to a predetermined composition and calcined at 800-1000 ° C. The obtained calcined powder was pulverized with a zirconia ball mill for 12 hours to obtain a ceramic powder.
  • This ceramic powder was mixed with an organic solvent such as toluene and echinene. Thereafter, a binder and a plasticizer were further added and mixed to prepare a slurry. This slurry was formed into a ceramic green sheet having a thickness of 50 ⁇ m by a doctor blade method.
  • Conductor powders (M-1 to M-4) listed in Table 1, alkaline earth metal carbonate powders (RO-1 to RO-3) listed in Table 2, alkali metal carbonate powders listed in Table 3 ( R2O-1 to R2O-3) and the organic vehicle (W-1) shown in Table 4 were prepared.
  • the conductor powders listed in Table 1 were produced by a well-known atomizing method.
  • the particle size distribution (D10, D50, D90) is determined by a laser diffraction particle size distribution method, and the specific surface area (SSA) is determined by a BET one-point method using nitrogen gas.
  • a conductive paste is printed on the surface and dried to form a wiring before firing having a line width of 200 ⁇ m and a line length of 600 mm. A conductor pattern was formed, and an unfired ceramic laminated substrate was obtained.
  • an electroless Ni plating treatment was performed on the conductor pattern formed on the surface of the sintered ceramic multilayer substrate, and an electroless Ni plating film was formed on the conductor pattern. Thereafter, an electroless Au plating process was performed, and an electroless Au plating film was formed on the electroless Ni plating film.
  • Example and Comparative Example Characteristic Evaluation Method (Initial Bond Strength Characteristics) After the lead wire made of metal is soldered to the conductor pattern of the evaluation sample for the initial bonding strength characteristics, the lead wire is pulled by a tensile tester (AGS-50C manufactured by Shimadzu Corporation) with a tensile speed of 20 mm / min. The tensile strength was measured under the test conditions, and the bond strength value between the conductor pattern and the ceramic laminated substrate was measured.
  • AGS-50C tensile tester
  • the evaluation sample is a constant temperature and humidity chamber (85% humidity, 85 ° C. temperature) Left in it for 500 hours.
  • the lead wire was pulled with a tensile tester (AGS-50C manufactured by Shimadzu Corporation) under a test condition of a tensile speed of 20 mm / min, and the bonding strength value between the conductor pattern and the ceramic laminated substrate was measured. .
  • This tensile test was performed on 10 conductor patterns, and when the average value of the bonding strength values was 200 gf or more, it was determined that there was no problem in the bonding strength after being left in the humidity (“ ⁇ ”). On the other hand, when the average value of the bonding strength values was less than 200 gf, it was determined that there was a problem in the bonding strength after being left in the humidity (“ ⁇ ”).
  • the resistance value R, the cross-sectional area S, and the line length L of the wiring conductor pattern of the evaluation sample for specific resistance characteristics were measured.
  • the cross-sectional area S of the wiring conductor pattern was measured by Surftech's Surfcom.
  • the conductive paste of number P-1 which is outside the scope of the present invention, is used (in the case of a conductive paste not containing an alkaline earth compound), the specific resistance is high and is not suitable for practical use. This is because the alkaline paste compound is not included in the conductive paste, and thus the sintering of the CuMn alloy powder was inhibited by the Mn oxide that was oxidized and discharged from the inside of the CuMn alloy during the firing process. I guess.
  • the specific resistance is high and is not suitable for practical use. This is presumed to be caused by the segregation of a large amount of alkaline earth compound on the electrode after firing because the conductive paste contains a large amount of alkaline earth compound.
  • the initial bonding strength is low, and it is practical. Not suitable for. This is presumed to be because the conductive paste does not contain CuMn alloy powder, and therefore no Mn-containing bonding layer was formed between the fired conductor pattern and the ceramic laminated substrate.
  • the conductive paste No. P-21 outside the scope of the present invention conductive paste containing 10.0% by volume of the Mn component in the CuMn alloy as the conductive powder
  • the specific resistance is High and not suitable for practical use. This is because the amount of Mn component in the CuMn alloy contained in the conductive paste is too large, and the sintering of the CuMn alloy powder was inhibited by the Mn oxide oxidized and discharged from the inside of the CuMn alloy during the firing process. I guess this is the cause.
  • the evaluation samples thus prepared were evaluated for “initial bonding strength characteristics”, “bonding strength characteristics after being left in the humidity”, and “specific resistance characteristics”. As a result, all the characteristics were determined to be defective. This is presumed to be because carbon does not burn at a firing temperature of 800 ° C. or higher, so that the amount of carbon remaining in the conductor pattern increases and the sinterability of the conductor pattern is significantly inhibited.

Abstract

Provided are: a conductive paste which is capable of providing a sufficient bonding strength between a ceramic substrate and a conductor pattern even if the firing temperature is 800°C or more; a ceramic electronic component; and a method for producing a ceramic electronic component. This conductive paste for forming internal electrodes (12, 13) of a multilayer ceramic capacitor (1) contains a Cu-Mn alloy powder, an alkaline earth metal compound powder and an organic vehicle. The Mn content in the Cu-Mn alloy powder is 0.1-5.0% by volume, and the relation between the volume (VRO) of the alkaline earth metal compound powder and the volume (Valloy) of the Cu-Mn alloy powder satisfies 1.0 ≤ 100 × VRO/(VRO + Valloy) ≤ 20. The alkaline earth metal compound is composed of at least one compound that is selected from among barium carbonate, calcium carbonate and magnesium carbonate.

Description

導電性ペースト、セラミック電子部品およびセラミック電子部品の製造方法Conductive paste, ceramic electronic component, and method of manufacturing ceramic electronic component
 本発明は、導電性ペースト、セラミック電子部品およびセラミック電子部品の製造方法に関する。 The present invention relates to a conductive paste, a ceramic electronic component, and a method for manufacturing a ceramic electronic component.
 特許文献1には、セラミック基板と導体パターンとの接合強度を強固にするため、適正な配合のCu粉末と、適正な配合のCu2O粉末と、適正な配合のCuO粉末と、軟化点が650℃以下でPbとCdを含有しない適正な配合のガラスフリットと、Mn,NiもしくはBiを含有する適正な配合の化合物と、適正な配合の有機ビヒクルとからなる導電性ペーストが記載されている。 In Patent Document 1, in order to strengthen the bonding strength between the ceramic substrate and the conductor pattern, there are a Cu powder having a proper composition, a Cu 2 O powder having a proper composition, a CuO powder having a proper composition, and a softening point. A conductive paste composed of a glass frit having a proper composition not containing Pb and Cd at 650 ° C. or less, a compound having a proper composition containing Mn, Ni, or Bi, and an organic vehicle having a proper composition is described. .
特開2004-199941号公報JP 2004-199941 A
 しかしながら、特許文献1の導電性ペーストは、低軟化点ガラスと酸化物とを含有しているため、700℃以下の低温で焼成した場合に限って、セラミック基板と十分な強度で接合する導体パターンとなる。 However, since the conductive paste of Patent Document 1 contains a low softening point glass and an oxide, it is a conductor pattern that bonds with a ceramic substrate with sufficient strength only when fired at a low temperature of 700 ° C. or lower. It becomes.
 つまり、特許文献1の導電性ペーストは、焼成温度が800℃以上の高温で焼成された場合、低軟化点ガラスの軟化により、導体パターンが過剰に焼結収縮し、クラックおよび断線の不具合を引き起こすという問題があり、セラミック基板と十分な強度で接合することができない。 That is, when the conductive paste of Patent Document 1 is fired at a high firing temperature of 800 ° C. or higher, the conductive pattern excessively sinters and shrinks due to softening of the low softening point glass, causing defects of cracks and disconnections. Therefore, it cannot be bonded to the ceramic substrate with sufficient strength.
 それゆえに、本発明の目的は、焼成温度が800℃以上であっても、セラミック基板と導体パターンとの接合強度が十分得られる導電性ペースト、セラミック電子部品およびセラミック電子部品の製造方法を提供することである。 Therefore, an object of the present invention is to provide a conductive paste, a ceramic electronic component, and a method for manufacturing a ceramic electronic component that can sufficiently obtain a bonding strength between a ceramic substrate and a conductor pattern even when the firing temperature is 800 ° C. or higher. That is.
 本発明は、CuMn合金粉末とアルカリ土類金属化合物粉末と有機ビヒクルとを含み、CuMn合金粉末のMn含有量が0.1~5.0体積%であり、アルカリ土類金属化合物粉末の体積VROとCuMn合金粉末の体積Valloyとの関係が1.0≦100×VRO/(VRO+Valloy)≦20であること、を特徴とする、導電性ペーストである。 The present invention includes a CuMn alloy powder, an alkaline earth metal compound powder, and an organic vehicle. The CuMn alloy powder has a Mn content of 0.1 to 5.0% by volume, and the volume V of the alkaline earth metal compound powder. The conductive paste is characterized in that the relationship between RO and the volume V alloy of the CuMn alloy powder is 1.0 ≦ 100 × V RO / (V RO + V alloy ) ≦ 20.
 本発明では、導電性ペーストに低軟化点ガラスが含まれていないため、この導電性ペーストを用いてセラミック電子部品を作製したとき、セラミック電子部品の焼成温度が800℃以上であっても、セラミックとの接合強度が十分強い導体パターンが形成できる。 In the present invention, since a low softening point glass is not included in the conductive paste, when a ceramic electronic component is produced using this conductive paste, even if the firing temperature of the ceramic electronic component is 800 ° C. or higher, the ceramic paste A conductor pattern with sufficiently strong bonding strength can be formed.
 また、本発明は、アルカリ土類金属化合物が、炭酸バリウム、炭酸カルシウムおよび炭酸マグネシウムの少なくとも一つから選択されていること、を特徴とする、導電性ペーストである。 Further, the present invention is a conductive paste characterized in that the alkaline earth metal compound is selected from at least one of barium carbonate, calcium carbonate, and magnesium carbonate.
 本発明では、アルカリ土類金属化合物が炭酸塩であるため、導電性ペーストのペースト化が容易になる。 In the present invention, since the alkaline earth metal compound is a carbonate, it becomes easy to paste the conductive paste.
 また、本発明は、前述の導電性ペーストを用いて導体パターンが作製されたこと、を特徴とする、セラミック電子部品である。 Further, the present invention is a ceramic electronic component characterized in that a conductor pattern is produced using the conductive paste described above.
 本発明では、セラミックと導体パターンとの接合強度が十分強く、かつ、比抵抗が低い導体パターンを有するセラミック電子部品を提供することができる。 In the present invention, it is possible to provide a ceramic electronic component having a conductor pattern having a sufficiently high bonding strength between the ceramic and the conductor pattern and a low specific resistance.
 また、本発明は、セラミックグリーンシートの表面に、前述の導電性ペーストで生の導体パターンを形成する工程と、セラミックグリーンシートと生の導体パターンが形成されたセラミックグリーンシートとを積層圧着して未焼成の積層体を形成する工程と、Cuは酸化しないけれども炭素は酸化する酸素分圧の雰囲気において、800℃以上の焼成温度で未焼成の積層体を焼成する工程と、を備えたこと、を特徴とする、セラミック電子部品の製造方法である。 The present invention also includes a step of forming a raw conductor pattern with the above-mentioned conductive paste on the surface of the ceramic green sheet, and laminating and pressing the ceramic green sheet and the ceramic green sheet on which the raw conductor pattern is formed. A step of forming an unfired laminate, and a step of firing the unfired laminate at a firing temperature of 800 ° C. or higher in an oxygen partial pressure atmosphere in which Cu is not oxidized but carbon is oxidized, This is a method for manufacturing a ceramic electronic component.
 また、本発明は、焼成温度をT℃とし、酸素分圧をPO2atmとしたとき、(ア)800≦T(イ)exp{(-394132.8-0.8368T)/(8.314T)}≦PO2≦exp{(-338904-32.80256TlogT+246.856T)/(8.314T)}であること、を特徴とする、セラミック電子部品の製造方法である。 In the present invention, when the firing temperature is T ° C. and the oxygen partial pressure is P O2 atm, (a) 800 ≦ T (b) exp {(− 394132.8-0.8368T) / (8.314T) )} ≦ P O2 ≦ exp {(− 338904-32.80256TlogT + 246.856T) / (8.314T)}.
 本発明では、セラミックと導体パターンとの接合強度が十分強く、かつ、比抵抗が低い導体パターンを有するセラミック電子部品が確実に量産できる。 In the present invention, ceramic electronic components having a conductor pattern with sufficiently high bonding strength between the ceramic and the conductor pattern and a low specific resistance can be reliably mass-produced.
 本発明によれば、セラミック電子部品を作製するときの焼成温度が800℃以上であっても、セラミックと導体パターンとの接合強度が十分強いセラミック電子部品を得ることができる。 According to the present invention, a ceramic electronic component having a sufficiently strong bonding strength between the ceramic and the conductor pattern can be obtained even when the firing temperature when producing the ceramic electronic component is 800 ° C. or higher.
 この発明の上述の目的、その他の目的、特徴および利点は、図面を参照して行う以下の発明を実施するための形態の説明から一層明らかとなろう。 The above-mentioned object, other objects, features, and advantages of the present invention will become more apparent from the following description of the embodiments for carrying out the invention with reference to the drawings.
本発明に係るセラミック電子部品の一実施の形態を示す断面図である。It is sectional drawing which shows one Embodiment of the ceramic electronic component which concerns on this invention. 図1に示したセラミック電子部品の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the ceramic electronic component shown in FIG. 焼成温度と焼成時間との関係を示すグラフである。It is a graph which shows the relationship between baking temperature and baking time. 焼成温度と酸素分圧の相関関係を示すグラフである。It is a graph which shows the correlation of a calcination temperature and oxygen partial pressure.
 本発明に係る導電性ペーストおよびその導電性ペーストを用いて導体パターンが形成されたセラミック電子部品の一実施の形態を、その製造方法と共に説明する。セラミック電子部品は、例えば、積層セラミックコンデンサまたは積層セラミックインダクタのような受動素子や、素子間を電気的に接続する配線導体が形成されている多層セラミック基板などである。本実施の形態では、セラミック電子部品として、積層セラミックコンデンサを例にして説明する。 An embodiment of a conductive paste according to the present invention and a ceramic electronic component in which a conductor pattern is formed using the conductive paste will be described together with a manufacturing method thereof. The ceramic electronic component is, for example, a passive element such as a multilayer ceramic capacitor or a multilayer ceramic inductor, or a multilayer ceramic substrate on which a wiring conductor that electrically connects the elements is formed. In the present embodiment, a multilayer ceramic capacitor will be described as an example of a ceramic electronic component.
 1.導電性ペースト
 導電性ペーストは、CuMn合金粉末とアルカリ土類金属化合物粉末と有機ビヒクルとを含んでいる。CuMn合金粉末のMn含有量は、0.1~5.0体積%である。アルカリ土類金属化合物粉末の体積VROとCuMn合金粉末の体積Valloyとの関係は、1.0≦100×VRO/(VRO+Valloy)≦20である。さらに、アルカリ土類金属化合物は、積層セラミックコンデンサ1の製作時の焼成温度以下で溶融する炭酸バリウム、炭酸カルシウムおよび炭酸マグネシウムの少なくとも一つから選択されている。
1. Conductive Paste The conductive paste contains CuMn alloy powder, alkaline earth metal compound powder, and organic vehicle. The Mn content of the CuMn alloy powder is 0.1 to 5.0% by volume. The relationship between the volume V RO of the alkaline earth metal compound powder and the volume V alloy of the CuMn alloy powder is 1.0 ≦ 100 × V RO / (V RO + V alloy ) ≦ 20. Furthermore, the alkaline earth metal compound is selected from at least one of barium carbonate, calcium carbonate, and magnesium carbonate that melts at a temperature equal to or lower than the firing temperature when the multilayer ceramic capacitor 1 is manufactured.
 2.積層セラミックコンデンサ
 図1は、前述の導電性ペーストを用いて内部電極が形成された積層セラミックコンデンサ1を示す長さ方向の垂直断面図である。なお、本発明は、積層セラミックLCフィルタ、積層セラミック多層モジュール等にも応用できる。
 積層セラミックコンデンサ1は、セラミック本体10と、セラミック本体10の左右の端部に形成された外部電極20,22とを備えている。
2. Multilayer Ceramic Capacitor FIG. 1 is a vertical sectional view in the length direction showing a multilayer ceramic capacitor 1 in which internal electrodes are formed using the above-described conductive paste. The present invention can also be applied to multilayer ceramic LC filters, multilayer ceramic multilayer modules, and the like.
The multilayer ceramic capacitor 1 includes a ceramic body 10 and external electrodes 20 and 22 formed on left and right ends of the ceramic body 10.
 セラミック本体10は、複数の内層用セラミック層11と、複数の内層用セラミック層11同士の界面に配設された複数の内部電極12,13と、複数の内層用セラミック層11を挟むように上下に配設された外層用セラミック層15a,15bとで構成された直方体形状の積層体構造を有している。 The ceramic body 10 is vertically moved so as to sandwich the plurality of inner layer ceramic layers 11, the plurality of inner electrodes 12 and 13 disposed at the interfaces between the plurality of inner layer ceramic layers 11, and the plurality of inner layer ceramic layers 11. The outer layer ceramic layers 15a and 15b are arranged in a rectangular parallelepiped structure.
 内部電極12と内部電極13とは、厚み方向において、誘電体材料からなる内層用セラミック層11を介して対向している。この内部電極12と内部電極13とが、内層用セラミック層11を介して対向している部分に静電容量が形成されている。内部電極12,13は、前述の導電性ペーストを用いて作製されている。 The internal electrode 12 and the internal electrode 13 are opposed to each other through the inner ceramic layer 11 made of a dielectric material in the thickness direction. Capacitance is formed in a portion where the internal electrode 12 and the internal electrode 13 are opposed to each other with the inner ceramic layer 11 interposed therebetween. The internal electrodes 12 and 13 are produced using the conductive paste described above.
 内部電極12の左側端部は、セラミック本体10の左側の端面に引き出されて外部電極20に電気的に接続されている。内部電極13の右側端部は、セラミック本体10の右側の端面に引き出されて外部電極22に電気的に接続されている。 The left end of the internal electrode 12 is drawn out to the left end face of the ceramic body 10 and is electrically connected to the external electrode 20. The right end of the internal electrode 13 is drawn out to the right end surface of the ceramic body 10 and is electrically connected to the external electrode 22.
 内層用セラミック層11は、Ba、Al、Siを主たる成分とする誘電体材料(BAS材)などからなる。上下に配設された外層用セラミック層15a,15bも、それぞれ、内層用セラミック層11と同じ誘電体材料が用いられている。 The inner ceramic layer 11 is made of a dielectric material (BAS material) containing Ba, Al, and Si as main components. The same dielectric material as that of the inner ceramic layer 11 is used for the outer ceramic layers 15a and 15b disposed above and below, respectively.
 以上の構成からなる積層セラミックコンデンサ1は、内部電極12,13が、前述のCuMn合金粉末とアルカリ土類金属化合物と有機ビヒクルとを含んだ導電性ペーストを用いて作製されているため、積層セラミックコンデンサ1の製作時の焼成温度が800℃以上であっても、セラミック本体10のセラミックと内部電極12,13の接合強度が十分高く、かつ、比抵抗が低い内部電極12,13を有している積層セラミックコンデンサ1を得ることができる。 In the multilayer ceramic capacitor 1 having the above-described configuration, the internal electrodes 12 and 13 are manufactured using the conductive paste containing the CuMn alloy powder, the alkaline earth metal compound, and the organic vehicle. Even if the firing temperature at the time of manufacturing the capacitor 1 is 800 ° C. or higher, the ceramic body 10 has the internal electrodes 12 and 13 with sufficiently high bonding strength and low specific resistance. A multilayer ceramic capacitor 1 can be obtained.
 より詳細に説明する。積層セラミックコンデンサ1は、焼成過程で、CuMn合金中のMn成分が酸化され、CuMn合金表面にMn酸化物皮膜が形成される。このMn酸化物皮膜は、CuMn合金の焼結を遅延させた後、アルカリ土類金属化合物によって融解され、Mnおよびアルカリ土類金属化合物を含むガラスとなる。このガラスが、内部電極12,13を液相焼結させる。さらに、このガラスが、内部電極12,13とセラミック本体10との間の界面に流動して強固な接合層を形成する。その結果、高接合強度の内部電極12,13が得られる。 More detailed explanation. In the multilayer ceramic capacitor 1, the Mn component in the CuMn alloy is oxidized during the firing process, and a Mn oxide film is formed on the surface of the CuMn alloy. This Mn oxide film is delayed by the sintering of the CuMn alloy and then melted by the alkaline earth metal compound to become a glass containing Mn and the alkaline earth metal compound. This glass causes liquid phase sintering of the internal electrodes 12 and 13. Further, the glass flows to the interface between the internal electrodes 12 and 13 and the ceramic body 10 to form a strong bonding layer. As a result, internal electrodes 12 and 13 having high bonding strength are obtained.
 また、前記接合層は、アルカリ金属成分を含まないため、化学的耐久性に優れている。従って、積層セラミックコンデンサ1が、湿気雰囲気中に放置されても、セラミック本体10のセラミックと内部電極12,13との間の高接合強度は維持できる。 In addition, since the bonding layer does not contain an alkali metal component, it has excellent chemical durability. Therefore, even if the multilayer ceramic capacitor 1 is left in a humid atmosphere, the high bonding strength between the ceramic of the ceramic body 10 and the internal electrodes 12 and 13 can be maintained.
 また、アルカリ土類金属化合物の溶融温度は約800℃であり、この温度までは、CuMn合金の表面のMn酸化物皮膜により内部電極12,13の焼結が遅延する。その結果、内部電極12,13の焼結が遅延することにより、セラミック本体10のセラミックの焼結時間との乖離が小さくなる。従って、内部電極12,13がセラミック本体10のセラミックよりも早く焼結することによる構造欠陥(セラミック本体10のセラミック層間のデラミネーションやクラック)を抑制することができる。 Also, the melting temperature of the alkaline earth metal compound is about 800 ° C., and until this temperature, the sintering of the internal electrodes 12 and 13 is delayed by the Mn oxide film on the surface of the CuMn alloy. As a result, since the sintering of the internal electrodes 12 and 13 is delayed, the deviation from the ceramic sintering time of the ceramic body 10 is reduced. Therefore, structural defects (delamination and cracks between the ceramic layers of the ceramic body 10) due to the internal electrodes 12 and 13 being sintered faster than the ceramic of the ceramic body 10 can be suppressed.
 さらに、CuMn合金の表面のMn酸化物皮膜は、アルカリ土類金属化合物に対して結晶化作用をもたず、CuMn合金の焼結を阻害しない。従って、最終的には、ガラス成分のほぼ全てが、内部電極12,13の外側に押し出されるため、電気的特性(低抵抗特性)に優れた内部電極12,13を得ることができる。 Furthermore, the Mn oxide film on the surface of the CuMn alloy does not have a crystallization effect on the alkaline earth metal compound and does not inhibit the sintering of the CuMn alloy. Therefore, finally, almost all of the glass component is pushed out of the internal electrodes 12 and 13, so that the internal electrodes 12 and 13 having excellent electrical characteristics (low resistance characteristics) can be obtained.
 3.積層セラミックコンデンサの製造方法
 次に、前述の積層セラミックコンデンサ1の製造方法を、図2に示したフローチャートを参照して説明する。
3. 2. Manufacturing Method of Multilayer Ceramic Capacitor Next, a manufacturing method of the above-described multilayer ceramic capacitor 1 will be described with reference to the flowchart shown in FIG.
 (内層もしくは外層用セラミックグリーンシートの作製)
 図2のステップS1で、誘電体材料として、Ba、Al、Siを主たる成分とする材料(BAS材)が準備される。各材料は、所定の組成になるよう調合され、800~1000℃で仮焼される。得られた仮焼粉末は、ジルコニアボールミルで12時間粉砕され、誘電体粉末が得られる。
(Production of ceramic green sheet for inner layer or outer layer)
In step S1 of FIG. 2, a material (BAS material) containing Ba, Al, and Si as main components is prepared as a dielectric material. Each material is prepared to have a predetermined composition and calcined at 800 to 1000 ° C. The obtained calcined powder is pulverized with a zirconia ball mill for 12 hours to obtain a dielectric powder.
 この誘電体粉末に、トルエン・エキネンなどの有機溶媒が加えられて混合される。その後、さらにバインダおよび可塑剤が加えられて混合され、スラリーが作製される。このスラリーは、ドクターブレード法によって、厚さが50μmの内層もしくは外層用セラミックグリーンシートに成形される。 To this dielectric powder, an organic solvent such as toluene and echinene is added and mixed. Thereafter, a binder and a plasticizer are further added and mixed to prepare a slurry. This slurry is formed into an inner layer or outer layer ceramic green sheet having a thickness of 50 μm by a doctor blade method.
 (導電性ペーストの作製)
 次に、ステップS2で、CuMn合金粉末、アルカリ土類金属化合物粉末および有機ビヒクルが準備される。アルカリ土類金属化合物は、炭酸バリウム、炭酸カルシウムおよび炭酸マグネシウムの少なくとも一つから選択されている。これらのCuMn合金粉末、アルカリ土類金属化合物粉末および有機ビヒクルは、CuMn合金粉末のMn含有量が0.1~5.0体積%であり、かつ、アルカリ土類化合物の体積VROとCuMn合金粉末の体積Valloyとの関係が1.0≦100×VRO/(VRO+Valloy)≦20となるように調合された後、分散され、導電性ペーストが作製される。
(Preparation of conductive paste)
Next, in step S2, CuMn alloy powder, alkaline earth metal compound powder, and organic vehicle are prepared. The alkaline earth metal compound is selected from at least one of barium carbonate, calcium carbonate, and magnesium carbonate. These CuMn alloy powders, alkaline earth metal compound powders and organic vehicles have a Mn content of the CuMn alloy powder of 0.1 to 5.0% by volume, and the alkaline earth compound volume V RO and the CuMn alloy. The powder is mixed so that the relationship with the volume V alloy is 1.0 ≦ 100 × V RO / (V RO + V alloy ) ≦ 20, and then dispersed to prepare a conductive paste.
 (積層セラミックコンデンサの作製)
 次に、ステップS3で、内層用セラミックグリーンシート上に、導電性ペーストがスクリーン印刷され、内部電極12,13となる導電性ペースト膜(焼成前の導体パターン)が形成される。
(Production of multilayer ceramic capacitor)
Next, in step S3, a conductive paste is screen-printed on the inner layer ceramic green sheet to form a conductive paste film (conductor pattern before firing) to be the internal electrodes 12 and 13.
 次に、ステップS4で、導電性ペースト膜が形成された内層用セラミックグリーンシートは、導電性ペースト膜の端部の引き出し方向が互い違いになるように、複数枚積層される。さらに、外層用セラミックグリーンシート層が、積層された内層用セラミックグリーンシートを挟むように上下に積層される。すなわち、内層用セラミックグリーンシートと同じ材料からなり、かつ、導電性ペースト膜が形成されていない外層用セラミックグリーンシートが、所定の厚みになるように複数枚積層されて圧着される。こうして、積層セラミックコンデンサ1の本体となるべき未焼成の積層体であるセラミック本体10が形成される。 Next, in step S4, a plurality of ceramic green sheets for the inner layer on which the conductive paste film is formed are laminated so that the drawing directions of the ends of the conductive paste film are alternate. Furthermore, the ceramic green sheet layer for outer layers is laminated | stacked up and down so that the laminated | stacked ceramic green sheet for inner layers may be pinched | interposed. That is, a plurality of outer-layer ceramic green sheets made of the same material as the inner-layer ceramic green sheet and having no conductive paste film formed thereon are laminated and pressure-bonded so as to have a predetermined thickness. In this way, the ceramic body 10 which is an unfired laminated body to be the body of the multilayer ceramic capacitor 1 is formed.
 次に、ステップS5で、この未焼成のセラミック本体10は、所定の製品サイズに切り分けられる。切り分けられた未焼成のセラミック本体10は、Cuは酸化しないけれども炭素は酸化する酸素分圧の雰囲気において、800℃以上の焼成温度で焼成され、焼結したセラミック本体10とされる。 Next, in step S5, the green ceramic body 10 is cut into a predetermined product size. The cut unfired ceramic body 10 is fired at a firing temperature of 800 ° C. or higher in an oxygen partial pressure atmosphere in which Cu is not oxidized but carbon is oxidized to be a sintered ceramic body 10.
 より具体的には、焼成温度をT℃とし、酸素分圧をPO2atmとしたとき、
 (ア)800≦T
 (イ)exp{(-394132.8-0.8368T)/(8.314T)}≦PO2≦exp{(-338904-32.80256TlogT+246.856T)/(8.314T)}
 の条件で焼成される。この条件は、図4の焼成温度と酸素分圧の相関関係を示すグラフにおいて、斜線で表示した範囲である。
More specifically, when the firing temperature is T ° C. and the oxygen partial pressure is P O2 atm,
(A) 800 ≦ T
(A) exp {(− 394132.8−0.8368T) / (8.314T)} ≦ P O2 ≦ exp {(− 338904−32.2.8256TlogT + 246.856T) / (8.314T)}
It is fired under the conditions of This condition is a range indicated by oblique lines in the graph showing the correlation between the firing temperature and the oxygen partial pressure in FIG.
 内層用および外層用セラミックグリーンシートと導電性ペースト膜とは同時焼成され、内層用セラミックグリーンシートは内層用セラミック層11となり、外層用セラミックグリーンシートは外層用セラミック層15a,15bとなり、導電性ペースト膜は内部電極12,13となる。 The inner layer and outer layer ceramic green sheets and the conductive paste film are fired at the same time, the inner layer ceramic green sheet becomes the inner layer ceramic layer 11, and the outer layer ceramic green sheet becomes the outer layer ceramic layers 15a and 15b. The film becomes the internal electrodes 12 and 13.
 次に、ステップS6で、焼結したセラミック本体10の両端部に、それぞれ、Cuペーストが塗布されて焼き付けられ、内部電極12,13に電気的に接続された外部電極20,22が形成される。さらに、外部電極20,22の表層に、湿式めっきによってNi-Snめっきが形成される。こうして、積層セラミックコンデンサ1が得られる。 Next, in step S6, Cu paste is applied and baked on both ends of the sintered ceramic body 10 to form external electrodes 20 and 22 electrically connected to the internal electrodes 12 and 13, respectively. . Further, Ni—Sn plating is formed on the surface layers of the external electrodes 20 and 22 by wet plating. In this way, the multilayer ceramic capacitor 1 is obtained.
 以上の方法によれば、セラミック本体のセラミックと内部電極12,13との接合強度が十分強く、かつ、比抵抗が低い内部電極12,13を有する積層セラミックコンデンサ1が確実に量産できる。 According to the above method, the multilayer ceramic capacitor 1 having the internal electrodes 12 and 13 having sufficiently high bonding strength between the ceramic of the ceramic body and the internal electrodes 12 and 13 and low specific resistance can be reliably mass-produced.
 1.実施例および比較例
 実施例および比較例の評価サンプル(導体パターンが表面に形成されているセラミック積層基板)が作製され、導電性ペーストの特性評価(初期接合強度特性、湿中放置後の接合強度特性、比抵抗特性)が行われた。
1. Examples and Comparative Examples Evaluation samples of the examples and comparative examples (ceramic laminated substrates with conductor patterns formed on the surface) were prepared, and the characteristics evaluation of the conductive paste (initial bonding strength characteristics, bonding strength after standing in humidity) Characteristic, specific resistance characteristic).
 (セラミックグリーンシートの作製)
 セラミック材料として、Ba、Al、Siを主たる成分とする材料(BAS材)が準備された。各材料は、所定の組成になるよう調合され、800~1000℃で仮焼された。得られた仮焼粉末は、ジルコニアボールミルで12時間粉砕され、セラミック粉末が得られた。
(Production of ceramic green sheets)
As a ceramic material, a material (BAS material) containing Ba, Al, and Si as main components was prepared. Each material was formulated to a predetermined composition and calcined at 800-1000 ° C. The obtained calcined powder was pulverized with a zirconia ball mill for 12 hours to obtain a ceramic powder.
 このセラミック粉末に、トルエン・エキネンなどの有機溶媒が加えられて混合された。その後、さらにバインダおよび可塑剤が加えられて混合され、スラリーが作製された。このスラリーは、ドクターブレード法によって、厚さが50μmのセラミックグリーンシートに成形された。 This ceramic powder was mixed with an organic solvent such as toluene and echinene. Thereafter, a binder and a plasticizer were further added and mixed to prepare a slurry. This slurry was formed into a ceramic green sheet having a thickness of 50 μm by a doctor blade method.
 (導電性ペーストの作製)
 表1に記載の導体粉末(M-1~M-4)、表2に記載のアルカリ土類金属炭酸塩粉末(RO-1~RO-3)、表3に記載のアルカリ金属炭酸塩粉末(R2O-1~R2O-3)および表4に記載の有機ビヒクル(W-1)が準備された。表1に記載の導体粉末は、周知のアトマイズ法によって作製された。なお、粒度分布(D10,D50,D90)はレーザー回折式粒度分布法によって求められ、比表面積(SSA)は窒素ガスによるBET一点法によって求められる。
(Preparation of conductive paste)
Conductor powders (M-1 to M-4) listed in Table 1, alkaline earth metal carbonate powders (RO-1 to RO-3) listed in Table 2, alkali metal carbonate powders listed in Table 3 ( R2O-1 to R2O-3) and the organic vehicle (W-1) shown in Table 4 were prepared. The conductor powders listed in Table 1 were produced by a well-known atomizing method. The particle size distribution (D10, D50, D90) is determined by a laser diffraction particle size distribution method, and the specific surface area (SSA) is determined by a BET one-point method using nitrogen gas.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 これらの導体粉末、アルカリ土類金属炭酸塩粉末、アルカリ金属炭酸塩粉末および有機ビヒクルは、調合されて分散され、表5および表6に記載の導電性ペーストが作製された。 These conductor powder, alkaline earth metal carbonate powder, alkali metal carbonate powder and organic vehicle were prepared and dispersed, and conductive pastes shown in Tables 5 and 6 were prepared.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 (評価サンプルの作製)
 初期接合強度特性および湿中放置後の接合強度特性のための評価サンプルとして、セラミックグリーンシートの表面に導電性ペーストが印刷、乾燥されて、各辺の長さが500μmである正方形□の焼成前の導体パターンが形成された。このセラミックグリーンシートの下に、導電性ペーストを印刷していないセラミックグリーンシートが19層積層され、未焼成のセラミック積層基板が得られた。
(Preparation of evaluation sample)
As an evaluation sample for initial bonding strength characteristics and bonding strength characteristics after standing in humidity, conductive paste is printed on the surface of the ceramic green sheet and dried, before firing square □ with a side length of 500 μm The conductor pattern was formed. Under this ceramic green sheet, 19 layers of ceramic green sheets not printed with conductive paste were laminated, and an unfired ceramic laminated substrate was obtained.
 また、比抵抗特性のための評価サンプルとして、セラミックグリーンシートが10層積層された後に、その表面に導電性ペーストが印刷、乾燥されて、線幅が200μm、線長が600mmの焼成前の配線導体パターンが形成され、未焼成のセラミック積層基板が得られた。 As an evaluation sample for specific resistance characteristics, after 10 layers of ceramic green sheets are laminated, a conductive paste is printed on the surface and dried to form a wiring before firing having a line width of 200 μm and a line length of 600 mm. A conductor pattern was formed, and an unfired ceramic laminated substrate was obtained.
 次に、未焼成のセラミック積層基板は、炭素(C)が酸化し、かつ、Cuが酸化しない酸素分圧の雰囲気の中で、図3に記載されている温度プロファイル(トップ温度=980℃、トップ温度保持時間=90分)の温度領域において焼成された。なお、酸素分圧は、水/水素/酸素/窒素によって制御した。 Next, the unsintered ceramic laminated substrate has a temperature profile (top temperature = 980 ° C., shown in FIG. 3) in an oxygen partial pressure atmosphere in which carbon (C) is oxidized and Cu is not oxidized. Firing was performed in a temperature range of (top temperature holding time = 90 minutes). The oxygen partial pressure was controlled by water / hydrogen / oxygen / nitrogen.
 参考のため、Cu、Mnおよび炭素の平衡酸素分圧の計算式が、以下に示されている。
 (a)4Cu+O2=2Cu2
 -338904+(-32.80256TlogT)+(246.856T)=8.314×TlnPO2
 (b)2Mn+O2=2MnO
 -769437.6+(145.6032T)=8.314×TlnPO2
 (c)C+O2=CO2
 -394132.8+(-0.8368T)=8.314×TlnPO2
For reference, formulas for calculating the equilibrium oxygen partial pressure of Cu, Mn and carbon are shown below.
(A) 4Cu + O 2 = 2Cu 2 O
−338904 + (− 32.80256TlogT) + (246.856T) = 8.314 × TlnP O2
(B) 2Mn + O 2 = 2MnO
−769437.6+ (145.6032T) = 8.314 × TlnP O2
(C) C + O 2 = CO 2
−394132.8 + (− 0.8368T) = 8.314 × TlnP O2
 また、各温度におけるCu、Mnおよび炭素の平衡酸素分圧が、図4に示されている。なお、図4から、炭素が酸化しかつCuが酸化しない酸素分圧の雰囲気の中で焼成が行われると、Mnは必然的に酸化することが読み取れる。 Also, the equilibrium oxygen partial pressures of Cu, Mn and carbon at each temperature are shown in FIG. It can be seen from FIG. 4 that Mn inevitably oxidizes when firing is performed in an oxygen partial pressure atmosphere in which carbon is oxidized and Cu is not oxidized.
 次に、焼結したセラミック積層基板の表面に形成された導体パターンに対して、無電解Niめっき処理が行われ、導体パターン上に無電解Niめっき膜が形成された。その後、無電解Auめっき処理が行われ、無電解Niめっき膜上に無電解Auめっき膜が形成された。 Next, an electroless Ni plating treatment was performed on the conductor pattern formed on the surface of the sintered ceramic multilayer substrate, and an electroless Ni plating film was formed on the conductor pattern. Thereafter, an electroless Au plating process was performed, and an electroless Au plating film was formed on the electroless Ni plating film.
 2.実施例および比較例の特性評価方法
 (初期接合強度特性)
 金属製のリード線が、初期接合強度特性のための評価サンプルの導体パターンにはんだ付けされた後、このリード線が、引張試験機(島津製作所製AGS-50C)によって、引張速度が20mm/分の試験条件で引張られ、導体パターンとセラミック積層基板との間の接合強度値が測定された。
2. Example and Comparative Example Characteristic Evaluation Method (Initial Bond Strength Characteristics)
After the lead wire made of metal is soldered to the conductor pattern of the evaluation sample for the initial bonding strength characteristics, the lead wire is pulled by a tensile tester (AGS-50C manufactured by Shimadzu Corporation) with a tensile speed of 20 mm / min. The tensile strength was measured under the test conditions, and the bond strength value between the conductor pattern and the ceramic laminated substrate was measured.
 この引張試験が10個の導体パターンに対して行われ、接合強度値の平均値が200gf以上の場合は、初期接合強度に問題がない(「○」)と判定した。一方、接合強度値の平均値が200gf未満の場合は、初期接合強度に問題がある(「×」)と判定した。 When this tensile test was performed on 10 conductor patterns and the average value of the bonding strength values was 200 gf or more, it was determined that there was no problem in the initial bonding strength (“◯”). On the other hand, when the average value of the bonding strength values was less than 200 gf, it was determined that there was a problem in the initial bonding strength (“×”).
 (湿中放置後の接合強度特性)
 金属製のリード線が、湿中放置後の接合強度特性のための評価サンプルの導体パターンにはんだ付けされた後、評価サンプルが、恒温恒湿槽(湿度が85%,温度が85℃)の中に500時間放置された。放置後、リード線が、引張試験機(島津製作所製AGS-50C)によって、引張速度が20mm/分の試験条件で引張られ、導体パターンとセラミック積層基板との間の接合強度値が測定された。
(Joint strength characteristics after leaving in humidity)
After the metal lead wire is soldered to the conductor pattern of the evaluation sample for bonding strength characteristics after being left in the humidity, the evaluation sample is a constant temperature and humidity chamber (85% humidity, 85 ° C. temperature) Left in it for 500 hours. After standing, the lead wire was pulled with a tensile tester (AGS-50C manufactured by Shimadzu Corporation) under a test condition of a tensile speed of 20 mm / min, and the bonding strength value between the conductor pattern and the ceramic laminated substrate was measured. .
 この引張試験が10個の導体パターンに対して行われ、接合強度値の平均値が200gf以上の場合は、湿中放置後の接合強度に問題がない(「○」)と判定した。一方、接合強度値の平均値が200gf未満の場合は、湿中放置後の接合強度に問題がある(「×」)と判定した。 This tensile test was performed on 10 conductor patterns, and when the average value of the bonding strength values was 200 gf or more, it was determined that there was no problem in the bonding strength after being left in the humidity (“◯”). On the other hand, when the average value of the bonding strength values was less than 200 gf, it was determined that there was a problem in the bonding strength after being left in the humidity (“×”).
 (比抵抗特性)
 比抵抗特性のための評価サンプルの配線導体パターンの抵抗値R、断面積Sおよび線長Lが測定された。配線導体パターンの断面積Sは、アクレーテク製サーフコムによって測定された。また、配線導体パターンの線長Lは、焼成によるセラミック積層基板の面方向収縮率Z%から、式L=600×(100-Z)/100[mm]により算出した。次に、比抵抗値ρが下式によって算出された。
 ρ=R×S/L
(Specific resistance characteristics)
The resistance value R, the cross-sectional area S, and the line length L of the wiring conductor pattern of the evaluation sample for specific resistance characteristics were measured. The cross-sectional area S of the wiring conductor pattern was measured by Surftech's Surfcom. Further, the line length L of the wiring conductor pattern was calculated by the formula L = 600 × (100−Z) / 100 [mm] from the surface shrinkage rate Z% of the ceramic laminated substrate by firing. Next, the specific resistance value ρ was calculated by the following equation.
ρ = R × S / L
 そして、比抵抗値ρが2.5μΩ・cm以下の場合は、比抵抗に問題がない(「○」)と判定した。一方、比抵抗値ρが2.5μΩ・cm以下の場合は、比抵抗に問題がある(「×」)と判定した。 When the specific resistance value ρ was 2.5 μΩ · cm or less, it was determined that there was no problem with the specific resistance (“◯”). On the other hand, when the specific resistance value ρ was 2.5 μΩ · cm or less, it was determined that there was a problem with the specific resistance (“×”).
 3.実施例および比較例の特性評価結果
 表7および表8は、初期接合強度特性、湿中放置後の接合強度特性および比抵抗特性の評価結果を示す。
3. Characteristics Evaluation Results of Examples and Comparative Examples Tables 7 and 8 show the evaluation results of the initial bonding strength characteristics, the bonding strength characteristics after being left in the humidity, and the specific resistance characteristics.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表7から、本発明の範囲内である番号P-2、P-3、P-5、P-6、P-8、P-9、P-11、P-12、P-14、P-15、P-17、P-18の導電性ペーストを用いた場合は、優れた「初期接合強度特性」、「湿中放置後の接合強度特性」および「比抵抗特性」を有していることが確認された。これら番号P-2、P-3……の導電性ペーストは、CuMn合金粉末とアルカリ土類金属炭酸塩粉末と有機ビヒクルとを含み、CuMn合金粉末のMn含有量が0.1~5.0体積%であり、アルカリ土類金属炭酸塩粉末の体積VROとCuMn合金粉末の体積Valloyとの関係が1.0≦100×VRO/(VRO+Valloy)≦20である。 From Table 7, numbers P-2, P-3, P-5, P-6, P-8, P-9, P-11, P-12, P-14, P-, which are within the scope of the present invention. When using the conductive paste of No. 15, P-17, P-18, it has excellent “initial bonding strength characteristics”, “bonding strength characteristics after being left in the humidity” and “specific resistance characteristics”. Was confirmed. These conductive pastes of numbers P-2, P-3,... Contain CuMn alloy powder, alkaline earth metal carbonate powder, and organic vehicle, and the Mn content of the CuMn alloy powder is 0.1 to 5.0. The relationship between the volume V RO of the alkaline earth metal carbonate powder and the volume V alloy of the CuMn alloy powder is 1.0 ≦ 100 × V RO / (V RO + V alloy ) ≦ 20.
 一方、本発明の範囲外である番号P-1の導電性ペーストを用いた場合(アルカリ土類化合物が含まれていない導電性ペーストの場合)は、比抵抗が高く、実用に適さない。これは、導電性ペーストにアルカリ土類化合物が含まれていないため、焼成過程で、CuMn合金内部から酸化排出されたMn酸化物によって、CuMn合金粉末の焼結が阻害されたことが原因であると推察する。 On the other hand, when the conductive paste of number P-1, which is outside the scope of the present invention, is used (in the case of a conductive paste not containing an alkaline earth compound), the specific resistance is high and is not suitable for practical use. This is because the alkaline paste compound is not included in the conductive paste, and thus the sintering of the CuMn alloy powder was inhibited by the Mn oxide that was oxidized and discharged from the inside of the CuMn alloy during the firing process. I guess.
 本発明の範囲外である番号P-4の導電性ペースト(アルカリ土類化合物が12.0体積%含まれている導電性ペースト)を用いた場合は、比抵抗が高く、実用に適さない。これは、導電性ペーストに多量のアルカリ土類化合物が含まれているため、焼成後の電極に多量のアルカリ土類化合物が偏析したことが原因であると推察する。 When the conductive paste No. P-4 (conductive paste containing 12.0% by volume of alkaline earth compound) which is outside the scope of the present invention is used, the specific resistance is high and is not suitable for practical use. This is presumed to be caused by the segregation of a large amount of alkaline earth compound on the electrode after firing because the conductive paste contains a large amount of alkaline earth compound.
 本発明の範囲外である番号P-20の導電性ペースト(導体粉末がCu粉末のみであり、CuMn合金粉末が含まれていない導電性ペースト)を用いた場合は、初期接合強度が低く、実用に適さない。これは、導電性ペーストにCuMn合金粉末が含まれていないため、焼成後の導体パターンとセラミック積層基板との間にMn含有の結合層が形成されなかったことが原因であると推察する。 When the conductive paste No. P-20 outside the scope of the present invention (conductive paste containing only Cu powder and containing no CuMn alloy powder) is used, the initial bonding strength is low, and it is practical. Not suitable for. This is presumed to be because the conductive paste does not contain CuMn alloy powder, and therefore no Mn-containing bonding layer was formed between the fired conductor pattern and the ceramic laminated substrate.
 本発明の範囲外である番号P-21の導電性ペースト(導体粉末として、CuMn合金中のMn成分量が10.0体積%含まれている導電性ペースト)を用いた場合は、比抵抗が高く、実用に適さない。これは、導電性ペーストに含まれているCuMn合金中のMn成分量が多過ぎるため、焼成過程で、CuMn合金内部から酸化排出されたMn酸化物によって、CuMn合金粉末の焼結が阻害されたことが原因であると推察する。 When the conductive paste No. P-21 outside the scope of the present invention (conductive paste containing 10.0% by volume of the Mn component in the CuMn alloy as the conductive powder) is used, the specific resistance is High and not suitable for practical use. This is because the amount of Mn component in the CuMn alloy contained in the conductive paste is too large, and the sintering of the CuMn alloy powder was inhibited by the Mn oxide oxidized and discharged from the inside of the CuMn alloy during the firing process. I guess this is the cause.
 また、表8から、本発明の範囲外である番号P-22~P-24の導電性ペースト(アルカリ金属化合物が含まれている導電性ペースト)を用いた場合は、湿中放置後の接合強度特性が低く、実用に適さない。これは、導電性ペーストにアルカリ金属化合物が含まれているため、焼成後の導体パターンとセラミック積層基板との間の界面にアルカリ金属を含有した結合層が形成され、このアルカリ金属を含有した結合層が、湿気雰囲気中で加水分解したことが原因であると推察する。 Also, from Table 8, when the conductive pastes of numbers P-22 to P-24 (conductive paste containing an alkali metal compound) that are outside the scope of the present invention were used, bonding after leaving in moisture Low strength characteristics, not suitable for practical use. This is because, since the conductive paste contains an alkali metal compound, a bonding layer containing an alkali metal is formed at the interface between the fired conductor pattern and the ceramic laminated substrate, and the bond containing the alkali metal is formed. The reason is that the layer is hydrolyzed in a humid atmosphere.
 4.別の比較例
 番号P-3の導電性ペーストを使用して、炭素が還元する酸素分圧の雰囲気において800℃以上の焼成温度で未焼成のセラミック積層基板を焼成する以外は、前記実施例と同一条件で評価サンプルを作製した。なお、酸素分圧は水/水素/酸素/窒素によって制御をした。
4). Another Comparative Example Using the conductive paste of number P-3, except that the unfired ceramic laminated substrate was fired at a firing temperature of 800 ° C. or higher in an oxygen partial pressure atmosphere where carbon was reduced. Evaluation samples were produced under the same conditions. The oxygen partial pressure was controlled by water / hydrogen / oxygen / nitrogen.
 そして、作製した評価サンプルに対して、「初期接合強度特性」、「湿中放置後の接合強度特性」および「比抵抗特性」の評価を行った。その結果、全ての特性が不良と判定された。これは、800℃以上の焼成温度で炭素が燃焼しないため、導体パターン中に残存する炭素量が増加し、導体パターンの焼結性が著しく阻害されたことが原因である推察する。 The evaluation samples thus prepared were evaluated for “initial bonding strength characteristics”, “bonding strength characteristics after being left in the humidity”, and “specific resistance characteristics”. As a result, all the characteristics were determined to be defective. This is presumed to be because carbon does not burn at a firing temperature of 800 ° C. or higher, so that the amount of carbon remaining in the conductor pattern increases and the sinterability of the conductor pattern is significantly inhibited.
 なお、この発明は、前記実施の形態に限定されるものではなく、その要旨の範囲内で種々に変形される。 In addition, this invention is not limited to the said embodiment, In the range of the summary, it deform | transforms variously.
  1 セラミック電子部品(積層セラミックコンデンサ)
  10 セラミック本体
  11 内層用セラミック層
  12,13 内部電極
  15a,15b 外層用セラミック層
  20,22 外部電極
1 Ceramic electronic components (multilayer ceramic capacitors)
DESCRIPTION OF SYMBOLS 10 Ceramic body 11 Ceramic layer for inner layers 12, 13 Internal electrode 15a, 15b Ceramic layer for outer layers 20, 22 External electrode

Claims (5)

  1.  CuMn合金粉末とアルカリ土類金属化合物粉末と有機ビヒクルとを含み、
     前記CuMn合金粉末のMn含有量が0.1~5.0体積%であり、
     前記アルカリ土類金属化合物粉末の体積VROと前記CuMn合金粉末の体積Valloyとの関係が1.0≦100×VRO/(VRO+Valloy)≦20であること、
     を特徴とする、導電性ペースト。
    CuMn alloy powder, alkaline earth metal compound powder and organic vehicle,
    The CuMn alloy powder has a Mn content of 0.1 to 5.0% by volume,
    The relationship between the volume V RO of the alkaline earth metal compound powder and the volume V alloy of the CuMn alloy powder is 1.0 ≦ 100 × V RO / (V RO + V alloy ) ≦ 20,
    A conductive paste characterized by.
  2.  前記アルカリ土類金属化合物が、炭酸バリウム、炭酸カルシウムおよび炭酸マグネシウムの少なくとも一つから選択されていること、を特徴とする、請求項1に記載の導電性ペースト。 The conductive paste according to claim 1, wherein the alkaline earth metal compound is selected from at least one of barium carbonate, calcium carbonate, and magnesium carbonate.
  3.  請求項1または請求項2に記載の導電性ペーストを用いて導体パターンが作製されたこと、を特徴とする、セラミック電子部品。 A ceramic electronic component, wherein a conductive pattern is produced using the conductive paste according to claim 1 or 2.
  4.  セラミックグリーンシートの表面に、請求項1または請求項2に記載の導電性ペーストで生の導体パターンを形成する工程と、
     セラミックグリーンシートと前記生の導体パターンが形成されたセラミックグリーンシートとを積層圧着して未焼成の積層体を形成する工程と、
     Cuは酸化しないけれども炭素は酸化する酸素分圧の雰囲気において、800℃以上の焼成温度で前記未焼成の積層体を焼成する工程と、
     を備えたこと、を特徴とする、セラミック電子部品の製造方法。
    Forming a raw conductor pattern with the conductive paste according to claim 1 or 2 on the surface of the ceramic green sheet;
    A step of laminating and pressing the ceramic green sheet and the ceramic green sheet on which the raw conductor pattern is formed to form an unfired laminate;
    Firing the green laminate at a firing temperature of 800 ° C. or higher in an oxygen partial pressure atmosphere in which Cu is not oxidized but carbon is oxidized;
    A method of manufacturing a ceramic electronic component, comprising:
  5.  前記焼成温度をT℃とし、前記酸素分圧をPO2atmとしたとき、
     (ア)800≦T
     (イ)exp{(-394132.8-0.8368T)/(8.314T)}≦PO2≦exp{(-338904-32.80256TlogT+246.856T)/(8.314T)}
     であること、
     を特徴とする、請求項4に記載のセラミック電子部品の製造方法。
    When the firing temperature is T ° C. and the oxygen partial pressure is P O2 atm,
    (A) 800 ≦ T
    (A) exp {(− 394132.8−0.8368T) / (8.314T)} ≦ P O2 ≦ exp {(− 338904−32.2.8256TlogT + 246.856T) / (8.314T)}
    Being
    The method of manufacturing a ceramic electronic component according to claim 4, wherein:
PCT/JP2014/062882 2013-07-31 2014-05-14 Conductive paste, ceramic electronic component, and method for producing ceramic electronic component WO2015015865A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015529416A JP6020728B2 (en) 2013-07-31 2014-05-14 Conductive paste, ceramic electronic component, and method of manufacturing ceramic electronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-159649 2013-07-31
JP2013159649 2013-07-31

Publications (1)

Publication Number Publication Date
WO2015015865A1 true WO2015015865A1 (en) 2015-02-05

Family

ID=52431411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062882 WO2015015865A1 (en) 2013-07-31 2014-05-14 Conductive paste, ceramic electronic component, and method for producing ceramic electronic component

Country Status (2)

Country Link
JP (1) JP6020728B2 (en)
WO (1) WO2015015865A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023223586A1 (en) * 2022-05-18 2023-11-23 三井金属鉱業株式会社 Copper powder and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183912A (en) * 1985-02-08 1986-08-16 ティーディーケイ株式会社 Ceramic electronic component and conducting composition
JPS6413790A (en) * 1987-07-08 1989-01-18 Koa Corp Copper electrode paste
JP2000048640A (en) * 1998-07-28 2000-02-18 Denso Corp Low temperature copper conductor paste and conductor composition and manufacture therefor
JP2006332572A (en) * 2004-06-28 2006-12-07 Kyocera Corp Lamination ceramic capacitor and its manufacturing method
JP2007123301A (en) * 2005-10-25 2007-05-17 Kamaya Denki Kk Microminiature chip resistor and resistor paste for microminiature chip resistor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183912A (en) * 1985-02-08 1986-08-16 ティーディーケイ株式会社 Ceramic electronic component and conducting composition
JPS6413790A (en) * 1987-07-08 1989-01-18 Koa Corp Copper electrode paste
JP2000048640A (en) * 1998-07-28 2000-02-18 Denso Corp Low temperature copper conductor paste and conductor composition and manufacture therefor
JP2006332572A (en) * 2004-06-28 2006-12-07 Kyocera Corp Lamination ceramic capacitor and its manufacturing method
JP2007123301A (en) * 2005-10-25 2007-05-17 Kamaya Denki Kk Microminiature chip resistor and resistor paste for microminiature chip resistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023223586A1 (en) * 2022-05-18 2023-11-23 三井金属鉱業株式会社 Copper powder and method for producing same

Also Published As

Publication number Publication date
JPWO2015015865A1 (en) 2017-03-02
JP6020728B2 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
JP7148239B2 (en) Ceramic electronic component and manufacturing method thereof
WO2014148373A1 (en) Multilayer ceramic capacitor
JP5003683B2 (en) Glass ceramic composition, glass ceramic sintered body, and multilayer ceramic electronic component
US9522847B2 (en) Dielectric ceramic, laminated ceramic electronic component, laminated ceramic capacitor, and method for producing laminated ceramic capacitor
WO2010087221A1 (en) Multilayer electronic component
JP2011139028A (en) Multilayer ceramic capacitor and method of manufacturing the same
WO2012133077A1 (en) Multilayer ceramic capacitor, dielectric ceramic, multilayer ceramic electronic component, and method for manufacturing multilayer ceramic capacitor
JP4682426B2 (en) Electronic component and manufacturing method thereof
KR102107032B1 (en) Glass composition, paste for external electrode including the same and multi-layer ceramic electronic part
WO2012023406A1 (en) Laminated ceramic electronic component
JP5349807B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
KR101792275B1 (en) Conductive paste for internal electrode, multilayer ceramic components using the same and manufacturing method of the same
JP5498973B2 (en) Multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor
JP5527404B2 (en) Multilayer ceramic electronic components
JP6314466B2 (en) Multilayer ceramic electronic components
JP3679529B2 (en) Terminal electrode paste and multilayer ceramic capacitor
JP6020728B2 (en) Conductive paste, ceramic electronic component, and method of manufacturing ceramic electronic component
JP5527405B2 (en) Multilayer ceramic electronic components
JP2006202857A (en) Laminated ceramic electronic component and its manufacturing method
KR20130027784A (en) Conductive paste for external electrode, multi-layered ceramic electronic parts fabricated by using the same and fabricating method thereof
JP3981270B2 (en) Conductor pattern incorporated in multilayer substrate, multilayer substrate incorporating conductor pattern, and method of manufacturing multilayer substrate
JP5998785B2 (en) Laminated electronic components
JP2013026196A (en) Conductive paste and ceramic electronic component
JP5527400B2 (en) Multilayer ceramic electronic components
JP5527403B2 (en) Multilayer ceramic electronic components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831546

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015529416

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14831546

Country of ref document: EP

Kind code of ref document: A1