WO2015015821A1 - Fuse element - Google Patents

Fuse element Download PDF

Info

Publication number
WO2015015821A1
WO2015015821A1 PCT/JP2014/053926 JP2014053926W WO2015015821A1 WO 2015015821 A1 WO2015015821 A1 WO 2015015821A1 JP 2014053926 W JP2014053926 W JP 2014053926W WO 2015015821 A1 WO2015015821 A1 WO 2015015821A1
Authority
WO
WIPO (PCT)
Prior art keywords
melting point
point metal
layer
conductor wiring
fuse element
Prior art date
Application number
PCT/JP2014/053926
Other languages
French (fr)
Japanese (ja)
Inventor
番場 真一郎
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2015015821A1 publication Critical patent/WO2015015821A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/041Fuses, i.e. expendable parts of the protective device, e.g. cartridges characterised by the type
    • H01H85/044General constructions or structure of low voltage fuses, i.e. below 1000 V, or of fuses where the applicable voltage is not specified
    • H01H85/045General constructions or structure of low voltage fuses, i.e. below 1000 V, or of fuses where the applicable voltage is not specified cartridge type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof

Definitions

  • the present invention relates to a fuse element that melts when an overcurrent flows and protects an electronic circuit or the like. More specifically, the present invention relates to a fuse element in which a conductor wiring having a fusing part is provided on a substrate.
  • Patent Document 1 discloses a fuse element in which a low melting point metal such as tin or lead is attached to a part of a fuse conductor made of metal. When an overcurrent flows, the low melting point metal melts and the melt melts the fuse conductor. Thereby, the circuit is interrupted.
  • a low melting point metal such as tin or lead
  • An object of the present invention is to provide a fuse element capable of interrupting current more reliably.
  • the fuse element according to the present invention includes a substrate, a conductor wiring, a low melting point metal layer, and a melt movement restriction layer.
  • the conductor wiring is provided on the substrate.
  • the low melting point metal layer is provided so as to directly or indirectly cover a part of the conductor wiring.
  • the low melting point metal layer has a melting point lower than that of the conductor wiring, and forms a melted portion by melting the conductor wiring as a melt.
  • the melt movement restricting layer is provided so as to directly or indirectly overlap a part of the outer periphery of the low melting point metal layer.
  • the melt movement restricting layer is made of an insulating material.
  • an outer periphery of the low-melting-point metal layer except for a part of the outer periphery of the low-melting-point metal layer where the melt movement regulation layer faces the conductor wiring. It is provided so that the remaining part of a part may be covered.
  • the conductor wiring has a first end and a second end.
  • the melt movement restricting layer is provided on the conductor wiring so as to cover the entire length in the transverse direction of the conductor wiring at the first end side portion or the second end side portion of the fusing part. .
  • a plurality of openings that do not cover the low melting point metal layer are provided in the melt movement restriction layer.
  • the melt movement restricting layer is formed of a material having a forming temperature lower than the melting point of the low melting point metal.
  • the melt movement restricting layer is solid at a melting point of the low melting point metal.
  • the melt movement regulating layer is made of an epoxy resin.
  • the conductor wiring is made of Ag or an alloy mainly composed of Ag in the fusing portion.
  • the low melting point metal is solder.
  • the melt movement restriction layer is provided, the movement direction of the melt of the low melting point metal can be restricted. Accordingly, it is possible to reduce the risk that the low melting point metal remains at the melted portion, and it is possible to more reliably cut off the current.
  • FIG. 1A and FIG. 1B are a plan view of a fuse element according to the first embodiment of the present invention and a cross-sectional view of a portion along the line AA in FIG. 2A is a cross-sectional view of a portion along the line BB in FIG. 1A, and FIG. 2B is a cross-sectional view of a portion along the line CC in FIG. ) Is a cross-sectional view showing a modification in which the melt movement restricting layer is directly overlapped with a part of the outer peripheral edge of the low melting point metal layer.
  • FIG. 3 is a partially cutaway enlarged cross-sectional view for explaining a mechanism in which the melt of the low melting point metal moves and the current is interrupted in the fuse element according to the first embodiment.
  • FIG. 3 is a partially cutaway enlarged cross-sectional view for explaining a mechanism in which the melt of the low melting point metal moves and the current is interrupted in the fuse element according to the first embodiment.
  • FIG. 4A is a plan view showing a state in which a heater resistor and terminal electrodes are formed on the surface of the substrate during the manufacture of the first embodiment
  • FIG. 4B is a plan view of FIG. It is a top view which shows the state in which the insulating layer was further formed in the structure shown
  • FIG. 5A is a plan view showing a state in which a fuse conductor wiring is further formed on the structure shown in FIG. 4B
  • FIG. 5B is shown in FIG. It is a top view which shows the state which formed the dam part and the melt movement control layer on the structure.
  • FIG. 6 is a plan view showing a state in which a second insulating layer is formed on the structure shown in FIG. FIG.
  • FIG. 7 is a schematic plan view showing an electrode structure formed on the back surface of the substrate when the fuse element according to the first embodiment of the present invention is manufactured.
  • FIGS. 8A and 8B are a plan view for explaining a fuse element according to the second embodiment of the present invention and a cross-sectional view taken along the line DD in FIG. 8A.
  • FIG. 9A and FIG. 9B are enlarged partial sectional views for explaining a process in which the low melting point metal layer moves by the melt movement restricting layer in the second embodiment.
  • FIGS. 1A and 1B are a plan view showing a fuse element according to the first embodiment of the present invention and a cross-sectional view taken along line AA in FIG. 2 (a) and 2 (b) are cross-sectional views taken along lines BB and CC in FIG. 1 (a).
  • the structure of the fuse element 1 will be clarified by explaining the manufacturing method.
  • the fuse element 1 has a substrate 2.
  • the substrate 2 is made of alumina.
  • the substrate 2 can be formed of an appropriate insulating material other than alumina.
  • the substrate 2 has an upper surface 2a, a lower surface 2b, first and second end surfaces 2c and 2d, and first and second side surfaces 2e and 2f.
  • the substrate 2 has a rectangular plate shape.
  • the substrate 2 may have a shape other than the rectangular plate shape.
  • the resistance heating element 3 When the fuse element 1 is manufactured, the resistance heating element 3 is formed in the center of the upper surface 2a of the substrate 2 as shown in FIG.
  • the resistance heating element 3 generates heat when a current flows. That is, the resistance heating element 3 functions as a heater.
  • Such a resistance heating element 3 can be formed of an appropriate resistance heating element that generates heat when a current flows.
  • RuO 2 or AgPd can be used as such a material.
  • An alloy containing Ni as a main component and containing at least one of Cr, Mn, Cu, and Fe can also be suitably used.
  • the resistance heating element 3 can be formed, for example, by printing a resistance heating element-containing paste by screen printing.
  • a lead electrode 4 is connected to one end of the resistance heating element 3.
  • the outer end of the extraction electrode 4 is connected to the electrode land 6.
  • the electrode land 6 reaches the edge formed by the first end surface 2c and the upper surface 2a.
  • the first end face 2c is formed with a semicylindrical curved recess 2g.
  • the recess 2g is provided so as to extend from the upper surface 2a to the lower surface 2b.
  • the connection electrode 8a is formed by filling the recess 2g with a conductive paste and baking it.
  • the extraction electrode 5 is also connected to the electrode land 7 in the same manner.
  • the electrode land 7 is also connected to a connection electrode 8b formed in the same manner as the connection electrode 8a. That is, the connection electrode 8b is provided so as to fill the recess 2g provided on the second end face 2d.
  • the substrate 2 is further formed with through-hole electrodes 9a to 9d and connection electrodes 10a and 10b.
  • the connection electrodes 10a and 10b are provided on the first and second side surfaces 2e and 2f, respectively.
  • the connection electrodes 10a and 10b are also provided from the upper surface 2a to the lower surface 2b.
  • the through-hole electrodes 9a to 9d reach the lower surface 2b of the substrate 2.
  • a laminated substrate in which the connection electrodes 8 a, 8 b, 10 a, and 10 b described above and the through-hole electrodes 9 a to 9 d are provided in advance is created and used as the substrate 2.
  • the resistance heating element 3, the extraction electrodes 4 and 5, and the electrode lands 6, 7, 11, and 12 are formed on the upper surface 2a of the substrate 2 as described above.
  • the electrode land 11 is provided so as to be electrically connected to the through-hole electrodes 9a and 9b and the connection electrode 10a. That is, the electrode land 11 is provided so as to reach the edge between the upper surface 2a and the first side surface 2e.
  • the electrode land 12 is provided so as to be connected to the connection electrode 10b and the through-hole electrodes 9c and 9d.
  • the lead electrodes 4 and 5, the through-hole electrodes 9a to 9d, the connection electrodes 8a, 8b, 10a and 10b, the electrode lands 11 and 12 and the like can be formed of an appropriate conductive material.
  • an Ag—Pt alloy is used.
  • the first insulating layer 14 shown in FIG. 4B is formed so as to cover the region where the resistance heating element 3 and the extraction electrodes 4 and 5 are provided.
  • the first insulating layer 14 can be formed of an appropriate insulating material. Conductor wiring described later is provided on the upper surface of the first insulating layer 14. Therefore, it is desirable that the first insulating layer 14 is made of a material that is not dissolved by a low melting point metal melt described later.
  • the first insulating layer 14 is made of glass.
  • the first insulating layer 14 may be formed of insulating ceramics such as glass ceramics or alumina.
  • the first insulating layer 14 is provided on the upper surface 2a of the substrate 2 in a rectangular region smaller than the upper surface 2a. Accordingly, a rectangular frame-shaped region remains outside the first insulating layer 14.
  • the conductor wiring 15, the extraction electrode 17, and the fixing metals 16a to 16d are formed.
  • the conductor wiring 15 and the fixing metals 16a to 16d can be formed by screen printing the metal paste.
  • the fixing metals 16a to 16d are provided to securely fix solder as a low-melting-point metal described later.
  • the fixing metals 16a to 16d are formed of the same material as that of the conductor wiring 15 in this embodiment. Therefore, the conductor wiring 15 and the fixing metals 16a to 16d can be formed by the same process.
  • the fixing metals 16a to 16d may not be provided.
  • the conductor wiring 15 is made of Ag in this embodiment.
  • the conductor wiring 15 is not limited to Ag, and can be formed using an appropriate metal that causes solder erosion. Examples of such a metal include Ag or an alloy mainly composed of Ag such as AgPt.
  • the fusing part mentioned later should just be comprised with the metal which produces the said solder erosion.
  • Other portions may be formed of other metals.
  • it is desirable that the entire conductor wiring 15 is formed of the same metal as in this embodiment. This facilitates manufacture.
  • the conductor wiring 15 has a first end 15a and a second end 15b.
  • the first end 15 a is formed so as to be connected to the electrode land 11.
  • the second end portion 15 b is formed so as to be continuous with the electrode land 12.
  • the conductor wiring 15 is tapered so that its width direction becomes gradually narrower from the first end 15a side toward the center. Similarly, the conductor wiring 15 is tapered so that the width thereof becomes narrower from the second end portion 15b side toward the center. Therefore, the central portion of the conductor wiring 15 is a narrow width portion 15c.
  • the extraction electrode 17 is connected to the narrow portion 15c.
  • the lead electrode 17 is formed so as to be connected to the electrode land 6 provided on the first end face 2c side.
  • the conductor wiring 15, the fixing metals 16a to 16d, and the extraction electrode 17 are formed on the first insulating layer 14 described above.
  • the extraction electrode 17 is simultaneously formed of the same material as the conductor wiring 15.
  • the extraction electrode 17 may be formed of other materials.
  • the protective film 19 also has a portion that functions as a melt movement restricting layer in the present invention. More specifically, the protective film 19 includes a dam portion 20 and a melt movement restriction layer 21.
  • the dam part 20 is provided in order to prevent the melt generated in the dam part 20 from scattering outside.
  • the dam part 20 also has a function of protecting the part surrounded by the dam part 20 from the surroundings.
  • the outer peripheral edge of the dam portion 20 is arranged at a distance from the outer peripheral edge of the upper surface 2 a of the substrate 2. Further, the inner peripheral edge of the dam portion 20 reaches the first insulating layer 14. Accordingly, the dam portion 20 is provided so as to extend from the outer region of the first insulating layer 14 to the inner region.
  • the melt movement restricting layer 21 serves to restrict the moving direction of the melt, as will be described later.
  • the melt movement restricting layer 21 is extended in the longitudinal direction on the upper surface 2a of the substrate 2 so as to cover the narrow portion 15c of the conductor wiring 15 described above. That is, the melt movement restricting layer 21 is provided so as to extend in the longitudinal direction from the first end surface 2c toward the second end surface 2d.
  • the melt movement restricting layer 21 is made of a material that is solid at a temperature at which solder as a low-melting-point metal described later melts. Therefore, even if the low melting point metal becomes a melt, the melt movement restricting layer 21 maintains its shape.
  • the material constituting such a melt movement restricting layer 21 can be formed of an appropriate insulating material that maintains its shape in a state where the low melting point metal is in a melt.
  • the melt movement restriction layer 21 is made of an epoxy resin. But not only an epoxy resin but other thermosetting resins, such as a silicone resin and a phenol resin, may be used. Further, glass or ceramics may be used.
  • the dam portion 20 is also integrally formed of the same material as the melt movement restriction layer 21.
  • the dam portion 20 may not be provided, and the dam portion 20 may be formed of a material different from that of the melt movement restriction layer 21.
  • the dam part 20 may not be connected to the melt movement restriction layer 21.
  • the dam portion 20 is formed integrally with the melt movement restriction layer 21 as in the present embodiment. Thereby, the mechanical strength can also be increased.
  • the melt movement restriction layer 21 is provided so as to overlap the narrow width portion 15c.
  • the melt movement restricting layer 21 is preferably provided so as to overlap the narrow width portion 15c.
  • the narrow width portion 15c is a portion where fusing is likely to occur due to current concentration when an overcurrent flows. Therefore, it is preferable to use the narrow portion 15c as a fusing portion. Therefore, it is preferable that the melt movement restricting layer 21 overlaps in the narrow width portion 15c.
  • second insulating layers 23 and 24 are formed.
  • the second insulating layers 23 and 24 can be formed of an appropriate insulating material that melts at a predetermined temperature.
  • an appropriate synthetic resin that can be melted at a temperature at which solder as a low melting point metal becomes a melt or in the vicinity thereof can be used.
  • the second insulating layers 23 and 24 are made of polyethylene terephthalate (PET). Note that the second insulating layers 23 and 24 are not necessarily provided.
  • the second insulating layers 23 and 24 are provided so as to cover the exposed portions of the conductor wiring 15 in FIG.
  • the formation positions of the second insulating layers 23 and 24 are not particularly limited as long as electrical insulation between the conductor wiring 15 and the low melting point metal layer described below can be achieved.
  • low melting point metal layers 25 and 26 are provided. In this way, the fuse element 1 can be obtained.
  • the low melting point metal layers 25 and 26 are provided on both sides of the melt movement restricting layer 21 so as to cover a part of the narrow width portion 15c.
  • the low melting point metal layers 25 and 26 are formed of Sn—Sb solder. However, other solders may be used.
  • the low melting point metal layers 25 and 26 can be formed of an appropriate low melting point metal that dissolves the lower conductor wiring 15 when it becomes a melt. Examples of such a low melting point metal include various other solders such as Bi solder in addition to the Sn—Sb solder.
  • the low melting point metal layers 25 and 26 indirectly overlap with part of the conductor wiring 15 via the second insulating layers 23 and 24 in this embodiment. However, the low melting point metal layers 25 and 26 may directly overlap the conductor wiring 15.
  • FIG. 7 is a schematic plan view of the fuse element 1.
  • Terminal electrodes 31 to 34 are formed on the lower surface 2 b of the substrate 2.
  • the terminal electrodes 31 and 32 are connected to the connection electrodes 8a and 8b.
  • the terminal electrodes 33 and 34 are connected to the connection electrodes 10a and 10b. Further, the terminal electrode 33 is also electrically connected to the electrode land 11 provided on the upper surface 2a by the through-hole electrodes 9a and 9b.
  • the terminal electrode 34 is connected to the electrode land 12 via the connection electrode 10b and the through-hole electrodes 9c and 9d.
  • the resistance heating element 3 also generates heat. Heat generated by the heat generation is given to the low-melting point metal layers 25 and 26 located above. Therefore, the low melting point metal layers 25 and 26 are dissolved by the heat applied from the resistance heating element 3 and quickly become a melt.
  • a heater using the resistance heating element 3 is not necessarily provided.
  • the melt of the low melting point metal layers 25 and 26 does not move to the melt movement restriction layer 21 side, but from the melt movement restriction layer 21. It becomes easy to move in the direction of moving away, that is, in the Z and ⁇ Z directions in FIG.
  • the melt of the low-melting-point metals 25 and 26 is located below.
  • the conductor wiring 15 is contacted.
  • the conductor wiring 15 is made of Ag or an alloy mainly composed of Ag. Therefore, solder erosion occurs, and a mixed melt of the melt of the low melting point metal layers 25 and 26 and the melt of Ag constituting the conductor wiring 15 is generated.
  • the melt movement restriction layer 21 is provided and the melt is compatible with the remaining portion of the conductor wiring 15, the melt moves quickly in the Z direction and the -Z direction in FIG. .
  • the melt E moves in the Z direction from the melt movement restricting layer 21, and the fusing part F is reliably formed. Thereby, the current can be surely cut off.
  • the melt movement restricting layer 21 is made of an insulating material that is solid at the melting point of the low melting point metal layers 25 and 26, and further made of a material that is less compatible with the melt or the melt of the low melting point metal. It is desirable.
  • a material constituting such a melt movement restricting layer 21 an epoxy resin, a silicone resin, a phenol resin, or the like can be suitably used as described above. These thermosetting resins are not compatible with the low melting point metal constituting the low melting point metal layers 25 and 26. Therefore, the melt can be quickly moved in a direction other than the portion overlapping with the melt movement restricting layer 21. Glass or ceramics may be used.
  • the melt movement restricting layer needs to be provided so as to overlap directly or indirectly with a part of the outer periphery of the low melting point metal layer. Thereby, the melt of the low melting point metal is guided in a direction other than the part. That is, the movement in the one part direction is restricted, and the movement to the other part is promoted. Therefore, it is difficult for the melt to remain in the melted portion.
  • the structure in which the melt movement restriction layer directly overlaps a part of the outer periphery of the low melting point metal layer is a state in which the melt movement restriction layer is in direct contact with and overlaps a part of the outer periphery of the low melting point metal layer.
  • Means. Indirect overlap refers to a state in which the melt movement restricting layer is not in direct contact with a part of the outer periphery of the low-melting-point metal layer and is overlapped with another material portion in between.
  • the melt movement restricting layer 21 is not directly in contact with a part of the outer peripheral edge of the low melting point metal layers 25 and 26, and is interposed via the second insulating layers 23 and 24. It overlaps.
  • FIG. 2C shows a modification in which the melt movement regulating layer 21 is in direct contact with and directly overlapping a part of the outer peripheral edge of the low melting point metal layers 25 and 26.
  • FIG. 8A and 8B are a plan view of a fuse element according to a second embodiment of the present invention and a cross-sectional view of a portion along the line DD in FIG. 8A.
  • the fuse element 41 has a substrate 2.
  • the resistance heating element 3 is provided in the central region on the upper surface 2 a of the substrate 2.
  • the resistance heating element 3 extends in the short side direction connecting the first and second side surfaces 2e and 2f of the substrate 2.
  • One end of the resistance heating element 3 is connected to the electrode land 42, and the other end is connected to the electrode land 43.
  • the electrode land 42 is electrically connected to a connection electrode 44 provided on the first side surface 2e.
  • the electrode land 43 is electrically connected to a connection electrode 45 provided on the second side surface 2f.
  • connection electrodes 44 and 45 reach the lower surface 2 b of the substrate 2.
  • terminal electrodes that are electrically connected to the connection electrodes 44 and 45 are provided.
  • an insulating film 46 is provided on the upper surface 2 a of the substrate 2 so as to cover the resistance heating element 3.
  • the insulating film 46 is made of an appropriate insulating material.
  • Conductor wiring 47 is provided so as to cover the insulating film 46.
  • the conductor wiring 47 is formed of the same material as that of the conductor wiring 15 of the first embodiment.
  • the conductor wiring 47 is extended in a direction connecting the first end face 2c and the second end face 2d.
  • the conductor wiring 47 has a first end 47a on the end face 2c side and a second end 47b on the opposite side.
  • the conductor wiring 47 is tapered on the first end portion 47a side so that the width becomes narrower toward the first end portion 47a. Also on the second end portion 47b side, the conductor wiring 47 is formed so that the width becomes narrower toward the second end portion 47b.
  • the first end 47a is electrically connected to the electrode land 48.
  • the second end 47 b is connected to the electrode land 49.
  • the electrode lands 48 and 49 are connected to the connection electrodes 50 and 51.
  • the connection electrodes 50 and 51 are provided by filling the concave portions having anti-cylindrical curved surfaces on the first end surface 2c and the second end surface 2d, respectively, with a conductive material.
  • the connection electrodes 50 and 51 are connected to terminal electrodes 52 and 53 provided on the lower surface 2b of the substrate 2, respectively.
  • low melting point metal layers 55 and 55 are laminated at the portion where the width is narrowed.
  • the low melting point metal layers 55 and 55 are provided in order to form a fusing portion in a portion where the width of the conductor wiring 47 is narrow.
  • the melt movement restriction layers 56 and 57 are provided so as to overlap the low melting point metal layer 55.
  • the melt movement restriction layers 56 and 57 are provided so as to directly overlap the low melting point metal layers 55 and 55.
  • the outer periphery of the low-melting-point metal layer 55 is provided so as to overlap with a part of the outer periphery. That is, the melt movement restricting layers 56 and 57 do not undulate the outer periphery of the low melting point metal layer 55 on the central region side of the substrate 2. That is, a part of the low melting point metal layer 55 is exposed as illustrated.
  • the melt movement restriction layer 56 may directly overlap the low melting point metal layer 55.
  • the resistance heating element 3 and the conductor wiring 47 are used so as to be connected in series.
  • the melt movement restricting layer 56 is overlapped except for a part of the outer periphery of the low melting point metal layer 55.
  • the low melting point metal layer 55 melts and becomes a melt. In this case, since the melt is in direct contact with the conductor wiring 47, the conductor wiring 47 dissolves quickly. Further, the low melting point metal layer 55 is directly covered with the melt movement restricting layer 56. The low melting point metal layer 55 changes from solid to liquid when melted.
  • the volume is increased.
  • the melt of the low melting point metal layer 55 quickly flows out from the opening that is not covered by the melt movement restriction layer 56. Therefore, in the present embodiment, the melt of the low melting point metal layer 55 can be moved more rapidly to the side constituting the fusing part.
  • the melt movement restricting layer may be directly laminated on the low melting point metal layer or may be indirectly overlapped.
  • dam part 21 ... melt movement restricting layers 23, 24 ... second insulating layers 25, 26 ... low melting point metal layers 31 to 34 ... terminal electrode 41 ... fuse elements 42 and 43 ... electrode lands 44 and 45 ... connection electrode 46 ... insulating film 47 ... conductor wiring 47a ... first end 47b ... second end 48 , 49 ... Electrode lands 50, 51 ... Connection power 52, 53 ... terminal electrodes 55 ... low-melting-point metal layer 56, 57 ... melt movement restricting layer

Landscapes

  • Fuses (AREA)

Abstract

Provided is a fuse element that can reliably cut off electrical current. The fuse element (1) is such that a conductor wiring (15) is provided on a substrate (2), a low-melting-point metal layer (25, 26) is provided in a manner so as to directly or indirectly cover a portion of the conductor wiring (15), a molten-material motion regulating layer (21) is provided in a manner so as to directly or indirectly overlap a portion of the outer periphery of the low-melting-point metal layer (25, 26), and the molten-material motion regulating layer (21) comprises an insulating material.

Description

ヒューズ素子Fuse element
 本発明は、過電流が流れた際に溶断し、電子回路などを保護するヒューズ素子に関する。より詳細には、本発明は、基板上に溶断部を有する導体配線が設けられているヒューズ素子に関する。 The present invention relates to a fuse element that melts when an overcurrent flows and protects an electronic circuit or the like. More specifically, the present invention relates to a fuse element in which a conductor wiring having a fusing part is provided on a substrate.
 従来、電子機器を過電流から保護するために、様々なヒューズ素子が用いられている。下記の特許文献1には、金属からなるヒューズ導体の一部に、錫や鉛等の低融点金属が付着されているヒューズ素子が開示されている。過電流が流れた場合には、低融点金属が溶融し、かつその融液がヒューズ導体を溶解させる。それによって、回路が遮断される。 Conventionally, various fuse elements are used to protect electronic devices from overcurrent. Patent Document 1 below discloses a fuse element in which a low melting point metal such as tin or lead is attached to a part of a fuse conductor made of metal. When an overcurrent flows, the low melting point metal melts and the melt melts the fuse conductor. Thereby, the circuit is interrupted.
特開2009-99372号公報JP 2009-99372 A
 特許文献1に記載のようなヒューズ素子では、溶断部において、低融点金属の融液と、溶解されたヒューズ導体とを含む液状物が留まるおそれがあった。そのため、回路を確実に遮断することができないことがあった。 In the fuse element as described in Patent Document 1, there is a possibility that the liquid material containing the melt of the low melting point metal and the melted fuse conductor may remain in the fusing part. For this reason, the circuit may not be shut off reliably.
 本発明の目的は、電流をより確実に遮断することができるヒューズ素子を提供することにある。 An object of the present invention is to provide a fuse element capable of interrupting current more reliably.
 本発明に係るヒューズ素子は、基板と、導体配線と、低融点金属層と、溶融物移動規制層とを備える。上記導体配線は基板上に設けられている。上記低融点金属層は、上記導体配線の一部を直接または間接的に覆うように設けられている。該低融点金属層は、導体配線よりも融点が低く、融液となって導体配線を溶解させて溶断部を形成する。 The fuse element according to the present invention includes a substrate, a conductor wiring, a low melting point metal layer, and a melt movement restriction layer. The conductor wiring is provided on the substrate. The low melting point metal layer is provided so as to directly or indirectly cover a part of the conductor wiring. The low melting point metal layer has a melting point lower than that of the conductor wiring, and forms a melted portion by melting the conductor wiring as a melt.
 上記溶融物移動規制層は、上記低融点金属層の外周の一部に直接または間接的に重なるように設けられている。また、上記溶融物移動規制層は、絶縁性材料からなる。 The melt movement restricting layer is provided so as to directly or indirectly overlap a part of the outer periphery of the low melting point metal layer. The melt movement restricting layer is made of an insulating material.
 本発明に係るヒューズ素子のある特定の局面では、上記溶融物移動規制層が上記低融点金属層の外周のうち、上記導体配線に臨んでいる部分の一部を除き、低融点金属層の外周部の残りの部分を覆うように設けられている。 In a specific aspect of the fuse element according to the present invention, an outer periphery of the low-melting-point metal layer except for a part of the outer periphery of the low-melting-point metal layer where the melt movement regulation layer faces the conductor wiring. It is provided so that the remaining part of a part may be covered.
 本発明に係るヒューズ素子の他の特定の局面では、上記導体配線が第1の端部と第2の端部とを有する。上記溶融物移動規制層は、上記導体配線上において、上記溶断部の上記第1の端部側部分または第2の端部側部分において、上記導体配線の横断方向全長にわたるように設けられている。 In another specific aspect of the fuse element according to the present invention, the conductor wiring has a first end and a second end. The melt movement restricting layer is provided on the conductor wiring so as to cover the entire length in the transverse direction of the conductor wiring at the first end side portion or the second end side portion of the fusing part. .
 本発明に係るヒューズ素子のさらに他の特定の局面では、上記溶融物移動規制層において、上記低融点金属層を覆っていない開口部が複数設けられている。 In still another specific aspect of the fuse element according to the present invention, a plurality of openings that do not cover the low melting point metal layer are provided in the melt movement restriction layer.
 本発明に係るヒューズ素子の別の特定の局面では、形成時の温度が、上記低融点金属の融点よりも低い材料により上記溶融物移動規制層が形成されている。 In another specific aspect of the fuse element according to the present invention, the melt movement restricting layer is formed of a material having a forming temperature lower than the melting point of the low melting point metal.
 本発明に係るヒューズ素子のさらに別の特定の局面では、上記溶融物移動規制層が、上記低融点金属の融点の温度で固体である。 In still another specific aspect of the fuse element according to the present invention, the melt movement restricting layer is solid at a melting point of the low melting point metal.
 本発明に係るヒューズ素子のさらに他の特定の局面では、上記溶融物移動規制層がエポキシ樹脂からなる。 In yet another specific aspect of the fuse element according to the present invention, the melt movement regulating layer is made of an epoxy resin.
 本発明に係るヒューズ素子のさらに他の特定の局面では、上記導体配線が、上記溶断部においてAgまたはAgを主体する合金からなる。 In still another specific aspect of the fuse element according to the present invention, the conductor wiring is made of Ag or an alloy mainly composed of Ag in the fusing portion.
 本発明に係るヒューズ素子のさらに他の特定の局面では、上記低融点金属が半田である。 In yet another specific aspect of the fuse element according to the present invention, the low melting point metal is solder.
 本発明に係るヒューズ素子によれば、上記溶融物移動規制層が設けられているため、低融点金属の融液の移動方向を規制することができる。従って、低融点金属が溶断部で残存するリスクを低減することができ、電流をより確実に遮断することができる。 According to the fuse element according to the present invention, since the melt movement restriction layer is provided, the movement direction of the melt of the low melting point metal can be restricted. Accordingly, it is possible to reduce the risk that the low melting point metal remains at the melted portion, and it is possible to more reliably cut off the current.
図1(a)及び図1(b)は、本発明の第1の実施形態に係るヒューズ素子の平面図及び図1(a)中のA-A線に沿う部分の断面図である。FIG. 1A and FIG. 1B are a plan view of a fuse element according to the first embodiment of the present invention and a cross-sectional view of a portion along the line AA in FIG. 図2(a)は、図1(a)のB-B線に沿う部分の断面図であり、図2(b)は、C-C線に沿う部分の断面図であり、図2(c)は、溶融物移動規制層が低融点金属層の外周縁の一部と直接的に重なりあっている変形例を示す断面図である。2A is a cross-sectional view of a portion along the line BB in FIG. 1A, and FIG. 2B is a cross-sectional view of a portion along the line CC in FIG. ) Is a cross-sectional view showing a modification in which the melt movement restricting layer is directly overlapped with a part of the outer peripheral edge of the low melting point metal layer. 図3は、第1の実施形態に係るヒューズ素子において、低融点金属の融液が移動し、電流が遮断されるメカニズムを説明するための部分切欠拡大断面図である。FIG. 3 is a partially cutaway enlarged cross-sectional view for explaining a mechanism in which the melt of the low melting point metal moves and the current is interrupted in the fuse element according to the first embodiment. 図4(a)は、第1の実施形態の製造に際し、基板表面にヒーター用抵抗体及び端子電極を形成した状態を示す平面図であり、図4(b)は、図4(a)に示した構造にさらに絶縁層を形成した状態を示す平面図である。FIG. 4A is a plan view showing a state in which a heater resistor and terminal electrodes are formed on the surface of the substrate during the manufacture of the first embodiment, and FIG. 4B is a plan view of FIG. It is a top view which shows the state in which the insulating layer was further formed in the structure shown. 図5(a)は、図4(b)に示した構造上に、さらにヒューズ用導体配線を形成した状態を示す平面図であり、図5(b)は、図5(a)に示した構造上に、ダム部及び溶融物移動規制層を形成した状態を示す平面図である。FIG. 5A is a plan view showing a state in which a fuse conductor wiring is further formed on the structure shown in FIG. 4B, and FIG. 5B is shown in FIG. It is a top view which shows the state which formed the dam part and the melt movement control layer on the structure. 図6は、図5(b)に示した構造上に、第2の絶縁層を形成した状態を示す平面図である。FIG. 6 is a plan view showing a state in which a second insulating layer is formed on the structure shown in FIG. 図7は、本発明の第1の実施形態のヒューズ素子の製造に際し、基板の裏面に形成されている電極構造を示す模式的平面図である。FIG. 7 is a schematic plan view showing an electrode structure formed on the back surface of the substrate when the fuse element according to the first embodiment of the present invention is manufactured. 図8(a)及び図8(b)は、本発明の第2の実施形態に係るヒューズ素子を説明するための平面図及び図8(a)中のD-D線に沿う断面図である。FIGS. 8A and 8B are a plan view for explaining a fuse element according to the second embodiment of the present invention and a cross-sectional view taken along the line DD in FIG. 8A. . 図9(a)及び図9(b)は、第2の実施形態において、溶融物移動規制層により低融点金属層が移動する過程を説明するための各部分切欠拡大断面図である。FIG. 9A and FIG. 9B are enlarged partial sectional views for explaining a process in which the low melting point metal layer moves by the melt movement restricting layer in the second embodiment.
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。 Hereinafter, the present invention will be clarified by describing specific embodiments of the present invention with reference to the drawings.
 図1(a)及び(b)は、本発明の第1の実施形態に係るヒューズ素子を示す平面図及び(a)中のA-A線に沿う断面図である。図2(a)及び(b)は、図1(a)中のB-B線及びC-C線に沿う断面図である。 FIGS. 1A and 1B are a plan view showing a fuse element according to the first embodiment of the present invention and a cross-sectional view taken along line AA in FIG. 2 (a) and 2 (b) are cross-sectional views taken along lines BB and CC in FIG. 1 (a).
 このヒューズ素子1の構造を製造方法を説明することにより明らかにする。 The structure of the fuse element 1 will be clarified by explaining the manufacturing method.
 ヒューズ素子1は、基板2を有する。基板2は、本実施形態では、アルミナからなる。もっとも、基板2は、アルミナ以外の適宜の絶縁性材料により形成することができる。基板2は、上面2aと、下面2bと、第1,第2の端面2c,2dと、第1,第2の側面2e,2fとを有する。本実施形態では、基板2は矩形板状の形状を有する。もっとも、基板2は、矩形板状以外の形状を有していてもよい。 The fuse element 1 has a substrate 2. In this embodiment, the substrate 2 is made of alumina. However, the substrate 2 can be formed of an appropriate insulating material other than alumina. The substrate 2 has an upper surface 2a, a lower surface 2b, first and second end surfaces 2c and 2d, and first and second side surfaces 2e and 2f. In the present embodiment, the substrate 2 has a rectangular plate shape. However, the substrate 2 may have a shape other than the rectangular plate shape.
 ヒューズ素子1の製造に際しては、図4(a)に示すように、基板2の上面2aの中央に抵抗発熱体3を形成する。抵抗発熱体3は、電流が流れた際に発熱する。すなわち、抵抗発熱体3はヒーターとして機能する。このような抵抗発熱体3は、電流が流れた際に発熱する適宜の抵抗発熱体により形成することができる。このような材料としては、例えば、RuOやAgPdを用いることができる。また、Niを主体とし、Cr、Mn、Cu及びFeのうち少なくとも1種を含む合金を好適に用いることもできる。抵抗発熱体3は、例えばスクリーン印刷により抵抗発熱体含有ペーストを印刷することにより形成することができる。 When the fuse element 1 is manufactured, the resistance heating element 3 is formed in the center of the upper surface 2a of the substrate 2 as shown in FIG. The resistance heating element 3 generates heat when a current flows. That is, the resistance heating element 3 functions as a heater. Such a resistance heating element 3 can be formed of an appropriate resistance heating element that generates heat when a current flows. For example, RuO 2 or AgPd can be used as such a material. An alloy containing Ni as a main component and containing at least one of Cr, Mn, Cu, and Fe can also be suitably used. The resistance heating element 3 can be formed, for example, by printing a resistance heating element-containing paste by screen printing.
 上記抵抗発熱体3の一端に、引き出し電極4が接続されている。引き出し電極4の外側端は、電極ランド6に連なっている。電極ランド6は、第1の端面2cと上面2aとのなす端縁に至っている。なお、第1の端面2cには、半円筒曲面状の凹部2gが形成されている。凹部2gは、上面2aから下面2bに至るように設けられている。凹部2g内に導電ペーストを充填し焼成することにより、接続電極8aが形成されている。 A lead electrode 4 is connected to one end of the resistance heating element 3. The outer end of the extraction electrode 4 is connected to the electrode land 6. The electrode land 6 reaches the edge formed by the first end surface 2c and the upper surface 2a. The first end face 2c is formed with a semicylindrical curved recess 2g. The recess 2g is provided so as to extend from the upper surface 2a to the lower surface 2b. The connection electrode 8a is formed by filling the recess 2g with a conductive paste and baking it.
 引き出し電極5も同様に、電極ランド7に接続されている。電極ランド7もまた、接続電極8aと同様に形成された接続電極8bに接続されている。すなわち、接続電極8bは第2の端面2dに設けられた、凹部2gを充填するように設けられている。 The extraction electrode 5 is also connected to the electrode land 7 in the same manner. The electrode land 7 is also connected to a connection electrode 8b formed in the same manner as the connection electrode 8a. That is, the connection electrode 8b is provided so as to fill the recess 2g provided on the second end face 2d.
 なお、基板2には、さらにスルーホール電極9a~9d及び接続電極10a,10bも形成されている。接続電極10a,10bは、それぞれ、第1,第2の側面2e,2fに設けられている。接続電極10a,10bも、上面2aから下面2bに至るように設けられている。また、スルーホール電極9a~9dは、基板2の下面2bに至っている。 The substrate 2 is further formed with through-hole electrodes 9a to 9d and connection electrodes 10a and 10b. The connection electrodes 10a and 10b are provided on the first and second side surfaces 2e and 2f, respectively. The connection electrodes 10a and 10b are also provided from the upper surface 2a to the lower surface 2b. The through-hole electrodes 9a to 9d reach the lower surface 2b of the substrate 2.
 ヒューズ素子1の製造に際しては、上述した接続電極8a,8b,10a,10bと、スルーホール電極9a~9dがあらかじめ設けられている積層基板を作成し、基板2とする。そして、上記のように基板2の上面2a上に、抵抗発熱体3、引き出し電極4,5及び電極ランド6,7,11,12を形成する。電極ランド11は、スルーホール電極9a,9b及び接続電極10aに電気的に接続されるように設けられている。すなわち、電極ランド11が、上面2aと第1の側面2eとの端縁に至るように設けられている。電極ランド12も同様に、接続電極10bと、スルーホール電極9c,9dとに接続されるように設けられている。 When manufacturing the fuse element 1, a laminated substrate in which the connection electrodes 8 a, 8 b, 10 a, and 10 b described above and the through-hole electrodes 9 a to 9 d are provided in advance is created and used as the substrate 2. Then, the resistance heating element 3, the extraction electrodes 4 and 5, and the electrode lands 6, 7, 11, and 12 are formed on the upper surface 2a of the substrate 2 as described above. The electrode land 11 is provided so as to be electrically connected to the through- hole electrodes 9a and 9b and the connection electrode 10a. That is, the electrode land 11 is provided so as to reach the edge between the upper surface 2a and the first side surface 2e. Similarly, the electrode land 12 is provided so as to be connected to the connection electrode 10b and the through- hole electrodes 9c and 9d.
 上記引き出し電極4,5、スルーホール電極9a~9d、接続電極8a,8b,10a,10bや電極ランド11,12などは、適宜の導電性材料により形成することができる。本実施形態では、Ag-Pt合金を用いている。 The lead electrodes 4 and 5, the through-hole electrodes 9a to 9d, the connection electrodes 8a, 8b, 10a and 10b, the electrode lands 11 and 12 and the like can be formed of an appropriate conductive material. In this embodiment, an Ag—Pt alloy is used.
 次に、上記抵抗発熱体3及び引き出し電極4,5が設けられている領域を覆うように、図4(b)に示す第1の絶縁層14を形成する。第1の絶縁層14は、適宜の絶縁性材料で形成することができる。第1の絶縁層14の上面には後述する導体配線が設けられる。従って、第1の絶縁層14は、後述の低融点金属の融液により溶解しない材料により構成することが望ましい。本実施形態では、第1の絶縁層14は、ガラスにより形成されている。第1の絶縁層14は、ガラスセラミックスやアルミナなどの絶縁性セラミックスにより形成されてもよい。 Next, the first insulating layer 14 shown in FIG. 4B is formed so as to cover the region where the resistance heating element 3 and the extraction electrodes 4 and 5 are provided. The first insulating layer 14 can be formed of an appropriate insulating material. Conductor wiring described later is provided on the upper surface of the first insulating layer 14. Therefore, it is desirable that the first insulating layer 14 is made of a material that is not dissolved by a low melting point metal melt described later. In the present embodiment, the first insulating layer 14 is made of glass. The first insulating layer 14 may be formed of insulating ceramics such as glass ceramics or alumina.
 上記第1の絶縁層14は、基板2の上面2aにおいて、上面2aよりも小さな矩形形状の領域に設けられている。従って、第1の絶縁層14の外側には、矩形枠状の領域が残る。 The first insulating layer 14 is provided on the upper surface 2a of the substrate 2 in a rectangular region smaller than the upper surface 2a. Accordingly, a rectangular frame-shaped region remains outside the first insulating layer 14.
 次に、図5(a)に示すように、導体配線15と、引き出し電極17と、固定用金属16a~16dとを形成する。金属ペーストをスクリーン印刷することにより、導体配線15と、固定用金属16a~16dを形成することができる。 Next, as shown in FIG. 5A, the conductor wiring 15, the extraction electrode 17, and the fixing metals 16a to 16d are formed. The conductor wiring 15 and the fixing metals 16a to 16d can be formed by screen printing the metal paste.
 なお、固定用金属16a~16dは、後述する低融点金属としての半田を確実に固定するために設けられている。固定用金属16a~16dは、導体配線15と本実施形態では同じ材料により形成されている。従って、同一工程により、導体配線15と、固定用金属16a~16dを形成することができる。 Note that the fixing metals 16a to 16d are provided to securely fix solder as a low-melting-point metal described later. The fixing metals 16a to 16d are formed of the same material as that of the conductor wiring 15 in this embodiment. Therefore, the conductor wiring 15 and the fixing metals 16a to 16d can be formed by the same process.
 なお、固定用金属16a~16dは設けられずともよい。 The fixing metals 16a to 16d may not be provided.
 導体配線15は、本実施形態では、Agからなる。導体配線15は、Agに限らず、半田喰われを生じる適宜の金属を用いて形成することができる。このような金属としては、Ag、または、例えば、AgPtのようなAgを主体とする合金などを挙げることができる。 The conductor wiring 15 is made of Ag in this embodiment. The conductor wiring 15 is not limited to Ag, and can be formed using an appropriate metal that causes solder erosion. Examples of such a metal include Ag or an alloy mainly composed of Ag such as AgPt.
 なお、導体配線15では、後述する溶断部が、上記半田喰われを生じる金属により構成されていればよい。他の部分は、他の金属により形成されていてもよい。もっとも、本実施形態のように、導体配線15全体が同じ金属により形成されることが望ましい。それによって製造が容易となる。 In addition, in the conductor wiring 15, the fusing part mentioned later should just be comprised with the metal which produces the said solder erosion. Other portions may be formed of other metals. However, it is desirable that the entire conductor wiring 15 is formed of the same metal as in this embodiment. This facilitates manufacture.
 導体配線15は、第1の端部15aと、第2の端部15bとを有する。第1の端部15aは、電極ランド11に連ねられるように形成されている。第2の端部15bは電極ランド12に連ねられるように形成されている。 The conductor wiring 15 has a first end 15a and a second end 15b. The first end 15 a is formed so as to be connected to the electrode land 11. The second end portion 15 b is formed so as to be continuous with the electrode land 12.
 本実施形態では、導体配線15には、第1の端部15a側から中央に向かうにつれて、その幅方向が順次狭くなるようにテーパーがつけられている。同様に、導体配線15には、第2の端部15b側から、中央に向かうにつれてその幅が狭くなるようにテーパーがつけられている。そのため、導体配線15の中央部は細幅部15cとなっている。 In the present embodiment, the conductor wiring 15 is tapered so that its width direction becomes gradually narrower from the first end 15a side toward the center. Similarly, the conductor wiring 15 is tapered so that the width thereof becomes narrower from the second end portion 15b side toward the center. Therefore, the central portion of the conductor wiring 15 is a narrow width portion 15c.
 細幅部15cに、引き出し電極17が接続されている。引き出し電極17は、第1の端面2c側に設けられている電極ランド6に接続されるように形成されている。 The extraction electrode 17 is connected to the narrow portion 15c. The lead electrode 17 is formed so as to be connected to the electrode land 6 provided on the first end face 2c side.
 なお、上記導体配線15、固定用金属16a~16d及び引き出し電極17は、前述した第1の絶縁層14上に積層されて形成されている。引き出し電極17は、本実施形態では、導体配線15と同じ材料により同時に形成されている。もっとも、引き出し電極17は他の材料により形成されてもよい。 Note that the conductor wiring 15, the fixing metals 16a to 16d, and the extraction electrode 17 are formed on the first insulating layer 14 described above. In this embodiment, the extraction electrode 17 is simultaneously formed of the same material as the conductor wiring 15. However, the extraction electrode 17 may be formed of other materials.
 次に、図5(b)に示すように、保護膜19を形成する。保護膜19は、本実施形態では、本発明における溶融物移動規制層として作用する部分をも有している。より具体的には、保護膜19は、ダム部20と、溶融物移動規制層21とを有する。ダム部20は、ダム部20内において生じた溶融物の外部への散乱を防止するために設けられている。また、ダム部20は、ダム部20で囲まれた部分を周囲から保護する機能も有している。 Next, as shown in FIG. 5B, a protective film 19 is formed. In this embodiment, the protective film 19 also has a portion that functions as a melt movement restricting layer in the present invention. More specifically, the protective film 19 includes a dam portion 20 and a melt movement restriction layer 21. The dam part 20 is provided in order to prevent the melt generated in the dam part 20 from scattering outside. The dam part 20 also has a function of protecting the part surrounded by the dam part 20 from the surroundings.
 ダム部20は、その外周縁が、基板2の上面2aの外周縁から距離を隔てて配置されている。また、ダム部20の内周縁は、上記第1の絶縁層14上に至っている。従って、ダム部20は、第1の絶縁層14の外側の領域から内側の領域に至るように設けられている。 The outer peripheral edge of the dam portion 20 is arranged at a distance from the outer peripheral edge of the upper surface 2 a of the substrate 2. Further, the inner peripheral edge of the dam portion 20 reaches the first insulating layer 14. Accordingly, the dam portion 20 is provided so as to extend from the outer region of the first insulating layer 14 to the inner region.
 他方、溶融物移動規制層21は、後述するように、溶融物の移動方向を規制する作用を果たす。本実施形態では、溶融物移動規制層21は、前述した導体配線15の細幅部15c上を覆うように、基板2の上面2aにおいて長手方向に延ばされている。すなわち、第1の端面2cから第2の端面2dに向かう長手方向に延びるように、溶融物移動規制層21が設けられている。 On the other hand, the melt movement restricting layer 21 serves to restrict the moving direction of the melt, as will be described later. In the present embodiment, the melt movement restricting layer 21 is extended in the longitudinal direction on the upper surface 2a of the substrate 2 so as to cover the narrow portion 15c of the conductor wiring 15 described above. That is, the melt movement restricting layer 21 is provided so as to extend in the longitudinal direction from the first end surface 2c toward the second end surface 2d.
 溶融物移動規制層21は、後述の低融点金属としての半田が溶融する温度で固体である材料からなる。従って、低融点金属が融液となっても、溶融物移動規制層21は、その形状を維持する。このような溶融物移動規制層21を構成する材料は、低融点金属が融液となった状態で形状を維持する適宜の絶縁性材料により形成することができる。また、形成時の温度が低融点金属の融点より低い材料により、溶融物移動規制層21を形成することが望ましい。それによって、溶融物移動規制層21の形成時に低融点金属層が溶解することを防ぐことができる。 The melt movement restricting layer 21 is made of a material that is solid at a temperature at which solder as a low-melting-point metal described later melts. Therefore, even if the low melting point metal becomes a melt, the melt movement restricting layer 21 maintains its shape. The material constituting such a melt movement restricting layer 21 can be formed of an appropriate insulating material that maintains its shape in a state where the low melting point metal is in a melt. In addition, it is desirable to form the melt movement restricting layer 21 with a material whose forming temperature is lower than the melting point of the low melting metal. Thereby, it is possible to prevent the low melting point metal layer from being melted when the melt movement restricting layer 21 is formed.
 本実施形態では、溶融物移動規制層21は、エポキシ樹脂からなる。もっとも、エポキシ樹脂に限らず、シリコーン樹脂やフェノール樹脂などの他の熱硬化性樹脂を用いてもよい。また、ガラス又はセラミックスを用いてもよい。 In the present embodiment, the melt movement restriction layer 21 is made of an epoxy resin. But not only an epoxy resin but other thermosetting resins, such as a silicone resin and a phenol resin, may be used. Further, glass or ceramics may be used.
 本実施形態では、上記ダム部20も、溶融物移動規制層21と同じ材料により一体に形成されている。もっとも、ダム部20は設けられておらずともよく、またダム部20は溶融物移動規制層21と異なる材料で形成されていてもよい。さらに、ダム部20は、溶融物移動規制層21と接続されておらずともよい。 In the present embodiment, the dam portion 20 is also integrally formed of the same material as the melt movement restriction layer 21. However, the dam portion 20 may not be provided, and the dam portion 20 may be formed of a material different from that of the melt movement restriction layer 21. Furthermore, the dam part 20 may not be connected to the melt movement restriction layer 21.
 もっとも、好ましくは、本実施形態のように、溶融物移動規制層21と一体にダム部20が構成されることが望ましい。それによって、機械的強度も高めることができる。 However, it is preferable that the dam portion 20 is formed integrally with the melt movement restriction layer 21 as in the present embodiment. Thereby, the mechanical strength can also be increased.
 なお、本実施形態では、上記溶融物移動規制層21は細幅部15cに重なり合うように設けられている。溶融物移動規制層21は、上記細幅部15cに重なり合うように設けられていることが望ましい。細幅部15cでは、過電流が流れた際の電流集中により溶断が起きやすい部分である。従って、細幅部15cを溶断部として用いるのが好ましい。よって、細幅部15cにおいて、溶融物移動規制層21が重なり合っていることが好ましい。 In the present embodiment, the melt movement restriction layer 21 is provided so as to overlap the narrow width portion 15c. The melt movement restricting layer 21 is preferably provided so as to overlap the narrow width portion 15c. The narrow width portion 15c is a portion where fusing is likely to occur due to current concentration when an overcurrent flows. Therefore, it is preferable to use the narrow portion 15c as a fusing portion. Therefore, it is preferable that the melt movement restricting layer 21 overlaps in the narrow width portion 15c.
 次に、図6に示すように、第2の絶縁層23,24を形成する。第2の絶縁層23,24は、所定の温度で溶解する適宜の絶縁性材料により形成することができる。例えば、このような絶縁性材料としては、低融点金属としての半田が融液となる温度又はその近傍の温度において溶解する適宜の合成樹脂を用いることができる。本実施形態では、第2の絶縁層23,24はポリエチレンテレフタレート(PET)からなる。なお、第2の絶縁層23,24は必ずしも設けられずともよい。 Next, as shown in FIG. 6, second insulating layers 23 and 24 are formed. The second insulating layers 23 and 24 can be formed of an appropriate insulating material that melts at a predetermined temperature. For example, as such an insulating material, an appropriate synthetic resin that can be melted at a temperature at which solder as a low melting point metal becomes a melt or in the vicinity thereof can be used. In the present embodiment, the second insulating layers 23 and 24 are made of polyethylene terephthalate (PET). Note that the second insulating layers 23 and 24 are not necessarily provided.
 もっとも、第2の絶縁層23,24を設けることが望ましい。それによって、次に述べる低融点金属層と導体配線との導通を防止することができる。第2の絶縁層23,24は、上記導体配線15の図5(b)において露出している部分を覆うように設けられる。もっとも、第2の絶縁層23,24は、導体配線15と次に述べる低融点金属層との電気的絶縁を図り得る限り、その形成位置は特に限定されない。 However, it is desirable to provide the second insulating layers 23 and 24. As a result, conduction between the low-melting point metal layer described below and the conductor wiring can be prevented. The second insulating layers 23 and 24 are provided so as to cover the exposed portions of the conductor wiring 15 in FIG. However, the formation positions of the second insulating layers 23 and 24 are not particularly limited as long as electrical insulation between the conductor wiring 15 and the low melting point metal layer described below can be achieved.
 次に、図1(a)及び図2(a),(b)に示すように、低融点金属層25,26を設ける。このようにして、ヒューズ素子1を得ることができる。低融点金属層25,26は、上記細幅部15cの一部を覆うように、溶融物移動規制層21の両側に設けられている。低融点金属層25,26は、本実施形態では、Sn-Sb半田により形成されている。もっとも、他の半田を用いてもよい。また、低融点金属層25,26は、融液となった際に下方の導体配線15を溶解する適宜の低融点金属により形成することができる。このような低融点金属としては、上記Sn-Sb半田のほか、Bi系半田等、様々な他の半田などを挙げることができる。 Next, as shown in FIG. 1A and FIGS. 2A and 2B, low melting point metal layers 25 and 26 are provided. In this way, the fuse element 1 can be obtained. The low melting point metal layers 25 and 26 are provided on both sides of the melt movement restricting layer 21 so as to cover a part of the narrow width portion 15c. In the present embodiment, the low melting point metal layers 25 and 26 are formed of Sn—Sb solder. However, other solders may be used. The low melting point metal layers 25 and 26 can be formed of an appropriate low melting point metal that dissolves the lower conductor wiring 15 when it becomes a melt. Examples of such a low melting point metal include various other solders such as Bi solder in addition to the Sn—Sb solder.
 上記低融点金属層25,26は、導体配線15の一部と、本実施形態では、第2の絶縁層23,24を介して間接的に重なりあっている。もっとも、低融点金属層25,26は導体配線15と直接重なりあっていてもよい。 The low melting point metal layers 25 and 26 indirectly overlap with part of the conductor wiring 15 via the second insulating layers 23 and 24 in this embodiment. However, the low melting point metal layers 25 and 26 may directly overlap the conductor wiring 15.
 図7は、上記ヒューズ素子1の模式的平面図である。基板2の下面2bには、端子電極31~34が形成されている。端子電極31,32は、接続電極8a,8bに接続されている。端子電極33,34は、接続電極10a,10bに接続されている。また、スルーホール電極9a,9bによっても、端子電極33は、上面2aに設けられていた電極ランド11に電気的に接続されている。同様に、端子電極34は電極ランド12に、接続電極10bとスルーホール電極9c,9dとを介して接続されている。 FIG. 7 is a schematic plan view of the fuse element 1. Terminal electrodes 31 to 34 are formed on the lower surface 2 b of the substrate 2. The terminal electrodes 31 and 32 are connected to the connection electrodes 8a and 8b. The terminal electrodes 33 and 34 are connected to the connection electrodes 10a and 10b. Further, the terminal electrode 33 is also electrically connected to the electrode land 11 provided on the upper surface 2a by the through- hole electrodes 9a and 9b. Similarly, the terminal electrode 34 is connected to the electrode land 12 via the connection electrode 10b and the through- hole electrodes 9c and 9d.
 本実施形態において、例えば、端子電極33,34間に過電流が流れたとする。過電流が流れると、細幅部15cにおいて電流集中が生じ、温度が上昇する。従って、細幅部15c近傍に設けられている上記低融点金属層25,26が加熱される。細幅部15cにおける温度が低融点金属層25,26の融点を超えると、低融点金属層25,26は溶解し、融液となる。 In this embodiment, for example, it is assumed that an overcurrent flows between the terminal electrodes 33 and 34. When an overcurrent flows, current concentration occurs in the narrow portion 15c, and the temperature rises. Accordingly, the low melting point metal layers 25 and 26 provided in the vicinity of the narrow width portion 15c are heated. When the temperature in the narrow width portion 15c exceeds the melting point of the low melting point metal layers 25 and 26, the low melting point metal layers 25 and 26 are dissolved and become a melt.
 特に、本実施形態では、上記抵抗発熱体3も発熱する。この発熱による熱が、上方に位置している低融点金属層25,26に与えられる。従って、上記抵抗発熱体3から与えられる熱によっても、低融点金属層25,26が溶解し、速やかに融液となる。 In particular, in the present embodiment, the resistance heating element 3 also generates heat. Heat generated by the heat generation is given to the low-melting point metal layers 25 and 26 located above. Therefore, the low melting point metal layers 25 and 26 are dissolved by the heat applied from the resistance heating element 3 and quickly become a melt.
 なお、本発明においては、上記抵抗発熱体3を用いたヒーターは必ずしも設けられずともよい。 In the present invention, a heater using the resistance heating element 3 is not necessarily provided.
 本実施形態では、溶融物移動規制層21が設けられているため、低融点金属層25,26の融液は、溶融物移動規制層21側には移動せず、溶融物移動規制層21から遠ざかる方向、すなわち図1(a)のZ及び-Z方向に移動し易くなる。そして、低融点金属層25,26が融液になり、その下方に位置している第2の絶縁層23,24も融点に達すると、低融点金属25,26の融液が下方に位置している導体配線15に接触する。導体配線15はAgまたはAgを主体とする合金からなる。よって、半田喰われを生じ、低融点金属層25,26の融液と導体配線15を構成しているAgの溶解物との混合溶融物が生じる。 In the present embodiment, since the melt movement restriction layer 21 is provided, the melt of the low melting point metal layers 25 and 26 does not move to the melt movement restriction layer 21 side, but from the melt movement restriction layer 21. It becomes easy to move in the direction of moving away, that is, in the Z and −Z directions in FIG. When the low-melting-point metal layers 25 and 26 become a melt and the second insulating layers 23 and 24 located therebelow reach the melting point, the melt of the low-melting- point metals 25 and 26 is located below. The conductor wiring 15 is contacted. The conductor wiring 15 is made of Ag or an alloy mainly composed of Ag. Therefore, solder erosion occurs, and a mixed melt of the melt of the low melting point metal layers 25 and 26 and the melt of Ag constituting the conductor wiring 15 is generated.
 上記溶融物移動規制層21が設けられているため、また上記溶融物が導体配線15の残りの部分となじみがよいため、上記溶融物が図1のZ方向及び-Z方向に速やかに移動する。その結果、図3に部分切欠拡大断面図で示すように、例えば溶融物移動規制層21からZ方向に溶融物Eが移動し、確実に溶断部Fが形成されることになる。それによって電流を確実に遮断することができる。 Since the melt movement restriction layer 21 is provided and the melt is compatible with the remaining portion of the conductor wiring 15, the melt moves quickly in the Z direction and the -Z direction in FIG. . As a result, as shown in the partially cutaway enlarged cross-sectional view in FIG. 3, for example, the melt E moves in the Z direction from the melt movement restricting layer 21, and the fusing part F is reliably formed. Thereby, the current can be surely cut off.
 従って、上記溶融物移動規制層21は、上記低融点金属層25,26の融点において固体である絶縁性材料からなり、さらに上記溶融物や低融点金属の融液とのなじみが少ない材料からなることが望ましい。このような溶融物移動規制層21を構成する材料としては、前述したように、エポキシ樹脂、シリコーン樹脂またはフェノール樹脂などを好適に用いることができる。これらの熱硬化性樹脂は、低融点金属層25,26を構成している低融点金属となじまない。従って、溶融物を速やかに溶融物移動規制層21と重なりあっている部分以外の方向に移動させることができる。なお、ガラス又はセラミックスを用いてもよい。 Therefore, the melt movement restricting layer 21 is made of an insulating material that is solid at the melting point of the low melting point metal layers 25 and 26, and further made of a material that is less compatible with the melt or the melt of the low melting point metal. It is desirable. As a material constituting such a melt movement restricting layer 21, an epoxy resin, a silicone resin, a phenol resin, or the like can be suitably used as described above. These thermosetting resins are not compatible with the low melting point metal constituting the low melting point metal layers 25 and 26. Therefore, the melt can be quickly moved in a direction other than the portion overlapping with the melt movement restricting layer 21. Glass or ceramics may be used.
 本発明においては、上記溶融物移動規制層は、低融点金属層の外周の一部と直接又は間接的に重なるように設けられていることが必要である。それによって、低融点金属の融液が、該一部以外の方向に案内される。すなわち、上記一部の方向への移動が規制され、他の部分への移動が促進される。よって、溶断部において、溶融物の残存が生じ難い。 In the present invention, the melt movement restricting layer needs to be provided so as to overlap directly or indirectly with a part of the outer periphery of the low melting point metal layer. Thereby, the melt of the low melting point metal is guided in a direction other than the part. That is, the movement in the one part direction is restricted, and the movement to the other part is promoted. Therefore, it is difficult for the melt to remain in the melted portion.
 溶融物移動規制層が、低融点金属層の外周の一部と直接的に重なる構成とは、溶融物移動規制層が、低融点金属層の外周の一部と直接接触して重なっている状態を意味する。また、間接的に重なるとは、溶融物移動規制層が、低融点金属層の外周の一部に対し、直接接触せずに、他の材料部分を間に介して重なっている状態を言うものとする。例えば、図2(b)において、溶融物移動規制層21は、低融点金属層25,26の外周縁の一部に対して直接は接触せずに第2の絶縁層23,24を介して重なりあっている。 The structure in which the melt movement restriction layer directly overlaps a part of the outer periphery of the low melting point metal layer is a state in which the melt movement restriction layer is in direct contact with and overlaps a part of the outer periphery of the low melting point metal layer. Means. Indirect overlap refers to a state in which the melt movement restricting layer is not in direct contact with a part of the outer periphery of the low-melting-point metal layer and is overlapped with another material portion in between. And For example, in FIG. 2B, the melt movement restricting layer 21 is not directly in contact with a part of the outer peripheral edge of the low melting point metal layers 25 and 26, and is interposed via the second insulating layers 23 and 24. It overlaps.
 図2(c)に、溶融物移動規制層21が、低融点金属層25,26の外周縁の一部と直接接触し、直接的に重なりあっている変形例を示す。 FIG. 2C shows a modification in which the melt movement regulating layer 21 is in direct contact with and directly overlapping a part of the outer peripheral edge of the low melting point metal layers 25 and 26.
 図8(a)及び(b)は、本発明の第2の実施形態に係るヒューズ素子の平面図及び(a)中のD-D線に沿う部分の断面図である。 8A and 8B are a plan view of a fuse element according to a second embodiment of the present invention and a cross-sectional view of a portion along the line DD in FIG. 8A.
 図8(a)及び(b)で示すように、ヒューズ素子41は基板2を有する。本実施形態では、基板2の上面2a上において、抵抗発熱体3が中央領域に設けられている。抵抗発熱体3は、基板2の第1,第2の側面2e,2fを結ぶ短辺方向に延びている。抵抗発熱体3の一端が電極ランド42に接続されており、他端が電極ランド43に接続されている。電極ランド42は、第1の側面2eに設けられた接続電極44に電気的に接続されている。電極ランド43は、第2の側面2fに設けられた接続電極45に電気的に接続されている。 As shown in FIGS. 8A and 8B, the fuse element 41 has a substrate 2. In the present embodiment, the resistance heating element 3 is provided in the central region on the upper surface 2 a of the substrate 2. The resistance heating element 3 extends in the short side direction connecting the first and second side surfaces 2e and 2f of the substrate 2. One end of the resistance heating element 3 is connected to the electrode land 42, and the other end is connected to the electrode land 43. The electrode land 42 is electrically connected to a connection electrode 44 provided on the first side surface 2e. The electrode land 43 is electrically connected to a connection electrode 45 provided on the second side surface 2f.
 接続電極44,45は、基板2の下面2bに至っている。基板2の下面2bには、接続電極44,45にそれぞれに電気的に接続される端子電極が設けられている。 The connection electrodes 44 and 45 reach the lower surface 2 b of the substrate 2. On the lower surface 2 b of the substrate 2, terminal electrodes that are electrically connected to the connection electrodes 44 and 45 are provided.
 他方、基板2の上面2aにおいて、抵抗発熱体3を覆うように絶縁膜46が設けられている。絶縁膜46は、適宜の絶縁性材料からなる。 On the other hand, an insulating film 46 is provided on the upper surface 2 a of the substrate 2 so as to cover the resistance heating element 3. The insulating film 46 is made of an appropriate insulating material.
 絶縁膜46を覆うように、導体配線47が設けられている。導体配線47は、第1の実施形態の導体配線15と同様の材料で形成されている。導体配線47は、第1の端面2cと第2の端面2dを結ぶ方向に延ばされている。導体配線47は、端面2c側の第1の端部47aと反対側の第2の端部47bとを有する。導体配線47は、第1の端部47a側において第1の端部47aに向かうにつれて幅が細くなるようにテーパーがつけられている。第2の端部47b側においても、導体配線47は、第2の端部47bに向かうにつれて幅が細くなるように形成されている。 Conductor wiring 47 is provided so as to cover the insulating film 46. The conductor wiring 47 is formed of the same material as that of the conductor wiring 15 of the first embodiment. The conductor wiring 47 is extended in a direction connecting the first end face 2c and the second end face 2d. The conductor wiring 47 has a first end 47a on the end face 2c side and a second end 47b on the opposite side. The conductor wiring 47 is tapered on the first end portion 47a side so that the width becomes narrower toward the first end portion 47a. Also on the second end portion 47b side, the conductor wiring 47 is formed so that the width becomes narrower toward the second end portion 47b.
 そして、第1の端部47aは、電極ランド48に電気的に接続されている。同様に、第2の端部47bは電極ランド49に接続されている。電極ランド48,49は、接続電極50,51に接続されている。接続電極50,51は、第1の端面2c及び第2の端面2dにおいて、それぞれ、反円筒状曲面を有する凹部に導電性材料を充填することにより設けられている。接続電極50,51は、それぞれ、基板2の下面2bに設けられている端子電極52,53に接続されている。他方、導体配線47においては、上記幅が細くなっている部分において、低融点金属層55,55が積層されている。低融点金属層55,55は、上記導体配線47の幅が細くなっている部分に溶断部を形成するために設けられている。そして、低融点金属層55に重なるように、溶融物移動規制層56,57が設けられている。本実施形態では、溶融物移動規制層56,57は、低融点金属層55,55に直接重なるように設けられている。もっとも、低融点金属層55の外周のうち、一部を残して重なり合うように設けられている。すなわち、溶融物移動規制層56,57は、基板2の中央領域側においては、低融点金属層55の外周を起伏していない。すなわち、低融点金属層55の一部が図示のように露出している。 The first end 47a is electrically connected to the electrode land 48. Similarly, the second end 47 b is connected to the electrode land 49. The electrode lands 48 and 49 are connected to the connection electrodes 50 and 51. The connection electrodes 50 and 51 are provided by filling the concave portions having anti-cylindrical curved surfaces on the first end surface 2c and the second end surface 2d, respectively, with a conductive material. The connection electrodes 50 and 51 are connected to terminal electrodes 52 and 53 provided on the lower surface 2b of the substrate 2, respectively. On the other hand, in the conductor wiring 47, low melting point metal layers 55 and 55 are laminated at the portion where the width is narrowed. The low melting point metal layers 55 and 55 are provided in order to form a fusing portion in a portion where the width of the conductor wiring 47 is narrow. The melt movement restriction layers 56 and 57 are provided so as to overlap the low melting point metal layer 55. In the present embodiment, the melt movement restriction layers 56 and 57 are provided so as to directly overlap the low melting point metal layers 55 and 55. However, the outer periphery of the low-melting-point metal layer 55 is provided so as to overlap with a part of the outer periphery. That is, the melt movement restricting layers 56 and 57 do not undulate the outer periphery of the low melting point metal layer 55 on the central region side of the substrate 2. That is, a part of the low melting point metal layer 55 is exposed as illustrated.
 本実施形態のように、溶融物移動規制層56は低融点金属層55に直接重なっていてもよい。 As in the present embodiment, the melt movement restriction layer 56 may directly overlap the low melting point metal layer 55.
 第2の実施形態においても、上記抵抗発熱体3と、導体配線47とが直列に接続されるように用いる。図9(a)及び(b)を参照して、上記溶融物移動規制層56の作用を説明する。初期状態では、図9(a)に示すように、溶融物移動規制層56は、低融点金属層55の外周のうちの一部を残して重なりあっている。そして、第2の実施形態においても、過電流が流れた場合には、低融点金属層55が溶融し、融液となる。この場合、融液が直接導体配線47に接触しているため、導体配線47が速やかに溶解する。さらに、低融点金属層55は、直接溶融物移動規制層56により周囲を覆われている。低融点金属層55は、溶融すると固体から液体に変化する。従って、体積が大きくなる。その結果、図9(b)に示すように、低融点金属層55の融液は、上記溶融物移動規制層56により被覆されていない部分である開口部から速やかに流れ出ることとなる。よって、本実施形態では、低融点金属層55の融液を、溶断部を構成する側により一層速やかに移動させることができる。 Also in the second embodiment, the resistance heating element 3 and the conductor wiring 47 are used so as to be connected in series. With reference to FIGS. 9A and 9B, the operation of the melt movement restricting layer 56 will be described. In the initial state, as shown in FIG. 9A, the melt movement restricting layer 56 is overlapped except for a part of the outer periphery of the low melting point metal layer 55. Also in the second embodiment, when an overcurrent flows, the low melting point metal layer 55 melts and becomes a melt. In this case, since the melt is in direct contact with the conductor wiring 47, the conductor wiring 47 dissolves quickly. Further, the low melting point metal layer 55 is directly covered with the melt movement restricting layer 56. The low melting point metal layer 55 changes from solid to liquid when melted. Therefore, the volume is increased. As a result, as shown in FIG. 9B, the melt of the low melting point metal layer 55 quickly flows out from the opening that is not covered by the melt movement restriction layer 56. Therefore, in the present embodiment, the melt of the low melting point metal layer 55 can be moved more rapidly to the side constituting the fusing part.
 上記のように、本発明においては、溶融物移動規制層は、低融点金属層に直接積層されていてもよく、間接的に重なっていてもよい。 As described above, in the present invention, the melt movement restricting layer may be directly laminated on the low melting point metal layer or may be indirectly overlapped.
1…ヒューズ素子
2…基板
2a…上面
2b…下面
2c…第1の端面
2d…第2の端面
2e…第1の側面
2f…第2の側面
2g…凹部
3…抵抗発熱体
4,5…引き出し電極
6,7…電極ランド
8a,8b…接続電極
9a~9d…スルーホール電極
10a,10b…接続電極
11,12…電極ランド
14…第1の絶縁層
15…導体配線
15a…第1の端部
15b…第2の端部
15c…細幅部
16a~16d…固定用金属
17…引き出し電極
19…保護膜
20…ダム部
21…溶融物移動規制層
23,24…第2の絶縁層
25,26…低融点金属層
31~34…端子電極
41…ヒューズ素子
42,43…電極ランド
44,45…接続電極
46…絶縁膜
47…導体配線
47a…第1の端部
47b…第2の端部
48,49…電極ランド
50,51…接続電極
52,53…端子電極
55…低融点金属層
56,57…溶融物移動規制層
DESCRIPTION OF SYMBOLS 1 ... Fuse element 2 ... Board | substrate 2a ... Upper surface 2b ... Lower surface 2c ... 1st end surface 2d ... 2nd end surface 2e ... 1st side surface 2f ... 2nd side surface 2g ... Concave 3 ... Resistance heating element 4,5 ... Drawer Electrodes 6, 7 ... Electrode lands 8a, 8b ... Connection electrodes 9a-9d ... Through- hole electrodes 10a, 10b ... Connection electrodes 11, 12 ... Electrode land 14 ... First insulating layer 15 ... Conductor wiring 15a ... First end 15b ... second end 15c ... narrow width parts 16a to 16d ... fixing metal 17 ... extraction electrode 19 ... protective film 20 ... dam part 21 ... melt movement restricting layers 23, 24 ... second insulating layers 25, 26 ... low melting point metal layers 31 to 34 ... terminal electrode 41 ... fuse elements 42 and 43 ... electrode lands 44 and 45 ... connection electrode 46 ... insulating film 47 ... conductor wiring 47a ... first end 47b ... second end 48 , 49 ... Electrode lands 50, 51 ... Connection power 52, 53 ... terminal electrodes 55 ... low-melting- point metal layer 56, 57 ... melt movement restricting layer

Claims (9)

  1.  基板と、
     前記基板上に設けられた導体配線と、
     前記導体配線の一部を直接または間接的に覆うように設けられており、前記導体配線よりも融点が低く、融液となって前記導体配線を溶解させて溶断部を形成する低融点金属層と、
     前記低融点金属層の外周の一部に直接または間接的に重なるように設けられており、かつ絶縁性材料からなる溶融物移動規制層とを備える、ヒューズ素子。
    A substrate,
    Conductor wiring provided on the substrate;
    A low-melting-point metal layer that is provided so as to directly or indirectly cover a part of the conductor wiring, has a melting point lower than that of the conductor wiring, and melts the conductor wiring to form a melted portion When,
    A fuse element provided with a melt movement regulation layer which is provided so that it may overlap directly or indirectly with a part of perimeter of the low melting point metal layer, and consists of an insulating material.
  2.  前記溶融物移動規制層が前記低融点金属層の外周のうち、前記導体配線に臨んでいる部分の一部を除き、前記低融点金属層の外周部の残りの部分の全てを覆うように設けられている、請求項1に記載のヒューズ素子。 The melt movement restricting layer is provided so as to cover all of the remaining portion of the outer peripheral portion of the low melting point metal layer except for a part of the outer periphery of the low melting point metal layer facing the conductor wiring. The fuse element according to claim 1, wherein the fuse element is provided.
  3.  前記導体配線が、第1の端部と第2の端部とを有し、前記溶融物移動規制層が、前記導体配線上において、前記溶断部の前記第1の端部側部分または第2の端部側部分において、前記導体配線の横断方向全長にわたるように設けられている、請求項1または2に記載のヒューズ素子。 The conductor wiring has a first end and a second end, and the melt movement restricting layer is formed on the conductor wiring at the first end side portion or the second portion of the fusing part. 3. The fuse element according to claim 1, wherein the end portion of the fuse element is provided so as to extend over the entire length of the conductor wiring in the transverse direction.
  4.  前記溶融物移動規制層において、前記低融点金属層を覆っていない開口部が複数設けられている、請求項1~3のいずれか1項に記載のヒューズ素子。 The fuse element according to any one of claims 1 to 3, wherein the melt movement restriction layer includes a plurality of openings that do not cover the low melting point metal layer.
  5.  形成時の温度が、前記低融点金属の融点よりも低い材料により前記溶融物移動規制層が形成されている、請求項1~4のいずれか1項に記載のヒューズ素子。 The fuse element according to any one of claims 1 to 4, wherein the melt movement restricting layer is formed of a material whose forming temperature is lower than a melting point of the low melting point metal.
  6.  前記溶融物移動規制層が、前記低融点金属の融点の温度で固体である、請求項1~5のいずれか1項に記載のヒューズ素子。 The fuse element according to any one of claims 1 to 5, wherein the melt movement restricting layer is solid at a temperature of a melting point of the low melting point metal.
  7.  前記溶融物移動規制層がエポキシ樹脂からなる、請求項1~6のいずれか1項に記載のヒューズ素子。 The fuse element according to any one of claims 1 to 6, wherein the melt movement regulating layer is made of an epoxy resin.
  8.  前記導体配線が、前記溶断部においてAgまたはAgを主体する合金からなる、請求項1~7のいずれか1項に記載のヒューズ素子。 The fuse element according to any one of claims 1 to 7, wherein the conductor wiring is made of Ag or an alloy mainly containing Ag in the fusing portion.
  9.  前記低融点金属が半田である、請求項1~8のいずれか1項に記載のヒューズ素子。 The fuse element according to any one of claims 1 to 8, wherein the low melting point metal is solder.
PCT/JP2014/053926 2013-07-29 2014-02-19 Fuse element WO2015015821A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013156630 2013-07-29
JP2013-156630 2013-07-29

Publications (1)

Publication Number Publication Date
WO2015015821A1 true WO2015015821A1 (en) 2015-02-05

Family

ID=52431374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053926 WO2015015821A1 (en) 2013-07-29 2014-02-19 Fuse element

Country Status (1)

Country Link
WO (1) WO2015015821A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099372A (en) * 2007-10-17 2009-05-07 Taiheiyo Seiko Kk Fuse element and fusible link using the fuse element
JP2011243504A (en) * 2010-05-20 2011-12-01 Uchihashi Estec Co Ltd Temperature fuse and method of manufacturing temperature fuse
JP2011249128A (en) * 2010-05-26 2011-12-08 Uchihashi Estec Co Ltd Thermal fuse and method for manufacturing thermal fuse

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099372A (en) * 2007-10-17 2009-05-07 Taiheiyo Seiko Kk Fuse element and fusible link using the fuse element
JP2011243504A (en) * 2010-05-20 2011-12-01 Uchihashi Estec Co Ltd Temperature fuse and method of manufacturing temperature fuse
JP2011249128A (en) * 2010-05-26 2011-12-08 Uchihashi Estec Co Ltd Thermal fuse and method for manufacturing thermal fuse

Similar Documents

Publication Publication Date Title
TWI390568B (en) Protection element
KR102523229B1 (en) Protection element and mounted body
US20150084734A1 (en) Protection element
KR102232981B1 (en) Production method for mounting body, mounting method for temperature fuse elements, and temperature fuse element
US10593495B2 (en) Fuse element, fuse device, protective device, short-circuit device, switching device
JP5489777B2 (en) Resistance thermal fuse package and resistance thermal fuse
CN109074988B (en) Protective element
KR102368741B1 (en) Chip fuse and fuse element
CN108701566B (en) Protective element
WO2014109097A1 (en) Fuse
KR102089582B1 (en) Protection element
TWI493588B (en) Fuse
JP5511501B2 (en) Resistance thermal fuse and resistance thermal fuse package
WO2015015821A1 (en) Fuse element
JP6171500B2 (en) fuse
JP5586380B2 (en) Resistance thermal fuse package and resistance thermal fuse
JP5489749B2 (en) Resistance thermal fuse
JP5550471B2 (en) Ceramic fuse and ceramic fuse package
KR102276500B1 (en) Switching element, switching circuit and alarm circuit
JP2012134113A (en) Fuse device
JP5489750B2 (en) Resistance thermal fuse package and resistance thermal fuse
JP5489677B2 (en) Resistance thermal fuse package and resistance thermal fuse
JP6172287B2 (en) Fuse element and manufacturing method thereof
JP2011222440A (en) Current fuse and package of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14832367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP