WO2015010450A1 - 一种病毒免疫治疗药物复合物及其用途 - Google Patents

一种病毒免疫治疗药物复合物及其用途 Download PDF

Info

Publication number
WO2015010450A1
WO2015010450A1 PCT/CN2014/000717 CN2014000717W WO2015010450A1 WO 2015010450 A1 WO2015010450 A1 WO 2015010450A1 CN 2014000717 W CN2014000717 W CN 2014000717W WO 2015010450 A1 WO2015010450 A1 WO 2015010450A1
Authority
WO
WIPO (PCT)
Prior art keywords
hepatitis
vaccine
csf
drug
administration
Prior art date
Application number
PCT/CN2014/000717
Other languages
English (en)
French (fr)
Inventor
王宾
王宪政
张继明
Original Assignee
复旦大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 复旦大学 filed Critical 复旦大学
Priority to KR1020167002137A priority Critical patent/KR102254955B1/ko
Priority to EP14829818.5A priority patent/EP3025730A4/en
Priority to JP2016528301A priority patent/JP6629195B2/ja
Publication of WO2015010450A1 publication Critical patent/WO2015010450A1/zh
Priority to US15/007,160 priority patent/US10086067B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/29Hepatitis virus
    • A61K39/292Serum hepatitis virus, hepatitis B virus, e.g. Australia antigen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/513Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/52Purines, e.g. adenine
    • A61K31/522Purines, e.g. adenine having oxo groups directly attached to the heterocyclic ring, e.g. hypoxanthine, guanine, acyclovir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/675Phosphorus compounds having nitrogen as a ring hetero atom, e.g. pyridoxal phosphate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • A61K31/7072Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid having two oxo groups directly attached to the pyrimidine ring, e.g. uridine, uridylic acid, thymidine, zidovudine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/193Colony stimulating factors [CSF]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/21Interferons [IFN]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/21Interferons [IFN]
    • A61K38/212IFN-alpha
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55522Cytokines; Lymphokines; Interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2730/00Reverse transcribing DNA viruses
    • C12N2730/00011Details
    • C12N2730/10011Hepadnaviridae
    • C12N2730/10111Orthohepadnavirus, e.g. hepatitis B virus
    • C12N2730/10134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • hepatitis B eg liver cirrhosis, liver cancer, etc.
  • the population infection rate is 60%
  • the population carrying rate is 10%.
  • HBsAg hepatitis B surface antigen
  • GM-CSF is mainly produced by activated T cells, B cells, monocyte macrophages, mast cells, endothelial cells and fibroblasts. It not only promotes the proliferation, differentiation and maturation of hematopoietic precursor cells, but also for other cells, For example, antigen-presenting cells (APC), fibroblasts, keratinocytes, and skin mucosal cells have different degrees of stimulation.
  • APC antigen-presenting cells
  • fibroblasts fibroblasts
  • keratinocytes keratinocytes
  • skin mucosal cells have different degrees of stimulation.
  • Dranoff et al. first used GM-CSF as an immunological adjuvant to enhance the immune response of anti-tumor vaccines.
  • the immunopotentiating effect of GM-CSF may be related to its ability to enhance the antigen presentation of APC cells.
  • the drug complex of the present invention can provide a new immunotherapeutic drug for the treatment of hepatitis B.
  • the antiviral drug is selected from the group consisting of interferon or nucleic acid drugs, for example: common IFN- ⁇ 3 ⁇ 5 MU, polyethylene glycol IFN- ⁇ 2a, polyethylene glycol IFN- ⁇ 2b, and Lamy Lamivudine (LAM), adefovir dipivoxi l (ADV), entecavir (ETV), telbivudine (LdT), tenofovir di soproxi l fumarate , TDF);
  • interferon or nucleic acid drugs for example: common IFN- ⁇ 3 ⁇ 5 MU, polyethylene glycol IFN- ⁇ 2a, polyethylene glycol IFN- ⁇ 2b, and Lamy Lamivudine (LAM), adefovir dipivoxi l (ADV), entecavir (ETV), telbivudine (LdT), tenofovir di soproxi l fumarate , TDF);
  • the macrophage colony stimulating factor gene is expressed in the yeast system, and the protein is extracted and purified, and the immunomodulatory drug is made into rhGM-CSF (recombinant human granulocyte macrophage colony stimulating factor) by genetic engineering technology.
  • the human hepatitis B antigen gene is expressed in a yeast system, extracted and purified, and then combined with an adjuvant to prepare a recombinant hepatitis B surface antigen vaccine.
  • the amount of the antiviral drug is determined by the clinical routine dosage (refer to "Guidelines for Prevention and Treatment of Chronic Hepatitis B”); genetically engineered hepatitis B vaccine and recombinant human granulocyte macrophage colony stimulating factor
  • the mass ratio is 1: 1 ⁇ 30.
  • the amount and usage of antiviral drugs are referred to the "Guidelines for the Prevention and Treatment of Chronic Hepatitis B", for example,
  • Polyethylene glycol IFN- ⁇ 2b 1. (Tl. 5 ⁇ g/kg, once a week, subcutaneously, for 1 year.
  • TDF Tenofovir di soproxi l fumarate
  • the present invention discloses:
  • Antiviral drugs interferon, nucleic acid drugs, etc.
  • immunomodulatory drugs recombinant human granulocyte macrophage colony stimulating factor
  • recombinant hepatitis B vaccine for the preparation of drugs for treating hepatitis B; especially in the preparation of treatment for chronic B Use in hepatitis drugs;
  • the antiviral drug is administered prior to administration of the genetically engineered hepatitis B vaccine
  • the recombinant human granulocyte macrophage colony stimulating factor is administered prior to administration of the genetically engineered hepatitis B vaccine;
  • the antiviral dosage refers to the "Guidelines for the Prevention and Treatment of Chronic Hepatitis B"; the mass ratio of genetically engineered hepatitis B vaccine to recombinant human granulocyte macrophage colony stimulating factor is 1: 1 ⁇ 30.
  • the drug complex of the present invention is subjected to an anti-viral immunization experiment, and the results show that it is used for treating hepatitis B persistent viral infection, wherein ⁇ -IFN and nucleoside (acid) drugs reduce viral load in the body; GM-CSF, etc.
  • the hepatitis B vaccine with an immunopotentiating cytokine as an adjuvant enables the body to establish an effective immune memory protection response, which can produce strong antibody protection and cellular immunity, eliminate viruses and prevent infection.
  • an immunopotentiating cytokine as an adjuvant
  • a large number of experiments have been carried out using different combinations of recombinant human granulocyte macrophage colony stimulating factor and genetically engineered hepatitis B vaccine, and the results show that in situ injection 3 days before the injection of hepatitis B vaccine.
  • genetic engineering hepatitis B vaccine immunization can effectively promote the maturation of dendritic cells and significantly enhance the cellular immunity of animals. Increase antibody levels, promote TH1 type cytokines, store IgG2a antibody production, enhance T cell proliferation and cytotoxic T cell (CTL) function.
  • CTL cytotoxic T cell
  • recombinant human granulocyte macrophage colony stimulating factor (2 ⁇ 30ug/day/day) is injected in situ 3 days before the injection of hepatitis B vaccine in an animal model of chronic hepatitis B metastasis gene.
  • genetic engineering hepatitis B vaccine immunization lug/only
  • an antiviral drug (recombinant human interferon) is used in combination with recombinant human granulocyte macrophage colony stimulating factor and recombinant hepatitis B vaccine before hepatitis B vaccine injection (4 ⁇ 0 days) Injection of antiviral drugs, injecting recombinant human granulocyte macrophage colony stimulating factor (2 ⁇ 30ug/day/day) in situ 3 days before hepatitis B vaccine, and then genetically engineered hepatitis B vaccine (lug/only) It can also induce a higher cellular immune response and promote the proliferation of T cells.
  • the present invention also provides a vaccine complex for treating hepatitis B and AIDS in a patient who has been infected with hepatitis B and HIV, the vaccine complex comprising an antiviral drug, an immunomodulator and a hepatitis B vaccine.
  • Figure 1 shows the total IgG of recombinant human granulocyte macrophage stimulating factor combined with hepatitis B vaccine, and the detection of recombinant human granulocyte macrophage colony stimulating factor by quantitative ELISA, A.
  • the proportion of IgG subtype immunized with hepatitis B vaccine, B shows the detection result of T lymphocyte expansion of recombinant human granulocyte macrophage colony stimulating factor combined with hepatitis B vaccine immune-enhanced immune reaction in Example 1, C, showing Example 1
  • the in vivo CTL response of recombinant human granulocyte macrophage colony stimulating factor combined with hepatitis B vaccine immunoenhanced immune response was detected by flow cytometry.
  • FIG. 1 Flow cytometry in Example 1 for detection of recombinant human granulocyte macrophage colony stimulating factor combined with hepatitis B vaccine immunization to enhance hepatitis B vaccine immune response in IFN- ⁇ , IL-4 in CD4 T cells, and IFN- ⁇ The results were expressed in CD8 T cells.
  • Figure 4 showing the flow cytometry in Example 2 for detection of recombinant human granulocyte macrophage colony stimulating factor combined with hepatitis B vaccine immunization to break the hepatitis B surface antigen transgenic mice after immune tolerance IL-10, IFN- y in CD4 and Expression in CD8 T cells; B, showing the results of the detection of DTH in hepatitis B vaccine immune response after total recombinant human granulocyte macrophage colony stimulating factor combined with hepatitis B vaccine immunization in hepatitis B surface antigen transgenic mice in Example 2.
  • FIG. 5 Flow cytometry analysis of recombinant human granulocyte macrophage colony stimulating factor combined with hepatitis B vaccine immunization in Example 2 to break the hepatitis B surface of liver surface of hepatitis B antigen transgenic mice after breaking the immune tolerance of hepatitis B surface antigen transgenic mice The histochemical staining of the antigen and the mean optical density of hepatocytes expressing hepatitis B antigen in the liver of the transgenic mice after treatment.
  • Figure 6 showing the ELISA method for detecting the antiviral drug IFN-a2a in Example 3, recombinant human granulocyte macrophage colony stimulating factor combined with hepatitis B vaccine immunization enhanced hepatitis B vaccine immune response detection of recombinant human granulocyte macrophage colonies The total IgG of the stimulating factor combined with hepatitis B vaccine; B, showing the antiviral drug IFN_a2a in Example 3, recombinant human granulocyte macrophage colony stimulating factor combined with hepatitis B vaccine immunization The detection result of T lymphocyte expansion of strong immune reaction; showing the antiviral drug IFN_a2a detected by flow cytometry in Example 3, recombinant human granulocyte macrophage colony stimulating factor combined with hepatitis B vaccine to enhance the immune response of hepatitis B vaccine - Y, IL-17 expression in CD4 T cells.
  • Figure 7 is a graph showing the decrease in HBsAg levels in Example 5, wherein the ordinate is HBsAg level, IU/ml; the abscissa is at each time point, May 2012-March 2013.
  • the experimental data in the examples of the present invention are the average values obtained for each mouse in each group unless otherwise specified.
  • Example 1 Immunization strategy of GM-CSF combined with recombinant hepatitis B vaccine Enhanced immune response of C57BL/6 to recombinant hepatitis B subunit vaccine
  • HBsAg stock solution was provided by Huatan Pharmaceutical Group Jintan Biotechnology Co., Ltd.
  • Glass wool column A glass wool column for separating T lymphocytes is prepared by placing glass wool in a disposable lmL syringe.
  • MTT After the purchased MTT powder was dissolved in PBS (concentration: 5 mg/mL or 0.5% MTT), it was filtered and sterilized at -20 °C in the dark.
  • ConA ConA powder was dissolved in serum-free RPMI 1640 medium at a concentration of 60 g/mL.
  • Fluorescently labeled monoclonal antibodies Commonly used monoclonal antibodies with FITC, PE, APC labeling, purchased from BD, eBioscience, BioLegend; Blocking antibodies: Anti-Fc receptor antibodies. Immunocytes are generally expressed with Fc receptors, antibodies and antibodies.
  • the Fc segment binds.
  • the role of blocking antibody is to block the non-specific results of the binding of the Fc segment of the fluorescently labeled monoclonal antibody to the Fc receptor on the surface of the immune cell; Fixative: 4% paraformaldehyde in PBS solution; Breaking agent: 1 % Saponin; Hepatitis B surface antigen CD8 in vitro CTL stimulator polypeptide was synthesized by Shanghai Jill Biochemical Company. Hepatitis B surface antibody diagnostic kit and hepatitis B surface antibody standard were purchased from Beijing Jinhao Pharmaceutical Co., Ltd. Centrifuge: eppendorf product; flow cytometer: FACScal ibur, manufactured by BD Bioscience, USA.
  • mice and immunization C57BL/6 mice, SPF grade, 6-8 weeks old female, weighing 16-18 g, purchased from Institute of Laboratory Animals, Chinese Academy of Medical Sciences. Divided into 4 groups of 6 mice per group, The experimental groups are shown in the table below. Each group of vaccine or GM-CSF was dissolved in physiological saline, and each mouse was injected with 100 ⁇ l, and each mouse was immunized subcutaneously in the neck, and boosted once every 14 days after the first immunization.
  • HBV+GM-CSF 1 g HBV vaccine 1 g GM-CSF
  • Mouse serum collection Sterilized capillary glass needle, collect the mouse fundus arterial blood sample about 200-300 ⁇ into a sterile microcentrifuge tube, let stand at room temperature for 30min, set at 4 °C for 2h, 5000rpm, After centrifugation for 10 min, the supernatant was collected and stored at -20 ° C until use.
  • antigen coating 96-well microtiter plate coated with lug/ml antigen, 100 ⁇ l/well, overnight at 4 °C;
  • PBST was washed 3 times, each time 5 min, the mouse serum was diluted 2 times, the unimmunized mouse serum was used as a control, ⁇ ⁇ / well, incubated at 37 ° C for 1 h;
  • Termination Stop the color development by adding 0.2M sulfuric acid, 50 ⁇ 1 / hole;
  • Reading Optical density value at 0D 450nm/620 nm. The 0D value of the experimental well was considered to be positive when it was twice the control well.
  • Antigen coating A 96-well microtiter plate was coated with 2 ⁇ g/ml rabbit IgG and lug/ml VP1 antigen, 100 ⁇ l/well, overnight at 4 °C;
  • Termination Stop the color development by adding 0.2M sulfuric acid, ⁇ ⁇ /well.
  • mice were sacrificed by dislocation and soaked in 70% ethanol for 15 minutes.
  • the antigen is filtered and sterilized. After dilution for a certain number of times, 20 ul of stimulating substance is added per well (the final concentration of stimulating substance is ConA 10 ug/ml, 5 ug/ml, BSA/0VA 2 ug/ml, and the antigen stimulant can be pressed. Dilute the samples at different concentrations. ), and set up control wells with only cells without sputum, and media holes with only medium.
  • T cells were isolated from mice and diluted to 10 ⁇ 107/mL in 10% medium. Cells.
  • Na'ive mice were taken, and spleen lymphocytes were isolated after breaking red blood cells.
  • Target cells that were not incubated with small peptides were stained with low concentrations of CFSE (0.5 uM), and small peptide target cells were stained with high concentrations of CFSE (5 uM) and stained with 37 C for 15 minutes in the dark.
  • mice Four hours after the injection, the experimental mice were sacrificed, and spleen cells were obtained in the dark.
  • GM-CSF was injected in advance or simultaneously with HBV vaccine.
  • serum anti-HBsAg total IgG antibody was detected, and only HBV was injected.
  • the total IgG level of the group injected with GM-CSF was significantly enhanced (Fig. 1-A);
  • the IgG2a level was significantly increased (p ⁇ 0.05); conversely, if GM-CSF was injected simultaneously with HBV, the IgG1 level was significantly increased (Fig. 2-1B); - Pretreatment of CSF can enhance the Th1 response, while simultaneous injection of GM-CSF with the vaccine enhances the Th2 response.
  • GM-CSF affects the T cell response
  • the mouse spleen cells were taken aseptically, the rHBsAg antigen was used to stimulate T cell proliferation, BSA was used as a non-specific antigen control, and ConA was used as a positive control.
  • the results showed that the proliferative response was significantly increased in the pre-injected GM-CSF group, while the proliferative response level was low in the group injected simultaneously with GM-CSF and HBV (Fig. 1-B), indicating GM-CSF.
  • Pretreatment can promote antigen-specific T cell responses.
  • the CTL response was detected by flow cytometry 7 days after the second immunization.
  • the GM-CSF pretreatment group was specific to the target cells.
  • the killing rate was 30. 01%, which was significantly higher than the killing rate of 10.26%, and the killing rate of HBV and GM-CSF was 13.6%.
  • the result was GM-CSF.
  • the pretreatment group was able to enhance the level of CTL response in vivo, while there was no significant change in the HBV and GM-CSF simultaneous injection groups.
  • Cytokines can regulate cell differentiation, proliferation and induce cells to play their respective functions, play an important role in regulating immune response.
  • antigen-specific IL-4, IFN- ⁇ and CD4+ T cells were detected by intracellular cytokine staining.
  • the expression level of antigen-specific IFN- ⁇ in CD8+ T cells, as shown in Figure 2 was higher in the GM-CSF pretreatment group than in the HBV-injected group, IL-4, IFN- ⁇ (in CD4 cells) and IFN- ⁇ ( In CD8 cells, the levels were significantly increased.
  • Example 2 GM-CSF combined with recombinant hepatitis B vaccine immunization strategy breaks HBsAg transgenic mice immune tolerance induces anti-hepatitis B surface antigen humoral immune response in transgenic mice
  • 35 HBsAg transgenic mice (C57BL / 6J-Tg (AlblHBV) 44Bri / Jf4J ) (initial serum HBsAg concentration of 5000-10000pg / ml), were randomly divided into 5 groups, each group of 7, the experimental group following the table immunoassay Group design; each group of vaccine or GM-CSF was dissolved in normal saline, and each mouse was injected with 100 Microliters, each mouse was immunized subcutaneously in the neck, each group of mice immunized 4 times, the first three times each time interval of 14 days, the fourth immunization and the third immunization interval of 8 weeks, every two weeks on the mice Blood was collected from the eyelids, and the concentration of hepatitis B surface antigen and anti-hepatitis B surface antigen antibody in the serum of the transgenic mice was detected by ELISA.
  • Antigen standard (2mg/mL) Dilution Do a 2-fold gradient dilution from 10 ⁇ 6.
  • GM-CSF Detect whether GM-CSF combined with recombinant hepatitis B vaccine immunization strategy can break the immune tolerance of HBsAg transgenic mice and induce anti-hepatitis B surface antigen humoral immune response in transgenic mice.
  • GM-CSF is injected in advance or simultaneously with HBV vaccine, every two Week, the serum HBsAg concentration and anti-HBsAg total IgG antibody were detected, and the total IgG level of 3GM-CSF+HBV was significantly enhanced compared with the group injected with HBV only (as shown in Figure 3), in the fourth time.
  • the group of GM-CSF (3GM-CSF+HBV) was injected for the first 3 days, and the level of hepatitis B virus surface antigen was significantly decreased (P ⁇ 0.05).
  • the GM-CSF team can break the immune tolerance of transgenic mice and induce a humoral immune response against hepatitis B surface antigen in transgenic mice, thereby keeping the surface antigen level of hepatitis B virus low.
  • the simple injection of HBV vaccine group and the simultaneous injection of GM-CSF and HBV vaccine did not promote a significant increase in anti-hepatitis B surface antigen antibody.
  • HBsAg transgenic mice C57BL / 6J-Tg (AlblHBV) 44Bri / Jf 4J ) were purchased from the Shanghai Public Health Clinical Center affiliated to Fudan University. Hepatitis B surface S antigen immunohistochemical primary antibody and secondary antibody were purchased from Shanghai Changdao Biotechnology Co., Ltd. Other experimental materials, main reagents and instruments are the same as in Example 1.
  • HBsAg transgenic mice C57BL / 6J-Tg (AlblHBV) 44Bri / Jf 4J ) 35 (initial serum HBsAg concentration of 5000-10000pg / ml), were randomly divided into 5 groups, 5 in each group, the experimental grouping is shown in the table below.
  • Each group of vaccine or GM-CSF was dissolved in physiological saline, and each mouse was injected with 100 ⁇ l.
  • Each mouse was subcutaneously injected into the neck for immunization.
  • Each group of mice was immunized 3 times, each time interval of 14 days, the third time. Twelve days after immunization, a delayed type hypersensitivity test was performed, and the mice were sacrificed 15 days after the third immunization.
  • the splenocytes were isolated and the liver was taken for immunohistochemistry.
  • HBsAg transgenic mice were anesthetized 14 days after the last immunization, and liver tissue fixation, embedding and sectioning were performed, respectively, and H&E staining and immunohistochemistry experiments were performed.
  • the antibody used in the immunohistochemistry experiment was an antibody with anti-HBsAg.
  • Repairing the wax block Repairing the wax block into a trapezoidal shape is beneficial to the formation of the wax band;
  • Slice The thickness of the slice is about 8-10 ⁇ ⁇ ;
  • Tissue sections with better tissue morphology were rehydrated with gradient alcohol and soaked three times with PBS (0.01 M; pH 7.4) for 5 minutes each time;
  • 1 ⁇ 2 drops of 1M hydrochloric acid can be returned to the blue treatment lmin, tap water for 3min. Eosin staining is carried out directly, and dyeing lmin can be completed;
  • Delayed type hypersensitivity is an immune response mainly mediated by T cells, in order to further confirm the GM-CSF combination
  • the recombinant hepatitis B vaccine immunization strategy induced strong cellular immunity in vivo, using delayed type hypersensitivity as an in vivo indicator, immunizing according to the experimental group, and immunizing HBsAg transgenic mice three times (C57BL/6J-Tg (AlblHBV) 44Bri / Jf4J) After 12 days, all the experimental group and the control group were injected with rHBsAg antigen in the right foot pad, and the left foot pad was injected with normal saline.
  • the thickness of the foot pad was measured in 24 hours, 48 hours, and 72 hours, respectively.
  • the DTH level of the immunized hepatitis B vaccine group was higher than that of the control group, while the DTH level of the GM-CSF combined with the recombinant hepatitis B vaccine immunization strategy group (3*GM-CSF+HBV and 30ug GM-CSF+HBV group) was higher than that of HBV alone.
  • the vaccine should be significantly enhanced, indicating that GM-CSF combined with recombinant hepatitis B vaccine immunization strategy group (3*GM-CSF+HBV and 30ug GM-CSF+HBV group) induced strong cell excretion in vivo. Level.
  • GM-CSF combined with recombinant hepatitis B vaccine immunization strategy enhances CD8+ T cell-mediated DTH, may increase the activity of killer CD8+ T cells, IFN- ⁇ secreting CD8+ T cells (Tel) and IL-17 secreting CD8+ T cells (Tcl7) are two key killer CD8+ T cells.
  • IFN- ⁇ secreting CD8+ T cells Tel
  • IL-17 secreting CD8+ T cells Tcl7
  • the expression of IFN- ⁇ and IL-17 in mouse CD8+ T cells after immunization was further tested. The spleen was aseptically removed 15 days after three immunizations. A single cell suspension was prepared, and the hepatitis B surface antigen CD8+ T cell epitope polypeptide was incubated in vitro.
  • Figure 5 is hepatitis B virus surface antigen transgenic mice liver hepatitis B virus Surface original immunohistochemistry photos and picture densitometry statistics, it can be seen
  • Laboratory animals and immunization experimental animals and immunization: C57BL/6 mice, SPF grade, 6-8 weeks old females, weighing 16-18 g, purchased from the Institute of Laboratory Animals, Chinese Academy of Medical Sciences, divided into 8 groups, 6 mice per group, The experimental grouping is shown in Table 1. Each group of vaccine or GM-CSF was dissolved in physiological saline, and each mouse was injected with 100 ⁇ l. Each mouse was injected subcutaneously for immunization in the neck, and boosted 14 days after the first immunization. Once, according to the experiment group interferon subcutaneous injection of 5*104U per neck;
  • mice were routinely treated and soaked in 75% ethanol for 5-10 min ;
  • RBC lysis of red blood cells 700 ul of RBC lysed cells were added to each tube for 2 min (strictly controlled lysis time), 700 ul FBS was added to terminate lysis, centrifuged at 1500 rpm for 3 min, the supernatant was discarded, and the cells were resuspended in 1 ml of 1640 or PBS;
  • the drug complex of the present invention temporarily inhibits virus replication by using an antiviral drug, and then immunizes by using an immunomodulator plus a vaccine, thereby effectively enhancing the immune response of the hepatitis B vaccine and avoiding the use of a single antibody.
  • Viral drug resistance produces non-reactivity and provides new research directions for the treatment of chronic HBV infection;
  • the antiviral drug combination of the present invention can activate the body fluid and cellular immunity level of the body more effectively than the existing antiviral therapy, and significantly enhance the immune effect;
  • the drug complex of the invention has the advantages of convenient use, low cost, small side effect and easy promotion;

Abstract

本发明涉及一种新的病毒免疫治疗药物复合物,尤其涉及一种用于乙肝持续性病毒感染的病毒免疫治疗药物复合物。本发明的药物复合物由抗病毒药物,免疫调节药物和重组乙肝疫苗组成,用于治疗乙肝,尤其是慢性乙型肝炎。所述的药物复合物中,抗病毒药物选自α-IFN,核苷类等;免疫调节药物选自GM-CSF等。

Description

一种病毒免疫治疗药物复合物及其用途
技术领域
本发明属生物医药领域, 涉及一种新的病毒免疫治疗药物复合物。 尤其涉及一 种用于乙肝持续性病毒感染的病毒免疫治疗药物复合物。
背景技术
现有技术公开了乙型病毒性肝炎是由乙肝病毒(HBV)引起的、 通过血液与体 液传播的、 以肝脏损害为主的传染病, 是一个严重的公共卫生问题, 该疾患对 人类健康的威胁很大。 研究显示, 感染乙型肝炎后, 部分患者将发展成为慢性 持续性感染状态, 其中有可能演变为肝硬变或原发性肝细胞癌。 我国是乙型肝 炎病毒感染高流行区, 每年约有 35万人死于与乙肝相关的疾病 (如: 肝硬化、 肝癌等) , 其中, 人群感染率为 60 %, 乙型肝炎表面抗原(HBsAg)人群携带率为 10 %。 目前, 据估计, 全世界共有 3亿 HBsAg携带者, 而我国占其中的三分之一, 乙型肝炎传播已成为影响我国人口素质的重要问题。
实践显示, 乙肝疫苗的接种是控制或预防乙型肝炎最有效的措施。 进入 80 年代, 乙型肝炎基因重组疫苗的发展非常迅速, 自 1981年起, 默克公司成功研 制出乙型肝炎基因 S蛋白在酵母中表达后与铝佐剂配伍的基因重组疫苗并商品 化后, 对全球乙型肝炎的预防和控制起到了重要作用。 现有上市的乙肝疫苗主 要是基于乙肝病毒 S抗原与铝佐剂配伍的形式。
对于慢性乙型肝炎患者, HBV在肝脏细胞内长期持续复制, 会导致机体内病 毒特异性效应 T细胞的耗竭以及病毒的免疫逃逸, 使患者处于一种免疫耐受的状 态, 病毒特异性的 CTL反应变得非常弱。 有研究提示, 机体针对 HBV的特异性 T细 胞应答低下可能是 HBV持续性感染的重要原因之一, 其具体分子机制尚未完全明 了, 分析认为可能与病毒抗原的量、 天然免疫的诱导效率、 抗原提呈细胞的类 型、 辅助性 T细胞与调节性 T细胞的数量与功能及共剌激分子的调控等有关。
根据中华医学会肝病学分会和感染病学分会组织国内有关专家制定的 《慢 性乙型肝炎防治指南》 , 对于属于抗病毒的适应症范围内的 HBV患者, 应给予抗 病毒治疗。 目前的治疗乙肝的抗病毒药物包括 a _IFN、 核苷 (酸) 类似物, 如 拉米夫定、 阿德福韦酯、 恩替卡韦、 替比夫定、 替诺福韦酯等; 这些药物能抑 制适应症范围内患者的 HBV DNA拷贝数, 但长期服用, 易产生耐药性; 此外, 核 苷(酸) 类似物停用后可出现复发, 甚至病情恶化; 而干扰素有骨髓抑制作用, 长期服用有较大的副作用; 甘草酸制剂、 水飞蓟素制剂、 多不饱和卵磷脂制剂 以及双环醇等, 均有不同程度的抗炎、 抗氧化、 保护肝细胞膜及细胞器等作用, 临床应用结果显示可改善肝脏生化学指标, 但并不能取代抗病毒治疗。
研究者认为, 目前,乙肝有效的免疫治疗手段应是基于激发病毒携带者体内 的免疫系统。 已知粒细胞-巨噬细胞集落剌激因子 (GM-CSF ) 是一种具有多项 潜能的造血细胞重要生长因子, 对各种原因引起的白细胞减少症有明显的疗效。
GM-CSF主要由活化的 T细胞、 B细胞、 单核巨噬细胞、 肥大细胞、 内皮细胞和成 纤维细胞产生, 它不仅能够促进造血前体细胞的增殖、 分化和成熟, 而且对其 他细胞, 如抗原递呈细胞 (APC) 、 成纤维细胞、 角质细胞、 皮肤黏膜细胞等均 有不同程度的剌激作用。 1993年, Dranoff等首次将 GM-CSF作为免疫佐剂, 增强 了抗肿瘤疫苗的免疫反应。 GM-CSF的免疫增强作用可能与其增强 APC细胞的抗原 递呈能力有关。 GM-CSF作用于树突状细胞 (DC) , 增强其递呈抗原的能力 [丄]; 增加 IL-2的产生,活化 CD4+T细胞,使其分泌抗体的能力增强,同时亦可增强 CD8+T 细胞的功能 [ ]。 近年来的研究发现, GM-CSF可激活 T细胞、 内皮细胞, 增强 APC 的功能, 增加细胞 ffiic, 协同剌激分子, 参与机体免疫调节, 增强抗病毒药物的 疗效。 但 Hasan等通过在给正常人注射重组乙肝疫苗之前立即肌肉注射 GM-CSF, 发现此种情况下 GM-CSF不能提供显著的佐剂活性, 即不能有效地提高初级免疫 反应 [ 。 V. Bronte等人发现全身性高水的 GM-CSF能诱导暂时性抑制 T细胞反应
[4] 0 S. J. Simmons等人在一个前列腺癌疫苗的 II期临床试验中, 利用 GM-CSF作 为全身性佐剂, 结果却无法检测到 DC-多肽注射后的临床反应增强, 或检测到显 著提高的免疫反应。 此外, 部分患者还发生了一些剂量不良反应, 例如局部反 应、 疲劳、 骨痛、 肌痛和发热 [ ]。 这些结果与其他许多 GM-CSF作为佐剂一同免 疫能显著改善抗原特异性免疫反应的报道不同, 这说明可能是由于 GM-CSF的剂 量、 给药的持续时间以及免疫剂量与临床免疫结果息息相关, 然而对于 GM-CSF 免疫疗法的剂量、 持续时间的研究还并不透彻, 亟待通过系统的研究优化出较 优的 GM-CSF作为免疫疗法药物的用途。
有研究报道, 单独使用干扰素治疗 HBV, 大约只有 25%-40%具有治疗效果。 拉米夫定因其相对安全和价格低廉, 至今仍是很多地区治疗 HBV感染的首要选 择, 但其快速形成的耐药性是其中存在的主要缺陷 [.§]。 随着阿德福伟使用量增 力口, 针对这种药物的耐药性也成为了主要问题, 这说明部分病人对这种单一治 疗是无反应的, 或易产生耐药性。 鉴于在针对 HIV感染方面的联合治疗法取得成 功, 以及单一药物治疗 HBV仍存在各种问题, 很多研究者对联合治疗法治疗 HBV 进行研究 [Z]。 Guptan等通过联合干扰素和 GM-CSF, 观察到 60%干扰素单一治疗 无反应的 HBV患者在最初治疗结束后 HBeAg和 HBV-DNA降低, 但随后患者中出现了 病毒复发情况 ]。 而 Heintges等则使用 ct _IFN和乙肝疫苗联合治疗六个月后, 发现 50% (8/19)的干扰素单一治疗无反应者已无法检测出 HBV-DNA, 但治疗后的 持续反应率在该临床实验中没有报道。 也有研究报道了病毒携带者直接接种 HBsAg疫苗进行治疗, 28. 6%的患者病毒复制减少, 21. 4%的患者 HBV-DNA呈阴性。 但 Dikici等人却发现慢性 HBV感染的免疫耐受儿童乙肝疫苗接种治疗组和未接 种组无明显区别。
中国公开号 " CN 1990043A" , "重组人粒细胞巨噬细胞集落剌激因子在制 备治疗或预防乙型肝炎药物中的用途" 公开了同时给予重组人 GM-CSF和基因工 程乙型肝炎疫苗可以促进机体的体液免疫; 提前给予重组人 GM-CSF, 再给予基 因工程乙型肝炎疫苗, 可以剌激动物产生细胞免疫, 加快 T细胞转化, 可剌激 Thl 细胞分泌 IFN- Y等细胞因子, 促进 IgG2a型抗体的产生, 增加细胞毒 T细胞(CTL) 的功能, 从而达到治疗治疗 HBV的效果。 近几年, 不同的细胞因子、 趋化因子已 经被用于动物模型和人类疫苗研究的免疫佐剂, 促进抗原识别和 T细胞的扩增。 有研究报道, GM-CSF是目前在增加抗肿瘤疫苗免疫原性方面使用最多的细胞因 子佐剂。 GM-CSF即可以通过基因转导至肿瘤细胞或周边正常的细胞释放该细胞 因子, 也可以以重组蛋白形式全身性或局部地用于动物或病人的不同疫苗接种。 但 GM-CSF用于人类抗病毒疫苗的免疫佐剂仍存在争议。 Hasan等通过在给正常人 注射重组乙肝疫苗之前立即肌肉注射 GM-CSF, 发现此种情况下 GM-CSF不能提供 显著的佐剂活性, 即不能有效地提高初级免疫反应 。 同样以 GM-CSF为免疫佐 剂, 却得到不同的结果, 可能与 GM-CSF实际应用时的剂量、 免疫部位和免疫方 式有关。
基于上述研究, 本申请的发明人拟提供一种新的病毒免疫治疗药物复合物, 尤其涉及一种用于乙肝持续性病毒感染的病毒免疫治疗药物复合物。
与本发明相关的现有技术有:
1. van de Laar L, Coffer P, Woltman A : Regulation of dendritic ce l l development by GM-CSF: molecular control and impl ications for immune homeostasi s and therapy. Blood 2012, 119 (15) : 3383-3393.
2. Wanjal la C, Goldstein E, Wirbl ich C, Schnel l M : A role for granulocyte-macrophage colony-stimulating factor in the regulation of CD8 (+) T cel l responses to rab ies virus. Virology 2012, 426 (2): 120-133.
3. Cruciani M, Mengol i C, Serpel loni G, Mazz i R, Bosco 0, Malena M : Granulocyte macrophage colony-stimulating factor as an adjuvant for hepatiti s B vaccination : a meta-analysi s. Vaccine 2007, 25 (4): 709-718.
4. Cytokines as natural adjuvants for vaccines, pdf .
5. GM-CSF as a Systemic Adjuvant in a Phase I I Prostate Cancer Vaccine Trial, pdf.
6. Morrey J, Bai ley K, Korba B, Sidwel l R : Uti l ization of transgenic mice repl icating high level s of hepatiti s B virus for antiviral evaluation of lamivudine. Antiviral research 1999, 42 (2): 97-108.
7. Paul N, Han S_H : Combination Therapy for Chronic Hepatiti s B : Current Indications. Current hepatit i s reports 2011, 10 (2): 98-105.
8. Rajkumar CG, Varsha T, Seyed NK, Shiv KS : Efficacy of
granulocyte-macrophage colony-stimulating factor or lamivudine combination with recombinant interferon in non-re sponders to interferon in hepatiti s B virus-related chronic l iver di sease patients. Journal of Gastroenterology and Hepatology 2002, 17.
发明公开
本发明的目的是提供一种新的病毒免疫治疗药物复合物, 尤其涉及一种用 于乙肝持续性病毒感染的病毒免疫治疗药物复合物。 本发明的药物复合物可为 治疗乙肝提供新的免疫治疗药物。
本发明的药物复合物由抗病毒药物, 免疫调节药物和重组乙肝疫苗组成。 本发明的药物复合物用于治疗乙肝, 尤其适合治疗慢性乙型肝炎, 所述的 药物复合物中, 利用 ct -IFN、 核苷类等抗病毒药物降低机体内的病毒载量; 再 为机体给以 GM-CSF为佐剂的乙肝疫苗, 使机体建立有效的免疫记忆保护反应, 产生强力的抗体保护和细胞免疫, 防止病毒复发, 甚至达到清除病毒的目的, 以及预防 HBV再次感染。
本发明中, 所述的抗病毒药物选自干扰素或核酸类药物, 例如: 普通 IFN- α 3〜5 MU,聚乙二醇 IFN- α 2a , 聚乙二醇 IFN- α 2b ,拉米夫定( lamivudine , LAM) , 阿德福韦酯(adefovir dipivoxi l, ADV) , 恩替卡韦(entecavir, ETV) , 替比夫定 ( telbivudine , LdT ),替诺福韦酉 ( ( tenofovir di soproxi l fumarate , TDF) ;
所述的免疫调节药物选自重组人粒细胞巨噬细胞集落剌激因子, 如 GM-CSF; 所述的重组乙肝疫苗为基因工程乙肝疫苗, 如亚单位蛋白质疫苗; 本发明采用下述技术实施方, 通过基因工程技术将干扰素基因在大肠杆菌 或酵母系统中进行表达出蛋白质, 提取纯化后与辅料配伍制成抗病毒药物 IFN-a (一型干扰素) , 通过基因工程技术将人粒细胞巨噬细胞集落剌激因子基因酵 母系统中进行表达出蛋白质, 提取纯化后与辅料配伍制成免疫调节药物为 rhGM-CSF (重组人粒细胞巨噬细胞集落剌激因子) , 通过基因工程技术将人乙 肝抗原基因在酵母系统中进行表达出蛋白质, 提取纯化后与佐剂配伍制成重组 乙肝表面抗原疫苗。
本发明的药物复合物中的 a _IFN、 核苷类等抗病毒药物均为已上市的常用 抗病毒药°
本发明的药物复合物中, 抗病毒药物的用量采用临床常规用药剂量 (可参 照 《慢性乙型肝炎防治指南》 ) ; 基因工程乙型肝炎疫苗与重组人粒细胞巨噬 细胞集落剌激因子的质量配比为 1 : 1〜30。
本发明中, 抗病毒药物用量和用法参照了 《慢性乙型肝炎防治指南》 , 例 如,
1.普通 IFN- α 3〜5 而 (可根据患者的耐受情况适当调整剂量), 每周 3次或 隔日 1次, 皮下注射, 一般疗程为 6个月。
2. 聚乙二醇 IFN- a 2a 180 μ g, 每周 1次, 皮下注射, 疗程 1年。
3. 聚乙二醇 IFN- α 2b 1. (Tl. 5 μ g/kg, 每周 1次, 皮下注射, 疗程 1年。
4.拉米夫定 (lamivudine , LAM) , 每日 1次口服 100 mg拉米夫定。 5.阿德福韦酯(adefovir dipivoxi l, ADV), 阿德福韦酯 10 mg, 每日 1次口 服。
6.恩替卡韦(entecavir, ETV): 恩替卡韦 0. 5 mg, 每日 1次口服。
7.替比夫定 (telbivudine , LdT ) : 替比夫定 600 mg, 每日 1次口服。
8.替诺福韦酉 ( ( tenofovir di soproxi l fumarate , TDF) : TDF与阿德福 韦酯结构相似, 但肾毒性较小, 治疗剂量为每日 300mg (本药在我国尚未被批准 上市) 。 本发明的药物复合物中的抗病毒药物, 免疫调节药物和重组乙肝疫苗采用 混合物形式给药, 或分别给予的方式给药, 其给药方式采用皮下或肌肉注射的 方式; 或分别口服加注射的形式给药, 或给予不同时间的先后次序形式给药, 如, 采用抗病毒药物给药在基因工程乙肝疫苗给药前; 或采用重组人粒细胞巨 噬细胞集落剌激因子给药在基因工程乙肝疫苗给药前。
具体地, 另一方面, 本发明公开了:
抗病毒药物 (干扰素、 核酸类药物等) 和免疫调节药物 (重组人粒细胞巨 噬细胞集落剌激因子) 、 重组乙肝疫苗在制备治疗乙型肝炎药物中的用途; 尤 其在制备治疗慢性乙型肝炎药物中的用途;
所述的用途中, 抗病毒药物在基因工程乙肝疫苗给药前给药;
所述的用途中, 重组人粒细胞巨噬细胞集落剌激因子在基因工程乙肝疫苗 给药前给药;
抗病毒用药剂量参照 《慢性乙型肝炎防治指南》 ; 基因工程乙型肝炎疫苗 与重组人粒细胞巨噬细胞集落剌激因子的质量配比为 1 : 1〜30。 本发明的药物复合物进行了抗病毒免疫实验, 结果表明, 用于治疗乙肝持 续性病毒感染,其中的 α -IFN、核苷(酸)类药物降低机体内的病毒载量; GM-CSF 等具有免疫增强作用的细胞因子为佐剂的乙肝疫苗, 使机体建立有效的免疫记 忆保护反应, 能产生强力的抗体保护和细胞免疫, 清除病毒以及防止感染。 在 本发明的一个实施例中, 采用重组人粒细胞巨噬细胞集落剌激因子和基因工程 乙型肝炎疫苗不同的联合免疫方式进行了大量实验, 结果显示, 注射乙肝疫苗 前 3天原位注射重组人粒细胞巨噬细胞集落剌激因子 (2〜30ug/只 /天) 后, 再 进行基因工程乙肝疫苗免疫 (lug/只) 能有效促进动物树突细胞成熟, 显著增 强动物的细胞免疫水平, 提高抗体水平, 促进 TH1型细胞因子, 存进 IgG2a类抗 体产生, 增强 T细胞增殖能力和细胞毒 T细胞 (CTL ) 功能。
在本发明的另一个实施例中, 在慢性乙肝转移基因小鼠动物模型中, 注射 乙肝疫苗前 3天原位注射重组人粒细胞巨噬细胞集落剌激因子 (2〜30ug/只 /天) 后, 再进行基因工程乙肝疫苗免疫 (lug/只) 能有效打破小鼠的免疫耐受, 产 生较高的抗乙肝病毒抗体水平, 增强了细胞免疫能力, 有效的清除了小鼠表达 乙肝抗原的肝脏细胞。 而同时注射注射重组人粒细胞巨噬细胞集落剌激因子 ( 2〜30ug/只) 与基因工程乙肝疫苗 (lug/只) , 不能较好的打破小鼠对乙肝 抗原的免疫耐受。
在本发明的另一个实施例中, 将抗病毒药物 (重组人一型干扰素) 与重组 人粒细胞巨噬细胞集落剌激因子、 重组乙肝疫苗配伍联合使用, 在乙肝疫苗注 射前 (4〜0天) 注射抗病毒药物, 乙肝疫苗前 3天原位注射重组人粒细胞巨噬细 胞集落剌激因子(2〜30ug/只 /天)后, 再进行基因工程乙肝疫苗免疫(lug/只) 同样可以诱导较高的细胞免疫反应, 促进 T细胞的增殖能力。
本发明还提供一种用于治疗已经被乙肝和艾滋病病毒感染的病人的乙肝和 艾滋病的疫苗复合物, 该疫苗复合物包含有抗病毒药物、 免疫调节剂和乙肝疫 苗。
附图说明
图 1. 显示实施例 1中, 通过定量 ELISA法, A, 检测重组人粒细胞巨噬细集 落剌激因子联合乙肝疫苗免疫的总 IgG, 及检测重组人粒细胞巨噬细胞集落剌激 因子联合乙肝疫苗免疫的 IgG亚型比例, B, 显示实施例 1中重组人粒细胞巨噬 细胞集落剌激因子联合乙肝疫苗免疫增强免疫反应的 T淋巴细胞扩增的检测结 果, C, 显示实施例 1中流式细胞仪检测重组人粒细胞巨噬细胞集落剌激因子联 合乙肝疫苗免疫增强免疫反应后的体内 CTL反应。
图 2. 显示实施例 1中流式细胞仪检测重组人粒细胞巨噬细胞集落剌激因 子联合乙肝疫苗免疫增强乙肝疫苗免疫反应的 IFN- Y、 IL-4在 CD4 T细胞中, 和 IFN- Y在 CD8 T细胞中表达结果。
图 3. 显示实施例 2中检测重组人粒细胞巨噬细胞集落剌激因子联合乙肝疫 苗免疫打破乙肝表面抗原转基因小鼠免疫耐受后乙肝表面抗原抗体的变化情况 以及转基因小鼠体内乙肝表面抗原下降情况。
图 4. A,显示实施例 2中流式细胞仪检测重组人粒细胞巨噬细胞集落剌激 因子联合乙肝疫苗免疫打破乙肝表面抗原转基因小鼠免疫耐受后 IL-10、 IFN- y 在 CD4和 CD8T细胞中的表达情况; B, 显示实施例 2中在乙肝表面抗原转基因小鼠 总进行重组人粒细胞巨噬细胞集落剌激因子联合乙肝疫苗免疫后增强乙肝疫苗 免疫反应 DTH的检测结果。
图 5. 显示实施例 2中流式细胞仪检测重组人粒细胞巨噬细胞集落剌激因子 联合乙肝疫苗免疫打破乙肝表面抗原转基因小鼠免疫耐受后, 清除乙肝抗原转 基因小鼠肝脏表面的乙肝表面抗原的组化染色情况, 以及经过治疗后转基因小 鼠肝脏内表达乙肝抗原的肝细胞的平均光密度值。
图 6. A,显示 ELISA方法检测实施例 3中抗病毒药物 IFN-a2a了、 重组人粒细 胞巨噬细胞集落剌激因子联合乙肝疫苗免疫增强乙肝疫苗免疫反应检测重组人 粒细胞巨噬细胞集落剌激因子联合乙肝疫苗免疫的总 IgG; B, 显示实施例 3中抗 病毒药物 IFN_a2a了、 重组人粒细胞巨噬细胞集落剌激因子联合乙肝疫苗免疫增 强免疫反应的 T淋巴细胞扩增的检测结果; 显示实施例 3中流式细胞仪检测抗病 毒药物 IFN_a2a了、 重组人粒细胞巨噬细胞集落剌激因子联合乙肝疫苗免疫增强 乙肝疫苗免疫反应的 IFN- Y、 IL-17在 CD4 T细胞中表达结果。
图 7是实施例 5的 HBsAg水平下降情况, 其中纵坐标为 HBsAg水平, IU/ml ; 横坐标为各时间点, 2012年 5月一 2013年 3月。
实施发明的最佳方式
下述实施例对本发明做更详细的说明, 它们并不构成对本发明的限制。 下 述实施例中的实验方法, 如无特别说明, 均为常规方法。 下述实施例中的百分 含量, 如无特别说明, 均为质量百分含量。
除非特别说明,本发明实施例中的实验数据均为各组中每只小鼠得到的 数值的平均值。
实施例 1 : GM-CSF联合重组乙肝疫苗免疫策略增强 C57BL/6对重组乙肝亚 单位疫苗的免疫反应
材料与仪器:
实验材料:基因工程(CH0)乙型肝炎疫苗 [Recombinant Hepatitis B Vaccine
( CHO ) ], 10ug/1. 0 mL, 注射用重组人粒细胞巨噬细胞集落剌激因子 [Recombinant Human Granulocyte/Macrophage Clolony-Stimulating Factor for Injection] , 300ug/支, CHO表达的基因工程乙肝疫苗原液 (HBsAg原液) 均由华北制药集团金坦生物技术有限公司提供。
主要试剂盒仪器: RPMI 1640培养液 (WISENT 公司) ; 胎牛血清 (天津市灏 洋生物制品有限公司) ; 小鼠抗兔 IgG抗体: 购于 Sigma, HRP标记抗鼠 IgG、 IgGl、 IgG2a, 贝勾于 Southern Biotechnology Assosiates, Brimingham, AL, USA。 红细胞裂解液: 8. 29g NH4C1 , lg KHC03 , 37. 2mg Na2EDTA, 加去离子水 到 800 mL, 调节 PH值到 7. 2-7. 4, 加去离子水到 1000 mL, 过滤除菌, 室温保 存。 玻璃棉柱: 将玻璃棉装入一次性的 lmL 注射器中制成分离 T 淋巴细胞用的 玻璃棉柱。 MTT: 将购买的 MTT 粉末溶于 PBS 后 (浓度为 5mg/mL即 0. 5%MTT) 过滤除菌, -20°C避光保存。 ConA: 将 ConA粉末溶解于无血清的 RPMI 1640 培养 基中, 浓度为 60 g/mL。 荧光标记单克隆抗体: 常用的有 FITC、 PE、 APC标记 的单克隆抗体, 购自 BD、 eBioscience, BioLegend公司; 封闭抗体: 抗 Fc 受 体抗体 免疫细胞表面一般表达有 Fc 受体, 能和抗体的 Fc 段结合。 封闭抗体 的作用就是阻断荧光标记的单克隆抗体的 Fc 段与免疫细胞表面 Fc 受体结合所 产生的非特异性的结果; 固定剂: 4%的多聚甲醛 PBS 溶液; 破膜剂: 1 %皂素; 乙肝表面抗原 CD8体外 CTL剌激多肽由上海吉尔生化公司合成。 乙肝表面抗体 诊断试剂盒及乙肝表面抗体标准品购自北京金豪制药股份有限公司。 离心机: eppendorf 产品; 流式细胞仪: FACScal ibur, 美国 BD Bioscience 制造。
实验动物及免疫: 实验动物及免疫: C57BL/6小鼠, SPF级, 6_8周龄雌性, 体重 16-18g, 购于中国医学科学院实验动物研究所。 分 4组, 每组 6只小鼠, 实验分组见下表。 每组疫苗或 GM-CSF溶解在生理盐水中, 每只小鼠注射 100微 升, 每只小鼠颈部皮下注射进行免疫, 第一次免疫后 14天加强免疫一次。
实验免疫组别设计
实验分组 疫苗 GM-CSF
1. Naive 0 g
2. HBV 1 g HBV vaccine 0 g
(0 day)
3. 3GM-CSF+HBV 1 g HBV vaccine 1 g GM-CSF
(0 day) (-3、 _2、 -lday)
4. HBV+GM-CSF 1 g HBV vaccine 1 g GM-CSF
(0 day) (Oday) 小鼠血清收集: 灭菌的毛细玻璃针, 收集小鼠眼底动脉血样约 200-300μί 至无菌微量离心管中, 室温静置 30min, 置 4°C 2h, 5000rpm, 离心 10min, 收 集上清, -20°C保存备用。
ELISA 检测血清中总 IgG 滴度:
(1)抗原包被: 以 lug/ml 抗原包被 96 孔酶标板, 100μ 1/孔, 4°C过夜;
(2)封闭: PBST (0.05%Tween20 溶于 PBS)洗涤 3 次, 每次 5min, 5% 脱 脂奶粉, 100 μ ΐ/孔, 37°C封闭 1 h;
(3)加血清: PBST 洗涤 3 次, 每次 5min, 将小鼠血清做 2 倍梯度稀释, 以未免疫的小鼠血清作对照, ΙΟΟμ Ι/孔, 37°C孵育 l h;
(4) 加二抗: PBST 洗涤 3 次, 每次 5min, 加入 HRP 标记的山羊抗小鼠 IgG (1: 1000) , 100 μ ΐ/孔, 37°C孵育 1 h;
(5) 显色: PBST 洗涤 3 次, 每次 5min, 加底物 TMB 显色, ΙΟΟμ Ι/孔,
37°C避光显色 15min;
(6) 终止: 加入 0.2M 硫酸终止显色, 50μ 1/孔;
(7) 读数: 0D 450nm/620 nm 处测光密度值。 实验孔的 0D值为对照孔的 两倍时认为是阳性。
ELISA 检测血清中 IgGl和 IgG2a 浓度
(1) 抗原包被: : 以 2 μ g/ml 兔的 IgG和 lug/ml VP1抗原包被 96 孔酶标 板, 100 μ 1/孔, 4°C过夜;
(2)封闭: PBST (0.05%Tween20 溶于 PBS)洗涤 3 次, 每次 5min, 3%BSA, 100 μ 1/孔, 37°C封闭 1 h。
(3)加血清: PBST 洗涤 3 次, 每次 5min, 将小鼠抗兔 IgG 从 20ng/ml 按
2 倍稀释 10 个梯度, 将小鼠血清按 1:100 倍稀释, 每个设 3 个重复孔, 100 μ 1/孔, 37°C孵育 1 h。
(4) 加二抗: PBST 洗涤 3 次, 每次 5min, 加入 HRP 标记的山羊抗小鼠 IgG 1和 IgG2a (1:1000), 100 μ ΐ/孔, 37°C孵育 1 h。 (5) 显色: PBST 洗涤 3 次, 每次 5min, 加底物 TMB 显色, ΙΟΟμ Ι/孔, 37°C避光显色 15min;
(6) 终止: 加入 0.2M 硫酸终止显色, ΙΟΟμ Ι/孔。
(7) 读数: 0D 450nm/620 nm 处测光密度值。 实验孔的 0D值为对照孔的两 倍时认为是阳性。
(8) 做出标准曲线, 计算出抗体含量。
T 细胞增殖实验:
用 MTT 法检测小鼠 T 细胞体外增殖活性
(1) 实验中用到的所有物品均需提前灭菌。
(2) 脱臼处死小鼠, 用 70%乙醇浸泡 15 分钟。
(3)在提前紫外灯灭菌 20 分钟的超净工作台中, 无菌条件下取出小鼠脾脏 于提前加有 2ml RPMI1640 培养液的细胞培养皿中。
(4) 将铜网灼烧后降温放入平皿中, 利用无菌注射器将脾脏磨碎, 制成细 胞悬浮液, 并过滤到 13ml 细胞离心管内。
(5) 将离心管口用封口膜封好, 离心 2000 转, 10 分钟。
(6) 弃上层培养液, 力口 2〜3ml 红细胞裂解液, 悬浮细胞, 裂解 2 分钟后, 加等体积 RPMI1640培养基 (或胎牛血清) 中止反应, 将离心管口用封口膜封好, 离心 2000 转, 10 分钟。
(7)弃上层培养液, 力口 3〜4ml RPMI1640 (含 2%胎牛血清)培养基悬浮细胞。 (8)用玻璃棉 37oC 慢慢滤过细胞, 保证细胞充分和玻璃棉结合以除去 B 细 胞。
(9) 用血球计数板细胞计数。
(10)用 RPMI1640 (含 2%胎牛血清)培养基调整细胞浓度至 3〜4X106 个 /ml。
(11) 将调整好浓度的细胞加入 96 孔板, 每孔 100ul。
(12) 将抗原过滤除菌, 稀释一定倍数后每孔加剌激物 20ul (剌激物终浓度 为: ConA 10ug/ml, 5ug/ml, BSA/0VA 2ug/ml, 抗原剌激物可以按不同浓度稀 释加样。 ) , 并设有只有细胞不加剌激物的对照孔, 和只有培养基的本底孔。
(13)将细胞放入细胞培养箱, 37oC, 5% C02 培养 48〜72 小时后,用 MTT 法 进行显色, (每孔加 20ulMTT 显色液, 3〜4 小时后读数) 实验组 0D—培养本底 0D
(14)然后吸掉上清,每孔加入 150 ul二甲基亚砜,置摇床上低速振荡 10min, 使结晶物充分溶解。 用酶标仪 (Magellan, TecanAustriaGmbH) 测定 490nm 的 0D 值。
(15) 。 结果计算: 剌激指数 SI= (各剌激孔的 0D 值-培养基 0D 值) I (未 剌激孔的 0D 值-培养基 0D 值) 。
表面及胞内染色实验方法:
(1)从小鼠分离得到纯的 T 细胞, 在 10%的培养基中并稀释成 lX107/mL 个 细胞。
(2) 往 96 细胞板里加 100uL, 同时加入终浓度为 10ug/mL 的短肽, 同时可 以加入共剌激信号终浓度 10ug/mL CD28 的单抗, , 混匀后, 37°C, 5%二氧化碳 培养。
(3) 剌激 4-6 小时后加 2 ul /孔的 monensin 蛋白转运抑制剂。
(4) monensin 拟制 2 小时后, 用 2mL 的 PBS 2000rpm 离心 5 分钟, 将细胞 重悬于 100-200uL的 PBS 中, 按照 lug/106 细胞的用量加入纯化的 FcII/III 受 体的抗体(CD16/32, 消除非特异性的结合染色, 冰浴上孵育 15-20 分钟, 用 2mL 的 PBS 2000rpm 离心 5 分钟。
(5)将细胞重悬 200 ul 的加 4%的多聚甲醛 PBS 溶液, 室温孵育 10-15 分钟, 用 2mL 的 PBS 2000rpm离心 5 分钟。 ;
(6) 将细胞重悬 200 ul 的加 0.1%的皂素, 4°C 孵育 10 分钟, 用 2mL 的 PBS 2000rpm 离心 5 分钟。
(7) 进行表面分子和细胞内细胞因子的染色
根据说明书同时加入适量的两种荧光抗体, 冰浴上孵育 20-30 分钟, 用 2mL 的 PBS 2000rpm 离心 5 分钟, 将细胞重悬于 300UL 的 PBS 中, 将细胞悬液用 铜网过滤入 FACS 专用管中, 准备进行仪器检测和分析。
体内 CTL实验方法:
取 Na'ive 小鼠, 破红细胞后分离得到脾脏淋巴细胞。
(1) 将脾细胞等分成二份于两个培养皿中, 一份孵育 50 g T 细胞表位的 肽段, 一份不孵育肽, 每皿的体积为 l_2mL, 37C, 5% C02 培养 4 小时 (此步可 以根据实验组的多少适当增加靶细胞数目) 。
(2) 4 小时后将细胞转入 15mL 的细胞管中, 3000rmp 离心 5 分钟。
(3) 将没有孵育小肽的靶细胞用低浓度的 CFSE (0.5uM) 染色, 孵育小肽靶 细胞用高浓度的 CFSE (5uM) 染色, 37C 避光轻摇染色 15 分钟。
(4) 染色后用等体积的胎牛血清终止反应, 3000rmp 离心 5 分钟, 弃上清, 用 10mL 的 PBS洗 3 次。
(5)将低浓度和高浓度染色的靶细胞等体积的混合, 按每只小鼠 2X107 个 细胞由尾静脉注射回实验组小鼠体内, 进行体内细胞毒反应。
(6) 注射 4小时后, 处死实验小鼠, 避光分离得到脾细胞。
(7) 铜网过滤后转入 FACS 专用管中, 准备进行仪器检测和分析。 实验结果用 t-检验进统计学分析, p〈0.05 差异显著, p〈0.01 差异极显著。 实验结果:
1、 为了检测是否 GM-CSF能够影响 HBV疫苗的体液反应, GM-CSF进行提前或同 时与 HBV疫苗注射, 加强免疫后第七天, 检测了血清中抗 HBsAg 总 IgG抗体, 与 只注射了 HBV的小组相比, 注射了 GM-CSF的小组总 IgG水平显著增强 (图 1-A) ; 在免疫前 3天注射 GM-CSF的小组, IgG2a水平显著提高(p〈0. 05 );相反,若 GM-CSF 与 HBV同时注射时, IgGl水平显著提高(图 2-1B) ; 数据表明 GM-CSF的预处理可以 增强 Thl反应, 而 GM-CSF与疫苗同时注射能够增强 Th2反应。
2、 不同时间注射 GM-CSF对乙型肝炎疫苗 T细胞水平的影响
进一步观察是否 GM-CSF会影响 T细胞反应, 在加强免疫后一周,无菌取小鼠的 脾脏细胞, rHBsAg抗原来剌激 T 细胞增殖,用 BSA 作为非特异性抗原对照,用 ConA 作为阳性对照, 用培养基作为阴性对照, 结果表明在预注射 GM-CSF组中增殖反应 显著提高, 而在 GM-CSF, HBV同时注射的小组中增殖反应水平低下(图 1-B), 表明 了 GM-CSF预处理能够促进抗原特异性 T细胞反应。
3、 不同时间注射 GM-CSF对乙型肝炎疫苗体内 CTL水平的影响
了解不同时间注射 GM-CSF对 CTL 反应的影响, 在第二次免后 7 天, 通过流式 细胞仪检测 CTL 反应, 如图 1-C所示, GM-CSF预处理组对靶细胞特异性的杀伤率 为 30. 01%, 明显高于单独免疫核酸疫苗组的杀伤率为 10. 26%, 而 HBV与 GM-CSF同 时注射的组的杀伤率为 13. 6% , 结果证明 GM-CSF预处理组能够增强体内 CTL反应 水平, 而 HBV与 GM-CSF同时注射组没有明显的变化。
4、 不同时间注射 GM-CSF对乙型肝炎疫苗细胞因子水平的影响
细胞因子可以调节细胞分化、 增殖和诱导细胞发挥相应功能, 在调节免疫反应 中起重要的作用, 本实验通过胞内细胞因子染色的方法检测 CD4+ T细胞中抗原特 异 IL-4, IFN- γ和 CD8+ T细胞中抗原特异 IFN- γ的表达水平,如图 2 所示, GM-CSF 预处理组比只用 HBV注射组的 IL-4, IFN- Y ( CD4细胞中) 水平和 IFN- γ ( CD8细 胞中) 水平都显著提高, 然而, HBV与 GM-CSF同时注射的组中 IFN- Y 表达水平没 有增强, 只有 IL-4水平比对照组有所提高, 这表明 GM-CSF预处理组能够同时提高 Th-1 和 Th-2 细胞因子的表达水平, 而 GM-CSF与 HBV疫苗同时注射只能够诱导 Th-2型细胞因子的表达。 实施例 2 : GM-CSF联合重组乙肝疫苗免疫策略打破 HBsAg转基因小鼠免疫 耐受诱导转基因小鼠抗乙肝表面抗原体液免疫应答
材料与仪器:
HBsAg转基因小鼠 ( C57BL / 6J-Tg (AlblHBV) 44Bri / Jf 4J ) 购自复旦大学 附属上海市公共卫生临床中心。 "乙型肝炎表面抗原酶联免疫法诊断试剂盒" 及乙肝表面抗原标准品购自北京金豪制药股份有限公司。 其他实验材料、 主要 试剂和仪器同实施例 1。
试验方法:
动物分组及免疫方法:
HBsAg转基因小鼠 (C57BL / 6J-Tg (AlblHBV) 44Bri / Jf4J ) 35只 (初始血 清 HBsAg浓度为 5000-10000pg/ml ) , 随机分为 5组, 每组 7只, 实验分组按下 表免疫实验组别设计;每组疫苗或 GM-CSF溶解在生理盐水中,每只小鼠注射 100 微升, 每只小鼠颈部皮下注射进行免疫, 各组小鼠免疫 4 次, 前三次每次间隔 14天, 第四次免疫与第三次免疫间隔 8周, 每两周对小鼠进行眼眶采血, 并用 ELISA方法检测转基因小鼠血清中的乙肝表面抗原及抗乙肝表面抗原抗体浓度。
免疫实验组别设计
实验分组 疫苗 GM-CSF
Na'ive 0 g
HBV 1 g HBV vaccine 0 g
( 0 day )
3GM-CSF+HBV 1 g HBV vaccine 1 g GM-CSF
( 0 day ) (-3 、 -2、 -lday)
30GM-CSF+ HBV 1 g HBV vaccine g GM-CSF
( 0 day ) (Oday)
10GM-CSF+ HBV 1 g HBV vaccine 1 g GM-CSF
( 0 day ) (Oday) 乙肝表面抗原诊断试剂盒检测 HBVs抗原转基因小鼠血清 HBVs抗原:
1. 抗原标准品 (2mg/mL) 稀释: 从 10~6开始做 2倍梯度稀释。
取 2ul AG用 PBS稀释到 20ul ( 10x) , 取 10ul用 PBS稀释到 lml ( 100x 2ug) , 取 500u用 PBSl稀释至 lml (2x lug), 继续 2倍稀释 14次。 取最后 7次稀释和 PBS组做 8点的标准曲线。
2. 血清稀释: 10χ, 50χ, ΙΟΟχ 每个样品做 3个副孔
3. 根据实验要求, 选择一定量的反应条, 每孔加入稀释好的样本 75ul, 留 阴性对照, 阳性对照, 空白各一孔。
4. 用封片纸封好, 37c孵育 60min。
5. 取出反应板, 死去封片, 各孔加入 50ul酶底物复合物。 震荡 10s, 封片 纸封好 37c孵育 30min
6. 取出反应板死去封片纸, 洗涤 5次。 拍干。
7. 将显色液 A、 B 1 : 1配好, 每孔加入 100混匀的显色液, 震荡 10s, 37c 孵育 30min。
8. 每孔加入 50ul终止液, 震荡混匀, 用酶标仪度数, 波长 450nm, 参考波 长 630nm。
乙肝表面抗体诊断试剂盒检测 HBVs抗原转基因小鼠血清 HBVs抗体
1.抗体标准品 (40mIU) 稀释: 从原液开始做 2倍梯度稀释。 稀释 7次, 加 PBS组做 8点的标准曲线;
2. 血清稀释: 10χ, 50χ, ΙΟΟχ 每个样品做 3个副孔;
3.根据实验要求, 选择一定量的反应条, 每孔加入稀释好的样本 50ul, 留阴 性对照, 阳性对照, 空白各一孔。 各孔加入 50ul酶底物复合物。 震荡 10s, 封片纸封好 37c孵育 30min; 4.取出反应板死去封片纸, 洗涤 5次。 拍干;
5. 将显色液4、 B 1 : 1配好, 每孔加入 100混匀的显色液, 震荡 10s, 37c 孵育 30min;
6.每孔加入 50ul终止液, 震荡混匀, 用酶标仪度数, 波长 450nm, 参考波 长 630nm。 实验结果用 t-检验进统计学分析, p〈0. 05 差异显著, p〈0. 01 差异极显著。 实验结果:
1. 检测是否 GM-CSF联合重组乙肝疫苗免疫策略能打破 HBsAg转基因小鼠免疫 耐并受诱导转基因小鼠抗乙肝表面抗原体液免疫应答, GM-CSF 进行提前或同时与 HBV疫苗注射, 每隔两周, 检测小鼠血清中 HBsAg浓度及抗 HBsAg 总 IgG抗体, 和 只注射了 HBV的小组相比, 3GM-CSF+HBV的小组总 IgG水平显著增强(如图 3所示), 在第四次免疫后六周, 前 3天注射 GM-CSF的小组 (3GM-CSF+HBV) , 乙肝病毒表面 抗原水平显著下降 (P〈0. 05 ) , 结果说明 3GM-CSF+HBV组即前 3天注射 GM-CSF的 小组可以打破转基因小鼠免疫耐受并受诱导转基因小鼠抗乙肝表面抗原体液免疫 应答, 进而使乙肝病毒表面抗原水平保持较低状态, 。 而单纯注射 HBV疫苗组以及 GM-CSF与 HBV疫苗同时注射组都没有促进抗乙肝表面抗原抗体显著升高。 实施例 3 : GM-CSF联合重组乙肝疫苗免疫策略打破 HBsAg转基因小鼠免疫 耐受诱导转基因小鼠抗乙肝病毒表面抗原细胞免疫应答并清除肝脏中乙肝病毒 表面抗原
材料与仪器:
HBsAg转基因小鼠 ( C57BL / 6J-Tg (AlblHBV) 44Bri / Jf 4J )购自复旦大学 附属上海市公共卫生临床中心。 乙肝表面 S 抗原免疫组化一抗、 二抗购自上海 长岛生物技术有限公司。 其他实验材料、 主要试剂和仪器同实施例 1。
动物分组及免疫方法:
HBsAg转基因小鼠 ( C57BL / 6J-Tg (AlblHBV) 44Bri / Jf 4J ) 35只 (初始血 清 HBsAg浓度为 5000-10000pg/ml ) , 随机分为 5组, 每组 5只, 实验分组见下 表。 每组疫苗或 GM-CSF溶解在生理盐水中, 每只小鼠注射 100微升, 每只小鼠 颈部皮下注射进行免疫, 各组小鼠免疫 3次, 每次间隔 14天, 第三次免疫后 12 天, 进行迟发型超敏反应检泖 J , 第三次免疫后 15天处死小鼠, 分离脾细胞检: 并取肝脏进行免疫组化实验。
免疫实验组别设计
实验分组 疫苗 GM-CSF
Na'ive 0 g
HBV 1 g HBV vaccine 0 g
( 0 day ) GM-CSF 0 g 1 g GM-CSF
(Oday)
3xGM-CSF+HBV 1 g HBV vaccine 1 g GM-CSF
(0 day) (-3、 _2、 -lday)
30GM-CSF+ HBV 1 g HBV vaccine g GM-CSF
(0 day) (Oday) 迟发型超敏反应检测:
在第三次免疫后 12天, 所有的实验组和对照组均被右脚垫注射 rHBsAg抗原
(2μ g) , 左脚垫注射生理盐水。 24小时, 48小时, 72小时分别采用游标卡尺 检测脚垫厚度, 按如下公式计算: 肿胀厚度 (mm) =右脚厚度 (mm) -左脚厚度 (mm) , 肿胀厚度的高低代表迟发型超敏反应水平 (DTH) 的高低。
流式细胞仪检测细胞因子表达水平: 同实施例 1。
组织学检测:
在最后一次免疫后 14 天将 HBsAg 转基因小鼠麻醉处理, 制作肝脏组织固 定、 包埋和切片, 分别进行 H&E染色和免疫组织化学实验, 免疫组织化学实验中 采用的抗体为有抗 HBsAg 的抗体。
制备组织切片:
(1) 取样: 麻醉处死转基因小鼠后, 取出小鼠的肝脏组织;
(2) 固定: 将肝脏组织块迅速放入配制好的 Bouin 固定液中;
(3) 脱水、 透明: 用由低到高浓度的酒精, 脱去组织中的水分;
(4) 浸蜡:
蜡 I 56°C-58°C 用时约 lhrs; 蜡 II 56°C_58°C 用时约 lhrs; 蜡 III 56 °C-58°C 用时约 l_2hrs;
(5) 包埋: 将组织块放入预先叠好的小纸盒中, 加入蜡;
(6) 修理蜡块: 将蜡块修理成梯形, 有利于蜡带的形成;
(7) 切片: 切片厚度约 8-10 μ πι;
(8) 展片: 将蜡带放入水浴展片机, 调整温度为 38度, 待蜡带已经展开的 时候, 用载玻片将蜡带捞上来, 在显微镜下观察, 已确定选取组织形态;
(9) 烤片: 展片后尽快放入大于 41°C不高于 50°C 温箱烘烤至少 4个小时, 使组织块与玻片牢固粘合。
组织切片的免疫组化:
(1) 将组织形态比较好的组织切片进行梯度酒精复水, 用 PBS (0.01 M; pH 7.4) 浸泡三次, 每次 5 分钟;
(2) 抗原修复: 切片放入盛有柠檬酸缓冲液的容器中, 置微波炉内高火加 热 5minX3, 如液体损失, 需补入热蒸熘水;
(3) 用封闭用血清或 BSA 在 37°C的烘箱内封闭至少 1 小时 ;
(4) 倾去血清, 勿洗, 切片上覆盖适当比例稀释的一抗; 27°C封闭 1 小时 或 4°C过夜;
(5) PBS 冲洗 3 次, 每次 5min;
(6) 滴加适当比例稀释的生物素标记二抗 (1%BSA-PBS 稀释), 27 °C孵育 30〜40min;
(7) PBS 冲洗 3 次, 每次 5min;
(8) 滴加适当比例稀释的三抗, 27 °C孵育 30min;
(9) 碱性磷酸酶显色; 显色需要在避光条件下进行; AP 显色结果阳性应为 特异性的红色;
(10) 自来水冲洗;
(11) 复染: 染色流程为苏木精染色 l〜3min, 弱酸液 (可在蒸熘水中滴加
1〜2 滴 1M 的盐酸即可) 进行返蓝处理 lmin, 自来水冲洗 3min 即可。 伊红染色 直接进行, 染色 lmin 即可完成;
(12) 脱水封片, 通风橱中干燥后观察组织形态;
将切片存放到切片盒中, 观察与照相注意合适的比例尺, 色泽的调整以及适 当阳性结果的选择。 实验结果用 t-检验进统计学分析, p〈0. 05 差异显著, p〈0. 01 差异极显著。 实验结果:
1,GM-CSF联合重组乙肝疫苗免疫增强了乙肝表面抗原转基因小鼠迟发型超敏反 应水平: 迟发型超敏反应是主要由 T 细胞介导的一种免疫反应, 为了进一步确 GM-CSF联合重组乙肝疫苗免疫策略在体内诱导了强烈的细胞免疫水平, 利用迟发型 超敏反应水平来作为体内指标, 根据实验分组进行免疫, 三次免疫 HBsAg转基因小 鼠 ( C57BL/6J-Tg (AlblHBV) 44Bri / Jf4J ) 后 12 天, 所有的实验组和对照组均被 右脚垫注射 rHBsAg抗原, 左脚垫注射生理盐水, 24 小时, 48 小时, 72 小时分别 检测脚垫厚度, 图 4-B 中可以看出只免疫乙肝疫苗组的 DTH水平比对照组较高, 而 GM-CSF联合重组乙肝疫苗免疫策略组(3*GM-CSF+HBV和 30ug GM-CSF+HBV组)的 DTH 水平比单独注射 HBV疫苗要显著增强, 说明 GM-CSF联合重组乙肝疫苗免疫策略组 (3*GM-CSF+HBV和 30ug GM-CSF+HBV组)在体内诱导了强烈的细胞免疫水平。
2, GM-CSF联合重组乙肝疫苗免疫策略增强了 CD8+ T 细胞介导的 DTH, 可能会提 高杀伤性 CD8+ T 细胞的活性, 分泌 IFN- Y的 CD8+ T 细胞 (Tel ) 和分泌 IL-17 的 CD8+ T 细胞 (Tcl7 ) 是两群关键的杀伤性 CD8+ T 细胞, 本实验进一步检测了免疫 后小鼠 CD8+ T 细胞的 IFN- Y和 IL-17 表达情况, 三次免疫后 15 天, 无菌取出脾脏, 制备单细胞悬液, 进行体外的乙肝表面抗原 CD8+ T 细胞表位多肽的孵育, 培养 6 小 时后, 进行胞内细胞因子染色, 流式细胞仪分析细胞亚群的变化, 图 4-A中可以看 出 GM-CSF联合重组乙肝疫苗免疫策略能够促进 CD4+T细胞、 CD8+T 细胞分泌 IFN- γ 和 IL-17 的水平,而 3*GM-CSF+HBV免疫策略更多的是诱导 Thl、 Tel的免疫反应, 30ug GM-CSF混合 HBV免疫策略更多是诱导 Thl7、 Tcl7的免疫反应。 3, 在最后一次免疫后 14 天麻醉处理 HBsAg转基因小鼠, 进行肝脏组织固定、 包埋和切片, 分别进行 H&E染色和免疫组织化学实验, 图 5为乙肝病毒表面抗原转基 因小鼠肝脏的乙肝病毒表面原免疫组化照片及图片光密度统计图, 可以看出
3*GM-CSF+HBV免疫策略下的转基因小鼠的肝脏中的乙肝表面抗原得到了非常显著 的清除,而 30ug GM-CSF混合 HBV免疫策略组虽然肝脏中乙肝病毒表面抗原有所下降, 但没有 3*GM-CSF+HBV免疫策略清除显著, 结果显示, 由于 GM-CSF+HBV免疫打破了乙 肝病毒表面抗原转基因小鼠的免疫耐受, 诱导乙肝病毒表面抗原转基因小鼠产生了 强烈的体液免疫及细胞免疫反应, 有效的清除了血清中及肝脏中乙肝病毒表面抗 原。 实施例 4: 不同时间注射一型干扰素对 GM-CSF联合重组乙肝疫苗免疫策略 的影响
材料与仪器: 重组人干扰素 a lb注射液购自北京三元基因工程有限公司, 50ug/lml/支。 其他实验材料、 主要试剂和仪器同实施例 1、 2、 3。
实验动物及免疫: 实验动物及免疫: C57BL/6小鼠, SPF级, 6_8周龄雌性, 体重 16-18g, 购于中国医学科学院实验动物研究所, 分 8组, 每组 6只小鼠, 实验分组如表 1所示;每组疫苗或 GM-CSF溶解在生理盐水中,每只小鼠注射 100 微升, 每只小鼠颈部皮下注射进行免疫, 第一次免疫后 14天加强免疫一次, 按 照实验分组干扰素每只颈部皮下注射 5*104U;
表 1实验免疫组别设计
Figure imgf000017_0001
乙肝表面抗原 ELISA抗体检测、 T细胞增殖实验、 T细胞细胞因子流式细 胞仪检测方法均参照实施例 1。
CFSE 法测 T细胞增殖:
1. 常规处理小鼠, 在 75%乙醇中浸泡 5-10min;
2. 取小鼠脾脏, 加 600ul PBS或 1640培养基, 磨碎, 铜网过滤大块组织, 1500rpm离心 3min, 弃上清;
3. RBC裂解红细胞: 每管加入 700ul RBC裂解细胞 2min (严格控制裂解时 间),加入 700ul FBS终止裂解, 1500rpm离心 3min 弃上清,用 lml 1640 或 PBS 重悬细胞;
4. 细胞计数, 调整细胞浓度为 lX107/ml ;
5. 取 500ul重悬的细胞, 取 500ulPBS 加入 lul ImM的 CFSE, 将 CFSE溶液 加入细胞中, 充分混匀, 颠倒十次; 摇床 37c 避光染色 10min, 加入 500ulFBS终止染色, 2000rpm离心 3min,加入 15%BFS血清的 1640或 PBS 洗 3次;
6. 细胞计数, 用完全培养基调整细胞浓度为 lX107/ml, 充分混匀细胞;
7. 将细胞分在 96孔板中, 每孔 50ul细胞(5X105细胞 /孔)每组 3个平行;
8. 加入剌激物: 用完全培养基将剌激物配成浓度为终浓度 2 倍的培养基溶 液,(50ul里含有 0. lulPMA=0. 2ug/ml , 0. lul 离子霉素 =2ug/ml )( antiCD3 终浓度为 2ug/ml antiCD28终浓度为 0. lug/ml ),抗原剌激物为 10ug/ml ;
9. 37C培养 72小时, 流式检测, 可以在检测前染 CD8抗体。 实验结果用 t-检验进统计学分析, p〈0. 05 差异显著, p〈0. 01 差异极显著; 实验结果显示:
1.第二次免疫后 14天通过乙肝表面抗体 ELISA检测发现 (见图 6-A) , 在 HBV 疫苗注射前一天注射 IFN-alb与对照组相比可显著降低抗乙肝病毒表面抗原抗体水 平, 特别是 IFN-alb与乙肝疫苗混合注射组体液免疫水平得到了显著抑制, 说明在 乙肝疫苗注射前一天或混合乙肝疫苗注射一型干扰素, 会影响乙肝疫苗的体液免疫 水平。
2.通过 CFSE法体细胞增殖实验 (图 6-B) 以及 CD4+T细胞 IFN- γ、 IL-17胞内 染色流式细胞仪检测 (图 6-C) , 发现干扰素对 GM-CSF联合重组乙肝疫苗免疫诱导 的 CD8细胞的免疫反应影响不显著。 实施例 5 : 抗病毒药物、 干扰素、 GM-CSF联合乙肝疫苗免疫策略对慢性乙 肝病人的临床治疗效果评估
患者,男, 56岁, 2004年 5月确诊为 HBeAg阳性慢性乙型肝炎, 其母亲 HBsAg 阳性;从 2009年 5月开始使用恩替卡韦治疗, 2年后发生 HBeAg血清转换, 2012 年 5月给予本发明药物复合物干预,包括聚乙二醇干扰素 ct _2a皮下注射, 180ug/ 周, 同时联合粒细胞巨噬细胞集落剌激因子 (GM-CSF ) 和乙肝疫苗免疫干预, GM-CSF每天 1次肌肉注射 75ug, 连续注射 3天, 第 4天在同一部位注射 1次乙 肝疫苗 20ug, 此免疫干预程序分别在干扰素治疗的第 1、 2、 3、 6、 9、 12个月 使用 1次, GM-CSF在干扰素注射后 2-3天使用, 在使用干扰素治疗 3个月后, 停用恩替卡韦, 图 7结果显示: 经过上述干预后 7个月后, 患者 HBsAg转阴, 抗 HBs水平有升高趋势。
工业应用
本发明的优点有:
1.相比于现有技术, 本发明的药物复合物用抗病毒药物暂时抑制病毒复制, 再利用免疫调节剂加疫苗的方式进行免疫, 可有效地增强乙肝疫苗的免疫反应, 避免使用单一抗病毒药物耐药性产生无反应性和, 为慢性 HBV 感染的治疗研究 提供了新的研究方向;
2.由实施例 1-3 可知, 本发明的抗病毒药物免疫联合, 相比于现有的抗病 毒疗法, 能更有效地激活机体的体液和细胞免疫水平, 显著增强了免疫效果; 3.本发明的药物复合物, 使用方便, 成本低, 副作用小, 易于推广;
4.本发明的药物复合物, 不仅能打破免疫耐受激起抗体反应, 更高的激活 机体的 CD4以及 CD8 T细胞反应, 包括 Thl、 Th2、 Thl7、 Te l和 Tc l7的激活, 有效通过免疫反应清除病毒, 还能预防愈后再次感染。

Claims

权利要求
1、 一种病毒免疫治疗药物复合物, 其特征在于, 由抗病毒药物, 免疫调节 药物和重组乙肝疫苗组成。
2、 按权利要求 1所述的病毒免疫治疗药物复合物, 其特征在于, 所述的抗 病毒药物选自干扰素或核酸类药物; 所述的免疫调节药物选自重组人粒细胞巨 噬细胞集落剌激因子; 所述的重组乙肝疫苗为基因工程乙肝疫苗; 其中, 抗病 毒药物的用量采用常规用药剂量, 基因工程乙型肝炎疫苗与重组人粒细胞巨噬 细胞集落剌激因子的质量配比为 1 : 1〜30。
3、 按权利要求 1所述的病毒免疫治疗药物复合物, 其特征在于, 所述的抗 病毒药物选自: 普通 IFN- α , 聚乙二醇 IFN- a 2a , 聚乙二醇 IFN- α 2b , 拉米夫定, 阿德福韦酯, 恩替卡韦, 替比夫定或替诺福韦酯; 所述的免疫调节 药物选自 GM-CSF; 所述的重组乙肝疫苗为亚单位蛋白质疫苗。
4、 按权利要求 1所述的病毒免疫治疗药物复合物, 其特征在于, 所述的药 物复合物中的抗病毒药物, 免疫调节药物和重组乙肝疫苗采用混合物形式给药, 或分别给予的方式给药, 其给药方式采用皮下或肌肉注射的方式; 或分别口服 加注射的形式给药, 或给予不同时间的先后次序形式给药。
5、 按权利要求 4所述的病毒免疫治疗药物复合物, 其特征在于, 所述的药 物复合物中的抗病毒药物, 免疫调节药物和重组乙肝疫苗的给药次序为: 抗病 毒药物给药在基因工程乙肝疫苗给药前; 或重组人粒细胞巨噬细胞集落剌激因 子给药在基因工程乙肝疫苗给药前。
6、 权利要求 1所述的病毒免疫治疗药物复合物在制备治疗乙型肝炎药物中 的用途。
7、 按权利要求 6的用途, 其特征在于, 所述的乙型肝炎为慢性乙型肝炎。
8、 按权利要求 6的用途, 其特征在于, 所述的药物复合物其给药方式采用 皮下或肌肉注射的方式, 或以混合物形式给药, 或分别口服加注射的形式给药, 或给予不同时间的先后次序形式给药。
9、 按权利要求 8所述的用途, 其特征在于, 所述的给药方式中, 所述的抗 病毒药物给药在基因工程乙肝疫苗给药前。
10、 按权利要求 8所述的用途, 其特征在于, 所述的给药方式中, 所述的 重组人粒细胞巨噬细胞集落剌激因子给药在基因工程乙肝疫苗给药前。
PCT/CN2014/000717 2013-07-26 2014-07-28 一种病毒免疫治疗药物复合物及其用途 WO2015010450A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167002137A KR102254955B1 (ko) 2013-07-26 2014-07-28 바이러스 면역치료 약물 복합체 및 이의 용도
EP14829818.5A EP3025730A4 (en) 2013-07-26 2014-07-28 Viral immunotherapy drug complex and uses thereof
JP2016528301A JP6629195B2 (ja) 2013-07-26 2014-07-28 ウイルス免疫療法用の医薬組成物およびその使用
US15/007,160 US10086067B2 (en) 2013-07-26 2016-01-26 Pharmaceutical composition for viral immunotherapy and uses thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310322617.0 2013-07-26
CN201310322617.0A CN104338132A (zh) 2013-07-26 2013-07-26 一种病毒免疫治疗药物复合物及其用途

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/007,160 Continuation-In-Part US10086067B2 (en) 2013-07-26 2016-01-26 Pharmaceutical composition for viral immunotherapy and uses thereof

Publications (1)

Publication Number Publication Date
WO2015010450A1 true WO2015010450A1 (zh) 2015-01-29

Family

ID=52392668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000717 WO2015010450A1 (zh) 2013-07-26 2014-07-28 一种病毒免疫治疗药物复合物及其用途

Country Status (6)

Country Link
US (1) US10086067B2 (zh)
EP (1) EP3025730A4 (zh)
JP (1) JP6629195B2 (zh)
KR (1) KR102254955B1 (zh)
CN (2) CN110859961A (zh)
WO (1) WO2015010450A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180125985A (ko) * 2016-03-31 2018-11-26 센트로 데 인제니에리아 제네티카 와이 바이오테크놀로지아 B형 간염 바이러스의 표면 및 뉴클레오캡시드 항원을 포함하는 제약학적 조성물
WO2018166298A1 (en) * 2017-03-13 2018-09-20 Fudan University Immunopotentiator, immunotherapeutic pharmaceutical composition and its preparation and use
CN108567977B (zh) * 2017-03-13 2022-04-12 复旦大学 一种免疫增强剂、免疫治疗药物组合物及其制备与用途
CN112245570A (zh) * 2019-07-22 2021-01-22 厦门特宝生物工程股份有限公司 一种基于干扰素的疾病治疗方法
CN111317816A (zh) * 2020-02-05 2020-06-23 翁炳焕 一种新型冠状病毒肺炎双价疫苗的制备方法
CN115282278A (zh) * 2022-07-13 2022-11-04 山东大学 胆固醇调节剂作为抗原递呈促进剂在乙肝治疗中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1990043A (zh) 2005-12-12 2007-07-04 华北制药集团新药研究开发有限责任公司 重组人粒细胞巨噬细胞集落刺激因子在制备治疗或预防乙型肝炎药物中的用途
CN101509008A (zh) * 2009-03-11 2009-08-19 李君武 乙肝病毒L基因和hGM-CSF的融合基因及其表达载体的构建与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103217533B (zh) * 2012-01-21 2016-01-06 厦门大学 Anti-HBc定量检测方法及其在监控慢性乙肝患者病情发展和预测治疗疗效中的用途

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1990043A (zh) 2005-12-12 2007-07-04 华北制药集团新药研究开发有限责任公司 重组人粒细胞巨噬细胞集落刺激因子在制备治疗或预防乙型肝炎药物中的用途
CN101509008A (zh) * 2009-03-11 2009-08-19 李君武 乙肝病毒L基因和hGM-CSF的融合基因及其表达载体的构建与应用

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
CRUCIANI M; MENGOLI C; SERPELLONI G; MAZZI R; BOSCO 0; MALENA: "Granulocyte macrophage colony-stimulating factor as an adjuvant for hepatitis vaccination: a meta-analysis", VACCINE, vol. 25, no. 4, 2007, pages 709 - 718, XP005798929, DOI: doi:10.1016/j.vaccine.2006.08.015
DING, FENGYING;: "Clinical Observation on Combination Therapy of Interferon-alpha1b and Hepatitis B Gene Vaccine for Chronic Hepatitis B in 40 cases", SHANDONG MEDICAL JOURNAL, vol. 42, no. 30, 31 July 2002 (2002-07-31), pages 45 - 46, XP008182783 *
FENG, LI ET AL.: "Progress in the Developments of Hepatitis B Vaccine and its Adjuvants", CHINESE JOURNAL OF NEW DRUGS, vol. 16, no. 20, 31 October 2007 (2007-10-31), pages 1660 - 1665, XP008182784 *
MORREY; BAILEY K; KORBA; SIDWELL R: "Utilization of transgenic mice replicating high levels of hepatitis B virus for antiviral evaluation of lamivudine", ANTIVIRAL RESEARCH, vol. 42, no. 2, 1999, pages 97 - 108
PAUL N; HAN S-H: "Combination Therapy for Chronic Hepatitis B: Current Indications", CURRENT HEPATITIS REPORTS, vol. 10, no. 2, 2011, pages 98 - 105, XP019897577, DOI: doi:10.1007/s11901-011-0095-1
RAJKUMAR CG; VARSHA T; SEYED N; SHIV KS: "Efficacy of granulocyte-macrophage colony-stimulating factor or lamivudine combination with recombinant interferon in non-responders to interferon in hepatitis B virus-related chronic liver disease patients", JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2002, pages 17
See also references of EP3025730A4
VAN DE LAAR L; COFFER P; WOLTMAN A: "Regulation of dendritic cell development by GM-CSF: molecular control and implications for immune homeostasis and therapy", BLOOD, vol. 119, no. 15, 2012, pages 3383 - 3393, XP055380210, DOI: doi:10.1182/blood-2011-
WANJALLA C; GOLDSTEIN E; WIRBLICH; SCHNELL M: "A role for granulocyte-macrophage colony-stimulating factor in the regulation of CD8(+) T cell responses to rabies virus", VIROLOGY, vol. 426, no. 2, 2012, pages 120 - 133, XP028403702, DOI: doi:10.1016/j.virol.2012.01.025
WU, XIUYING ET AL.: "Curative Effect Observation on Combination Therapy of Lamivudine and Hepatitis B Vaccine for Chronic Hepatitis B", THE MEDICAL JOURNAL OF INDUSTRIAL ENTERPRISE, vol. 17, no. 05, 31 October 2004 (2004-10-31), pages 17 - 18, XP008182789 *
ZHANG, JUNXIN ET AL.: "Combination Therapy of Lamivudine and Hepatitis B Vaccine fo Chronic Hepatitis B: an Analysis of 39 Cases", WORLD CHINESE JOURNAL OF DIGESTOLOGY, vol. 17, no. 06, 28 February 2009 (2009-02-28), pages 614 - 617, XP008182785 *
ZHANG, YIJUN;: "Comments on Antiviral Treatment of Chronic Hepatitis B", INFECTIOUS DISEASE INFORMATION, vol. 15, no. 03, 30 June 2002 (2002-06-30), pages 102 - 103, XP009193573 *

Also Published As

Publication number Publication date
CN110859961A (zh) 2020-03-06
EP3025730A1 (en) 2016-06-01
JP2016525523A (ja) 2016-08-25
CN104338132A (zh) 2015-02-11
US10086067B2 (en) 2018-10-02
KR102254955B1 (ko) 2021-05-24
JP6629195B2 (ja) 2020-01-15
EP3025730A4 (en) 2017-04-19
US20160136265A1 (en) 2016-05-19
KR20160042875A (ko) 2016-04-20

Similar Documents

Publication Publication Date Title
WO2015010450A1 (zh) 一种病毒免疫治疗药物复合物及其用途
Du et al. Astragalus polysaccharides enhance immune responses of HBV DNA vaccination via promoting the dendritic cell maturation and suppressing Treg frequency in mice
JP6499592B2 (ja) B型肝炎ワクチン
Zhou et al. Dendritic cell‐based immunity and vaccination against hepatitis C virus infection
Qing et al. Construction of an HBV DNA vaccine by fusion of the GM-CSF gene to the HBV-S gene and examination of its immune effects in normal and HBV-transgenic mice
JP2011036251A (ja) ウイルスベクターおよびその遺伝子治療のための使用
CN107488235A (zh) 一种新的增强型抗原联合多肽诱导肝癌特异性ctl细胞的制备及应用
Stewart et al. ISCOMATRIX™ adjuvant: an adjuvant suitable for use in anticancer vaccines
CN109200270B (zh) 一种能提高多肽疫苗对hpv感染肿瘤治疗效果的联合用药物及其应用
WO2022062687A1 (zh) 肿瘤复合抗原、树突状细胞多价疫苗及其应用
Niu et al. Synergistic and additive effects of cimetidine and levamisole on cellular immune responses to hepatitis B virus DNA vaccine in mice
US11771759B2 (en) Immunopotentiator, immunotherapeutic pharmaceutical composition and its preparation and use
CA2588573C (en) Immunotherapeutic formulations to generate autoantibodies capable to avoid the binding of interleukin-2 to its receptor their use in the treatment of cancer
WO2018166298A1 (en) Immunopotentiator, immunotherapeutic pharmaceutical composition and its preparation and use
CN107693788B (zh) 一种用于预防或治疗乙型肝炎的药物组合物及其用途
WO2017064558A1 (ja) 新規免疫賦活化剤
TWI827732B (zh) 用於治療b型肝炎的藥物製劑及其製備方法和用途
Ye et al. Immunization with a mixture of HIV Env DNA and VLP vaccines augments induction of CD8 T cell responses
EP1149586B1 (en) Treatment of hepatocellular carcinoma by oral administration of HBV antigens.
RU2362586C2 (ru) Фармацевтические композиции для терапевтического применения
WO2005037310A1 (fr) Vaccin combine contre l'hepatite a et b et sa preparation lyophilisee
CA3144319A1 (en) Improved therapeutic composition comprising hepatitis b antigen having s, pre-s1 and pre-s2 protein, aluminium phosphate and interferon-alpha and use thereof for treatment of hepatitis b.
Matsumoto et al. A skin graft model of immunotherapy for papillomavirus associated cervical cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14829818

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016528301

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167002137

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014829818

Country of ref document: EP