WO2015010351A1 - 一种多层金属网与金属粉末复合过滤管、滤芯的生产方法 - Google Patents

一种多层金属网与金属粉末复合过滤管、滤芯的生产方法 Download PDF

Info

Publication number
WO2015010351A1
WO2015010351A1 PCT/CN2013/081742 CN2013081742W WO2015010351A1 WO 2015010351 A1 WO2015010351 A1 WO 2015010351A1 CN 2013081742 W CN2013081742 W CN 2013081742W WO 2015010351 A1 WO2015010351 A1 WO 2015010351A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal
filter
mesh
composite
Prior art date
Application number
PCT/CN2013/081742
Other languages
English (en)
French (fr)
Inventor
王东伟
Original Assignee
Wang Dongwei
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wang Dongwei filed Critical Wang Dongwei
Priority to US14/758,616 priority Critical patent/US10092865B2/en
Publication of WO2015010351A1 publication Critical patent/WO2015010351A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • B01D29/111Making filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/10Filter screens essentially made of metal
    • B01D39/12Filter screens essentially made of metal of wire gauze; of knitted wire; of expanded metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2027Metallic material
    • B01D39/2031Metallic material the material being particulate
    • B01D39/2034Metallic material the material being particulate sintered or bonded by inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/02Plasma welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/025Seam welding; Backing means; Inserts for rectilinear seams
    • B23K9/0253Seam welding; Backing means; Inserts for rectilinear seams for the longitudinal seam of tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • B01D2239/0672The layers being joined by welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/4989Assembling or joining with spreading of cable strands

Definitions

  • the invention belongs to the technical field of refinery filtration equipment production, and relates to a supporting application in the S-Zorb device 101, 102, 103, 104, 105, 110, 111, 108 device of the China Petrochemical Co., Ltd., the raw material oil filter device 104 and A method for producing a multi-layer metal mesh and metal powder composite filter tube and a filter element for hydrogen treatment of a F100-B device.
  • the existing metal filter used in the S-Zorb device of China Petrochemical Co., Ltd. has a large working pressure difference, generally 2.5 to <6, ie a, using such a metal filter, the filtration flow rate is low, As a result, the capacity of the entire device is low.
  • the present invention provides a method for producing a multi-layer metal mesh and a metal powder composite filter tube and a filter element which have the characteristics of low filtration resistance, large filtration flux and high pressure resistance.
  • a method for producing a multi-layer metal mesh and a metal powder composite filter tube and a filter element the process steps are as follows:
  • the wire is woven to obtain wire mesh of different meshes, and then the wire mesh of different meshes is laminated to obtain a laminated structure.
  • the principle of lamination is continuous from one side to the other side.
  • the number of the laminates is 1 to 5 layers;
  • the laminated structure is placed in a vacuum furnace, and sintered at 900 to 1500 ° C for 10 to 30 hours to obtain a multilayer support layer;
  • the support layer is taken out after cooling, using electrostatic spraying or ordinary spraying
  • the casting method is performed at 900 to 1500 ° C, and is cooled, and the thickness of the composite layer is 0. l ⁇ 0. 5mm, and then sintered at 900 to 1500 ° C, and cooling is performed on the side of the high mesh layer of the support layer.
  • a multi-layer metal mesh and metal powder composite filter sheet and tube having a multi-layer metal mesh as a structural support layer and a metal powder sintered structure as a filter layer are obtained, and then the composite filter sheet and the tube are rolled into a tubular shape by a molding machine.
  • the filter core is then welded with a argon arc welder or a plasma welder to form a multi-layer metal mesh and metal powder composite filter tube and filter product.
  • the structure of the support layer is a composite structure of a multilayer wire mesh.
  • the structural support layer has a thickness of l ⁇ 19 mm, and is formed by superposing and sintering a multi-layer metal mesh having a filtration precision of 1 to 1000.
  • the support layer and the filter layer formed by the wire are formed into a double-layer composite structure for co-sintering treatment, or the support layer formed of the wire is formed into a composite structure with the metal powder sheet.
  • the filter layer is adhered to the support layer by low-temperature spraying and then sintering by using a metal powder of 100 to 1000 mesh, and the filter layer is prepared by plasma spraying or conventional spraying, and then sintered together with the support layer.
  • the metal powder used in the filter layer is an elemental metal powder of Fe, Co, Ni, W, Mo, Cr, Cu, Al, Ti, Zn, Sn, Ta, Nb, Zr, or a plurality of these metal elements
  • the alloy powder is composed.
  • the metal mesh of the support layer is a single metal wire of Fe, Co, Ni, W, Mo, Cr, Cu, Al, Ti, Zn, Sn, Ta, Nb, Zr, or among these metal elements
  • a variety of alloy wires are prepared by preparation.
  • the multi-layer metal mesh and the metal powder composite filter sheet and the tube are processed into a non-symmetrical structure powder sintered filter tube having a composite structure by a coiling tube and a welding process.
  • the invention has the advantages that: the composite structure using the multi-layer metal mesh as the support layer and the sintered metal powder layer as the filter layer has the characteristics of low filtration resistance, large filtration flux and strong pressure resistance, and is mainly used in China Petrochemical Co., Ltd.
  • Company S-Zorb devices 101, 102, 103, 104, 105, 110, 111, 108 devices, feedstock oil filter 104 devices and hydrotreating F100-B devices can be improved while other components in the device are unchanged
  • the filtration flow rate is 10% to 50%, which greatly increases the overall output.
  • DRAWINGS BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the comparison of the test throughput of the present invention with the existing domestic and foreign similar products under the condition of a filtration precision of 1 ⁇ 10 ⁇ . detailed description
  • the invention discloses a method for producing a multi-layer metal mesh and a metal powder composite filter tube and a filter element, and the process steps are as follows:
  • the wire is woven to obtain wire mesh of different meshes, and then the wire mesh of different meshes is laminated to obtain a laminated structure.
  • the principle of lamination is continuous from one side to the other side.
  • the number of laminations is 1 ⁇ -5 layers;
  • the laminated structure is placed in a vacuum furnace, and sintered at 900 ⁇ 1500 °C for 10 ⁇ 30 hours to obtain a multi-layer support layer; 1 ⁇ 0.
  • the thickness of the composite layer is 0. l ⁇ 0.
  • the thickness of the composite layer is 0. l ⁇ 0.
  • the structure of the support layer is a composite structure of a multi-layered metal mesh; the thickness of the structural support layer is 1 ⁇ 10 mm, which is formed by superposing and sintering a multi-layer metal mesh with a filtration precision of 20 ⁇ 1000;
  • the support layer and the filter layer of the wire are formed into a double-layer composite structure for co-firing treatment, or the support layer formed of the wire is formed into a composite structure with the metal powder piece;
  • the metal mesh of the support layer is made of metal A simple metal wire of Fe, Co, Ni, W, Mo, Cr, Cu, Al, Ti, Zn, Sn, Ta, Nb, Zr, or an alloy wire composed of a plurality of these metal elements is prepared.
  • the multi-layer metal mesh and metal powder composite filter plate and tube have a multi-layer metal mesh as a structural support layer and a metal powder sintered structure as a filter layer; the filter layer is sprayed with a metal powder of 100-1000 mesh by low temperature spraying, and then sintered.
  • the method is attached to the support layer, or the filter layer is prepared by flame or plasma spraying, and then co-sintered with the support layer; the metal powder used in the filter layer is Fe, Co, Ni, W, Mo, An elemental metal powder of Cr, Cu, Al, Ti, Zn, Sn, Ta, Nb, Zr, or an alloy powder composed of a plurality of these metal elements.
  • the multi-layer metal mesh and the metal powder composite filter sheet and the tube are processed into a non-symmetrical structure powder sintered filter tube having a composite structure by a coiling tube and a welding process.
  • a composite powder sintered filter sheet and a tube having a double-layer or a three-layer structure are produced by the present invention, and the composite powder sintered filter sheet and tube have the advantages of high filtration precision, low filtration resistance and high strength. Compared with the prior art, the invention has substantial and significant progress.
  • Example 1 Take 100 sheets of 1000 inches long and 500 inches wide, 2 sheets of 40 mesh, 2 sheets of 12 mesh, 100 mesh, 40 mesh, 40 mesh, 12 mesh, 12 mesh from top to bottom, The five layers of the screen are arranged in a neat manner, and then subjected to boundary welding, welded, placed in a vacuum furnace, sintered at 900-1500 ° C, sintered for 10 hours to obtain a support layer; after the support layer is cooled and taken out, Take 1 ⁇ 2 kg of stainless steel 316L, 304, 310S powder with a particle size of 100 ⁇ 200 mesh, add 0.1%_20% of molding agent, and take it out in mixing equipment for 1-3 hours.
  • the mixing equipment is V type.
  • the machine or plasma welder welds the middle seam of the filter core, and installs the prepared filter core product in the S-Zorb device 101, 102, 103, 104, 105, 110, 1 11, 108 of China Petrochemical Co., Ltd.
  • the oil filter 104 unit and the hydrotreated F100-B unit are used.
  • Example 2 Take 500 sheets of 1000 mm long and 500 mm wide, 2 sheets of 40 mesh, 2 sheets of 12 * 64 mesh, and 500 mesh, 40 mesh, 40 mesh, 12 64 mesh, and 12 64 mesh in order from top to bottom. , the five layers of the screen are arranged neatly and then subjected to boundary welding. After welding, it is placed in a vacuum furnace, sintered at 900-1500 ° C, and sintered for 15 hours to obtain a support layer; the support layer is cooled and taken out, and then 1-2 kg of stainless steel having a particle size of 50 to 600 mesh is taken. 316 304, 310S powder, adding 0.1% ⁇ 20% of the molding agent, in the mixing The equipment is taken out after mixing for 1-3 hours.
  • the mixing equipment is a V-type mixing equipment, a double-cone mixer or a ball mill, and then the mixed stainless steel powder is cast on the re-sintered 5-layer mesh support layer, and the thickness is L-5mm, then the composite structure is placed in a vacuum furnace, sintered at 1000 1600 ° ⁇ for secondary sintering treatment, cooled and taken out to obtain a multi-layer metal mesh and metal powder composite filter, tube, and then filter
  • the tube is formed by a molding machine, and the filter sheet and the tube are rolled into a tubular filter core. Finally, the middle seam of the filter core is welded by a argon arc welder or a plasma welder, and the prepared filter core product is installed in China Petrochemical Co., Ltd.
  • Example 3 Take a metal nickel mesh with a length of 1000 mm and a width of 500 mm, wherein one of 100 meshes, one of 40 meshes, and two of ten meshes are 100 mesh, 40 mesh, 10 mesh, and 10 mesh from top to bottom.
  • the four layers of wire mesh are arranged neatly and then welded to the boundary. After welding, they are placed in a vacuum furnace, sintered at 9000 1500 ° C, and sintered for 20 hours to obtain a support layer. After the support layer is cooled, it is taken out and then taken.
  • the mixing equipment is a V-mixing device, double cone Mixer or ball mill, and then cast the mixed metal nickel powder on the re-sintered 4-layer mesh support layer to a thickness of 15 mm. Then, the composite structure is placed in a vacuum furnace and sintered at 1000 1600 ° C. After the secondary sintering treatment, after cooling and taking out, a multi-layer metal mesh and metal powder composite filter sheet and tube are obtained, and then the filter sheet and the tube are molded by a molding machine, the filter sheet and the tube are rolled into a tubular filter core, and finally the argon arc is used.
  • the welder or plasma welder will be in the middle of the filter Welded, to products prepared of the filter element is mounted in China Petrochemical Co., Ltd.

Abstract

涉及一种多层金属网与金属粉末复合过滤管、滤芯的生产方法,编织得到不同目数的金属丝网,通过叠层的方法得到叠层结构,再将叠层结构放入真空炉中进行烧结处理,金属复合层进行烧结,得到具有多层金属网作为结构支撑层和金属粉末烧结结构作为过滤层的多层金属网与金属粉末复合过滤片、管,再将复合过滤片、管用成型机将其卷成管状的过滤芯,进行焊接,制得多层金属网与金属粉末复合过滤管、滤芯产品。采用多层金属网为支撑层、金属粉末烧结层作为过滤层的复合结构,具有过滤阻力低、过滤通量大和承压能力强的特点,应用在中国石油化工有限公司S-Zorb装置,提高过滤流量30%〜50%,使得整个产量大幅度提高一倍以上。

Description

说 明 书
一种多层金属网与金属粉末复合过滤管、 滤芯的生产方法 技术领域
本发明属于炼油过滤设备生产技术领域, 涉及一种配套应用在 中国石油化工有限公司 S-Zorb装置 101、 102、 103、 104、 105、 110、 111、 108装置、原料油过滤器 104装置及加氢处理 F100-B装置的多 层金属网与金属粉末复合过滤管、 滤芯的生产方法。
背景技术
参见图 1, 对过滤材料的要求都是需要尽可能大的过滤流量, 同时过滤器本身要有很小的过滤阻力, 流通量就会大从而降低能耗。 然而在实际中,如各种金属网过滤器和普通的金属粉末管往往存在这 样的缺陷:在使用中需要过滤通量大时往往过滤精度又无法达到使用 要求, 当需要高精度过滤的时候, 这类过滤器明显会在过滤通量上达 不到使用要求。
在石化、钢铁行业应用领域由于过滤器都工作在高压和高温环境 中, 经常出现过滤精度低造成催化剂漏出损坏阀门及其它设备, 从而 导致整套过滤系统的失效, 并且使生产产量降低或停产。
目前,在中国石油化工有限公司的 S-Zorb装置内使用的现有金 属过滤芯工作压差较大, 一般为 2. 5即&〜6即 a, 用了这类金属过滤 芯过滤流量低, 从而使得整个装置的产能较低。
发明内容
为了克服现有技术的上述缺点, 本发明提供一种具有过滤阻力 低、过滤通量大和耐压能力强特点的多层金属网与金属粉末复合过滤 管、 滤芯的生产方法。
本发明解决其技术问题所采用的工艺歩骤是: 一种多层金属网与 金属粉末复合过滤管、 滤芯的生产方法, 其工艺歩骤是:
首先把金属丝通过编织得到不同目数的金属丝网,然后将不同目 数的金属丝网通过叠层的方法得到叠层结构,叠层的原则为从一侧到 另一侧的目数连续的增大, 叠层的数目为 1〜5层; 再将叠层结构放 入真空炉中, 在 900〜1500°C进行烧结处理, 持续 10〜30小时, 得 到多层支撑层; 再将该支撑层冷却后取出, 使用静电喷涂或普通喷涂 和流延方法在此支撑层的高目数层的一侧制作 100〜600 目的金属复 合层, 控制复合层的厚度为 0. l〜0. 5mm, 然后在 900〜1500°C进行烧 结, 冷却后取出, 得到具有多层金属网作为结构支撑层和金属粉末烧 结结构作为过滤层的多层金属网与金属粉末复合过滤片、管, 再将复 合过滤片、管用成型机将其卷成管状的过滤芯, 然后用氩弧焊机或等 离子焊机将管状过滤芯的中缝进行焊接,制得多层金属网与金属粉末 复合过滤管、 滤芯产品。
所述支撑层的结构为多层金属丝网的复合结构。
所述结构支撑层的厚度为 l〜19mm, 它是由过滤精度为 1〜1000 目的多层金属网通过叠加后烧结而成。
采用金属丝编制成网的支撑层和过滤层形成双层复合结构进行 共同烧结处理,或者由金属丝编制成网的支撑层与金属粉末片形成复 合结构。
所述过滤层使用 100〜1000目的金属粉末通过低温喷涂、然后烧 结的方式附着在支撑层上,使用等离子喷涂或常规喷涂方式制备过滤 层后, 再和支撑层共同烧结得到。
所述过滤层使用的金属粉末是 Fe、 Co、 Ni、 W、 Mo、 Cr、 Cu、 Al、 Ti、 Zn、 Sn、 Ta、 Nb、 Zr 的单质金属粉末, 或者是这些金属元 素中的多种所组成的合金粉末。
所述支撑层采用金属的金属网是由 Fe、 Co、 Ni、 W、 Mo、 Cr、 Cu、 Al、 Ti、 Zn、 Sn、 Ta、 Nb、 Zr 的单质金属丝, 或者是这些金属元素 中的多种所组成的合金丝通过编制得到。
所述多层金属网与金属粉末复合过滤片、管通过卷管和焊接工艺 加工成具有复合结构的非对称结构粉末烧结过滤管。
本发明的有益效果是: 采用多层金属网为支撑层、金属粉末烧结 层作为过滤层的复合结构, 具有过滤阻力低、过滤通量大和耐压能力 强的特点,主要应用在中国石油化工有限公司 S-Zorb装置 101、 102、 103、 104、 105、 110、 111、 108装置、 原料油过滤器 104装置及加 氢处理 F100-B装置, 能够在装置内其他部件不变的情况下, 提高过 滤流量 10%〜50%, 从而使得整个产量大幅度提高。
附图说明 图 1是本发明与现有国内国外同类产品在过滤精度为 1 μ〜10 μ的条 件下测试流通量的比较示意图。 具体实施方式
下面结合实施例对本发明进一歩说明。
一种多层金属网与金属粉末复合过滤管、滤芯的生产方法, 其工 艺歩骤是:
首先把金属丝通过编织得到不同目数的金属丝网,然后将不同目 数的金属丝网通过叠层的方法得到叠层结构,叠层的原则为从一侧到 另一侧的目数连续的增大, 叠层的数目为 1〜- 5层; 再将叠层结构放 入真空炉中, 在 900〜1500°C进行烧结处理, 持续 10〜30小时, 得 到多层支撑层; 再将该支撑层冷却后取出, 使用静电喷涂或普通喷涂 和流延方法在此支撑层的高目数层的一侧制作 100〜600 目的金属复 合层, 控制复合层的厚度为 0. l〜0. 5mm, 然后在 900〜1500°C进行烧 结, 冷却后取出, 得到具有多层金属网作为结构支撑层和金属粉末烧 结结构作为过滤层的多层金属网与金属粉末复合过滤片、管, 再将复 合过滤片、管用成型机将其卷成管状的过滤芯, 然后用氩弧焊机或等 离子焊机将管状过滤芯的中缝进行焊接,制得多层金属网与金属粉末 复合过滤管、 滤芯产品。
所述支撑层的结构为多层金属丝网的复合结构;所述结构支撑层 的厚度为 l〜10mm, 它是由过滤精度为 20〜1000 目的多层金属网通 过叠加后烧结而成;采用金属丝编制成网的支撑层和过滤层形成双层 复合结构进行共烧处理,或者由金属丝编制成网的支撑层与金属粉末 片形成复合结构; 所述支撑层采用金属的金属网是由 Fe、 Co, Ni、 W、 Mo、 Cr、 Cu、 Al、 Ti、 Zn、 Sn、 Ta、 Nb、 Zr 的单质金属丝, 或者是 这些金属元素中的多种所组成的合金丝通过编制得到。
所述多层金属网与金属粉末复合结过滤片、管具有多层金属网作 为结构支撑层和金属粉末烧结结构作为过滤层; 所述过滤层使用 100〜1000目的金属粉末通过低温喷涂、 然后烧结的方式附着在支撑 层上, 或者使用火焰或等离子喷涂的方式制备过滤层后, 再和支撑层 共烧结得到; 所述过滤层使用的金属粉末是 Fe、 Co, Ni、 W、 Mo、 Cr、 Cu、 Al、 Ti、 Zn、 Sn、 Ta、 Nb、 Zr 的单质金属粉末, 或者是这 些金属元素中的多种所组成的合金粉末。
所述多层金属网与金属粉末复合过滤片、管通过卷管和焊接工艺 加工成具有复合结构的非对称结构粉末烧结过滤管。
如图 1所示,通过本发明制作出具有双层或者三层结构的复合粉 末烧结过滤片、 管, 该复合粉末烧结过滤片、 管具有高过滤精度、 低 过滤阻力和高强度的优点, 本发明与现有技术相比, 具有实质性的显 著的进歩。
实施例 1 : 取长 1000匪、 宽 500匪的 100目 1张, 40目 2张, 12 目 2张, 从上至下依次为 100目、 40目、 40目、 12 目、 12 目, 将这 5层丝网排列整齐叠加, 然后进行边界碰焊, 焊好后放入真空炉 中, 在 900-1500°C进行烧结处理, 烧结 10小时, 得到支撑层; 将该 支撑层冷却取出后,取 1〜2公斤的粒度为 100〜200目的不锈钢 316L、 304、 310S粉末, 加入 0. 1%_20%的成型剂, 在混料设备中混合 1-3小 时取出, 该混料设备为 V型混料器材、 双锥混料器或球磨机, 再通过 再烧结好的 5 层网支撑层上流延混合好的不锈钢粉末, 厚度为 1〜 5mm, 然后将该复合结构放入真空炉中, 在 1000〜 1600°C进行烧结进 行二次烧结处理, 冷却取出后, 得到多层金属网与金属粉末复合过滤 片、 管, 再将过滤片、 管通过成型机成型, 将过滤片、 管卷成管状的 过滤芯, 最后用氩弧焊机或等离子焊机将过滤芯的中缝焊接起来, 将 制备得到的过滤芯产品安装在中国石油化工有限公司 S-Zorb 装置 101、 102、 103、 104、 105、 110、 1 11、 108装置、 原料油过滤器 104 装置及加氢处理 F100-B装置进行使用。
实施例 2 : 取长 1000mm、 宽 500mm的 500目 1张、 40目 2张、 12 *64目 2张, 从上至下依次为 500目、 40目、 40目、 12 64目、 12 64 目, 将这 5层丝网排列整齐叠加然后进行边界碰焊。 焊好后放 入真空炉中, 在 900-1500°C进行烧结处理, 烧结 15小时, 得到支撑 层; 将该支撑层冷却后取出, 之后再取 1-2公斤的粒度为 50〜600目 的不锈钢 316 304、 310S粉末, 加入 0. 1%〜20%的成型剂, 在混料 设备中混合 1-3小时后取出, 该混料设备为 V型混料器材、双锥混料 器或球磨机,再通过再烧结好的 5层网支撑层上流延混合好的不锈钢 粉末,厚度为 l-5mm,然后将该复合结构放入真空炉中,在 1000 1600 °〇进行烧结进行二次烧结处理, 冷却后取出, 得到多层金属网与金属 粉末复合过滤片、 管, 再将过滤片、 管通过成型机成型, 将过滤片、 管卷成管状的过滤芯,最后用氩弧焊机或等离子焊机将过滤芯的中缝 焊接起来, 将制备得到的过滤芯产品安装在中国石油化工有限公司 S-Zorb装置 101 102 103 104 105 110 111 108装置、 原料 油过滤器 104装置及加氢处理 F100-B装置进行使用。 实施例 3:取长 1000 宽 500mm的金属镍网,其中 100目 1张、 40 目 1张、 10 目 2张, 从上至下依次为 100 目、 40 目、 10 目、 10 目, 将这 4层丝网排列整齐叠加然后进行边界碰焊, 焊好后放入真空 炉中, 在 9000 1500°C进行烧结处理, 烧结 20小时, 得到支撑层; 将该支撑层冷却后取出,之后再取 1-2公斤的粒度为 50 600目的金 属镍粉末, 加入 0. 1% 20%的成型剂, 在混料设备中混合 1 3小时 后取出, 该混料设备为 V型混料器材、 双锥混料器或球磨机, 再通过 再烧结好的 4 层网支撑层上流延混合好的金属镍粉末, 厚度为 1 5mm, 然后将该复合结构放入真空炉中, 在 1000 1600°C进行烧结进 行二次烧结处理, 冷却取出后, 得到多层金属网与金属粉末复合过滤 片、 管, 再将过滤片、 管通过成型机成型, 将过滤片、 管卷成管状的 过滤芯, 最后用氩弧焊机或等离子焊机将过滤芯的中缝焊接起来, 将 制备得到的过滤芯产品安装在中国石油化工有限公司 S-Zorb 装置 101 102 103 104 105 110 111 108装置、 原料油过滤器 104 装置及加氢处理 F100-B装置进行使用。

Claims

权 利 要 求 书
1、 一种多层金属网与金属粉末复合过滤管、 滤芯的生产方法, 其 特征在于工艺歩骤是:
首先把金属丝通过编织得到不同目数的金属丝网,然后将不同目 数的金属丝网通过叠层的方法得到叠层结构,叠层的原则为从一侧到 另一侧的目数连续的增大, 叠层的数目为 1〜5层; 再将叠层结构放 入真空炉中, 在 900〜1500°C进行烧结处理, 持续 10〜30小时, 得 到多层支撑层; 再将该支撑层冷却后取出, 使用静电喷涂或普通喷涂 和流延方法在此支撑层的高目数层的一侧制作 100〜600 目的金属复 合层, 控制复合层的厚度为 0. l〜0. 5mm, 然后在 900〜1500°C进行烧 结, 冷却后取出, 得到具有多层金属网作为结构支撑层和金属粉末烧 结结构作为过滤层的多层金属网与金属粉末复合过滤片、管, 再将复 合过滤片、管用成型机将其卷成管状的过滤芯, 然后用氩弧焊机或等 离子焊机将管状过滤芯的中缝进行焊接,制得多层金属网与金属粉末 复合过滤管、 滤芯产品。
2、 如权利要求 1所述多层金属网与金属粉末复合过滤管、 滤芯 的生产方法, 其特征是: 所述支撑层的结构为多层金属丝网的复合结
Λ 3、 如权利要求 1所述多层金属网与金属粉末复合过滤管、 滤芯 的生产方法, 其特征是: 所述结构支撑层的厚度为 l〜19mm, 它是由 过滤精度为 1〜1000目的多层金属网通过叠加后烧结而成。
4、 如权利要求 1所述多层金属网与金属粉末复合过滤管、 滤芯 的生产方法, 其特征是: 采用金属丝编制成网的支撑层和过滤层形成 双层复合结构进行共同烧结处理,或者由金属丝编制成网的支撑层与 金属粉末片形成复合结构。
5、 如权利要求 1所述多层金属网与金属粉末复合过滤管、 滤芯 的生产方法, 其特征是: 所述过滤层使用 100〜1000目的金属粉末通 过低温喷涂、然后烧结的方式附着在支撑层上, 使用等离子喷涂或常 规喷涂方式制备过滤层后, 再和支撑层共同烧结得到。
6、 如权利要求 1或 5所述多层金属网与金属粉末复合过滤管、 滤芯的生产方法, 其特征是: 所述过滤层使用的金属粉末是 Fe、 Co、 Ni、 W、 Mo、 Cr、 Cu、 Al、 Ti、 Zn、 Sn、 Ta、 Nb、 Zr的单质金属粉末, 或者是这些金属元素中的多种所组成的合金粉末。
7、 如权利要求 1或 2所述多层金属网与金属粉末复合过滤管、 滤芯的生产方法, 其特征是: 所述支撑层采用金属的金属网是由 Fe、 Co、 Ni、 W、 Mo、 Cr、 Cu、 Al、 Ti、 Zn、 Sn、 Ta、 Nb、 Zr的单质金属 丝, 或者是这些金属元素中的多种所组成的合金丝通过编制得到。
8、 如权利要求 1所述多层金属网与金属粉末复合过滤管、 滤芯 的生产方法, 其特征是: 所述多层金属网与金属粉末复合过滤片、 管 通过卷管和焊接工艺加工成具有复合结构的非对称结构粉末烧结过 滤管。
PCT/CN2013/081742 2013-07-22 2013-08-19 一种多层金属网与金属粉末复合过滤管、滤芯的生产方法 WO2015010351A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/758,616 US10092865B2 (en) 2013-07-22 2013-08-19 Method for producing composite filter tube and filter element made of multilayer metal mesh and metal powders

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310308196.6 2013-07-22
CN2013103081966A CN103357881A (zh) 2013-07-22 2013-07-22 一种多层金属网与金属粉末复合过滤管、滤芯的生产方法

Publications (1)

Publication Number Publication Date
WO2015010351A1 true WO2015010351A1 (zh) 2015-01-29

Family

ID=49360616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/081742 WO2015010351A1 (zh) 2013-07-22 2013-08-19 一种多层金属网与金属粉末复合过滤管、滤芯的生产方法

Country Status (3)

Country Link
US (1) US10092865B2 (zh)
CN (1) CN103357881A (zh)
WO (1) WO2015010351A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104874233A (zh) * 2015-06-02 2015-09-02 江苏华强新能源科技有限公司 一种燃气轮机用非对称结构预氧化金属滤材的制备工艺

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10525384B2 (en) * 2014-01-15 2020-01-07 Fuji Filter Manufacturing Co., Ltd. Filter element and filtering apparatus
JP6203145B2 (ja) * 2014-08-01 2017-09-27 株式会社東芝 濾過用フィルター
CN104524870A (zh) * 2015-01-07 2015-04-22 江苏云才材料有限公司 一种镍铜合金烧结丝网管的制备方法
CN104857775A (zh) * 2015-06-05 2015-08-26 徐小平 一种金属粉末和金属烧结网复合滤芯及其生产方法
CN105536356A (zh) * 2016-01-22 2016-05-04 韶关市贝瑞过滤科技有限公司 一种S-Zorb装置用高强度、抗断裂的滤芯
CN106041101B (zh) * 2016-07-13 2018-06-15 西北有色金属研究院 一种复合金属多孔管及其制备方法
CN106825558B (zh) * 2017-04-07 2018-10-02 华北理工大学 一种活性复合材料爆炸成型模具
CN109158607B (zh) * 2018-09-14 2020-06-30 河南德源净化装备有限公司 一种制备增强型金属粉末烧结多层过滤管的方法
CN109202223A (zh) * 2018-09-17 2019-01-15 上海航天设备制造总厂有限公司 一种多层烧结网钨极氩弧焊接的方法
CN109098815B (zh) * 2018-09-21 2020-10-16 朱明箴 机油滤清器和具有其的车辆
CN110193601B (zh) * 2019-06-13 2021-10-15 金堆城钼业股份有限公司 一种双层或多层难熔金属复合管材的制备方法
CN111098051B (zh) * 2020-01-10 2024-02-09 安泰环境工程技术有限公司 一种铁铝基金属间化合物滤芯及其制备方法
CN111228877B (zh) * 2020-01-17 2021-11-12 格锐德过滤科技(浙江)有限公司 一种金属过滤层的制备工艺及滤芯
CN111203018A (zh) * 2020-01-17 2020-05-29 格锐德过滤科技(浙江)有限公司 一种金属过滤层的制备工艺及滤芯
CN112569695A (zh) * 2020-11-10 2021-03-30 格锐德过滤科技(浙江)有限公司 一种金属粉末和金属烧结网复合滤芯的制备方法
CN113618063B (zh) * 2021-08-02 2022-12-02 武汉理工大学 一种通孔新型金属基复合泡沫材料及其制备方法
CN115487604A (zh) * 2022-09-23 2022-12-20 东莞市名创传动科技有限公司 一种复合烧结过滤材料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256364A (ja) * 2007-03-30 2008-10-23 Kurita Water Ind Ltd 液体クロマトグラフィ用のフィルタ、その製造方法および液体クロマトグラフィ装置
CN201572564U (zh) * 2009-12-01 2010-09-08 韶关市贝瑞过滤科技有限公司 一种用于真空转鼓式过滤机的刮板式过滤桶
CN101987267A (zh) * 2010-12-09 2011-03-23 王东伟 一种金属网不锈钢纤维毡复合过滤片的生产方法
CN102059340A (zh) * 2010-12-09 2011-05-18 王东伟 一种多层金属网与金属粉末复合过滤片的生产方法
CN102059024A (zh) * 2010-11-26 2011-05-18 王东伟 一种带强化相的非对称结构粉末烧结过滤片的生产方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3690606A (en) * 1968-05-27 1972-09-12 Pall Corp Anisometric compressed and bonded multilayer knitted wire mesh composites
US3795288A (en) * 1968-05-27 1974-03-05 Pall Corp Gas conduit with acoustic insulation comprising anisometric compressed and bonded multilayer knitted wire mesh composites
JP3857729B2 (ja) * 1996-02-02 2006-12-13 ポール・コーポレーション 煤フィルタ
JP2001314716A (ja) * 2000-05-09 2001-11-13 Nippon Seisen Co Ltd 積層金属濾材とその製造方法、並びに該濾材によるフィルターエレメント
US20070220856A1 (en) * 2006-03-23 2007-09-27 Fiber Tech Co., Ltd. Metal fiber media, filter for exhaust gas purifier using the same as filter member, and method for manufacturing the filter
US8679218B2 (en) * 2010-04-27 2014-03-25 Hollingsworth & Vose Company Filter media with a multi-layer structure
CN102794053B (zh) * 2012-08-21 2015-04-22 韶关市贝瑞过滤科技有限公司 梯度多层复合结构粉末烧结滤芯及其生产方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256364A (ja) * 2007-03-30 2008-10-23 Kurita Water Ind Ltd 液体クロマトグラフィ用のフィルタ、その製造方法および液体クロマトグラフィ装置
CN201572564U (zh) * 2009-12-01 2010-09-08 韶关市贝瑞过滤科技有限公司 一种用于真空转鼓式过滤机的刮板式过滤桶
CN102059024A (zh) * 2010-11-26 2011-05-18 王东伟 一种带强化相的非对称结构粉末烧结过滤片的生产方法
CN101987267A (zh) * 2010-12-09 2011-03-23 王东伟 一种金属网不锈钢纤维毡复合过滤片的生产方法
CN102059340A (zh) * 2010-12-09 2011-05-18 王东伟 一种多层金属网与金属粉末复合过滤片的生产方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104874233A (zh) * 2015-06-02 2015-09-02 江苏华强新能源科技有限公司 一种燃气轮机用非对称结构预氧化金属滤材的制备工艺

Also Published As

Publication number Publication date
US20150352469A1 (en) 2015-12-10
CN103357881A (zh) 2013-10-23
US10092865B2 (en) 2018-10-09

Similar Documents

Publication Publication Date Title
WO2015010351A1 (zh) 一种多层金属网与金属粉末复合过滤管、滤芯的生产方法
CN102059340B (zh) 一种多层金属网与金属粉末复合过滤片的生产方法
CN102794053B (zh) 梯度多层复合结构粉末烧结滤芯及其生产方法
CN113020423B (zh) 一种异种金属叠层薄壁筒形件成形方法
US20160271674A1 (en) Method for preparing metal composite plate strip by rolling
CN106041101B (zh) 一种复合金属多孔管及其制备方法
WO2016070780A1 (zh) 一种金属构件埋弧堆焊成形方法
CN102179105B (zh) 金属粉末涂层纳米级过滤精度不锈钢纤维毡的生产方法
CN104624703A (zh) 一种任意组合多层金属复合板的制造方法
CN104857775A (zh) 一种金属粉末和金属烧结网复合滤芯及其生产方法
CN111228877B (zh) 一种金属过滤层的制备工艺及滤芯
CN102068857A (zh) 一种金属纤维毡的生产方法
CN102059024B (zh) 一种带强化相的非对称结构粉末烧结过滤片的生产方法
CN111203018A (zh) 一种金属过滤层的制备工艺及滤芯
CN101987267A (zh) 一种金属网不锈钢纤维毡复合过滤片的生产方法
JP6706258B2 (ja) 金属繊維を含む焼結金属体
CN105965020A (zh) 一种复合金属多孔板的制备方法
CN105536356A (zh) 一种S-Zorb装置用高强度、抗断裂的滤芯
CN204411961U (zh) 用于在粉末状的制品和气体之间进行分隔的过滤元件
CN107983016A (zh) 一种金属粉末和金属烧结网界面复合滤芯及其生产方法
CN103349869A (zh) 一种复式高通量不锈钢金属烧结网滤芯及其制作方法
CN205516897U (zh) 一种S-Zorb装置用高强度、抗断裂的滤芯
CN102389975B (zh) 高比重钨合金板材的制备方法
CN202247013U (zh) 一种蓝宝石单晶炉用的分体层叠式圆筒形实体热屏
CN207694349U (zh) 一种贮箱液路过滤器滤芯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890179

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14758616

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 31-05-2016 )

122 Ep: pct application non-entry in european phase

Ref document number: 13890179

Country of ref document: EP

Kind code of ref document: A1