WO2015008834A1 - Silane compound containing active ester group and material produced using same - Google Patents

Silane compound containing active ester group and material produced using same Download PDF

Info

Publication number
WO2015008834A1
WO2015008834A1 PCT/JP2014/069056 JP2014069056W WO2015008834A1 WO 2015008834 A1 WO2015008834 A1 WO 2015008834A1 JP 2014069056 W JP2014069056 W JP 2014069056W WO 2015008834 A1 WO2015008834 A1 WO 2015008834A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
cell
group
silane compound
supported
Prior art date
Application number
PCT/JP2014/069056
Other languages
French (fr)
Japanese (ja)
Inventor
高広 岸岡
大輔 佐久間
泰斗 西野
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2015527335A priority Critical patent/JP6332646B2/en
Publication of WO2015008834A1 publication Critical patent/WO2015008834A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54393Improving reaction conditions or stability, e.g. by coating or irradiation of surface, by reduction of non-specific binding, by promotion of specific binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages

Definitions

  • the present invention relates to a silane compound containing an active ester group (also referred to herein as “silane coupling agent”), and in particular, a novel silane coupling agent that can be easily synthesized, and the present invention relates to a material using the silane coupling agent.
  • silane coupling agent also referred to herein as “silane coupling agent”
  • the technology for immobilizing biomaterials such as nucleic acids, antibodies, and proteins on inorganic material substrates such as glass and silicon wafers is useful in the fields of cell culture, cell / protein separation / detection, genome analysis, and proteome analysis.
  • a silane coupling agent is used as a crosslinking agent.
  • various silane coupling agents have been proposed so far (Patent Documents 1 to 3).
  • silane compounds described in Patent Documents 1 to 3 are synthesized through a plurality of reaction steps, there is a problem that the synthesis is complicated and is not suitable for industrial production. Therefore, a silane compound that can be easily synthesized using a compound that is easily available in the market is desired. Then, this invention aims at provision of the novel silane compound which can be synthesize
  • An object of the present invention is to provide a substrate having a modified high function. These substrates can be expected to be applied as, for example, cell scaffolding materials or cells / proteins / compound separation / detection materials.
  • R 1 represents an optionally substituted linear or branched alkyl group having 1 to 10 carbon atoms
  • R 2 represents an optionally substituted linear or branched alkoxy group having 1 to 6 carbon atoms, a halogen atom or a combination thereof
  • a is an integer of 0 to 2
  • X represents a hydrogen atom, a phenyl group, or a linear or branched alkyl group having 1 to 6 carbon atoms which may be substituted
  • Y represents a linear or branched alkylene group having 1 to 10 carbon atoms which may be substituted
  • Z is a monovalent organic group represented by formula (1-1) or formula (1-2)
  • R 3 to R 5 each independently represents a hydrogen atom or an optionally substituted linear or branched alkyl group having 1 to 10 carbon atoms
  • T 1 represents a hydrocarbon ring or aromatic ring having 4 to 10 carbon atoms
  • the present invention relates to the silane compound according to the first aspect, wherein Z is a monovalent organic group represented by the formula (1-1), and R 3 and R 4 are hydrogen atoms.
  • the present invention relates to a silane-supported product in which the silane compound described in the first or second aspect is supported on a supported material.
  • the present invention relates to the silane-supported article according to the third aspect, wherein the supported substance is a protein, a cell, a compound, or a combination thereof.
  • the present invention relates to the silane carrier according to the fourth aspect, wherein the protein is an antibody, a disease marker, a cell growth factor, a cell adhesion factor, or a combination thereof.
  • the present invention relates to the silane support according to the fourth aspect, wherein the compound is a peptide, an amino acid, a pharmaceutical, a physiologically active substance, or a combination thereof.
  • the present invention relates to a composition for forming a monomolecular layer or a multimolecular layer, comprising the silane compound described in the first aspect or the second aspect and an organic solvent.
  • the present invention relates to the monomolecular layer or multimolecular layer forming composition according to the seventh aspect, further comprising water and / or an organic acid.
  • the present invention relates to a substrate surface-modified with the silane compound described in the first aspect or the second aspect.
  • the present invention relates to the base according to the ninth aspect, in which a supported substance is supported on the surface-modified surface of the base.
  • the present invention relates to the substrate according to the tenth aspect, in which the supported substance is a protein, a cell, a compound, or a combination thereof.
  • the present invention relates to the substrate according to the eleventh aspect, wherein the protein is an antibody, a disease marker, a cell growth factor, a cell adhesion factor, or a combination thereof.
  • the present invention relates to the substrate according to the eleventh aspect, wherein the compound is a peptide, an amino acid, a pharmaceutical, a physiologically active substance, or a combination thereof.
  • the present invention relates to the base according to any one of the ninth to thirteenth aspects, wherein the base is a flat substrate, a nonwoven fabric, or fine particles.
  • the present invention relates to the substrate according to the fourteenth aspect, wherein the fine particles are silica-based fine particles, plastic-based fine particles, metal fine particles, or magnetic fine particles.
  • the present invention relates to the substrate according to the fourteenth aspect or the fifteenth aspect, wherein the fine particles have a diameter of 0.001 ⁇ m to 1000 ⁇ m.
  • the present invention relates to a cell scaffold material produced using the substrate according to any one of the ninth to sixteenth aspects.
  • the present invention relates to a cell, protein, or compound separation / detection material produced using the substrate according to any one of the ninth to sixteenth aspects.
  • a step of applying the monomolecular layer or multimolecular layer forming composition according to the seventh aspect or the eighth aspect to a substrate a step of drying the substrate, a step of cleaning the substrate, and the substrate
  • the silane compound of the present invention can be easily synthesized using a compound that is readily available on the market.
  • the target silane compound can be obtained in only one step.
  • the silane compound of the present invention is useful as a cell scaffold material, a cell / protein separation material, a cell / protein detection material, and the like.
  • the cell / protein / compound separation / detection material of the present invention can selectively separate / detect cells / proteins or compounds.
  • FIG. 1 is an optical micrograph of HepG2 cells on a glass substrate treated in Example 1 in a cell adhesion test.
  • FIG. 2 is an optical micrograph of HepG2 cells on the glass substrate treated in Example 2 in the cell adhesion test.
  • FIG. 3 is an optical micrograph of HepG2 cells on the glass substrate treated in Example 3 in the cell adhesion test.
  • the present invention is a silane compound represented by the formula (1).
  • R 1 represents an optionally substituted linear or branched alkyl group having 1 to 10 carbon atoms
  • R 2 represents an optionally substituted linear or branched alkoxy group having 1 to 6 carbon atoms, a halogen atom or a combination thereof
  • a is an integer of 0 to 2
  • X represents a hydrogen atom, a phenyl group, or a linear or branched alkyl group having 1 to 6 carbon atoms which may be substituted
  • Y represents a linear or branched alkylene group having 1 to 10 carbon atoms which may be substituted
  • Z is a monovalent organic group represented by formula (1-1) or formula (1-2)
  • R 3 to R 5 each independently represents a hydrogen atom or an optionally substituted linear or branched alkyl group having 1 to 10 carbon atoms
  • T 1 represents a hydrocarbon ring or aromatic ring having 4 to 10 carbon atoms
  • b is
  • Examples of the linear or branched alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, and tertiary butyl group.
  • Examples of the linear or branched alkoxy group having 1 to 6 carbon atoms include methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, tertiary butoxy group, and hexyloxy group.
  • Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Examples of the linear or branched alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, an isobutyl group, and a tertiary butyl group.
  • Examples of the linear or branched alkylene group having 1 to 10 carbon atoms include methylene group, ethylene group, propylene group, isopropylene group, isobutylene group, and n-octylene group.
  • Examples of the hydrocarbon ring having 4 to 10 carbon atoms include a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a norbornane ring, and a norbornene ring.
  • Examples of the aromatic ring having 4 to 10 carbon atoms include a benzene ring and a naphthalene ring.
  • the linear or branched alkylene group of 1 to 10 is an arbitrary substituent such as a hydroxy group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a phenyl group, a methoxycarbonyl group, an ethoxycarbonyl group, and a butoxycarbonyl group. It may be substituted with a group or the like.
  • a silane compound in which Z is a monovalent organic group represented by the formula (1-1) and R 3 and R 4 are hydrogen atoms is preferable from the viewpoint of easier synthesis.
  • the silane compound of the present invention can be synthesized, for example, by reacting the compound represented by the formula (2) and the compound represented by the formula (3) in an aprotic solvent in the presence of a base.
  • R 1 , R 2 , a, X, Y, and Z have the same definitions as those described in the above formula (1).
  • Examples of the compound represented by the formula (2) include acrylate N-succinimidyl methacrylate, N-succinimidyl methacrylate, 2-ethyl acrylate N-succinimidyl, 2-benzyl acrylate N-succinimidyl and 2-trifluoromethylacrylic acid.
  • Examples of the compound represented by the formula (3) include (3-mercaptopropyl) trimethoxysilane, (3-mercaptopropyl) triethoxysilane, 3-mercaptopropyl (dimethoxy) methylsilane, and 3-mercaptopropyl (diethoxy) methylsilane.
  • 3-mercaptopropyl (methoxy) dimethylsilane 3-mercaptopropyl (ethoxy) dimethylsilane, 3-mercaptopropyl (ethoxy) dimethylsilane, (3-mercaptooctyl) trimethoxysilane, (3-mercaptooctyl) triethoxysilane, 3-mercaptooctyl (dimethoxy) methylsilane, Examples include 3-mercaptooctyl (diethoxy) methylsilane, 3-mercaptooctyl (methoxy) dimethylsilane, and 3-mercaptooctyl (ethoxy) dimethylsilane.
  • the amount of the compound represented by the formula (3) is 0.1 to 20 times, preferably 0.5 to 10 times the molar equivalent of 1 mole equivalent of the compound represented by the formula (2). Equivalent, more preferably 1 to 5 times molar equivalent.
  • the solvent is not particularly limited as long as it is aprotic, but is preferably a polar solvent.
  • aprotic polar solvents include ethers such as diethyl ether, tetrahydrofuran (THF), 1,3-dimethoxyethane, 1,4-dioxane; N, N-dimethylformamide (DMF), N, N-dimethyla Amides such as cetamide and hexamethylphosphoric triamide (HMPT); dichloromethane, dimethyl sulfoxide (DMSO), acetonitrile and the like. These solvents can be used alone or in combination of two or more.
  • Examples of the base include tertiary amines such as triethylamine and diisopropylethylamine, among which triethylamine is preferable.
  • the amount of the base used is 0.001 to 20 times molar equivalent, preferably 0.005 to 5 times molar equivalent, more preferably 0.01 to 1 molar equivalent of the compound represented by the formula (2). To 1-fold molar equivalent.
  • the reaction time is appropriately selected from 0.01 to 100 hours and the reaction temperature is from 0 to 100 ° C.
  • the reaction time is 0.1 to 10 hours and the reaction temperature is 0 to 30 ° C.
  • the present invention is a silane-supported product in which the silane compound is supported on a supported material.
  • Examples of the method for supporting the silane compound on the supported material include known methods, such as a method in which the silane compound is treated with a solvent in which the supported material is dissolved and dispersed, followed by drying or heat treatment. .
  • Examples of the supported substance include proteins, cells, and compounds.
  • Examples of the protein include carcinoembryonic antigen, squamous cell carcinoma-related antigen, cytokeratin 19 fragment, sialylated sugar chain antigen KL-6, natriuretic peptide, troponin, myoglobin, and other disease markers; interleukin-1 (IL-1 ), Interleukin-2 (IL-2), interleukin-3 (IL-3), interleukin-4 (IL-4), interleukin-5 (IL-5), interleukin-6 (IL-6) ), Interleukin-7 (IL-7), interleukin-8 (IL-8), interleukin-9 (IL-9), interleukin-10 (IL-10), interleukin-11 (IL-11) ), Interleukin-12 (IL-12), interleukin-13 (IL-13), interleukin-14 (IL- 14), interleukin-15 (IL-15), interleukin-18 (IL-18), interleukin-21 (IL-21), interferon- ⁇ (IFN-
  • the cells include fibroblasts, bone marrow cells, B lymphocytes, T lymphocytes, neutrophils, erythrocytes, platelets, macrophages, monocytes, bone cells, bone marrow cells, pericytes, dendritic cells, keratinocytes, fat Cells, mesenchymal cells, epithelial cells, epidermal cells, endothelial cells, vascular endothelial cells, hepatocytes, chondrocytes, cumulus cells, nervous system cells, glial cells, neurons, oligodendrocytes, microglia, astrocytes , Cardiac cells, esophageal cells, muscle cells (eg smooth muscle cells or skeletal muscle cells), pancreatic beta cells, melanocytes, hematopoietic progenitor cells, mononuclear cells, embryonic stem cells (ES cells), embryonic tumor cells, embryos Reproductive stem cells, induced pluripotent stem cells (iPS cells), neural stem
  • Examples of the compound include angiotensin I to IV, bradykinin, fibrinopeptide, natriuretic peptide, urodilatin, guanylin, endothelin 1 to 3, salusin, urotensin, oxytocin, neurophysin, vasopressin, adrenocorticotropic hormone, melanocyte stimulating hormone , Endorphins, lipotropins, urocortin 1 to 3, luteinizing hormone releasing hormone, growth hormone releasing hormone, somatostatin, cortisatin, prolactin releasing peptide, metastin, tachykinin, substance P, neurokinin, endokinin, neurotensin, neuromedin, zenin, ghrelin , Obestatin, melanin-concentrating hormone, orexin, neuropeptide, dynorphin, neoendorpy , Endomorphin, nociceptin, pyrogluta
  • composition for forming a monomolecular layer or a multimolecular layer is a composition for forming a monomolecular layer or a multimolecular layer comprising a silane compound represented by the above formula (1) and an organic solvent.
  • “monolayer” refers to a state in which silane compounds bonded to a substrate are arranged in a single layer.
  • the “multimolecular layer” refers to a state in which another silane compound is bonded to the silane compound bonded to the substrate and several layers of the silane compound are stacked.
  • the organic solvent used in the composition for forming a monomolecular layer or a multimolecular layer of the present invention is not particularly limited as long as the silane compound represented by the above formula (1) can be dissolved.
  • Ether, ester, carbonization Examples thereof include hydrogen, ketone, aldehyde, or higher alcohol, such as methyl cellosolve acetate, ethyl cellosolve acetate, propylene glycol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, methyl isobutyl carbinol, propylene glycol monobutyl ether, propylene glycol monomethyl.
  • concentration which dissolves the silane compound represented by the said Formula (1) in the said organic solvent is arbitrary, but with respect to the total mass (total mass) of the silane compound represented by the said Formula (1), and an organic solvent.
  • the concentration of the silane compound represented by the formula (1) is 0.001 to 90% by mass, preferably 0.002 to 80% by mass, and more preferably 0.005 to 70% by mass.
  • the monomolecular layer or multimolecular layer forming composition of the present invention may contain water and / or an organic acid.
  • the water include purified water, purified water, hard water, soft water, natural water, deep ocean water, electrolytic alkali ion water, electrolytic acid ion water, ion water, and cluster water.
  • organic acid examples include acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, oxalic acid, maleic acid, methylmalonic acid, adipic acid, sebacic acid, gallic acid , Butyric acid, meritic acid, arachidonic acid, mikimic acid, 2-ethylhexanoic acid, oleic acid, stearic acid, linoleic acid, linolenic acid, salicylic acid, benzoic acid, p-aminobenzoic acid, p-toluenesulfonic acid, benzenesulfonic acid Monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, formic acid, malonic acid, sulfonic acid, phthalic acid,
  • the concentration of water contained in the composition is arbitrary, but the concentration of water is 0.001 to the total mass of the organic solvent (the total mass when two or more organic solvents are used). It is 99 mass%, Preferably it is 0.002 to 80 mass%, More preferably, it is 0.005 to 50 mass%.
  • the concentration of the organic acid contained in the composition is arbitrary, but the concentration of the organic acid relative to the total mass of the organic solvent (the total mass when two or more organic solvents are used) is 0.00. It is 001 to 50% by mass, preferably 0.002 to 30% by mass, and more preferably 0.005 to 10% by mass.
  • the present invention is a substrate whose surface is modified with the silane compound.
  • the substrate surface-modified with the silane compound of the present invention can be obtained by silanizing the substrate surface using a silane compound.
  • the substrate is not particularly limited as long as the surface is silanized by the silane compound of the present invention, but glass, silica, silicon wafer, alumina, talc, clay, aluminum, iron, mica, titanium oxide, Examples thereof include quartz, a substrate, a nonwoven fabric, and fine particles.
  • the shape of the substrate is not particularly limited, and may be a plate shape, a film shape, a three-dimensional molded body, or the like.
  • the fine particles are preferably silica-based fine particles, plastic-based fine particles, metal fine particles, and magnetic fine particles.
  • the diameter of the fine particles is usually 0.001 ⁇ m to 1000 ⁇ m, preferably 0.01 ⁇ m to 500 ⁇ m.
  • Examples of the silanization method include known methods.
  • the substrate is treated with a solvent in which the silane compound of the present invention is dissolved and then subjected to heat treatment.
  • the substrate is treated with an alkaline solution, and then the silane of the present invention is treated.
  • Examples thereof include a method of treating with an alcohol solution of the compound, followed by a heat treatment, and a method of vibrating and stirring the substrate in an organic solvent in which the silane compound of the present invention is dissolved at reflux or at room temperature.
  • the present invention also provides a substrate in which a supported substance is supported on the surface-modified surface of the substrate.
  • a supported substance is supported on the surface-modified surface of the substrate.
  • the method for supporting the supported substance on the surface-modified surface of the substrate include a method in which the surface is treated with a solvent in which the supported substance is dissolved and dispersed, followed by drying or heat treatment.
  • the supported material the supported materials listed in paragraphs [0021] to [0023] can be used.
  • the present invention is a cell scaffold material produced using the above-mentioned substrate.
  • the “material for cell scaffold” means a material in which various cell functions such as cell adhesion, proliferation, differentiation, activation, migration, migration, and morphological change are expressed and promoted by contact of the cell with the material. .
  • Base materials for producing cell scaffolding materials include hydroxyapatite, ⁇ -TCP (tricalcium phosphate), ceramics such as ⁇ -TCP, glass, polyvinyl chloride, cellulose polymers such as ethyl cellulose and acetyl cellulose, Polystyrene, polymethyl methacrylate, polycarbonate, polysulfone, polyurethane, polyester, polyamide, polypropylene, polyethylene, polybutadiene, poly (ethylene-vinyl acetate) copolymer, poly (butadiene-styrene) copolymer, poly (butadiene-acrylonitrile) copolymer, poly (ethylene) -Ethyl acrylate) copolymer, poly (ethylene-methacrylate) copolymer, polychloroprene, styrene resin, chlorosulfonated polyethylene, Examples thereof include plastics such as ethylene vinyl acetate and acrylic block copolymers.
  • plastics such
  • these base materials may be made of any one of the above substances, or may be made of a composite containing a plurality of kinds.
  • petri dishes, flasks, plastic bags, Teflon (registered trademark) bags, dishes, petri dishes, tissue culture dishes, multi dishes, micro plates examples include a microwell plate, a multiplate, a multiwell plate, a chamber slide, a cell culture flask, a spinner flask, a tube, a tray, a culture bag, and a roller bottle.
  • the form of the cell scaffold material is not particularly limited, and examples thereof include a sponge, a mesh, and a non-woven cloth-like molded article.
  • the material may be porous so that cells can be uniformly seeded.
  • the shape of the cell scaffold material is not particularly limited, and any shape such as a membrane shape, a spherical shape, a disk shape, a particle shape, or a block shape can be used.
  • Cell seeding on the cell scaffolding material can be performed using a known method, and a suspension obtained by suspending cells in a liquid such as a buffer solution, physiological saline, a culture solution, or a collagen solution.
  • the cell scaffolding material can be immersed in the suspension, or the suspension can be injected into the cell scaffolding material. Moreover, you may seed
  • the number of cells to be seeded (seeding density) can be adjusted by the cell concentration and the injection amount of the suspension, and it is preferable to adjust appropriately according to the characteristics of the type of cells used and the material for the cell scaffold. Culture conditions, culture apparatus, type of medium, type of scaffold material, content, type of additive, content of additive, culture period, culture temperature, and the like when culturing cells are appropriately selected by the party.
  • the present invention is a cell / protein / compound separation / detection material produced using the substrate.
  • “Materials for cell / protein separation / detection” refers to a sample or antibody carrying a measurement target, which selectively separates target cells / proteins from biological tissue, body fluid, bone marrow fluid, blood, cell culture fluid, etc. Means material.
  • the shape of the cell / protein separation / detection material is not particularly limited, and any shape such as a flat substrate shape, a filter shape, or a fine particle shape can be used.
  • the form of the filter may take any form such as a membrane, a sphere, a container, a cassette, a bag, a tube, and a column.
  • the material of the filter is polyolefin such as polypropylene, polyethylene, high density polyethylene, low density polyethylene, polyester, vinyl chloride, polyvinyl alcohol, vinylidene chloride, rayon, vinylon, polystyrene, acrylic (polymethyl methacrylate, polyhydroxyethyl methacrylate, acrylonitrile, Acrylic, acrylate, etc.), nylon, polyurethane, polyimide, aramid, polyamide, cupra, kevlar, carbon, polyacrylate, phenol, tetron, pulp, hemp, cellulose, kenaf, chitin, chitosan, glass, cotton, etc.
  • a material selected from one type is used.
  • Separation of cells / proteins can be performed using known methods, and materials for cell / protein separation are added to suspensions of cells / proteins such as biological tissues, body fluids, bone marrow fluids, blood, cell culture fluids, etc.
  • the suspension can be added or injected into the cell / protein separation material.
  • the suspension can be permeated.
  • the captured cells / proteins can be washed or recovered using an appropriate buffer, physiological saline, medium, or the like.
  • the cells / proteins can be peeled from the cell / protein separation material by using various chelating agents, various surfactants, ultrasonic waves and enzymes.
  • the cell / protein separating material is a magnetic fine particle
  • the cell / protein separating material retaining the cell / protein can be recovered by magnetic force. Further, if necessary, the cells captured by the cell / protein separation material can be differentiated or proliferated into specific cells by culturing them under appropriate conditions.
  • the separated cells / proteins can be detected using a known method.
  • the cell / protein to be detected may be held in the cell / protein separation material or may be peeled from the material.
  • the detection target is a cell
  • the cell captured by the cell / protein separation material can be observed using a standard microscope in this field.
  • the separated cells may be stained with a specific antibody.
  • Cells can be detected by ELISA or flow cytometry using specific antibodies that recognize cell surface markers.
  • cells can be detected by extracting DNA (deoxyribonucleic acid) or RNA (ribonucleic acid) from the separated cells and analyzing them by Southern blotting, Northern blotting, RT-PCR, or the like.
  • a staining method, a WST-1 (registered trademark) staining method, a WST-8 (registered trademark) staining method, a flow cytometry method, a method using an automatic cell number measuring apparatus, or the like can be used.
  • the detection target is a protein or peptide
  • the target protein or peptide is detected by a method using a mass spectrometer, a method using an antigen-antibody reaction such as Western blotting, dot blotting, ELISA, or flow cytometry.
  • proteins can be separated by various electrophoresis methods and detected by Coomassie brilliant blue staining or silver staining.
  • an ultraviolet absorption method As a protein or peptide quantification method, an ultraviolet absorption method, Bradford method, Raleigh method, phenol reagent method, bicinchoninic acid method (BCA method) or the like can be used.
  • the protein or peptide to be detected can be labeled in advance.
  • Examples of methods for labeling proteins or peptides include fluorescent labels, enzyme labels, biotin labels, polyethylene glycol (PEG) labels, and the like, and any method can be used.
  • fluorescent labeling method substances such as Cy3, Cy5, FITC (fluorescein isothiocyanate) and rhodamine can be used.
  • enzyme labeling method substances such as peroxidase, alkaline phosphatase, acid phosphatase, and glucose oxidase can be used.
  • the method for producing a substrate of the present invention comprises a step of applying the monomolecular layer or multimolecular layer forming composition to a substrate, a step of drying the substrate, a step of washing the substrate, and a step of drying the substrate.
  • a method for applying the monomolecular layer or multimolecular layer forming composition to a substrate include, for example, a cast coating method, a spin coating method, and a blade coating method on the substrate. Dip coating method, roll coating method, bar coating method, die coating method, ink jet method, printing method (such as relief printing, intaglio printing, planographic printing, and screen printing).
  • substrate the well-known drying method using a hotplate, oven, etc. is mentioned.
  • a method for cleaning the substrate a known cleaning method using water, an organic solvent or the like can be used.
  • Examples 1 to 3 A solution was prepared by stirring and mixing 0.1 g of Compound 1, 0.5 g of water, and 9.5 g of PGME (propylene glycol monomethyl ether). Then, it filtered using the polyethylene micro filter with the hole diameter of 0.03 micrometer, and prepared the composition for monomolecular layer or multimolecular layer formation. The prepared composition was applied onto a glass substrate using a spin coater, and baked on a hot plate at 180 ° C. for 1 minute. Then, it was immersed in propylene glycol monomethyl ether for 1 minute, spin-dried, and then dried at 100 ° C. for 30 seconds to form a monomolecular layer or a multimolecular layer on the glass substrate.
  • PGME propylene glycol monomethyl ether
  • Example 1 No immersion
  • Example 2 Poly-L-lysine FITC Labeled reagent (Aldrich) 0.1 wt% aqueous solution
  • Example 3 Collagen Type FITC Conjugate from bovine skin (Aldrich) 0.1 wt% aqueous solution
  • Comparative Examples 1 to 3 The glass substrate was immersed in the following reagents for 4 hours and then washed with water. Comparative Example 1: No immersion Comparative Example 2: Poly-L-lysine FITC Labeled Reagent (Aldrich) 0.1 wt% aqueous solution Comparative Example 3: Collagen Type FITC Conjugate from bovine skin (Aldrich) 0.1 wt% aqueous solution
  • Cell adhesion test (Preparation of cell suspension) As a cell used for the test, a human liver cancer cell line HepG2 (DS Pharma Biomedical) was used.
  • the culture medium used was a DMEM medium (manufactured by Wako Pure Chemical Industries, Ltd.) containing 10% (v / v) FBS (fetal bovine serum (manufactured by Biological Industries)).
  • the cells were statically cultured for 2 days or longer in a petri dish (10 mL of medium) having a diameter of 10 cm while maintaining a 5% carbon dioxide concentration in a 37 ° C. CO 2 incubator.
  • the cells were washed with 5 mL of PBS, 1 mL of trypsin-EDTA solution (manufactured by Invitrogen) was added, the cells were detached, and suspended in 10 mL of the above medium. After centrifuging this suspension (manufactured by Kubota Corporation, model number 5900, 1500 rpm / 3 minutes, room temperature), the supernatant was removed, and the above medium was added to prepare a cell suspension.
  • trypsin-EDTA solution manufactured by Invitrogen
  • Example 1 After 24 hours, each glass substrate treated in Example 1, Example 2, Example 3, Comparative Example 1, Comparative Example 2 and Comparative Example 3 in which the above cell adhesion test was performed was subjected to an optical microscope (CK30, manufactured by OLYMPUS). -F100, magnification of 100) was used to observe the state of cell attachment. Subsequently, each of these glass substrates was transferred to another 24-hole flat bottom microplate (Corning) and washed with 1 mL of PBS. After removing PBS, 500 ⁇ L of trypsin-EDTA solution (Invitrogen) was added.
  • CK30 optical microscope
  • DMEM medium manufactured by Wako Pure Chemical Industries, Ltd.
  • 10% (v / v) FBS was added, and the detached cells were transferred to a 1.5 mL micro test tube (manufactured by Eppendorf). did.
  • centrifugation manufactured by Tommy Seiko Co., Ltd., model number: MX-307, 300 G / 3 min, room temperature
  • DMEM medium containing 10% (v / v) FBS was added to prepare a cell suspension.
  • Example 1 After adding an equal amount of trypan blue staining solution to this suspension, the number of viable cells (cell adhesion number) was measured with a blood cell counter (manufactured by Elma Sales Co., Ltd.). The number of cells adhered to each glass substrate treated in Example 1, Example 2, Example 3, Comparative Example 1, Comparative Example 2, and Comparative Example 3 was compared after 24 hours of culture. The results are shown in Table 2 below. Moreover, the observation result in the optical microscope regarding Example 1, Example 2, and Example 3 is shown to FIG.
  • Example 2 As a result of the cell adhesion test, the number of HepG2 cells adhered increased in each glass substrate treated in Examples 2 and 3 with respect to the glass substrate treated in Example 1 after 24 hours of culture. In particular, in Example 2, the number of cells after 24 hours was larger than the number of seeded cells, suggesting that cell proliferation was promoted after adhesion. Moreover, also by observation with a microscope, it was confirmed that the number of HepG2 cells attached to each glass substrate treated in Examples 2 and 3 increased with respect to the glass substrate treated in Example 1.

Abstract

[Problem] To provide: a silane compound containing an active ester group; and a material produced using the silane compound. [Solution] A silane compound represented by formula (1). [In formula (1), R1 represents a specific alkyl group; R2 represents a specific alkoxy group, a halogen atom or a combination thereof; a represents an integer of 0 to 2; X represents a hydrogen atom, a phenyl group or a specific alkyl group; Y represents a specific alkylene group; Z represents a monovalent organic group represented by formula (1-1) or formula (1-2); R3 to R5 independently represent a hydrogen atom or a specific alkyl group; T1 represents a specific hydrocarbon ring or an aromatic ring; and b represents an integer of 4 or more, wherein the maximum value of b is the maximum number of substituents that T1 can have.]

Description

活性エステル基を含有するシラン化合物とそれを用いた材料Silane compound containing active ester group and material using the same
 本発明は、活性エステル基を含有するシラン化合物(本明細書では、「シランカップリング剤」とも称する。)に関し、詳細には、簡便に合成することができる、新規なシランカップリング剤、及び該シランカップリング剤を用いた材料に関する。 The present invention relates to a silane compound containing an active ester group (also referred to herein as “silane coupling agent”), and in particular, a novel silane coupling agent that can be easily synthesized, and The present invention relates to a material using the silane coupling agent.
 核酸、抗体、及び蛋白質などのバイオマテリアルをガラスやシリコンウエハ等の無機材料基板に固定化する技術は、細胞培養、細胞/蛋白質の分離・検出、ゲノム解析、及びプロテオーム解析の分野で有用であり、バイオマテリアルを無機材料基板に固定化する際に、架橋剤としてシランカップリング剤が使用されている。
 そのため、現在までに、種々のシランカップリング剤が提案されている(特許文献1乃至特許文献3)。
The technology for immobilizing biomaterials such as nucleic acids, antibodies, and proteins on inorganic material substrates such as glass and silicon wafers is useful in the fields of cell culture, cell / protein separation / detection, genome analysis, and proteome analysis. When a biomaterial is immobilized on an inorganic material substrate, a silane coupling agent is used as a crosslinking agent.
For this reason, various silane coupling agents have been proposed so far (Patent Documents 1 to 3).
特開2005-225789号公報JP 2005-225789 A 特開2007-186472号公報JP 2007-186472 A 特開2006-143715号公報JP 2006-143715 A
 特許文献1乃至特許文献3に記載されたシラン化合物は、複数の反応工程を経て合成されるため、その合成が煩雑であり、また工業的生産に向かないという問題がある。
 そのため、市場において入手容易な化合物を用いて、簡便に合成することができるシラン化合物が望まれている。
 そこで、本発明は、簡便に合成することができる、新規なシラン化合物の提供を目的とする。又、該シラン化合物に蛋白質、細胞、化合物等を担持させたシラン担持物、該シラン化合物を含む単分子層又は多分子層形成用組成物、該組成物又は該シラン担持物を用いて表面を修飾した高機能を有する基体の提供を目的とする。これらの基体は、例えば細胞足場用材料や細胞、蛋白質又は化合物分離・検出用材料としての応用が期待できる。
Since the silane compounds described in Patent Documents 1 to 3 are synthesized through a plurality of reaction steps, there is a problem that the synthesis is complicated and is not suitable for industrial production.
Therefore, a silane compound that can be easily synthesized using a compound that is easily available in the market is desired.
Then, this invention aims at provision of the novel silane compound which can be synthesize | combined simply. In addition, a silane-supported product in which proteins, cells, compounds, etc. are supported on the silane compound, a monolayer or multimolecular layer-forming composition containing the silane compound, the surface using the composition or the silane-supported material. An object of the present invention is to provide a substrate having a modified high function. These substrates can be expected to be applied as, for example, cell scaffolding materials or cells / proteins / compound separation / detection materials.
 すなわち、本発明は、第1観点として、式(1)で表されるシラン化合物に関する。
Figure JPOXMLDOC01-appb-C000002
[式(1)中、
 R1は、置換されていてもよい炭素原子数1乃至10の直鎖又は分岐アルキル基を表わし、
 R2は、置換されていてもよい炭素原子数1乃至6の直鎖又は分岐アルコキシ基、ハロゲン原子又はそれらの組み合わせを表し、
 aは、0乃至2の整数であり、
 Xは、水素原子、フェニル基、又は置換されていてもよい炭素原子数1乃至6の直鎖若しくは分岐アルキル基を表し、
 Yは、置換されていてもよい炭素原子数1乃至10の直鎖又は分岐アルキレン基を表し、
 Zは、式(1-1)又は式(1-2)で表される1価の有機基であり、
 R3乃至R5は、各々独立して、水素原子又は置換されていてもよい炭素原子数1乃至10の直鎖若しくは分岐アルキル基を表し、
 T1は、炭素原子数4乃至10の炭化水素環又は芳香環を表し、
 bは、4以上の整数であり、その最大値はT1が取り得る最大の置換基数である。]
 第2観点として、前記Zが式(1-1)で表される1価の有機基であり、且つR3及びR4が水素原子である、第1観点に記載のシラン化合物に関する。
 第3観点として、第1観点又は第2観点に記載のシラン化合物を被担持物質に担持させたシラン担持物に関する。
 第4観点として、前記被担持物質が蛋白質、細胞、化合物又はそれらの組み合わせである、第3観点に記載のシラン担持物に関する。
 第5観点として、前記蛋白質が抗体、疾患マーカー、細胞増殖因子、細胞接着因子又はそれらの組み合わせである、第4観点に記載のシラン担持物に関する。
 第6観点として、前記化合物がペプチド、アミノ酸、医薬品、生理活性物質又はそれらの組み合わせである、第4観点に記載のシラン担持物に関する。
 第7観点として、第1観点又は第2観点に記載のシラン化合物及び有機溶剤を含む、単分子層又は多分子層形成用組成物に関する。
 第8観点として、更に水及び/又は有機酸を含む、第7観点に記載の単分子層又は多分子層形成用組成物に関する。
 第9観点として、第1観点又は第2観点に記載のシラン化合物にて表面修飾された基体に関する。
 第10観点として、前記基体の表面修飾された面に被担持物質を担持させた、第9観点に記載の基体に関する。
 第11観点として、前記被担持物質が蛋白質、細胞、化合物又はそれらの組み合わせである、第10観点に記載の基体に関する。
 第12観点として、前記蛋白質が抗体、疾患マーカー、細胞増殖因子、細胞接着因子又はそれらの組み合わせである、第11観点に記載の基体に関する。
 第13観点として、前記化合物がペプチド、アミノ酸、医薬品、生理活性物質又はそれらの組み合わせである、第11観点に記載の基体に関する。
 第14観点として、前記基体が平板基板、不織布又は微粒子である、第9観点乃至第13観点の何れか1つに記載の基体に関する。
 第15観点として、前記微粒子がシリカ系微粒子、プラスチック系微粒子、金属微粒子又は磁性微粒子である、第14観点に記載の基体に関する。
 第16観点として、前記微粒子の直径が0.001μm乃至1000μmである、第14観点又は第15観点に記載の基体に関する。
 第17観点として、第9観点乃至第16観点の何れか1つに記載の基体を用いて作製された細胞足場用材料に関する。
 第18観点として、第9観点乃至第16観点の何れか1つに記載の基体を用いて作製された細胞、蛋白質又は化合物分離・検出用材料に関する。
 第19観点として、第7観点又は第8観点に記載の単分子層又は多分子層形成用組成物を基板に塗布する工程、その基板を乾燥する工程、その基板を洗浄する工程、及びその基板を乾燥する工程を含む、第9観点乃至第16観点の何れか1つに記載の基体の製造方法に関する。
That is, this invention relates to the silane compound represented by Formula (1) as a 1st viewpoint.
Figure JPOXMLDOC01-appb-C000002
[In Formula (1),
R 1 represents an optionally substituted linear or branched alkyl group having 1 to 10 carbon atoms,
R 2 represents an optionally substituted linear or branched alkoxy group having 1 to 6 carbon atoms, a halogen atom or a combination thereof,
a is an integer of 0 to 2,
X represents a hydrogen atom, a phenyl group, or a linear or branched alkyl group having 1 to 6 carbon atoms which may be substituted;
Y represents a linear or branched alkylene group having 1 to 10 carbon atoms which may be substituted;
Z is a monovalent organic group represented by formula (1-1) or formula (1-2),
R 3 to R 5 each independently represents a hydrogen atom or an optionally substituted linear or branched alkyl group having 1 to 10 carbon atoms;
T 1 represents a hydrocarbon ring or aromatic ring having 4 to 10 carbon atoms,
b is an integer of 4 or more, and the maximum value is the maximum number of substituents that T 1 can take. ]
As a second aspect, the present invention relates to the silane compound according to the first aspect, wherein Z is a monovalent organic group represented by the formula (1-1), and R 3 and R 4 are hydrogen atoms.
As a third aspect, the present invention relates to a silane-supported product in which the silane compound described in the first or second aspect is supported on a supported material.
As a fourth aspect, the present invention relates to the silane-supported article according to the third aspect, wherein the supported substance is a protein, a cell, a compound, or a combination thereof.
As a fifth aspect, the present invention relates to the silane carrier according to the fourth aspect, wherein the protein is an antibody, a disease marker, a cell growth factor, a cell adhesion factor, or a combination thereof.
As a sixth aspect, the present invention relates to the silane support according to the fourth aspect, wherein the compound is a peptide, an amino acid, a pharmaceutical, a physiologically active substance, or a combination thereof.
As a seventh aspect, the present invention relates to a composition for forming a monomolecular layer or a multimolecular layer, comprising the silane compound described in the first aspect or the second aspect and an organic solvent.
As an eighth aspect, the present invention relates to the monomolecular layer or multimolecular layer forming composition according to the seventh aspect, further comprising water and / or an organic acid.
As a ninth aspect, the present invention relates to a substrate surface-modified with the silane compound described in the first aspect or the second aspect.
As a tenth aspect, the present invention relates to the base according to the ninth aspect, in which a supported substance is supported on the surface-modified surface of the base.
As an eleventh aspect, the present invention relates to the substrate according to the tenth aspect, in which the supported substance is a protein, a cell, a compound, or a combination thereof.
As a twelfth aspect, the present invention relates to the substrate according to the eleventh aspect, wherein the protein is an antibody, a disease marker, a cell growth factor, a cell adhesion factor, or a combination thereof.
As a thirteenth aspect, the present invention relates to the substrate according to the eleventh aspect, wherein the compound is a peptide, an amino acid, a pharmaceutical, a physiologically active substance, or a combination thereof.
As a fourteenth aspect, the present invention relates to the base according to any one of the ninth to thirteenth aspects, wherein the base is a flat substrate, a nonwoven fabric, or fine particles.
As a fifteenth aspect, the present invention relates to the substrate according to the fourteenth aspect, wherein the fine particles are silica-based fine particles, plastic-based fine particles, metal fine particles, or magnetic fine particles.
As a sixteenth aspect, the present invention relates to the substrate according to the fourteenth aspect or the fifteenth aspect, wherein the fine particles have a diameter of 0.001 μm to 1000 μm.
As a seventeenth aspect, the present invention relates to a cell scaffold material produced using the substrate according to any one of the ninth to sixteenth aspects.
As an eighteenth aspect, the present invention relates to a cell, protein, or compound separation / detection material produced using the substrate according to any one of the ninth to sixteenth aspects.
As a nineteenth aspect, a step of applying the monomolecular layer or multimolecular layer forming composition according to the seventh aspect or the eighth aspect to a substrate, a step of drying the substrate, a step of cleaning the substrate, and the substrate The manufacturing method of the base | substrate as described in any one of the 9th viewpoint thru | or 16th viewpoint including the process of drying.
 本発明のシラン化合物は、市場において入手容易な化合物を用いて、簡便に合成することができる。例えば、目的のシラン化合物を1工程のみで得ることができる。
 本発明のシラン化合物は、細胞足場用材料、細胞・蛋白質分離用材料、及び細胞・蛋白質検出用材料などに有用である。
 本発明の細胞、蛋白質又は化合物分離・検出用材料は、細胞・蛋白質又は化合物を選択的に分離・検出することができる。
The silane compound of the present invention can be easily synthesized using a compound that is readily available on the market. For example, the target silane compound can be obtained in only one step.
The silane compound of the present invention is useful as a cell scaffold material, a cell / protein separation material, a cell / protein detection material, and the like.
The cell / protein / compound separation / detection material of the present invention can selectively separate / detect cells / proteins or compounds.
図1は、細胞付着試験において、実施例1で処理したガラス基板上のHepG2細胞の光学顕微鏡写真である。FIG. 1 is an optical micrograph of HepG2 cells on a glass substrate treated in Example 1 in a cell adhesion test. 図2は、細胞付着試験において、実施例2で処理したガラス基板上のHepG2細胞の光学顕微鏡写真である。FIG. 2 is an optical micrograph of HepG2 cells on the glass substrate treated in Example 2 in the cell adhesion test. 図3は、細胞付着試験において、実施例3で処理したガラス基板上のHepG2細胞の光学顕微鏡写真である。FIG. 3 is an optical micrograph of HepG2 cells on the glass substrate treated in Example 3 in the cell adhesion test.
[シラン化合物]
 本発明は、式(1)で表されるシラン化合物である。
Figure JPOXMLDOC01-appb-C000003
[式(1)中、
 R1は、置換されていてもよい炭素原子数1乃至10の直鎖又は分岐アルキル基を表わし、
 R2は、置換されていてもよい炭素原子数1乃至6の直鎖又は分岐アルコキシ基、ハロゲン原子又はそれらの組み合わせを表し、
 aは、0乃至2の整数であり、
 Xは、水素原子、フェニル基、又は置換されていてもよい炭素原子数1乃至6の直鎖若しくは分岐アルキル基を表し、
 Yは、置換されていてもよい炭素原子数1乃至10の直鎖又は分岐アルキレン基を表し、
 Zは、式(1-1)又は式(1-2)で表される1価の有機基であり、
 R3乃至R5は、各々独立して、水素原子又は置換されていてもよい炭素原子数1乃至10の直鎖若しくは分岐アルキル基を表し、
 T1は、炭素原子数4乃至10の炭化水素環又は芳香環を表し、
 bは、4以上の整数であり、その最大値はT1が取り得る最大の置換基数である。]
[Silane compound]
The present invention is a silane compound represented by the formula (1).
Figure JPOXMLDOC01-appb-C000003
[In Formula (1),
R 1 represents an optionally substituted linear or branched alkyl group having 1 to 10 carbon atoms,
R 2 represents an optionally substituted linear or branched alkoxy group having 1 to 6 carbon atoms, a halogen atom or a combination thereof,
a is an integer of 0 to 2,
X represents a hydrogen atom, a phenyl group, or a linear or branched alkyl group having 1 to 6 carbon atoms which may be substituted;
Y represents a linear or branched alkylene group having 1 to 10 carbon atoms which may be substituted;
Z is a monovalent organic group represented by formula (1-1) or formula (1-2),
R 3 to R 5 each independently represents a hydrogen atom or an optionally substituted linear or branched alkyl group having 1 to 10 carbon atoms;
T 1 represents a hydrocarbon ring or aromatic ring having 4 to 10 carbon atoms,
b is an integer of 4 or more, and the maximum value is the maximum number of substituents that T 1 can take. ]
 前記炭素原子数1乃至10の直鎖又は分岐アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、及び第三ブチル基等が挙げられる。
 前記炭素原子数1乃至6の直鎖又は分岐アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、第三ブトキシ基、及びヘキシルオキシ基等が挙げられる。
 前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられる。
 前記炭素原子数1乃至6の直鎖又は分岐アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、イソブチル基、及び第三ブチル基等が挙げられる。
 前記炭素原子数1乃至10の直鎖又は分岐アルキレン基としては、メチレン基、エチレン基、プロピレン基、イソプロピレン基、イソブチレン基、及びn-オクチレン基等が挙げられる。
Examples of the linear or branched alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, and tertiary butyl group.
Examples of the linear or branched alkoxy group having 1 to 6 carbon atoms include methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, tertiary butoxy group, and hexyloxy group.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
Examples of the linear or branched alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, an isobutyl group, and a tertiary butyl group.
Examples of the linear or branched alkylene group having 1 to 10 carbon atoms include methylene group, ethylene group, propylene group, isopropylene group, isobutylene group, and n-octylene group.
 前記炭素原子数4乃至10の炭化水素環としては、シクロブタン環、シクロペンタン環、シクロヘキサン環、ノルボルナン環、及びノルボルネン環等が挙げられる。
 前記炭素原子数4乃至10の芳香環としては、ベンゼン環、及びナフタレン環等が挙げられる。
Examples of the hydrocarbon ring having 4 to 10 carbon atoms include a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a norbornane ring, and a norbornene ring.
Examples of the aromatic ring having 4 to 10 carbon atoms include a benzene ring and a naphthalene ring.
 なお、前記炭素原子数1乃至10の直鎖又は分岐アルキル基、炭素原子数1乃至6の直鎖又は分岐アルコキシ基、炭素原子数1乃至6の直鎖又は分岐アルキル基、及び炭素原子数1乃至10の直鎖又は分岐アルキレン基は、任意の置換基、例えば、ヒドロキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、フェニル基、メトキシカルボニル基、エトキシカルボニル基、及びブトキシカルボニル基等によって置換されていてもよい。 The linear or branched alkyl group having 1 to 10 carbon atoms, the linear or branched alkoxy group having 1 to 6 carbon atoms, the linear or branched alkyl group having 1 to 6 carbon atoms, and the number of carbon atoms 1 The linear or branched alkylene group of 1 to 10 is an arbitrary substituent such as a hydroxy group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a phenyl group, a methoxycarbonyl group, an ethoxycarbonyl group, and a butoxycarbonyl group. It may be substituted with a group or the like.
 これらの中でも、より簡便に合成できる観点から、前記Zが式(1-1)で表される1価の有機基であり、且つR3及びR4が水素原子である、シラン化合物が好ましい。 Among these, a silane compound in which Z is a monovalent organic group represented by the formula (1-1) and R 3 and R 4 are hydrogen atoms is preferable from the viewpoint of easier synthesis.
[シラン化合物の製造方法]
 本発明のシラン化合物は、例えば、式(2)で表される化合物と式(3)で表される化合物とを、非プロトン性溶媒中、塩基存在下で反応させることにより合成することができる。
Figure JPOXMLDOC01-appb-C000004
[式(1)乃至式(3)中、R1、R2、a、X、Y、及びZは、上記式(1)に記載された定義と同義である。]
[Method for producing silane compound]
The silane compound of the present invention can be synthesized, for example, by reacting the compound represented by the formula (2) and the compound represented by the formula (3) in an aprotic solvent in the presence of a base. .
Figure JPOXMLDOC01-appb-C000004
[In the formulas (1) to (3), R 1 , R 2 , a, X, Y, and Z have the same definitions as those described in the above formula (1). ]
 前記式(2)で表される化合物としては、アクリル酸 N-スクシンイミジル、メタクリル酸 N-スクシンイミジル、2-エチルアクリル酸 N-スクシンイミジル、2-ベンジルアクリル酸 N-スクシンイミジル、2-トリフルオロメチルアクリル酸 N-スクシンイミジル、アクリル酸 N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミジル、メタクリル酸 N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミジル、2-エチルアクリル酸 N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミジル、2-ベンジルアクリル酸 N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミジル、2-トリフルオロメチルアクリル酸 N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミジル、アクリル酸 N-ヒドロキシフタルイミジル、メタクリル酸 N-ヒドロキシフタルイミジル、2-エチルアクリル酸 N-ヒドロキシフタルイミジル、2-ベンジルアクリル酸 N-ヒドロキシフタルイミジル、及び2-トリフルオロメチルアクリル酸 N-ヒドロキシフタルイミジル等が挙げられる。 Examples of the compound represented by the formula (2) include acrylate N-succinimidyl methacrylate, N-succinimidyl methacrylate, 2-ethyl acrylate N-succinimidyl, 2-benzyl acrylate N-succinimidyl and 2-trifluoromethylacrylic acid. N-succinimidyl, N-hydroxy-5-norbornene-2,3-dicarboxyimidyl acrylate, N-hydroxy-5-norbornene-2,3-dicarboxyimidyl methacrylate, N-hydroxy 2-ethyl acrylate -5-norbornene-2,3-dicarboxyimidyl, 2-benzylacrylic acid N-hydroxy-5-norbornene-2,3-dicarboxyimidyl, 2-trifluoromethylacrylic acid N-hydroxy-5-norbornene -2,3-dicarboxyimidyl , N-hydroxyphthalimidyl acrylate, N-hydroxyphthalimidyl methacrylate, N-hydroxyphthalimidyl 2-ethylacrylate, N-hydroxyphthalimidyl 2-benzylacrylate, and 2-trifluoromethylacrylic Examples include acid N-hydroxyphthalimidyl.
 前記式(3)で表される化合物としては、(3-メルカプトプロピル)トリメトキシシラン、(3-メルカプトプロピル)トリエトキシシラン、3-メルカプトプロピル(ジメトキシ)メチルシラン、3-メルカプトプロピル(ジエトキシ)メチルシラン、3-メルカプトプロピル(メトキシ)ジメチルシラン、3-メルカプトプロピル(エトキシ)ジメチルシラン、(3-メルカプトオクチル)トリメトキシシラン、(3-メルカプトオクチル)トリエトキシシラン、3-メルカプトオクチル(ジメトキシ)メチルシラン、3-メルカプトオクチル(ジエトキシ)メチルシラン、3-メルカプトオクチル(メトキシ)ジメチルシラン、及び3-メルカプトオクチル(エトキシ)ジメチルシラン等が挙げられる。 Examples of the compound represented by the formula (3) include (3-mercaptopropyl) trimethoxysilane, (3-mercaptopropyl) triethoxysilane, 3-mercaptopropyl (dimethoxy) methylsilane, and 3-mercaptopropyl (diethoxy) methylsilane. 3-mercaptopropyl (methoxy) dimethylsilane, 3-mercaptopropyl (ethoxy) dimethylsilane, (3-mercaptooctyl) trimethoxysilane, (3-mercaptooctyl) triethoxysilane, 3-mercaptooctyl (dimethoxy) methylsilane, Examples include 3-mercaptooctyl (diethoxy) methylsilane, 3-mercaptooctyl (methoxy) dimethylsilane, and 3-mercaptooctyl (ethoxy) dimethylsilane.
 前記式(3)で表される化合物の使用量は、前記式(2)で表される化合物の1モル当量に対して0.1乃至20倍モル当量、好ましくは0.5乃至10倍モル当量、より好ましくは1乃至5倍モル当量である。 The amount of the compound represented by the formula (3) is 0.1 to 20 times, preferably 0.5 to 10 times the molar equivalent of 1 mole equivalent of the compound represented by the formula (2). Equivalent, more preferably 1 to 5 times molar equivalent.
 前記溶媒としては、非プロトン性であれば特に制限はないが、好ましくは、極性溶媒である。非プロトン性の極性溶媒としては、ジエチルエーテル、テトラヒドロフラン(THF)、1,3-ジメトキシエタン、1,4-ジオキサン等のエーテル類;N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセタミド、ヘキサメチルリン酸トリアミド(HMPT)等のアミド類;ジクロロメタン、ジメチルスルホキシド(DMSO)、アセトニトリル等が挙げられる。これらの溶媒は、単独あるいは2種以上を組み合わせて使用することができる。 The solvent is not particularly limited as long as it is aprotic, but is preferably a polar solvent. Examples of aprotic polar solvents include ethers such as diethyl ether, tetrahydrofuran (THF), 1,3-dimethoxyethane, 1,4-dioxane; N, N-dimethylformamide (DMF), N, N-dimethyla Amides such as cetamide and hexamethylphosphoric triamide (HMPT); dichloromethane, dimethyl sulfoxide (DMSO), acetonitrile and the like. These solvents can be used alone or in combination of two or more.
 前記塩基としては、トリエチルアミン、ジイソプロピルエチルアミン等の三級アミンが挙げられ、その中でもトリエチルアミンが好ましい。
 前記塩基の使用量は、前記式(2)で表される化合物の1モル当量に対して0.001乃至20倍モル当量、好ましくは0.005乃至5倍モル当量、より好ましくは0.01乃至1倍モル当量である。
Examples of the base include tertiary amines such as triethylamine and diisopropylethylamine, among which triethylamine is preferable.
The amount of the base used is 0.001 to 20 times molar equivalent, preferably 0.005 to 5 times molar equivalent, more preferably 0.01 to 1 molar equivalent of the compound represented by the formula (2). To 1-fold molar equivalent.
 反応条件として、反応時間は0.01乃至100時間、反応温度は0乃至100℃から、適宜選択される。好ましくは反応時間が0.1乃至10時間で、反応温度が0乃至30℃である。 As reaction conditions, the reaction time is appropriately selected from 0.01 to 100 hours and the reaction temperature is from 0 to 100 ° C. Preferably, the reaction time is 0.1 to 10 hours and the reaction temperature is 0 to 30 ° C.
[シラン化合物を被担持物質に担持させたシラン担持物]
 本発明は、上記シラン化合物を被担持物質に担持させたシラン担持物である。
 上記シラン化合物を被担持物質に担持させる方法としては、公知の方法が挙げられ、被担持物質を溶解・分散させた溶媒でシラン化合物を処理した後、乾燥もしくは加熱処理を行う方法等が挙げられる。
[Silane-supported product in which a silane compound is supported on a supported material]
The present invention is a silane-supported product in which the silane compound is supported on a supported material.
Examples of the method for supporting the silane compound on the supported material include known methods, such as a method in which the silane compound is treated with a solvent in which the supported material is dissolved and dispersed, followed by drying or heat treatment. .
 前記被担持物質としては、蛋白質、細胞、及び化合物等が挙げられる。
 前記蛋白質としては、癌胎児性抗原、扁平上皮癌関連抗原、サイトケラチン19フラグメント、シアル化糖鎖抗原 KL-6、ナトリウム利尿ペプチド、トロポニン、ミオグロビン等の疾患マーカー;インターロイキン-1(IL-1)、インターロイキン-2(IL-2)、インターロイキン-3(IL-3)、インターロイキン-4(IL-4)、インターロイキン-5(IL-5)、インターロイキン-6(IL-6)、インターロイキン-7(IL-7)、インターロイキン-8(IL-8)、インターロイキン-9(IL-9)、インターロイキン-10(IL-10)、インターロイキン-11(IL-11)、インターロイキン-12(IL-12)、インターロイキン-13(IL-13)、インターロイキン-14(IL-14)、インターロイキン-15(IL-15)、インターロイキン-18(IL-18)、インターロイキン-21(IL-21)、インターフェロン-α(IFN-α)、インターフェロン-β(IFN-β)、インターフェロン-γ(IFN-γ)、顆粒球コロニー刺激因子(G-CSF)、単球コロニー刺激因子(M-CSF)、顆粒球-マクロファージコロニー刺激因子(GM-CSF)、幹細胞因子(SCF)、flk2/flt3リガンド(FL)、白血病細胞阻害因子(LIF)、オンコスタチンM(OM)、エリスロポエチン(EPO)、トロンボポエチン(TPO)、トランスフォーミング成長因子-α(TGF-α)、トランスフォーミング成長因子-β(TGF-β)、マクロファージ炎症蛋白質-1α(MIP-1α)、上皮細胞増殖因子(EGF)、繊維芽細胞増殖因子-1、2、3、4、5、6、7、8、又は9(FGF-1、2、3、4、5、6、7、8、9)、神経細胞増殖因子(NGF)、肝細胞増殖因子(HGF)、白血病阻止因子(LIF)、プロテアーゼネキシンI、プロテアーゼネキシンII、血小板由来成長因子(PDGF)、コリン作動性分化因子(CDF)、ケモカイン、Notchリガンド(Delta1など)、Wnt蛋白質、アンジオポエチン様蛋白質2、3、5または7(Angpt2、3、5、7)、インスリン様成長因子(IGF)、インスリン様成長因子結合蛋白質(IGFBP)、プレイオトロフィン(Pleiotrophin)、インシュリン、成長ホルモン等の細胞増殖因子;コラーゲンI乃至XIX、フィブロネクチン、ビトロネクチン、ラミニン-1乃至12、ニトジェン、テネイシン,トロンボスポンジン,フォンビルブランド(von Willebrand)因子、オステオポンチン、フィブリノーゲン、各種エラスチン、各種プロテオグリカン、各種カドヘリン、デスモコリン、デスモグレイン、各種インテグリン、E-セレクチン、P-セレクチン、L-セレクチン、免疫グロブリンスーパーファミリー、マトリゲル、ポリ-D-リジン、ポリ-L-リジン等の細胞接着因子;及びIgG、IgM、IgA、IgD、IgE等の各種抗体等が挙げられる。
Examples of the supported substance include proteins, cells, and compounds.
Examples of the protein include carcinoembryonic antigen, squamous cell carcinoma-related antigen, cytokeratin 19 fragment, sialylated sugar chain antigen KL-6, natriuretic peptide, troponin, myoglobin, and other disease markers; interleukin-1 (IL-1 ), Interleukin-2 (IL-2), interleukin-3 (IL-3), interleukin-4 (IL-4), interleukin-5 (IL-5), interleukin-6 (IL-6) ), Interleukin-7 (IL-7), interleukin-8 (IL-8), interleukin-9 (IL-9), interleukin-10 (IL-10), interleukin-11 (IL-11) ), Interleukin-12 (IL-12), interleukin-13 (IL-13), interleukin-14 (IL- 14), interleukin-15 (IL-15), interleukin-18 (IL-18), interleukin-21 (IL-21), interferon-α (IFN-α), interferon-β (IFN-β) , Interferon-γ (IFN-γ), granulocyte colony stimulating factor (G-CSF), monocyte colony stimulating factor (M-CSF), granulocyte-macrophage colony stimulating factor (GM-CSF), stem cell factor (SCF) , Flk2 / flt3 ligand (FL), leukemia cell inhibitory factor (LIF), oncostatin M (OM), erythropoietin (EPO), thrombopoietin (TPO), transforming growth factor-α (TGF-α), transforming growth factor -Β (TGF-β), macrophage inflammatory protein-1α (MIP-1α), Skin cell growth factor (EGF), fibroblast growth factor-1, 2, 3, 4, 5, 6, 7, 8, or 9 (FGF-1, 2, 3, 4, 5, 6, 7, 8 9), nerve cell growth factor (NGF), hepatocyte growth factor (HGF), leukemia inhibitory factor (LIF), protease nexin I, protease nexin II, platelet derived growth factor (PDGF), cholinergic differentiation factor (CDF), chemokine, Notch ligand (such as Delta1), Wnt protein, angiopoietin-like protein 2, 3, 5 or 7 (Angpt2, 3, 5, 7), insulin-like growth factor (IGF), insulin-like growth factor binding protein (IGFBP), pleiotrophin (Pleiotrophin), insulin, growth factors such as growth hormone; collagen I to XIX, fib Nectin, vitronectin, laminin-1 to 12, nitogen, tenascin, thrombospondin, von Willebrand factor, osteopontin, fibrinogen, various elastins, various proteoglycans, various cadherins, desmocholine, desmoglein, various integrins, E- Cell adhesion factors such as selectin, P-selectin, L-selectin, immunoglobulin superfamily, matrigel, poly-D-lysine and poly-L-lysine; and various antibodies such as IgG, IgM, IgA, IgD and IgE Can be mentioned.
 前記細胞としては、線維芽細胞、骨髄細胞、Bリンパ球、Tリンパ球、好中球、赤血球、血小板、マクロファージ、単球、骨細胞、骨髄細胞、周皮細胞、樹枝状細胞、ケラチノサイト、脂肪細胞、間葉細胞、上皮細胞、表皮細胞、内皮細胞、血管内皮細胞、肝実質細胞、軟骨細胞、卵丘細胞、神経系細胞、グリア細胞、ニューロン、オリゴデンドロサイト、マイクログリア、星状膠細胞、心臓細胞、食道細胞、筋肉細胞(例えば、平滑筋細胞または骨格筋細胞)、膵臓ベータ細胞、メラニン細胞、造血前駆細胞、単核細胞、胚性幹細胞(ES細胞)、胚性腫瘍細胞、胚性生殖幹細胞、人工多能性幹細胞(iPS細胞)、神経幹細胞、造血幹細胞、間葉系幹細胞、肝幹細胞、膵幹細胞、筋幹細胞、生殖幹細胞、腸幹細胞、癌幹細胞、毛包幹細胞、及び各種細胞株(例えば、HCT116、Huh7、HEK293(ヒト胎児腎細胞)、HeLa(ヒト子宮頸癌細胞株)、HepG2(ヒト肝癌細胞株)、UT7/TPO(ヒト白血病細胞株)、CHO(チャイニーズハムスター卵巣細胞株)、MDCK、MDBK、BHK、C-33A、HT-29、AE-1、3D9、Ns0/1、Jurkat、NIH3T3、PC12、S2、Sf9、Sf21、High Five、Vero)等が挙げられる。 Examples of the cells include fibroblasts, bone marrow cells, B lymphocytes, T lymphocytes, neutrophils, erythrocytes, platelets, macrophages, monocytes, bone cells, bone marrow cells, pericytes, dendritic cells, keratinocytes, fat Cells, mesenchymal cells, epithelial cells, epidermal cells, endothelial cells, vascular endothelial cells, hepatocytes, chondrocytes, cumulus cells, nervous system cells, glial cells, neurons, oligodendrocytes, microglia, astrocytes , Cardiac cells, esophageal cells, muscle cells (eg smooth muscle cells or skeletal muscle cells), pancreatic beta cells, melanocytes, hematopoietic progenitor cells, mononuclear cells, embryonic stem cells (ES cells), embryonic tumor cells, embryos Reproductive stem cells, induced pluripotent stem cells (iPS cells), neural stem cells, hematopoietic stem cells, mesenchymal stem cells, hepatic stem cells, pancreatic stem cells, muscle stem cells, reproductive stem cells, intestinal stem cells, cancer stem cells, hair follicle stem cells And various cell lines (for example, HCT116, Huh7, HEK293 (human embryonic kidney cell), HeLa (human cervical cancer cell line), HepG2 (human hepatoma cell line), UT7 / TPO (human leukemia cell line), CHO ( Chinese hamster ovary cell line), MDCK, MDBK, BHK, C-33A, HT-29, AE-1, 3D9, Ns0 / 1, Jurkat, NIH3T3, PC12, S2, Sf9, Sf21, High Five, Vero), etc. Can be mentioned.
 前記化合物としては、アンジオテンシンI乃至IV、ブラジキニン、フィブリノペプチド、ナトリウム利尿ペプチド、ウロディラチン、グアニリン、エンドセリン1乃至3、サリューシン、ウロテンシン、オキシトシン、ニューロフィジン、バソプレシン、副腎皮質刺激ホルモン、メラニン細胞刺激ホルモン、エンドルフィン、リポトロピン、ウロコルチン1乃至3、黄体形成ホルモン放出ホルモン、成長ホルモン放出ホルモン、ソマトスタチン、コルチスタチン、プロラクチン放出ペプチド、メタスチン、タキキニン、サブスタンスP、ニューロキニン、エンドキニン、ニューロテンシン、ニューロメジン、ゼニン、グレリン、オベスタチン、メラニン凝集ホルモン、オレキシン、ニューロペプチド、ダイノルフィン、ネオエンドルフィン、エンドモルフィン、ノシセプチン、ピログルタミル化RF アミドペプチド、ガラニン、ガストリン、コレシストキニン、セクレチン、リラキシン、グルカゴン、グリセンチン、アドレノメデュリン、アミリン、カルシトニン、副甲状腺ホルモン、ディフェンシン、チモシン等のペプチド;アラニン、アルギニン、アスパラギン、アスパラギン酸、システイン、グルタミン、グルタミン酸、グリシン、ヒスチジン、イソロイシン、ロイシン、リジン、メチオニン、フェニルアラニン、プロリン、セリン、トレオニン、トリプトファン、チロシン、バリン、シスチン、ヒドロキシプロリン、ヒドロキシリジン、ジヒドロキシフェニルアラニン、チロキシン、フォスフォセリン、デスモシン、β-アラニン、サルコシン、オルニチン、クレアチン、γ-アミノ酪酸、テアニン、カイニン酸、ドウモイ酸、イボテン酸等のアミノ酸;アンピシリン、ストレプトマイシン、アンフェタミン、メスカリン、リン酸オセルタミビル、メトホルミン、ジフェンヒドラミン、エフェドリン塩酸塩、アマンタジン塩酸塩、プロカイン塩酸塩,クロルプロマジン,アミノ安息香酸エチル等の医薬品;D-グルコサミン、D-ガラクトサミン、ノイラミン酸、ヒアルロン酸、コンドロイチン硫酸、ヘパラン硫酸、ヘパリン等の糖類;及びドーパミン、セロトニン、ノルアドレナリン、アドレナリン、3-(3,4-ジクロロフェニル)-1,1-ジメチルウレア(DCMU)、アトラジン、リニュロン、シマジン等の生理活性物質等が挙げられる。 Examples of the compound include angiotensin I to IV, bradykinin, fibrinopeptide, natriuretic peptide, urodilatin, guanylin, endothelin 1 to 3, salusin, urotensin, oxytocin, neurophysin, vasopressin, adrenocorticotropic hormone, melanocyte stimulating hormone , Endorphins, lipotropins, urocortin 1 to 3, luteinizing hormone releasing hormone, growth hormone releasing hormone, somatostatin, cortisatin, prolactin releasing peptide, metastin, tachykinin, substance P, neurokinin, endokinin, neurotensin, neuromedin, zenin, ghrelin , Obestatin, melanin-concentrating hormone, orexin, neuropeptide, dynorphin, neoendorpy , Endomorphin, nociceptin, pyroglutamylated RF amide peptide, galanin, gastrin, cholecystokinin, secretin, relaxin, glucagon, glicentin, adrenomedullin, amylin, calcitonin, parathyroid hormone, defensin, thymosin and other peptides; alanine, arginine, Asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, cystine, hydroxyproline, hydroxylysine, dihydroxyphenylalanine, thyroxine, Phosphoserine, desmosine, β-alanine, sarcosine, ornithine, creatine , Γ-aminobutyric acid, theanine, kainic acid, domoic acid, ibotenic acid and other amino acids; ampicillin, streptomycin, amphetamine, mescaline, oseltamivir phosphate, metformin, diphenhydramine, ephedrine hydrochloride, amantadine hydrochloride, procaine hydrochloride, chlorpromazine, Pharmaceuticals such as ethyl aminobenzoate; sugars such as D-glucosamine, D-galactosamine, neuraminic acid, hyaluronic acid, chondroitin sulfate, heparan sulfate, heparin; and dopamine, serotonin, noradrenaline, adrenaline, 3- (3,4-dichlorophenyl) ) -1,1-dimethylurea (DCMU), physiologically active substances such as atrazine, linuron and simazine.
[単分子層又は多分子層形成用組成物]
 本発明は、上記式(1)で表されるシラン化合物及び有機溶剤を含む、単分子層又は多分子層形成用組成物である。
 本明細書等において、「単分子層」とは、基体に結合しているシラン化合物が一層に並んでいる状態をいう。一方、「多分子層」とは、基体に結合しているシラン化合物に、さらに別のシラン化合物が結合して、シラン化合物のいくつかの層が積み重なって形成されている状態をいう。
[Composition for forming a monomolecular layer or a multimolecular layer]
The present invention is a composition for forming a monomolecular layer or a multimolecular layer comprising a silane compound represented by the above formula (1) and an organic solvent.
In this specification and the like, “monolayer” refers to a state in which silane compounds bonded to a substrate are arranged in a single layer. On the other hand, the “multimolecular layer” refers to a state in which another silane compound is bonded to the silane compound bonded to the substrate and several layers of the silane compound are stacked.
 本発明の単分子層又は多分子層形成用組成物に使用される有機溶剤としては、上記式(1)で表されるシラン化合物を溶解させることができれば特に限定されず、エーテル、エステル、炭化水素、ケトン、アルデヒド、又は高級アルコール等が挙げられ、例えばメチルセロソルブアセテート、エチルセロソルブアセテート、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、メチルイソブチルカルビノール、プロピレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエテルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、ピルビン酸メチル、ピルビン酸エチル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノプロピルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテルプロピレングリコールモノメチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジプロピルエーテル、プロピレングリコールジブチルエーテル、乳酸エチル、乳酸プロピル、乳酸イソプロピル、乳酸ブチル、乳酸イソブチル、ギ酸メチル、ギ酸エチル、ギ酸プロピル、ギ酸イソプロピル、ギ酸ブチル、ギ酸イソブチル、ギ酸アミル、ギ酸イソアミル、酢酸メチル、酢酸エチル、酢酸アミル、酢酸イソアミル、酢酸ヘキシル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸イソプロピル、プロピオン酸ブチル、プロピオン酸イソブチル、酪酸メチル、酪酸エチル、酪酸プロピル、酪酸イソプロピル、酪酸ブチル、酪酸イソブチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、3-メトキシ-2-メチルプロピオン酸メチル、2-ヒドロキシ-3-メチル酪酸メチル、メトキシ酢酸エチル、エトキシ酢酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-メトキシブチルアセテート、3-メトキシプロピルアセテート、3-メチル-3-メトキシブチルアセテート、3-メチル-3-メトキシブチルプロピオネート、3-メチル-3-メトキシブチルブチレート、アセト酢酸メチル、トルエン、キシレン、メチルエチルケトン、メチルプロピルケトン、メチルブチルケトン、2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、シクロペンタノン、シクロヘキサノン、N、N-ジメチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、及びγ-ブチロラクトン等を挙げることができる。これらの溶剤は単独で、または二種以上の組み合わせで使用することができる。
 特にプロピレングリコールモノメチルエーテルは好ましく用いることができる。
The organic solvent used in the composition for forming a monomolecular layer or a multimolecular layer of the present invention is not particularly limited as long as the silane compound represented by the above formula (1) can be dissolved. Ether, ester, carbonization Examples thereof include hydrogen, ketone, aldehyde, or higher alcohol, such as methyl cellosolve acetate, ethyl cellosolve acetate, propylene glycol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, methyl isobutyl carbinol, propylene glycol monobutyl ether, propylene glycol monomethyl. Ether acetate, propylene glycol monoether ether acetate, propylene glycol monopropyl ether acetate, propylene glycol monobutyl ether acetate, 2 Ethyl hydroxypropionate, ethyl 2-hydroxy-2-methylpropionate, ethyl ethoxyacetate, ethyl hydroxyacetate, methyl 2-hydroxy-3-methylbutanoate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, 3- Ethyl ethoxypropionate, methyl 3-ethoxypropionate, methyl pyruvate, ethyl pyruvate, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol Monoethyl ether acetate, ethylene glycol monopropyl ether acetate, ethylene glycol monobutyl ether acetate , Diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol dipropyl ether, propylene glycol dibutyl ether, ethyl lactate, propyl lactate, lactic acid Isopropyl, butyl lactate, isobutyl lactate, methyl formate, ethyl formate, propyl formate, isopropyl formate, butyl formate, isobutyl formate, amyl formate, isoamyl formate, methyl acetate, ethyl acetate, amyl acetate, isoamyl acetate, hexyl acetate, methyl propionate , Ethyl propionate, propyl propionate, Isopropyl lopionate, butyl propionate, isobutyl propionate, methyl butyrate, ethyl butyrate, propyl butyrate, isopropyl butyrate, butyl butyrate, isobutyl butyrate, ethyl hydroxyacetate, ethyl 2-hydroxy-2-methylpropionate, 3-methoxy-2 -Methyl methyl propionate, methyl 2-hydroxy-3-methylbutyrate, ethyl methoxyacetate, ethyl ethoxyacetate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-methoxybutyl acetate , 3-methoxypropyl acetate, 3-methyl-3-methoxybutyl acetate, 3-methyl-3-methoxybutyl propionate, 3-methyl-3-methoxybutyl butyrate, methyl acetoacetate, toluene, xylene Methyl ethyl ketone, methyl propyl ketone, methyl butyl ketone, 2-heptanone, 3-heptanone, 4-heptanone, cyclopentanone, cyclohexanone, N, N-dimethylformamide, N-methylacetamide, N, N-dimethylacetamide, N-methyl Examples include pyrrolidone and γ-butyrolactone. These solvents can be used alone or in combination of two or more.
In particular, propylene glycol monomethyl ether can be preferably used.
 また、前記有機溶剤に上記式(1)で表されるシラン化合物を溶解させる濃度は任意であるが、上記式(1)で表されるシラン化合物と有機溶剤の総質量(合計質量)に対して、式(1)で表されるシラン化合物の濃度は0.001乃至90質量%であり、好ましくは0.002乃至80質量%であり、より好ましくは0.005乃至70質量%である。 Moreover, the density | concentration which dissolves the silane compound represented by the said Formula (1) in the said organic solvent is arbitrary, but with respect to the total mass (total mass) of the silane compound represented by the said Formula (1), and an organic solvent. The concentration of the silane compound represented by the formula (1) is 0.001 to 90% by mass, preferably 0.002 to 80% by mass, and more preferably 0.005 to 70% by mass.
 また、本発明の単分子層又は多分子層形成用組成物は、水及び/又は有機酸を含ませてもよい。
 前記水としては、浄水、精製水、硬水、軟水、天然水、海洋深層水、電解アルカリイオン水、電解酸性イオン水、イオン水、及びクラスター水等が挙げられる。
 前記有機酸としては、酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、シュウ酸、マレイン酸、メチルマロン酸、アジピン酸、セバシン酸、没食子酸、酪酸、メリット酸、アラキドン酸、ミキミ酸、2-エチルヘキサン酸、オレイン酸、ステアリン酸、リノール酸、リノレイン酸、サリチル酸、安息香酸、p-アミノ安息香酸、p-トルエンスルホン酸、ベンゼンスルホン酸、モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、ギ酸、マロン酸、スルホン酸、フタル酸、フマル酸、クエン酸、及び酒石酸等を挙げることができる。
In addition, the monomolecular layer or multimolecular layer forming composition of the present invention may contain water and / or an organic acid.
Examples of the water include purified water, purified water, hard water, soft water, natural water, deep ocean water, electrolytic alkali ion water, electrolytic acid ion water, ion water, and cluster water.
Examples of the organic acid include acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, oxalic acid, maleic acid, methylmalonic acid, adipic acid, sebacic acid, gallic acid , Butyric acid, meritic acid, arachidonic acid, mikimic acid, 2-ethylhexanoic acid, oleic acid, stearic acid, linoleic acid, linolenic acid, salicylic acid, benzoic acid, p-aminobenzoic acid, p-toluenesulfonic acid, benzenesulfonic acid Monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, formic acid, malonic acid, sulfonic acid, phthalic acid, fumaric acid, citric acid, and tartaric acid.
 前記組成物に含有される水の濃度は任意であるが、有機溶剤の総質量(二種以上の有機溶剤を使用する場合は、その合計質量)に対して、水の濃度は0.001乃至99質量%であり、好ましくは0.002乃至80質量%であり、より好ましくは0.005乃至50質量%である。
 前記組成物に含有される有機酸の濃度は任意であるが、有機溶剤の総質量(二種以上の有機溶剤を使用する場合は、その合計質量)に対して、有機酸の濃度は0.001乃至50質量%であり、好ましくは0.002乃至30質量%であり、より好ましくは0.005乃至10質量%である。
The concentration of water contained in the composition is arbitrary, but the concentration of water is 0.001 to the total mass of the organic solvent (the total mass when two or more organic solvents are used). It is 99 mass%, Preferably it is 0.002 to 80 mass%, More preferably, it is 0.005 to 50 mass%.
The concentration of the organic acid contained in the composition is arbitrary, but the concentration of the organic acid relative to the total mass of the organic solvent (the total mass when two or more organic solvents are used) is 0.00. It is 001 to 50% by mass, preferably 0.002 to 30% by mass, and more preferably 0.005 to 10% by mass.
[表面修飾された基体、及び該基体の表面修飾された面に被担持物質を担持させた基体]
 本発明は、上記シラン化合物にて表面修飾された基体である。
 本発明の上記シラン化合物にて表面修飾させた基体は、基体表面をシラン化合物を用いてシラン化することにより得られる。
 前記基体としては、本発明のシラン化合物により、表面がシラン化されるものであれば特に制限はないが、ガラス、シリカ、シリコンウエハ、アルミナ、タルク、クレー、アルミニウム、鉄、マイカ、酸化チタン、石英、基板、不織布、及び微粒子等を挙げることができる。また、基体の形状は、特に限定されず、板状、フィルム状又は3次元成形体等でもよい。
 その中でも、平板基板、不織布、及び微粒子が好ましい。微粒子としては、シリカ系微粒子、プラスチック系微粒子、金属微粒子、及び磁性微粒子が好ましく、微粒子の直径は、通常、0.001μm乃至1000μm、好ましくは0.01μm乃至500μmである。
[Surface-modified substrate, and substrate having a supported substance supported on the surface-modified surface of the substrate]
The present invention is a substrate whose surface is modified with the silane compound.
The substrate surface-modified with the silane compound of the present invention can be obtained by silanizing the substrate surface using a silane compound.
The substrate is not particularly limited as long as the surface is silanized by the silane compound of the present invention, but glass, silica, silicon wafer, alumina, talc, clay, aluminum, iron, mica, titanium oxide, Examples thereof include quartz, a substrate, a nonwoven fabric, and fine particles. The shape of the substrate is not particularly limited, and may be a plate shape, a film shape, a three-dimensional molded body, or the like.
Among these, a flat substrate, a nonwoven fabric, and fine particles are preferable. The fine particles are preferably silica-based fine particles, plastic-based fine particles, metal fine particles, and magnetic fine particles. The diameter of the fine particles is usually 0.001 μm to 1000 μm, preferably 0.01 μm to 500 μm.
 シラン化する方法としては、公知の方法が挙げられ、本発明のシラン化合物を溶解させた溶媒で基体を処理した後、加熱処理を行う方法、基体をアルカリ溶液で処理した後、本発明のシラン化合物のアルコール溶液で処理し、その後、加熱処理を行う方法、及び基体を本発明のシラン化合物を溶解させた有機溶媒中で、還流下又は室温で振動撹拌を行う方法等が挙げられる。 Examples of the silanization method include known methods. The substrate is treated with a solvent in which the silane compound of the present invention is dissolved and then subjected to heat treatment. The substrate is treated with an alkaline solution, and then the silane of the present invention is treated. Examples thereof include a method of treating with an alcohol solution of the compound, followed by a heat treatment, and a method of vibrating and stirring the substrate in an organic solvent in which the silane compound of the present invention is dissolved at reflux or at room temperature.
 また、本発明は、上記基体の表面修飾された面に被担持物質を担持させた基体である。
 基体の表面修飾された面に被担持物質を担持させる方法としては、被担持物質を溶解・分散させた溶媒で該面を処理した後、乾燥もしくは加熱処理を行う方法等が挙げられる。
 また、前記被担持物質としては、段落[0021]乃至[0023]で挙げた被担持物質を使用することができる。
The present invention also provides a substrate in which a supported substance is supported on the surface-modified surface of the substrate.
Examples of the method for supporting the supported substance on the surface-modified surface of the substrate include a method in which the surface is treated with a solvent in which the supported substance is dissolved and dispersed, followed by drying or heat treatment.
As the supported material, the supported materials listed in paragraphs [0021] to [0023] can be used.
[細胞足場用材料]
 本発明は、上記基体を用いて作製された細胞足場用材料である。
 「細胞足場用材料」とは、細胞が該材料と接することによって、細胞の接着、増殖、分化、活性化、移動、遊走、形態変化など様々な細胞機能が発現、促進される材料を意味する。
 細胞足場用材料を作製するための基材としては、ハイドロキシアパタイトやβ-TCP(リン酸三カルシウム)、α-TCP等のセラミックス、ガラス、ポリ塩化ビニル、エチルセルロースやアセチルセルロース等のセルロース系ポリマー、ポリスチレン、ポリメチルメタクリレート、ポリカーボネート、ポリスルホン、ポリウレタン、ポリエステル、ポリアミド、ポリプロピレン、ポリエチレン、ポリブタジエン、ポリ(エチレン-ビニルアセテート)コポリマー、ポリ(ブタジエン-スチレン)コポリマー、ポリ(ブタジエン-アクリロニトリル)コポリマー、ポリ(エチレン-エチルアクリレート)コポリマー、ポリ(エチレン-メタアクリレート)コポリマー、ポリクロロプレン、スチロール樹脂、クロロスルフォン化ポリエチレン、エチレン酢酸ビニル、アクリル系ブロックコポリマー等のプラスチック等が挙げられる。また、これらの基材は、上記物質のいずれか一種からなるものであっても良いし、複数種を含む複合体からなるものであっても良い。
 細胞足場材料を保持した培養器材としては、細胞の培養に一般的に用いられるシャーレ、フラスコ、プラスチックバック、テフロン(登録商標)バック、ディッシュ、ペトリデッシュ、組織培養用ディッシュ、マルチディッシュ、マイクロプレート、マイクロウエルプレート、マルチプレート、マルチウエルプレート、チャンバースライド、細胞培養フラスコ、スピナーフラスコ、チューブ、トレイ、培養バック、ローラーボトル等が挙げられる。
 細胞足場用材料の形態は、特に限定されず、スポンジ、メッシュ、及び不繊布状成形物等の形態を挙げることができるが、細胞の均一な播種が可能となるよう、多孔性であることが好ましい。
 細胞足場用材料の形状は、特に限定されず、膜状、球状、ディスク状、粒子状、ブロック状など任意の形状を用いることができる。
[Materials for cell scaffolds]
The present invention is a cell scaffold material produced using the above-mentioned substrate.
The “material for cell scaffold” means a material in which various cell functions such as cell adhesion, proliferation, differentiation, activation, migration, migration, and morphological change are expressed and promoted by contact of the cell with the material. .
Base materials for producing cell scaffolding materials include hydroxyapatite, β-TCP (tricalcium phosphate), ceramics such as α-TCP, glass, polyvinyl chloride, cellulose polymers such as ethyl cellulose and acetyl cellulose, Polystyrene, polymethyl methacrylate, polycarbonate, polysulfone, polyurethane, polyester, polyamide, polypropylene, polyethylene, polybutadiene, poly (ethylene-vinyl acetate) copolymer, poly (butadiene-styrene) copolymer, poly (butadiene-acrylonitrile) copolymer, poly (ethylene) -Ethyl acrylate) copolymer, poly (ethylene-methacrylate) copolymer, polychloroprene, styrene resin, chlorosulfonated polyethylene, Examples thereof include plastics such as ethylene vinyl acetate and acrylic block copolymers. In addition, these base materials may be made of any one of the above substances, or may be made of a composite containing a plurality of kinds.
As the culture equipment holding the cell scaffold material, petri dishes, flasks, plastic bags, Teflon (registered trademark) bags, dishes, petri dishes, tissue culture dishes, multi dishes, micro plates, Examples include a microwell plate, a multiplate, a multiwell plate, a chamber slide, a cell culture flask, a spinner flask, a tube, a tray, a culture bag, and a roller bottle.
The form of the cell scaffold material is not particularly limited, and examples thereof include a sponge, a mesh, and a non-woven cloth-like molded article. However, the material may be porous so that cells can be uniformly seeded. preferable.
The shape of the cell scaffold material is not particularly limited, and any shape such as a membrane shape, a spherical shape, a disk shape, a particle shape, or a block shape can be used.
 細胞足場用材料への細胞の播種は、公知の方法を用いて行うことができ、緩衝液、生理食塩水、培養液、またはコラーゲン溶液等の液体に細胞を懸濁して得られた懸濁液に細胞足場用材料を浸漬する、あるいは当該懸濁液を細胞足場用材料へ注入することによって行うことができる。また、必要に応じて、引圧または加圧条件下で播種してもよい。播種する細胞の数(播種密度)は、懸濁液の細胞濃度や注入量によって調整することが可能であり、用いる細胞の種類の特性や細胞足場用材料に応じて適宜調整することが好ましい。細胞を培養する際の培養条件、培養装置、培地の種類、足場材料の種類、その含量、添加物の種類、添加物の含量、培養期間、培養温度などは、当事者により適宜選択される。 Cell seeding on the cell scaffolding material can be performed using a known method, and a suspension obtained by suspending cells in a liquid such as a buffer solution, physiological saline, a culture solution, or a collagen solution. The cell scaffolding material can be immersed in the suspension, or the suspension can be injected into the cell scaffolding material. Moreover, you may seed | inoculate on drawing pressure or pressurization conditions as needed. The number of cells to be seeded (seeding density) can be adjusted by the cell concentration and the injection amount of the suspension, and it is preferable to adjust appropriately according to the characteristics of the type of cells used and the material for the cell scaffold. Culture conditions, culture apparatus, type of medium, type of scaffold material, content, type of additive, content of additive, content of additive, culture period, culture temperature, and the like when culturing cells are appropriately selected by the party.
[細胞、蛋白質又は化合物分離・検出用材料]
 本発明は、上記基体を用いて作製された細胞、蛋白質又は化合物分離・検出用材料である。
 「細胞・蛋白質分離・検出用材料」とは、測定対象サンプルや抗体などを担持させて、生体組織、体液、骨髄液、血液、細胞培養液等から目的の細胞・蛋白質を選択的に分離する材料を意味する。
 細胞・蛋白質分離・検出用材料の形状は、特に制限されず、平面基板状、フィルター状、微粒子状など任意の形状を用いることができる。フィルターの形態は、膜、球、コンテナ、カセット、バッグ、チューブ、カラム等、任意の形態をとりうる。フィルターの材質は、ポリプロピレン、ポリエチレン、高密度ポリエチレン、低密度ポリエチレンなどのポリオレフィン、ポリエステル、塩化ビニル、ポリビニルアルコール、塩化ビニリデン、レーヨン、ビニロン、ポリスチレン、アクリル(ポリメチルメタクリレート、ポリヒドロキシエチルメタクリレート、アクリロニトリル、アクリル酸、アクリル酸エステルなど)、ナイロン、ポリウレタン、ポリイミド、アラミド、ポリアミド、キュプラ、ケブラー、カーボン、ポリアクリレート、フェノール、テトロン、パルプ、麻、セルロース、ケナフ、キチン、キトサン、ガラス、綿などの少なくとも1種より選択される材質が用いられる。
[Cell, protein or compound separation / detection material]
The present invention is a cell / protein / compound separation / detection material produced using the substrate.
“Materials for cell / protein separation / detection” refers to a sample or antibody carrying a measurement target, which selectively separates target cells / proteins from biological tissue, body fluid, bone marrow fluid, blood, cell culture fluid, etc. Means material.
The shape of the cell / protein separation / detection material is not particularly limited, and any shape such as a flat substrate shape, a filter shape, or a fine particle shape can be used. The form of the filter may take any form such as a membrane, a sphere, a container, a cassette, a bag, a tube, and a column. The material of the filter is polyolefin such as polypropylene, polyethylene, high density polyethylene, low density polyethylene, polyester, vinyl chloride, polyvinyl alcohol, vinylidene chloride, rayon, vinylon, polystyrene, acrylic (polymethyl methacrylate, polyhydroxyethyl methacrylate, acrylonitrile, Acrylic, acrylate, etc.), nylon, polyurethane, polyimide, aramid, polyamide, cupra, kevlar, carbon, polyacrylate, phenol, tetron, pulp, hemp, cellulose, kenaf, chitin, chitosan, glass, cotton, etc. A material selected from one type is used.
 細胞・蛋白質の分離は、公知の方法を用いて行うことができ、生体組織、体液、骨髄液、血液、細胞培養液等の細胞・蛋白質の懸濁液に細胞・蛋白質分離用材料を添加する、あるいは当該懸濁液を細胞・蛋白質分離用材料へ添加または注入することによって行うことができる。フィルター状の細胞・蛋白質分離用材料である場合は、当該懸濁液を透過させることもできる。捕捉された細胞・蛋白質は、適当な緩衝液、生理食塩水、培地等を用いて洗浄することも、回収することもできる。回収の際には、各種キレート剤、各種界面活性剤、超音波や酵素を用いて細胞・蛋白質分離用材料から細胞・蛋白質を剥離することもできる。細胞・蛋白質分離用材料が磁性を有する微粒子である場合は、磁力により細胞・蛋白質を保持した細胞・蛋白質分離用材料を回収することができる。また、必要に応じて、細胞・蛋白質分離用材料に捕捉された細胞を適当な条件下で培養することによって、特定の細胞へと分化させたり、増殖させたりすることができる。 Separation of cells / proteins can be performed using known methods, and materials for cell / protein separation are added to suspensions of cells / proteins such as biological tissues, body fluids, bone marrow fluids, blood, cell culture fluids, etc. Alternatively, the suspension can be added or injected into the cell / protein separation material. In the case of a filter-like cell / protein separation material, the suspension can be permeated. The captured cells / proteins can be washed or recovered using an appropriate buffer, physiological saline, medium, or the like. At the time of collection, the cells / proteins can be peeled from the cell / protein separation material by using various chelating agents, various surfactants, ultrasonic waves and enzymes. When the cell / protein separating material is a magnetic fine particle, the cell / protein separating material retaining the cell / protein can be recovered by magnetic force. Further, if necessary, the cells captured by the cell / protein separation material can be differentiated or proliferated into specific cells by culturing them under appropriate conditions.
 分離した細胞・蛋白質の検出は、公知の方法を用いて行うことができる。検出される細胞・蛋白質は、細胞・蛋白質分離用材料に保持された状態であってもよく、また当該材料から剥離された状態であってもよい。例えば、検出対象が細胞である場合は、細胞・蛋白質分離用材料にて捕捉した細胞を当該分野にて標準的な顕微鏡を用いて観察することができる。この際、分離した細胞について特異的抗体を用いて染色してもよい。細胞表面マーカーを認識する特異的抗体を用いてELISAやフローサイトメトリーにより細胞を検出することができる。また、分離した細胞からDNA(デオキシリボ核酸)或いはRNA(リボ核酸)を抽出しサザンブロッティング法、ノーザンブロッティング法、RT-PCR法などによって解析することにより細胞を検出することができる。細胞数を測定する際には、コロニー形成法、クリスタルバイオレッド法、チミジン取り込み法、トリパンブルー染色法、3-(4,5-Dimethylthial-2-yl )-2,5-Diphenyltetrazalium Bromide(MTT)染色法、WST-1(登録商標)染色法、WST-8(登録商標)染色法、フローサイトメトリー法、細胞数自動測定装置を利用した方法などを用いることができる。
 例えば、検出対象が蛋白質又はペプチドである場合は、質量分析装置を用いた方法、ウェスタンブロッティングやドットブロッティング、ELISA、フローサイトメトリーなどの抗原抗体反応を用いた方法により目的の蛋白質又はペプチドを検出することができる。また、各種電気泳動法により蛋白質を分離し、クマシー・ブリリアントブルー染色や銀染色にて検出することもできる。蛋白質又はペプチドの定量方法としては、紫外吸収法、ブラッドフォード法、ローリー法、フェノール試薬法、ビシンコニン酸法(BCA法)などを用いることができる。
 また、検出対象の蛋白質又はペプチドを予め標識化することができる。蛋白質又はペプチドを標識化する方法としては、例えば蛍光標識、酵素標識、ビオチン標識、ポリエチレングリコール(PEG)標識等が挙げられ、いずれの方法も利用できる。蛍光標識法の場合、Cy3、Cy5、FITC(fluorescein isothiocyanate)、ローダミン等の物質が利用できる。酵素標識法の場合、ペルオキシダーゼ、アルカリフォスファターゼ、酸フォスファターゼ、グルコースオキシダーゼ等の物質を利用できる。
The separated cells / proteins can be detected using a known method. The cell / protein to be detected may be held in the cell / protein separation material or may be peeled from the material. For example, when the detection target is a cell, the cell captured by the cell / protein separation material can be observed using a standard microscope in this field. At this time, the separated cells may be stained with a specific antibody. Cells can be detected by ELISA or flow cytometry using specific antibodies that recognize cell surface markers. Alternatively, cells can be detected by extracting DNA (deoxyribonucleic acid) or RNA (ribonucleic acid) from the separated cells and analyzing them by Southern blotting, Northern blotting, RT-PCR, or the like. When measuring the number of cells, colony formation method, crystal violet method, thymidine incorporation method, trypan blue staining method, 3- (4,5-Dimethylthyl-2-yl) -2,5-Diphenyltetrazalum Bromide (MTT) A staining method, a WST-1 (registered trademark) staining method, a WST-8 (registered trademark) staining method, a flow cytometry method, a method using an automatic cell number measuring apparatus, or the like can be used.
For example, when the detection target is a protein or peptide, the target protein or peptide is detected by a method using a mass spectrometer, a method using an antigen-antibody reaction such as Western blotting, dot blotting, ELISA, or flow cytometry. be able to. In addition, proteins can be separated by various electrophoresis methods and detected by Coomassie brilliant blue staining or silver staining. As a protein or peptide quantification method, an ultraviolet absorption method, Bradford method, Raleigh method, phenol reagent method, bicinchoninic acid method (BCA method) or the like can be used.
Moreover, the protein or peptide to be detected can be labeled in advance. Examples of methods for labeling proteins or peptides include fluorescent labels, enzyme labels, biotin labels, polyethylene glycol (PEG) labels, and the like, and any method can be used. In the case of the fluorescent labeling method, substances such as Cy3, Cy5, FITC (fluorescein isothiocyanate) and rhodamine can be used. In the case of the enzyme labeling method, substances such as peroxidase, alkaline phosphatase, acid phosphatase, and glucose oxidase can be used.
[基体の製造方法]
 本発明の基体の製造方法は、上記単分子層又は多分子層形成用組成物を基板に塗布する工程、その基板を乾燥する工程、その基板を洗浄する工程、及びその基板を乾燥する工程を含む。
 前記単分子層又は多分子層形成用組成物を基板に塗布する方法としては、例えば、前記単分子層又は多分子層形成用組成物を基体上にキャストコート法、スピンコート法、ブレードコート法、ディップコート法、ロールコート法、バーコート法、ダイコート法、インクジェット法、印刷法(凸版、凹版、平版、スクリーン印刷等)等が挙げられる。
 また、基板を乾燥する方法としては、ホットプレート、オーブン等を用いた公知の乾燥方法が挙げられる。
 さらに、基板を洗浄する方法としては、水や有機溶剤等を用いた公知の洗浄方法が挙げられる。
[Manufacturing method of substrate]
The method for producing a substrate of the present invention comprises a step of applying the monomolecular layer or multimolecular layer forming composition to a substrate, a step of drying the substrate, a step of washing the substrate, and a step of drying the substrate. Including.
Examples of a method for applying the monomolecular layer or multimolecular layer forming composition to a substrate include, for example, a cast coating method, a spin coating method, and a blade coating method on the substrate. Dip coating method, roll coating method, bar coating method, die coating method, ink jet method, printing method (such as relief printing, intaglio printing, planographic printing, and screen printing).
Moreover, as a method of drying a board | substrate, the well-known drying method using a hotplate, oven, etc. is mentioned.
Furthermore, as a method for cleaning the substrate, a known cleaning method using water, an organic solvent or the like can be used.
 以下、実施例を挙げて本発明を更に詳しく説明するが、本発明は、これら実施例に限定されるものでない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
[合成例1]
Figure JPOXMLDOC01-appb-C000005
 マグネチックスターラーを備えた500mL四ッ口フラスコに、アクリル酸 N-スクシンイミジル(12.50g、0.0739mol)、(3-メルカプトプロピル)トリメトキシラン(15.24g、0.0776mol)、トリエチルアミン(0.37g、0.0037mol)、アセトニトリル(250g)を仕込み、5乃至10℃にて、4時間攪拌した。その後、反応液中の溶媒、及び、残存するトリエチルアミンをエバポレータで減圧留去し、化合物1を得た(収量:27.00g、収率:100%)。
 1H-NMR(400MHz) in CDCl3: 0.73-0.79ppm(m, 2H), 1.66-1.76ppm(m, 2H), 2.59ppm(t, = 7.3 Hz, 2H), 2.76-2.95ppm(m, 8H), 3.57ppm(s, 9H)
[Synthesis Example 1]
Figure JPOXMLDOC01-appb-C000005
A 500 mL four-necked flask equipped with a magnetic stirrer was charged with N-succinimidyl acrylate (12.50 g, 0.0739 mol), (3-mercaptopropyl) trimethoxylane (15.24 g, 0.0776 mol), triethylamine (0 .37 g, 0.0037 mol) and acetonitrile (250 g) were charged, and the mixture was stirred at 5 to 10 ° C. for 4 hours. Thereafter, the solvent in the reaction solution and the remaining triethylamine were distilled off under reduced pressure using an evaporator to obtain Compound 1 (yield: 27.00 g, yield: 100%).
1H-NMR (400MHz) in CDCl 3: 0.73-0.79ppm (m, 2H), 1.66-1.76ppm (m, 2H), 2.59ppm (t, = 7.3 Hz, 2H), 2.76-2.95ppm (m, 8H ), 3.57ppm (s, 9H)
[実施例1乃至3]
 化合物1 0.1g、水0.5g及びPGME(プロピレングリコールモノメチルエーテル)9.5gを攪拌混合して溶液を作製した。その後、孔径0.03μmのポリエチレン製ミクロフィルターを用いてろ過して、単分子層又は多分子層形成用組成物を調製した。
 調製した組成物を、ガラス基板上にスピンコーターを用いて塗布し、ホットプレート上において180℃で1分間ベークした。その後、プロピレングリコールモノメチルエーテルにて、1分間浸漬させ、スピンドライ後、100℃で30秒間乾燥させ、ガラス基板上に単分子層又は多分子層を形成した。
 得られたガラス基板を、以下の試薬に4時間浸漬させ、その後水で洗浄した。
実施例1:浸漬なし
実施例2:Poly-L-lysine FITC Labeled試薬(アルドリッチ社製)0.1wt%水溶液
実施例3:Collagen Type FITC Conjugate from bovine skin(アルドリッチ社製) 0.1wt%水溶液
[Examples 1 to 3]
A solution was prepared by stirring and mixing 0.1 g of Compound 1, 0.5 g of water, and 9.5 g of PGME (propylene glycol monomethyl ether). Then, it filtered using the polyethylene micro filter with the hole diameter of 0.03 micrometer, and prepared the composition for monomolecular layer or multimolecular layer formation.
The prepared composition was applied onto a glass substrate using a spin coater, and baked on a hot plate at 180 ° C. for 1 minute. Then, it was immersed in propylene glycol monomethyl ether for 1 minute, spin-dried, and then dried at 100 ° C. for 30 seconds to form a monomolecular layer or a multimolecular layer on the glass substrate.
The obtained glass substrate was immersed in the following reagents for 4 hours and then washed with water.
Example 1: No immersion Example 2: Poly-L-lysine FITC Labeled reagent (Aldrich) 0.1 wt% aqueous solution Example 3: Collagen Type FITC Conjugate from bovine skin (Aldrich) 0.1 wt% aqueous solution
[比較例1乃至3]
 ガラス基板を以下の試薬に4時間浸漬させ、その後水で洗浄した。
比較例1:浸漬なし
比較例2:Poly-L-lysine FITC Labeled試薬(アルドリッチ社製)0.1wt%水溶液
比較例3:Collagen Type FITC Conjugate from bovine skin(アルドリッチ社製) 0.1wt%水溶液
[Comparative Examples 1 to 3]
The glass substrate was immersed in the following reagents for 4 hours and then washed with water.
Comparative Example 1: No immersion Comparative Example 2: Poly-L-lysine FITC Labeled Reagent (Aldrich) 0.1 wt% aqueous solution Comparative Example 3: Collagen Type FITC Conjugate from bovine skin (Aldrich) 0.1 wt% aqueous solution
[ポリ-L-リジンおよびコラーゲン担持確認]
 24穴平底マイクロプレート(コーニング社製)に実施例1、実施例2、実施例3、比較例1、比較例2及び比較例3で処理した各ガラス基板を配置し、PBS(リン酸緩衝生理食塩水、シグマアルドリッチ社製)1mLを添加した。本プレートについて2104 EnVision(登録商標)マルチラベルカウンター(株式会社パーキンエルマージャパン製)を用いて励起波長490nm、蛍光波長530nmにおける各ガラス基板の蛍光強度(相対的蛍光単位、RFU)を測定した。本測定により、FITCでラベルされたポリ-L-リジン及びコラーゲンの吸着を確認することができる。その結果を下記表1に示す。
[Poly-L-lysine and collagen loading confirmation]
Each glass substrate treated in Example 1, Example 2, Example 3, Comparative Example 1, Comparative Example 2, and Comparative Example 3 is placed on a 24-hole flat bottom microplate (manufactured by Corning), and PBS (phosphate buffered physiological) 1 mL of saline solution (Sigma Aldrich) was added. The fluorescence intensity (relative fluorescence unit, RFU) of each glass substrate at an excitation wavelength of 490 nm and a fluorescence wavelength of 530 nm was measured using a 2104 EnVision (registered trademark) multi-label counter (manufactured by PerkinElmer Japan Co., Ltd.). By this measurement, adsorption of FITC-labeled poly-L-lysine and collagen can be confirmed. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 蛍光強度の測定の結果、実施例2及び3の処理によりFITCでラベルされたポリ-L-リジン及びコラーゲンが、ガラス基板上に比較例に比べてより多く吸着されていることが示された。 As a result of the measurement of fluorescence intensity, it was shown that poly-L-lysine and collagen labeled with FITC by the treatment of Examples 2 and 3 were more adsorbed on the glass substrate than in the comparative example.
[細胞付着試験]
(細胞懸濁液の調製)
 試験に供試した細胞は、ヒト肝癌細胞株HepG2(DSファーマバイオメディカル社製)を用いた。培養時の培地は、10%(v/v)FBS(牛胎児血清(バイオロジカルインダストリーズ社製))を含むDMEM培地(和光純薬工業(株)製)を用いた。細胞は、37℃ CO2インキュベーター内にて5%二酸化炭素濃度を保った状態で、直径10cmのシャーレ(培地10mL)を用いて2日間以上静置培養した。引き続き、本細胞をPBS5mLで洗浄した後、トリプシン-EDTA溶液(インビトロジェン社製)1mLを添加して細胞を剥がし、上記の培地10mLにて懸濁した。本懸濁液を遠心分離(久保田商事株式会社製、型番5900、1500rpm/3分、室温)後、上清を除き、上記の培地を添加して細胞懸濁液を調製した。
[Cell adhesion test]
(Preparation of cell suspension)
As a cell used for the test, a human liver cancer cell line HepG2 (DS Pharma Biomedical) was used. The culture medium used was a DMEM medium (manufactured by Wako Pure Chemical Industries, Ltd.) containing 10% (v / v) FBS (fetal bovine serum (manufactured by Biological Industries)). The cells were statically cultured for 2 days or longer in a petri dish (10 mL of medium) having a diameter of 10 cm while maintaining a 5% carbon dioxide concentration in a 37 ° C. CO 2 incubator. Subsequently, the cells were washed with 5 mL of PBS, 1 mL of trypsin-EDTA solution (manufactured by Invitrogen) was added, the cells were detached, and suspended in 10 mL of the above medium. After centrifuging this suspension (manufactured by Kubota Corporation, model number 5900, 1500 rpm / 3 minutes, room temperature), the supernatant was removed, and the above medium was added to prepare a cell suspension.
(細胞のガラス基板への付着)
 24穴平底マイクロプレート(コーニング社製)に実施例1、実施例2、実施例3、比較例1、比較例2及び比較例3で処理した各ガラス基板を配置し、調製した上記HepG2細胞懸濁液を2.5×105cells/wellとなるように各1mL加えた。その後、5%二酸化炭素濃度を保った状態で、37℃で24時間CO2インキュベーター内にて静置した。
(Adhesion of cells to glass substrate)
The above HepG2 cell suspension prepared by arranging each glass substrate treated in Example 1, Example 2, Example 3, Comparative Example 1, Comparative Example 2 and Comparative Example 3 on a 24-hole flat bottom microplate (manufactured by Corning). 1 mL of each turbid solution was added so that it might become 2.5 * 10 < 5 > cells / well. Thereafter, the sample was allowed to stand in a CO 2 incubator at 37 ° C. for 24 hours while maintaining a 5% carbon dioxide concentration.
(細胞付着数の測定)
 24時間後、上記細胞付着試験を行った実施例1、実施例2、実施例3、比較例1、比較例2及び比較例3で処理した各ガラス基板について、光学顕微鏡(OLYMPUS社製、CK30-F100、倍率100倍)を用いて細胞の付着状態を観察した。引き続き、これらの各ガラス基板を別の24穴平底マイクロプレート(コーニング社製)に移し、PBS1mLで洗浄した。PBSを除いた後、トリプシン-EDTA溶液(インビトロジェン社製)500μLを添加した。5乃至10分後、10%(v/v)FBSを含むDMEM培地(和光純薬工業(株)製)を500μL添加し、剥がれた細胞を1.5mLマイクロテストチューブ(エッペンドルフ社製)に移した。遠心分離((株)トミー精工製、型番:MX-307、300G/3分、室温)後、上清を除き、10%(v/v)FBSを含むDMEM培地(和光純薬工業(株)製)100μLを添加して細胞懸濁液を調製した。本懸濁液にトリパンブルー染色液を等量添加後、血球計測板(エルマ販売株式会社製)にて生細胞数(細胞付着数)を計測した。
 実施例1、実施例2、実施例3、比較例1、比較例2及び比較例3で処理した各ガラス基板に対する細胞の付着数を培養24時間後、比較した。その結果を下記表2に示す。また、実施例1、実施例2、実施例3に関する光学顕微鏡での観察結果を図1乃至3に示す。
(Measurement of cell attachment number)
After 24 hours, each glass substrate treated in Example 1, Example 2, Example 3, Comparative Example 1, Comparative Example 2 and Comparative Example 3 in which the above cell adhesion test was performed was subjected to an optical microscope (CK30, manufactured by OLYMPUS). -F100, magnification of 100) was used to observe the state of cell attachment. Subsequently, each of these glass substrates was transferred to another 24-hole flat bottom microplate (Corning) and washed with 1 mL of PBS. After removing PBS, 500 μL of trypsin-EDTA solution (Invitrogen) was added. After 5 to 10 minutes, 500 μL of DMEM medium (manufactured by Wako Pure Chemical Industries, Ltd.) containing 10% (v / v) FBS was added, and the detached cells were transferred to a 1.5 mL micro test tube (manufactured by Eppendorf). did. After centrifugation (manufactured by Tommy Seiko Co., Ltd., model number: MX-307, 300 G / 3 min, room temperature), the supernatant was removed, and DMEM medium containing 10% (v / v) FBS (Wako Pure Chemical Industries, Ltd.) 100 μL was added to prepare a cell suspension. After adding an equal amount of trypan blue staining solution to this suspension, the number of viable cells (cell adhesion number) was measured with a blood cell counter (manufactured by Elma Sales Co., Ltd.).
The number of cells adhered to each glass substrate treated in Example 1, Example 2, Example 3, Comparative Example 1, Comparative Example 2, and Comparative Example 3 was compared after 24 hours of culture. The results are shown in Table 2 below. Moreover, the observation result in the optical microscope regarding Example 1, Example 2, and Example 3 is shown to FIG.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 細胞付着試験の結果、培養24時間後、実施例1で処理したガラス基板に対して、実施例2及び3で処理した各ガラス基板では、HepG2細胞の付着数が増加していた。特に、実施例2においては播種した細胞数よりも、24時間後の細胞数が増えていたことから、接着後に細胞増殖が促進されたことも示唆された。また、顕微鏡による観察でも、実施例1で処理したガラス基板に対して、実施例2及び3で処理した各ガラス基板へのHepG2細胞の付着数は増加していることを確認した。 As a result of the cell adhesion test, the number of HepG2 cells adhered increased in each glass substrate treated in Examples 2 and 3 with respect to the glass substrate treated in Example 1 after 24 hours of culture. In particular, in Example 2, the number of cells after 24 hours was larger than the number of seeded cells, suggesting that cell proliferation was promoted after adhesion. Moreover, also by observation with a microscope, it was confirmed that the number of HepG2 cells attached to each glass substrate treated in Examples 2 and 3 increased with respect to the glass substrate treated in Example 1.

Claims (19)

  1.  式(1)で表されるシラン化合物。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、
     R1は、置換されていてもよい炭素原子数1乃至10の直鎖又は分岐アルキル基を表わし、
     R2は、置換されていてもよい炭素原子数1乃至6の直鎖又は分岐アルコキシ基、ハロゲン原子又はそれらの組み合わせを表し、
     aは、0乃至2の整数であり、
     Xは、水素原子、フェニル基、又は置換されていてもよい炭素原子数1乃至6の直鎖若しくは分岐アルキル基を表し、
     Yは、置換されていてもよい炭素原子数1乃至10の直鎖又は分岐アルキレン基を表し、
     Zは、式(1-1)又は式(1-2)で表される1価の有機基であり、
     R3乃至R5は、各々独立して、水素原子又は置換されていてもよい炭素原子数1乃至10の直鎖若しくは分岐アルキル基を表し、
     T1は、炭素原子数4乃至10の炭化水素環又は芳香環を表し、
     bは、4以上の整数であり、その最大値はT1が取り得る最大の置換基数である。]
    Silane compound represented by Formula (1).
    Figure JPOXMLDOC01-appb-C000001
    [In Formula (1),
    R 1 represents an optionally substituted linear or branched alkyl group having 1 to 10 carbon atoms,
    R 2 represents an optionally substituted linear or branched alkoxy group having 1 to 6 carbon atoms, a halogen atom or a combination thereof,
    a is an integer of 0 to 2,
    X represents a hydrogen atom, a phenyl group, or a linear or branched alkyl group having 1 to 6 carbon atoms which may be substituted;
    Y represents a linear or branched alkylene group having 1 to 10 carbon atoms which may be substituted;
    Z is a monovalent organic group represented by formula (1-1) or formula (1-2),
    R 3 to R 5 each independently represents a hydrogen atom or an optionally substituted linear or branched alkyl group having 1 to 10 carbon atoms;
    T 1 represents a hydrocarbon ring or aromatic ring having 4 to 10 carbon atoms,
    b is an integer of 4 or more, and the maximum value is the maximum number of substituents that T 1 can take. ]
  2.  前記Zが式(1-1)で表される1価の有機基であり、且つR3及びR4が水素原子である、請求項1に記載のシラン化合物。 The silane compound according to claim 1, wherein Z is a monovalent organic group represented by formula (1-1), and R 3 and R 4 are hydrogen atoms.
  3.  請求項1又は請求項2に記載のシラン化合物を被担持物質に担持させたシラン担持物。 A silane-supported product in which the silane compound according to claim 1 or 2 is supported on a supported material.
  4.  前記被担持物質が蛋白質、細胞、化合物又はそれらの組み合わせである、請求項3に記載のシラン担持物。 The silane-supported product according to claim 3, wherein the supported material is a protein, a cell, a compound, or a combination thereof.
  5.  前記蛋白質が抗体、疾患マーカー、細胞増殖因子、細胞接着因子又はそれらの組み合わせである、請求項4に記載のシラン担持物。 The silane carrier according to claim 4, wherein the protein is an antibody, a disease marker, a cell growth factor, a cell adhesion factor, or a combination thereof.
  6.  前記化合物がペプチド、アミノ酸、医薬品、生理活性物質又はそれらの組み合わせである、請求項4に記載のシラン担持物。 The silane carrier according to claim 4, wherein the compound is a peptide, an amino acid, a pharmaceutical, a physiologically active substance, or a combination thereof.
  7.  請求項1又は請求項2に記載のシラン化合物及び有機溶剤を含む、単分子層又は多分子層形成用組成物。 A composition for forming a monolayer or a multi-layer comprising the silane compound according to claim 1 or 2 and an organic solvent.
  8.  更に水及び/又は有機酸を含む、請求項7に記載の単分子層又は多分子層形成用組成物。 The composition for forming a monomolecular layer or a multimolecular layer according to claim 7, further comprising water and / or an organic acid.
  9.  請求項1又は請求項2に記載のシラン化合物にて表面修飾された基体。 A substrate surface-modified with the silane compound according to claim 1 or 2.
  10.  前記基体の表面修飾された面に被担持物質を担持させた、請求項9に記載の基体。 The substrate according to claim 9, wherein a supported substance is supported on the surface-modified surface of the substrate.
  11.  前記被担持物質が蛋白質、細胞、化合物又はそれらの組み合わせである、請求項10に記載の基体。 The substrate according to claim 10, wherein the supported substance is a protein, a cell, a compound, or a combination thereof.
  12.  前記蛋白質が抗体、疾患マーカー、細胞増殖因子、細胞接着因子又はそれらの組み合わせである、請求項11に記載の基体。 The substrate according to claim 11, wherein the protein is an antibody, a disease marker, a cell growth factor, a cell adhesion factor, or a combination thereof.
  13.  前記化合物がペプチド、アミノ酸、医薬品、生理活性物質又はそれらの組み合わせである、請求項11に記載の基体。 The substrate according to claim 11, wherein the compound is a peptide, an amino acid, a pharmaceutical, a physiologically active substance, or a combination thereof.
  14.  前記基体が平板基板、不織布又は微粒子である、請求項9乃至請求項13の何れか1項に記載の基体。 The substrate according to any one of claims 9 to 13, wherein the substrate is a flat substrate, a nonwoven fabric, or fine particles.
  15.  前記微粒子がシリカ系微粒子、プラスチック系微粒子、金属微粒子又は磁性微粒子である、請求項14に記載の基体。 15. The substrate according to claim 14, wherein the fine particles are silica-based fine particles, plastic-based fine particles, metal fine particles, or magnetic fine particles.
  16.  前記微粒子の直径が0.001μm乃至1000μmである、請求項14又は請求項15に記載の基体。 The substrate according to claim 14 or 15, wherein the fine particles have a diameter of 0.001 µm to 1000 µm.
  17.  請求項9乃至請求項16の何れか1項に記載の基体を用いて作製された細胞足場用材料。 A cell scaffold material produced using the substrate according to any one of claims 9 to 16.
  18.  請求項9乃至請求項16の何れか1項に記載の基体を用いて作製された細胞、蛋白質又は化合物分離・検出用材料。 A cell, protein or compound separation / detection material produced using the substrate according to any one of claims 9 to 16.
  19.  請求項7又は請求項8に記載の単分子層又は多分子層形成用組成物を基板に塗布する工程、その基板を乾燥する工程、その基板を洗浄する工程、及びその基板を乾燥する工程を含む、請求項9乃至請求項16の何れか1項に記載の基体の製造方法。 A step of applying the monomolecular layer or multimolecular layer forming composition according to claim 7 or 8 to a substrate, a step of drying the substrate, a step of washing the substrate, and a step of drying the substrate The manufacturing method of the base | substrate of any one of Claim 9 thru | or 16 containing.
PCT/JP2014/069056 2013-07-18 2014-07-17 Silane compound containing active ester group and material produced using same WO2015008834A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015527335A JP6332646B2 (en) 2013-07-18 2014-07-17 Silane compound containing active ester group and material using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013149487 2013-07-18
JP2013-149487 2013-07-18

Publications (1)

Publication Number Publication Date
WO2015008834A1 true WO2015008834A1 (en) 2015-01-22

Family

ID=52346276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069056 WO2015008834A1 (en) 2013-07-18 2014-07-17 Silane compound containing active ester group and material produced using same

Country Status (2)

Country Link
JP (1) JP6332646B2 (en)
WO (1) WO2015008834A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6115842B1 (en) * 2016-02-17 2017-04-19 公立大学法人横浜市立大学 Cell seeding method and apparatus on scaffold material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005225789A (en) * 2004-02-12 2005-08-25 Univ Kanagawa Silane coupling agent
JP2006143715A (en) * 2004-11-03 2006-06-08 Samsung Electronics Co Ltd New linker compound, substrate coated with said compound, method for producing microarray using said compound and microarray produced by said method
JP2007186472A (en) * 2006-01-16 2007-07-26 Univ Kanagawa Photodegradable coupling agent
JP2012180324A (en) * 2011-03-02 2012-09-20 Nof Corp Thioether-containing alkoxysilane derivative and application thereof
WO2013038901A1 (en) * 2011-09-16 2013-03-21 日産化学工業株式会社 Organic silicon compound and silane coupling agent containing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4232276B2 (en) * 1999-05-26 2009-03-04 Jsr株式会社 Hydrolyzable silane compound and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005225789A (en) * 2004-02-12 2005-08-25 Univ Kanagawa Silane coupling agent
JP2006143715A (en) * 2004-11-03 2006-06-08 Samsung Electronics Co Ltd New linker compound, substrate coated with said compound, method for producing microarray using said compound and microarray produced by said method
JP2007186472A (en) * 2006-01-16 2007-07-26 Univ Kanagawa Photodegradable coupling agent
JP2012180324A (en) * 2011-03-02 2012-09-20 Nof Corp Thioether-containing alkoxysilane derivative and application thereof
WO2013038901A1 (en) * 2011-09-16 2013-03-21 日産化学工業株式会社 Organic silicon compound and silane coupling agent containing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6115842B1 (en) * 2016-02-17 2017-04-19 公立大学法人横浜市立大学 Cell seeding method and apparatus on scaffold material
WO2017141531A1 (en) * 2016-02-17 2017-08-24 公立大学法人横浜市立大学 Method for seeding cells to scaffold material and device therefor
JP2017143780A (en) * 2016-02-17 2017-08-24 公立大学法人横浜市立大学 Method for seeding cells on scaffold material and apparatus therefor

Also Published As

Publication number Publication date
JPWO2015008834A1 (en) 2017-03-02
JP6332646B2 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
US8871499B2 (en) Multi-well culture plate comprising gels with different shear modulus
JP6150071B2 (en) Organosilicon compound and silane coupling agent containing the same
Bellmann et al. A customizable microfluidic platform for medium-throughput modeling of neuromuscular circuits
US20140099695A1 (en) Cell-adhering light-controllable substrate
Yamazoe et al. Facile cell patterning on an albumin-coated surface
US8993322B2 (en) Methods and kits for cell release
Kikuchi et al. Arraying heterotypic single cells on photoactivatable cell-culturing substrates
Joseph et al. Effects of surface chemistry interaction on primary neural stem cell neurosphere responses
Ferlin et al. Development of a dynamic stem cell culture platform for mesenchymal stem cell adhesion and evaluation
JP6332646B2 (en) Silane compound containing active ester group and material using the same
Etezadi et al. Optimization of a PDMS-based cell culture substrate for high-density human-induced pluripotent stem cell adhesion and long-term differentiation into cardiomyocytes under a xeno-free condition
US11920115B2 (en) Array of micro-elements for high resolution and high content imaging and sorting of cells
WO2021029241A1 (en) Cell culture substrate
US20120052580A1 (en) Peptide-modified surfaces for cell culture
JP2002355026A (en) Base for cell culture, method for producing the same, method for cell culture and cell culture device each using the same
US10240122B2 (en) Active-ester-group-containing composition for producing fibers, and cell culture scaffold material using fibers produced from active-ester-group-containing composition
JP2018164412A (en) Base material for forming cell aggregate, method for forming cell aggregate, method for screening substance, method for searching function of cell, coating agent for cell culture base material, and cell aggregate formation promotor
JP6145324B2 (en) Cell culture substrate that promotes differentiation into nerve cells
JPWO2013051479A1 (en) Biomaterial or cell adhesion inhibitor
WO2023176949A1 (en) Cell culture container having high cell utilization efficiency
JP2019033742A (en) Culture base for pluripotent stem cells and method for producing pluripotent stem cells
WO2023178320A1 (en) Cell culture application methods of using a separation well microplate
Trump Cell-cell communication in three dimensional microenvironments
WO2014201154A1 (en) Matrix combinations support hematopoietic stem cell in vitro culturing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14825847

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015527335

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14825847

Country of ref document: EP

Kind code of ref document: A1