WO2023176949A1 - Cell culture container having high cell utilization efficiency - Google Patents

Cell culture container having high cell utilization efficiency Download PDF

Info

Publication number
WO2023176949A1
WO2023176949A1 PCT/JP2023/010495 JP2023010495W WO2023176949A1 WO 2023176949 A1 WO2023176949 A1 WO 2023176949A1 JP 2023010495 W JP2023010495 W JP 2023010495W WO 2023176949 A1 WO2023176949 A1 WO 2023176949A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
cell structure
recess
producing
cells
Prior art date
Application number
PCT/JP2023/010495
Other languages
French (fr)
Japanese (ja)
Inventor
康平 鈴木
佳臣 広井
淳二 福田
Original Assignee
日産化学株式会社
国立大学法人横浜国立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社, 国立大学法人横浜国立大学 filed Critical 日産化学株式会社
Publication of WO2023176949A1 publication Critical patent/WO2023176949A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues

Definitions

  • the present invention relates to a container for manufacturing a cell structure, a method for manufacturing a container for manufacturing a cell structure, a cell structure, and a method for manufacturing a cell structure.
  • Cell structures or cell aggregates are cell aggregates in which cells self-assemble and become three-dimensional aggregates.Since a living body-like structure is constructed, cell functions It has been reported that this can be maintained for a long period of time and physiological functions are improved. Therefore, expectations are increasing for the use of cell aggregates in drug discovery research, cell therapy, and regenerative therapy.
  • Patent Document 1 when a flat surface is formed on the substrate surface between recesses that are close to each other in a culture substrate, when spheroid culture is performed using the culture substrate, in addition to spheroids, single cells are formed. This was done in view of the problem that many layer-cultured cells and spheroids of non-uniform size are formed (see paragraph [0006] of Patent Document 1).
  • a plurality of depressions forming compartments in which the cultured material is cultured are formed on the surface of the culture substrate, and the surface of the culture substrate between the depressions that are close to each other is non-transparent. Culture substrates that are flat surfaces have been proposed. However, even with the technique described in International Publication No. 2012/036011 pamphlet, spheroids (cell structures) of non-uniform size may be generated.
  • the present invention was made in view of the above-mentioned circumstances, and an object of the present invention is to provide a container for producing cell structures that can produce cell structures of uniform size without reducing culture efficiency. do.
  • the present invention also provides a method for manufacturing the cell structure manufacturing container, a cell structure manufactured using the cell structure manufacturing container, and a cell structure manufacturing method using the cell structure manufacturing container. The purpose is to provide a method.
  • the present inventors have found that a container for producing cell structures in which the partition wall has a specific shape and the depth of the concave portion is deep to a certain extent relative to the equivalent diameter can solve the above-mentioned problems, and the present invention completed.
  • the present invention includes the following aspects.
  • It has a plurality of recesses and a partition wall that partitions the plurality of recesses,
  • the top of the partition wall has a convex shape,
  • the depth of the recess is more than 1.0 times the equivalent diameter of the recess at the center in the depth direction of the recess.
  • Container for producing cell structures [2] The cell according to [1], wherein the width of the partition wall that partitions two adjacent recesses is 0.1 mm to 0.5 mm when measured at the center in the depth direction of the recess.
  • Container for manufacturing structures [3] The cell structure manufacturing container according to [1] or [2], which is made of a gas-permeable elastic material.
  • the shape of the top of the partition wall in a cross section including the center line of each of the two adjacent recesses is a convex arc or a shape having a corner at the top.
  • the width of the partition wall that partitions two adjacent recesses is 0.1 times or more and 0.5 times or less the equivalent diameter of the recess, when measured at the center in the depth direction of the recess.
  • the plurality of recesses are arranged such that the distances between the center point of the opening of the specific recess and the center points of each of the openings of two or more recesses arranged adjacent to the specific recess are equal to each other.
  • a location corresponding to the center of the equilateral triangle in the partition wall surrounded by three mutually adjacent recesses arranged to form an equilateral triangle when the center points of the openings are connected is located in the partition wall.
  • the container for producing a cell structure according to [10] which is the most expensive.
  • the cell structure manufacturing container according to any one of [1] to [11], wherein the bottoms of the plurality of recesses have an arc shape or an inverted triangular shape in cross section.
  • [16] The container for producing a cell structure according to any one of [1] to [15], which has a cylindrical outer shape.
  • a method for manufacturing a cell structure manufacturing container according to any one of [1] to [18], comprising: A method for manufacturing a cell structure manufacturing container, the method comprising molding the cell structure manufacturing container using a mold.
  • a method for producing a cell structure comprising the step of adding a medium in which cells are dispersed to a culture space of the container for producing a cell structure according to any one of [1] to [18].
  • a container for producing cell structures that can produce cell structures of uniform size without reducing culture efficiency. Further, according to the present invention, there is provided a method for manufacturing a container for manufacturing a cell structure, a cell structure manufactured using the container for manufacturing a cell structure, and a cell structure using the container for manufacturing a cell structure. A manufacturing method can be provided.
  • FIG. 1 is a perspective view of an example of a cell structure manufacturing container.
  • FIG. 2 is a top view of the cell structure manufacturing container of FIG. 1.
  • FIG. 3A is a cross-sectional view taken along line A-A' of the cell structure manufacturing container shown in FIG.
  • FIG. 3B is an enlarged view of area A in FIG. 3A.
  • FIG. 4 is a cross-sectional view for explaining one embodiment of the bottom of the recess of the cell structure manufacturing container.
  • FIG. 5 is a sectional view taken along the line B-B' of the cell structure manufacturing container shown in FIG.
  • FIG. 6 is a photograph of the observation results of Example 1.
  • FIG. 7A is a photograph of the observation results of Comparative Example 1 (Part 1).
  • FIG. 7B is a photograph of the observation results of Comparative Example 1 (Part 2).
  • FIG. 8A is a photograph of the observation results of Example 2 (Part 1).
  • FIG. 8B is a photograph of the observation results of Example 2 (Part 2).
  • FIG. 9 is a photograph of the observation results of Example 1 after the medium was replaced.
  • FIG. 10 is a photograph of the observation results of Comparative Example 2 after the medium was replaced.
  • FIG. 11A is a photograph of the bright field observation results of the hair follicle primordium formation test.
  • FIG. 11B is a photograph of the fluorescence observation results of the hair follicle primordium formation test.
  • FIG. 11C is a photograph in which the photograph in FIG. 11A and the photograph in FIG. 11B are superimposed.
  • FIG. 11A is a photograph of the observation results of Example 2 (Part 1).
  • FIG. 8B is a photograph of the observation results of Example 2 (Part 2).
  • FIG. 9 is a photograph of the observation results
  • FIG. 12 is a photograph of the observation results of a hair regeneration test using the patch method.
  • FIG. 13A is a photograph of the observation results of Example 3 (Part 1).
  • FIG. 13B is a photograph of the observation results of Example 3 (Part 2).
  • FIG. 14 is a photograph of the observation results of Example 4.
  • the cell structure manufacturing container of the present invention has a plurality of recesses and a partition wall that partitions the plurality of recesses.
  • the top of the partition wall has a convex shape.
  • the depth of the recess is more than 1.0 times the equivalent diameter of the recess at the center in the depth direction of the recess.
  • the present inventors have conducted extensive studies in order to provide a container for producing cell structures that can produce cell structures of uniform size without reducing culture efficiency.
  • the inventors of the present invention considered that the cause lies in the shape of the upper surface (top) of the partition wall. Therefore, the present inventors made the top of the partition wall convex.
  • the medium is usually replaced multiple times during the culturing period.
  • the present inventors discovered that when the surface of the culture substrate is made into a non-flat surface (convex shape) like the culture substrate of the technique of International Publication No. 2012/036011 pamphlet, when the culture medium is replaced, the growing It has been found that spheroids (cell structures) tend to separate from depressions (concavities). As a result, the efficiency of culture decreases.
  • the depth of the recess 20 is designed to be 200 ⁇ 20 ⁇ m, and the diameter of the opening of the recess 20 is designed to be 500 ⁇ 20 ⁇ m. (See paragraph [0025] of International Publication No. 2012/036011 pamphlet). Therefore, even if the apex is made convex, the depth of the recess is made deeper (the depth of the recess is larger than the equivalent diameter of the recess), thereby improving the cell structure during culture medium exchange. It was found that the body was difficult to separate from the recess. As a result, it became possible to produce cell structures of uniform size without reducing culture efficiency, and the present invention was completed.
  • FIG. 1 is a perspective view of an example of a cell structure manufacturing container 100.
  • the outer shape of the cell structure manufacturing container 100 is cylindrical with circular upper and lower surfaces, and the diameters of the upper and lower surfaces are, for example, 5 mm to 50 mm.
  • the height is, for example, 5 mm to 50 mm.
  • the bottom surface 1 of the cell structure manufacturing container 100 is usually flat-bottomed.
  • the cell structure manufacturing container has an external shape that can be accommodated in, for example, a recessed part of a multiwell plate.
  • the number of wells in a multiwell plate is, for example, 6 to 96, more specifically 6, 12, 24, 48, or 96.
  • a multiwell plate also called a cell culture multiplate, is a plate having a plurality of wells used for cell culture, tissue culture, etc., and the volume of each well is about 0.1 mL to 20 mL. Since the container for cell structure production can be accommodated in the recessed portion of the multiwell plate, a plurality of containers for cell structure production can be handled as one, which increases the ease of handling.
  • the cell structure manufacturing container 100 has an outer peripheral wall 2 and a large opening 3 on the top surface, and the space inside the cell structure manufacturing container 100 surrounded by the outer peripheral wall 2 and the opening 3 is This is a culture space 4 that can accommodate a culture medium.
  • FIG. 2 is a top view of the cell structure manufacturing container 100 of FIG. 1.
  • a plurality of recesses 10 and a partition wall 11 that partitions the plurality of recesses 10 are formed.
  • the number of recesses 10 in the cell structure manufacturing container 100 in FIG. 2 is nineteen.
  • the plurality of recesses 10 are circular when viewed from the top side.
  • the number of recesses in the cell structure manufacturing container can be appropriately selected depending on the size of the cell structure manufacturing container itself and the size of the plurality of recesses, and is not particularly limited, but for example, 5 recesses. ⁇ 2000 pieces.
  • FIG. 3A is a sectional view taken along the line AA' of the cell structure manufacturing container 100 of FIG. 2.
  • the cross section of FIG. 3A can be said to be a cross section that includes the respective center lines of the two adjacent recesses 10.
  • the center line means a line passing through the center of the opening surface 10a of the recess 10 and extending in the depth direction of the recess 10.
  • the shape of the top portion 11a of the partition wall 11 is a convex shape. Specifically, it is arcuate.
  • the shape of the top portion 11a in FIG. 3A is not particularly limited as long as it is a convex shape, for example, and may have a corner portion at the top, for example. Since the top portion 11a of the partition wall 11 in FIG. 3A has a convex shape, it becomes difficult for cells to stay on the top portion 11a. As a result, cells are not cultured in a monolayer or structured in the apex 11a, so the cell structures obtained when cells are cultured are more uniform in size than in the case where the apex of the partition wall is flat. Sex increases.
  • the depth of the recess 10 is not particularly limited, but is, for example, 0.5 mm to 3.0 mm. In FIG. 3A, the depth (d) of the recess 10 is 2.0 mm.
  • the equivalent diameter of the recess 10 is not particularly limited, but is, for example, 0.3 mm to 1.5 mm. In FIG. 3A, the equivalent diameter (r) of the recess 10 is, for example, 1.0 mm.
  • the depth (d) of the recess 10 refers to the length (d in FIG. 3A) from the lowest point of the bottom 10b of the recess to the opening surface 10a of the recess.
  • the equivalent diameter (r) of the recess 10 is the equivalent diameter at the center 10c of the recess 10 in the depth direction.
  • the equivalent diameter means the diameter of a circle when the cross-sectional area of the cross section of the recess that is perpendicular to the depth direction of the recess and passes through the center of the recess in the depth direction is the area of the circle. If the cross section is a circle, the diameter of the circle is the equivalent diameter (r). If the cross section is other than a circle, calculate the area of the cross section and use the formula for the area of a circle ((r'/2) 2 ⁇ ⁇ ) (r' is the diameter of the circle) to find the equivalent r'. It is the diameter.
  • the depth (d) of the recess is more than 1.0 times the equivalent diameter (r) of the recess at the center of the recess in the depth direction, even if the top is made convex, cells cannot be The structure becomes difficult to separate from the recess.
  • the depth (d) of the recess is preferably 1.5 times or more, more preferably 1.7 times or more, the equivalent diameter (r). The larger d/r is, the more difficult it becomes for the cell structure to separate from the recess when replacing the medium.
  • the upper limit of d/r is not particularly limited, but if it is large, the recesses will easily trap air bubbles, and the culture medium in the recess will not be replaced sufficiently when changing the culture medium, so the depth of the recess (d) is preferably 5.0 times or less than the equivalent diameter (r), more preferably 3.5 times or less, particularly preferably 2.5 times or less.
  • the width (w) of the partition wall 11 that partitions two adjacent recesses 10 is not particularly limited, but is 0.1 of the equivalent diameter (r) of the recess when measured at the center 10c of the recess in the depth direction. It is preferable that it is 0.5 times or more.
  • the width (w) of the partition wall 11 that partitions two adjacent recesses 10 is not particularly limited, but is, for example, 0.1 mm to 0.5 mm when measured at the center 10c of the recess in the depth direction. .
  • the bottom portions 10b of the plurality of recesses 10 have an arcuate shape in cross section.
  • the arc shape may be a semicircle (or a hemisphere when viewed stereoscopically), an ellipse, or the like.
  • the shape of the bottom of the plurality of recesses may be flat, or may have a corner at the deepest part.
  • the shape having the corner at the deepest part is, for example, a shape as shown in FIG. 4, which is an inverted triangular shape in cross section (for example, an inverted conical shape when viewed stereoscopically).
  • the depth (d') of the bottom portion 10b is, for example, 1.0 mm.
  • FIG. 3B is an enlarged view of area A in FIG. 3A.
  • the shape of the central portion 10e of the recessed portion 10 excluding the bottom portion 10b and the opening portion 10d is a non-tapered shape.
  • a non-tapered shape means a shape in which the wall constituting the recess is formed in a straight line in the depth direction and has no taper angle.
  • the side surface is cylindrical with a straight line in the height direction, the top and bottom surfaces are the same shape, and the side surface is perpendicular to the top and bottom surfaces, the side surface has a taper angle. Since there is no cylindrical shape, such a cylindrical shape is non-tapered.
  • the cylindrical shape and the rectangular parallelepiped shape are non-tapered. It is preferable that the length (l) in the depth direction of the concave portion of the non-tapered central portion 10e is 0.5 times or more the depth (d) of the concave portion. Note that the length (l) is less than 1.0 times the depth (d) of the recess, and preferably 0.75 times or less.
  • the distance (L) between the center point of the opening of a specific recess and the center point of each of the openings of two or more recesses arranged adjacent to the specific recess is They are arranged so that they are equal to each other.
  • a honeycomb arrangement By adopting a honeycomb arrangement, it is possible to reduce the portions where the width of the partition wall is thick, and as a result, it becomes difficult for cells to remain at the top of the partition wall.
  • FIG. 5 is a BB' cross-sectional view of the cell structure manufacturing container 100 of FIG. 2. As shown in FIGS. 2 and 5, it corresponds to the center of an equilateral triangle in a partition wall 11 surrounded by three mutually adjacent recesses 10 arranged so as to form an equilateral triangle when the center points of the openings are connected. It is preferable that the apex point 11b is the highest in the partition wall 11. In the honeycomb arrangement, the width of the partition wall 11 is relatively thick at the apex portion 11b, but since it is the highest there, it becomes difficult for cells to remain in the apex portion 11b and its surroundings. As a result, the size uniformity of cell structures obtained when cells are cultured is further increased. Note that the apex portion 11b in FIG. 5 is higher than the apex 11c of the partition wall 11 in the cross section including the respective center lines of the two adjacent recesses 10 in FIGS. 2, 3b, and 5.
  • silicone e.g., polydimethylsiloxane (PDMS)
  • PS polystyrene
  • COP cycloolefin polymer
  • PAN polyacrylonitrile
  • PEPA polyester polymer alloy
  • polysulfone PSF
  • polyethylene terephthalate PET
  • polymethyl methacrylate PMMA
  • polyvinyl alcohol PVA
  • polyurethane PU
  • ethylene vinyl alcohol EVAL
  • polyethylene PE
  • polyester polypropylene
  • PVDF polyfluoride Vinylidene chloride
  • PVDF polyethersulfone
  • PC polycarbonate
  • PVC polyvinyl chloride
  • PTFE polytetrafluoroethylene
  • UHPE ultra-high molecular weight polyethylene
  • ABS acrylonitrile-butadiene-styrene resin
  • ABS Teflon (registered trademark)
  • glass etc.
  • polystyrene (PS) and polydimethylsiloxane (PDMS) are more preferred from the viewpoint of moldability and transparency for easy observation of cell culture.
  • the cell structure manufacturing container is made of a gas-permeable elastic material. This is because, depending on the type of cells, containers with gas permeability are more suitable for culturing.
  • the gas-permeable elastic material include silicone. Examples of silicone include polydimethylsiloxane (PDMS).
  • At least a portion of the surface of the cell structure manufacturing container is provided with a coating film having the ability to inhibit cell adhesion.
  • At least a portion of the surface includes, for example, a surface of a recess.
  • the coating film having the ability to suppress cell adhesion is not particularly limited, but examples include coating films containing the following copolymers.
  • the copolymer includes a repeating unit containing an organic group represented by the following formula (a) and a repeating unit containing an organic group represented by the following formula (b).
  • the copolymer is, for example, a copolymer described in WO2014/196652 pamphlet. The contents of WO2014/196652 pamphlet are incorporated herein to the same extent as if expressly set forth in their entirety.
  • U a1 , U a2 , U b1 , U b2 and U b3 each independently represent a hydrogen atom or a straight chain or branched alkyl group having 1 to 5 carbon atoms
  • An ⁇ is a halogen (Represents an anion selected from the group consisting of compound ions, inorganic acid ions, hydroxide ions, and isothiocyanate ions.)
  • copolymer contains a repeating unit containing an organic group represented by the above formula (a) and a repeating unit containing an organic group represented by the above formula (b). None.
  • the copolymer is preferably obtained by radical polymerization of a monomer containing an organic group represented by the above formula (a) and a monomer containing an organic group represented by the above formula (b), Those subjected to polycondensation or polyaddition reactions can also be used.
  • copolymers include vinyl polymers reacted with olefins, polyamides, polyesters, polycarbonates, polyurethanes, etc.
  • (Meth)acrylic polymers are preferred.
  • a (meth)acrylate compound means both an acrylate compound and a methacrylate compound.
  • (meth)acrylic acid means acrylic acid and methacrylic acid.
  • the monomers containing organic groups represented by the above formulas (a) and (b) are monomers represented by the following formulas (A) and (B), respectively.
  • T a , T b , U a1 , U a2 , U b1 , U b2 and U b3 each independently represent a hydrogen atom or a straight chain or branched alkyl group having 1 to 5 carbon atoms
  • Q a and Q b each independently represent a single bond, an ester bond, or an amide bond
  • R a and R b each independently represent a carbon atom number of 1 to 10 that may be substituted with a halogen atom.
  • An ⁇ represents an anion selected from the group consisting of a halide ion, an inorganic acid ion, a hydroxide ion, and an isothiocyanate ion, and m represents an integer from 0 to 6. represent.
  • the repeating units derived from the monomers represented by formulas (A) and (B) are represented by the following formulas (a1) and (b1), respectively.
  • examples of "straight chain or branched alkyl group having 1 to 5 carbon atoms” include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, n-pentyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1,1-dimethylpropyl group, 1,2-dimethylpropyl group, 2,2-dimethylpropyl group or 1 -Ethylpropyl group.
  • a straight chain or branched alkylene group having 1 to 10 carbon atoms which may be substituted with a halogen atom refers to a straight chain or branched alkylene group having 1 to 10 carbon atoms, or a halogen atom or more. means a straight chain or branched alkylene group having 1 to 10 carbon atoms substituted with .
  • a linear or branched alkylene group having 1 to 10 carbon atoms is a divalent organic group in which one hydrogen atom is removed from the above alkyl group, such as a methylene group, ethylene group, propylene group.
  • trimethylene group trimethylene group, tetramethylene group, 1-methylpropylene group, 2-methylpropylene group, dimethylethylene group, ethylethylene group, pentamethylene group, 1-methyl-tetramethylene group, 2-methyl-tetramethylene group, 1, Examples include 1-dimethyl-trimethylene group, 1,2-dimethyl-trimethylene group, 2,2-dimethyl-trimethylene group, 1-ethyl-trimethylene group, hexamethylene group, octamethylene group and decamethylene group.
  • ethylene group, propylene group, octamethylene group and decamethylene group are preferable, and linear or branched alkylene groups having 1 to 5 carbon atoms, such as ethylene group, propylene group, trimethylene group and tetramethylene group, are more preferable.
  • ethylene or propylene groups are particularly preferred.
  • a linear or branched alkylene group having 1 to 10 carbon atoms substituted with one or more halogen atoms refers to an alkylene group in which one or more arbitrary hydrogen atoms are replaced with a halogen atom.
  • Particularly preferred are ethylene groups or propylene groups in which some or all of the hydrogen atoms are replaced with halogen atoms.
  • examples of the "halogen atom” include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • halide ion means an anion of a halogen atom, and includes fluoride ion, chloride ion, bromide ion, and iodide ion, and preferably chloride ion.
  • inorganic acid ion means carbonate ion, sulfate ion, phosphate ion, hydrogen phosphate ion, dihydrogen phosphate ion, nitrate ion, perchlorate ion, or borate ion.
  • Preferred examples of the An - are halide ions, sulfate ions, phosphate ions, hydroxide ions, and isothiocyanate ions, and particularly preferred are halide ions.
  • T a and T b are preferably each independently a hydrogen atom, a methyl group, or an ethyl group, and more preferably each independently a hydrogen atom or a methyl group. It is.
  • U a1 , U a2 , U b1 , U b2 and U b3 are preferably each independently a hydrogen atom, a methyl group or It is an ethyl group.
  • U a1 and U a2 are more preferably hydrogen atoms.
  • U b1 , U b2 (and U b3 ) are more preferably a methyl group or an ethyl group, particularly preferably a methyl group.
  • R a and R b are preferably each independently a straight chain or branched alkylene group having 1 to 3 carbon atoms, which may be substituted with a halogen atom, More preferably, each independently is an ethylene group or a propylene group, or an ethylene group or a propylene group substituted with one chlorine atom, and particularly preferably an ethylene group or a propylene group.
  • m preferably represents an integer of 0 to 3, more preferably an integer of 1 or 2, and particularly preferably 1.
  • Specific examples of the above formula (A) include vinylphosphonic acid, acid phosphooxyethyl (meth)acrylate, 3-chloro-2-acid phosphooxypropyl (meth)acrylate, acid phosphooxypropyl (meth)acrylate, and acid phosphooxypropyl (meth)acrylate.
  • a (meth)acrylate compound having two functional groups as represented by the general formula (C) or (D) described below, may be used in combination.
  • formula (B) examples include dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylate, 2-(t-butylamino)ethyl (meth)acrylate, methacroyl
  • Examples include choline chloride, among which dimethylaminoethyl (meth)acrylate, methacroylcholine chloride, or 2-(t-butylamino)ethyl (meth)acrylate is preferably used.
  • the structural formulas of 2-(t-butylamino)ethyl methacrylate are represented by the following formulas (B-1) to (B-4), respectively.
  • the proportion of the repeating unit containing the organic group represented by formula (a) (or the repeating unit represented by formula (a1)) in the copolymer is 20 mol% to 80 mol%, preferably 30 mol%. It is mol% to 70 mol%, more preferably 40 mol% to 60 mol%. Note that the copolymer may contain a repeating unit containing two or more types of organic groups represented by formula (a) (or a repeating unit represented by formula (a1)).
  • the proportion of the repeating unit containing an organic group represented by formula (b) (or the repeating unit represented by formula (b1)) in the above copolymer is the proportion of the repeating unit containing the organic group represented by formula (a) ( Alternatively, it may be the entire remainder after subtracting the ratio of formula (a1)), or it may be the remainder after subtracting the total ratio of the above formula (a) (or formula (a1)) and the third component described below.
  • the copolymer may contain a repeating unit containing two or more types of organic groups represented by formula (b) (or a repeating unit represented by formula (b1)).
  • the copolymer may be copolymerized with an arbitrary third component.
  • a (meth)acrylate compound having two or more functional groups may be copolymerized as the third component, and a portion of the polymer may be partially three-dimensionally crosslinked.
  • Examples of such a third component include a bifunctional monomer represented by the following formula (C) or (D).
  • T c , T d and U d each independently represent a hydrogen atom or a straight chain or branched alkyl group having 1 to 5 carbon atoms, and R c and R d each independently, Represents a straight chain or branched alkylene group having 1 to 10 carbon atoms that may be substituted with a halogen atom.
  • the copolymer preferably contains a crosslinked structure derived from such a difunctional monomer.
  • T c and T d are preferably each independently a hydrogen atom, a methyl group, or an ethyl group, and more preferably each independently a hydrogen atom or a methyl group. It is.
  • U d is preferably a hydrogen atom, a methyl group or an ethyl group, more preferably a hydrogen atom.
  • R c and R d are preferably each independently a straight chain or branched alkylene group having 1 to 3 carbon atoms which may be substituted with a halogen atom, More preferably, each independently is an ethylene group or a propylene group, or an ethylene group or a propylene group substituted with one chlorine atom, and particularly preferably an ethylene group or a propylene group.
  • bifunctional monomer represented by formula (C) examples include ethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, and propylene glycol di(meth)acrylate.
  • the bifunctional monomer represented by formula (D) is preferably bis(methacryloyloxymethyl) phosphate, bis[2-(methacryloyloxy)ethyl] phosphate, bis[2-(methacryloyloxy)propyl phosphate ] etc.
  • the optional third component may be a trifunctional monomer.
  • a trifunctional monomer as the third component include phosphinylidine triacrylate tris(oxy-2,1-ethanediyl).
  • ethylene glycol di(meth)acrylate represented by the following formula (C-1) and bis[2-(methacryloyloxy)ethyl] phosphate represented by the following formula (D-1) are particularly preferred. .
  • the copolymer may contain one or more of these third components.
  • the bifunctional monomer represented by formula (D) is preferred, and the difunctional monomer represented by formula (D-1) is particularly preferred.
  • the proportion of the third component (for example, a crosslinked structure derived from a bifunctional monomer represented by the above formula (C) or (D)) in the copolymer is 0 mol% to 50 mol%.
  • the method for producing the copolymer is not particularly limited, but includes, for example, the method for producing the copolymer described in WO2014/196652 pamphlet.
  • the method of coating the copolymer onto the container for cell structure production is not particularly limited, and includes, for example, the coating process described in WO2014/196652 pamphlet.
  • the coating film may be a coating film obtained from the composition for forming a coating film described in WO2021/167037 pamphlet.
  • the contents of pamphlet WO2021/167037 are incorporated herein to the same extent as if expressly set forth in their entirety.
  • the composition for forming a coating film described in the WO2021/167037 pamphlet will be described below. In this specification, it is referred to as a second aspect of the composition for forming a coating film.
  • the coating film forming composition of the second aspect has the following formula (1): (In the formula, R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkylene group having 1 to 6 carbon atoms, and n represents an integer of 1 to 30) A compound represented by the following formula (2): (In the formula, R3 represents a hydrogen atom or a methyl group, R4 represents a monovalent organic group having cationic properties) A compound represented by and the following formula (3): (In the formula, R 5 each independently represents a hydrogen atom or a straight chain or branched alkyl group having 1 to 6 carbon atoms, and R 6 represents a straight chain having 1 to 10 carbon atoms which may be substituted with a halogen atom.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an alkylene group having 1 to 6 carbon atoms
  • It preferably represents a straight chain or branched alkylene group having 1 to 6 carbon atoms, more preferably a straight chain or branched alkylene group having 2 to 5 carbon atoms, particularly preferably an ethylene group or a propylene group
  • n is , represents an integer of 1 to 30, preferably represents an integer of 1 to 20, more preferably represents an integer of 2 to 10, particularly preferably represents an integer of 3 to 6.
  • Specific examples of the compound of formula (1) above include acid phosphooxyethyl (meth)acrylate, 3-chloro-2-acid phosphooxypropyl (meth)acrylate, acid phosphooxypropyl (meth)acrylate, acid phosphooxymethyl (meth)acrylate, acid phosphooxypolyoxyethylene glycol mono(meth)acrylate, acid phosphooxypolyoxypropylene glycol mono(meth)acrylate, etc.
  • R 3 represents a hydrogen atom or a methyl group
  • R 4 represents a monovalent organic group having cationic properties, Typically, it is a monovalent group having a primary amine, secondary amine, tertiary amine or quaternary ammonium structure.
  • monovalent groups having a primary amine, secondary amine, tertiary amine or quaternary ammonium structure include the formulas: -R 4a -NH 2 , -R 4a -NHR, -R 4a -NRR', respectively.
  • R 4a is an alkylene group having 1 to 6 carbon atoms, which may be interrupted by an ester bond, amide bond, ether bond or phosphodiester bond;
  • R, R' and R'' are each independently a straight chain or branched alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an aralkyl group having 7 to 16 carbon atoms. means a group represented by ].
  • the monovalent group having a primary amine, secondary amine or tertiary amine structure in the second embodiment may be quaternized or chlorinated, and similarly the monovalent group having a quaternary ammonium structure is May be chlorinated.
  • Specific examples of the compound of formula (2) above include dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylate, 2-(t-butylamino)ethyl (meth)acrylate, Examples include (meth)acryloylcholine chloride, 2-(meth)acryloyloxyethylphosphorylcholine (MPC), and the like.
  • the compound of formula (3) which is a monomer component of the copolymer according to the second aspect, is a bifunctional monomer having crosslinking properties.
  • R 5 each independently represents a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms, preferably a hydrogen atom or a methyl group
  • R 6 is represents a straight chain or branched alkylene group having 1 to 10 carbon atoms which may be substituted with a halogen atom, preferably a straight chain or branched alkylene group having 1 to 6 carbon atoms which may be substituted with a halogen atom.
  • m represents a group, more preferably represents a straight chain or branched alkylene group having 1 to 6 carbon atoms which may be substituted with a chlorine atom, particularly preferably represents an ethylene group, a propylene group or a trimethylene group, m is Represents an integer from 1 to 30, preferably represents an integer from 1 to 20, more preferably represents an integer from 1 to 10, still more preferably represents an integer from 1 to 6, particularly preferably represents an integer from 1 to 4. .
  • Specific examples of the compound of formula (3) above include poly(ethylene glycol) di(meth)acrylate, poly(trimethylene glycol) di(meth)acrylate, poly(propylene glycol) di(meth)acrylate, etc. .
  • poly(ethylene glycol) dimethacrylate poly(trimethylene glycol) dimethacrylate, and poly(propylene glycol) dimethacrylate are represented by the following formulas (3-1) to (3-3), respectively.
  • the copolymer according to the second aspect is obtained by polymerizing a monomer mixture containing the compounds of the above formulas (1), (2), and (3) as monomer components.
  • a monomer mixture may contain an ethylenically unsaturated monomer, a polysaccharide, or a derivative thereof as an optional fourth component, as long as it does not impair the ability to suppress the adhesion of biological substances.
  • ethylenically unsaturated monomers include one or two selected from the group consisting of (meth)acrylic acid and its esters; vinyl acetate; vinylpyrrolidone; ethylene; vinyl alcohol; and hydrophilic functional derivatives thereof. More than one ethylenically unsaturated monomer can be mentioned.
  • polysaccharides or derivatives thereof include cellulosic polymers such as hydroxyalkylcellulose (eg, hydroxyethylcellulose or hydroxypropylcellulose), starch, dextran, and curdlan.
  • hydroxyalkylcellulose eg, hydroxyethylcellulose or hydroxypropylcellulose
  • starch e.g. hydroxyethylcellulose or hydroxypropylcellulose
  • dextran e.g., hydroxypropylcellulose
  • curdlan e.g., cellulosic polymers
  • the copolymer according to the second aspect is preferably obtained by polymerizing a monomer mixture containing only the compounds of formulas (1), (2) and (3) above as monomer components.
  • the copolymer according to the second aspect is a monomer mixture containing compounds of the above formulas (1), (2), and (3) as monomer components, and the total mass of the monomer components contained in the monomer mixture. It can be obtained by polymerizing a monomer mixture characterized in that the proportion of the compound of the formula (3) is 2 to 40% by mass. Based on the total mass of monomer components contained in the monomer mixture, the compound of formula (3), which is a difunctional monomer, is added in an amount of 2 to 40% by mass, preferably 3 to 35% by mass, more preferably 5 to 35% by mass.
  • the coating film forming composition of the second embodiment which includes the copolymer obtained from the monomer mixture, has an excellent ability to suppress the adhesion of biological substances.
  • the monomer mixture may contain two or more types of compounds of formula (3).
  • the proportion of the compound of formula (1) to the total mass of monomer components is 10 to 95% by mass, preferably 10 to 80% by mass, and more preferably 45 to 75% by mass. Note that the monomer mixture may contain two or more types of compounds of formula (1).
  • the proportion of the compound of formula (2) to the total mass of monomer components is 3 to 90% by mass, preferably 10 to 70% by mass, and more preferably 15 to 35% by mass. Note that the monomer mixture may contain two or more types of compounds of formula (2).
  • the copolymer according to the second embodiment can be synthesized by methods such as radical polymerization, anionic polymerization, and cationic polymerization, which are common methods for synthesizing (meth)acrylic polymers.
  • Various methods such as solution polymerization, suspension polymerization, emulsion polymerization, and bulk polymerization are possible.
  • a monomer mixture containing the compounds of formulas (1), (2), and (3) above is reacted (polymerized) in a solvent at a total concentration of monomer components of 0.01 to 20% by mass. It can be prepared by a manufacturing method including steps.
  • the solvent in the polymerization reaction may be water, a phosphate buffer, an alcohol such as ethanol, or a mixed solvent of these, but preferably contains water or ethanol. Furthermore, it is preferable that water or ethanol is contained in an amount of 10% by mass or more and 100% by mass or less. Furthermore, it is preferable that water or ethanol is contained in an amount of 50% by mass or more and 100% by mass or less. Furthermore, it is preferable that water or ethanol is contained in an amount of 80% by mass or more and 100% by mass or less. Furthermore, it is preferable that water or ethanol is contained in an amount of 90% by mass or more and 100% by mass or less. Preferably, the total amount of water and ethanol is 100% by mass.
  • polymerization initiators include “thermal radical polymerization initiators” and “photoradical polymerization initiators.”
  • thermal radical polymerization initiators include 2,2'-azobis(isobutyronitrile), 2,2'-azobis(2-methylbutyronitrile), 2,2'-azobis(2,4 -dimethylvaleronitrile) (Fuji Film Wako Pure Chemical Industries, Ltd.
  • photoradical polymerization initiators include acetophenone, chloroacetophenone, hydroxyacetophenone, 2-aminoacetophenone, dialkylaminoacetophenone, 2,2-diethoxyacetophenone, 2,2-dimethoxy-2'-phenylacetophenone (BASF BASF product name: Irgacure 651), 2-hydroxy-2-methyl-1-phenylpropanone (BASF product name: Irgacure 1173), 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxymethylpropanone (BASF company product name: Irgacure 2959), 2-hydroxy-1- ⁇ 4-[4-(2-hydroxy-2-methylpropionyl)benzyl]phenyl ⁇ -2-methyl-1-propan-1-one (BASF company Product name: Irgacure 127), 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one (BASF product name: Irgacure 90
  • the amount of the polymerization initiator added is 0.05% by mass to 10% by mass based on the total mass of monomer components used for polymerization.
  • the reaction conditions are to heat the reaction vessel to 50 to 200°C in an oil bath or the like and stir for 1 to 48 hours, more preferably at 80 to 150°C for 5 to 30 hours, so that the polymerization reaction progresses and the second embodiment is achieved. A copolymer is obtained.
  • the reaction atmosphere is preferably a nitrogen atmosphere.
  • all reactants may be placed in a reaction solvent at room temperature and then heated to the above temperature for polymerization, or all or a portion of the reactant mixture may be added to a preheated solvent. It may be added dropwise.
  • the weight average molecular weight of the copolymer according to the second aspect may range from several thousand to several million, preferably from 5,000 to 5,000,000, more preferably from 10,000 to 2,000, It is 000. Further, it may be a random copolymer, a block copolymer, or a graft copolymer, and preferably a random copolymer. Furthermore, since the copolymer produced in this manner contains a difunctional monomer, it is considered to be a three-dimensional polymer, and is dissolved or dispersed in a solution containing water or alcohol.
  • the composition for forming a coating film according to the second aspect may be prepared by isolating/purifying the copolymer thus obtained and then diluting it to a predetermined concentration with a desired solvent. good. Furthermore, the composition for forming a coating film according to the second aspect may be prepared from the reaction solution (ie, copolymer-containing varnish) obtained after the polymerization reaction.
  • Examples of the solvent contained in the coating film forming composition of the second embodiment include water, phosphate buffered saline (PBS), and alcohol.
  • the concentration of solids in the composition for forming a coating film according to the second aspect is preferably 0.01 to 50% by mass in order to form a uniform coating film.
  • the concentration of the copolymer in the composition for forming a coating film is preferably 0.01 to 5% by mass, more preferably 0.01 to 4% by mass, particularly preferably 0.01 to 3% by mass. be. If the concentration of the copolymer is 0.01% by mass or less, the concentration of the copolymer in the resulting coating film-forming composition will be too low to form a coating film with a sufficient thickness, and if it is 5% by mass or more If so, the storage stability of the coating film forming composition may deteriorate, and precipitation or gelation of dissolved substances may occur.
  • other substances can be added to the coating film forming composition of the second embodiment, if necessary, within a range that does not impair the performance of the resulting coating film.
  • Other substances include preservatives, surfactants, primers that increase adhesion to the substrate, fungicides, sugars, and the like.
  • the pH in the coating film forming composition is further adjusted. It may also include a step of adjusting in advance.
  • the pH adjustment can be carried out, for example, by adding a pH adjuster to a composition containing the above copolymer and a solvent, and adjusting the pH of the composition to 2 to 13.5, preferably 2 to 8.5, more preferably 3 to 8. Alternatively, it may be carried out by setting it to preferably 8.5 to 13.5, more preferably 10 to 13.5.
  • the type and amount of the pH adjuster that can be used are appropriately selected depending on the concentration of the copolymer, the abundance ratio of anions and cations, and the like.
  • pH adjusters include organic amines such as ammonia, diethanolamine, pyridine, N-methyl-D-glucamine, and tris(hydroxymethyl)aminomethane; alkali metal hydroxides such as potassium hydroxide and sodium hydroxide; chloride Alkali metal halides such as potassium and sodium chloride; inorganic acids or alkali metal salts thereof such as sulfuric acid, phosphoric acid, hydrochloric acid, and carbonic acid; quaternary ammonium cations such as choline; or mixtures thereof (e.g., phosphate buffered saline) (buffer solutions such as).
  • organic amines such as ammonia, diethanolamine, pyridine, N-methyl-D-glucamine, and tris(hydroxymethyl)aminomethane
  • alkali metal hydroxides
  • ammonia, diethanolamine, sodium hydroxide, choline, N-methyl-D-glucamine, and tris(hydroxymethyl)aminomethane are preferred, and ammonia, diethanolamine, sodium hydroxide, and choline are particularly preferred.
  • the coating film may be a coating film obtained from the composition for forming a coating film described in the WO2022/259998 pamphlet. It will be incorporated into.
  • the composition for forming a coating film described in the WO2022/259998 pamphlet will be described below. In this specification, it is referred to as a third aspect of the composition for forming a coating film.
  • the coating film forming composition of the third aspect is used for suppressing the adhesion of biological substances.
  • the third aspect of the composition for forming a coating film contains at least a copolymer and, if necessary, other components such as a solvent.
  • the composition for forming a coating film according to the third aspect can form a coating film that is difficult to dissolve in phosphate buffered saline, but the composition for forming a coating film according to the third aspect can be used for biological As long as it is used to suppress the adhesion of substances, it is not particularly limited, and is not limited to forming a coating film in contact with phosphate buffered saline.
  • the copolymer according to the third aspect is water-insoluble.
  • water-soluble means that 1.0 g or more can be dissolved in 100 g of water at 25°C.
  • Water-insoluble means that it does not fall under “water-soluble", that is, the solubility in 100 g of water at 25° C. is less than 1.0 g.
  • the copolymer according to the third aspect has a repeating unit (A) represented by the following formula (A) and a repeating unit (B) represented by the following formula (B).
  • the molar ratio (A:B) of repeating units (A) and repeating units (B) in the copolymer according to the third embodiment is 89:11 to 50:50.
  • R 1 to R 3 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • X 1 and X 2 each independently represent a single bond, an ester bond, an ether (Represents an alkylene group having 1 to 5 carbon atoms that may be interrupted by a bond, amide bond, or oxygen atom.)
  • the copolymer according to the third aspect may have two or more types of repeating units (A).
  • the copolymer according to the third aspect may have two or more types of repeating units (B).
  • the copolymer according to the third aspect preferably has one type of repeating unit (A) and one type of repeating unit (B).
  • alkyl group having 1 to 5 carbon atoms examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, n-pentyl group, 1 -methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1,1-dimethylpropyl group, 1,2-dimethylpropyl group, 2,2-dimethylpropyl group, 1-ethylpropyl group and the like.
  • R 1 to R 3 are each independently preferably a hydrogen atom, a methyl group, or an ethyl group.
  • ether bond means -O-
  • the alkylene group having 1 to 5 carbon atoms may be interrupted by an oxygen atom.
  • alkylene groups having 1 to 5 carbon atoms include methylene group, ethylene group, propylene group, trimethylene group, tetramethylene group, 1-methylpropylene group, 2-methylpropylene group, dimethylethylene group, ethylethylene group, pentamethylene group.
  • Examples include groups.
  • X 1 and X 2 are preferably a methylene group, an ethylene group, or a propylene group.
  • the phrase "may be interrupted by an oxygen atom” means that one or more carbon-carbon bonds of an alkylene group having 1 to 5 carbon atoms are bonded via an ether bond.
  • the copolymer according to the third aspect is preferably a copolymer in which R 1 and R 2 are hydrogen atoms, R 3 is a methyl group, and X 1 and X 2 are single bonds.
  • the molar ratio (A:B) of the repeating unit (A) and the repeating unit (B) is 89:11 to 50:50.
  • the molar ratio of repeating units (A) and repeating units (B) ( A:B) can be expressed as (100-m):m.
  • the range of m is 11-50.
  • the lower limit of m may be 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30.
  • the upper limit of m may be 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 38, 37, 36, or 35.
  • the range of m is, for example, 12-49, 12-48, 15-48, 20-49, 20-45, 22-49, or 22-45.
  • the total mol% of repeating units (A) and repeating units (B) in all repeating units in the copolymer according to the third aspect is not particularly limited, but is preferably 90 mol% or more, and 95 mol% or more. is more preferable, 99.5 mol% or more is even more preferable, and 100% is particularly preferable.
  • the molar ratio of the repeating unit (A) and repeating unit (B) in the copolymer is set within a specific range. . Therefore, in the third embodiment, a coating film that is difficult to dissolve in phosphate buffered saline can be obtained without crosslinking the copolymer. Therefore, the copolymer does not need to have a photosensitive group for crosslinking the copolymer. That is, it is preferable that the copolymer does not have a photosensitive group. Examples of the photosensitive group include an azide group.
  • the copolymer does not need to have photosensitive groups to crosslink the copolymer. Therefore, when forming a coating film, there is no need to perform light irradiation for crosslinking the copolymer. Therefore, the process for forming the coating film can be simplified.
  • the viscosity average degree of polymerization (hereinafter sometimes simply referred to as "degree of polymerization") of the copolymer according to the third aspect is not particularly limited, but from the viewpoint of suitably obtaining the effects of the third aspect, from 200 to 3 ,000 is preferred, 200 to 2,500 is more preferred, and 200 to 2,000 is particularly preferred.
  • the viscosity average degree of polymerization is measured with the copolymer completely saponified.
  • P indicates the viscosity average degree of polymerization.
  • the viscosity average degree of polymerization can be determined according to JIS K 67
  • the method for producing the copolymer according to the third aspect is not particularly limited, but for example, a compound represented by the following formula (C) is polymerized to produce a homopolymer, and the obtained homopolymer is publicly known.
  • a method for obtaining a copolymer by partial hydrolysis using a saponification reaction may be mentioned. (In the formula, R 1 , R 3 , and X 1 have the same meanings as above.)
  • a compound represented by the following formula (C) and a compound represented by the following formula (D) are copolymerized to form a copolymer.
  • One method is to obtain union. (In the formula, R 1 to R 3 , X 1 and X 2 have the same meanings as above.)
  • the copolymer according to the third aspect may be a random copolymer or a block copolymer.
  • the copolymer according to the third aspect commercially available products may be used.
  • a specific example of a commercially available copolymer is polyvinyl acetate (trade name: JMR-10L (registered trademark), manufactured by Nippon Vinyl Poval Co., Ltd.).
  • the content of the copolymer in the film-forming component in the coating film-forming composition of the third aspect is not particularly limited, but is preferably 80% by mass or more, more preferably 90% by mass or more, and 95% by mass or more. is particularly preferred.
  • the film-forming component refers to a component obtained by excluding the solvent component from all components of the composition.
  • the content of the copolymer in the coating film forming composition of the third aspect is not particularly limited, but from the viewpoint of easily forming a coating film with a desired thickness, it is preferably 0.1 to 10% by mass, and 0.1 to 10% by mass is preferable. .3 to 8% by weight is more preferable, and 0.5 to 5% by weight is particularly preferable. Further, the content of the copolymer in the composition for forming a coating film may be 0.02 to 2% by mass, or 0.05 to 1% by mass.
  • Examples of the solvent according to the third aspect include water, phosphate buffered saline (PBS), alcohol, and water-soluble organic solvents (excluding alcohol).
  • PBS phosphate buffered saline
  • alcohol excluding alcohol
  • Examples of the alcohol include alcohols having 2 to 6 carbon atoms.
  • Examples of the alcohol include ethanol, propanol, isopropanol, 1-butanol, 2-butanol, isobutanol, t-butanol, 1-pentanol, 2-pentanol, 3-pentanol, 1-heptanol, 2-heptanol, 2,2-dimethyl-1-propanol (neopentyl alcohol), 2-methyl-1-propanol, 2-methyl-1-butanol, 2-methyl-2-butanol (t-amyl alcohol), 3-methyl-1 -butanol, 3-methyl-3-pentanol, cyclopentanol, 1-hexanol, 2-hexanol, 3-hexanol, 2,3-dimethyl-2-butanol, 3,3-dimethyl-1-butanol, 3, 3-dimethyl-2-butanol, 2-ethyl-1-butanol, 2-
  • a water-soluble organic solvent refers to an organic solvent that can be mixed with water and alcohol in any proportion and does not separate after mixing.
  • water-soluble organic solvents include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, and propylene glycol monoethyl ether. , propylene glycol monomethyl ether acetate, and propylene glycol propyl ether acetate. These can be used alone or in combination of two or more.
  • water, phosphate buffered saline (PBS), alcohol, or a water-soluble organic solvent may be used alone as a solvent.
  • a combination of two or more of water, phosphate buffered saline (PBS), alcohol, and a water-soluble organic solvent may be used as the solvent.
  • the solvent is preferably selected from water, alcohol, water-soluble organic solvents, and combinations of two or more thereof, and water, ethanol, water-soluble organic solvents, and two or more thereof. More preferably, it is selected from a combination of.
  • the water:alcohol mass ratio is, for example, 1:99 to 70:30, and 1:99 to 50:50.
  • the mass ratio (A:B:C) of water:alcohol:water-soluble organic solvent in the composition for forming a coating film of the third aspect is, for example, 5 to 30:65 to 92:1 to 30 (A+B+C is 100).
  • the mixing ratio (mass ratio) of alcohol:water-soluble organic solvent is, for example, 30:70 to 97:3.
  • the content of the solvent in the coating film forming composition of the third aspect is not particularly limited, but from the viewpoint of easily forming a coating film with a desired thickness, it is preferably 90% by mass or more, and more preferably 92% by mass or more. It is preferably 95% by mass or more, particularly preferably 95% by mass or more.
  • the coating film forming composition of the third aspect can also contain other components as necessary.
  • Other components include, for example, pH adjusters, preservatives, surfactants, fungicides, sugars, and the like.
  • the method for manufacturing a cell structure manufacturing container is not particularly limited, but the following method for manufacturing a cell structure manufacturing container of the present invention is preferred.
  • the method for manufacturing a cell structure manufacturing container of the present invention includes molding the cell structure manufacturing container of the present invention using a mold.
  • a method for producing a cell structure production container there is a method of producing a recessed part (recessed part) by laser irradiation, for example, as described in International Publication No. 2012/036011 pamphlet.
  • the depth of the recessed portion (recessed portion) is increased, the diameter of the opening will also become larger. Therefore, it is difficult to make the depth of the recess more than 1.0 times the equivalent diameter of the recess at the center in the depth direction of the recess.
  • a mold with a convex portion corresponding to the desired depth of the concave portion is used, and molding including the concave portion can be performed.
  • the diameter may be more than 1.0 times the equivalent diameter of the recess at the center in the depth direction of the recess.
  • the cell structure of the present invention is produced using the cell structure production container of the present invention.
  • the cell structure of the present invention is preferably produced by the following method for producing a cell structure of the present invention.
  • the cell structure refers to a structure formed as a result of aggregation of cells, and the shape is not limited to a spherical shape, a ring shape, or the like.
  • the cell structure production method uses the cell structure production container of the present invention.
  • the method for manufacturing a cell structure includes, for example, at least the following step (1).
  • the method for producing a cell structure further includes, for example, the following steps (2) to (4).
  • the method for manufacturing a cell structure may further include the following steps (5) and (6).
  • Step (1) is a step of adding a medium in which cells are dispersed to the culture space of the cell structure manufacturing container of the present invention.
  • Step (1) is a step of preparing to culture cells, and for example, the following total number of cells are dispersed in a medium and added to a cell structure manufacturing container.
  • the lower limit of the total number of cells is, for example, equal to or greater than the number (n) of recesses present in the cell structure manufacturing container.
  • the upper limit of the total number of cells is, for example, less than or equal to the value obtained by dividing the volume (V) of the recesses in the cell structure manufacturing container by the volume (V) of the cells to be seeded, multiplied by the number of recesses (n). do.
  • V volume of cells
  • V volume of cells
  • step (2) before adding the culture medium in which cells are dispersed to the culture space of the cell structure production container of the present invention, the culture medium is added to the culture space of the cell structure production container of the present invention in order to remove bubbles. You may also add only 100% of the total amount and perform centrifugation. By doing so, it is possible to prevent the recess from trapping air bubbles.
  • the concentration of cells in the medium in which the cells are dispersed is not particularly limited.
  • a cell is the most basic unit constituting an animal or plant, and its elements include cytoplasm and various organelles inside the cell membrane.
  • the nucleus containing DNA may or may not be included inside the cell.
  • animal-derived cells in the present invention include reproductive cells such as sperm and eggs, somatic cells constituting a living body, stem cells (pluripotent stem cells, etc.), progenitor cells, cancer cells isolated from a living body, and Cells (cell lines) that have acquired immortality and are stably maintained outside the body, cells that have been isolated from a living body and have undergone artificial genetic modification, and cells that have been isolated from a living body and have had their nuclei artificially exchanged. etc. are included.
  • somatic cells constituting a living body include, but are not limited to, fibroblasts, bone marrow cells, B lymphocytes, T lymphocytes, neutrophils, red blood cells, platelets, macrophages, monocytes, and bone cells.
  • hematopoietic progenitor cells e.g. CD34-positive cells derived from umbilical cord blood
  • mononuclear cells etc.
  • the somatic cells include, for example, skin, kidney, spleen, adrenal gland, liver, lung, ovary, pancreas, uterus, stomach, colon, small intestine, large intestine, bladder, prostate, testis, thymus, muscle, connective tissue, bone, cartilage, blood vessel. Includes cells taken from any tissue, such as tissue, blood (including umbilical cord blood), bone marrow, heart, heart muscle, eye, brain, nervous tissue, hair, etc. Furthermore, the somatic cells include cells induced to differentiate from stem cells or progenitor cells.
  • Stem cells are cells that have both the ability to replicate themselves and the ability to differentiate into cells of multiple other lineages. Examples include, but are not limited to, embryonic stem cells (ES cells). , embryonic tumor cells, embryonic germ stem cells, induced pluripotent stem cells (iPS cells), neural stem cells, hematopoietic stem cells, mesenchymal stem cells, liver stem cells, pancreatic stem cells, muscle stem cells, germ stem cells, intestinal stem cells, cancer stem cells, Contains hair follicle stem cells.
  • ES cells embryonic stem cells
  • iPS cells induced pluripotent stem cells
  • neural stem cells hematopoietic stem cells
  • mesenchymal stem cells mesenchymal stem cells
  • liver stem cells pancreatic stem cells
  • muscle stem cells hematopoietic stem cells
  • mesenchymal stem cells mesenchymal stem cells
  • liver stem cells pancreatic stem cells
  • muscle stem cells hematopoietic stem cells
  • mesenchymal stem cells
  • Progenitor cells are cells that are in the process of differentiating from the stem cells into specific somatic cells or reproductive cells.
  • Cancer cells are cells that are derived from somatic cells and have acquired unlimited proliferation potential.
  • a cell line is a cell that has acquired unlimited proliferation ability through artificial manipulation outside the body. Among these, fibroblasts, stem cells, and pluripotent stem cells are more preferred.
  • the medium can be selected as appropriate depending on the type of cells to be used. For example, if the purpose is to culture mammalian cells, a medium commonly used for culturing mammalian cells can be used as the medium. can do. Examples of media for mammalian cells include Dulbecco's Modified Eagle's Medium (DMEM), Ham's Nutrient Mixture F12, DMEM/F12 medium, and McCoy's 5A medium.
  • DMEM Dulbecco's Modified Eagle's Medium
  • F12 Ham's Nutrient Mixture F12
  • DMEM/F12 DMEM/F12
  • McCoy's 5A medium McCoy's 5A medium.
  • Components that can be added to media for mammalian cells include fetal bovine serum, human serum, horse serum, insulin, transferrin, lactoferrin, cholesterol, ethanolamine, sodium selenite, monothioglycerol, 2-mercaptoethanol, bovine serum.
  • Examples include albumin, sodium pyruvate, polyethylene glycol, various vitamins, various amino acids, agar, agarose, collagen, methylcellulose, various cytokines, various hormones, various growth factors, various extracellular matrices, and various cell adhesion molecules.
  • cytokines examples include interleukin-1 (IL-1), interleukin-2 (IL-2), interleukin-3 (IL-3), interleukin-4 (IL-4), Interleukin-5 (IL-5), interleukin-6 (IL-6), interleukin-7 (IL-7), interleukin-8 (IL-8), interleukin-9 (IL-9), Interleukin-10 (IL-10), interleukin-11 (IL-11), interleukin-12 (IL-12), interleukin-13 (IL-13), interleukin-14 (IL-14), Interleukin-15 (IL-15), interleukin-18 (IL-18), interleukin-21 (IL-21), interferon- ⁇ (IFN- ⁇ ), interferon- ⁇ (IFN- ⁇ ), interferon- ⁇ (IFN- ⁇ ), granulocyte colony stimulating factor (G-CSF), monocyte colony stimulating factor (M-CSF), granulocyte-macrophage colony stimulating factor (GM-CSF), stem cell factor (SCF),
  • IL-1 interleuk
  • Hormones that may be added to the medium include melatonin, serotonin, thyroxine, triiodothyronine, epinephrine, norepinephrine, dopamine, anti-Mullerian hormone, adiponectin, adrenocorticotropic hormone, angiotensinogen and angiotensin, antidiuretic hormone, atrial Natriuretic peptide, calcitonin, cholecystokinin, corticotropin-releasing hormone, erythropoietin, follicle-stimulating hormone, gastrin, ghrelin, glucagon, gonadotropin-releasing hormone, growth hormone-releasing hormone, human chorionic gonadotropin, human placental lactogen, growth hormone, inhibin , insulin, insulin-like growth factor, leptin, luteinizing hormone, melanocyte-stimulating hormone, oxytocin, parathyroid hormone,
  • Growth factors that can be added to the medium include transforming growth factor- ⁇ (TGF- ⁇ ), transforming growth factor- ⁇ (TGF- ⁇ ), macrophage inflammatory protein-1 ⁇ (MIP-1 ⁇ ), epidermal growth factor ( EGF), fibroblast growth factor-1, 2, 3, 4, 5, 6, 7, 8, or 9 (FGF-1, 2, 3, 4, 5, 6, 7, 8, 9), nerve Cell growth factor (NGF), hepatocyte growth factor (HGF), leukemia inhibitory factor (LIF), protease nexin I, protease nexin II, platelet-derived growth factor (PDGF), cholinergic differentiation factor (CDF), chemokine , Notch ligand (such as Delta1), Wnt protein, angiopoietin-like protein 2, 3, 5 or 7 (Angpt2, 3, 5, 7), insulin-like growth factor (IGF), insulin-like growth factor binding protein (IGFBP), play Examples include, but are not limited to, otrophin (Pleiotrophin) and the like.
  • TGF- ⁇
  • cytokines and growth factors whose amino acid sequences have been artificially modified using genetic recombination technology.
  • examples include IL-6/soluble IL-6 receptor complex or Hyper IL-6 (a fusion protein of IL-6 and soluble IL-6 receptor).
  • Examples of various extracellular matrices and various cell adhesion molecules include collagens I to XIX, fibronectin, laminin-1 to 12, nitogen, tenascin, thrombospondin, von Willebrand factor, osteopontin, fibrinogen, and various elastins.
  • various proteoglycans various cadherins, desmocollins, desmogleins, various integrins, E-selectin, P-selectin, L-selectin, immunoglobulin superfamily, Matrigel, poly-D-lysine, poly-L-lysine, chitin, chitosan, Examples include sepharose, hyaluronic acid, alginate gel, various hydrogels, and cut fragments thereof.
  • antibiotics examples include sulfa preparations, penicillin, pheneticillin, methicillin, oxacillin, cloxacillin, dicloxacillin, flucloxacillin, nafcillin, ampicillin, penicillin, amoxicillin, cyclacillin, carbenicillin, ticarcillin, piperacillin, azlocillin, Mecdulocilin, mecillinam, andinocillin, cephalosporins and their derivatives, oxolinic acid, amifloxacin, temafloxacin, nalidixic acid, pyromidic acid, ciprofloxan, cinoxacin, norfloxacin, perfloxacin, rosaxacin, ofloxacin, enoxacin, pipemidic acid, sulbactam, clavuric acid , ⁇ -bromopenicillanic acid, ⁇ -chloropenicillanic
  • serum and/or a serum substitute may be added to the medium.
  • concentration of serum added to the medium may be appropriately set depending on the cell type, culture conditions, culture purpose, etc., but in one embodiment, the concentration of serum (and/or serum substitute) in the medium is 15% by weight.
  • the concentration of serum may be kept constant during the culture period, or may be increased or decreased when changing the medium, as necessary.
  • Step (2) is a step of culturing cells in the culture space to form a cell structure.
  • step (2) for example, cells are cultured for 12 hours or more in a culture space of a cell structure production container to form a cell structure.
  • the cells dispersed in the medium are taken into the recesses and cultured in each recess. It is preferable that a certain number of cells be taken into each recess, and it is preferable that one cell structure be formed in the space formed by the bottom of the recess.
  • Step (3) is a step of exchanging the medium in the culture space.
  • a certain amount of the medium in the culture space of the cell structure manufacturing container is sucked out, and then the same amount of fresh medium is injected.
  • the medium is preferably replaced at least once during cell culture.
  • the fixed amount may be, for example, 20% to 80% by mass of the medium, or 20% to 50% by mass. Examples of the medium include the medium exemplified in step (1).
  • Step (4) is a step of maturing the cell structure within the culture space.
  • steps (2) to (3) are performed multiple times to mature the cell structure.
  • “Maturation” means, for example, increasing the size of a cell structure to a desired size, forming an organoid structure, or guiding it to a target tissue by inducing differentiation.
  • inducing differentiation it is preferable to form a cell structure in the space formed by the bottom of the recess and then exchange the culture medium with a differentiation-inducing medium for differentiation.
  • Step (5) is a step of suspending the cell structure in a medium.
  • the medium in the culture space is stirred to suspend the cell structures cultured in each recess in the medium.
  • it is carried out by stirring the medium.
  • agitation of the medium involves (i) shaking the cell structure production container to agitate the medium, and (ii) aspirating and discharging the medium from the culture space (pipetting operation) to remove the medium. (iii) placing a stirring blade in the culture space to stir the medium; and (iv) placing a stirring bar in the culture space to stir the medium. Two or more of these may be combined.
  • Step (6) is a step of collecting the cell structure.
  • step (6) for example, the medium in which the cell structures are floating in the culture space of the cell structure production container is sucked up using a suction machine, and the cell structures suspended in the medium are recovered.
  • the weight average molecular weight of the copolymer shown in the following synthesis example is the result of measurement by Gel Filtration Chromatography (hereinafter abbreviated as GFC).
  • GFC Gel Filtration Chromatography
  • the measurement conditions are as follows. (GFC measurement conditions) ⁇ Device: Prominence (manufactured by Shimadzu Corporation) ⁇ GFC column: TSKgel GMPWXL (7.8mm I.D.
  • Phosmer M (product name, manufactured by Unichemical Co., Ltd., nonvolatile content in drying method at 100° C. for 1 hour: 91.8% by mass) was used.
  • Phosmer M is a mixture of acid phosphooxyethyl methacrylate (44.2% by mass), bis[2-(methacryloyloxy)ethyl] phosphate (28.6% by mass), and other substances (27.2% by mass). It is.
  • ⁇ Preparation example 1> To 5.00 g of the copolymer-containing varnish obtained in Synthesis Example 1 above, 56.39 g of pure water, 28.50 g of ethanol, and 1 mol/L aqueous sodium hydroxide solution (1N) (manufactured by Kanto Kagaku Co., Ltd.) A coating agent was prepared by adding .85 g and stirring thoroughly. pH was 7.5. The resulting coating agent was spin-coated onto a silicon wafer at 1500 rpm for 60 seconds, and dried in an oven at 50° C. for 24 hours. Thereafter, it was thoroughly washed with PBS (phosphate buffered saline) and pure water to obtain a silicon wafer on which a coating film was formed. When the thickness of the coating film on the silicon wafer was confirmed using an optical interference film thickness meter, it was 55 ⁇ .
  • PBS phosphate buffered saline
  • Example 1 SYLGARD 184 silicone elastomer (manufactured by Dow Corning) was mixed and stirred at a ratio of 10.00 g of main ingredient and 1.00 g of curing agent, and poured into a mold. After removing bubbles using a vacuum pump, it was dried in an oven at 100°C for 1 hour. After cooling to room temperature, the cured product of polydimethylsiloxane (PDMS) was taken out from the mold. The cured product was immersed in pure water and sterilized in an autoclave at 120° C. for 15 minutes.
  • the mold used is a mold that allows the containers for cell structure production shown in FIGS.
  • the outer shape of the cell structure manufacturing container is cylindrical with circular upper and lower surfaces, the diameter of the circle is 15 mm, and the height is 11.5 mm.
  • the thickness of the outer peripheral wall 2 forming the culture space 4 is 4 mm near the top surface.
  • a plurality of recesses 10 and a partition wall 11 that partitions the plurality of recesses 10 are formed in the culture space 4 surrounded by the outer peripheral wall 2.
  • the number of recesses 10 in the cell structure manufacturing container is 19.
  • FIG. 1 the outer shape of the cell structure manufacturing container is cylindrical with circular upper and lower surfaces, the diameter of the circle is 15 mm, and the height is 11.5 mm.
  • the thickness of the outer peripheral wall 2 forming the culture space 4 is 4 mm near the top surface.
  • a plurality of recesses 10 and a partition wall 11 that partitions the plurality of recesses 10 are formed in the culture space 4 surrounded by the outer peripheral wall 2.
  • the number of recesses 10 in the cell structure manufacturing container is 19.
  • the plurality of recesses 10 are arranged in a honeycomb arrangement.
  • the five recesses 10, the partition wall 11 that partitions them, and the outer peripheral wall 2 higher than the partition wall 11 at the outermost side can be confirmed.
  • the outer peripheral wall 2 is higher than the partition wall 11 by about 8 mm.
  • the shape of the top 11a of the partition wall 11 (in other words, the top 11a of the partition wall 11 in a cross section including the center line of each of the two adjacent recesses 10) is arcuate.
  • the depth (d) of the recess 10 is 2.0 mm.
  • the equivalent diameter (r) of the recess 10 is 1.0 mm.
  • the width (w) of the partition wall 11 that partitions two adjacent recesses 10 is 0.3 mm.
  • the shape of the central portion 10e of the recessed portion 10 excluding the bottom portion 10b and the opening portion 10d is cylindrical (non-tapered shape).
  • the length (l) of the recess in the central portion 10e in the depth direction is 1.5 mm.
  • the corresponding vertex point 11b is the highest on the partition wall 11. Note that the depth of the recess in the produced cell structure manufacturing container was 2.0 times the equivalent diameter of the recess at the center in the depth direction of the recess.
  • Example 2 The mold was changed from the mold used in Example 1 so that the shape of the bottom of the recess became a pen shape (inverted conical shape) as shown in FIG.
  • a container for producing a cell structure was obtained in the same manner as in Example 1, except that the mold was changed to one in which (l) was 1.0 mm.
  • a container for producing a cell structure with a base film was obtained. Note that the depth (d') of the bottom portion 10b shown in FIG. 4 is 1.0 mm. Further, the depth of the recess in the produced cell structure manufacturing container was 2.0 times the equivalent diameter of the recess at the center in the depth direction of the recess.
  • Example 3 A cell structure manufacturing container with a base film was obtained in the same manner as in Example 1, except that the coating agent prepared in Preparation Example 2 was used in place of the coating agent prepared in Preparation Example 1. . That is, 250 ⁇ L of the coating agent prepared in Preparation Example 2 was dispensed into the culture space of the cell structure production container prepared in Example 1. After being allowed to stand for 1 hour, it was removed and dried in an oven at 50°C for 24 hours. Thereafter, the coated culture space was washed three times each with 300 ⁇ L of pure water. As a result, a container for producing a cell structure with a base film was obtained.
  • Example 4 A container for producing a cell structure with a base film was obtained in the same manner as in Example 1, except that the coating agent prepared in Preparation Example 3 was used instead of the coating agent prepared in Preparation Example 1. . That is, 150 ⁇ L of the coating agent produced in Preparation Example 3 was dispensed into the culture space of the cell structure production container produced in Example 1. After being allowed to stand for 1 hour, it was removed and dried in an oven at 50°C for 24 hours. Thereafter, the coated culture space was washed three times each with 300 ⁇ L of pure water. As a result, a container for producing a cell structure with a base film was obtained.
  • Example 1 A container for cell structure production was obtained in the same manner as in Example 1, except that the mold used in Example 1 was changed to a mold in which the entire top of the compartment wall was flat. . It should be noted that the obtained container for producing cell structures has no difference from the container for producing cell structures in Example 1, except that the entire top of the partition wall is flat. Furthermore, in the same manner as in Example 1, a container for producing a cell structure with a base film was obtained. Note that the depth of the recess in the produced cell structure manufacturing container was 2.0 times the equivalent diameter of the recess at the center in the depth direction of the recess.
  • ⁇ Comparative example 2> The mold was changed from the mold used in Example 1 so that the depth of the recess was 1.0 mm, and the length (l) in the depth direction of the recess in the non-tapered central part was 0.5 mm.
  • a container for cell structure production was obtained in the same manner as in Example 1, except that the mold was changed to the following.
  • the depth of the recessed part is 1.0 mm
  • the length (l) in the depth direction of the recessed part in the central part, which is non-tapered is 0.5 mm.
  • a container for producing a cell structure with a base film was obtained. Note that the depth of the recess in the produced cell structure manufacturing container is 1.0 times the equivalent diameter of the recess at the center in the depth direction of the recess.
  • Human adipose tissue-derived mesenchymal stem cells (ADSC: manufactured by Cellsource Co., Ltd.) were used as cells.
  • a low serum medium Mesenchymal Stem Cell Growth Medium 2 (manufactured by Takara Bio Inc.: serum concentration 2%) was used for culturing the cells.
  • the cells were statically cultured in a 10 cm diameter petri dish (medium 10 mL) for 2 days or more while maintaining a 5% carbon dioxide concentration in a 37° C./CO 2 incubator.
  • the cells were washed with 3 mL of PBS solution (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), and then 3 mL of trypsin-EDTA solution (manufactured by PromoCell) was added and left at room temperature for 3 minutes to detach the cells. 7 mL of the above low serum medium was added and the cells were collected. After centrifuging this suspension (manufactured by Tomy Seiko Co., Ltd., model number LC-230, 200 x g/3 minutes, room temperature), the supernatant was removed, and the above medium was added to obtain human adipose-derived mesenchymal stem cells. A cell suspension was prepared.
  • Mouse fetal fibroblast cells (C3H10T1/T2 cells: manufactured by DS Pharma Biomedical Co., Ltd.) were used as cells.
  • 10% FBS manufactured by Sigma-Aldrich
  • 1% Glutamine/Penicillin/Streptmycin manufactured by Gibco
  • BME medium manufactured by Gibco
  • the cells were statically cultured in a 10 cm diameter petri dish (medium 10 mL) for 2 days or more while maintaining a 5% carbon dioxide concentration in a 37° C./CO 2 incubator.
  • the cells were washed with 3 mL of PBS solution (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), and then 3 mL of trypsin-EDTA solution (manufactured by PromoCell) was added and left at room temperature for 3 minutes to detach the cells. 7 mL of the above medium was added and the cells were collected. After centrifuging this suspension (manufactured by Tomy Seiko Co., Ltd., model number LC-230, 200 x g/3 minutes, room temperature), the supernatant was removed, and the above medium was added to form mouse fetal fibroblast cells. A suspension was prepared.
  • Example 1 Spheroid formation test; Example 1 and Comparative Example 1
  • a cell suspension of human adipose-derived mesenchymal stem cells was added to each container for producing cell structures with base membranes obtained in Example 1 and Comparative Example 1 at a concentration of 19 ⁇ 10 4 cells/container. 200 ⁇ L was added. Thereafter, it was left standing in a CO 2 incubator at 37° C. for 1 day while maintaining a 5% carbon dioxide concentration.
  • Example 1 (Observation of spheroid formation; Example 1 and Comparative Example 1) After one day of culturing in the above spheroid formation test, the formation of cell structures in each container for producing cell structures with base membranes of Example 1 and Comparative Example 1 was observed using an inverted microscope (Olympus Corporation, CKX31) (magnification: 2 times). The observation results of Example 1 (after 1 day of culture) are shown in FIG. The observation results of Comparative Example 1 are shown in FIGS. 7A and 7B. The results are shown in Table 1 regarding the number of spheroids formed and spheroid size data. Note that FIG. 7A is a photograph focused on the bottom of the recess, and FIG. 7B is a photograph focused on the top surface of the partition wall. In FIG. 7B, the arrows indicate spheroids present on the upper surface of the compartment wall.
  • the average diameter was measured using image analysis software ImageJ.
  • the diameter of the formed cell structure was calculated on ImageJ, and the sum of the diameters of all cell structures was divided by the number of cell structures.
  • the size distribution was calculated by considering the diameters calculated above as independent samples, calculating the standard deviation, and then calculating the ratio of the standard deviation to the average diameter. The smaller the value, the higher the uniformity of size.
  • Example 1 Spheroids were formed in both Example 1 and Comparative Example 1.
  • Example 1 spheroids existed only within the recesses (dimples), and the average diameter was about 400 ⁇ m, with a size error of 12%.
  • Comparative Example 1 many spheroids were present in addition to the recesses (dimples) on the upper surface of the partition walls that partitioned the recesses, and the total number was 50 or more.
  • the average diameter was approximately 200 ⁇ m, with a size error of 61%.
  • the size was smaller and the error was larger. This is because when the upper surface of the partition wall is flat as in Comparative Example 1, cells remain there and form small spheroids.
  • Example 2 After one day of culturing in the above spheroid formation test, the formation of cell structures in the container for producing cell structures with a base membrane in Example 2 was observed using an inverted microscope (CKX31, manufactured by Olympus) (magnification: 4x, 10x). Comparisons were made based on. The observation results of Example 2 (after 1 day of culture) are shown in FIG. 8A (4x magnification) and FIG. 8B (10x magnification). In Example 2, spheroids were formed. In Example 2, spheroids were present only within the recesses (dimples). Even when the bottom shape of the recess is changed as in Example 2, almost all the cells can be collected in the recess (dimple) and spheroids of uniform size can be formed as in Example 1.
  • Example 1 The formation of cell structures after medium exchange was compared based on observation using an inverted microscope (CKX31, manufactured by Olympus Corporation) (magnification: 2x).
  • the observation results of Example 1 are shown in FIG.
  • the observation results of Comparative Example 2 are shown in FIG.
  • Example 1 the arrangement of the cell structures was maintained even after medium exchange.
  • Comparative Example 2 the cell structures escaped due to medium exchange and were present in different recesses and on the upper surfaces of compartment walls.
  • the white arrow indicates the recess from which the cell structure escaped due to medium exchange. This is because the depth of the recesses was shallower than in Example 1, and the formed cell structures were lifted up due to the influence of the flow during medium exchange.
  • the epithelial tissue was treated with 0.25% trypsin (manufactured by Thermo Fisher) containing 100 U/mL collagenase at 37°C for 10 minutes, and then the epithelial cells and mesenchymal cells were each treated with a cell strainer (manufactured by Corning). Unification processing was performed using . 5 ⁇ L of VybrantTM Cell-labeling Solutions (manufactured by Thermo Fisher) was added to 1 mL of a suspension of mesenchymal cells, and the cells were stained by incubating for 20 minutes.
  • the medium is a 1:1 mixture of mesenchymal cell culture medium (DMEM (manufactured by Sigma-Aldrich) + 10% FBS (manufactured by Sigma-Aldrich) + 1% Penicillin/Streptomycin (manufactured by Sigma-Aldrich)) and HuMedia-KG2 (manufactured by Kurabo Industries).
  • DMEM mesenchymal cell culture medium
  • FBS fetal-Aldrich
  • Penicillin/Streptomycin manufactured by Sigma-Aldrich
  • HuMedia-KG2 manufactured by Kurabo Industries
  • FIGS. 11A to 11C Observation of hair follicle primordium formation
  • FIGS. 11A to 11C show that FIGS. 11A to 11C.
  • FIG. 11A is a photograph of the bright field observation results.
  • FIG. 11B is a photograph of the fluorescence observation results.
  • FIG. 11C is a photograph in which bright field observation results and fluorescence observation results are superimposed. As a result, it was confirmed by bright field observation that two separated dumbbell-shaped structures were formed.
  • this culture vessel can be applied to the preparation of organ primordia and organoids formed from multiple cells, including hair follicle primordia.
  • the cells were prepared without staining mesenchymal cells with VybrantTM Cell-labeling Solutions. Furthermore, seeds were seeded under the same conditions as above in the container for manufacturing the cell structure with the base membrane obtained in Example 1, and the seeds were placed in a CO 2 incubator at 37° C. for 3 days while maintaining a carbon dioxide concentration of 5%. The cells were cultured to form hair follicle primordia.
  • a transplant hole was made subcutaneously in an ICR nude mouse (manufactured by Oriental Yeast Co., Ltd.) under exhalation anesthesia with isoflurane (manufactured by Bioresearch Center Co., Ltd.) using a 20G ophthalmic V lance (manufactured by Nippon Alcon Co., Ltd.) (patch method).
  • Nineteen hair follicle primordia prepared in each container were transplanted into one transplant hole using a micropipette (manufactured by Co., Ltd.).
  • the mice to which the hair follicle primordia were transplanted were observed using a microscope (manufactured by Keyence Corporation) on the 28th day after the transplantation.
  • hair was formed as a black mass at the hair follicle primordium transplantation site, and a large amount of hair was observed within the black mass.
  • a plurality of uniformly sized cell structures can be produced in large quantities.

Abstract

A container for use in the production of a cell structure, the container being provided with a plurality of depressed parts and partitioning walls that partitions the plurality of depressed parts, in which the shape of a top part of each of the partitioning walls is a convex shape, and the depth of each of the depressed parts is more than 1.0 time the equivalent diameter of each of the depressed parts at the center in the depth direction of each of the depressed parts.

Description

細胞利用効率の高い細胞培養容器Cell culture container with high cell utilization efficiency
 本発明は、細胞構造体製造用容器、細胞構造体製造用容器の製造方法、細胞構造体、及び細胞構造体の製造方法に関する。 The present invention relates to a container for manufacturing a cell structure, a method for manufacturing a container for manufacturing a cell structure, a cell structure, and a method for manufacturing a cell structure.
 細胞構造体又は細胞凝集塊(スフェロイドまたは細胞塊ともいう)は、細胞同士が自己集合し、三次元的に凝集化した細胞集合体であり、生体様構造が構築されることから、細胞の機能を長期間維持でき、生理的機能が向上することが報告されている。そのため、細胞凝集塊の、創薬研究における、又は細胞治療や再生治療における利用についての期待が高まっている。 Cell structures or cell aggregates (also referred to as spheroids or cell aggregates) are cell aggregates in which cells self-assemble and become three-dimensional aggregates.Since a living body-like structure is constructed, cell functions It has been reported that this can be maintained for a long period of time and physiological functions are improved. Therefore, expectations are increasing for the use of cell aggregates in drug discovery research, cell therapy, and regenerative therapy.
 それに伴い、細胞構造体又は細胞凝集塊を簡便かつ迅速に、均一かつ大量に作製できる組織工学技術の開発が再生医療の実用化や創薬試験の効率化のための重要課題とされているが、従来の細胞低接着性培養皿(例えば、マルチウェルプレート)を用いた浮遊細胞のランダムな凝集化現象を利用する方法では1ウェルに1個のスフェロイドしか形成しないため、操作性及び量産性に優れないという課題があった。 Along with this, the development of tissue engineering technology that can easily and quickly produce uniform cell structures or cell aggregates in large quantities has become an important issue for the practical application of regenerative medicine and the efficiency of drug discovery testing. In conventional methods that utilize the random aggregation phenomenon of floating cells using culture dishes with low cell adhesion (e.g., multi-well plates), only one spheroid is formed per well, making it difficult to operate and mass-produce. There was an issue of not being good at it.
 そこで、スフェロイドを大量培養するために、微小空間内でスフェロイドを形成する技術が提案されている(例えば、特許文献1参照)。 Therefore, in order to mass culture spheroids, a technique has been proposed in which spheroids are formed in a microscopic space (see, for example, Patent Document 1).
国際公開第2012/036011号パンフレットInternational Publication No. 2012/036011 pamphlet
 特許文献1の技術は、培養基材において互いに近接する窪み部間の基板表面に平坦面が形成されている場合に、当該培養基材を用いてスフェロイド培養を行うと、スフェロイドの他に、単層培養された細胞や、不均一な大きさのスフェロイドも多く形成されるという問題に鑑みてなされたものである(特許文献1の段落[0006]参照)。そして、特許文献1の技術では、被培養物が培養される隔室を形成する窪み部が培養基材表面に複数形成されており、互いに近接する前記窪み部の間の培養基材表面が非平坦面である培養基材が提案されている。
 しかし、国際公開第2012/036011号パンフレットの技術においても、不均一な大きさのスフェロイド(細胞構造体)が生じる恐れがある。
In the technology of Patent Document 1, when a flat surface is formed on the substrate surface between recesses that are close to each other in a culture substrate, when spheroid culture is performed using the culture substrate, in addition to spheroids, single cells are formed. This was done in view of the problem that many layer-cultured cells and spheroids of non-uniform size are formed (see paragraph [0006] of Patent Document 1). In the technique of Patent Document 1, a plurality of depressions forming compartments in which the cultured material is cultured are formed on the surface of the culture substrate, and the surface of the culture substrate between the depressions that are close to each other is non-transparent. Culture substrates that are flat surfaces have been proposed.
However, even with the technique described in International Publication No. 2012/036011 pamphlet, spheroids (cell structures) of non-uniform size may be generated.
 本発明は、前述の事情に鑑みてなされたものであって、培養の効率を低下させず、均一な大きさの細胞構造体が製造可能な細胞構造体製造用容器を提供することを目的とする。また、本発明は、当該細胞構造体製造用容器の製造方法、当該細胞構造体製造用容器を用いて製造された細胞構造体、及び当該細胞構造体製造用容器を用いた細胞構造体の製造方法を提供することを目的とする。 The present invention was made in view of the above-mentioned circumstances, and an object of the present invention is to provide a container for producing cell structures that can produce cell structures of uniform size without reducing culture efficiency. do. The present invention also provides a method for manufacturing the cell structure manufacturing container, a cell structure manufactured using the cell structure manufacturing container, and a cell structure manufacturing method using the cell structure manufacturing container. The purpose is to provide a method.
 本発明者らは、区画壁が特定の形状を有しつつ、更に凹部の深さが相当直径に対して一定程度深い細胞構造体製造用容器が、前述の課題を解決できることを見出し、本発明を完成させた。 The present inventors have found that a container for producing cell structures in which the partition wall has a specific shape and the depth of the concave portion is deep to a certain extent relative to the equivalent diameter can solve the above-mentioned problems, and the present invention completed.
 すなわち、本発明は以下の態様を包含するものである。
 [1] 複数の凹部と、前記複数の凹部を区画する区画壁とを有し、
 前記区画壁の頂部の形状が、凸形状を有し、
 前記凹部の深さが、前記凹部の深さ方向の中心における前記凹部の相当直径の1.0倍超である、
 細胞構造体製造用容器。
 [2] 隣接する2つの前記凹部を区画する前記区画壁の幅が、前記凹部の深さ方向の中心において測定した際に、0.1mm~0.5mmである、[1]に記載の細胞構造体製造用容器。
 [3] ガス透過性の弾性材料から構成される、[1]又は[2]に記載の細胞構造体製造用容器。
 [4] 前記ガス透過性の弾性材料が、シリコーンである、[3]に記載の細胞構造体製造用容器。
 [5] 前記凹部の深さが、前記凹部の深さ方向の中心における前記凹部の相当直径の1.5倍以上である、[1]から[4]のいずれかに記載の細胞構造体製造用容器。
 [6] 底部及び開口部を除いた前記凹部の中央部の形状が、非テーパー形状である、[1]から[5]のいずれかに記載の細胞構造体製造用容器。
 [7] 前記非テーパー形状の前記中央部の前記凹部の深さ方向の長さが、前記凹部の深さの0.5倍以上である、[6]に記載の細胞構造体製造用容器。
 [8] 隣接する2つの前記凹部のそれぞれの中心線を含む断面における前記区画壁の頂部の形状が、凸形状としての弧状又は最頂部に角部を有する形状である、[1]から[7]のいずれかに記載の細胞構造体製造用容器。
 [9] 隣接する2つの前記凹部を区画する前記区画壁の幅が、前記凹部の深さ方向の中心において測定した際に、前記凹部の前記相当直径の0.1倍以上0.5倍以下である、[1]から[8]のいずれかに記載の細胞構造体製造用容器。
 [10] 特定の凹部の開口部の中心点と、前記特定の凹部に隣接して配置された2以上の凹部の開口部の各々の中心点との距離が、互いに等しくなるように、前記複数の凹部が配置されている、[1]から[9]のいずれかに記載の細胞構造体製造用容器。
 [11] 開口部の中心点を結ぶと正三角形を形成するように配置された互いに隣接する3つの凹部に囲まれた前記区画壁における前記正三角形の中心に相当する箇所が、前記区画壁において最も高い、[10]に記載の細胞構造体製造用容器。
 [12] 前記複数の凹部の底部の形状が断面において弧状又は逆三角形状である、[1]から[11]のいずれかに記載の細胞構造体製造用容器。
 [13] 前記凹部の前記相当直径が、0.3mm~1.5mmである、[1]から[12]のいずれかに記載の細胞構造体製造用容器。
 [14] 前記凹部の深さが、0.5mm~3.0mmである、[1]から[13]のいずれかに記載の細胞構造体製造用容器。
 [15] 5個~2000個の前記凹部を有する、[1]から[14]のいずれかに記載の細胞構造体製造用容器。
 [16] 円筒状の外形を有する、[1]から[15]のいずれかに記載の細胞構造体製造用容器。
 [17] マルチウェルプレートの窪み部に収めることができる、[1]から[16]のいずれかに記載の細胞構造体製造用容器。
 [18] 前記細胞構造体製造用容器の表面の少なくとも一部が細胞の付着抑制能を有するコーティング膜を備える、[1]から[17]のいずれかに記載の細胞構造体製造用容器。
 [19] [1]から[18]のいずれかに記載の細胞構造体製造用容器の製造方法であって、
 金型を用いて前記細胞構造体製造用容器を成形することを含む、細胞構造体製造用容器の製造方法。
 [20] [1]から[18]のいずれかに記載の細胞構造体製造用容器を用いて製造された細胞構造体。
 [21] 細胞を分散させた培地を[1]から[18]のいずれかに記載の細胞構造体製造用容器の培養空間へ添加する工程を含む、細胞構造体の製造方法。
That is, the present invention includes the following aspects.
[1] It has a plurality of recesses and a partition wall that partitions the plurality of recesses,
The top of the partition wall has a convex shape,
The depth of the recess is more than 1.0 times the equivalent diameter of the recess at the center in the depth direction of the recess.
Container for producing cell structures.
[2] The cell according to [1], wherein the width of the partition wall that partitions two adjacent recesses is 0.1 mm to 0.5 mm when measured at the center in the depth direction of the recess. Container for manufacturing structures.
[3] The cell structure manufacturing container according to [1] or [2], which is made of a gas-permeable elastic material.
[4] The container for producing a cell structure according to [3], wherein the gas-permeable elastic material is silicone.
[5] The cell structure production according to any one of [1] to [4], wherein the depth of the recess is 1.5 times or more the equivalent diameter of the recess at the center in the depth direction of the recess. container.
[6] The container for producing a cell structure according to any one of [1] to [5], wherein the central part of the recess excluding the bottom and the opening has a non-tapered shape.
[7] The cell structure manufacturing container according to [6], wherein the length in the depth direction of the recess in the non-tapered central portion is 0.5 times or more the depth of the recess.
[8] From [1] to [7], the shape of the top of the partition wall in a cross section including the center line of each of the two adjacent recesses is a convex arc or a shape having a corner at the top. ] The container for producing a cell structure according to any one of the above.
[9] The width of the partition wall that partitions two adjacent recesses is 0.1 times or more and 0.5 times or less the equivalent diameter of the recess, when measured at the center in the depth direction of the recess. The container for producing a cell structure according to any one of [1] to [8].
[10] The plurality of recesses are arranged such that the distances between the center point of the opening of the specific recess and the center points of each of the openings of two or more recesses arranged adjacent to the specific recess are equal to each other. The cell structure manufacturing container according to any one of [1] to [9], wherein the recessed portion is arranged.
[11] A location corresponding to the center of the equilateral triangle in the partition wall surrounded by three mutually adjacent recesses arranged to form an equilateral triangle when the center points of the openings are connected is located in the partition wall. The container for producing a cell structure according to [10], which is the most expensive.
[12] The cell structure manufacturing container according to any one of [1] to [11], wherein the bottoms of the plurality of recesses have an arc shape or an inverted triangular shape in cross section.
[13] The container for producing a cell structure according to any one of [1] to [12], wherein the equivalent diameter of the recess is 0.3 mm to 1.5 mm.
[14] The container for producing a cell structure according to any one of [1] to [13], wherein the depth of the recess is 0.5 mm to 3.0 mm.
[15] The container for producing a cell structure according to any one of [1] to [14], which has 5 to 2000 recesses.
[16] The container for producing a cell structure according to any one of [1] to [15], which has a cylindrical outer shape.
[17] The cell structure manufacturing container according to any one of [1] to [16], which can be housed in a recessed part of a multiwell plate.
[18] The cell structure manufacturing container according to any one of [1] to [17], wherein at least a portion of the surface of the cell structure manufacturing container is provided with a coating film having the ability to suppress cell adhesion.
[19] A method for manufacturing a cell structure manufacturing container according to any one of [1] to [18], comprising:
A method for manufacturing a cell structure manufacturing container, the method comprising molding the cell structure manufacturing container using a mold.
[20] A cell structure produced using the cell structure production container according to any one of [1] to [18].
[21] A method for producing a cell structure, comprising the step of adding a medium in which cells are dispersed to a culture space of the container for producing a cell structure according to any one of [1] to [18].
 本発明によれば、培養の効率を低下させず、均一な大きさの細胞構造体が製造可能な細胞構造体製造用容器を提供することができる。また、本発明によれば、当該細胞構造体製造用容器の製造方法、当該細胞構造体製造用容器を用いて製造された細胞構造体、及び当該細胞構造体製造用容器を用いた細胞構造体の製造方法を提供することができる。 According to the present invention, it is possible to provide a container for producing cell structures that can produce cell structures of uniform size without reducing culture efficiency. Further, according to the present invention, there is provided a method for manufacturing a container for manufacturing a cell structure, a cell structure manufactured using the container for manufacturing a cell structure, and a cell structure using the container for manufacturing a cell structure. A manufacturing method can be provided.
図1は、細胞構造体製造用容器の一例の斜視図である。FIG. 1 is a perspective view of an example of a cell structure manufacturing container. 図2は、図1の細胞構造体製造用容器の上面図である。FIG. 2 is a top view of the cell structure manufacturing container of FIG. 1. 図3Aは、図2の細胞構造体製造用容器のA-A’断面図である。FIG. 3A is a cross-sectional view taken along line A-A' of the cell structure manufacturing container shown in FIG. 図3Bは、図3A中の領域Aの拡大図である。FIG. 3B is an enlarged view of area A in FIG. 3A. 図4は、細胞構造体製造用容器の凹部の底部の一実施形態を説明するための断面図である。FIG. 4 is a cross-sectional view for explaining one embodiment of the bottom of the recess of the cell structure manufacturing container. 図5は、図2の細胞構造体製造用容器のB-B’断面図である。FIG. 5 is a sectional view taken along the line B-B' of the cell structure manufacturing container shown in FIG. 図6は、実施例1の観察結果の写真である。FIG. 6 is a photograph of the observation results of Example 1. 図7Aは、比較例1の観察結果の写真である(その1)。FIG. 7A is a photograph of the observation results of Comparative Example 1 (Part 1). 図7Bは、比較例1の観察結果の写真である(その2)。FIG. 7B is a photograph of the observation results of Comparative Example 1 (Part 2). 図8Aは、実施例2の観察結果の写真である(その1)。FIG. 8A is a photograph of the observation results of Example 2 (Part 1). 図8Bは、実施例2の観察結果の写真である(その2)。FIG. 8B is a photograph of the observation results of Example 2 (Part 2). 図9は、培地の交換を行った後の実施例1の観察結果の写真である。FIG. 9 is a photograph of the observation results of Example 1 after the medium was replaced. 図10は、培地の交換を行った後の比較例2の観察結果の写真である。FIG. 10 is a photograph of the observation results of Comparative Example 2 after the medium was replaced. 図11Aは、毛包原基形成試験の明視野観察結果の写真である。FIG. 11A is a photograph of the bright field observation results of the hair follicle primordium formation test. 図11Bは、毛包原基形成試験の蛍光観察結果の写真である。FIG. 11B is a photograph of the fluorescence observation results of the hair follicle primordium formation test. 図11Cは、図11Aの写真と図11Bの写真とを重ね合わせた写真である。FIG. 11C is a photograph in which the photograph in FIG. 11A and the photograph in FIG. 11B are superimposed. 図12は、パッチ法での毛髪再生試験の観察結果の写真である。FIG. 12 is a photograph of the observation results of a hair regeneration test using the patch method. 図13Aは、実施例3の観察結果の写真である(その1)。FIG. 13A is a photograph of the observation results of Example 3 (Part 1). 図13Bは、実施例3の観察結果の写真である(その2)。FIG. 13B is a photograph of the observation results of Example 3 (Part 2). 図14は、実施例4の観察結果の写真である。FIG. 14 is a photograph of the observation results of Example 4.
(細胞構造体製造用容器)
 本発明の細胞構造体製造用容器は、複数の凹部と、複数の凹部を区画する区画壁とを有する。
 区画壁の頂部の形状は、凸形状を有する。
 凹部の深さは、凹部の深さ方向の中心における凹部の相当直径の1.0倍超である。
(Container for producing cell structures)
The cell structure manufacturing container of the present invention has a plurality of recesses and a partition wall that partitions the plurality of recesses.
The top of the partition wall has a convex shape.
The depth of the recess is more than 1.0 times the equivalent diameter of the recess at the center in the depth direction of the recess.
 本発明者らは、培養の効率を低下させず、均一な大きさの細胞構造体が製造可能な細胞構造体製造用容器を提供するために鋭意検討を行った。
 まず、国際公開第2012/036011号パンフレットの段落[0006]に記載のように、培養基材において互いに近接する窪み部間の基板表面に平坦面が形成されている場合に、当該培養基材を用いて細胞構造体の培養を行うと、窪み部内で形成された均一な大きさの細胞構造体の他に、単層培養された細胞や、不均一な大きさの細胞構造体も多く形成されることを確認した。本発明者らは、その原因が区画壁の上面(頂部)の形状にあると考えた。そこで、本発明者らは、区画壁の頂部の形状を凸形状にした。そうすることで、区画壁に厚みがある場合でも、区画壁の頂部に細胞又は細胞構造体が存在しずらく、区画壁の頂部が平坦な場合と比べて均一な細胞構造体が形成できることが分かった。
 ところで、細胞の培養においては、通常、培養期間中に、複数回、培地の交換が行われる。本発明者らは、国際公開第2012/036011号パンフレットの技術の培養基材のように、培養基材表面を非平坦面(凸形状)にした場合、培地の交換の際に、成長中のスフェロイド(細胞構造体)が窪み部(凹部)から離脱しやすいことを知見した。その結果、培養の効率が低下する。更に、離脱した成長中の細胞構造体同士が合一して窪み部(凹部)に戻ると、製造される細胞構造体の大きさの均一性が損なわれる。なお、国際公開第2012/036011号パンフレットの技術においては、例えば、窪み部20の深さは、200±20μmに設計されており、窪み部20の開口の直径は500±20μmに設計されている(国際公開第2012/036011号パンフレットの段落[0025]参照)。
 そこで、本発明者らは、頂部を凸形状にしても、凹部の深さを深くする(凹部の深さを凹部の相当直径よりも大きくする)ことにより、培地の交換の際に、細胞構造体が凹部から離脱しにくいことを見出した。その結果、培養の効率を低下させず、均一な大きさの細胞構造体が製造可能になり、本発明を完成した。
The present inventors have conducted extensive studies in order to provide a container for producing cell structures that can produce cell structures of uniform size without reducing culture efficiency.
First, as described in paragraph [0006] of International Publication No. 2012/036011 pamphlet, when a flat surface is formed on the substrate surface between the recesses that are close to each other in the culture substrate, the culture substrate is When cell structures are cultured using this method, in addition to uniformly sized cell structures formed within the depression, many monolayer cultured cells and non-uniformly sized cell structures are also formed. I was sure that. The inventors of the present invention considered that the cause lies in the shape of the upper surface (top) of the partition wall. Therefore, the present inventors made the top of the partition wall convex. By doing so, even if the compartment wall is thick, cells or cell structures are less likely to exist on the top of the compartment wall, and more uniform cell structures can be formed compared to when the top of the compartment wall is flat. Do you get it.
By the way, in culturing cells, the medium is usually replaced multiple times during the culturing period. The present inventors discovered that when the surface of the culture substrate is made into a non-flat surface (convex shape) like the culture substrate of the technique of International Publication No. 2012/036011 pamphlet, when the culture medium is replaced, the growing It has been found that spheroids (cell structures) tend to separate from depressions (concavities). As a result, the efficiency of culture decreases. Furthermore, if the detached and growing cell structures coalesce and return to the depression (recess), the uniformity of the size of the produced cell structures will be impaired. In addition, in the technology of International Publication No. 2012/036011 pamphlet, for example, the depth of the recess 20 is designed to be 200 ± 20 μm, and the diameter of the opening of the recess 20 is designed to be 500 ± 20 μm. (See paragraph [0025] of International Publication No. 2012/036011 pamphlet).
Therefore, even if the apex is made convex, the depth of the recess is made deeper (the depth of the recess is larger than the equivalent diameter of the recess), thereby improving the cell structure during culture medium exchange. It was found that the body was difficult to separate from the recess. As a result, it became possible to produce cell structures of uniform size without reducing culture efficiency, and the present invention was completed.
 以下、図を用いて細胞構造体製造用容器の実施形態を説明する。
 図1は、細胞構造体製造用容器100の一例の斜視図である。細胞構造体製造用容器100の外形は上面及び下面を円形とする円筒状であり、上面及び下面の直径は、例えば、5mm~50mmである。高さは、例えば、5mm~50mmである。
 細胞構造体製造用容器100の底面1は、通常、平底である。
 細胞構造体製造用容器は、例えば、マルチウェルプレートの窪み部に収めることができる外形をしている。マルチウェルプレートのウェル数は、例えば、6~96であり、より具体的には、6、12、24、48、又は96である。マルチウェルプレートは、細胞培養マルチプレートなどとも呼ばれ、細胞培養、組織培養などに用いる複数のウェルを有するプレートであり、各ウェルの容量は、0.1mL~20mL程度である。
 細胞構造体製造用容器が、マルチウェルプレートの窪み部に収めることができることができることで、複数の細胞構造体製造用容器を一体的に取り扱うことができ取り扱い性が高くなる。
Hereinafter, embodiments of the cell structure manufacturing container will be described using the drawings.
FIG. 1 is a perspective view of an example of a cell structure manufacturing container 100. The outer shape of the cell structure manufacturing container 100 is cylindrical with circular upper and lower surfaces, and the diameters of the upper and lower surfaces are, for example, 5 mm to 50 mm. The height is, for example, 5 mm to 50 mm.
The bottom surface 1 of the cell structure manufacturing container 100 is usually flat-bottomed.
The cell structure manufacturing container has an external shape that can be accommodated in, for example, a recessed part of a multiwell plate. The number of wells in a multiwell plate is, for example, 6 to 96, more specifically 6, 12, 24, 48, or 96. A multiwell plate, also called a cell culture multiplate, is a plate having a plurality of wells used for cell culture, tissue culture, etc., and the volume of each well is about 0.1 mL to 20 mL.
Since the container for cell structure production can be accommodated in the recessed portion of the multiwell plate, a plurality of containers for cell structure production can be handled as one, which increases the ease of handling.
 細胞構造体製造用容器100は、外周壁2を有し、上面は大きな開口3を有しており、細胞構造体製造用容器100内部の外周壁2と開口3とに囲まれた空間は、培地が収容可能な培養空間4である。 The cell structure manufacturing container 100 has an outer peripheral wall 2 and a large opening 3 on the top surface, and the space inside the cell structure manufacturing container 100 surrounded by the outer peripheral wall 2 and the opening 3 is This is a culture space 4 that can accommodate a culture medium.
 図2は、図1の細胞構造体製造用容器100の上面図である。
 外周壁2によって囲まれた培養空間4には、複数の凹部10と、複数の凹部10を区画する区画壁11とが形成されている。図2の細胞構造体製造用容器100の凹部10の数は、19個である。図2において、複数の凹部10は、上面側から見た際、円形である。
 細胞構造体製造用容器の凹部の数は、細胞構造体製造用容器自体の大きさ、及び複数の凹部の大きさに応じて、適宜選択することができ、特に制限されないが、例えば、5個~2000個である。
FIG. 2 is a top view of the cell structure manufacturing container 100 of FIG. 1.
In the culture space 4 surrounded by the outer peripheral wall 2, a plurality of recesses 10 and a partition wall 11 that partitions the plurality of recesses 10 are formed. The number of recesses 10 in the cell structure manufacturing container 100 in FIG. 2 is nineteen. In FIG. 2, the plurality of recesses 10 are circular when viewed from the top side.
The number of recesses in the cell structure manufacturing container can be appropriately selected depending on the size of the cell structure manufacturing container itself and the size of the plurality of recesses, and is not particularly limited, but for example, 5 recesses. ~2000 pieces.
 図3Aは、図2の細胞構造体製造用容器100のA-A’断面図である。
 図3Aの断面図には、5つの凹部10と、それらを区画する区画壁11と、最外部に区画壁11よりも高い外周壁2とが確認できる。
 図3Aの断面は、隣接する2つの凹部10のそれぞれの中心線を含む断面ということができる。ここで、中心線とは、凹部10の開口面10aの中心を通り、凹部10の深さ方向に延びる線を意味する。開口面10aの形状が円の場合、その中心は円の中心であるが、開口面10aの形状が円以外の場合、その中心とは重心を意味することとする。
 図3Aにおいて、区画壁11の頂部11a(言い換えれば、隣接する2つの凹部10のそれぞれの中心線を含む断面における区画壁11の頂部11a)の形状は、凸形状である。具体的には、弧状である。図3Aにおける頂部11aの形状は、例えば、凸形状であれば、特に制限はなく、例えば、最頂部に角部を有する形状であってもよい。
 図3Aにおける区画壁11の頂部11aが凸形状であることにより、当該頂部11aに細胞が留まり難くなる。その結果、当該頂部11aにおいて細胞が単層培養されたり、構造体化したりしないため、区画壁の頂部が平坦な場合と比べて、細胞を培養した際に得られる細胞構造体の大きさの均一性が増す。
FIG. 3A is a sectional view taken along the line AA' of the cell structure manufacturing container 100 of FIG. 2.
In the cross-sectional view of FIG. 3A, five recesses 10, partition walls 11 that partition them, and an outer peripheral wall 2 higher than the partition walls 11 at the outermost side can be confirmed.
The cross section of FIG. 3A can be said to be a cross section that includes the respective center lines of the two adjacent recesses 10. Here, the center line means a line passing through the center of the opening surface 10a of the recess 10 and extending in the depth direction of the recess 10. When the shape of the aperture surface 10a is a circle, the center is the center of the circle, but when the shape of the aperture surface 10a is other than a circle, the center means the center of gravity.
In FIG. 3A, the shape of the top portion 11a of the partition wall 11 (in other words, the top portion 11a of the partition wall 11 in a cross section including the center line of each of the two adjacent recesses 10) is a convex shape. Specifically, it is arcuate. The shape of the top portion 11a in FIG. 3A is not particularly limited as long as it is a convex shape, for example, and may have a corner portion at the top, for example.
Since the top portion 11a of the partition wall 11 in FIG. 3A has a convex shape, it becomes difficult for cells to stay on the top portion 11a. As a result, cells are not cultured in a monolayer or structured in the apex 11a, so the cell structures obtained when cells are cultured are more uniform in size than in the case where the apex of the partition wall is flat. Sex increases.
 凹部10の深さは、特に制限されないが、例えば、0.5mm~3.0mmである。図3Aにおいて、凹部10の深さ(d)は、2.0mmである。
 凹部10の相当直径は、特に制限されないが、例えば、0.3mm~1.5mmである。図3Aにおいて、凹部10の相当直径(r)は、例えば、1.0mmである。
 ここで、凹部10の深さ(d)は、凹部の底部10bの最低箇所から凹部の開口面10aまでの長さ(図3Aにおけるd)を指す。
 また、凹部10の相当直径(r)は、凹部10の深さ方向の中心10cにおける相当直径である。そして、相当直径とは、凹部の深さ方向に直交し、かつ凹部の深さ方向の中心を通る凹部の断面の断面積を円の面積とした際の当該円の直径を意味する。断面が円の場合は、その円の直径が相当直径(r)となる。断面が円以外の場合、その断面の面積を求め、それを円の面積の公式((r’/2)×π)(r’は円の直径)を用いて求めたr’が、相当直径である。
The depth of the recess 10 is not particularly limited, but is, for example, 0.5 mm to 3.0 mm. In FIG. 3A, the depth (d) of the recess 10 is 2.0 mm.
The equivalent diameter of the recess 10 is not particularly limited, but is, for example, 0.3 mm to 1.5 mm. In FIG. 3A, the equivalent diameter (r) of the recess 10 is, for example, 1.0 mm.
Here, the depth (d) of the recess 10 refers to the length (d in FIG. 3A) from the lowest point of the bottom 10b of the recess to the opening surface 10a of the recess.
Further, the equivalent diameter (r) of the recess 10 is the equivalent diameter at the center 10c of the recess 10 in the depth direction. The equivalent diameter means the diameter of a circle when the cross-sectional area of the cross section of the recess that is perpendicular to the depth direction of the recess and passes through the center of the recess in the depth direction is the area of the circle. If the cross section is a circle, the diameter of the circle is the equivalent diameter (r). If the cross section is other than a circle, calculate the area of the cross section and use the formula for the area of a circle ((r'/2) 2 × π) (r' is the diameter of the circle) to find the equivalent r'. It is the diameter.
 凹部の深さ(d)が凹部の深さ方向の中心における凹部の相当直径(r)の1.0倍超であることにより、頂部を凸形状にしても、培地の交換の際に、細胞構造体が凹部から離脱しにくくなる。
 凹部の深さ(d)は、相当直径(r)の1.5倍以上が好ましく、1.7倍以上がより好ましい。d/rが大きいほど、培地の交換の際に、凹部から細胞構造体がより離脱しにくくなる。
 d/rの上限値としては、特に制限されないが、大きいと、凹部が気泡を抱え込みやすくなること、及び培地交換時に凹部の培地の入れ替わりが不十分になることから、凹部の深さ(d)は、相当直径(r)の5.0倍以下が好ましく、3.5倍以下がより好ましく、2.5倍以下が特に好ましい。
Since the depth (d) of the recess is more than 1.0 times the equivalent diameter (r) of the recess at the center of the recess in the depth direction, even if the top is made convex, cells cannot be The structure becomes difficult to separate from the recess.
The depth (d) of the recess is preferably 1.5 times or more, more preferably 1.7 times or more, the equivalent diameter (r). The larger d/r is, the more difficult it becomes for the cell structure to separate from the recess when replacing the medium.
The upper limit of d/r is not particularly limited, but if it is large, the recesses will easily trap air bubbles, and the culture medium in the recess will not be replaced sufficiently when changing the culture medium, so the depth of the recess (d) is preferably 5.0 times or less than the equivalent diameter (r), more preferably 3.5 times or less, particularly preferably 2.5 times or less.
 隣接する2つの凹部10を区画する区画壁11の幅(w)としては、特に制限されないが、凹部の深さ方向の中心10cにおいて測定した際に、凹部の相当直径(r)の0.1倍以上0.5倍以下であることが好ましい。
 隣接する2つの凹部10を区画する区画壁11の幅(w)としては、特に制限されないが、凹部の深さ方向の中心10cにおいて測定した際に、例えば、0.1mm~0.5mmである。
The width (w) of the partition wall 11 that partitions two adjacent recesses 10 is not particularly limited, but is 0.1 of the equivalent diameter (r) of the recess when measured at the center 10c of the recess in the depth direction. It is preferable that it is 0.5 times or more.
The width (w) of the partition wall 11 that partitions two adjacent recesses 10 is not particularly limited, but is, for example, 0.1 mm to 0.5 mm when measured at the center 10c of the recess in the depth direction. .
 図3Aにおいて、複数の凹部10の底部10bの形状は、断面において弧状である。当該弧状は、半円状(立体視した場合は、半球状)であってもよいし、楕円などであってもよい。また、複数の凹部の底部の形状は、平坦であってもよいし、最深部に角部を有する形状であってもよい。
 最深部に角部を有する形状としては、例えば、図4に示すような形状であり、断面において逆三角形状(立体視した場合は、例えば、逆円錐状)である。図4において、底部10bの深さ(d’)は、例えば、1.0mmである。
In FIG. 3A, the bottom portions 10b of the plurality of recesses 10 have an arcuate shape in cross section. The arc shape may be a semicircle (or a hemisphere when viewed stereoscopically), an ellipse, or the like. Moreover, the shape of the bottom of the plurality of recesses may be flat, or may have a corner at the deepest part.
The shape having the corner at the deepest part is, for example, a shape as shown in FIG. 4, which is an inverted triangular shape in cross section (for example, an inverted conical shape when viewed stereoscopically). In FIG. 4, the depth (d') of the bottom portion 10b is, for example, 1.0 mm.
 図3Bは、図3A中の領域Aの拡大図である。
 図3Bにおいて、底部10b及び開口部10dを除いた凹部10の中央部10eの形状は、非テーパー形状である。非テーパー形状とは、凹部を構成する壁が深さ方向においては直線で形成されており、かつテーパー角がない形状を意味する。言い換えれば、例えば、側面が高さ方向において直線で構成された筒状であり、かつ上面と下面とが同一形状であり、かつ側面が上面及び下面と直角な面の場合、側面にはテーパー角がないため、そのような筒状は、非テーパー形状である。また、円筒状、及び直方体は非テーパー形状である。
 非テーパー形状の中央部10eの凹部の深さ方向の長さ(l)は、凹部の深さ(d)の0.5倍以上であることが好ましい。なお、長さ(l)は、凹部の深さ(d)の1.0倍未満であり、0.75倍以下であることが好ましい。
FIG. 3B is an enlarged view of area A in FIG. 3A.
In FIG. 3B, the shape of the central portion 10e of the recessed portion 10 excluding the bottom portion 10b and the opening portion 10d is a non-tapered shape. A non-tapered shape means a shape in which the wall constituting the recess is formed in a straight line in the depth direction and has no taper angle. In other words, for example, if the side surface is cylindrical with a straight line in the height direction, the top and bottom surfaces are the same shape, and the side surface is perpendicular to the top and bottom surfaces, the side surface has a taper angle. Since there is no cylindrical shape, such a cylindrical shape is non-tapered. Further, the cylindrical shape and the rectangular parallelepiped shape are non-tapered.
It is preferable that the length (l) in the depth direction of the concave portion of the non-tapered central portion 10e is 0.5 times or more the depth (d) of the concave portion. Note that the length (l) is less than 1.0 times the depth (d) of the recess, and preferably 0.75 times or less.
 図2において、複数の凹部は、特定の凹部の開口部の中心点と、特定の凹部に隣接して配置された2以上の凹部の開口部の各々の中心点との距離(L)が、互いに等しくなるように、配置されている。以下、このような配置を、ハニカム配置と称する。
 ハニカム配置にすることで、区画壁の幅が厚い箇所を少なくすることができ、結果、区画壁の頂部に細胞が留まり難くなる。
In FIG. 2, for the plurality of recesses, the distance (L) between the center point of the opening of a specific recess and the center point of each of the openings of two or more recesses arranged adjacent to the specific recess is They are arranged so that they are equal to each other. Hereinafter, such an arrangement will be referred to as a honeycomb arrangement.
By adopting a honeycomb arrangement, it is possible to reduce the portions where the width of the partition wall is thick, and as a result, it becomes difficult for cells to remain at the top of the partition wall.
 図5は、図2の細胞構造体製造用容器100のB-B’断面図である。
 図2、及び図5に示すように、開口部の中心点を結ぶと正三角形を形成するように配置された互いに隣接する3つの凹部10に囲まれた区画壁11における正三角形の中心に相当する頂点箇所11bは、区画壁11において最も高いことが好ましい。ハニカム配置においては、頂点箇所11bでは、相対的に区画壁11の幅が厚くなるが、そこが最も高いことで、当該頂点箇所11b及びその周囲に細胞が留まり難くなる。その結果、細胞を培養した際に得られる細胞構造体の大きさの均一性がより増す。
 なお、図5における頂点箇所11bは、図2、図3b及び図5における隣接する2つの凹部10のそれぞれの中心線を含む断面における区画壁11の頂点11cよりも高い。
FIG. 5 is a BB' cross-sectional view of the cell structure manufacturing container 100 of FIG. 2.
As shown in FIGS. 2 and 5, it corresponds to the center of an equilateral triangle in a partition wall 11 surrounded by three mutually adjacent recesses 10 arranged so as to form an equilateral triangle when the center points of the openings are connected. It is preferable that the apex point 11b is the highest in the partition wall 11. In the honeycomb arrangement, the width of the partition wall 11 is relatively thick at the apex portion 11b, but since it is the highest there, it becomes difficult for cells to remain in the apex portion 11b and its surroundings. As a result, the size uniformity of cell structures obtained when cells are cultured is further increased.
Note that the apex portion 11b in FIG. 5 is higher than the apex 11c of the partition wall 11 in the cross section including the respective center lines of the two adjacent recesses 10 in FIGS. 2, 3b, and 5.
 細胞構造体製造用容器の材質としては、例えば、シリコーン(例えば、ポリジメチルシロキサン(PDMS))、ポリスチレン(PS)、シクロオレフィンポリマー(COP)、ポリアクリロニトリル(PAN)、ポリエステル系ポリマーアロイ(PEPA)、ポリスルホン(PSF)、ポリエチレンテレフタレート(PET)、ポリメチルメタクリレート(PMMA)、ポリビニルアルコール(PVA)、ポリウレタン(PU)、エチレンビニルアルコール(EVAL)、ポリエチレン(PE)、ポリエステル、ポリプロピレン(PP)、ポリフッ化ビニリデン(PVDF)、ポリエーテルスルホン(PES)、ポリカーボネート(PC)、ポリ塩化ビニル(PVC)、ポリテトラフルオロエチレン(PTFE)、超高分子量ポリエチレン(UHPE)、アクリロニトリル-ブタジエン-スチレン樹脂(ABS)、テフロン(登録商標)、ガラス等が挙げられる。
 中でも、成形加工性と細胞培養の観察のしやすさのための透明性という観点から、ポリスチレン(PS)、ポリジメチルシロキサン(PDMS)がより好ましい。
Examples of materials for the container for cell structure production include silicone (e.g., polydimethylsiloxane (PDMS)), polystyrene (PS), cycloolefin polymer (COP), polyacrylonitrile (PAN), and polyester polymer alloy (PEPA). , polysulfone (PSF), polyethylene terephthalate (PET), polymethyl methacrylate (PMMA), polyvinyl alcohol (PVA), polyurethane (PU), ethylene vinyl alcohol (EVAL), polyethylene (PE), polyester, polypropylene (PP), polyfluoride Vinylidene chloride (PVDF), polyethersulfone (PES), polycarbonate (PC), polyvinyl chloride (PVC), polytetrafluoroethylene (PTFE), ultra-high molecular weight polyethylene (UHPE), acrylonitrile-butadiene-styrene resin (ABS) , Teflon (registered trademark), glass, etc.
Among these, polystyrene (PS) and polydimethylsiloxane (PDMS) are more preferred from the viewpoint of moldability and transparency for easy observation of cell culture.
 また、細胞構造体製造用容器は、ガス透過性の弾性材料から構成されることが好ましい。細胞の種類によっては、容器にガス透過性があるほうが培養に適しているためである。ガス透過性の弾性材料としては、シリコーンなどが挙げられる。シリコーンとしては、例えばポリジメチルシロキサン(PDMS)などが挙げられる。 Furthermore, it is preferable that the cell structure manufacturing container is made of a gas-permeable elastic material. This is because, depending on the type of cells, containers with gas permeability are more suitable for culturing. Examples of the gas-permeable elastic material include silicone. Examples of silicone include polydimethylsiloxane (PDMS).
 細胞構造体製造用容器の表面の少なくとも一部は細胞の付着抑制能を有するコーティング膜を備えることが好ましい。
 表面の少なくとも一部としては、例えば、凹部の表面が挙げられる。
 細胞の付着抑制能を有するコーティング膜としては、特に制限されないが、例えば、以下の共重合体を有するコーティング膜が挙げられる。
Preferably, at least a portion of the surface of the cell structure manufacturing container is provided with a coating film having the ability to inhibit cell adhesion.
At least a portion of the surface includes, for example, a surface of a recess.
The coating film having the ability to suppress cell adhesion is not particularly limited, but examples include coating films containing the following copolymers.
 共重合体は、下記式(a)で表される有機基を含む繰り返し単位と、下記式(b)で表される有機基を含む繰り返し単位とを含む。
 当該共重合体は、例えば、WO2014/196652号パンフレットに記載の共重合体である。WO2014/196652号パンフレットの内容は、全てが明示されたと同程度に本明細書に組み込まれるものである。
Figure JPOXMLDOC01-appb-C000001
The copolymer includes a repeating unit containing an organic group represented by the following formula (a) and a repeating unit containing an organic group represented by the following formula (b).
The copolymer is, for example, a copolymer described in WO2014/196652 pamphlet. The contents of WO2014/196652 pamphlet are incorporated herein to the same extent as if expressly set forth in their entirety.
Figure JPOXMLDOC01-appb-C000001
(式中、Ua1、Ua2、Ub1、Ub2及びUb3は、それぞれ独立して、水素原子又は炭素原子数1乃至5の直鎖若しくは分岐アルキル基を表し、そしてAnは、ハロゲン化物イオン、無機酸イオン、水酸化物イオン及びイソチオシアネートイオンからなる群から選ばれる陰イオンを表す。) (In the formula, U a1 , U a2 , U b1 , U b2 and U b3 each independently represent a hydrogen atom or a straight chain or branched alkyl group having 1 to 5 carbon atoms, and An is a halogen (Represents an anion selected from the group consisting of compound ions, inorganic acid ions, hydroxide ions, and isothiocyanate ions.)
 共重合体は、上記式(a)で表される有機基を含む繰り返し単位と、上記式(b)で表される有機基を含む繰り返し単位とを含む共重合体であれば、特に制限は無い。該共重合体は、上記式(a)で表される有機基を含むモノマーと、上記式(b)で表される有機基を含むモノマーとをラジカル重合して得られたものが望ましいが、重縮合、重付加反応させたものも使用できる。共重合体の例としては、オレフィンが反応したビニル重合ポリマー、ポリアミド、ポリエステル、ポリカーボネート、ポリウレタン等が挙げられるが、これらの中でも特にオレフィンが反応したビニル重合ポリマー又は(メタ)アクリレート化合物を重合させた(メタ)アクリルポリマーが望ましい。なお、本発明において、(メタ)アクリレート化合物とは、アクリレート化合物とメタクリレート化合物の両方を意味する。例えば(メタ)アクリル酸は、アクリル酸及びメタクリル酸を意味する。 There are no particular restrictions on the copolymer as long as it contains a repeating unit containing an organic group represented by the above formula (a) and a repeating unit containing an organic group represented by the above formula (b). None. The copolymer is preferably obtained by radical polymerization of a monomer containing an organic group represented by the above formula (a) and a monomer containing an organic group represented by the above formula (b), Those subjected to polycondensation or polyaddition reactions can also be used. Examples of copolymers include vinyl polymers reacted with olefins, polyamides, polyesters, polycarbonates, polyurethanes, etc. Among these, especially vinyl polymers reacted with olefins or (meth)acrylate compounds polymerized. (Meth)acrylic polymers are preferred. In addition, in this invention, a (meth)acrylate compound means both an acrylate compound and a methacrylate compound. For example (meth)acrylic acid means acrylic acid and methacrylic acid.
 好ましくは、上記式(a)及び(b)で表される有機基を含むモノマーは、それぞれ、下記式(A)及び(B)で表されるモノマーである。
Figure JPOXMLDOC01-appb-C000002
(式中、T、T、Ua1、Ua2、Ub1、Ub2及びUb3は、それぞれ独立して、水素原子又は炭素原子数1乃至5の直鎖若しくは分岐アルキル基を表し、Q及びQは、それぞれ独立して、単結合、エステル結合又はアミド結合を表し、R及びRは、それぞれ独立して、ハロゲン原子で置換されていてもよい炭素原子数1乃至10の直鎖又は分岐アルキレン基を表し、Anは、ハロゲン化物イオン、無機酸イオン、水酸化物イオン及びイソチオシアネートイオンからなる群から選ばれる陰イオンを表し、そしてmは0乃至6の整数を表す。)
Preferably, the monomers containing organic groups represented by the above formulas (a) and (b) are monomers represented by the following formulas (A) and (B), respectively.
Figure JPOXMLDOC01-appb-C000002
(In the formula, T a , T b , U a1 , U a2 , U b1 , U b2 and U b3 each independently represent a hydrogen atom or a straight chain or branched alkyl group having 1 to 5 carbon atoms, Q a and Q b each independently represent a single bond, an ester bond, or an amide bond, and R a and R b each independently represent a carbon atom number of 1 to 10 that may be substituted with a halogen atom. represents a linear or branched alkylene group, An represents an anion selected from the group consisting of a halide ion, an inorganic acid ion, a hydroxide ion, and an isothiocyanate ion, and m represents an integer from 0 to 6. represent.)
 したがって、式(A)及び(B)で表されるモノマーから誘導される繰り返し単位は、それぞれ、下記式(a1)及び(b1)で表される。
Figure JPOXMLDOC01-appb-C000003
(式中、T、T、Ua1、Ua2、Ub1、Ub2及びUb3、Q及びQ、R及びR、An並びにmは、上記と同義である。)
Therefore, the repeating units derived from the monomers represented by formulas (A) and (B) are represented by the following formulas (a1) and (b1), respectively.
Figure JPOXMLDOC01-appb-C000003
(In the formula, T a , T b , U a1 , U a2 , U b1 , U b2 and U b3 , Q a and Q b , R a and R b , An and m have the same meanings as above.)
 本発明において、「炭素原子数1乃至5の直鎖又は分岐アルキル基」としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1,1-ジメチルプロピル基、1,2-ジメチルプロピル基、2,2-ジメチルプロピル基又は1-エチルプロピル基が挙げられる。 In the present invention, examples of "straight chain or branched alkyl group having 1 to 5 carbon atoms" include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, n-pentyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1,1-dimethylpropyl group, 1,2-dimethylpropyl group, 2,2-dimethylpropyl group or 1 -Ethylpropyl group.
 本発明において、「エステル結合」は、-C(=O)-O-若しくは-O-C(=O)-を意味し、「アミド結合」は、-NHC(=O)-若しくは-C(=O)NH-を意味する。 In the present invention, "ester bond" means -C(=O)-O- or -OC(=O)-, and "amide bond" means -NHC(=O)- or -C( =O) means NH-.
 本発明において、「ハロゲン原子で置換されていてもよい炭素原子数1乃至10の直鎖又は分岐アルキレン基」は、炭素原子数1乃至10の直鎖又は分岐アルキレン基、あるいは1以上のハロゲン原子で置換された炭素原子数1乃至10の直鎖又は分岐アルキレン基を意味する。ここで、「炭素原子数1乃至10の直鎖又は分岐アルキレン基」は、上記アルキル基からさらに水素原子が1個とれた2価の有機基であり、例えば、メチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、1-メチルプロピレン基、2-メチルプロピレン基、ジメチルエチレン基、エチルエチレン基、ペンタメチレン基、1-メチル-テトラメチレン基、2-メチル-テトラメチレン基、1,1-ジメチル-トリメチレン基、1,2-ジメチル-トリメチレン基、2,2-ジメチル-トリメチレン基、1-エチル-トリメチレン基、ヘキサメチレン基、オクタメチレン基及びデカメチレン基等が挙げられる。これらの中で、エチレン基、プロピレン基、オクタメチレン基及びデカメチレン基が好ましく、炭素原子数1乃至5の直鎖又は分岐アルキレン基、例えば、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基がより好ましく、特にエチレン基又はプロピレン基が好ましい。「1以上のハロゲン原子で置換された炭素原子数1乃至10の直鎖又は分岐アルキレン基」は、そのようなアルキレン基の1以上の任意の水素原子が、ハロゲン原子で置き換えられているものを意味し、特に、エチレン基又はプロピレン基の水素原子の一部又は全部がハロゲン原子で置き換えられているものが好ましい。 In the present invention, "a straight chain or branched alkylene group having 1 to 10 carbon atoms which may be substituted with a halogen atom" refers to a straight chain or branched alkylene group having 1 to 10 carbon atoms, or a halogen atom or more. means a straight chain or branched alkylene group having 1 to 10 carbon atoms substituted with . Here, "a linear or branched alkylene group having 1 to 10 carbon atoms" is a divalent organic group in which one hydrogen atom is removed from the above alkyl group, such as a methylene group, ethylene group, propylene group. , trimethylene group, tetramethylene group, 1-methylpropylene group, 2-methylpropylene group, dimethylethylene group, ethylethylene group, pentamethylene group, 1-methyl-tetramethylene group, 2-methyl-tetramethylene group, 1, Examples include 1-dimethyl-trimethylene group, 1,2-dimethyl-trimethylene group, 2,2-dimethyl-trimethylene group, 1-ethyl-trimethylene group, hexamethylene group, octamethylene group and decamethylene group. Among these, ethylene group, propylene group, octamethylene group and decamethylene group are preferable, and linear or branched alkylene groups having 1 to 5 carbon atoms, such as ethylene group, propylene group, trimethylene group and tetramethylene group, are more preferable. Preferably, ethylene or propylene groups are particularly preferred. "A linear or branched alkylene group having 1 to 10 carbon atoms substituted with one or more halogen atoms" refers to an alkylene group in which one or more arbitrary hydrogen atoms are replaced with a halogen atom. Particularly preferred are ethylene groups or propylene groups in which some or all of the hydrogen atoms are replaced with halogen atoms.
 本発明において、「ハロゲン原子」は、フッ素原子、塩素原子、臭素原子又はヨウ素原子が挙げられる。
 本発明において、「ハロゲン化物イオン」は、ハロゲン原子のアニオンを意味し、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオンが挙げられ、好ましくは、塩化物イオンである。
 本発明において、「無機酸イオン」とは、炭酸イオン、硫酸イオン、リン酸イオン、リン酸水素イオン、リン酸二水素イオン、硝酸イオン、過塩素酸イオン又はホウ酸イオンを意味する。
 上記Anとして好ましいのは、ハロゲン化物イオン、硫酸イオン、リン酸イオン、水酸化物イオン及びイソチオシアネートイオンであり、特に好ましいのはハロゲン化物イオンである。
In the present invention, examples of the "halogen atom" include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
In the present invention, "halide ion" means an anion of a halogen atom, and includes fluoride ion, chloride ion, bromide ion, and iodide ion, and preferably chloride ion.
In the present invention, "inorganic acid ion" means carbonate ion, sulfate ion, phosphate ion, hydrogen phosphate ion, dihydrogen phosphate ion, nitrate ion, perchlorate ion, or borate ion.
Preferred examples of the An - are halide ions, sulfate ions, phosphate ions, hydroxide ions, and isothiocyanate ions, and particularly preferred are halide ions.
 式(A)及び(B)において、T及びTは、好ましくは、それぞれ独立して、水素原子、メチル基又はエチル基であり、より好ましくは、それぞれ独立して、水素原子又はメチル基である。 In formulas (A) and (B), T a and T b are preferably each independently a hydrogen atom, a methyl group, or an ethyl group, and more preferably each independently a hydrogen atom or a methyl group. It is.
 式(a)、式(b)、式(A)及び(B)において、Ua1、Ua2、Ub1、Ub2及びUb3は、好ましくは、それぞれ独立して、水素原子、メチル基又はエチル基である。式(a)及び式(A)において、Ua1及びUa2は、より好ましくは、水素原子である。式(b)及び(B)において、Ub1、Ub2(及びUb3)は、より好ましくは、メチル基又はエチル基であり、特に好ましくはメチル基である。 In formulas (a), (b), formulas (A) and (B), U a1 , U a2 , U b1 , U b2 and U b3 are preferably each independently a hydrogen atom, a methyl group or It is an ethyl group. In formula (a) and formula (A), U a1 and U a2 are more preferably hydrogen atoms. In formulas (b) and (B), U b1 , U b2 (and U b3 ) are more preferably a methyl group or an ethyl group, particularly preferably a methyl group.
 式(A)及び(B)において、Q及びQは、好ましくは、それぞれ独立して、エステル結合(-C(=O)-O-若しくは-O-C(=O)-)又はアミド結合(-NHC(=O)-若しくは-C(=O)NH-)であり、より好ましくは、それぞれ独立して、-C(=O)-O-又は-C(=O)NH-であり、特に好ましくは、-C(=O)-O-である。 In formulas (A) and (B), Q a and Q b preferably each independently represent an ester bond (-C(=O)-O- or -O-C(=O)-) or an amide bond. A bond (-NHC(=O)- or -C(=O)NH-), more preferably each independently -C(=O)-O- or -C(=O)NH- -C(=O)-O- is particularly preferred.
 式(A)及び(B)において、R及びRは、好ましくは、それぞれ独立して、ハロゲン原子で置換されていてもよい炭素原子数1乃至3の直鎖又は分岐アルキレン基であり、より好ましくは、それぞれ独立して、エチレン基若しくはプロピレン基であるか、あるいは1つの塩素原子で置換されたエチレン基若しくはプロピレン基であり、特に好ましくは、エチレン基若しくはプロピレン基である。 In formulas (A) and (B), R a and R b are preferably each independently a straight chain or branched alkylene group having 1 to 3 carbon atoms, which may be substituted with a halogen atom, More preferably, each independently is an ethylene group or a propylene group, or an ethylene group or a propylene group substituted with one chlorine atom, and particularly preferably an ethylene group or a propylene group.
 式(A)及び(B)において、mは、好ましくは0乃至3の整数を表し、より好ましくは1又は2の整数を表し、特に好ましくは1である。 In formulas (A) and (B), m preferably represents an integer of 0 to 3, more preferably an integer of 1 or 2, and particularly preferably 1.
 上記式(A)の具体例としては、ビニルホスホン酸、アシッドホスホオキシエチル(メタ)アクリレート、3-クロロ-2-アシッドホスホオキシプロピル(メタ)アクリレート、アシッドホスホオキシプロピル(メタ)アクリレート、アシッドホスホオキシメチル(メタ)アクリレート、アシッドホスホオキポリオキシエチレングリコールモノ(メタ)アクリレート、アシッドホスホオキシポリオキシプロピレングリコールモノ(メタ)アクリレート等が挙げられるが、この中でもビニルホスホン酸、アシッドホスホオキシエチルメタクリレート(=リン酸2-(メタクリロイルオキシ)エチル)が好ましく用いられる。 Specific examples of the above formula (A) include vinylphosphonic acid, acid phosphooxyethyl (meth)acrylate, 3-chloro-2-acid phosphooxypropyl (meth)acrylate, acid phosphooxypropyl (meth)acrylate, and acid phosphooxypropyl (meth)acrylate. Examples include oxymethyl (meth)acrylate, acid phosphooxypolyoxyethylene glycol mono(meth)acrylate, acid phosphooxypolyoxypropylene glycol mono(meth)acrylate, among which vinylphosphonic acid, acid phosphooxyethyl methacrylate ( =2-(methacryloyloxy)ethyl phosphate) is preferably used.
 ビニルホスホン酸、アシッドホスホオキシエチルメタクリレート(=リン酸2-(メタクリロイルオキシ)エチル)及びアシッドホスホオキシポリオキシエチレングリコールモノメタクリレートの構造式は、それぞれ下記式(A-1)~式(A-3)で表される。
The structural formulas of vinylphosphonic acid, acid phosphooxyethyl methacrylate (=2-(methacryloyloxy)ethyl phosphate), and acid phosphooxypolyoxyethylene glycol monomethacrylate are the following formulas (A-1) to (A-3), respectively. ).
 合成時において、これらの化合物の他に、後述する一般式(C)又は(D)で表されるような、2つの官能基を有する(メタ)アクリレート化合物を併用してもよい。 At the time of synthesis, in addition to these compounds, a (meth)acrylate compound having two functional groups, as represented by the general formula (C) or (D) described below, may be used in combination.
 上記式(B)の具体例としては、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート、2-(t-ブチルアミノ)エチル(メタ)アクリレート、メタクロイルコリンクロリド等が挙げられるが、この中でもジメチルアミノエチル(メタ)アクリレート、メタクロイルコリンクロリド又は2-(t-ブチルアミノ)エチル(メタ)アクリレートが好ましく用いられる。 Specific examples of the above formula (B) include dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylate, 2-(t-butylamino)ethyl (meth)acrylate, methacroyl Examples include choline chloride, among which dimethylaminoethyl (meth)acrylate, methacroylcholine chloride, or 2-(t-butylamino)ethyl (meth)acrylate is preferably used.
 ジメチルアミノエチルアクリレート(=アクリル酸2-(ジメチルアミノ)エチル)、ジメチルアミノエチルメタクリレート(=メタクリル酸2-(ジメチルアミノ)エチル)、メタクロイルコリンクロリド及び2-(t-ブチルアミノ)エチルメタクリレート(=メタクリル酸2-(t-ブチルアミノ)エチルの構造式は、それぞれ下記式(B-1)~式(B-4)で表される。 Dimethylaminoethyl acrylate (=2-(dimethylamino)ethyl acrylate), dimethylaminoethyl methacrylate (=2-(dimethylamino)ethyl methacrylate), methacroylcholine chloride and 2-(t-butylamino)ethyl methacrylate ( The structural formulas of =2-(t-butylamino)ethyl methacrylate are represented by the following formulas (B-1) to (B-4), respectively.
 上記共重合体中における式(a)で表される有機基を含む繰り返し単位(又は式(a1)で表される繰り返し単位)の割合は、20モル%乃至80モル%であり、好ましくは30モル%乃至70モル%であり、さらに好ましくは40モル%乃至60モル%である。なお、共重合体は、2種以上の式(a)で表される有機基を含む繰り返し単位(又は式(a1)で表される繰り返し単位)を含んでいてもよい。 The proportion of the repeating unit containing the organic group represented by formula (a) (or the repeating unit represented by formula (a1)) in the copolymer is 20 mol% to 80 mol%, preferably 30 mol%. It is mol% to 70 mol%, more preferably 40 mol% to 60 mol%. Note that the copolymer may contain a repeating unit containing two or more types of organic groups represented by formula (a) (or a repeating unit represented by formula (a1)).
 上記共重合体中における式(b)で表される有機基を含む繰り返し単位(又は式(b1)で表される繰り返し単位)の割合は、全共重合体に対して上記式(a)(又は式(a1))の割合を差し引いた残部全てでもよいし、上記式(a)(又は式(a1))と下記に記述する第3成分との合計割合を差し引いた残部であってもよい。なお、共重合体は、2種以上の式(b)で表される有機基を含む繰り返し単位(又は式(b1)で表される繰り返し単位)を含んでいてもよい。 The proportion of the repeating unit containing an organic group represented by formula (b) (or the repeating unit represented by formula (b1)) in the above copolymer is the proportion of the repeating unit containing the organic group represented by formula (a) ( Alternatively, it may be the entire remainder after subtracting the ratio of formula (a1)), or it may be the remainder after subtracting the total ratio of the above formula (a) (or formula (a1)) and the third component described below. . Note that the copolymer may contain a repeating unit containing two or more types of organic groups represented by formula (b) (or a repeating unit represented by formula (b1)).
 さらに共重合体は、任意の第3成分が共重合していてもよい。例えば、第3成分として2以上の官能基を有する(メタ)アクリレート化合物が共重合しており、ポリマーの一部が部分的に3次元架橋していてもよい。そのような第3成分として、例えば、下記式(C)又は(D)で表される2官能性モノマーが挙げられる。
Furthermore, the copolymer may be copolymerized with an arbitrary third component. For example, a (meth)acrylate compound having two or more functional groups may be copolymerized as the third component, and a portion of the polymer may be partially three-dimensionally crosslinked. Examples of such a third component include a bifunctional monomer represented by the following formula (C) or (D).
(式中、T、T及びUは、それぞれ独立して、水素原子又は炭素原子数1乃至5の直鎖若しくは分岐アルキル基を表し、R及びRは、それぞれ独立して、ハロゲン原子で置換されていてもよい炭素原子数1乃至10の直鎖又は分岐アルキレン基を表す。)
 すなわち共重合体は、好ましくは、このような2官能性モノマーから誘導される架橋構造を含むものである。
(In the formula, T c , T d and U d each independently represent a hydrogen atom or a straight chain or branched alkyl group having 1 to 5 carbon atoms, and R c and R d each independently, Represents a straight chain or branched alkylene group having 1 to 10 carbon atoms that may be substituted with a halogen atom.)
That is, the copolymer preferably contains a crosslinked structure derived from such a difunctional monomer.
 式(C)及び(D)において、T及びTは、好ましくは、それぞれ独立して、水素原子、メチル基又はエチル基であり、より好ましくは、それぞれ独立して、水素原子又はメチル基である。 In formulas (C) and (D), T c and T d are preferably each independently a hydrogen atom, a methyl group, or an ethyl group, and more preferably each independently a hydrogen atom or a methyl group. It is.
 式(C)及び(D)において、Uは、好ましくは、水素原子、メチル基又はエチル基であり、より好ましくは、水素原子である。 In formulas (C) and (D), U d is preferably a hydrogen atom, a methyl group or an ethyl group, more preferably a hydrogen atom.
 式(C)及び(D)において、R及びRは、好ましくは、それぞれ独立して、ハロゲン原子で置換されていてもよい炭素原子数1乃至3の直鎖又は分岐アルキレン基であり、より好ましくは、それぞれ独立して、エチレン基若しくはプロピレン基であるか、あるいは1つの塩素原子で置換されたエチレン基若しくはプロピレン基であり、特に好ましくは、エチレン基若しくはプロピレン基である。 In formulas (C) and (D), R c and R d are preferably each independently a straight chain or branched alkylene group having 1 to 3 carbon atoms which may be substituted with a halogen atom, More preferably, each independently is an ethylene group or a propylene group, or an ethylene group or a propylene group substituted with one chlorine atom, and particularly preferably an ethylene group or a propylene group.
 式(C)で表される2官能性モノマーは、好ましくは、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート等が挙げられる。式(D)で表される2官能性モノマーは、好ましくは、リン酸ビス(メタクリロイルオキシメチル)、リン酸ビス[2-(メタクリロイルオキシ)エチル]、リン酸ビス[2-(メタクリロイルオキシ)プロピル]等が挙げられる。 Preferable examples of the bifunctional monomer represented by formula (C) include ethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, and propylene glycol di(meth)acrylate. The bifunctional monomer represented by formula (D) is preferably bis(methacryloyloxymethyl) phosphate, bis[2-(methacryloyloxy)ethyl] phosphate, bis[2-(methacryloyloxy)propyl phosphate ] etc.
 任意の第3成分は、3官能性モノマーであってもよい。そのような第3成分としての3官能性モノマーとしては、例えば、トリアクリル酸ホスフィニリジントリス(オキシ-2,1-エタンジイル)が挙げられる。 The optional third component may be a trifunctional monomer. Examples of such a trifunctional monomer as the third component include phosphinylidine triacrylate tris(oxy-2,1-ethanediyl).
 これらの中でも、特に、下記式(C-1)で表されるエチレングリコールジ(メタ)アクリレート及び下記式(D-1)で表されるリン酸ビス[2-(メタクリロイルオキシ)エチル]が好ましい。 Among these, ethylene glycol di(meth)acrylate represented by the following formula (C-1) and bis[2-(methacryloyloxy)ethyl] phosphate represented by the following formula (D-1) are particularly preferred. .
 共重合体には、これらの第三成分の1種又は2種以上が含まれていてもよい。上記の中でも、式(D)で表される2官能性モノマーが好ましく、特に、式(D-1)で表される2官能性モノマーが好ましい。
 上記共重合体中における第三成分(例えば、上記式(C)又は(D)で表される2官能性モノマーから誘導される架橋構造)の割合は、0モル%乃至50モル%である。
The copolymer may contain one or more of these third components. Among the above, the bifunctional monomer represented by formula (D) is preferred, and the difunctional monomer represented by formula (D-1) is particularly preferred.
The proportion of the third component (for example, a crosslinked structure derived from a bifunctional monomer represented by the above formula (C) or (D)) in the copolymer is 0 mol% to 50 mol%.
 共重合体の製造方法としては、特に制限されないが、例えば、WO2014/196652号パンフレットに記載の共重合体の製造方法が挙げられる。 The method for producing the copolymer is not particularly limited, but includes, for example, the method for producing the copolymer described in WO2014/196652 pamphlet.
 共重合体を細胞構造体製造用容器にコーティングする方法としては、特に制限されないが、例えば、WO2014/196652号パンフレットに記載のコーティング工程が挙げられる。 The method of coating the copolymer onto the container for cell structure production is not particularly limited, and includes, for example, the coating process described in WO2014/196652 pamphlet.
 また、コーティング膜は、WO2021/167037号パンフレットに記載のコーティング膜形成用組成物から得られるコーティング膜であってもよい。WO2021/167037号パンフレットの内容は、全てが明示されたと同程度に本明細書に組み込まれるものである。
 以下、WO2021/167037号パンフレットに記載のコーティング膜形成用組成物について説明する。本明細書では、第2の態様のコーティング膜形成用組成物と称する。
Further, the coating film may be a coating film obtained from the composition for forming a coating film described in WO2021/167037 pamphlet. The contents of pamphlet WO2021/167037 are incorporated herein to the same extent as if expressly set forth in their entirety.
The composition for forming a coating film described in the WO2021/167037 pamphlet will be described below. In this specification, it is referred to as a second aspect of the composition for forming a coating film.
 第2の態様のコーティング膜形成用組成物は、下記式(1):
Figure JPOXMLDOC01-appb-C000008
(式中、
は、水素原子またはメチル基を表し、Rは、炭素原子数1~6のアルキレン基を表し、nは、1~30の整数を表す)
で表される化合物、下記式(2):
Figure JPOXMLDOC01-appb-C000009
(式中、
は、水素原子またはメチル基を表し、Rは、カチオン性を有する1価の有機基を表す)
で表される化合物、および下記式(3):
Figure JPOXMLDOC01-appb-C000010
(式中、
は、それぞれ独立して、水素原子または炭素原子数1~6の直鎖もしくは分岐アルキル基を表し、Rは、ハロゲン原子で置換されていてもよい炭素原子数1~10の直鎖または分岐アルキレン基を表し、mは1~30の整数を表す)
で表される化合物を含むモノマー混合物であって、前記モノマー混合物の総質量に対する前記式(3)で表される化合物の割合が、2~40質量%であるモノマー混合物を重合させることにより得られる共重合体、並びに溶媒を含む。
The coating film forming composition of the second aspect has the following formula (1):
Figure JPOXMLDOC01-appb-C000008
(In the formula,
R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkylene group having 1 to 6 carbon atoms, and n represents an integer of 1 to 30)
A compound represented by the following formula (2):
Figure JPOXMLDOC01-appb-C000009
(In the formula,
R3 represents a hydrogen atom or a methyl group, R4 represents a monovalent organic group having cationic properties)
A compound represented by and the following formula (3):
Figure JPOXMLDOC01-appb-C000010
(In the formula,
R 5 each independently represents a hydrogen atom or a straight chain or branched alkyl group having 1 to 6 carbon atoms, and R 6 represents a straight chain having 1 to 10 carbon atoms which may be substituted with a halogen atom. or represents a branched alkylene group, m represents an integer from 1 to 30)
A monomer mixture containing a compound represented by the formula (3), which is obtained by polymerizing a monomer mixture in which the proportion of the compound represented by the formula (3) to the total mass of the monomer mixture is 2 to 40% by mass. Contains a copolymer and a solvent.
 第2の態様に係る共重合体のモノマー成分である式(1)の化合物において、Rは、水素原子またはメチル基を表し、Rは、炭素原子数1~6のアルキレン基を表し、好ましくは炭素原子数1~6の直鎖もしくは分岐アルキレン基を表し、より好ましくは炭素原子数2~5の直鎖もしくは分岐アルキレン基を表し、特に好ましくはエチレン基またはプロピレン基を表し、nは、1~30の整数を表し、好ましくは、1~20の整数を表し、より好ましくは2~10の整数を表し、特に好ましくは3~6の整数を表す。 In the compound of formula (1) which is a monomer component of the copolymer according to the second embodiment, R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkylene group having 1 to 6 carbon atoms, It preferably represents a straight chain or branched alkylene group having 1 to 6 carbon atoms, more preferably a straight chain or branched alkylene group having 2 to 5 carbon atoms, particularly preferably an ethylene group or a propylene group, and n is , represents an integer of 1 to 30, preferably represents an integer of 1 to 20, more preferably represents an integer of 2 to 10, particularly preferably represents an integer of 3 to 6.
 上記式(1)の化合物の具体例としては、アシッドホスホオキシエチル(メタ)アクリレート、3-クロロ-2-アシッドホスホオキシプロピル(メタ)アクリレート、アシッドホスホオキシプロピル(メタ)アクリレート、アシッドホスホオキシメチル(メタ)アクリレート、アシッドホスホオキシポリオキシエチレングリコールモノ(メタ)アクリレートおよびアシッドホスホオキシポリオキシプロピレングリコールモノ(メタ)アクリレート等が挙げられるが、この中でもアシッドホスホオキシエチルメタクリレート(=リン酸2-(メタクリロイルオキシ)エチル)、アシッドホスホオキシポリオキシエチレングリコールモノメタアクリレートおよびアシッドホスホオキシポリオキシプロピレングリコールモノメタクリレートが好ましく用いられる。 Specific examples of the compound of formula (1) above include acid phosphooxyethyl (meth)acrylate, 3-chloro-2-acid phosphooxypropyl (meth)acrylate, acid phosphooxypropyl (meth)acrylate, acid phosphooxymethyl (meth)acrylate, acid phosphooxypolyoxyethylene glycol mono(meth)acrylate, acid phosphooxypolyoxypropylene glycol mono(meth)acrylate, etc. Among these, acid phosphooxyethyl methacrylate (= phosphoric acid 2-( (methacryloyloxy)ethyl), acid phosphooxypolyoxyethylene glycol monomethacrylate and acid phosphooxypolyoxypropylene glycol monomethacrylate are preferably used.
 アシッドホスホオキシエチルメタクリレート(=リン酸2-(メタクリロイルオキシ)エチル)、アシッドホスホオキシポリオキシエチレングリコールモノメタクリレートおよびアシッドホスホオキシポリオキシプロピレングリコールモノメタクリレートの構造式は、それぞれ下記式(1-1)~式(1-3)で表される。 The structural formulas of acid phosphooxyethyl methacrylate (=2-(methacryloyloxy)ethyl phosphate), acid phosphooxypolyoxyethylene glycol monomethacrylate, and acid phosphooxypolyoxypropylene glycol monomethacrylate are the following formulas (1-1): ~Represented by formula (1-3).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 第2の態様に係る共重合体のモノマー成分である式(2)の化合物において、Rは、水素原子またはメチル基を表し、Rは、カチオン性を有する1価の有機基を表し、典型的には、1級アミン、2級アミン、3級アミンまたは4級アンモニウム構造を有する1価の基である。
 1級アミン、2級アミン、3級アミンまたは4級アンモニウム構造を有する1価の基の例としては、それぞれ、式:-R4a-NH、-R4a-NHR、-R4a-NRR’、-R4a-NRR’R’’[ここで、R4aは、エステル結合、アミド結合、エーテル結合またはホスホジエステル結合で中断されていてもよい、炭素原子数1~6のアルキレン基であり、R、R’およびR’’は、互いに独立して、炭素原子数1~6の直鎖もしくは分岐アルキル基、炭素原子数6~10のアリール基または炭素原子数7~16のアラルキル基である]で表される基を意味する。第2の態様における1級アミン、2級アミンまたは3級アミン構造を有する1価の基は、4級化または塩化されていてもよく、同様に4級アンモニウム構造を有する1価の基は、塩化されていてもよい。
In the compound of formula (2) which is a monomer component of the copolymer according to the second aspect, R 3 represents a hydrogen atom or a methyl group, R 4 represents a monovalent organic group having cationic properties, Typically, it is a monovalent group having a primary amine, secondary amine, tertiary amine or quaternary ammonium structure.
Examples of monovalent groups having a primary amine, secondary amine, tertiary amine or quaternary ammonium structure include the formulas: -R 4a -NH 2 , -R 4a -NHR, -R 4a -NRR', respectively. , -R 4a -N + RR'R'' [where R 4a is an alkylene group having 1 to 6 carbon atoms, which may be interrupted by an ester bond, amide bond, ether bond or phosphodiester bond; R, R' and R'' are each independently a straight chain or branched alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an aralkyl group having 7 to 16 carbon atoms. means a group represented by ]. The monovalent group having a primary amine, secondary amine or tertiary amine structure in the second embodiment may be quaternized or chlorinated, and similarly the monovalent group having a quaternary ammonium structure is May be chlorinated.
 上記式(2)の化合物の具体例としては、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート、2-(t-ブチルアミノ)エチル(メタ)アクリレート、(メタ)アクリロイルコリンクロリド、2-(メタ)アクリロイルオキシエチルホスホリルコリン(MPC)等が挙げられる。 Specific examples of the compound of formula (2) above include dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylate, 2-(t-butylamino)ethyl (meth)acrylate, Examples include (meth)acryloylcholine chloride, 2-(meth)acryloyloxyethylphosphorylcholine (MPC), and the like.
 2-(ジメチルアミノ)エチルメタクリレート、メタクロイルコリンクロリドおよび2-メタクリロイルオキシエチルホスホリルコリン(MPC)の構造式は、それぞれ下記式(2-1)~式(2-3)で表される。 The structural formulas of 2-(dimethylamino)ethyl methacrylate, methacryloylcholine chloride, and 2-methacryloyloxyethylphosphorylcholine (MPC) are represented by the following formulas (2-1) to (2-3), respectively.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 第2の態様に係る共重合体のモノマー成分である式(3)の化合物は、架橋性を有する二官能性モノマーである。式(3)の化合物において、Rは、それぞれ独立して、水素原子または炭素原子数1~6の直鎖もしくは分岐アルキル基を表し、好ましくは、水素原子またはメチル基であり、Rは、ハロゲン原子で置換されていてもよい炭素原子数1~10の直鎖もしくは分岐アルキレン基を表し、好ましくは、ハロゲン原子で置換されていてもよい炭素原子数1~6の直鎖もしくは分岐アルキレン基を表し、より好ましくは、塩素原子で置換されていてもよい炭素原子数1~6の直鎖もしくは分岐アルキレン基を表し、特に好ましくは、エチレン基、プロピレン基またはトリメチレン基を表し、mは1~30の整数を表し、好ましくは1~20の整数を表し、より好ましくは1~10の整数を表し、さらに好ましくは1~6の整数を表し、特に好ましくは1~4の整数を表す。 The compound of formula (3), which is a monomer component of the copolymer according to the second aspect, is a bifunctional monomer having crosslinking properties. In the compound of formula (3), R 5 each independently represents a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms, preferably a hydrogen atom or a methyl group, and R 6 is represents a straight chain or branched alkylene group having 1 to 10 carbon atoms which may be substituted with a halogen atom, preferably a straight chain or branched alkylene group having 1 to 6 carbon atoms which may be substituted with a halogen atom. represents a group, more preferably represents a straight chain or branched alkylene group having 1 to 6 carbon atoms which may be substituted with a chlorine atom, particularly preferably represents an ethylene group, a propylene group or a trimethylene group, m is Represents an integer from 1 to 30, preferably represents an integer from 1 to 20, more preferably represents an integer from 1 to 10, still more preferably represents an integer from 1 to 6, particularly preferably represents an integer from 1 to 4. .
 上記式(3)の化合物の具体例としては、ポリ(エチレングリコール)ジ(メタ)アクリレート、ポリ(トリメチレングリコール)ジ(メタ)アクリレート、ポリ(プロピレングリコール)ジ(メタ)アクリレート等が挙げられる。 Specific examples of the compound of formula (3) above include poly(ethylene glycol) di(meth)acrylate, poly(trimethylene glycol) di(meth)acrylate, poly(propylene glycol) di(meth)acrylate, etc. .
 ポリ(エチレングリコール)ジメタクリレート、ポリ(トリメチレングリコール)ジメタクリレート、ポリ(プロピレングリコール)ジメタクリレートの構造式は、それぞれ下記式(3-1)~式(3-3)で表される。 The structural formulas of poly(ethylene glycol) dimethacrylate, poly(trimethylene glycol) dimethacrylate, and poly(propylene glycol) dimethacrylate are represented by the following formulas (3-1) to (3-3), respectively.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 第2の態様に係る共重合体は、モノマー成分である上記式(1)、(2)および(3)の化合物を含むモノマー混合物を重合することによって得られる。かかるモノマー混合物は、生体物質の付着抑制能等を損なわない範囲であれば、任意の第4成分として、エチレン性不飽和モノマー、または多糖類もしくはその誘導体を含んでいてもよい。エチレン性不飽和モノマーの例としては、(メタ)アクリル酸およびそのエステル;酢酸ビニル;ビニルピロリドン;エチレン;ビニルアルコール;並びにそれらの親水性の官能性誘導体からなる群より選択される1種または2種以上のエチレン性不飽和モノマーを挙げることができる。多糖類またはその誘導体の例としては、ヒドロキシアルキルセルロース(例えば、ヒドロキシエチルセルロースまたはヒドロキシプロピルセルロース)等のセルロース系高分子、デンプン、デキストラン、カードランを挙げることができる。第2の態様に係る共重合体は、好ましくは、モノマー成分として、上記式(1)、(2)および(3)の化合物のみを含むモノマー混合物を重合することによって得られる。 The copolymer according to the second aspect is obtained by polymerizing a monomer mixture containing the compounds of the above formulas (1), (2), and (3) as monomer components. Such a monomer mixture may contain an ethylenically unsaturated monomer, a polysaccharide, or a derivative thereof as an optional fourth component, as long as it does not impair the ability to suppress the adhesion of biological substances. Examples of ethylenically unsaturated monomers include one or two selected from the group consisting of (meth)acrylic acid and its esters; vinyl acetate; vinylpyrrolidone; ethylene; vinyl alcohol; and hydrophilic functional derivatives thereof. More than one ethylenically unsaturated monomer can be mentioned. Examples of polysaccharides or derivatives thereof include cellulosic polymers such as hydroxyalkylcellulose (eg, hydroxyethylcellulose or hydroxypropylcellulose), starch, dextran, and curdlan. The copolymer according to the second aspect is preferably obtained by polymerizing a monomer mixture containing only the compounds of formulas (1), (2) and (3) above as monomer components.
 第2の態様に係る共重合体は、モノマー成分である上記式(1)、(2)および(3)の化合物を含むモノマー混合物であって、かつ前記モノマー混合物に含まれるモノマー成分の総質量に対する前記式(3)の化合物の割合が、2~40質量%であることを特徴とするモノマー混合物を重合することによって得られる。前記モノマー混合物に含まれるモノマー成分の総質量に対し、二官能性モノマーである式(3)の化合物を2~40質量%の範囲、好ましくは3~35質量%の範囲、より好ましくは5~30質量%の範囲で含むことにより、モノマー混合物より得られる共重合体を含む、第2の態様のコーティング膜形成用組成物は、優れた生体物質の付着抑制能が得られる。なお、モノマー混合物は、2種以上の式(3)の化合物を含んでいてもよい。 The copolymer according to the second aspect is a monomer mixture containing compounds of the above formulas (1), (2), and (3) as monomer components, and the total mass of the monomer components contained in the monomer mixture. It can be obtained by polymerizing a monomer mixture characterized in that the proportion of the compound of the formula (3) is 2 to 40% by mass. Based on the total mass of monomer components contained in the monomer mixture, the compound of formula (3), which is a difunctional monomer, is added in an amount of 2 to 40% by mass, preferably 3 to 35% by mass, more preferably 5 to 35% by mass. By including the copolymer in the range of 30% by mass, the coating film forming composition of the second embodiment, which includes the copolymer obtained from the monomer mixture, has an excellent ability to suppress the adhesion of biological substances. Note that the monomer mixture may contain two or more types of compounds of formula (3).
 モノマー混合物において、モノマー成分の総質量に対する式(1)の化合物の割合は、10~95質量%であり、好ましくは10~80質量%であり、さらに好ましくは45~75質量%である。なお、モノマー混合物は、2種以上の式(1)の化合物を含んでいてもよい。 In the monomer mixture, the proportion of the compound of formula (1) to the total mass of monomer components is 10 to 95% by mass, preferably 10 to 80% by mass, and more preferably 45 to 75% by mass. Note that the monomer mixture may contain two or more types of compounds of formula (1).
 モノマー混合物において、モノマー成分の総質量に対する式(2)の化合物の割合は、3~90質量%であり、好ましくは10~70質量%であり、さらに好ましくは15~35質量%である。なお、モノマー混合物は、2種以上の式(2)の化合物を含んでいてもよい。 In the monomer mixture, the proportion of the compound of formula (2) to the total mass of monomer components is 3 to 90% by mass, preferably 10 to 70% by mass, and more preferably 15 to 35% by mass. Note that the monomer mixture may contain two or more types of compounds of formula (2).
 第2の態様に係る共重合体は、一般的な(メタ)アクリルポリマーの合成方法であるラジカル重合、アニオン重合、カチオン重合などの方法により合成することができる。その形態は溶液重合、懸濁重合、乳化重合、塊状重合など種々の方法が可能である。一の実施態様では、上記式(1)、(2)および(3)の化合物を含むモノマー混合物を、溶媒中で、モノマー成分の合計濃度0.01~20質量%にて反応(重合)させる工程を含む製造方法により調製することができる。 The copolymer according to the second embodiment can be synthesized by methods such as radical polymerization, anionic polymerization, and cationic polymerization, which are common methods for synthesizing (meth)acrylic polymers. Various methods such as solution polymerization, suspension polymerization, emulsion polymerization, and bulk polymerization are possible. In one embodiment, a monomer mixture containing the compounds of formulas (1), (2), and (3) above is reacted (polymerized) in a solvent at a total concentration of monomer components of 0.01 to 20% by mass. It can be prepared by a manufacturing method including steps.
 重合反応における溶媒としては、水、リン酸緩衝液またはエタノール等のアルコールまたはこれらを組み合わせた混合溶媒でもよいが、水またはエタノールを含むことが望ましい。さらには水またはエタノールを10質量%以上100質量%以下含むことが好ましい。さらには水またはエタノールを50質量%以上100質量%以下含むことが好ましい。さらには水またはエタノールを80質量%以上100質量%以下含むことが好ましい。さらには水またはエタノールを90質量%以上100質量%以下含むことが好ましい。好ましくは水とエタノールの合計が100質量%である。 The solvent in the polymerization reaction may be water, a phosphate buffer, an alcohol such as ethanol, or a mixed solvent of these, but preferably contains water or ethanol. Furthermore, it is preferable that water or ethanol is contained in an amount of 10% by mass or more and 100% by mass or less. Furthermore, it is preferable that water or ethanol is contained in an amount of 50% by mass or more and 100% by mass or less. Furthermore, it is preferable that water or ethanol is contained in an amount of 80% by mass or more and 100% by mass or less. Furthermore, it is preferable that water or ethanol is contained in an amount of 90% by mass or more and 100% by mass or less. Preferably, the total amount of water and ethanol is 100% by mass.
 重合反応を効率的に進めるためには、重合開始剤を使用することが望ましい。重合開始剤の例としては、「熱ラジカル重合開始剤」または「光ラジカル重合開始剤」が挙げられる。
 「熱ラジカル重合開始剤」の例としては、2,2′-アゾビス(イソブチロニトリル)、2,2′-アゾビス(2-メチルブチロニトリル)、2,2′-アゾビス(2,4-ジメチルバレロニトリル)(富士フイルム和光純薬(株)製品名;V-65、10時間半減期温度;51℃)、4,4′-アゾビス(4-シアノ吉草酸)、2,2′-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、1,1′-アゾビス(シクロヘキサン-1-カルボニトリル)、1-[(1-シアノ-1-メチルエチル)アゾ]ホルムアミド、2,2′-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩(富士フイルム和光純薬(株);VA-044、10時間半減期温度;44℃)、2,2′-アゾビス[2-(2-イミダゾリン-2-イル)プロパン](富士フイルム和光純薬(株);VA-061、10時間半減期温度;61℃)、2,2′-アゾビス(2-メチルプロピオンアミジン)二塩酸塩、2,2′-アゾ(2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド(富士フイルム和光純薬(株)製品名;VA-086、10時間半減期温度;86℃)、過酸化ベンゾイル(BPO)、2,2′-アゾビス(N-(2-カルボキシエチル)-2-メチルプロピオンアミジン)n-水和物(富士フイルム和光純薬(株)製品名;VA-057、10時間半減期温度;57℃)、4,4′-アゾビス(4-シアノペンタノイックアシド)(富士フイルム和光純薬(株)製品名;VA-501)、2,2′-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジスルファートジヒドレート(富士フイルム和光純薬(株)製品名;VA-046B、10時間半減期温度;46℃)、2,2’-アゾビス(2-アミジノプロパン)ジヒドロクロリド(富士フイルム和光純薬(株)製品名;V-50、10時間半減期温度;56℃)、ペルオキソ二硫酸、t-ブチルヒドロペルオキシド、ジメチル1,1′-アゾビス(1-シクロヘキサンカルボキシレート)(富士フイルム和光純薬(株)製品名;VE-073)等が挙げられる。
In order to proceed with the polymerization reaction efficiently, it is desirable to use a polymerization initiator. Examples of polymerization initiators include "thermal radical polymerization initiators" and "photoradical polymerization initiators."
Examples of "thermal radical polymerization initiators" include 2,2'-azobis(isobutyronitrile), 2,2'-azobis(2-methylbutyronitrile), 2,2'-azobis(2,4 -dimethylvaleronitrile) (Fuji Film Wako Pure Chemical Industries, Ltd. product name: V-65, 10-hour half-life temperature: 51°C), 4,4'-azobis(4-cyanovaleric acid), 2,2'- Azobis(4-methoxy-2,4-dimethylvaleronitrile), 1,1'-azobis(cyclohexane-1-carbonitrile), 1-[(1-cyano-1-methylethyl)azo]formamide, 2,2 '-Azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (Fujifilm Wako Pure Chemical Industries, Ltd.; VA-044, 10-hour half-life temperature; 44°C), 2,2'-azobis [2-(2-imidazolin-2-yl)propane] (Fujifilm Wako Pure Chemical Industries, Ltd.; VA-061, 10-hour half-life temperature: 61°C), 2,2'-azobis(2-methylpropionamidine) ) dihydrochloride, 2,2'-azo(2-methyl-N-(2-hydroxyethyl)propionamide (Fujifilm Wako Pure Chemical Industries, Ltd.) Product name: VA-086, 10 hour half-life temperature: 86°C ), benzoyl peroxide (BPO), 2,2'-azobis(N-(2-carboxyethyl)-2-methylpropionamidine) n-hydrate (Fujifilm Wako Pure Chemical Industries, Ltd. product name: VA- 057, 10-hour half-life temperature; 57°C), 4,4'-azobis(4-cyanopentanoic acid) (Fujifilm Wako Pure Chemical Industries, Ltd. product name: VA-501), 2,2'-azobis [2-(2-imidazolin-2-yl)propane] disulfate dihydrate (Fujifilm Wako Pure Chemical Industries, Ltd. product name: VA-046B, 10-hour half-life temperature: 46°C), 2,2'- Azobis(2-amidinopropane) dihydrochloride (Fujifilm Wako Pure Chemical Industries, Ltd. product name: V-50, 10-hour half-life temperature: 56°C), peroxodisulfate, t-butyl hydroperoxide, dimethyl 1,1' -Azobis(1-cyclohexanecarboxylate) (Fuji Film Wako Pure Chemical Industries, Ltd. product name; VE-073) and the like.
 「光ラジカル重合開始剤」の例としては、アセトフェノン、クロロアセトフェノン、ヒドロキシアセトフェノン、2-アミノアセトフェノン、ジアルキルアミノアセトフェノン、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2′-フェニルアセトフェノン(BASF社製品名;Irgacure651)、2-ヒドロキシ-2-メチル-1-フェニルプロパノン(BASF社製品名;Irgacure1173)、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシメチルプロパノン(BASF社製品名;Irgacure2959)、2-ヒドロキシ-1-{4-[4-(2一ヒドロキシ-2-メチルプロピオニル)ベンジル]フェニル}-2-メチル-1-プロパン-1-オン(BASF社製品名;Irgacure127)、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン(BASF社製品名;Irgacure907)、2-ベンジル-2-(ジメチルアミノ)-4-モルホリノブチロフェノン(BASF社製品名;Irgacure369)等のアセトフェノン類;ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、1-ヒドロキシシクロへキシルフェニルケトン(BASF社製品名;Irgacure184)等のベンゾイン類;ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、メチル-o-ベンゾイルベンゾエート、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、ヒドロキシプロピルベンゾフェノン、アクリルベンゾフェノン、4,4′-ビス(ジメチルアミノ)ベンゾフェノン、4,4′-ジクロロベンゾフェノンなどのベンゾフェノン類;チオキサントン、2-クロロチオキサントン、2-メチルチオキサントン、ジエチルチオキサントン、ジメチルチオキサントンなどのチオキサントン類;2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキシド(BASF社製品名;IrgacureTPO)、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド(BASF社製品名;Irgacure819)等のアシルホスフィンオキサイド類;オキシフェニル酢酸、2-[2-オキソ-2-フェニルアセトキシエトキシ]エチルエステルとオキシフェニル酢酸、2-(2-ヒドロキシエトキシ)エチルエステルの混合物(BASF社製品名;Irgacure754)、ベンゾイルギ酸メチル(BASF社製品名;IrgacureMBF)、α-アシルオキシムエステル、ベンジル-(o-エトキシカルボニル)-α-モノオキシム、グリオキシエステル、2-エチルアンスラキノン、カンファーキノン、テトラメチルチウラムスルフィド、アゾビスイソブチロニトリル、ベンゾイルペルオキシド、ジアルキルペルオキシド、tert-ブチルペルオキシピバレート等が挙げられる。 Examples of "photoradical polymerization initiators" include acetophenone, chloroacetophenone, hydroxyacetophenone, 2-aminoacetophenone, dialkylaminoacetophenone, 2,2-diethoxyacetophenone, 2,2-dimethoxy-2'-phenylacetophenone (BASF BASF product name: Irgacure 651), 2-hydroxy-2-methyl-1-phenylpropanone (BASF product name: Irgacure 1173), 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxymethylpropanone (BASF company product name: Irgacure 2959), 2-hydroxy-1-{4-[4-(2-hydroxy-2-methylpropionyl)benzyl]phenyl}-2-methyl-1-propan-1-one (BASF company Product name: Irgacure 127), 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one (BASF product name: Irgacure 907), 2-benzyl-2-(dimethylamino)-4 - Acetophenones such as morpholinobutyrophenone (BASF product name: Irgacure 369); benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 1-hydroxycyclohexylphenyl ketone (BASF product name: Irgacure 184) Benzoins such as benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, methyl-o-benzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone, hydroxypropylbenzophenone, acrylic benzophenone, 4,4'-bis(dimethylamino)benzophenone, Benzophenones such as 4,4'-dichlorobenzophenone; Thioxanthone such as thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, diethylthioxanthone, and dimethylthioxanthone; 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (BASF product) Acyl phosphine oxides such as Irgacure TPO), bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide (BASF product name Irgacure 819); oxyphenylacetic acid, 2-[2-oxo-2-phenylacetoxy ethoxy]ethyl ester and oxyphenylacetic acid, mixture of 2-(2-hydroxyethoxy)ethyl ester (BASF product name; Irgacure 754), methyl benzoylformate (BASF product name; IrgacureMBF), α-acyl oxime ester, benzyl- (o-ethoxycarbonyl)-α-monoxime, glyoxy ester, 2-ethyl anthraquinone, camphorquinone, tetramethylthiuram sulfide, azobisisobutyronitrile, benzoyl peroxide, dialkyl peroxide, tert-butyl peroxy pivalate, etc. Can be mentioned.
 水への溶解性、イオンバランスおよびモノマーとの相互作用を考慮した場合、2,2’-アゾ(2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド、2,2’-アゾビス(N-(2-カルボキシエチル)-2-メチルプロピオンアミジン)n-水和物、4,4’-アゾビス(4-シアノペンタノイックアシッド)、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジスルファートジヒドレート、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2’-アゾビス(2-アミジノプロパン)ジヒドロクロリドおよびペルオキソ二硫酸から選ばれることが好ましい。
 有機溶媒への溶解性、イオンバランスおよびモノマーとの相互作用を考慮した場合、2,2’-アゾビス(2,4-ジメチルバレロニトリル)または2,2’-アゾビス(イソブチロニトリル)を用いることが望ましい。
Considering solubility in water, ionic balance, and interaction with monomers, 2,2'-azo(2-methyl-N-(2-hydroxyethyl)propionamide, 2,2'-azobis(N- (2-carboxyethyl)-2-methylpropionamidine) n-hydrate, 4,4'-azobis(4-cyanopentanoic acid), 2,2'-azobis[2-(2-imidazoline-2 -yl)propane] dihydrochloride, 2,2'-azobis[2-(2-imidazolin-2-yl)propane]disulfate dihydrate, 2,2'-azobis[2-(2-imidazolin-2-yl) yl)propane], 2,2'-azobis(2-amidinopropane) dihydrochloride and peroxodisulfuric acid.
When considering solubility in organic solvents, ion balance, and interaction with monomers, 2,2'-azobis(2,4-dimethylvaleronitrile) or 2,2'-azobis(isobutyronitrile) is used. This is desirable.
 重合開始剤の添加量は、重合に用いられるモノマー成分の合計質量に対し、0.05質量%~10質量%である。 The amount of the polymerization initiator added is 0.05% by mass to 10% by mass based on the total mass of monomer components used for polymerization.
 反応条件は反応容器をオイルバス等で50~200℃に加熱し、1~48時間、より好ましくは80~150℃、5~30時間攪拌を行うことで、重合反応が進み第2の態様の共重合体が得られる。反応雰囲気は窒素雰囲気が好ましい。 The reaction conditions are to heat the reaction vessel to 50 to 200°C in an oil bath or the like and stir for 1 to 48 hours, more preferably at 80 to 150°C for 5 to 30 hours, so that the polymerization reaction progresses and the second embodiment is achieved. A copolymer is obtained. The reaction atmosphere is preferably a nitrogen atmosphere.
 反応手順としては、全反応物質を室温の反応溶媒に全て入れてから、上記温度に加熱して重合させてもよいし、あらかじめ加温した溶媒中に、反応物質の混合物全部または一部を少々ずつ滴下してもよい。 As a reaction procedure, all reactants may be placed in a reaction solvent at room temperature and then heated to the above temperature for polymerization, or all or a portion of the reactant mixture may be added to a preheated solvent. It may be added dropwise.
 第2の態様に係る共重合体の重量平均分子量は数千から数百万程度であればよく、好ましくは5,000~5,000,000、より好ましくは、10,000~2,000,000である。また、ランダム共重合体、ブロック共重合体、グラフト共重合体のいずれでもよく、好ましくはランダム共重合体である。
 また、このようにして製造される共重合体は、二官能性モノマーを含むことから、3次元ポリマーであると考えられ、水やアルコールを含有する溶液に溶解または分散した状態である。
The weight average molecular weight of the copolymer according to the second aspect may range from several thousand to several million, preferably from 5,000 to 5,000,000, more preferably from 10,000 to 2,000, It is 000. Further, it may be a random copolymer, a block copolymer, or a graft copolymer, and preferably a random copolymer.
Furthermore, since the copolymer produced in this manner contains a difunctional monomer, it is considered to be a three-dimensional polymer, and is dissolved or dispersed in a solution containing water or alcohol.
 第2の態様に係るコーティング膜形成用組成物は、このようにして得られた共重合体を、単離/精製した後、所望の溶媒にて所定の濃度に希釈することにより調製してもよい。
 さらに第2の態様に係るコーティング膜形成用組成物は、重合反応後に得られる反応溶液(すなわち、共重合体含有ワニス)から調製してもよい。
The composition for forming a coating film according to the second aspect may be prepared by isolating/purifying the copolymer thus obtained and then diluting it to a predetermined concentration with a desired solvent. good.
Furthermore, the composition for forming a coating film according to the second aspect may be prepared from the reaction solution (ie, copolymer-containing varnish) obtained after the polymerization reaction.
 第2の態様のコーティング膜形成用組成物に含まれる溶媒としては、水、リン酸緩衝生理食塩水(PBS)、アルコールが挙げられる。アルコールとしては、炭素数2~6のアルコール、例えば、エタノール、プロパノール、イソプロパノール、1-ブタノール、2-ブタノール、イソブタノール、t-ブタノール、1-ペンタノール、2-ペンタノール、3-ペンタノール、1-ヘプタノール、2-ヘプタノール、2,2-ジメチル-1-プロパノール(=ネオペンチルアルコール)、2-メチル-1-プロパノール、2-メチル-1-ブタノール、2-メチル-2-ブタノール(=t-アミルアルコール)、3-メチル-1-ブタノール、3-メチル-3-ペンタノール、シクロペンタノール、1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、2,3-ジメチル-2-ブタノール、3,3-ジメチル-1-ブタノール、3,3-ジメチル-2-ブタノール、2-エチル-1-ブタノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-メチル-3-ペンタノール、3-メチル-1-ペンタノール、3-メチル-2-ペンタノール、3-メチル-3-ペンタノール、4-メチル-1-ペンタノール、4-メチル-2-ペンタノール、4-メチル-3-ペンタノールおよびシクロヘキサノールが挙げられ、単独でまたはそれらの組み合わせの混合溶媒を用いてもよいが、共重合体の溶解の観点から、水、PBS、エタノールおよびプロパノールから選ばれるのが好ましい。 Examples of the solvent contained in the coating film forming composition of the second embodiment include water, phosphate buffered saline (PBS), and alcohol. Examples of the alcohol include alcohols having 2 to 6 carbon atoms, such as ethanol, propanol, isopropanol, 1-butanol, 2-butanol, isobutanol, t-butanol, 1-pentanol, 2-pentanol, 3-pentanol, 1-heptanol, 2-heptanol, 2,2-dimethyl-1-propanol (=neopentyl alcohol), 2-methyl-1-propanol, 2-methyl-1-butanol, 2-methyl-2-butanol (=t -amyl alcohol), 3-methyl-1-butanol, 3-methyl-3-pentanol, cyclopentanol, 1-hexanol, 2-hexanol, 3-hexanol, 2,3-dimethyl-2-butanol, 3, 3-dimethyl-1-butanol, 3,3-dimethyl-2-butanol, 2-ethyl-1-butanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-methyl-3- Pentanol, 3-methyl-1-pentanol, 3-methyl-2-pentanol, 3-methyl-3-pentanol, 4-methyl-1-pentanol, 4-methyl-2-pentanol, 4- Examples include methyl-3-pentanol and cyclohexanol, which may be used alone or as a mixed solvent in combination, but from the viewpoint of dissolving the copolymer, water, PBS, ethanol and propanol are preferred. preferable.
 第2の態様に係るコーティング膜形成用組成物中の固形分の濃度としては、均一にコーティング膜を形成させるために、0.01~50質量%が望ましい。また、コーティング膜形成用組成物中の共重合体の濃度としては、好ましくは0.01~5質量%、より好ましくは0.01~4質量%、特に好ましくは0.01~3質量%である。共重合体の濃度が0.01質量%以下であると、得られるコーティング膜形成用組成物の共重合体の濃度が低すぎて十分な膜厚のコーティング膜が形成できず、5質量%以上であると、コーティング膜形成用組成物の保存安定性が悪くなり、溶解物の析出やゲル化が起こる可能性がある。 The concentration of solids in the composition for forming a coating film according to the second aspect is preferably 0.01 to 50% by mass in order to form a uniform coating film. The concentration of the copolymer in the composition for forming a coating film is preferably 0.01 to 5% by mass, more preferably 0.01 to 4% by mass, particularly preferably 0.01 to 3% by mass. be. If the concentration of the copolymer is 0.01% by mass or less, the concentration of the copolymer in the resulting coating film-forming composition will be too low to form a coating film with a sufficient thickness, and if it is 5% by mass or more If so, the storage stability of the coating film forming composition may deteriorate, and precipitation or gelation of dissolved substances may occur.
 さらに第2の態様のコーティング膜形成用組成物は、上記共重合体と溶媒の他に、必要に応じて得られるコーティング膜の性能を損ねない範囲で他の物質を添加することもできる。他の物質としては、防腐剤、界面活性剤、基材との密着性を高めるプライマー、防カビ剤および糖類等が挙げられる。 Furthermore, in addition to the above-mentioned copolymer and solvent, other substances can be added to the coating film forming composition of the second embodiment, if necessary, within a range that does not impair the performance of the resulting coating film. Other substances include preservatives, surfactants, primers that increase adhesion to the substrate, fungicides, sugars, and the like.
 第2の態様に係るコーティング膜形成用組成物中の共重合体のイオンバランスを調節するために、第2の態様のコーティング膜を得る際には、さらにコーティング膜形成用組成物中のpHを予め調整する工程を含んでいてもよい。pH調整は、例えば上記共重合体と溶媒を含む組成物にpH調整剤を添加し、該組成物のpHを2~13.5、好ましくは2~8.5、さらに好ましくは3~8とするか、あるいは好ましくは8.5~13.5、さらに好ましくは10~13.5とすることにより実施してもよい。使用しうるpH調整剤の種類およびその量は、上記共重合体の濃度や、そのアニオンとカチオンの存在比等に応じて適宜選択される。
 pH調整剤の例としては、アンモニア、ジエタノールアミン、ピリジン、N-メチル-D-グルカミン、トリス(ヒドロキシメチル)アミノメタン等の有機アミン;水酸化カリウム、水酸化ナトリウム等のアルカリ金属水酸化物;塩化カリウム、塩化ナトリウム等のアルカリ金属ハロゲン化物;硫酸、リン酸、塩酸、炭酸等の無機酸またはそのアルカリ金属塩;コリン等の4級アンモニウムカチオン、あるいはこれらの混合物(例えば、リン酸緩衝生理食塩水等の緩衝液)を挙げることができる。これらの中でも、アンモニア、ジエタノールアミン、水酸化ナトリウム、コリン、N-メチル-D-グルカミン、トリス(ヒドロキシメチル)アミノメタンが好ましく、特にアンモニア、ジエタノールアミン、水酸化ナトリウムおよびコリンが好ましい。
In order to adjust the ion balance of the copolymer in the coating film forming composition according to the second embodiment, when obtaining the coating film according to the second embodiment, the pH in the coating film forming composition is further adjusted. It may also include a step of adjusting in advance. The pH adjustment can be carried out, for example, by adding a pH adjuster to a composition containing the above copolymer and a solvent, and adjusting the pH of the composition to 2 to 13.5, preferably 2 to 8.5, more preferably 3 to 8. Alternatively, it may be carried out by setting it to preferably 8.5 to 13.5, more preferably 10 to 13.5. The type and amount of the pH adjuster that can be used are appropriately selected depending on the concentration of the copolymer, the abundance ratio of anions and cations, and the like.
Examples of pH adjusters include organic amines such as ammonia, diethanolamine, pyridine, N-methyl-D-glucamine, and tris(hydroxymethyl)aminomethane; alkali metal hydroxides such as potassium hydroxide and sodium hydroxide; chloride Alkali metal halides such as potassium and sodium chloride; inorganic acids or alkali metal salts thereof such as sulfuric acid, phosphoric acid, hydrochloric acid, and carbonic acid; quaternary ammonium cations such as choline; or mixtures thereof (e.g., phosphate buffered saline) (buffer solutions such as). Among these, ammonia, diethanolamine, sodium hydroxide, choline, N-methyl-D-glucamine, and tris(hydroxymethyl)aminomethane are preferred, and ammonia, diethanolamine, sodium hydroxide, and choline are particularly preferred.
 また、コーティング膜は、WO2022/259998号パンフレットに記載のコーティング膜形成用組成物から得られるコーティング膜であってもよいWO2022/259998号パンフレットの内容は、全てが明示されたと同程度に本明細書に組み込まれるものである。
 以下、WO2022/259998号パンフレットに記載のコーティング膜形成用組成物について説明する。本明細書では、第3の態様のコーティング膜形成用組成物と称する。
Further, the coating film may be a coating film obtained from the composition for forming a coating film described in the WO2022/259998 pamphlet. It will be incorporated into.
The composition for forming a coating film described in the WO2022/259998 pamphlet will be described below. In this specification, it is referred to as a third aspect of the composition for forming a coating film.
 第3の態様のコーティング膜形成用組成物は、生体物質の付着抑制に用いられる。
 第3の態様コーティング膜形成用組成物は、共重合体を少なくとも含有し、更に必要に応じて、溶媒などのその他の成分を含有する。
 なお、第3の態様のコーティング膜形成用組成物は、リン酸緩衝生理食塩水に溶解しにくいコーティング膜を形成可能であるが、第3の態様のコーティング膜形成用組成物の用途は、生体物質の付着抑制に用いられる限り、特に制限されず、リン酸緩衝生理食塩水に接触するコーティング膜の形成に制限されるものではない。
The coating film forming composition of the third aspect is used for suppressing the adhesion of biological substances.
The third aspect of the composition for forming a coating film contains at least a copolymer and, if necessary, other components such as a solvent.
Note that the composition for forming a coating film according to the third aspect can form a coating film that is difficult to dissolve in phosphate buffered saline, but the composition for forming a coating film according to the third aspect can be used for biological As long as it is used to suppress the adhesion of substances, it is not particularly limited, and is not limited to forming a coating film in contact with phosphate buffered saline.
 第3の態様に係る共重合体は、非水溶性である。ここで、「水溶性」とは、25℃の水100gに対して1.0g以上溶解可能であることをいう。「非水溶性」とは、「水溶性」に該当しないこと、即ち、25℃の水100gに対する溶解性が1.0g未満であることをいう。
 第3の態様に係る共重合体は、下記式(A)で表される繰り返し単位(A)、及び下記式(B)で表される繰り返し単位(B)を有する。
 第3の態様に係る共重合体における繰り返し単位(A)と繰り返し単位(B)とのモル比率(A:B)は、89:11~50:50である。
Figure JPOXMLDOC01-appb-C000014
(式中、R~Rは、それぞれ独立して、水素原子又は炭素原子数1~5のアルキル基を表し、X及びXは、それぞれ独立して、単結合、エステル結合、エーテル結合、アミド結合又は酸素原子で中断されていてもよい炭素原子数1~5のアルキレン基を表す。)
The copolymer according to the third aspect is water-insoluble. Here, "water-soluble" means that 1.0 g or more can be dissolved in 100 g of water at 25°C. "Water-insoluble" means that it does not fall under "water-soluble", that is, the solubility in 100 g of water at 25° C. is less than 1.0 g.
The copolymer according to the third aspect has a repeating unit (A) represented by the following formula (A) and a repeating unit (B) represented by the following formula (B).
The molar ratio (A:B) of repeating units (A) and repeating units (B) in the copolymer according to the third embodiment is 89:11 to 50:50.
Figure JPOXMLDOC01-appb-C000014
(In the formula, R 1 to R 3 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and X 1 and X 2 each independently represent a single bond, an ester bond, an ether (Represents an alkylene group having 1 to 5 carbon atoms that may be interrupted by a bond, amide bond, or oxygen atom.)
 第3の態様に係る共重合体は、2種以上の繰り返し単位(A)を有していてもよい。
 第3の態様に係る共重合体は、2種以上の繰り返し単位(B)を有していてもよい。
 第3の態様に係る共重合体は、1種類の繰り返し単位(A)及び1種類の繰り返し単位(B)を有することが好ましい。
The copolymer according to the third aspect may have two or more types of repeating units (A).
The copolymer according to the third aspect may have two or more types of repeating units (B).
The copolymer according to the third aspect preferably has one type of repeating unit (A) and one type of repeating unit (B).
 炭素原子数1~5のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1,1-ジメチルプロピル基、1,2-ジメチルプロピル基、2,2-ジメチルプロピル基、1-エチルプロピル基などが挙げられる。
 R~Rは、それぞれ独立して、水素原子、メチル基、又はエチル基が好ましい。
Examples of the alkyl group having 1 to 5 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, n-pentyl group, 1 -methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1,1-dimethylpropyl group, 1,2-dimethylpropyl group, 2,2-dimethylpropyl group, 1-ethylpropyl group and the like.
R 1 to R 3 are each independently preferably a hydrogen atom, a methyl group, or an ethyl group.
 上記「エステル結合」は、-C(=O)-O-又は-O-C(=O)-を意味し、「エーテル結合」は、-O-を意味し、「アミド結合」は、-NHC(=O)-又は-C(=O)NH-を意味する。 The above "ester bond" means -C(=O)-O- or -OC(=O)-, "ether bond" means -O-, and "amide bond" means - It means NHC(=O)- or -C(=O)NH-.
 炭素原子数1~5のアルキレン基は、酸素原子で中断されていてもよい。
 炭素原子数1~5のアルキレン基としては、メチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、1-メチルプロピレン基、2-メチルプロピレン基、ジメチルエチレン基、エチルエチレン基、ペンタメチレン基、1-メチル-テトラメチレン基、2-メチル-テトラメチレン基、1,1-ジメチル-トリメチレン基、1,2-ジメチル-トリメチレン基、2,2-ジメチル-トリメチレン基、1-エチル-トリメチレン基が挙げられる。上記X及びXは、メチレン基、エチレン基、又はプロピレン基が好ましい。
 「酸素原子で中断されていてもよい」とは、炭素原子数1~5のアルキレン基の1つ又は2以上の炭素-炭素結合間がエーテル結合を介して結合していることを言う。
The alkylene group having 1 to 5 carbon atoms may be interrupted by an oxygen atom.
Examples of alkylene groups having 1 to 5 carbon atoms include methylene group, ethylene group, propylene group, trimethylene group, tetramethylene group, 1-methylpropylene group, 2-methylpropylene group, dimethylethylene group, ethylethylene group, pentamethylene group. group, 1-methyl-tetramethylene group, 2-methyl-tetramethylene group, 1,1-dimethyl-trimethylene group, 1,2-dimethyl-trimethylene group, 2,2-dimethyl-trimethylene group, 1-ethyl-trimethylene group Examples include groups. The above X 1 and X 2 are preferably a methylene group, an ethylene group, or a propylene group.
The phrase "may be interrupted by an oxygen atom" means that one or more carbon-carbon bonds of an alkylene group having 1 to 5 carbon atoms are bonded via an ether bond.
 第3の態様に係る共重合体は、R及びRが水素原子であり、Rがメチル基であり、X及びXが単結合である共重合体が好ましい。 The copolymer according to the third aspect is preferably a copolymer in which R 1 and R 2 are hydrogen atoms, R 3 is a methyl group, and X 1 and X 2 are single bonds.
 繰り返し単位(A)と繰り返し単位(B)とのモル比率(A:B)は、89:11~50:50である。
 第3の態様に係る共重合体における、繰り返し単位(A)と繰り返し単位(B)との合計のモル数を100とした場合、繰り返し単位(A)と繰り返し単位(B)とのモル比率(A:B)は、(100-m):mで表すことができる。その場合、mの範囲は、11~50である。そして、mの下限は、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、又は30であってよい。mの上限は、49、48、47、46、45、44、43、42、41、40、38、37、36、又は35であってよい。mの範囲としては、例えば、12~49、12~48、15~48、20~49、20~45、22~49、又は22~45である。
The molar ratio (A:B) of the repeating unit (A) and the repeating unit (B) is 89:11 to 50:50.
When the total number of moles of repeating units (A) and repeating units (B) in the copolymer according to the third aspect is 100, the molar ratio of repeating units (A) and repeating units (B) ( A:B) can be expressed as (100-m):m. In that case, the range of m is 11-50. The lower limit of m may be 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30. The upper limit of m may be 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 38, 37, 36, or 35. The range of m is, for example, 12-49, 12-48, 15-48, 20-49, 20-45, 22-49, or 22-45.
 第3の態様に係る共重合体における全繰り返し単位中の繰り返し単位(A)と繰り返し単位(B)の合計のモル%としては、特に制限されないが、90モル%以上が好ましく、95モル%以上がより好ましく、99.5モル%以上がより一層好ましく、100%が特に好ましい。 The total mol% of repeating units (A) and repeating units (B) in all repeating units in the copolymer according to the third aspect is not particularly limited, but is preferably 90 mol% or more, and 95 mol% or more. is more preferable, 99.5 mol% or more is even more preferable, and 100% is particularly preferable.
 第3の態様においては、リン酸緩衝生理食塩水に溶解しにくいコーティング膜を得るために、共重合体における繰り返し単位(A)と繰り返し単位(B)とのモル比率を特定の範囲にしている。そのため、第3の態様においては共重合体を架橋させることなく、リン酸緩衝生理食塩水に溶解しにくいコーティング膜が得られる。よって、共重合体は、共重合体を架橋させるための感光基を有する必要がない。即ち、共重合体は感光基を有さないことが好ましい。感光基としては、例えば、アジド基が挙げられる。
 第3の態様においては、共重合体は、共重合体を架橋させるための感光基を有する必要がない。そのため、コーティング膜を形成する際に、共重合体を架橋させるための光照射を行う必要がない。よって、コーティング膜を形成する際の工程を簡素にすることができる。
In the third aspect, in order to obtain a coating film that is difficult to dissolve in phosphate buffered saline, the molar ratio of the repeating unit (A) and repeating unit (B) in the copolymer is set within a specific range. . Therefore, in the third embodiment, a coating film that is difficult to dissolve in phosphate buffered saline can be obtained without crosslinking the copolymer. Therefore, the copolymer does not need to have a photosensitive group for crosslinking the copolymer. That is, it is preferable that the copolymer does not have a photosensitive group. Examples of the photosensitive group include an azide group.
In a third aspect, the copolymer does not need to have photosensitive groups to crosslink the copolymer. Therefore, when forming a coating film, there is no need to perform light irradiation for crosslinking the copolymer. Therefore, the process for forming the coating film can be simplified.
 第3の態様に係る共重合体の粘度平均重合度(以下、単に「重合度」ということがある)は、特に制限されないが、第3の態様の効果を好適に得る観点から、200~3,000が好ましく、200~2,500がより好ましく、200~2,000が特に好ましい。
 粘度平均重合度は、共重合体を完全けん化した状態で測定される。
 完全けん化して得られるポリビニルアルコールの「粘度平均重合度」は、イオン交換水を溶媒としたオストワルド粘度計により30℃で測定した際の極限粘度[η](g/dL)から、下記式により算出される値である。
 log(P)=1.613×log([η]×10/8.29)
 ここで、Pは粘度平均重合度を示す。
 粘度平均重合度は、JIS K 6726に従って求めることができる。
The viscosity average degree of polymerization (hereinafter sometimes simply referred to as "degree of polymerization") of the copolymer according to the third aspect is not particularly limited, but from the viewpoint of suitably obtaining the effects of the third aspect, from 200 to 3 ,000 is preferred, 200 to 2,500 is more preferred, and 200 to 2,000 is particularly preferred.
The viscosity average degree of polymerization is measured with the copolymer completely saponified.
The "viscosity average degree of polymerization" of polyvinyl alcohol obtained by complete saponification is determined by the following formula from the intrinsic viscosity [η] (g/dL) measured at 30°C using an Ostwald viscometer using ion-exchanged water as a solvent. This is the calculated value.
log(P)=1.613×log([η]×10 4 /8.29)
Here, P indicates the viscosity average degree of polymerization.
The viscosity average degree of polymerization can be determined according to JIS K 6726.
 第3の態様に係る共重合体を製造する方法としては、特に制限されないが、例えば、下記式(C)で表される化合物を重合してホモポリマーを製造し、得られたホモポリマーを公知のけん化反応により部分加水分解して、共重合体を得る方法が挙げられる。
Figure JPOXMLDOC01-appb-C000015
(式中、R、R、及びXは上記と同義である。)
The method for producing the copolymer according to the third aspect is not particularly limited, but for example, a compound represented by the following formula (C) is polymerized to produce a homopolymer, and the obtained homopolymer is publicly known. A method for obtaining a copolymer by partial hydrolysis using a saponification reaction may be mentioned.
Figure JPOXMLDOC01-appb-C000015
(In the formula, R 1 , R 3 , and X 1 have the same meanings as above.)
 また、第3の態様に係る共重合体を製造する方法としては、例えば、下記式(C)で表される化合物と下記式(D)で表される化合物とを共重合して、共重合体を得る方法が挙げられる。
Figure JPOXMLDOC01-appb-C000016
(式中、R~R、X、及びXは上記と同義である。)
Further, as a method for producing the copolymer according to the third aspect, for example, a compound represented by the following formula (C) and a compound represented by the following formula (D) are copolymerized to form a copolymer. One method is to obtain union.
Figure JPOXMLDOC01-appb-C000016
(In the formula, R 1 to R 3 , X 1 and X 2 have the same meanings as above.)
 第3の態様に係る共重合体は、ランダムコポリマーであってもよいし、ブロックコポリマーであってもよい。
 第3の態様に係る共重合体としては、市販品を使用してもよい。共重合体の市販品としては、具体的にはポリ酢酸ビニル(日本酢ビ・ポバール製、商品名JMR-10L(登録商標))が挙げられる。
The copolymer according to the third aspect may be a random copolymer or a block copolymer.
As the copolymer according to the third aspect, commercially available products may be used. A specific example of a commercially available copolymer is polyvinyl acetate (trade name: JMR-10L (registered trademark), manufactured by Nippon Vinyl Poval Co., Ltd.).
 第3の態様のコーティング膜形成用組成物中の膜形成成分における共重合体の含有量としては、特に制限されないが、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上が特に好ましい。なお膜形成成分とは、組成物の全成分から溶媒成分を除いた成分を指す。 The content of the copolymer in the film-forming component in the coating film-forming composition of the third aspect is not particularly limited, but is preferably 80% by mass or more, more preferably 90% by mass or more, and 95% by mass or more. is particularly preferred. Note that the film-forming component refers to a component obtained by excluding the solvent component from all components of the composition.
 第3の態様のコーティング膜形成用組成物における共重合体の含有量としては、特に制限されないが、所望の厚みのコーティング膜を形成しやすい観点から、0.1~10質量%が好ましく、0.3~8質量%がより好ましく、0.5~5質量%が特に好ましい。また、コーティング膜形成用組成物における共重合体の含有量は、0.02~2質量%であってもよいし、0.05~1質量%であってよい。 The content of the copolymer in the coating film forming composition of the third aspect is not particularly limited, but from the viewpoint of easily forming a coating film with a desired thickness, it is preferably 0.1 to 10% by mass, and 0.1 to 10% by mass is preferable. .3 to 8% by weight is more preferable, and 0.5 to 5% by weight is particularly preferable. Further, the content of the copolymer in the composition for forming a coating film may be 0.02 to 2% by mass, or 0.05 to 1% by mass.
 第3の態様に係る溶媒としては、例えば、水、リン酸緩衝生理食塩水(PBS)、アルコール、水溶性有機溶媒(ただしアルコールを除く。)などが挙げられる。 Examples of the solvent according to the third aspect include water, phosphate buffered saline (PBS), alcohol, and water-soluble organic solvents (excluding alcohol).
 アルコールとしては、炭素原子数2~6のアルコールが挙げられる。
 アルコールとしては、例えば、エタノール、プロパノール、イソプロパノール、1-ブタノール、2-ブタノール、イソブタノール、t-ブタノール、1-ペンタノール、2-ペンタノール、3-ペンタノール、1-ヘプタノール、2-ヘプタノール、2,2-ジメチル-1-プロパノール(ネオペンチルアルコール)、2-メチル-1-プロパノール、2-メチル-1-ブタノール、2-メチル-2-ブタノール(t-アミルアルコール)、3-メチル-1-ブタノール、3-メチル-3-ペンタノール、シクロペンタノール、1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、2,3-ジメチル-2-ブタノール、3,3-ジメチル-1-ブタノール、3,3-ジメチル-2-ブタノール、2-エチル-1-ブタノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-メチル-3-ペンタノール、3-メチル-1-ペンタノール、3-メチル-2-ペンタノール、3-メチル-3-ペンタノール、4-メチル-1-ペンタノール、4-メチル-2-ペンタノール、4-メチル-3-ペンタノール及びシクロヘキサノールが挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用することができる。
Examples of the alcohol include alcohols having 2 to 6 carbon atoms.
Examples of the alcohol include ethanol, propanol, isopropanol, 1-butanol, 2-butanol, isobutanol, t-butanol, 1-pentanol, 2-pentanol, 3-pentanol, 1-heptanol, 2-heptanol, 2,2-dimethyl-1-propanol (neopentyl alcohol), 2-methyl-1-propanol, 2-methyl-1-butanol, 2-methyl-2-butanol (t-amyl alcohol), 3-methyl-1 -butanol, 3-methyl-3-pentanol, cyclopentanol, 1-hexanol, 2-hexanol, 3-hexanol, 2,3-dimethyl-2-butanol, 3,3-dimethyl-1-butanol, 3, 3-dimethyl-2-butanol, 2-ethyl-1-butanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-methyl-3-pentanol, 3-methyl-1-pen Tanol, 3-methyl-2-pentanol, 3-methyl-3-pentanol, 4-methyl-1-pentanol, 4-methyl-2-pentanol, 4-methyl-3-pentanol and cyclohexanol Can be mentioned. These can be used alone or in combination of two or more.
 水溶性有機溶媒とは、水及びアルコールと任意の割合で混ぜることが可能であり、混ぜた後に分離が起こらない有機溶媒を指す。
 水溶性有機溶媒としては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテートが挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用することができる。
A water-soluble organic solvent refers to an organic solvent that can be mixed with water and alcohol in any proportion and does not separate after mixing.
Examples of water-soluble organic solvents include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, and propylene glycol monoethyl ether. , propylene glycol monomethyl ether acetate, and propylene glycol propyl ether acetate. These can be used alone or in combination of two or more.
 第3の態様のコーティング膜形成用組成物には、溶媒として、水、リン酸緩衝生理食塩水(PBS)、アルコール又は水溶性有機溶媒を単独で用いてもよい。
 第3の態様のコーティング膜形成用組成物には、溶媒として、水、リン酸緩衝生理食塩水(PBS)、アルコール及び水溶性有機溶媒の2種以上を組み合わせて用いてもよい。
 共重合体の溶解性の観点から、溶媒は、水、アルコール、水溶性有機溶媒及びそれらの2種以上の組合せから選ばれるのが好ましく、水、エタノール、水溶性有機溶媒及びそれらの2種以上の組み合わせから選ばれるのがより好ましい。
In the coating film forming composition of the third aspect, water, phosphate buffered saline (PBS), alcohol, or a water-soluble organic solvent may be used alone as a solvent.
In the coating film forming composition of the third aspect, a combination of two or more of water, phosphate buffered saline (PBS), alcohol, and a water-soluble organic solvent may be used as the solvent.
From the viewpoint of solubility of the copolymer, the solvent is preferably selected from water, alcohol, water-soluble organic solvents, and combinations of two or more thereof, and water, ethanol, water-soluble organic solvents, and two or more thereof. More preferably, it is selected from a combination of.
 溶媒の組み合わせとしては、以下の組み合わせが好ましい。
 ・水及びアルコール
 ・水、アルコール及び水溶性有機溶媒
 ・アルコール及び水溶性有機溶媒
The following combinations of solvents are preferred.
・Water and alcohol ・Water, alcohol and water-soluble organic solvents ・Alcohol and water-soluble organic solvents
 溶媒の組み合わせとしては、以下の組み合わせがより好ましい。
 ・水及びエタノール
 ・水、エタノール及びプロピレングリコールモノメチルエーテル
 ・エタノール及びプロピレングリコールモノメチルエーテル
As the combination of solvents, the following combinations are more preferable.
・Water and ethanol ・Water, ethanol and propylene glycol monomethyl ether ・Ethanol and propylene glycol monomethyl ether
 第3の態様のコーティング膜形成用組成物における、水:アルコールの質量比は、例えば、1:99~70:30であり、1:99~50:50である。
 第3の態様のコーティング膜形成用組成物における、水:アルコール:水溶性有機溶媒の質量比(A:B:C)は、例えば、5~30:65~92:1~30(ただし、A+B+Cは100)である。
 第3の態様のコーティング膜形成用組成物における、アルコール:水溶性有機溶媒の混合比(質量比)は、例えば、30:70~97:3である。
In the coating film forming composition of the third aspect, the water:alcohol mass ratio is, for example, 1:99 to 70:30, and 1:99 to 50:50.
The mass ratio (A:B:C) of water:alcohol:water-soluble organic solvent in the composition for forming a coating film of the third aspect is, for example, 5 to 30:65 to 92:1 to 30 (A+B+C is 100).
In the coating film forming composition of the third aspect, the mixing ratio (mass ratio) of alcohol:water-soluble organic solvent is, for example, 30:70 to 97:3.
 第3の態様のコーティング膜形成用組成物における溶媒の含有量としては、特に制限されないが、所望の厚みのコーティング膜を形成しやすい観点から、90質量%以上が好ましく、92質量%以上がより好ましく、95質量%以上が特に好ましい。 The content of the solvent in the coating film forming composition of the third aspect is not particularly limited, but from the viewpoint of easily forming a coating film with a desired thickness, it is preferably 90% by mass or more, and more preferably 92% by mass or more. It is preferably 95% by mass or more, particularly preferably 95% by mass or more.
 第3の態様のコーティング膜形成用組成物は、必要に応じて、その他の成分を含有することもできる。
 その他の成分としては、例えば、pH調整剤、防腐剤、界面活性剤、防カビ剤、糖類等が挙げられる。
The coating film forming composition of the third aspect can also contain other components as necessary.
Other components include, for example, pH adjusters, preservatives, surfactants, fungicides, sugars, and the like.
 細胞構造体製造用容器の製造方法としては、特に制限されないが、以下の本発明の細胞構造体製造用容器の製造方法が好ましい。 The method for manufacturing a cell structure manufacturing container is not particularly limited, but the following method for manufacturing a cell structure manufacturing container of the present invention is preferred.
(細胞構造体製造用容器の製造方法)
 本発明の細胞構造体製造用容器の製造方法は、金型を用いて本発明の細胞構造体製造用容器を成形することを含む。
(Method for manufacturing a container for manufacturing cell structures)
The method for manufacturing a cell structure manufacturing container of the present invention includes molding the cell structure manufacturing container of the present invention using a mold.
 細胞構造体製造用容器の他の製造方法としては、例えば、国際公開第2012/036011号パンフレットに記載のように窪み部(凹部)をレーザー照射により作製する方法がある。しかし、この場合、窪み部(凹部)の深さを深くしようとすると、開口の直径も大きくなってしまう。そのため、凹部の深さを、凹部の深さ方向の中心における凹部の相当直径の1.0倍超とすることは難しい。
 それに対して、金型を用いた成形であれば、所望の凹部の深さに対応する凸部を持つ金型を使用し、凹部を含めて成形することができるため、凹部の深さを、凹部の深さ方向の中心における凹部の相当直径の1.0倍超とすることができる。
As another method for producing a cell structure production container, there is a method of producing a recessed part (recessed part) by laser irradiation, for example, as described in International Publication No. 2012/036011 pamphlet. However, in this case, if the depth of the recessed portion (recessed portion) is increased, the diameter of the opening will also become larger. Therefore, it is difficult to make the depth of the recess more than 1.0 times the equivalent diameter of the recess at the center in the depth direction of the recess.
On the other hand, when molding is performed using a mold, a mold with a convex portion corresponding to the desired depth of the concave portion is used, and molding including the concave portion can be performed. The diameter may be more than 1.0 times the equivalent diameter of the recess at the center in the depth direction of the recess.
(細胞構造体)
 本発明の細胞構造体は、本発明の細胞構造体製造用容器を用いて製造される。
 本発明の細胞構造体は、以下の本発明の細胞構造体の製造方法により製造されることが好ましい。
 なお細胞構造体とは、細胞が凝集した結果形成する構造体を示し、球状やリング状などのように形状が限定されない。
(cell structure)
The cell structure of the present invention is produced using the cell structure production container of the present invention.
The cell structure of the present invention is preferably produced by the following method for producing a cell structure of the present invention.
Note that the cell structure refers to a structure formed as a result of aggregation of cells, and the shape is not limited to a spherical shape, a ring shape, or the like.
(細胞構造体の製造方法)
 細胞構造体の製造方法は、本発明の細胞構造体製造用容器を用いる。
 細胞構造体の製造方法は、例えば、少なくとも以下の工程(1)を含む。
 細胞構造体の製造方法は、例えば、更に、以下の工程(2)~(4)を含む。
 工程(1):細胞を分散させた培地を本発明の細胞構造体製造用容器の培養空間へ添加する工程
 工程(2):培養空間内の細胞を培養して細胞構造体を形成する工程
 工程(3):培養空間内の培地を交換する工程
 工程(4):培養空間内の細胞構造体を成熟させる工程
(Method for manufacturing cell structures)
The cell structure production method uses the cell structure production container of the present invention.
The method for manufacturing a cell structure includes, for example, at least the following step (1).
The method for producing a cell structure further includes, for example, the following steps (2) to (4).
Step (1): Adding a medium in which cells are dispersed to the culture space of the cell structure manufacturing container of the present invention. Step (2): Cultivating the cells in the culture space to form a cell structure. Step (3): Step of exchanging the medium in the culture space Step (4): Step of maturing the cell structures in the culture space
 細胞構造体の製造方法は、更に、以下の工程(5)及び(6)を含んでいてもよい。
 工程(5):細胞構造体を培地の中に浮遊させる工程
 工程(6):細胞構造体を回収する工程
The method for manufacturing a cell structure may further include the following steps (5) and (6).
Step (5): Floating the cell structure in the medium Step (6): Recovering the cell structure
 以下、各工程について説明する。 Each step will be explained below.
<工程(1)>
 工程(1)は、細胞を分散させた培地を本発明の細胞構造体製造用容器の培養空間へ添加する工程である。
 工程(1)は、細胞を培養する準備を行う工程であり、例えば、培地に以下の総数の細胞を分散させ、細胞構造体製造用容器へ添加する。
 総細胞数の下限は、例えば、細胞構造体製造用容器に存在する凹部の数(n)と同数以上とする。
 総細胞数の上限は、例えば、細胞構造体製造用容器が有する凹部の体積(V)を播種する細胞の体積(v)で割った値に、凹部の数(n)を掛けた数以下とする。記号を用いた数式で表すと、細胞総数の上限値=V/v×n、と表すことができる。ここで、複数の凹部の体積(V)は同じであることを前提とする。異なる場合には平均値を用いる。
 培地は培養する細胞に応じて調整する。細胞の種類としては、1種類であっても良く、2種類以上の複数の細胞を使用しても良い。
 工程(1)では、細胞を分散させた培地を本発明の細胞構造体製造用容器の培養空間へ添加する前に、泡抜きのために本発明の細胞構造体製造用容器の培養空間へ培地のみを添加し、遠心処理を行っても良い。そうすることで、凹部が気泡を抱え込むことを防ぐことができる。
<Step (1)>
Step (1) is a step of adding a medium in which cells are dispersed to the culture space of the cell structure manufacturing container of the present invention.
Step (1) is a step of preparing to culture cells, and for example, the following total number of cells are dispersed in a medium and added to a cell structure manufacturing container.
The lower limit of the total number of cells is, for example, equal to or greater than the number (n) of recesses present in the cell structure manufacturing container.
The upper limit of the total number of cells is, for example, less than or equal to the value obtained by dividing the volume (V) of the recesses in the cell structure manufacturing container by the volume (V) of the cells to be seeded, multiplied by the number of recesses (n). do. When expressed using a mathematical formula using symbols, it can be expressed as the upper limit of the total number of cells=V/v×n. Here, it is assumed that the volumes (V) of the plurality of recesses are the same. If different, use the average value.
Adjust the medium depending on the cells to be cultured. The type of cells may be one type, or two or more types of cells may be used.
In step (1), before adding the culture medium in which cells are dispersed to the culture space of the cell structure production container of the present invention, the culture medium is added to the culture space of the cell structure production container of the present invention in order to remove bubbles. You may also add only 100% of the total amount and perform centrifugation. By doing so, it is possible to prevent the recess from trapping air bubbles.
 細胞を分散させた培地における細胞の濃度としては、特に制限されない。 The concentration of cells in the medium in which the cells are dispersed is not particularly limited.
 細胞とは、動物又は植物を構成する最も基本的な単位であり、その要素として細胞膜の内部に細胞質と各種の細胞小器官をもつものである。この際、DNAを内包する核は、細胞内部に含まれても含まれなくてもよい。例えば、本発明における動物由来の細胞には、精子や卵子などの生殖細胞、生体を構成する体細胞、幹細胞(多能性幹細胞等)、前駆細胞、生体から分離された癌細胞、生体から分離され不死化能を獲得して体外で安定して維持される細胞(細胞株)、生体から分離され人為的に遺伝子改変が成された細胞、生体から分離され人為的に核が交換された細胞等が含まれる。
 生体を構成する体細胞の例としては、以下に限定されるものではないが、線維芽細胞、骨髄細胞、Bリンパ球、Tリンパ球、好中球、赤血球、血小板、マクロファージ、単球、骨細胞、骨髄細胞、周皮細胞、樹状細胞、ケラチノサイト、脂肪細胞、間葉細胞、上皮細胞、表皮細胞、内皮細胞、血管内皮細胞、肝実質細胞、軟骨細胞、卵丘細胞、神経系細胞、グリア細胞、ニューロン、オリゴデンドロサイト、マイクログリア、星状膠細胞、心臓細胞、食道細胞、筋肉細胞(たとえば、平滑筋細胞又は骨格筋細胞)、膵臓ベータ細胞、メラニン細胞、造血前駆細胞(例えば、臍帯血由来のCD34陽性細胞)、及び単核細胞等が含まれる。当該体細胞は、例えば皮膚、腎臓、脾臓、副腎、肝臓、肺、卵巣、膵臓、子宮、胃、結腸、小腸、大腸、膀胱、前立腺、精巣、胸腺、筋肉、結合組織、骨、軟骨、血管組織、血液(臍帯血を含む)、骨髄、心臓、心筋、眼、脳、神経組織、毛髪などの任意の組織から採取される細胞が含まれる。さらに当該体細胞は、幹細胞又は前駆細胞から分化誘導された細胞が含まれる。
A cell is the most basic unit constituting an animal or plant, and its elements include cytoplasm and various organelles inside the cell membrane. At this time, the nucleus containing DNA may or may not be included inside the cell. For example, animal-derived cells in the present invention include reproductive cells such as sperm and eggs, somatic cells constituting a living body, stem cells (pluripotent stem cells, etc.), progenitor cells, cancer cells isolated from a living body, and Cells (cell lines) that have acquired immortality and are stably maintained outside the body, cells that have been isolated from a living body and have undergone artificial genetic modification, and cells that have been isolated from a living body and have had their nuclei artificially exchanged. etc. are included.
Examples of somatic cells constituting a living body include, but are not limited to, fibroblasts, bone marrow cells, B lymphocytes, T lymphocytes, neutrophils, red blood cells, platelets, macrophages, monocytes, and bone cells. cells, bone marrow cells, pericytes, dendritic cells, keratinocytes, adipocytes, mesenchymal cells, epithelial cells, epidermal cells, endothelial cells, vascular endothelial cells, hepatocytes, chondrocytes, cumulus cells, nervous system cells, Glial cells, neurons, oligodendrocytes, microglia, astrocytes, cardiac cells, esophageal cells, muscle cells (e.g. smooth or skeletal muscle cells), pancreatic beta cells, melanocytes, hematopoietic progenitor cells (e.g. CD34-positive cells derived from umbilical cord blood), mononuclear cells, etc. The somatic cells include, for example, skin, kidney, spleen, adrenal gland, liver, lung, ovary, pancreas, uterus, stomach, colon, small intestine, large intestine, bladder, prostate, testis, thymus, muscle, connective tissue, bone, cartilage, blood vessel. Includes cells taken from any tissue, such as tissue, blood (including umbilical cord blood), bone marrow, heart, heart muscle, eye, brain, nervous tissue, hair, etc. Furthermore, the somatic cells include cells induced to differentiate from stem cells or progenitor cells.
 幹細胞とは、自分自身を複製する能力と他の複数系統の細胞に分化する能力を兼ね備えた細胞であり、その例としては、以下に限定されるものではないが、胚性幹細胞(ES細胞)、胚性腫瘍細胞、胚性生殖幹細胞、人工多能性幹細胞(iPS細胞)、神経幹細胞、造血幹細胞、間葉系幹細胞、肝幹細胞、膵幹細胞、筋幹細胞、生殖幹細胞、腸幹細胞、癌幹細胞、毛包幹細胞などが含まれる。多能性幹細胞としては、前記幹細胞のうち、ES細胞、胚性生殖幹細胞、iPS細胞が挙げられる。
 前駆細胞とは、前記幹細胞から特定の体細胞や生殖細胞に分化する途中の段階にある細胞である。
 癌細胞とは、体細胞から派生して無限の増殖能を獲得した細胞である。
 細胞株とは、生体外での人為的な操作により無限の増殖能を獲得した細胞である。
 これらの中でも、線維芽細胞、幹細胞、幹細胞の中でも多能性幹細胞がより好ましい。
Stem cells are cells that have both the ability to replicate themselves and the ability to differentiate into cells of multiple other lineages. Examples include, but are not limited to, embryonic stem cells (ES cells). , embryonic tumor cells, embryonic germ stem cells, induced pluripotent stem cells (iPS cells), neural stem cells, hematopoietic stem cells, mesenchymal stem cells, liver stem cells, pancreatic stem cells, muscle stem cells, germ stem cells, intestinal stem cells, cancer stem cells, Contains hair follicle stem cells. Among the above-mentioned stem cells, examples of pluripotent stem cells include ES cells, embryonic germ stem cells, and iPS cells.
Progenitor cells are cells that are in the process of differentiating from the stem cells into specific somatic cells or reproductive cells.
Cancer cells are cells that are derived from somatic cells and have acquired unlimited proliferation potential.
A cell line is a cell that has acquired unlimited proliferation ability through artificial manipulation outside the body.
Among these, fibroblasts, stem cells, and pluripotent stem cells are more preferred.
 培地としては、使用する細胞の種類等により適宜選択することが可能であり、例えば、哺乳類の細胞の培養を目的とする場合、哺乳類細胞の培養に一般的に使用される培地を、培地として使用することができる。
 哺乳類細胞用の培地としては、例えば、ダルベッコ改変イーグル培地(Dulbecco’s Modified Eagle’s Medium;DMEM)、ハムF12培地(Ham’s Nutrient Mixture F12)、DMEM/F12培地、マッコイ5A培地(McCoy’s 5A medium)、イーグルMEM培地(Eagle’s Minimum Essential Medium;EMEM)、αMEM培地(alpha Modified Eagle’s Minimum Essential Medium;αMEM)、MEM培地(Minimum Essential Medium)、RPMI1640培地、イスコフ改変ダルベッコ培地(Iscove’s Modified Dulbecco’s Medium;IMDM)、MCDB131培地、ウィリアム培地E、IPL41培地、Fischer’s培地、StemPro34(インビトロジェン社製)、X-VIVO 10(ケンブレックス社製)、X-VIVO 15(ケンブレックス社製)、HPGM(ケンブレックス社製)、StemSpan H3000(ステムセルテクノロジー社製)、StemSpanSFEM(ステムセルテクノロジー社製)、StemlineII(シグマアルドリッチ社製)、QBSF-60(クオリティバイオロジカル社製)、StemProhESCSFM(インビトロジェン社製)、mTeSR1或いは2培地(ステムセルテクノロジー社製)、Sf-900II(インビトロジェン社製)、Opti-Pro(インビトロジェン社製)、HuMedia-KG2(倉敷紡績社製)などが挙げられる。
The medium can be selected as appropriate depending on the type of cells to be used. For example, if the purpose is to culture mammalian cells, a medium commonly used for culturing mammalian cells can be used as the medium. can do.
Examples of media for mammalian cells include Dulbecco's Modified Eagle's Medium (DMEM), Ham's Nutrient Mixture F12, DMEM/F12 medium, and McCoy's 5A medium. s 5A medium), Eagle's Minimum Essential Medium; EMEM, αMEM medium (alpha Modified Eagle's Minimum Essential Medium; αMEM), MEM Medium (Minimum Essential Medium), RPMI1640 medium, Iscove's modified Dulbecco medium ( Iscove's Modified Dulbecco's Medium; IMDM), MCDB131 medium, William medium E, IPL41 medium, Fischer's medium, StemPro34 (Invitrogen), X-VIVO 10 (Cambrex), X-VIVO 15 ( HPGM (manufactured by Cambrex), StemSpan H3000 (manufactured by Stem Cell Technology), StemSpanSFEM (manufactured by Stem Cell Technology), Stemline II (manufactured by Sigma-Aldrich), QBSF-60 (manufactured by Quality Biological), Examples include StemProhESCSFM (manufactured by Invitrogen), mTeSR1 or 2 medium (manufactured by Stem Cell Technology), Sf-900II (manufactured by Invitrogen), Opti-Pro (manufactured by Invitrogen), HuMedia-KG2 (manufactured by Kurashiki Boseki), and the like.
 上記の培地には、ナトリウム、カリウム、カルシウム、マグネシウム、リン、塩素、各種アミノ酸、各種ビタミン、抗生物質、血清、脂肪酸、糖などを当業者は目的に応じて自由に添加してもよい。哺乳類細胞の培養の際には、当業者は目的に応じてその他の化学成分あるいは生体成分を一種類以上組み合わせて添加することもできる。 Those skilled in the art may freely add sodium, potassium, calcium, magnesium, phosphorus, chlorine, various amino acids, various vitamins, antibiotics, serum, fatty acids, sugar, etc. to the above medium according to the purpose. When culturing mammalian cells, those skilled in the art can also add one or more combinations of other chemical components or biological components depending on the purpose.
 哺乳類細胞用の培地に添加され得る成分としては、ウシ胎児血清、ヒト血清、ウマ血清、インシュリン、トランスフェリン、ラクトフェリン、コレステロール、エタノールアミン、亜セレン酸ナトリウム、モノチオグリセロール、2-メルカプトエタノール、ウシ血清アルブミン、ピルビン酸ナトリウム、ポリエチレングリコール、各種ビタミン、各種アミノ酸、寒天、アガロース、コラーゲン、メチルセルロース、各種サイトカイン、各種ホルモン、各種増殖因子、各種細胞外マトリックスや各種細胞接着分子などが挙げられる。 Components that can be added to media for mammalian cells include fetal bovine serum, human serum, horse serum, insulin, transferrin, lactoferrin, cholesterol, ethanolamine, sodium selenite, monothioglycerol, 2-mercaptoethanol, bovine serum. Examples include albumin, sodium pyruvate, polyethylene glycol, various vitamins, various amino acids, agar, agarose, collagen, methylcellulose, various cytokines, various hormones, various growth factors, various extracellular matrices, and various cell adhesion molecules.
 培地に添加され得るサイトカインとしては、例えばインターロイキン-1(IL-1)、インターロイキン-2(IL-2)、インターロイキン-3(IL-3)、インターロイキン-4(IL-4)、インターロイキン-5(IL-5)、インターロイキン-6(IL-6)、インターロイキン-7(IL-7)、インターロイキン-8(IL-8)、インターロイキン-9(IL-9)、インターロイキン-10(IL-10)、インターロイキン-11(IL-11)、インターロイキン-12(IL-12)、インターロイキン-13(IL-13)、インターロイキン-14(IL-14)、インターロイキン-15(IL-15)、インターロイキン-18(IL-18)、インターロイキン-21(IL-21)、インターフェロン-α(IFN-α)、インターフェロン-β(IFN-β)、インターフェロン-γ(IFN-γ)、顆粒球コロニー刺激因子(G-CSF)、単球コロニー刺激因子(M-CSF)、顆粒球-マクロファージコロニー刺激因子(GM-CSF)、幹細胞因子(SCF)、flk2/flt3リガンド(FL)、白血病細胞阻害因子(LIF)、オンコスタチンM(OM)、エリスロポエチン(EPO)、トロンボポエチン(TPO)などが挙げられるが、これらに限られるわけではない。 Examples of cytokines that can be added to the medium include interleukin-1 (IL-1), interleukin-2 (IL-2), interleukin-3 (IL-3), interleukin-4 (IL-4), Interleukin-5 (IL-5), interleukin-6 (IL-6), interleukin-7 (IL-7), interleukin-8 (IL-8), interleukin-9 (IL-9), Interleukin-10 (IL-10), interleukin-11 (IL-11), interleukin-12 (IL-12), interleukin-13 (IL-13), interleukin-14 (IL-14), Interleukin-15 (IL-15), interleukin-18 (IL-18), interleukin-21 (IL-21), interferon-α (IFN-α), interferon-β (IFN-β), interferon- γ (IFN-γ), granulocyte colony stimulating factor (G-CSF), monocyte colony stimulating factor (M-CSF), granulocyte-macrophage colony stimulating factor (GM-CSF), stem cell factor (SCF), flk2/ Examples include, but are not limited to, flt3 ligand (FL), leukemia cell inhibitory factor (LIF), oncostatin M (OM), erythropoietin (EPO), thrombopoietin (TPO), and the like.
 培地に添加され得るホルモンとしては、メラトニン、セロトニン、チロキシン、トリヨードチロニン、エピネフリン、ノルエピネフリン、ドーパミン、抗ミュラー管ホルモン、アディポネクチン、副腎皮質刺激ホルモン、アンギオテンシノゲン及びアンギオテンシン、抗利尿ホルモン、心房ナトリウム利尿性ペプチド、カルシトニン、コレシストキニン、コルチコトロピン放出ホルモン、エリスロポエチン、卵胞刺激ホルモン、ガストリン、グレリン、グルカゴン、ゴナドトロピン放出ホルモン、成長ホルモン放出ホルモン、ヒト絨毛性ゴナドトロピン、ヒト胎盤性ラクトーゲン、成長ホルモン、インヒビン、インスリン、インスリン様成長因子、レプチン、黄体形成ホルモン、メラニン細胞刺激ホルモン、オキシトシン、副甲状腺ホルモン、プロラクチン、セクレチン、ソマトスタチン、トロンボポイエチン、甲状腺刺激ホルモン、チロトロピン放出ホルモン、コルチゾール、アルドステロン、テストステロン、デヒドロエピアンドロステロン、アンドロステンジオン、ジヒドロテストステロン、エストラジオール、エストロン、エストリオール、プロゲステロン、カルシトリオール、カルシジオール、プロスタグランジン、ロイコトリエン、プロスタサイクリン、トロンボキサン、プロラクチン放出ホルモン、リポトロピン、脳ナトリウム利尿ペプチド、神経ペプチドY、ヒスタミン、エンドセリン、膵臓ポリペプチド、レニン、及びエンケファリンが挙げられるが、これらに限られるわけではない。 Hormones that may be added to the medium include melatonin, serotonin, thyroxine, triiodothyronine, epinephrine, norepinephrine, dopamine, anti-Mullerian hormone, adiponectin, adrenocorticotropic hormone, angiotensinogen and angiotensin, antidiuretic hormone, atrial Natriuretic peptide, calcitonin, cholecystokinin, corticotropin-releasing hormone, erythropoietin, follicle-stimulating hormone, gastrin, ghrelin, glucagon, gonadotropin-releasing hormone, growth hormone-releasing hormone, human chorionic gonadotropin, human placental lactogen, growth hormone, inhibin , insulin, insulin-like growth factor, leptin, luteinizing hormone, melanocyte-stimulating hormone, oxytocin, parathyroid hormone, prolactin, secretin, somatostatin, thrombopoietin, thyroid-stimulating hormone, thyrotropin-releasing hormone, cortisol, aldosterone, testosterone, dehydro Epiandrosterone, androstenedione, dihydrotestosterone, estradiol, estrone, estriol, progesterone, calcitriol, calcidiol, prostaglandins, leukotrienes, prostacyclin, thromboxane, prolactin-releasing hormone, lipotropin, brain natriuretic peptide, nerve These include, but are not limited to, peptide Y, histamine, endothelin, pancreatic polypeptide, renin, and enkephalin.
 培地に添加され得る増殖因子としては、トランスフォーミング成長因子-α(TGF-α)、トランスフォーミング成長因子-β(TGF-β)、マクロファージ炎症蛋白質-1α(MIP-1α)、上皮細胞増殖因子(EGF)、繊維芽細胞増殖因子-1、2、3、4、5、6、7、8、又は9(FGF-1、2、3、4、5、6、7、8、9)、神経細胞増殖因子(NGF)、肝細胞増殖因子(HGF)、白血病阻止因子(LIF)、プロテアーゼネキシンI、プロテアーゼネキシンII、血小板由来成長因子(PDGF)、コリン作動性分化因子(CDF)、ケモカイン、Notchリガンド(Delta1など)、Wnt蛋白質、アンジオポエチン様蛋白質2、3、5または7(Angpt2、3、5、7)、インスリン様成長因子(IGF)、インスリン様成長因子結合蛋白質(IGFBP)、プレイオトロフィン(Pleiotrophin)などが挙げられるが、これらに限られるわけではない。 Growth factors that can be added to the medium include transforming growth factor-α (TGF-α), transforming growth factor-β (TGF-β), macrophage inflammatory protein-1α (MIP-1α), epidermal growth factor ( EGF), fibroblast growth factor-1, 2, 3, 4, 5, 6, 7, 8, or 9 (FGF-1, 2, 3, 4, 5, 6, 7, 8, 9), nerve Cell growth factor (NGF), hepatocyte growth factor (HGF), leukemia inhibitory factor (LIF), protease nexin I, protease nexin II, platelet-derived growth factor (PDGF), cholinergic differentiation factor (CDF), chemokine , Notch ligand (such as Delta1), Wnt protein, angiopoietin-like protein 2, 3, 5 or 7 (Angpt2, 3, 5, 7), insulin-like growth factor (IGF), insulin-like growth factor binding protein (IGFBP), play Examples include, but are not limited to, otrophin (Pleiotrophin) and the like.
 また、遺伝子組換え技術によりこれらのサイトカインや増殖因子のアミノ酸配列を人為的に改変させたものも添加させることもできる。その例としては、IL-6/可溶性IL-6受容体複合体あるいはHyper IL-6(IL-6と可溶性IL-6受容体との融合タンパク質)などが挙げられる。 It is also possible to add those cytokines and growth factors whose amino acid sequences have been artificially modified using genetic recombination technology. Examples include IL-6/soluble IL-6 receptor complex or Hyper IL-6 (a fusion protein of IL-6 and soluble IL-6 receptor).
 各種細胞外マトリックスや各種細胞接着分子の例としては、コラーゲンI乃至XIX、フィブロネクチン、ラミニン-1乃至12、ニトジェン、テネイシン、トロンボスポンジン、フォンビルブランド(von Willebrand)因子、オステオポンチン、フィブリノーゲン、各種エラスチン、各種プロテオグリカン、各種カドヘリン、デスモコリン、デスモグレイン、各種インテグリン、E-セレクチン、P-セレクチン、L-セレクチン、免疫グロブリンスーパーファミリー、マトリゲル、ポリ-D-リジン、ポリ-L-リジン、キチン、キトサン、セファロース、ヒアルロン酸、アルギン酸ゲル、各種ハイドロゲル、さらにこれらの切断断片などが挙げられる。 Examples of various extracellular matrices and various cell adhesion molecules include collagens I to XIX, fibronectin, laminin-1 to 12, nitogen, tenascin, thrombospondin, von Willebrand factor, osteopontin, fibrinogen, and various elastins. , various proteoglycans, various cadherins, desmocollins, desmogleins, various integrins, E-selectin, P-selectin, L-selectin, immunoglobulin superfamily, Matrigel, poly-D-lysine, poly-L-lysine, chitin, chitosan, Examples include sepharose, hyaluronic acid, alginate gel, various hydrogels, and cut fragments thereof.
 培地に添加され得る抗生物質の例としては、サルファ製剤、ペニシリン、フェネチシリン、メチシリン、オキサシリン、クロキサシリン、ジクロキサシリン、フルクロキサシリン、ナフシリン、アンピシリン、ペニシリン、アモキシシリン、シクラシリン、カルベニシリン、チカルシリン、ピペラシリン、アズロシリン、メクズロシリン、メシリナム、アンジノシリン、セファロスポリン及びその誘導体、オキソリン酸、アミフロキサシン、テマフロキサシン、ナリジクス酸、ピロミド酸、シプロフロキサン、シノキサシン、ノルフロキサシン、パーフロキサシン、ロザキサシン、オフロキサシン、エノキサシン、ピペミ
ド酸、スルバクタム、クラブリン酸、β-ブロモペニシラン酸、β-クロロペニシラン酸、6-アセチルメチレン-ペニシラン酸、セフォキサゾール、スルタンピシリン、アディノシリン及びスルバクタムのホルムアルデヒド・フードラートエステル、タゾバクタム、アズトレオナム、スルファゼチン、イソスルファゼチン、ノカルディシン、フェニルアセトアミドホスホン酸メチル、クロルテトラサイクリン、オキシテトラサイクリン、テトラサイクリン、デメクロサイクリン、ドキシサイクリン、メタサイクリン、並びにミノサイクリンが挙げられる。
Examples of antibiotics that may be added to the medium include sulfa preparations, penicillin, pheneticillin, methicillin, oxacillin, cloxacillin, dicloxacillin, flucloxacillin, nafcillin, ampicillin, penicillin, amoxicillin, cyclacillin, carbenicillin, ticarcillin, piperacillin, azlocillin, Mecdulocilin, mecillinam, andinocillin, cephalosporins and their derivatives, oxolinic acid, amifloxacin, temafloxacin, nalidixic acid, pyromidic acid, ciprofloxan, cinoxacin, norfloxacin, perfloxacin, rosaxacin, ofloxacin, enoxacin, pipemidic acid, sulbactam, clavuric acid , β-bromopenicillanic acid, β-chloropenicillanic acid, 6-acetylmethylene-penicillanic acid, cefoxazole, sultanepicillin, adinocillin and formaldehyde foodrate ester of sulbactam, tazobactam, aztreonam, sulfazetin, isosulfazetin, nocardicin , methyl phenylacetamidophosphonate, chlortetracycline, oxytetracycline, tetracycline, demeclocycline, doxycycline, methacycline, and minocycline.
 尚、上述した通り、培地には血清および/または血清代替物を添加してもよい。
 培地に添加する血清の濃度は、細胞の種類、培養条件、培養目的等により適宜設定すればよいが、一態様としては、培地中の血清(及び/又は血清代替物)の濃度は、15重量%以下、10重量%以下、9重量%以下、8重量%以下、7重量%以下、6重量%以下、5重量%以下、4重量%以下、3重量%以下、2重量%以下、1重量%以下、0.9重量%以下、0.8重量%以下、0.7重量%以下、0.6重量%以下、0.5重量%以下、0.4重量%以下、または0.3重量%以下とすることができる。尚、血清の濃度は、培養期間中、一定の濃度としてもよく、必要に応じて、培地交換時等に濃度を増減させてもよい。
Note that, as described above, serum and/or a serum substitute may be added to the medium.
The concentration of serum added to the medium may be appropriately set depending on the cell type, culture conditions, culture purpose, etc., but in one embodiment, the concentration of serum (and/or serum substitute) in the medium is 15% by weight. % or less, 10% by weight or less, 9% by weight or less, 8% by weight or less, 7% by weight or less, 6% by weight or less, 5% by weight or less, 4% by weight or less, 3% by weight or less, 2% by weight or less, 1% by weight % or less, 0.9% by weight or less, 0.8% by weight or less, 0.7% by weight or less, 0.6% by weight or less, 0.5% by weight or less, 0.4% by weight or less, or 0.3% by weight % or less. Incidentally, the concentration of serum may be kept constant during the culture period, or may be increased or decreased when changing the medium, as necessary.
<工程(2)>
 工程(2)は、培養空間内の細胞を培養して細胞構造体を形成する工程である。
 工程(2)においては、例えば、細胞構造体製造用容器の培養空間内で12時間以上、細胞を培養し、細胞構造体を形成させる。
 細胞構造体製造用容器の培養空間内へ培地を添加すると、培地に分散させた細胞は、凹部へ取り込まれ、各凹部で培養される。各凹部に細胞が一定個数取り込まれることが好ましく、凹部の底部が形成する空間に1個の細胞構造体が形成されることが好ましい。細胞構造体を高密度に培養するためには、全ての凹部に細胞構造体が形成されることが好ましいことから、最低1個の細胞が各凹部に存在することが好ましい。生産効率の観点から、初期の細胞数はできる限り少なくする一方で多くの細胞構造体を回収できることが好ましいため、各凹部に存在する細胞数は少ないほどよい。そのため、1個以上の細胞が各凹部に存在することが好ましい。
<Step (2)>
Step (2) is a step of culturing cells in the culture space to form a cell structure.
In step (2), for example, cells are cultured for 12 hours or more in a culture space of a cell structure production container to form a cell structure.
When a medium is added to the culture space of the cell structure manufacturing container, the cells dispersed in the medium are taken into the recesses and cultured in each recess. It is preferable that a certain number of cells be taken into each recess, and it is preferable that one cell structure be formed in the space formed by the bottom of the recess. In order to culture cell structures at high density, it is preferable that cell structures be formed in all the recesses, so it is preferable that at least one cell exists in each recess. From the viewpoint of production efficiency, it is preferable to reduce the initial number of cells as much as possible while still being able to recover as many cell structures as possible, so the smaller the number of cells present in each recess, the better. Therefore, it is preferred that one or more cells exist in each recess.
<工程(3)>
 工程(3)は、培養空間内の培地を交換する工程である。
 培地の交換では、細胞構造体製造用容器の培養空間内の培地を、一定量吸引した後、同量の新鮮な培地を注入する。培地の交換は、細胞培養中少なくとも1回以上実施されることが好ましい。
 一定量としては、例えば、培地の20質量%~80質量%であってもよいし、20質量%~50質量%であってもよい。
 培地としては、工程(1)において例示した培地が挙げられる。
<Step (3)>
Step (3) is a step of exchanging the medium in the culture space.
In exchanging the medium, a certain amount of the medium in the culture space of the cell structure manufacturing container is sucked out, and then the same amount of fresh medium is injected. The medium is preferably replaced at least once during cell culture.
The fixed amount may be, for example, 20% to 80% by mass of the medium, or 20% to 50% by mass.
Examples of the medium include the medium exemplified in step (1).
<工程(4)>
 工程(4)は培養空間内の細胞構造体を成熟させる工程である。
 工程(4)においては、工程(2)~(3)の工程を複数回行い、細胞構造体を成熟させる。「成熟」とは、例えば、所望の大きさまで細胞構造体を大きくさせること、オルガノイドの構造形成、又は分化誘導により目的組織へ誘導させることを意味する。
 分化誘導させる場合は、凹部の底部が形成する空間において、細胞構造体を形成後、分化誘導培地に交換して分化させることが好ましい。
<Step (4)>
Step (4) is a step of maturing the cell structure within the culture space.
In step (4), steps (2) to (3) are performed multiple times to mature the cell structure. "Maturation" means, for example, increasing the size of a cell structure to a desired size, forming an organoid structure, or guiding it to a target tissue by inducing differentiation.
In the case of inducing differentiation, it is preferable to form a cell structure in the space formed by the bottom of the recess and then exchange the culture medium with a differentiation-inducing medium for differentiation.
<工程(5)>
 工程(5)は、細胞構造体を培地の中に浮遊させる工程である。
 工程(5)においては、例えば、細胞構造体を所望の大きさに成長させた後、培養空間内の培地を撹拌して各凹部内で培養した細胞構造体を培地中に浮遊させる。例えば、培地を撹拌することによって実施する。具体的には、培地の撹拌は、(i)細胞構造体製造用容器を振とうして培地を撹拌すること、(ii)培地を培養空間から吸引及び排出(ピペッティング操作)して培地を撹拌すること、(iii)培養空間内に撹拌羽根を設置し培地を撹拌すること、(iv)培養空間内に撹拌子を入れて培地を撹拌することなどが挙げられる。これらは2つ以上を組み合わせてもよい。
<Step (5)>
Step (5) is a step of suspending the cell structure in a medium.
In step (5), for example, after growing the cell structures to a desired size, the medium in the culture space is stirred to suspend the cell structures cultured in each recess in the medium. For example, it is carried out by stirring the medium. Specifically, agitation of the medium involves (i) shaking the cell structure production container to agitate the medium, and (ii) aspirating and discharging the medium from the culture space (pipetting operation) to remove the medium. (iii) placing a stirring blade in the culture space to stir the medium; and (iv) placing a stirring bar in the culture space to stir the medium. Two or more of these may be combined.
<工程(6)>
 工程(6)は、細胞構造体を回収する工程である。
 工程(6)においては、例えば、細胞構造体製造用容器の培養空間内の細胞構造体が浮遊した培地を吸引機にて吸い取り、培地に浮遊させた細胞構造体を回収する。
<Step (6)>
Step (6) is a step of collecting the cell structure.
In step (6), for example, the medium in which the cell structures are floating in the culture space of the cell structure production container is sucked up using a suction machine, and the cell structures suspended in the medium are recovered.
 以下、合成例、実施例、試験例等に基づいて、本発明をさらに詳細に説明するが本発明はこれらに限定されない。 Hereinafter, the present invention will be explained in more detail based on Synthesis Examples, Examples, Test Examples, etc., but the present invention is not limited thereto.
<重量平均分子量の測定方法>
 下記合成例に示す共重合体の重量平均分子量はGel Filtration Chromatography(以下、GFCと略称する)による測定結果である。測定条件等は次のとおりである。
(GFC測定条件)
 ・装置:Prominence(島津製作所製)
 ・GFCカラム:TSKgel GMPWXL(7.8mmI.D.×30cm)×2~3本
 ・流速:1.0ml/min
 ・溶離液:イオン性物質含有水溶液、もしくは、エタノールの混合溶液
 ・カラム温度:40℃
 ・検出器:RI
 ・注入濃度:ポリマー固形分0.05~0.5質量%
 ・注入量:100μL
 ・検量線:三次近似曲線
 ・標準試料:ポリエチレンオキサイド(Agilent社製)×10種
<Method for measuring weight average molecular weight>
The weight average molecular weight of the copolymer shown in the following synthesis example is the result of measurement by Gel Filtration Chromatography (hereinafter abbreviated as GFC). The measurement conditions are as follows.
(GFC measurement conditions)
・Device: Prominence (manufactured by Shimadzu Corporation)
・GFC column: TSKgel GMPWXL (7.8mm I.D. x 30cm) x 2-3 ・Flow rate: 1.0ml/min
・Eluent: Aqueous solution containing ionic substances or mixed solution of ethanol ・Column temperature: 40℃
・Detector: RI
・Injection concentration: Polymer solid content 0.05-0.5% by mass
・Injection volume: 100μL
・Calibration curve: Cubic approximation curve ・Standard sample: Polyethylene oxide (manufactured by Agilent) x 10 types
<合成例1>
 ホスマーM(製品名、ユニケミカル(株)製、乾固法100℃・1時間における不揮発分:91.8質量%)を用いた。
 ホスマーMは、アシッドホスホオキシエチルメタクリレート(44.2質量%)、リン酸ビス[2-(メタクリロイルオキシ)エチル](28.6質量%)、及びその他の物質(27.2質量%)の混合物である。
 ホスマーM5.00gをエタノール7.97gと純水23.92gに加え撹拌して溶解し、20℃以下に保ちながらメタクリル酸2-(ジメチルアミノ)エチル(東京化成工業(株)製)3.82g、及び2,2’-アゾビス(N-(2-カルボキシエチル)-2-メチルプロピオンアミジン)n-水和物(製品名;VA-057、和光純薬工業(株)製)0.04gを、20℃以下に保ちながら順に加えた。十分に撹拌して均一となった上記全てのものが入った混合液を、滴下ロートに導入した。一方で、別途純水47.84gを冷却管付きの3つ口フラスコに入れ、これを窒素フローし、撹拌しながらリフラックス温度まで昇温した。この状態を維持しつつ、上記混合液を導入した滴下ロートを3つ口フラスコにセットし、1時間かけて混合液を沸騰液内に滴下した。滴下後、24時間上記環境を維持した状態で加熱撹拌することで固形分約9.70質量%の共重合体含有ワニス88.60gを得た。得られた透明液体のGFCにおける重量平均分子量は約280,000であった。
<Synthesis example 1>
Phosmer M (product name, manufactured by Unichemical Co., Ltd., nonvolatile content in drying method at 100° C. for 1 hour: 91.8% by mass) was used.
Phosmer M is a mixture of acid phosphooxyethyl methacrylate (44.2% by mass), bis[2-(methacryloyloxy)ethyl] phosphate (28.6% by mass), and other substances (27.2% by mass). It is.
Add 5.00 g of Phosmer M to 7.97 g of ethanol and 23.92 g of pure water, stir and dissolve, and add 3.82 g of 2-(dimethylamino)ethyl methacrylate (manufactured by Tokyo Kasei Kogyo Co., Ltd.) while keeping the temperature below 20°C. , and 0.04 g of 2,2'-azobis(N-(2-carboxyethyl)-2-methylpropionamidine) n-hydrate (product name: VA-057, manufactured by Wako Pure Chemical Industries, Ltd.) , were added in order while keeping the temperature below 20°C. A mixed solution containing all of the above materials, which had been sufficiently stirred to become homogeneous, was introduced into the dropping funnel. On the other hand, 47.84 g of pure water was separately placed in a three-necked flask equipped with a cooling tube, nitrogen was flowed into the flask, and the temperature was raised to the reflux temperature while stirring. While maintaining this state, the dropping funnel into which the mixture had been introduced was set in a three-necked flask, and the mixture was dropped into the boiling liquid over a period of 1 hour. After the dropwise addition, 88.60 g of a copolymer-containing varnish with a solid content of about 9.70% by mass was obtained by heating and stirring while maintaining the above environment for 24 hours. The weight average molecular weight of the resulting transparent liquid measured by GFC was approximately 280,000.
<合成例2>
 アシッドホスホオキシポリプロピレングリコールモノメタクリレート(プロピレンオキサイドの平均付加モル数5)(製品名:PPM-5P、東邦化学工業(株)製、絶対質量%(純度)97.3質量%)7.5g、ポリエチレングリコールジメタクリレート(ポリエチレングリコールの平均付加モル数4)(製品名:ブレンマー(登録商標)PDE-200、日油(株)製)2.0g(共重合体全体に対する質量%:21.2質量%)、メタクリル酸2-(ジメチルアミノ)エチル(三菱瓦斯化学(株)製)1.9g、及びジメチル-1,1’-アゾビス(1-シクロヘキサンカルボキシレート)(製品名:VE-073、富士フイルム和光純薬(株)製)58mgにイオン交換水31.1gとエタノール(関東化学(株)製)20.8gを加えて均一に撹拌することで混合液を調製した。一方で、別途イオン交換水31.2gとエタノール(関東化学(株)製)20.8gを冷却管付きの3つ口フラスコに加えて、撹拌しながらリフラックス温度まで昇温した。この状態を維持しつつ、上記混合液をテフロン(登録商標)チューブで介した滴下ポンプにて、1時間かけて3つ口フラスコ内のイオン交換水及びエタノールの沸騰液内に滴下した。滴下後、23時間上記環境を維持した状態で加熱撹拌した。反応終了後に冷却することで固形分約10.63質量%の共重合体含有ワニスを得た。得られた液体のGFCにおける重量平均分子量は約300,000であった。
<Synthesis example 2>
Acid phosphooxypolypropylene glycol monomethacrylate (average number of moles of propylene oxide added 5) (product name: PPM-5P, manufactured by Toho Chemical Industry Co., Ltd., absolute mass % (purity) 97.3 mass %) 7.5 g, polyethylene Glycol dimethacrylate (average number of moles added of polyethylene glycol: 4) (Product name: Bremmer (registered trademark) PDE-200, manufactured by NOF Corporation) 2.0 g (% by mass based on the entire copolymer: 21.2% by mass) ), 2-(dimethylamino)ethyl methacrylate (manufactured by Mitsubishi Gas Chemical Co., Ltd.) 1.9 g, and dimethyl-1,1'-azobis(1-cyclohexanecarboxylate) (product name: VE-073, Fujifilm) A mixed solution was prepared by adding 31.1 g of ion-exchanged water and 20.8 g of ethanol (manufactured by Kanto Chemical Co., Ltd.) to 58 mg (manufactured by Wako Pure Chemical Industries, Ltd.) and stirring uniformly. Separately, 31.2 g of ion-exchanged water and 20.8 g of ethanol (manufactured by Kanto Kagaku Co., Ltd.) were added to a three-necked flask equipped with a cooling tube, and the temperature was raised to the reflux temperature while stirring. While maintaining this state, the above mixture was dripped into a boiling liquid of ion-exchanged water and ethanol in a three-necked flask over a period of 1 hour using a dripping pump via a Teflon (registered trademark) tube. After the dropwise addition, the mixture was heated and stirred while maintaining the above environment for 23 hours. After the reaction was completed, the mixture was cooled to obtain a copolymer-containing varnish with a solid content of about 10.63% by mass. The weight average molecular weight of the obtained liquid according to GFC was about 300,000.
<調製例1>
 上記合成例1で得られた共重合体含有ワニス5.00gに、純水56.39g、エタノール28.50g、及び1mol/L水酸化ナトリウム水溶液(1N)(関東化学(株)社製)0.85gを加えて十分に撹拌し、コーティング剤を調製した。pHは7.5であった。得られたコーティング剤中に、シリコンウェハに1500rpmで60秒でスピンコートし、オーブンにて50℃、24時間乾燥させた。その後、PBS(リン酸緩衝生理食塩水)と純水で十分に洗浄を行って、コーティング膜が形成されたシリコンウェハを得た。光学式干渉膜厚計でシリコンウェハのコーティング膜の膜厚を確認したところ55Åであった。
<Preparation example 1>
To 5.00 g of the copolymer-containing varnish obtained in Synthesis Example 1 above, 56.39 g of pure water, 28.50 g of ethanol, and 1 mol/L aqueous sodium hydroxide solution (1N) (manufactured by Kanto Kagaku Co., Ltd.) A coating agent was prepared by adding .85 g and stirring thoroughly. pH was 7.5. The resulting coating agent was spin-coated onto a silicon wafer at 1500 rpm for 60 seconds, and dried in an oven at 50° C. for 24 hours. Thereafter, it was thoroughly washed with PBS (phosphate buffered saline) and pure water to obtain a silicon wafer on which a coating film was formed. When the thickness of the coating film on the silicon wafer was confirmed using an optical interference film thickness meter, it was 55 Å.
<調製例2>
 上記合成例2で得られた共重合体含有ワニス1.00gに、純水1.28g、エタノール9.12g、1N塩酸(関東化学(株)製)0.43gを加えて十分に撹拌し、コーティング剤を調製した。pHは3.5であった。得られたコーティング剤を1500rpm/60secでHMDS処理済シリコンウェハにスピンコートし、乾燥工程として50℃のオーブンで24時間乾燥した。その後、PBSで十分に洗浄を行った後50℃のオーブンで1時間乾燥し、HMDS処理済シリコンウェハ上にコーティング膜を得た。
<Preparation example 2>
To 1.00 g of the copolymer-containing varnish obtained in Synthesis Example 2 above, 1.28 g of pure water, 9.12 g of ethanol, and 0.43 g of 1N hydrochloric acid (manufactured by Kanto Kagaku Co., Ltd.) were added and thoroughly stirred. A coating agent was prepared. pH was 3.5. The obtained coating agent was spin-coated on an HMDS-treated silicon wafer at 1500 rpm/60 sec, and dried in an oven at 50° C. for 24 hours as a drying step. Thereafter, it was thoroughly washed with PBS and then dried in an oven at 50° C. for 1 hour to obtain a coating film on the HMDS-treated silicon wafer.
<調製例3>
 ポリ酢酸ビニル(日本酢ビ・ポバール(株)製 JMR-150L(登録商標)(重合度1480、けん化度22.7%))をエタノール/1-メトキシ-2-プロパノール(7/3質量比)で10mg/gの濃度となるように溶解させ、コーティング剤を調製した。得られた組成物は透明かつ均一であった。
<Preparation example 3>
Polyvinyl acetate (JMR-150L (registered trademark) manufactured by Japan Vinyl & Poval Co., Ltd. (degree of polymerization 1480, degree of saponification 22.7%)) was mixed with ethanol/1-methoxy-2-propanol (7/3 mass ratio). A coating agent was prepared by dissolving the solution at a concentration of 10 mg/g. The resulting composition was transparent and uniform.
<実施例1>
 SYLGARD 184シリコーン・エラストマー(ダウコーニング社製)の主剤10.00gと硬化剤1.00gの比率で混合・撹拌し、金型に流し込んだ。
 減圧ポンプで泡抜きをおこなったあと100℃で1時間オーブンにて乾燥した。室温まで冷却してから金型からポリジメチルシロキサン(PDMS)の硬化物を取り出した。純水の中に硬化物を浸漬させ、120℃で15分間オートクレーブ滅菌処理を行った。
 使用した金型は、図1、図2、図3A、図3B、及び図5に示す細胞構造体製造用容器が一体成形により作製可能な金型であり、作製された細胞構造体製造用容器の特徴は以下の通りである。符号は、上記図の符号と対応している。
 ・図1に示すように、細胞構造体製造用容器の外形は上面及び下面を円形とする円筒状であり、円の直径は15mm、高さは11.5mmである。
 ・培養空間4を形成する外周壁2の厚みは、上面付近において4mmである。
 ・図2に示すように、外周壁2によって囲まれた培養空間4には、複数の凹部10と、複数の凹部10を区画する区画壁11とが形成されている。細胞構造体製造用容器の凹部10の数は、19個である。
 ・また、図2に示すように、複数の凹部10は、ハニカム配置をしている。
 ・図3Aの断面図からは、5つの凹部10と、それらを区画する区画壁11と、最外部に区画壁11よりも高い外周壁2とが確認できる。外周壁2は、区画壁11よりも約8mm高い。
 ・図3Aにおいて、区画壁11の頂部11a(言い換えれば、隣接する2つの凹部10のそれぞれの中心線を含む断面における区画壁11の頂部11a)の形状は、円弧状である。
 ・凹部10の深さ(d)は、2.0mmである。
 ・凹部10の相当直径(r)は、1.0mmである。
 ・隣接する2つの凹部10を区画する区画壁11の幅(w)は、0.3mmである。
 ・図3Bに示すように、底部10b及び開口部10dを除いた凹部10の中央部10eの形状は、円筒状(非テーパー形状)である。中央部10eの凹部の深さ方向の長さ(l)は、1.5mmである。
 ・図2、及び図5に示すように、開口部の中心点を結ぶと正三角形を形成するように配置された互いに隣接する3つの凹部10に囲まれた区画壁11における正三角形の中心に相当する頂点箇所11bは、区画壁11において最も高い。
 なお、作製された細胞構造体製造用容器における凹部の深さは、凹部の深さ方向の中心における凹部の相当直径の2.0倍である。
<Example 1>
SYLGARD 184 silicone elastomer (manufactured by Dow Corning) was mixed and stirred at a ratio of 10.00 g of main ingredient and 1.00 g of curing agent, and poured into a mold.
After removing bubbles using a vacuum pump, it was dried in an oven at 100°C for 1 hour. After cooling to room temperature, the cured product of polydimethylsiloxane (PDMS) was taken out from the mold. The cured product was immersed in pure water and sterilized in an autoclave at 120° C. for 15 minutes.
The mold used is a mold that allows the containers for cell structure production shown in FIGS. 1, 2, 3A, 3B, and 5 to be produced by integral molding, and the produced container for cell structure production The characteristics are as follows. The symbols correspond to those in the above figure.
- As shown in FIG. 1, the outer shape of the cell structure manufacturing container is cylindrical with circular upper and lower surfaces, the diameter of the circle is 15 mm, and the height is 11.5 mm.
- The thickness of the outer peripheral wall 2 forming the culture space 4 is 4 mm near the top surface.
- As shown in FIG. 2, a plurality of recesses 10 and a partition wall 11 that partitions the plurality of recesses 10 are formed in the culture space 4 surrounded by the outer peripheral wall 2. The number of recesses 10 in the cell structure manufacturing container is 19.
- Also, as shown in FIG. 2, the plurality of recesses 10 are arranged in a honeycomb arrangement.
- From the cross-sectional view of FIG. 3A, the five recesses 10, the partition wall 11 that partitions them, and the outer peripheral wall 2 higher than the partition wall 11 at the outermost side can be confirmed. The outer peripheral wall 2 is higher than the partition wall 11 by about 8 mm.
- In FIG. 3A, the shape of the top 11a of the partition wall 11 (in other words, the top 11a of the partition wall 11 in a cross section including the center line of each of the two adjacent recesses 10) is arcuate.
- The depth (d) of the recess 10 is 2.0 mm.
- The equivalent diameter (r) of the recess 10 is 1.0 mm.
- The width (w) of the partition wall 11 that partitions two adjacent recesses 10 is 0.3 mm.
- As shown in FIG. 3B, the shape of the central portion 10e of the recessed portion 10 excluding the bottom portion 10b and the opening portion 10d is cylindrical (non-tapered shape). The length (l) of the recess in the central portion 10e in the depth direction is 1.5 mm.
・As shown in FIGS. 2 and 5, at the center of an equilateral triangle in the partition wall 11 surrounded by three mutually adjacent recesses 10 arranged so as to form an equilateral triangle when the center points of the openings are connected. The corresponding vertex point 11b is the highest on the partition wall 11.
Note that the depth of the recess in the produced cell structure manufacturing container was 2.0 times the equivalent diameter of the recess at the center in the depth direction of the recess.
 作製された細胞構造体製造用容器の培養空間に対して、調製例1で作製したコーティング剤を250μL分注した。1時間静置させた後に、除去し、オーブンにて50℃、24時間乾燥させた。その後、コーティングした培養空間を300μLの純水で各3回ずつ洗浄を行った。これにより下地膜付きの細胞構造体製造用容器を得た。 250 μL of the coating agent prepared in Preparation Example 1 was dispensed into the culture space of the prepared cell structure manufacturing container. After being allowed to stand for 1 hour, it was removed and dried in an oven at 50°C for 24 hours. Thereafter, the coated culture space was washed three times each with 300 μL of pure water. As a result, a container for producing a cell structure with a base film was obtained.
<実施例2>
 金型を、実施例1で使用した金型から、凹部の底部の形状が図4に示すようなペン型(逆円錐状)になるように、かつ中央部の凹部の深さ方向の長さ(l)が1.0mmになるような金型に変更した以外は、実施例1と同様にして、細胞構造体製造用容器を得た。更に、実施例1と同様にして、下地膜付きの細胞構造体製造用容器を得た。
 なお、図4に示す底部10bの深さ(d’)は、1.0mmである。
 また、作製された細胞構造体製造用容器における凹部の深さは、凹部の深さ方向の中心における凹部の相当直径の2.0倍である。
<Example 2>
The mold was changed from the mold used in Example 1 so that the shape of the bottom of the recess became a pen shape (inverted conical shape) as shown in FIG. A container for producing a cell structure was obtained in the same manner as in Example 1, except that the mold was changed to one in which (l) was 1.0 mm. Furthermore, in the same manner as in Example 1, a container for producing a cell structure with a base film was obtained.
Note that the depth (d') of the bottom portion 10b shown in FIG. 4 is 1.0 mm.
Further, the depth of the recess in the produced cell structure manufacturing container was 2.0 times the equivalent diameter of the recess at the center in the depth direction of the recess.
<実施例3>
 実施例1において調製例1で作製したコーティング剤に代えて調製例2で作製したコーティング剤を用いた以外は、実施例1と同様にして、下地膜付きの細胞構造体製造用容器を得た。
 即ち、実施例1で作製した細胞構造体製造用容器の培養空間に対して、調製例2で作製したコーティング剤を250μL分注した。1時間静置させた後に、除去し、オーブンにて50℃、24時間乾燥させた。その後、コーティングした培養空間を300μLの純水で各3回ずつ洗浄を行った。これにより下地膜付きの細胞構造体製造用容器を得た。
<Example 3>
A cell structure manufacturing container with a base film was obtained in the same manner as in Example 1, except that the coating agent prepared in Preparation Example 2 was used in place of the coating agent prepared in Preparation Example 1. .
That is, 250 μL of the coating agent prepared in Preparation Example 2 was dispensed into the culture space of the cell structure production container prepared in Example 1. After being allowed to stand for 1 hour, it was removed and dried in an oven at 50°C for 24 hours. Thereafter, the coated culture space was washed three times each with 300 μL of pure water. As a result, a container for producing a cell structure with a base film was obtained.
<実施例4>
 実施例1において調製例1で作製したコーティング剤に代えて調製例3で作製したコーティング剤を用いた以外は、実施例1と同様にして、下地膜付きの細胞構造体製造用容器を得た。
 即ち、実施例1で作製した細胞構造体製造用容器の培養空間に対して、調製例3で作製したコーティング剤を150μL分注した。1時間静置させた後に、除去し、オーブンにて50℃、24時間乾燥させた。その後、コーティングした培養空間を300μLの純水で各3回ずつ洗浄を行った。これにより下地膜付きの細胞構造体製造用容器を得た。
<Example 4>
A container for producing a cell structure with a base film was obtained in the same manner as in Example 1, except that the coating agent prepared in Preparation Example 3 was used instead of the coating agent prepared in Preparation Example 1. .
That is, 150 μL of the coating agent produced in Preparation Example 3 was dispensed into the culture space of the cell structure production container produced in Example 1. After being allowed to stand for 1 hour, it was removed and dried in an oven at 50°C for 24 hours. Thereafter, the coated culture space was washed three times each with 300 μL of pure water. As a result, a container for producing a cell structure with a base film was obtained.
<比較例1>
 金型を、実施例1で使用した金型から、区画壁の頂部全体が平坦になるような金型に変更した以外は、実施例1と同様にして、細胞構造体製造用容器を得た。なお、得られた細胞構造体製造用容器は、区画壁の頂部全体が平坦である以外に、実施例1の細胞構造体製造用容器との違いはない。
 更に、実施例1と同様にして、下地膜付きの細胞構造体製造用容器を得た。
 なお、作製された細胞構造体製造用容器における凹部の深さは、凹部の深さ方向の中心における凹部の相当直径の2.0倍である。
<Comparative example 1>
A container for cell structure production was obtained in the same manner as in Example 1, except that the mold used in Example 1 was changed to a mold in which the entire top of the compartment wall was flat. . It should be noted that the obtained container for producing cell structures has no difference from the container for producing cell structures in Example 1, except that the entire top of the partition wall is flat.
Furthermore, in the same manner as in Example 1, a container for producing a cell structure with a base film was obtained.
Note that the depth of the recess in the produced cell structure manufacturing container was 2.0 times the equivalent diameter of the recess at the center in the depth direction of the recess.
<比較例2>
 金型を、実施例1で使用した金型から、凹部の深さが1.0mmであり、かつ非テーパー形状である中央部の凹部の深さ方向の長さ(l)が0.5mmになるような金型に変更した以外は、実施例1と同様にして、細胞構造体製造用容器を得た。なお、得られた細胞構造体製造用容器は、凹部の深さが1.0mmであり、かつ非テーパー形状である中央部の凹部の深さ方向の長さ(l)が0.5mmである以外に、実施例1の細胞構造体製造用容器との違いはない。
 更に、実施例1と同様にして、下地膜付きの細胞構造体製造用容器を得た。
 なお、作製された細胞構造体製造用容器における凹部の深さは、凹部の深さ方向の中心における凹部の相当直径の1.0倍である。
<Comparative example 2>
The mold was changed from the mold used in Example 1 so that the depth of the recess was 1.0 mm, and the length (l) in the depth direction of the recess in the non-tapered central part was 0.5 mm. A container for cell structure production was obtained in the same manner as in Example 1, except that the mold was changed to the following. In addition, in the obtained cell structure manufacturing container, the depth of the recessed part is 1.0 mm, and the length (l) in the depth direction of the recessed part in the central part, which is non-tapered, is 0.5 mm. Other than that, there is no difference from the cell structure manufacturing container of Example 1.
Furthermore, in the same manner as in Example 1, a container for producing a cell structure with a base film was obtained.
Note that the depth of the recess in the produced cell structure manufacturing container is 1.0 times the equivalent diameter of the recess at the center in the depth direction of the recess.
(ヒト脂肪由来間葉系幹細胞の細胞懸濁液の調製)
 細胞は、ヒト脂肪組織由来間葉系幹細胞(ADSC:セルソース(株)製)を用いた。
 細胞の培養には、低血清培地Mesenchymal Stem Cell Growth Medium 2(タカラバイオ(株)製:血清濃度2%)を用いた。
 細胞は、37℃/COインキュベーター内にて5%二酸化炭素濃度を保った状態で、直径10cmのシャーレ(培地10mL)を用いて2日間以上静置培養した。引き続き、本細胞をPBS溶液(富士フイルム和光純薬(株)製)3mLで洗浄した後、トリプシン-EDTA溶液(PromoCell社製)3mLを添加して室温で3分間静置し細胞を剥離した。上記低血清培地を7mL添加して細胞を回収した。本懸濁液を遠心分離((株)トミー精工製、型番LC-230、200×g/3分、室温)後、上清を除き、上記の培地を添加してヒト脂肪由来間葉系幹細胞の細胞懸濁液を調製した。
(Preparation of cell suspension of human adipose-derived mesenchymal stem cells)
Human adipose tissue-derived mesenchymal stem cells (ADSC: manufactured by Cellsource Co., Ltd.) were used as cells.
A low serum medium Mesenchymal Stem Cell Growth Medium 2 (manufactured by Takara Bio Inc.: serum concentration 2%) was used for culturing the cells.
The cells were statically cultured in a 10 cm diameter petri dish (medium 10 mL) for 2 days or more while maintaining a 5% carbon dioxide concentration in a 37° C./CO 2 incubator. Subsequently, the cells were washed with 3 mL of PBS solution (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), and then 3 mL of trypsin-EDTA solution (manufactured by PromoCell) was added and left at room temperature for 3 minutes to detach the cells. 7 mL of the above low serum medium was added and the cells were collected. After centrifuging this suspension (manufactured by Tomy Seiko Co., Ltd., model number LC-230, 200 x g/3 minutes, room temperature), the supernatant was removed, and the above medium was added to obtain human adipose-derived mesenchymal stem cells. A cell suspension was prepared.
(マウス胎児線維芽細胞の細胞懸濁液の調製)
 細胞は、マウス胎児線維芽細胞(C3H10T1/T2細胞:DSファーマバイオメディカル(株)製)を用いた。
 細胞の培養には、基礎培地となるBME培地(Gibco社製)に対しFBS(Sigma-Aldrich社製)を10%、Glutamine/Penicillin/Streptmycin(Gibco社製)を1%となるように添加した培地を用いた。細胞は、37℃/COインキュベーター内にて5%二酸化炭素濃度を保った状態で、直径10cmのシャーレ(培地10mL)を用いて2日間以上静置培養した。引き続き、本細胞をPBS溶液(富士フイルム和光純薬(株)製)3mLで洗浄した後、トリプシン-EDTA溶液(PromoCell社製)3mLを添加して室温で3分間静置し細胞を剥離した。上記培地を7mL添加して細胞を回収した。本懸濁液を遠心分離((株)トミー精工製、型番LC-230、200×g/3分、室温)後、上清を除き、上記の培地を添加してマウス胎児線維芽細胞の細胞懸濁液を調製した。
(Preparation of cell suspension of mouse fetal fibroblasts)
Mouse fetal fibroblast cells (C3H10T1/T2 cells: manufactured by DS Pharma Biomedical Co., Ltd.) were used as cells.
For cell culture, 10% FBS (manufactured by Sigma-Aldrich) and 1% Glutamine/Penicillin/Streptmycin (manufactured by Gibco) were added to BME medium (manufactured by Gibco) as a basal medium. A medium was used. The cells were statically cultured in a 10 cm diameter petri dish (medium 10 mL) for 2 days or more while maintaining a 5% carbon dioxide concentration in a 37° C./CO 2 incubator. Subsequently, the cells were washed with 3 mL of PBS solution (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), and then 3 mL of trypsin-EDTA solution (manufactured by PromoCell) was added and left at room temperature for 3 minutes to detach the cells. 7 mL of the above medium was added and the cells were collected. After centrifuging this suspension (manufactured by Tomy Seiko Co., Ltd., model number LC-230, 200 x g/3 minutes, room temperature), the supernatant was removed, and the above medium was added to form mouse fetal fibroblast cells. A suspension was prepared.
(スフェロイド形成試験;実施例1及び比較例1)
 実施例1、及び比較例1で得た各下地膜付き細胞構造体製造用容器に対して、ヒト脂肪由来間葉系幹細胞の細胞懸濁液を19×10cells/容器となるように各200μL加えた。その後、5%二酸化炭素濃度を保った状態で、37℃で1日間COインキュベーター内にて静置した。
(Spheroid formation test; Example 1 and Comparative Example 1)
A cell suspension of human adipose-derived mesenchymal stem cells was added to each container for producing cell structures with base membranes obtained in Example 1 and Comparative Example 1 at a concentration of 19×10 4 cells/container. 200 μL was added. Thereafter, it was left standing in a CO 2 incubator at 37° C. for 1 day while maintaining a 5% carbon dioxide concentration.
(スフェロイド形成の観察;実施例1及び比較例1)
 上記スフェロイド形成試験による培養1日後、実施例1、及び比較例1の各下地膜付き細胞構造体製造用容器に対する細胞構造体の形成を倒立型顕微鏡(オリンパス社製、CKX31)による観察(倍率:2倍)に基づき比較した。実施例1の観察結果(培養1日間後)を図6に示す。比較例1の観察結果を図7A及び図7Bに示す。スフェロイド形成個数、スフェロイドサイズデータについて、結果を表1に示す。
 なお、図7Aは、凹部の底部に焦点を合わせた写真であり、図7Bは、区画壁の上面に焦点を合わせた写真である。図7B中、矢印で示したものは、区画壁上面に存在するスフェロイドである。
(Observation of spheroid formation; Example 1 and Comparative Example 1)
After one day of culturing in the above spheroid formation test, the formation of cell structures in each container for producing cell structures with base membranes of Example 1 and Comparative Example 1 was observed using an inverted microscope (Olympus Corporation, CKX31) (magnification: 2 times). The observation results of Example 1 (after 1 day of culture) are shown in FIG. The observation results of Comparative Example 1 are shown in FIGS. 7A and 7B. The results are shown in Table 1 regarding the number of spheroids formed and spheroid size data.
Note that FIG. 7A is a photograph focused on the bottom of the recess, and FIG. 7B is a photograph focused on the top surface of the partition wall. In FIG. 7B, the arrows indicate spheroids present on the upper surface of the compartment wall.
Figure JPOXMLDOC01-appb-T000017
 平均直径は、画像解析ソフトImageJを用いて計測した。形成した細胞構造体の直径をImageJ上で算出し、全ての細胞構造体の直径の和を細胞構造体の数で除することにより算出した。
 大きさの分布は、上記で算出した直径を独立した標本とみなし標準偏差を計算した後、標準偏差の平均直径に対する比率を計算することにより算出した。値が小さいほど、大きさの均一性が高いことを示す。
Figure JPOXMLDOC01-appb-T000017
The average diameter was measured using image analysis software ImageJ. The diameter of the formed cell structure was calculated on ImageJ, and the sum of the diameters of all cell structures was divided by the number of cell structures.
The size distribution was calculated by considering the diameters calculated above as independent samples, calculating the standard deviation, and then calculating the ratio of the standard deviation to the average diameter. The smaller the value, the higher the uniformity of size.
 実施例1、及び比較例1共にスフェロイドが形成された。実施例1では凹部(ディンプル)内のみにスフェロイドが存在し、平均直径が約400μm、サイズ誤差は12%だった。
 一方で比較例1ではスフェロイドが凹部(ディンプル)以外に凹部を区画する区画壁の上面にも多数存在し、合計個数は50個以上だった。また平均直径は約200μm、サイズ誤差61%となった。実施例1と比較してサイズが小さく、誤差が大きかった。これは比較例1のように区画壁の上面がフラットな場合、そこに細胞が残存して小さなスフェロイドを形成することに起因する。実施例1のように区画壁の上面(頂部)を凸形状とすることで、ほぼ全ての細胞を凹部(ディンプル)内に集め、均一なサイズのスフェロイドを形成できる。
Spheroids were formed in both Example 1 and Comparative Example 1. In Example 1, spheroids existed only within the recesses (dimples), and the average diameter was about 400 μm, with a size error of 12%.
On the other hand, in Comparative Example 1, many spheroids were present in addition to the recesses (dimples) on the upper surface of the partition walls that partitioned the recesses, and the total number was 50 or more. The average diameter was approximately 200 μm, with a size error of 61%. Compared to Example 1, the size was smaller and the error was larger. This is because when the upper surface of the partition wall is flat as in Comparative Example 1, cells remain there and form small spheroids. By making the upper surface (top) of the partition wall convex as in Example 1, almost all the cells can be collected in the recesses (dimples) and spheroids of uniform size can be formed.
(スフェロイド形成試験;実施例2、凹部底面構造の影響)
 実施例2で得た下地膜付き細胞構造体製造用容器に対して、マウス線維芽細胞の細胞懸濁液を23×10cells/容器となるように各200μL加えた。その後、5%二酸化炭素濃度を保った状態で、37℃で1日間COインキュベーター内にて静置した。
(Spheroid formation test; Example 2, influence of recess bottom structure)
A cell suspension of mouse fibroblasts (200 μL) was added to each container for producing a cell structure with a base membrane obtained in Example 2 at a concentration of 23×10 4 cells/container. Thereafter, it was left standing in a CO 2 incubator at 37° C. for 1 day while maintaining a 5% carbon dioxide concentration.
(スフェロイド形成の観察;実施例2)
 上記スフェロイド形成試験による培養1日後、実施例2の下地膜付き細胞構造体製造用容器に対する細胞構造体の形成を倒立型顕微鏡(オリンパス社製、CKX31)による観察(倍率:4倍、10倍)に基づき比較した。実施例2の観察結果(培養1日間後)を図8A(4倍)及び図8B(10倍)に示す。
 実施例2ではスフェロイドが形成された。実施例2では凹部(ディンプル)内のみにスフェロイドが存在した。実施例2のように凹部の底面形状を変えた場合でも、実施例1と同様に、ほぼ全ての細胞を凹部(ディンプル)内に集め、均一なサイズのスフェロイドを形成できる。
(Observation of spheroid formation; Example 2)
After one day of culturing in the above spheroid formation test, the formation of cell structures in the container for producing cell structures with a base membrane in Example 2 was observed using an inverted microscope (CKX31, manufactured by Olympus) (magnification: 4x, 10x). Comparisons were made based on. The observation results of Example 2 (after 1 day of culture) are shown in FIG. 8A (4x magnification) and FIG. 8B (10x magnification).
In Example 2, spheroids were formed. In Example 2, spheroids were present only within the recesses (dimples). Even when the bottom shape of the recess is changed as in Example 2, almost all the cells can be collected in the recess (dimple) and spheroids of uniform size can be formed as in Example 1.
(培地交換の影響)
 実施例1及び比較例2の下地膜付き細胞構造体製造用容器を用いて、凹部の深さの影響を確認した。
 実施例1及び比較例2の各下地膜付き細胞構造体製造用容器に対して、ヒト脂肪由来間葉系幹細胞の細胞懸濁液を19×10cells/容器となるように各200μL加えた。その後、5%二酸化炭素濃度を保った状態で、37℃で1日間COインキュベーター内にて静置した。その後、マイクロピペッターを用いて培地を150μL吸引した。その後新しい培地をマイクロピペッターを用いて150μL添加した。培地交換後の細胞構造体の形成を倒立型顕微鏡(オリンパス社製、CKX31)による観察(倍率:2倍)に基づき比較した。
 実施例1の観察結果を図9に示す。比較例2の観察結果を図10に示す。実施例1では培地交換後も細胞構造体の配置が保たれた。一方で比較例2では培地交換により細胞構造体が抜け出て、異なる凹部や区画壁の上面に存在した。なお図10中、白矢印で示したものは、培地交換により細胞構造体が抜け出た凹部である。これは凹部の深さが実施例1と比較して浅いため、培地交換時の流れの影響で形成した細胞構造体が浮き上がったことに起因する。
(Effect of medium exchange)
The effects of the depth of the recesses were confirmed using the containers for producing cell structures with base membranes of Example 1 and Comparative Example 2.
200 μL of a cell suspension of human adipose-derived mesenchymal stem cells was added to each container for producing cell structures with base membranes in Example 1 and Comparative Example 2 so that 19×10 4 cells/container were obtained. . Thereafter, it was left standing in a CO 2 incubator at 37° C. for 1 day while maintaining a 5% carbon dioxide concentration. Thereafter, 150 μL of the medium was aspirated using a micropipettor. Thereafter, 150 μL of new medium was added using a micropipettor. The formation of cell structures after medium exchange was compared based on observation using an inverted microscope (CKX31, manufactured by Olympus Corporation) (magnification: 2x).
The observation results of Example 1 are shown in FIG. The observation results of Comparative Example 2 are shown in FIG. In Example 1, the arrangement of the cell structures was maintained even after medium exchange. On the other hand, in Comparative Example 2, the cell structures escaped due to medium exchange and were present in different recesses and on the upper surfaces of compartment walls. Note that in FIG. 10, the white arrow indicates the recess from which the cell structure escaped due to medium exchange. This is because the depth of the recesses was shallower than in Example 1, and the formed cell structures were lifted up due to the influence of the flow during medium exchange.
(マウス皮膚由来上皮細胞、間葉系細胞の調製)
 妊娠マウス(日本クレア社製)から胎齢18日の胎児(C57BL/6マウス)を採取した。採取した胎児の背部皮膚から皮膚組織を採取した。採取した皮膚をディスパーゼ(ロシュ社製)を用いて4℃で1時間、20rpmの条件で処理し、ピンセットを用いて上皮組織と間葉組織を分離した。上皮組織および間葉組織のそれぞれを、100U/mLコラゲナーゼ(富士フィルム和光純薬社製)を用いて37℃で80分処理した。さらに上皮組織を、37℃で100U/mLのコラゲナーゼを含む0.25%トリプシン(サーモフィッシャー社製)で10分処理したのち、上皮細胞と間葉系細胞のそれぞれにセルストレイナー(コーニング社製)を用いて単一化処理を行った。間葉系細胞の1mL懸濁液にVybrantTM Cell-labeling Solutions(サーモフィッシャー社製)を5μL加え、20分間インキュベートして細胞を染色した。
(Preparation of mouse skin-derived epithelial cells and mesenchymal cells)
An 18-day-old fetus (C57BL/6 mouse) was collected from a pregnant mouse (manufactured by CLEA Japan). Skin tissue was collected from the dorsal skin of the collected fetus. The collected skin was treated with dispase (manufactured by Roche) at 4° C. for 1 hour at 20 rpm, and epithelial tissue and mesenchymal tissue were separated using tweezers. Each of the epithelial tissue and mesenchymal tissue was treated with 100 U/mL collagenase (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) at 37° C. for 80 minutes. Furthermore, the epithelial tissue was treated with 0.25% trypsin (manufactured by Thermo Fisher) containing 100 U/mL collagenase at 37°C for 10 minutes, and then the epithelial cells and mesenchymal cells were each treated with a cell strainer (manufactured by Corning). Unification processing was performed using . 5 μL of Vybrant™ Cell-labeling Solutions (manufactured by Thermo Fisher) was added to 1 mL of a suspension of mesenchymal cells, and the cells were stained by incubating for 20 minutes.
(毛包原基形成試験)
 続いて、遠心により、各液からそれぞれの細胞(マウス皮膚由来上皮細胞、及び間葉系細胞)を回収し、1:1の割合で培地中に混合し、細胞懸濁液を調製した。実施例1で得た下地膜付き細胞構造体製造用容器に対して、調製した細胞懸濁液を19×10cells/容器となるように200μL加えた。培地は間葉系細胞培養培地(DMEM(シグマアルドリッチ社製)+10%FBS(シグマアルドリッチ社製)+1%Penicillin/Streptomycin(シグマアルドリッチ社製))とHuMedia-KG2(クラボウ社製)の1:1混合培地を用いた。その後、5%二酸化炭素濃度を保った状態で、37℃で3日間COインキュベーター内にて静置した。
(Hair follicle primordium formation test)
Subsequently, cells (mouse skin-derived epithelial cells and mesenchymal cells) were collected from each solution by centrifugation and mixed in a medium at a ratio of 1:1 to prepare a cell suspension. 200 μL of the prepared cell suspension was added to the base membrane-equipped cell structure manufacturing container obtained in Example 1 so that the amount was 19×10 4 cells/vessel. The medium is a 1:1 mixture of mesenchymal cell culture medium (DMEM (manufactured by Sigma-Aldrich) + 10% FBS (manufactured by Sigma-Aldrich) + 1% Penicillin/Streptomycin (manufactured by Sigma-Aldrich)) and HuMedia-KG2 (manufactured by Kurabo Industries). A mixed medium was used. Thereafter, it was left standing in a CO 2 incubator at 37° C. for 3 days while maintaining a 5% carbon dioxide concentration.
(毛包原基形成の観察)
 上記毛包原基形成試験による培養3日後、実施例1の下地膜付き細胞構造体製造用容器に対する細胞構造体の形成を位相差蛍光顕微鏡BZ-X700(キーエンス社製)を用いて観察した。観察結果を図11A~図11Cに示す。
 図11Aは、明視野観察結果の写真である。図11Bは、蛍光観察結果の写真である。図11Cは、明視野観察結果と蛍光観察結果とを重ね合わせた写真である。
 その結果、明視野観察にてダンベル形状の2つに分離した構造体が形成していることが確認された。また蛍光観察の結果、VybrantTM Cell-labeling Solutionsで染色した間葉系細胞と非染色の上皮細胞が明確に分離しており、毛包原基が形成していることが示された。以上より本培養容器は、毛包原基をはじめとする複数細胞から形成される器官原基やオルガノイドの調製にも適用可能と考えられる。
(Observation of hair follicle primordium formation)
After 3 days of culture in the hair follicle primordium formation test, the formation of cell structures in the container for producing cell structures with a base membrane of Example 1 was observed using a phase contrast fluorescence microscope BZ-X700 (manufactured by Keyence Corporation). The observation results are shown in FIGS. 11A to 11C.
FIG. 11A is a photograph of the bright field observation results. FIG. 11B is a photograph of the fluorescence observation results. FIG. 11C is a photograph in which bright field observation results and fluorescence observation results are superimposed.
As a result, it was confirmed by bright field observation that two separated dumbbell-shaped structures were formed. Further, as a result of fluorescence observation, mesenchymal cells stained with VybrantTM Cell-labeling Solutions and unstained epithelial cells were clearly separated, indicating the formation of hair follicle primordia. From the above, it is thought that this culture vessel can be applied to the preparation of organ primordia and organoids formed from multiple cells, including hair follicle primordia.
(パッチ法での毛髪再生試験)
 上記上皮細胞および間葉系細胞の調製の際に、間葉系細胞のVybrantTM Cell-labeling Solutionsによる染色を行わずに細胞を調製した。更に実施例1で得た下地膜付き細胞構造体製造用容器に対して、上記と同様の条件で播種を行い5%二酸化炭素濃度を保った状態で、37℃で3日間COインキュベーター内にて培養し、毛包原基を形成した。イソフルラン(バイオリサーチセンター社製)による呼気麻酔をかけたICRヌードマウス(オリエンタル酵母社製)皮下に20GオフサルミックVランス(日本アルコン社製)で移植穴を作製した(パッチ法)。1つの移植穴につき各容器で作製した毛包原基を19個をマイクロピペット(社製)を用いて移植した。毛包原基を移植したマウスは、移植28日目にマイクロスコープ(キーエンス社製)を用いて観察した。
 図12に示すように、毛包原基移植部では黒い塊となって毛が形成しており、黒塊内からは大量の毛が観察された。毛の再生本数の定量結果は39±8本(n=3)だった。
(Hair regeneration test using patch method)
When preparing the epithelial cells and mesenchymal cells, the cells were prepared without staining mesenchymal cells with Vybrant™ Cell-labeling Solutions. Furthermore, seeds were seeded under the same conditions as above in the container for manufacturing the cell structure with the base membrane obtained in Example 1, and the seeds were placed in a CO 2 incubator at 37° C. for 3 days while maintaining a carbon dioxide concentration of 5%. The cells were cultured to form hair follicle primordia. A transplant hole was made subcutaneously in an ICR nude mouse (manufactured by Oriental Yeast Co., Ltd.) under exhalation anesthesia with isoflurane (manufactured by Bioresearch Center Co., Ltd.) using a 20G ophthalmic V lance (manufactured by Nippon Alcon Co., Ltd.) (patch method). Nineteen hair follicle primordia prepared in each container were transplanted into one transplant hole using a micropipette (manufactured by Co., Ltd.). The mice to which the hair follicle primordia were transplanted were observed using a microscope (manufactured by Keyence Corporation) on the 28th day after the transplantation.
As shown in FIG. 12, hair was formed as a black mass at the hair follicle primordium transplantation site, and a large amount of hair was observed within the black mass. The quantitative result of the number of regenerated hairs was 39±8 (n=3).
(低接着コーティング材料の検討;実施例3、4)
(スフェロイド形成試験)
 実施例3で作製した下地膜付きの細胞構造体製造用容器に対して、マウス胎児線維芽細胞の細胞懸濁液を1×10cells/容器となるように各100μL加えた。その後、5%二酸化炭素濃度を保った状態で、37℃で1日間COインキュベーター内にて静置した。
(Study of low adhesion coating materials; Examples 3 and 4)
(Spheroid formation test)
100 μL of a cell suspension of mouse fetal fibroblasts was added to each container for producing a cell structure with a base membrane prepared in Example 3 at a concentration of 1×10 4 cells/container. Thereafter, it was left standing in a CO 2 incubator at 37° C. for 1 day while maintaining a 5% carbon dioxide concentration.
(スフェロイド形成の観察)
 上記スフェロイド形成試験による培養1日後、実施例3の下地膜付き細胞構造体製造用容器に対する細胞構造体の形成を倒立型顕微鏡(オリンパス社製、CKX31)による観察(倍率:4倍、10倍)に基づき比較した。観察結果(培養1日間後)を図13A及び図13Bに示す。ほぼ全ての細胞を凹部(ディンプル)内に集め、凹部(ディンプル)内のみに均一なスフェロイドが形成した。
(Observation of spheroid formation)
After one day of culturing in the above spheroid formation test, the formation of cell structures in the container for producing cell structures with a base membrane in Example 3 was observed using an inverted microscope (CKX31, manufactured by Olympus Corporation) (magnification: 4x, 10x) Comparisons were made based on. The observation results (after 1 day of culture) are shown in FIGS. 13A and 13B. Almost all cells were collected within the dimples, and uniform spheroids were formed only within the dimples.
(スフェロイド形成試験)
 実施例4で作製した下地膜付きの細胞構造体製造用容器に対して、ヒト脂肪由来間葉系幹細胞の細胞懸濁液を5×10cells/容器となるように各100μL加えた。その後、5%二酸化炭素濃度を保った状態で、37℃で1日間COインキュベーター内にて静置した。
(Spheroid formation test)
100 μL of a cell suspension of human adipose-derived mesenchymal stem cells was added to each container for producing a cell structure with a base membrane prepared in Example 4 so that the amount was 5×10 4 cells/container. Thereafter, it was left standing in a CO 2 incubator at 37° C. for 1 day while maintaining a 5% carbon dioxide concentration.
(スフェロイド形成の観察)
 上記スフェロイド形成試験による培養1日後、実施例4の下地膜付き細胞構造体製造用容器に対する細胞構造体の形成を倒立型顕微鏡(オリンパス社製、CKX31)による観察(倍率:4倍)に基づき比較した。観察結果(培養1日間後)を図14に示す。ほぼ全ての細胞を凹部(ディンプル)内に集め、凹部(ディンプル)内のみにスフェロイドが形成した。
(Observation of spheroid formation)
After one day of culturing in the above spheroid formation test, the formation of cell structures in the container for producing cell structures with a base film in Example 4 was compared based on observation using an inverted microscope (CKX31, manufactured by Olympus) (magnification: 4x). did. The observation results (after 1 day of culture) are shown in FIG. Almost all cells were collected within the dimples, and spheroids were formed only within the dimples.
 本発明の細胞構造体製造用容器によれば、複数の均一な大きさの細胞構造体を大量に作製することができる。 According to the cell structure production container of the present invention, a plurality of uniformly sized cell structures can be produced in large quantities.
 1   底面
 2   外周壁
 3   開口
 4   培養空間
 10  凹部
 10a 開口面
 10b 底部
 10c 深さ方向の中心
 10d 開口部
 10e 中央部
 11  区画壁
 11a 頂部
 11b 頂点箇所
 11c 頂点
 100 細胞構造体製造用容器

 
1 Bottom surface 2 Peripheral wall 3 Opening 4 Culture space 10 Recess 10a Opening surface 10b Bottom 10c Center in depth direction 10d Opening 10e Center 11 Compartment wall 11a Top 11b Vertex location 11c Vertex 100 Container for manufacturing cell structures

Claims (21)

  1.  複数の凹部と、前記複数の凹部を区画する区画壁とを有し、
     前記区画壁の頂部の形状が、凸形状を有し、
     前記凹部の深さが、前記凹部の深さ方向の中心における前記凹部の相当直径の1.0倍超である、
     細胞構造体製造用容器。
    comprising a plurality of recesses and a partition wall that partitions the plurality of recesses,
    The top of the partition wall has a convex shape,
    The depth of the recess is more than 1.0 times the equivalent diameter of the recess at the center in the depth direction of the recess.
    Container for producing cell structures.
  2.  隣接する2つの前記凹部を区画する前記区画壁の幅が、前記凹部の深さ方向の中心において測定した際に、0.1mm~0.5mmである、請求項1に記載の細胞構造体製造用容器。 The cell structure production according to claim 1, wherein the width of the partition wall that partitions two adjacent recesses is 0.1 mm to 0.5 mm when measured at the center of the depth direction of the recess. container.
  3.  ガス透過性の弾性材料から構成される、請求項1に記載の細胞構造体製造用容器。 The container for producing cell structures according to claim 1, which is made of a gas-permeable elastic material.
  4.  前記ガス透過性の弾性材料が、シリコーンである、請求項3に記載の細胞構造体製造用容器。 The container for producing cell structures according to claim 3, wherein the gas-permeable elastic material is silicone.
  5.  前記凹部の深さが、前記凹部の深さ方向の中心における前記凹部の相当直径の1.5倍以上である、請求項1に記載の細胞構造体製造用容器。 The cell structure manufacturing container according to claim 1, wherein the depth of the recess is 1.5 times or more the equivalent diameter of the recess at the center in the depth direction of the recess.
  6.  底部及び開口部を除いた前記凹部の中央部の形状が、非テーパー形状である、請求項1に記載の細胞構造体製造用容器。 The container for producing a cell structure according to claim 1, wherein the central portion of the recess excluding the bottom and the opening has a non-tapered shape.
  7.  前記非テーパー形状の前記中央部の前記凹部の深さ方向の長さが、前記凹部の深さの0.5倍以上である、請求項6に記載の細胞構造体製造用容器。 The cell structure manufacturing container according to claim 6, wherein the length in the depth direction of the concave portion of the non-tapered central portion is 0.5 times or more the depth of the concave portion.
  8.  隣接する2つの前記凹部のそれぞれの中心線を含む断面における前記区画壁の頂部の形状が、凸形状としての弧状又は最頂部に角部を有する形状である、請求項1に記載の細胞構造体製造用容器。 The cell structure according to claim 1, wherein the shape of the top of the partition wall in a cross section including the center line of each of the two adjacent recesses is a convex arc or a shape having a corner at the top. Manufacturing containers.
  9.  隣接する2つの前記凹部を区画する前記区画壁の幅が、前記凹部の深さ方向の中心において測定した際に、前記凹部の前記相当直径の0.1倍以上0.5倍以下である、請求項1に記載の細胞構造体製造用容器。 The width of the partition wall that partitions two adjacent recesses is at least 0.1 times and at most 0.5 times the equivalent diameter of the recess when measured at the center of the depth direction of the recess; The container for producing a cell structure according to claim 1.
  10.  特定の凹部の開口部の中心点と、前記特定の凹部に隣接して配置された2以上の凹部の開口部の各々の中心点との距離が、互いに等しくなるように、前記複数の凹部が配置されている、請求項1に記載の細胞構造体製造用容器。 The plurality of recesses are arranged such that the distances between the center point of the opening of the specific recess and the center points of each of the openings of two or more recesses arranged adjacent to the specific recess are equal to each other. The container for producing a cell structure according to claim 1, wherein the container is arranged in a container for producing a cell structure according to claim 1.
  11.  開口部の中心点を結ぶと正三角形を形成するように配置された互いに隣接する3つの凹部に囲まれた前記区画壁における前記正三角形の中心に相当する箇所が、前記区画壁において最も高い、請求項10に記載の細胞構造体製造用容器。 A point corresponding to the center of the equilateral triangle in the partition wall surrounded by three mutually adjacent recesses arranged to form an equilateral triangle when the center points of the openings are connected is the highest in the partition wall, The container for producing a cell structure according to claim 10.
  12.  前記複数の凹部の底部の形状が断面において弧状又は逆三角形状である、請求項1に記載の細胞構造体製造用容器。 The cell structure manufacturing container according to claim 1, wherein the bottoms of the plurality of recesses have an arc shape or an inverted triangular shape in cross section.
  13.  前記凹部の前記相当直径が、0.3mm~1.5mmである、請求項1に記載の細胞構造体製造用容器。 The container for producing a cell structure according to claim 1, wherein the equivalent diameter of the recess is 0.3 mm to 1.5 mm.
  14.  前記凹部の深さが、0.5mm~3.0mmである、請求項1に記載の細胞構造体製造用容器。 The container for producing a cell structure according to claim 1, wherein the depth of the recess is 0.5 mm to 3.0 mm.
  15.  5個~2000個の前記凹部を有する、請求項1に記載の細胞構造体製造用容器。 The container for producing a cell structure according to claim 1, having 5 to 2000 recesses.
  16.  円筒状の外形を有する、請求項1に記載の細胞構造体製造用容器。 The container for producing cell structures according to claim 1, which has a cylindrical outer shape.
  17.  マルチウェルプレートの窪み部に収めることができる、請求項1に記載の細胞構造体製造用容器。 The cell structure manufacturing container according to claim 1, which can be stored in a recessed part of a multiwell plate.
  18.  前記細胞構造体製造用容器の表面の少なくとも一部が細胞の付着抑制能を有するコーティング膜を備える、請求項1に記載の細胞構造体製造用容器。 The container for producing a cell structure according to claim 1, wherein at least a part of the surface of the container for producing a cell structure is provided with a coating film having the ability to suppress adhesion of cells.
  19.  請求項1から18のいずれかに記載の細胞構造体製造用容器の製造方法であって、
     金型を用いて前記細胞構造体製造用容器を成形することを含む、細胞構造体製造用容器の製造方法。
    A method for manufacturing a cell structure manufacturing container according to any one of claims 1 to 18, comprising:
    A method for manufacturing a cell structure manufacturing container, the method comprising molding the cell structure manufacturing container using a mold.
  20.  請求項1から18のいずれかに記載の細胞構造体製造用容器を用いて製造された細胞構造体。 A cell structure produced using the cell structure production container according to any one of claims 1 to 18.
  21.  細胞を分散させた培地を請求項1から18のいずれかに記載の細胞構造体製造用容器の培養空間へ添加する工程を含む、細胞構造体の製造方法。

     
    A method for producing a cell structure, comprising the step of adding a medium in which cells are dispersed to a culture space of a container for producing a cell structure according to any one of claims 1 to 18.

PCT/JP2023/010495 2022-03-17 2023-03-17 Cell culture container having high cell utilization efficiency WO2023176949A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-042418 2022-03-17
JP2022042418 2022-03-17

Publications (1)

Publication Number Publication Date
WO2023176949A1 true WO2023176949A1 (en) 2023-09-21

Family

ID=88023404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010495 WO2023176949A1 (en) 2022-03-17 2023-03-17 Cell culture container having high cell utilization efficiency

Country Status (1)

Country Link
WO (1) WO2023176949A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009050194A (en) * 2007-08-27 2009-03-12 Sumitomo Bakelite Co Ltd Vessel for cell aggregate-forming culture
JP2010233456A (en) * 2009-03-30 2010-10-21 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Cell assembly-forming tool, cell assembly-culturing tool, cell assembly-transferring kit and method for culturing cell assembly
WO2012036011A1 (en) * 2010-09-14 2012-03-22 旭硝子株式会社 Culture substrate
WO2014196204A1 (en) * 2013-06-07 2014-12-11 株式会社クラレ Culture vessel and culture method
US20160032238A1 (en) * 2013-03-13 2016-02-04 Innovative Surface Technologies, Inc. Conical devices for three-dimensional aggregate(s) of eukaryotic cells
WO2017073625A1 (en) * 2015-10-30 2017-05-04 国立大学法人横浜国立大学 Regenerated hair follicle primordium aggregation manufacturing method, hair follicle tissue-containing sheet, and method for manufacturing hair follicle tissue-containing sheet
WO2017142410A1 (en) * 2016-02-18 2017-08-24 Perkinelmer Health Sciences B.V. Means and methods for spheroid cell culturing and analysis
JP2017532972A (en) * 2014-10-29 2017-11-09 コーニング インコーポレイテッド Spheroid capture insert
JP2017532974A (en) * 2014-10-29 2017-11-09 コーニング インコーポレイテッド Apparatus and method for generating and culturing 3D cell aggregates
JP2020145990A (en) * 2019-03-14 2020-09-17 国立大学法人横浜国立大学 Culture vessel, and method for producing cell-support complex
US20210123007A1 (en) * 2019-10-25 2021-04-29 Cleveland State University Perfusion plate for microarray 3d bioprinting
JP2021078460A (en) * 2019-11-21 2021-05-27 株式会社日本触媒 Cell transportation method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009050194A (en) * 2007-08-27 2009-03-12 Sumitomo Bakelite Co Ltd Vessel for cell aggregate-forming culture
JP2010233456A (en) * 2009-03-30 2010-10-21 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Cell assembly-forming tool, cell assembly-culturing tool, cell assembly-transferring kit and method for culturing cell assembly
WO2012036011A1 (en) * 2010-09-14 2012-03-22 旭硝子株式会社 Culture substrate
US20160032238A1 (en) * 2013-03-13 2016-02-04 Innovative Surface Technologies, Inc. Conical devices for three-dimensional aggregate(s) of eukaryotic cells
WO2014196204A1 (en) * 2013-06-07 2014-12-11 株式会社クラレ Culture vessel and culture method
JP2017532972A (en) * 2014-10-29 2017-11-09 コーニング インコーポレイテッド Spheroid capture insert
JP2017532974A (en) * 2014-10-29 2017-11-09 コーニング インコーポレイテッド Apparatus and method for generating and culturing 3D cell aggregates
WO2017073625A1 (en) * 2015-10-30 2017-05-04 国立大学法人横浜国立大学 Regenerated hair follicle primordium aggregation manufacturing method, hair follicle tissue-containing sheet, and method for manufacturing hair follicle tissue-containing sheet
WO2017142410A1 (en) * 2016-02-18 2017-08-24 Perkinelmer Health Sciences B.V. Means and methods for spheroid cell culturing and analysis
JP2020145990A (en) * 2019-03-14 2020-09-17 国立大学法人横浜国立大学 Culture vessel, and method for producing cell-support complex
US20210123007A1 (en) * 2019-10-25 2021-04-29 Cleveland State University Perfusion plate for microarray 3d bioprinting
JP2021078460A (en) * 2019-11-21 2021-05-27 株式会社日本触媒 Cell transportation method

Similar Documents

Publication Publication Date Title
Canton et al. Mucin-inspired thermoresponsive synthetic hydrogels induce stasis in human pluripotent stem cells and human embryos
US10131874B2 (en) Cell culture support and associated method for cell growth and release
Versaevel et al. Micropatterning hydroxy-PAAm hydrogels and Sylgard 184 silicone elastomers with tunable elastic moduli
KR101068802B1 (en) Container for germ layer formation and method of forming germ layer
US11499136B2 (en) Cell culture substrate
JP2021503958A (en) Bioactive 3D encapsulation culture system for cell expansion
US20120107930A1 (en) Method for inducing differentiation of embryonic stem cells or artificial pluripotent stem cells
JP2021091872A (en) Biocompatible resin, culture medium additive for cells, culture medium for cell culture, and coating agent for cell culture including the same, and use thereof
Xia et al. Cell attachment/detachment behavior on poly (N-isopropylacrylamide)-based microgel films: the effect of microgel structure and swelling ratio
Kato et al. The design of polymer microcarrier surfaces for enhanced cell growth
JP2024020421A (en) cell culture container
US20200369999A1 (en) Cell culture container capable of long-term culture and method for manufacturing same
JP5725394B2 (en) Hematopoietic stem cell culture method
WO2023176949A1 (en) Cell culture container having high cell utilization efficiency
CN107075444B (en) The method for preparing embryoid formation container
JP7294134B2 (en) Cell culture vessel with micro volume
WO2019035436A1 (en) Culture substrate for pluripotent stem cell and method for producing pluripotent stem cell
US20230093822A1 (en) Cell culture container capable of controlling cell aggregation rate
WO2017131241A1 (en) Cell cluster, cell structure, and three-dimensional tissue body
JP2018164412A (en) Base material for forming cell aggregate, method for forming cell aggregate, method for screening substance, method for searching function of cell, coating agent for cell culture base material, and cell aggregate formation promotor
JPWO2004078961A1 (en) Floating carrier and floating / collecting method
WO2023027050A1 (en) Cell structure production container, manufacturing method for cell structure production container, cell structure production method, and base material for use in cell structure production container
JP2019033742A (en) Culture base for pluripotent stem cells and method for producing pluripotent stem cells
JP6332646B2 (en) Silane compound containing active ester group and material using the same
WO2023282253A1 (en) Cell culture base material for serum-free medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770902

Country of ref document: EP

Kind code of ref document: A1