WO2021029241A1 - Cell culture substrate - Google Patents

Cell culture substrate Download PDF

Info

Publication number
WO2021029241A1
WO2021029241A1 PCT/JP2020/029575 JP2020029575W WO2021029241A1 WO 2021029241 A1 WO2021029241 A1 WO 2021029241A1 JP 2020029575 W JP2020029575 W JP 2020029575W WO 2021029241 A1 WO2021029241 A1 WO 2021029241A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
base material
cells
cell culture
fine pattern
Prior art date
Application number
PCT/JP2020/029575
Other languages
French (fr)
Japanese (ja)
Inventor
朋未 牧野
史明 島
中澤 浩二
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to JP2021539208A priority Critical patent/JPWO2021029241A1/ja
Publication of WO2021029241A1 publication Critical patent/WO2021029241A1/en
Priority to JP2023187538A priority patent/JP2023181426A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus

Definitions

  • the present invention relates to a base material for cell culture. More specifically, the present invention relates to a cell culture base material, a method for producing the same, a method for culturing cells using the base material, and a method for producing a spheroid using the base material.
  • a hydrophilic crosslinked body is formed by curing a photosensitive composition containing a branched polyalkylene glycol derivative having a specific structure on a hydrophobic substrate, while the substrate is formed. It is described that a plurality of hydrophobic regions are exposed on the surface, and spheroids having a uniform size can be obtained in the hydrophobic regions.
  • Patent Document 2 in a technique for forming a resin film of a photosensitive resin composition on a substrate, a resin composition containing a water-soluble polymer having an azide group as a photosensitive group is used to form the azide group.
  • a cultured base material is prepared in which cells adhere only to the exposed portion of the base material by binding to an amino group on the surface of the base material and exposing it to a desired pattern as needed.
  • Patent Document 3 a small circular, polygonal, or elliptical region that can be a cell culture bed is finely patterned on a support surface treated with a hydrophilic and cell-incompatible polymer by plasma treatment or the like.
  • a culture substrate formed by exposing the surface of the substrate is disclosed.
  • An object of the present invention is to provide a novel base material for cell culture.
  • the present invention can be easily prepared and cell culture can be efficiently performed, a cell culture substrate, a method for producing the same, a method for culturing cells using the substrate, and the substrate. It is an object of the present invention to provide a method for producing a spheroid using.
  • the present inventors used a cell adhesion layer as a base to be a cell culture surface without using a special device such as a photosensitive composition or a plasma generator.
  • a special device such as a photosensitive composition or a plasma generator.
  • a new cell culture substrate can be provided, and such a cell culture substrate can be selected for its composition, manufacturing method, etc.
  • the present invention relates to the following [1] to [16].
  • a cell culture substrate having a layer having a cell adhesive surface and a fine pattern of a non-cell adhesive substance provided on the surface of the layer, and the cell adhesive surface is a cell culture surface.
  • the base material according to the above [1], wherein the layer having a cell adhesion surface is composed of a substance exhibiting cell adhesion.
  • the cell non-adhesive substance is ethylene glycol, 2-methacryloyloxyethyl phosphorylcholine, hydroxyethyl methacrylate and derivatives thereof, or polymers thereof [polymers containing them at least as a polymerization component (for example, alone or together). Polymer)], and segmented polyurethane and derivatives thereof; the substrate according to any one of [1] to [3] above, which is selected from albumin, agarose, and cellulose.
  • the base material according to any one of [1] to [9] above, wherein the thickness of the fine pattern is 10 ⁇ m or less.
  • the fine pattern is microcontact printing method, spin coating method, casting method, roll coating method, die coating method, gravure coating method, spray coating method, bar coating method, flexographic printing method, dip coating method, inkjet method, [1] to the above, which are formed by a method selected from the group consisting of a patterning method formed by injecting a desired substance into the gap by the capillary force generated in the gap of the uneven structure formed on the surface of the base material.
  • the base material according to any one of [10].
  • [12] The substrate according to any one of [1] to [11] above, wherein the fine pattern occupies 5% or more of the surface of the substrate.
  • the base material according to any one of [1] to [12] above which has a thickness of 1 to 1000 ⁇ m.
  • a method for producing a base material for cell culture which comprises a step of printing a non-cell adhesive substance on a layer having a cell adhesive surface to form a fine pattern.
  • a method for culturing cells which comprises a step of culturing cells using the substrate according to any one of [1] to [13] above.
  • a method for producing a spheroid which comprises a step of culturing cells using the substrate according to any one of [1] to [13] above.
  • the present invention can provide a novel cell culture substrate.
  • the cell culture substrate of the present invention it can be easily prepared and the cell culture work itself can be efficiently performed.
  • the cell culture substrate of the present invention can be used for cell culture without prior defoaming treatment. Further, in another aspect of the present invention, it is possible to provide a cell culture substrate capable of easily recovering the cultured cells even though they are adhered and cultured. Moreover, in still another aspect of the cell culture substrate of the present invention, cells (spheroids) of a desired size can be efficiently produced. In the cell culture substrate of the present invention, since the cell culture site is divided by a fine pattern, it is easy to efficiently obtain cells of a desired size according to this division. In particular, by appropriately selecting the shape (rule) of the pattern, it is possible to efficiently obtain cells having a desired size and uniform (size or particle size).
  • the cell size By making the cell size the desired size, it is possible to suppress the production of defective cells (for example, those that have grown too large, those that lack oxygen in the center of spheroids, etc.), and to homogenize the functions according to the cell type (for example, those that are deficient in oxygen at the center of the spheroid). For example, it is advantageous in terms of (equalizing the medicinal effects, etc.).
  • the cells can be cultured without undergoing the defoaming treatment, and the obtained cells can be easily collected, so that the cell culture can be efficiently performed as a whole. Therefore, according to the cell culture substrate of the present invention, it is possible to achieve both efficient cell culture, which is originally incompatible, and acquisition of cells of a desired size (further, a uniform size).
  • cells and spheroids having a desired size and high uniformity can be safely prepared, and thus cell quality control becomes easy. It can produce an excellent effect.
  • FIG. 1 is a diagram showing a schematic diagram of an example of a fine pattern in the cell culture substrate of the present invention.
  • FIG. 2 is a photograph of a fine pattern in the cell culture substrate of Example 1.
  • FIG. 3 is a photograph of a cell morphology (culture period: 8 days) in which human adipose-derived stem cells were cultured using the cell culture substrate of Example 1.
  • FIG. 4 is a photograph of a cell morphology (culture period: 14 days) in which human adipose-derived stem cells were cultured using the cell culture substrate of Example 1.
  • FIG. 5 is a photograph of the cell morphology (culture period: 7 days) in which HCT116 cells (human Escherichia coli cancer cell line) were cultured using the cell culture substrate of Example 1.
  • FIG. 6 is a photograph of the cell morphology (culture period: 7 days) in which primary rat hepatocytes were cultured using the cell culture substrate of Example 1.
  • the cell culture substrate of the present invention has a layer having a cell adhesive surface and a fine pattern of a cell non-adhesive substance provided on the surface of the layer, and the cell adhesive surface in which the fine pattern does not exist is a cell. It serves as a culture surface, and cells can be adhered and cultured on the cell culture surface. It can be said that the cell culture substrate of the present invention has a mask having a fine pattern of a non-cell adhesive substance on a layer having a cell adhesive surface.
  • the fine pattern in the present invention includes a case where it is composed of a plurality of unit shapes and a case where it is composed of a shape corresponding to a gap between adjacent unit shapes, and is formed of a cell non-adhesive substance.
  • the cell adhesive surface is exposed in the gap between the unit shapes.
  • the fine pattern of the cell non-adhesive substance is composed of a shape corresponding to a gap between adjacent unit shapes, the cell adhesive surface is exposed at the portion of the unit shape.
  • 1 schematically shows an example of the cell culture substrate of the present invention (1 is a unit shape, 2 is a gap), 1 is a fine pattern of a non-cell adhesive substance, and 2 is a cell adhesive surface.
  • 1 is a cell-adhesive surface and 2 being a fine pattern of a non-cell-adhesive substance.
  • the unit shape referred to here is also referred to as a unit pattern or a unit type.
  • the unit shape is not particularly limited, and includes those composed of straight lines, those composed of curved lines, those composed of surfaces, and those composed by combining them.
  • Polygons include hexagons, pentagons, quadrilaterals (including, for example, squares, rectangles, parallelograms, diamonds, and trapezoids), triangles, and stars, and circles include circles as well as approximately circles. ..
  • the unit shape may have a plurality of unit types having the same size or different sizes as long as a fine pattern can be formed.
  • the average circle equivalent diameter (maximum diameter) of the unit shape may be 1000 ⁇ m or less, and may be 900 ⁇ m or less or 800 ⁇ m or less.
  • the lower limit can be appropriately set according to the type of cells as long as the cells can be cultured. For example, 30 ⁇ m can be mentioned.
  • the distance between the centers of the perfect circles corresponding to the adjacent unit shapes may be, for example, 1500 ⁇ m or less, preferably 1000 ⁇ m or less, and more preferably 800 ⁇ m or less.
  • the unit shape is linear, its width is preferably 10 mm or less, more preferably 8 mm or less, and further 5 mm or less, for the reason that it allows the interaction of humoral factors produced by adjacent cells.
  • the lower limit can be appropriately set according to the type of cells as long as the cells can be cultured, and examples thereof include 5 ⁇ m.
  • the gap between adjacent unit shapes may be 1 ⁇ m or more as the shortest distance due to the interaction between cells, and may be 5 ⁇ m or more or 10 ⁇ m or more.
  • the upper limit can be appropriately set according to the type of cells as long as the cells can be cultured, and examples thereof include 100 mm.
  • the patterns formed by the fine patterns include, for example, a pattern in which circular dots and polygons are scattered, a honeycomb shape, a grid shape (mesh shape), a scale shape, a geometric pattern, a stripe shape, and a radial pattern.
  • a shape selected from those reverse patterns is exemplified.
  • the pattern may have continuity or symmetry, or may be any pattern without continuity or symmetry.
  • the average height (average thickness) of the fine pattern is preferably 10000 nm or less, more preferably 1000 nm or less, and further preferably 500 nm or less.
  • the lower limit of the average height (average thickness) of the fine pattern is not particularly limited as long as the fine pattern can be formed, but is, for example, 1 nm, 2 nm, 3 nm, 5 nm, 10 nm, 15 nm, 20 nm, 25 nm, 30 nm and the like. May be good.
  • the ratio of the average height of the fine pattern to the average circle equivalent diameter of the unit shape regardless of whether the unit shape is a cell non-adhesive substance or an exposed cell adhesion surface.
  • the equivalent diameter is preferably 0.5 or less, more preferably 0.1 or less, and even more preferably 0.01 or less.
  • the lower limit can be appropriately set according to the type of cells as long as the cells can be arranged and cultured. For example, 0.00001 can be mentioned.
  • the cell adhesion site [exposed cell adhesion site (the site of the cell adhesion surface where no fine pattern is formed)] is the cell culture site (for example, 1 in FIG. 1).
  • 2 is a cell adhesion site
  • 1 is a cell adhesion site).
  • Such a cell adhesion site can be said to be a portion where the cell adhesion surface is divided (partitioned) by a fine pattern.
  • Minimum width of cell adhesion site [For example, the minimum length (shortest length) of the gap between adjacent unit shapes when the unit shape is non-cell adhesion, and the unit shape when the unit shape is cell adhesion.
  • the minimum diameter (shortest diameter)] can be selected according to the size of the cells to be cultured and the size of the cells (spheroids) to be obtained, but for example, 10 ⁇ m or more (for example, 15 ⁇ m or more), preferably 20 ⁇ m or more ( For example, it may be 30 ⁇ m or more), more preferably 50 ⁇ m or more (for example, 80 ⁇ m or more), or 100 ⁇ m or more.
  • the minimum width of the cell adhesion site may be, for example, 2000 ⁇ m or less, 1500 ⁇ m or less, 1200 ⁇ m or less, 1000 ⁇ m or less, 900 ⁇ m or less, 800 ⁇ m or less, 700 ⁇ m or less, and the like.
  • the proportion of the fine pattern of the cell non-adhesive substance on the surface of the base material is preferably 5% or more, more preferably 10% or more, still more preferably 15% or more.
  • the upper limit of the proportion of the fine pattern of the cell non-adhesive substance on the surface of the substrate is not particularly limited, but may be, for example, 95%, 90%, 80%, 70% or the like.
  • the fine pattern may be formed by physically or chemically fixing the non-cell adhesive substance to the surface of the fine pattern, as long as the surface thereof is a non-cell adhesive surface, and the fine pattern itself may be formed. It may consist of a non-cell adhesive substance.
  • the method for forming the fine pattern is not particularly limited, and for example, it can be formed by curing a photosensitive resin composition or by exposing it to a desired pattern by plasma treatment or the like, but the catalyst used for curing may be used.
  • a plasma generator is required to remain and affect the cells, or to perform plasma treatment, and the pattern formed by plasma treatment changes over time and becomes unstable or cannot be completely removed.
  • the following method is preferable from the viewpoint that the polymer may affect the cells and that the defoaming treatment is simple or unnecessary.
  • a patterning method in which a desired substance is injected into the gap by the capillary force generated in the gap of the uneven structure formed on the surface of the base material can be used. These can be carried out according to known conditions. Specifically, for example, a transfer mold having a desired fine pattern shape is prepared according to a known method, and a non-cell adhesive substance is brought into contact with the pattern surface of the transfer mold to form a surface of a layer having a cell adhesion surface.
  • the pattern surface can be printed (transferred) to form the pattern surface.
  • the cell culture substrate having a fine pattern produced according to such a method also has an effect of being excellent in stability over time.
  • the fine pattern can be formed without undergoing plasma treatment or using a photosensitive component. Therefore, the fine pattern may be a pattern that has not been plasma-treated, or may be a pattern formed of a non-photosensitive component [for example, a non-photosensitive resin (resin composition)].
  • the cell non-adhesive substance is not particularly limited as long as it does not adhere to the cells used for culturing or does not bind to cell surface molecules such as proteins and sugar chains present in the cell membrane of the cells used. , It may or may not have biocompatibility. Further, it may be hydrophobic or hydrophilic, and may be, for example, superhydrophobic (superhydrophobic) or superhydrophilic. From the viewpoint of cell non-adhesiveness, spheroid uniformity and formability, etc., it constitutes a hydrophobic (particularly superhydrophobic) [for example, a hydrophobic or hydrophilic (particularly hydrophobic) cell-adhesive surface or the surface thereof.
  • hydrophilic particularly superhydrophobic to the resin (and its contact angle)
  • hydrophilic particularly superhydrophilic
  • a substance that is more hydrophilic (particularly superhydrophilic) to the cell-adhesive surface of the above or the resin (further, the contact angle thereof) constituting the surface is also preferable.
  • examples of such substances include ethylene glycol and its derivatives, MPC (2-methacryloyloxyethyl phosphorylcholine) and its derivatives, HEMA (hydroxyethyl methacrylate) and its derivatives, compounds containing them, and polymers of these compounds, SPC.
  • Compounds containing (segmented polyurethane) and its derivatives, proteins (albumin, etc.) obtained from living organisms, and sugar chains (agarose, cellulose, etc.) to which cells do not adhere are appropriately selected and used according to the type of cells. be able to.
  • MPC and from the viewpoint of adhesion to the cell adhesion surface, from the viewpoint of simplifying the manufacturing process of the cell culture substrate, or from the viewpoint of improving the uniformity of the obtained cells or spheroids, etc.
  • the derivatives or polymers thereof are preferred.
  • the substance may be appropriately modified according to the handleability, the desired degree of hydrophobicity (for example, superhydrophobicity), hydrophilicity (for example, superhydrophilicity), and the like.
  • hydrophilicity and low solubility in water may be achieved at the same time by cross-linking a hydrophilic substance.
  • the raw material for example, hydrophobic or hydrophilic
  • the raw material is appropriately hydrophobized or hydrophilized (for example, introduction of a hydrophobic group or a hydrophilic group) to obtain the desired hydrophobic or hydrophilic property.
  • the material may be obtained.
  • the cell non-adhesive substance (or fine pattern, non-adhesive molecule) may be a degradable component (eg, a component that decomposes in response to light and / or heat).
  • a cell non-adhesive substance or a fine pattern
  • the fine pattern surface of the cell non-adhesive substance has, for example, a static water contact angle described later as an index as its surface characteristics from the viewpoint of making the size of the formed cell tissue uniform and improving the circularity.
  • the static water contact angle is preferably 90 ° or more, more preferably 93 ° or more, still more preferably 95 ° or more. Further, it may be 150 ° or less, preferably 130 ° or less, and more preferably 120 ° or less.
  • the static water contact angle is preferably 65 ° or less, more preferably 55 ° or less, still more preferably 50 ° or less. Further, it may be 0 ° or more, preferably 5 ° or more, and more preferably 10 ° or more.
  • a static water contact angle such as 90 ° or more and 100 ° or more can be realized. ..
  • such a static water contact angle may be a value on a cell non-adhesive surface, or may be a value on a substance exhibiting cell non-adhesion (or a substance constituting a cell non-adhesive surface). Good.
  • the cell-adhesive surface is, for example, that when cells settle on the surface in a solution used for culturing, the cells adhere to each other with a certain adhesion point.
  • it is a surface to be adhered so as to be fixed to such an extent that it can be peeled off by a liquid flow such as pipetting.
  • a surface that adheres to the extent that it is possible to form a three-dimensional or three-dimensional tissue such as a layered or spheroid, rather than a surface on which cells adhere and maintain or proliferate two-dimensionally. Can be mentioned.
  • Such a surface is formed, for example, by physically or chemically fixing or arranging a substance exhibiting cell adhesion on the surface of the base material, but the base material itself is composed of a substance exhibiting cell adhesion. May be good. Further, a smooth surface having no unevenness may be used so that a fine pattern can be easily formed by printing (transfer) or the like.
  • the layer having a cell adhesion surface may be composed of a substance whose surface exhibits at least cell adhesion.
  • the substance exhibiting cell adhesion is not particularly limited as long as it is a substance that the cells used for culture adhere to or can bind to cell surface molecules such as proteins and sugar chains existing in the cell membrane of the cells used. Can be done. It may be hydrophilic or hydrophobic, but from the viewpoint of cell adhesion, spheroid formation, etc., it is hydrophilic (particularly hydrophilic, not superhydrophilic) or hydrophobic. (In particular, hydrophobic ones that are not superhydrophobic) are preferable, and those exhibiting hydrophobicity are more preferable. Further, the degree of adhesion of the substance exhibiting cell adhesion may be such that the cells do not come off from the cell culture surface.
  • Such substances include substances obtained or synthesized from living organisms, such as proteins (collagen, fibronectin, laminin, etc.) and synthetic resins (fluororesin, polyimide resin, polysulfone, polyethersulfone, etc.). , Polydimethylsiloxane, mixtures thereof, etc.).
  • synthetic resins fluororesin, polyimide resin, polysulfone, polyethersulfone, etc.
  • a cell culture substrate having excellent handleability can be obtained from the strength and heat resistance of the synthetic resin itself.
  • the medium exchange work can be performed from the viewpoint of biocompatibility, from the viewpoint of obtaining adherent cells and spheroids, from the viewpoint of improving the uniformity of the obtained cells and spheroids, or by appropriately adhering to various cells.
  • a synthetic resin such as a polyimide resin.
  • a non-living component such as a polyimide resin
  • the cells and spheroids obtained by using the cell culture substrate of the present invention containing the polyimide resin can be applied to fields such as regenerative medicine and drug discovery. It will be easy.
  • polyimide resin a polyimide resin containing a structural unit represented by the following formula (I) can be exemplified. Further, from the viewpoint of good spheroid formation, a resin having a fluorine atom in the molecule is preferable, and a fluorine-containing polyimide (fluorine-containing polyimide resin) is more preferable.
  • the polyimide resin used in the present invention is typically obtained by imidizing a polyamic acid obtained by polymerizing one or more kinds of acid dianhydride and diamine.
  • the polyimide resin may contain polyamic acid as part of its chemical structure.
  • a method for producing the polyimide resin it may be produced by a known method. As an example, the two-stage synthesis method can be used.
  • the two-stage synthesis method of a polyimide resin is a method of synthesizing a polyamic acid as a precursor and converting the polyamic acid into a polyimide.
  • the polyamic acid as a precursor may be a polyamic acid derivative.
  • the polyamic acid derivative include a polyamic acid salt, a polyamic acid alkyl ester, a polyamic acid amide, a polyamic acid derivative from bismethylidene pyromeride, a polyamic acid silyl ester, and a polyamic acid isoimide.
  • the polyimide consists of acid anhydrides such as pyromellitic dianhydride, biphenyltetracarboxylic dianhydride, and benzophenonetetracarboxylic dianhydride, and diamines such as oxydiamine, paraphenylenediamine, metaphenylenediamine, and benzophenonediamine.
  • Polyimide can be exemplified.
  • the resin having a fluorine atom include 4,4'-hexafluoroisopropyridene diphthalic acid anhydride (6FDA) / 1,4-bis (aminophenoxy) benzene (TPEQ) copolymer, 6FDA / 1,3.
  • TPER -Bis (4-aminophenoxy) benzene copolymer
  • 6FDA / 4,4'-oxydiphthalic acid anhydride (ODPA) / TPEQ copolymer 4,4'-(4,4'-isopropyridene Phenoxy) diphthalic acid (BPADA) / 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane (HFBAPP), 6FDA / 2,2-bis (4- (4-aminophenoxy) phenyl) propane
  • a fluorine-containing polyimide resin containing a structural unit represented by the following formula (I) such as a (BAPP) copolymer; an ethylene-tetrafluoroethylene copolymer or the like can be exemplified.
  • X 0 represents either an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group, or a divalent organic group
  • Y represents a divalent organic group
  • Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , and Z 6 independently indicate either a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
  • p is 0 or 1.
  • the chemical structure represented by the formula (I) may be different or the same for each constituent unit of the resin. It is preferable that at least one of X 0 , Y, Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , and Z 6 contains one or more fluorine atoms.
  • the divalent organic group represented by X 0 include an alkylene group, an arylene group, an aryleneoxy group, an arylentio group and the like. Further, it may be a fused ring type divalent hydrocarbon group, a heterocyclic fused ring type divalent hydrocarbon group, and these oxy groups and thio groups. Among these, an alkylene group, an aryleneoxy group and an arylenthio group are preferable, an alkylene group and an aryleneoxy group are more preferable, and these may be substituted with a fluorine atom.
  • the alkylene group has, for example, 1 to 12 carbon atoms, preferably 1 to 6 carbon atoms.
  • Examples of the alkylene group substituted with a fluorine atom, which is an example of X 0 include -C (CF 3 ) 2- , -C (CF 3 ) 2- C (CF 3 ) 2-, and the like. ..
  • alkylene groups which are examples of X 0 , ⁇ C (CF 3 ) 2 ⁇ is preferable.
  • arylene group which is an example of X 0 , for example, the following can be exemplified.
  • Examples of the arylene oxy group which is an example of X 0 , include the following.
  • arylentio group which is an example of X 0 , for example, the following can be exemplified.
  • the divalent organic group represented by X 0 is selected from the group consisting of b-2 to b-10 and c-2 to c-10. It may be selected from the group consisting of b-7 to b-9 and c-7 to c-9, and may have a structure represented by b-8.
  • arylene group is an example of X 0, arylene group and Arirenchio groups are each independently a halogen atom (e.g., fluorine atom, chlorine atom, bromine atom, iodine atom, preferably fluorine atom or chlorine It may be substituted with a group selected from the group consisting of an atom, more preferably a fluorine atom), a methyl group and a trifluoromethyl group.
  • the number of these substituents may be plural, and in that case, the types of the substituents may be the same or different from each other.
  • Suitable substituents substituted with an arylene group, an aryleneoxy group and an arylentio group are a fluorine atom and / or a trifluoromethyl group, preferably a fluorine atom.
  • the arylene group, the aryleneoxy group and the arylentio group are preferably substituted with at least one fluorine atom when Y does not contain a fluorine atom.
  • the divalent organic group represented by Y is not particularly limited, and examples thereof include a divalent organic group having an aromatic ring. Specifically, a group consisting of one benzene ring or a group having a structure in which two or more benzene rings are directly bonded via a carbon atom (that is, a single bond or an alkylene group), an oxygen atom, or a sulfur atom. Can be mentioned. Specifically, the following groups can be exemplified.
  • the above-mentioned divalent organic group having an aromatic ring which is an example of Y, is a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, preferably a fluorine atom or a chlorine atom, if substitutable. , More preferably a fluorine atom), may be substituted with a group selected from the group consisting of a methyl group and a trifluoromethyl group.
  • the number of these substituents may be plural, and in that case, the types of the substituents may be the same or different from each other.
  • a suitable substituent substituting a divalent organic group having an aromatic ring is preferably a fluorine atom and / or a trifluoromethyl group, particularly when X 0 does not contain a fluorine atom, and is more preferable. Is a fluorine atom.
  • Y is a structure selected from the group consisting of d-3, d-9, e-1 to e-4, f-6, and f-7 in the above formula (I).
  • the structure is preferably e-1, e-3 or e-4.
  • Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , and Z 6 may be the same or different from each other, and each of them independently has a hydrogen atom and a fluorine atom. , Chlorine atom, bromine atom or iodine atom, and if at least one of X 0 and Y does not contain a fluorine atom, at least one of Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , and Z 6 .
  • One is preferably a fluorine atom.
  • the divalent organic group represented by X 0 in the above formula (I) is ⁇ C (CF 3 ) 2- , the above b-2-b. Selected from the group consisting of -10 and c-2 to c-10; and from the group consisting of d-3, d-9, e-1 to e-4, f-6, and f-7. Be selected.
  • the divalent organic group represented by X 0 is ⁇ C (CF 3 ) 2- , b-7 to b-9 and c-7 to. Selected from the group consisting of c-9; and Y is selected from the group consisting of e-1, e-3 and e-4.
  • the polyimide resin composed of the structural unit represented by the above formula (I) can be obtained by a method of calcining a polyamic acid obtained by polymerizing an acid dianhydride and a diamine.
  • the imidization rate of the above-mentioned "polyimide resin composed of the structural unit represented by the formula (I)" does not have to be 100%. That is, the polyimide resin composed of the structural units represented by the formula (I) may be composed of only the structural units represented by the above formula (I), but as long as the objective effect of the present invention is not impaired.
  • a structural unit in which the cyclic imide structure remains as an amic acid without dehydration ring closure may be partially contained.
  • the polyamic acid synthesis reaction is carried out in an organic solvent.
  • the organic solvent used in the polyamic acid synthesis reaction is not particularly limited as long as the reaction between the acid dianhydride as the raw material and the diamine can proceed efficiently and is inert to these raw materials. ..
  • N-methylpyrrolidone N, N-dimethylacetamide, N, N-dimethylformamide, tetrahydrofuran, dimethyl sulfoxide, sulfolane, methyl isobutyl ketone, acetonitrile, benzonitrile, nitrobenzene, nitromethane, acetone, methyl ethyl ketone, isobutyl ketone.
  • Polar solvents such as methanol; non-polar solvents such as toluene and xylene. Above all, it is preferable to use a polar solvent. These organic solvents may be used alone or as a mixture of two or more.
  • the reaction mixture after the amidation reaction may be directly subjected to thermal imidization.
  • concentration of the polyamic acid in the solution is not particularly limited, but is preferably 5% by weight or more from the viewpoint of the polymerization reactivity of the obtained resin, the viscosity after the polymerization, and the ease of handling in the subsequent film formation and firing. It is more preferably 10% by weight or more, preferably 50% by weight or less, and more preferably 40% by weight or less.
  • the viscosity of the resin composition is not particularly limited, but can be measured according to the method described in Examples described later, and is, for example, 1 to 20 Pa ⁇ s, preferably 3 to 15 Pa ⁇ s at 23 ° C. It is within the range.
  • the polyamic acid is imidized by either thermal imidization or chemical imidization to obtain a resin containing a fluorine-containing polyimide.
  • the polyamic acid is imidized (thermally imidized) by heat treatment to obtain a resin containing a fluorine-containing polyimide.
  • the polyimide obtained by thermal imidization has no possibility of residual catalyst and is more preferable for cell culture applications.
  • the polyamic acid When imidizing by thermal imidization, for example, the polyamic acid is placed in air, more preferably in an atmosphere of an inert gas such as nitrogen, helium, or argon, or in vacuum, preferably at a temperature of 50 to 400 ° C. , More preferably 100 to 380 ° C., preferably 0.1 to 10 hours, more preferably 0.2 to 5 hours, to carry out an imidization reaction to obtain a resin containing polyimide.
  • an inert gas such as nitrogen, helium, or argon
  • the polyamic acid to be subjected to the thermal imidization reaction is preferably in the form of being dissolved in a suitable solvent.
  • the solvent may be any one that dissolves polyamic acid, and the above-mentioned solvent for the polyamic acid synthesis reaction can also be used.
  • the polyamic acid can be directly imidized in a suitable solvent by using the dehydration cyclization reagent described later.
  • the dehydration cyclization reagent can be used without particular limitation as long as it has an action of chemically dehydrating and cyclizing polyamic acid to form polyimide.
  • the imidization can be efficiently promoted by using the tertiary amine compound alone or in combination with the tertiary amine compound and the carboxylic acid anhydride. Is preferable.
  • tertiary amine compound examples include trimethylamine, triethylamine, tripropylamine, tributylamine, pyridine, 1,4-diazabicyclo [2.2.2] octane (DABCO), and 1,8-diazabicyclo [5.4.
  • pyridine, DABCO, N, N, N', N'-tetramethyldiaminomethane are preferable, and DABCO is more preferable.
  • the tertiary amine may be only one kind or two or more kinds.
  • carboxylic acid anhydride examples include acetic anhydride, trifluoroacetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride, succinic anhydride, maleic anhydride and the like.
  • acetic anhydride and trifluoroacetic anhydride are particularly preferable, and acetic anhydride is more preferable.
  • the carboxylic acid anhydride may be only one kind or two or more kinds.
  • a polar solvent having excellent solubility is preferable.
  • tetrahydrofuran, N, N-dimethylacetamide, N, N-dimethylformamide, N-methylpyrrolidone, dimethyl sulfoxide and the like can be mentioned, and among these, N, N-dimethylacetamide, N, N-dimethylformamide and N are particularly mentioned.
  • -It is preferable that at least one selected from the group consisting of methylpyrrolidone is used from the viewpoint of uniform reaction.
  • the weight average molecular weight of the polyimide resin is, for example, 5000 to 2000000, preferably 8000 to 1000000, and more preferably 20000 to 500000.
  • the weight average molecular weight of the resin can be measured according to the method described in Examples described later, and when the weight average molecular weight is within the above range, the synthesis and handling of the polyimide resin, film formation, and spheroids The formability becomes better.
  • the cell-adhesive surface may further contain additive components such as a plasticizer and an antioxidant in addition to the above-mentioned substance exhibiting cell adhesion.
  • the cell adhesive surface may be all or a part of the layer as long as the surface in contact with the cells is the cell adhesive surface.
  • a substance exhibiting cell adhesion may be formed by being physically or chemically fixed or arranged on the surface of a layer, or the layer itself may be composed of a substance exhibiting cell adhesion. ..
  • the immobilization of the substance on the surface is a method of drying the solution containing these on the surface of the base material, a method of melting and crimping the substance, and curing the substance applied to the base material with an energy ray such as UV.
  • Method a method of causing a chemical reaction (for example, a condensation reaction between functional groups such as a carboxyl group and an amino group) between a functional group of the substance and a functional group on a base material to form a covalent bond.
  • a chemical reaction for example, a condensation reaction between functional groups such as a carboxyl group and an amino group
  • it can be immobilized on the surface of the base material by a method of bonding the thiol group of the substance and a thin metal (platinum, gold, etc.) formed in advance on the base material.
  • the thickness at the time of immobilization is not particularly limited, and 0.01 to 1000 ⁇ m is exemplified.
  • the substance is cast, spray coated, dip coated, spin coated, rolled on a release sheet (for example, an organic polymer film such as a polyethylene base material, ceramics, metal, glass, etc.) whose surface has been peeled off.
  • a release sheet for example, an organic polymer film such as a polyethylene base material, ceramics, metal, glass, etc.
  • a layer made of such a substance can be formed into a sheet.
  • the cell adhesion surface (layer having the cell adhesion surface) can be formed without undergoing plasma treatment or using a photosensitive component.
  • the cell adhesion surface (layer having a cell adhesion surface) may be a surface (layer) that has not been plasma-treated, and is formed of a non-photosensitive component [for example, a non-photosensitive resin (resin composition)]. It may be a surface (layer).
  • the cell-adhesive substance or cell-adhesive surface [hydrophobic (particularly non-superhydrophobic hydrophobic) cell-adhesive substance or cell-adhesive surface] preferably has a static water contact angle of 70 ° or more.
  • the roll angle may be 15 ° or more
  • the static water contact angle may be 70 ° or more
  • the fall angle may be 15 ° or more.
  • the static water contact angle is more preferably 75 ° or more (for example, more than 75 °), still more preferably 77 ° or more, still more preferably 79 ° or more, and more. More preferably, it is 80 ° or more (for example, more than 80 °), and the upper limit of the static water contact angle is, for example, less than 150 °, preferably 120 ° or less (for example, less than 120 °), and more preferably. It is 110 ° C. or lower, more preferably 100 ° C. or lower (for example, less than 99 ° C., 98 ° C. or lower, 97 ° C. or lower, 95 ° C.
  • the cell adhesion substance or cell adhesion surface [hydrophilic (particularly hydrophilic (particularly non-superhydrophilic) hydrophilic substance or cell adhesion surface] has a static water contact angle of 65 ° or less, more preferably 55. It may have ° or less, more preferably 50 ° or less.
  • the lower limit value may be 0 ° or more, preferably 5 ° or more, and more preferably 10 ° or more.
  • the falling angle is higher in the order of 18 ° or more, 19 ° or more, 20 ° or more, 22 ° or more, 24 ° or more, 26 ° or more, 28 ° or more, and 30 ° or more.
  • the upper limit of the fall angle is, for example, less than 80 °, preferably 70 ° or less (for example, less than 70 °), more preferably 60 ° or less (for example, less than 60 °), and further preferably 50 °.
  • the static water contact angle and the fall angle may be values measured by the following method.
  • Equipment Automatic contact angle meter (Kyowa Interface Science: DM-500) Measuring method: Measure the adhesion angle of the droplet immediately after dropping 2 ⁇ L of water on the surface (non-cell adhesive surface or cell adhesive surface) or film (film formed of non-cell adhesive or cell adhesive substance). (Measurement temperature: 25 ° C).
  • Equipment Automatic contact angle meter (Kyowa Interface Science: DM-500) Measuring method: After dropping 25 ⁇ L of water on a surface (non-cell adhesive surface or cell adhesive surface) or a film (film formed of non-cell adhesive or cell adhesive substance), the substrate is continuously tilted.
  • the fall angle is defined as the angle at which the cells flow down (measurement temperature: 25 ° C).
  • the fine pattern surface of the cell non-adhesive substance exhibits adhesiveness, it may be less adhesive than the cell adhesive surface.
  • the static water contact angle used as an index, the static water contact angle on the cell adhesive surface (or cell adhesive substance) and the fine pattern surface (or cell non-adhesive substance) of the cell non-adhesive substance.
  • the difference is preferably 3 ° or more (for example, 5 ° or more), more preferably 10 ° or more (for example, 12 ° or more), and further preferably 15 ° or more. preferable.
  • the upper limit can be appropriately selected depending on the combination of hydrophobicity and hydrophilicity of the cell non-adhesive substance (surface) and the cell adhesive substance (surface), and is not particularly limited, but for example, 100 °, 90 °, It may be 80 °, 70 °, 60 °, 50 °, 40 °, 30 ° and the like.
  • the resin constituting the cell adhesive surface may further contain additive components such as a plasticizer and an antioxidant.
  • the thickness of the cell culture substrate of the present invention is not particularly limited, but is preferably 1 to 1000 ⁇ m, more preferably 10 to 1000 ⁇ m from the viewpoint of handleability.
  • the sheet area is also not particularly limited, and examples thereof include 0.01 to 10000 cm 2 , preferably 0.03 to 5000 cm 2 .
  • the cell culture substrate thus obtained can be used as it is, but from the viewpoint of being installed and used as it is in a known cell culture device, it may be appropriately sized according to the size of the target device.
  • a medium containing cells may be placed on one of the surfaces to carry out cell culture, and the cell culture substrate may be used as a culture plate, each well of the plate, a culture nest (culture dish), a flask, a culture bag, or the like. It can be housed and fixed in a housing, and cell culture can be carried out on a part or the entire surface of the fixed sheet.
  • the cell culture substrate of the present invention has the above-mentioned structure, it is not necessary to perform a filling operation or a defoaming operation for each section at the time of cell seeding, and cell culture can be efficiently performed.
  • the cell culture substrate is vibrated to the extent that it is taken out from the culture chamber, for example, the cultured cells on the substrate are adhered to the portion where the fine pattern of the cell non-adhesive substance is not formed, so that the observation during culture is performed.
  • the cell culture substrate of the present invention can form a fine pattern (furthermore, a cell adhesive surface) regardless of a reaction such as hardening, it can be obtained by using such a cell substrate.
  • the safety of cultured cells is high.
  • the surface of the base material for cell culture has a predetermined pattern, it is possible that the portion to which the cells can adhere is exposed in a uniform shape, so that a uniform culture can be obtained.
  • a culture having a variation (SD) in size of 0.35 times or less, preferably 0.33 times or less of the average value can be obtained.
  • SD variation
  • the cell culture substrate of the present invention does not change with time and can be made stable, the quality of the culture obtained by using such a cell culture substrate is also high. It will be good.
  • a method for producing the cell culture substrate of the present invention a method including a step of printing a non-cell adhesive substance on a layer having a cell adhesive surface to form a fine pattern can be mentioned.
  • a known printing method can be used to form a fine pattern.
  • the printing method include microcontact printing method, spin coating method, casting method, roll coating method, die coating method, gravure coating method, spray coating method, bar coating method, flexographic printing method, dip coating method, nanoimprint method, and the like.
  • a patterning method in which a desired substance is injected into the gap by the capillary force generated in the gap of the uneven structure formed on the surface of the base material can be used.
  • a transfer mold having a fine pattern may be used for printing.
  • the method for preparing the transfer type There is no particular limitation on the method for preparing the transfer type.
  • a method of preparing a known transfer type such as an elastomer stamp can be mentioned.
  • the desired shape as described above is prepared on an elastomer sheet such as a silicone material by using a known processing machine and directly microfabricated, and the master substrate subjected to microfabrication is molded with an elastomer. There is a method to take.
  • a substrate having a desired shape as described above prepared by using a known processing machine is used as a master mold, and an elastomer resin solution is introduced therein and cured, and then the master mold is used.
  • the one obtained by peeling off is used as a duplicate type.
  • the duplicate type will have an inverted shape of a desired shape.
  • the duplicated mold is subjected to surface treatment if necessary, the resin solution is introduced again and cured, and then the duplicated mold is peeled off to prepare a transfer mold having a desired shape. ..
  • olefin resins eg polyethylene, polypropylene
  • polyester resins eg polyethylene terephthalates
  • polycarbonate resins acrylic resins (eg polymethyl (meth) acrylates
  • acrylic resins eg polymethyl (meth) acrylates
  • styrene resins eg polystyrene
  • polyethers eg polyethers
  • Resins such as ketones, polyetheretherketones, and silicone-based resins; natural rubbers, rubbers such as EPDM; glass; metal materials such as stainless steel; ceramics, etc. These include mechanical strength and dimensional stability. Since it has transparency and the like, it can be preferably used.
  • the processing machine used for shape processing on a substrate is not particularly limited, and for example, an apparatus used for cutting with a drill, photolithography, inkjet printing, screen printing, and laser patterning method is used. Specific examples thereof include a fine excavation machine and a laser machine.
  • a silicone material can be preferably used from the viewpoint of transfer mold releasability.
  • a curable silicone material such as silicone rubber, a curable silicone rubber oligomer or silicone monomer that becomes a silicone resin, or a curable silicone resin oligomer or monomer is preferable, and a curable polysiloxane is more preferable.
  • the curable silicone material a material called liquid silicone is usually used, and from the viewpoint of excellent peelability and mechanical strength, a two-component mixed type used in combination with a curing agent is preferable.
  • the curable polysiloxane may be a one-component curing type or a two-component curing type, and may be a thermosetting type or a room temperature curing type.
  • the curable silicone material include, for example, alkylsiloxane, alkenylsiloxane, alkylalkenylsiloxane, and polyalkylhydroxanesiloxane, and among them, a two-component mixed system of alkylalkenylsiloxane and polyalkylhydroxanesiloxane is low. Those that cure at room temperature are preferable in terms of viscosity and processability.
  • defoaming treatment or the like may be performed according to a known method, if necessary.
  • Examples of the surface treatment for taking the transfer duplication mold include a treatment of forming a non-adhesive surface so as to facilitate mold release and improve transfer uniformity.
  • a treatment in which a metal (Au, Pt, Ag, Ti, Al, Cr, Pd, etc.), carbon, or the like is deposited on the surface and then coated can be mentioned. ..
  • a treatment for reducing the remaining reactive functional groups may be performed.
  • the fine pattern of the non-cell adhesive substance is contacted (adhered) to a layer having a cell adhesive surface for printing.
  • a fine pattern can be formed with a thin film with high accuracy.
  • a known post-treatment step such as drying the obtained cell culture substrate may be included for the purpose of fixing the non-cell adhesive substance to the layer having the cell adhesive surface.
  • the present invention also provides a method for culturing cells, which comprises a step of culturing cells using the cell culture substrate of the present invention.
  • any organ or tissue (brain, liver, pancreas, spleen, heart, lung, intestine, cartilage, bone, fat, kidney, nerve) of humans or non-human animals (monkeys, pigs, dogs, rats, mice, etc.) , Skin, bone marrow, embryo, etc.), established established cells, or cells subjected to genetic manipulation or the like can be used. Further, it may be an insect cell, a plant cell, a microorganism, or the like.
  • pluripotent stem cells ES cells, iPS cells
  • somatic stem cells somatic stem cells
  • mesenchymal stem cells hematopoietic stem cells
  • cancer stem cells cancer stem cells and other undifferentiated stem cells
  • progenitor cells thereof are used.
  • ES cells pluripotent stem cells
  • somatic stem cells somatic stem cells
  • mesenchymal stem cells mesenchymal stem cells
  • hematopoietic stem cells hematopoietic stem cells
  • cancer stem cells and other undifferentiated stem cells progenitor cells thereof
  • progenitor cells thereof are used.
  • progenitor cells thereof are used.
  • cells derived from digestive system organs such as liver cells and pancreatic cells
  • cardiovascular organs such as kidney cells, nervous system cells, and myocardial cells
  • binding tissues such as fat cells and skin dermis.
  • epithelial cells derived from epithelial tissues such as skin epidermis, bone cells, chondrogenic cells, cells derived from eye tissues such as retina, vascular cells, hematogenous cells, germline cells, etc.
  • Cells can also be used.
  • cancerous cells can also be used.
  • Yeast, Escherichia coli, Bacillus subtilis, coryneform bacteria, lactic acid bacteria and the like can also be used. As such cells, one type of cell can be used alone, or two or more types of cells can be mixed and used in an arbitrary ratio.
  • the conditions for cell culture are not particularly limited as long as the base material for cell culture of the present invention is used.
  • the medium to be used may be appropriately selected according to the cells.
  • an arbitrary cell culture basal medium, a special medium developed for the target cells, a differentiation medium, a primary culture medium, or the like can be used.
  • EMEM Eagle's Small Essential Medium
  • DMEM Dulbecco's Modified Eagle's Medium
  • GMEM Grassgo MEM
  • IMDM IMDM
  • RPMI1640 Ham F-12
  • MCDB Medium Williams Medium E, Hepatocyte thick medium , And a mixed medium thereof and the like.
  • Any medium containing the components necessary for cell proliferation and differentiation can be used.
  • a medium to which serum, various growth factors, differentiation-inducing factors, antibiotics, hormones, amino acids, sugars, salts and the like are added may be used.
  • the culture temperature is not particularly limited, but it is usually about 25 to 40 ° C.
  • one aspect of the present invention is a method for producing spheroids, which comprises a step of culturing cells using the cell culture substrate of the present invention. it can.
  • the obtained spheroid contains a large amount of cells, it can be used for research on development and regeneration of various tissues / organs, application to regenerative medicine, toxicity test in the field of drug discovery, etc.
  • the diameter of the obtained spheroid is not particularly limited, and is, for example, 10 to 1000 ⁇ m, preferably 10 to 800 ⁇ m.
  • room temperature means 20 to 30 ° C.
  • Example 1 Preparation of 6FDA / TPEQ polyamic acid
  • 14.882 g (50.9 mmol) of 1,4-bis (aminophenoxy) benzene, 4,4'-hexafluoroisopropyridene diphthalic anhydride 22.618 g (50.9 mmol) and 212.5 g of N-methylpyrrolidone were charged.
  • a fluoropolyamic acid resin composition (solid content concentration: 15.0% by mass) was obtained by aging for 6 days after stirring at room temperature for 2 hours in a nitrogen atmosphere.
  • the weight average molecular weight of the polyamic acid was 157,000 and the viscosity (23 ° C.) was 7 Pa ⁇ s.
  • the weight average molecular weight of the polyamic acid and the weight average molecular weight of the fluorine-containing polyimide after firing are substantially the same.
  • the fluorine-containing polyamic acid resin composition obtained above was applied onto a glass substrate using a die coater so that the thickness of the fluorine-containing polyimide film after firing was 40 ⁇ m to form a coating film. Then, the coating film was calcined at 360 ° C. for 1 hour in a nitrogen atmosphere. Then, the fired product was peeled off from the glass substrate to obtain a fluorine-containing polyimide film.
  • the static water contact angle of this fluorine-containing polyimide film was 83.4 °, and the fall angle was 20.2 °.
  • the method for measuring the physical properties in the above is as follows. (Measurement of weight average molecular weight) Equipment: HCL-8220GPC manufactured by Tosoh Corporation Column: TSKgel Super AWM-H Eluent (LiBr ⁇ H2O, NMP containing phosphoric acid): 0.01 mol / L Measuring method: A 0.5% by weight solution is prepared with an eluent, and the molecular weight is calculated based on a calibration curve prepared with polystyrene.
  • Equipment Automatic contact angle meter (Kyowa Interface Science: DM-500) Measuring method: After 25 ⁇ L of water is dropped on the film, the base material is continuously tilted, and the angle at which it flows down is defined as the falling angle (measurement temperature: 25 ° C.).
  • ⁇ Making a pattern transfer type> Using a micro excavation machine (manufactured by PMT Co., Ltd. (Fukuoka)), a 0.7 mm thick polymethylmethacrylate (PMMA) plate with a diameter of 300 ⁇ m [corresponding to the width (minimum width) of the cell adhesion site in this example. ], A master mold was made by excavating a fine pattern structure so that the circles would be staggered at a pitch (the shortest distance between the center of the circle and the center of the adjacent circle) of 500 ⁇ m. The shortest distance between the gaps in the pattern is 200 ⁇ m.
  • PDMS polydimethylsiloxane room temperature curable resin solution
  • Pt vapor deposition was performed on the surface of the obtained duplicate mold so that the thickness was 6 nm. Then, apply PEG-SH solution (2 mM PTE-200SH, manufactured by Nichiyu) so as to cover the Pt surface, react for 30 minutes in a light-shielded state, and then immerse the PDMS replica type in 40-50% EtOH solution. Unreacted PEG-SH was removed, immersed in milliQ water for washing, and then dried to PEG-modify to form a non-adhesive surface. The obtained PDMS type was washed and dried to remove unreacted PEG-SH, and a PDMS replication type (PEG-modified PDMS replication type) was completed.
  • PEG-SH solution 2 mM PTE-200SH, manufactured by Nichiyu
  • the fine pattern area of the MPC polymer was 61%, the exposed area of the fluorine-containing polyimide film was 39%, and the thickness of the fine pattern was 0.04 ⁇ m (manufactured by Keyence: laser microscope).
  • the ratio of the average circle equivalent diameter (average height / average circle equivalent diameter) of the circles exposed on the fluorine-containing polyimide film was 1.3 ⁇ 10 -4 .
  • Test Example 1 Human adipose derived stem cells (ADSC, Ronza: PT-5006) were cultured in KBM-ADSC-2 medium (manufactured by Kojin Bio) containing 5% FBS and 1% antibiotics, and 2.5 A cell suspension was prepared to a concentration of ⁇ 10 5 cells / mL.
  • ⁇ Making spheroids> The patterned cell culture substrate prepared above was placed on the cell culture surface of a 35 mm petri dish as it was without defoaming, and 0.2 mL of the cell suspension prepared above was seeded (5.0 ⁇ 10 4 cells / petri dish). ), 1 hour later, 3.5 mL of KBM-ADSC-2 medium was added, and the cells were placed in a 5% (v / v) CO 2 incubator at 37 ° C. and cultured (day 0 of culture). By injecting the suspension into a petri dish, it was confirmed that the cells could be uniformly seeded in each pattern without dispensing. Culturing was carried out until the 14th day without changing the medium.
  • ⁇ Spheroid morphology evaluation> The spheroids were photographed on the 8th and 14th days of the culture, and the circle-equivalent diameter of the spheroids was analyzed using the image analysis software WinROOF (manufactured by Mitani Corporation). The obtained spheroids had high size uniformity (culture day 8: average circle equivalent diameter 125.9 ⁇ m, SD 33.5 ⁇ m, culture day 14: average circle equivalent diameter 126.1 ⁇ m, SD 29.4 ⁇ m). Therefore, by using the cell culture substrate of the present invention, a uniform and large amount of spheroids could be stably and easily obtained. Further, after the imaging, the spheroid could be easily desorbed from the base material by sending the culture solution to the petri dish, and it was easy to recover it.
  • HCT116 cells human colon cancer cell line, RIKEN: RCB2979
  • spheroids were prepared in the same manner as in Example 1.
  • As the culture medium a serum medium in which 10% FBS was added to DMEM basal medium (manufactured by Gibco) was used.
  • spheroids (7th day of culture: average circle equivalent diameter 239 ⁇ m, SD 21 ⁇ m) retained (adhered) on the patterned cell culture substrate may appear as the culture progresses. It was observed that it was confirmed that the cells could be cultured on the cell culture substrate of the present invention even if the cell types were different.
  • Test Example 3 Spheroids were prepared in the same manner as in Test Example 1 except that primary rat hepatocytes (seed density: 1.0 ⁇ 10 5 cells / petri dish) were used as cells and DMEM + supplement medium (serum-free) was used as the medium.
  • primary rat hepatocytes seed density: 1.0 ⁇ 10 5 cells / petri dish
  • DMEM + supplement medium serum-free
  • spheroids (7 days of culture: average circle equivalent diameter 160 ⁇ m, SD 32 ⁇ m) retained (adhered) to the patterned cell culture substrate may appear as the culture progresses. It was observed that it was confirmed that the cells could be cultured on the cell culture substrate of the present invention even if the cell types were different.
  • the cell culture substrate of the present invention can be easily prepared and the cell culture work itself can be efficiently performed, it is suitably used in the field of cell preparations such as spheroid-containing preparations, for example. be able to.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Virology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

Provided are a cell culture substrate that can be prepared easily and also permits cell culture to be carried out efficiently, a method for producing the substrate, a method for culturing cells using the substrate, and a method for producing spheroids using the substrate. A cell culture substrate having a layer that has a cell adhesive surface, and a fine pattern of a cell non-adhesive material provided on the surface of the layer, the cell adhesive surface being the cell culture surface. Additionally, a method for producing a cell culture substrate, the method including a step for printing a cell non-adhesive material to form a fine pattern on a layer having a cell adhesive surface.

Description

細胞培養用基材Substrate for cell culture
 本発明は、細胞培養用基材に関する。より詳しくは、本発明は、細胞培養用基材、その製造方法、該基材を用いる細胞の培養方法、及び該基材を用いるスフェロイドの製造方法に関する。 The present invention relates to a base material for cell culture. More specifically, the present invention relates to a cell culture base material, a method for producing the same, a method for culturing cells using the base material, and a method for producing a spheroid using the base material.
 近年、様々な加工表面を有する基材で細胞培養を行なう技術が注目されている。 In recent years, a technique for culturing cells on a substrate having various processed surfaces has attracted attention.
 例えば、特許文献1には、疎水性の基材上で、特定構造の分岐ポリアルキレングリコール誘導体を含む感光性組成物を硬化させることで、親水性の架橋体が形成される一方で該基材上に疎水性領域が複数露出することになって、該疎水性領域にて均一な大きさのスフェロイドが得られることが記載されている。また、特許文献2では、感光性樹脂組成物の樹脂膜を基材に形成させる技術において、感光性基としてアジド基を有する水溶性高分子を含有する樹脂組成物を用いて、該アジド基を基材表面のアミノ基に結合させ、必要に応じて所望のパターンに露光するなどして基材が露出した部位のみに細胞が接着する培養基材を調製している。 For example, in Patent Document 1, a hydrophilic crosslinked body is formed by curing a photosensitive composition containing a branched polyalkylene glycol derivative having a specific structure on a hydrophobic substrate, while the substrate is formed. It is described that a plurality of hydrophobic regions are exposed on the surface, and spheroids having a uniform size can be obtained in the hydrophobic regions. Further, in Patent Document 2, in a technique for forming a resin film of a photosensitive resin composition on a substrate, a resin composition containing a water-soluble polymer having an azide group as a photosensitive group is used to form the azide group. A cultured base material is prepared in which cells adhere only to the exposed portion of the base material by binding to an amino group on the surface of the base material and exposing it to a desired pattern as needed.
 特許文献3では、細胞培養床となり得る、円形、多角形または楕円形の小領域を、親水性かつ細胞非親和性ポリマーで処理された支持体表面に、プラズマ処理等を用いた微細パターン化によって基材表面を露出させて形成した培養基材が開示されている。 In Patent Document 3, a small circular, polygonal, or elliptical region that can be a cell culture bed is finely patterned on a support surface treated with a hydrophilic and cell-incompatible polymer by plasma treatment or the like. A culture substrate formed by exposing the surface of the substrate is disclosed.
特開2009-278960号公報JP-A-2009-278960 特許第4373260号Patent No. 4373260 特許第4336756号Patent No. 4336756
 しかしながら、細胞接着性表面の上に、細胞非接着性領域を形成して培養基材とする概念は従来なかった。 However, there has been no concept of forming a non-cell adhesive region on a cell adhesive surface to use as a culture medium.
 また、従来技術の方法においては、例えば、感光性組成物を用いる場合、その硬化に触媒を使用することになり、残存した触媒や反応が不完全な組成物が培養物に影響を及ぼす畏れがある。また、プラズマ処理を用いるパターニングは、装置準備やプラズマ処理後にポリマー層の除去が必要となるため、煩雑なものである。よって、更なる改良が望まれている。 Further, in the method of the prior art, for example, when a photosensitive composition is used, a catalyst is used for curing the photosensitive composition, and there is a fear that the remaining catalyst or the composition with an incomplete reaction affects the culture. is there. Further, patterning using plasma treatment is complicated because it is necessary to remove the polymer layer after equipment preparation and plasma treatment. Therefore, further improvement is desired.
 本発明は、新規な細胞培養用基材を提供することを目的とする。 An object of the present invention is to provide a novel base material for cell culture.
 また、本発明は、簡便に調製することができ、細胞培養も効率的に行なうことが可能な、細胞培養用基材、その製造方法、該基材を用いる細胞の培養方法、及び該基材を用いるスフェロイドの製造方法を提供することを目的とする。 In addition, the present invention can be easily prepared and cell culture can be efficiently performed, a cell culture substrate, a method for producing the same, a method for culturing cells using the substrate, and the substrate. It is an object of the present invention to provide a method for producing a spheroid using.
 本発明者らは、上記目的を達成するために鋭意検討した結果、感光性組成物やプラズマ発生装置などの特殊な装置を用いることなく、細胞培養面となるベースに細胞接着性の層を用い、かかる層の表面に細胞非接着性物質で微細パターンを形成することによって、新規な細胞培養用基材を提供できること、また、このような細胞培養用基材は、その組成や製法の選択等によっては、培養基材の調製が簡便になるだけでなく、得られる細胞やスフェロイドの均一性が向上しうること等を見出し、更なる検討を行って本発明を完成するに至った。 As a result of diligent studies to achieve the above object, the present inventors used a cell adhesion layer as a base to be a cell culture surface without using a special device such as a photosensitive composition or a plasma generator. By forming a fine pattern on the surface of such a layer with a non-cell adhesive substance, a new cell culture substrate can be provided, and such a cell culture substrate can be selected for its composition, manufacturing method, etc. In some cases, it was found that not only the preparation of the culture substrate can be simplified but also the uniformity of the obtained cells and spheroids can be improved, and further studies have been carried out to complete the present invention.
 即ち、本発明は、下記〔1〕~〔16〕に関する。
〔1〕 細胞接着性表面を有する層と、該層の表面に設けられた細胞非接着性物質の微細パターンを有し、前記細胞接着性表面が細胞培養面である、細胞培養用基材。
〔2〕 細胞接着性表面を有する層が細胞接着性を示す物質で構成される、前記〔1〕記載の基材。
〔3〕 細胞接着性表面がポリイミド樹脂を含む、前記〔1〕又は〔2〕記載の基材。
〔4〕 細胞非接着性物質が、エチレングリコール、2-メタクリロイルオキシエチルホスホリルコリン、ヒドロキシエチルメタクリレート及びそれらの誘導体、あるいは、それらの重合体[それらを少なくとも重合成分とする重合体(例えば、単独又は共重合体)]、ならびに、セグメント化ポリウレタン及びその誘導体;アルブミン、アガロース、ならびにセルロースから選ばれる、前記〔1〕~〔3〕のいずれかに記載の基材。
〔5〕 微細パターンが、複数の単位形状で構成されるパターン、又は、隣り合う単位形状間の間隙で構成されるパターンである、前記〔1〕~〔4〕のいずれかに記載の基材。
〔6〕 微細パターンが、メッシュ状、ドット状、ストライプ状、ハニカム状、及びこれらの逆パターンから選ばれる模様である、前記〔1〕~〔5〕のいずれかに記載の基材。
〔7〕 間隙の最短距離が1μm以上である、前記〔5〕又は〔6〕に記載の基材。
〔8〕 単位形状の平均円相当径が1000μm以下である、前記〔5〕~〔7〕のいずれかに記載の基材。
〔9〕 隣り合う単位形状に対応する真円間の中心間距離が1500μm以下である、前記〔5〕~〔8〕のいずれかに記載の基材。
〔10〕 微細パターンの厚みが10μm以下である、前記〔1〕~〔9〕のいずれかに記載の基材。
〔11〕 微細パターンが、マイクロコンタクトプリンティング法、スピンコーティング法、キャスティング法、ロールコーティング法、ダイコーティング法、グラビアコーティング法、スプレイコーティング法、バーコーティング法、フレキソ印刷法、ディップコーティング法、インクジェット法、及び、ベース材表面に形成された凹凸構造の間隙に生じる毛細管力によって所望の物質を間隙内に注入して形成するパターニング法からなる群より選択される方法により形成される、前記〔1〕~〔10〕のいずれかに記載の基材。
〔12〕 微細パターンが、基材表面中、5%以上を占める、前記〔1〕~〔11〕のいずれかに記載の基材。
〔13〕 1~1000μmの厚みを有する、前記〔1〕~〔12〕のいずれかに記載の基材。
〔14〕 細胞接着性表面を有する層に、細胞非接着性物質を印刷して微細パターンを形成する工程を含む、細胞培養用基材の製造方法。
〔15〕 前記〔1〕~〔13〕のいずれかに記載の基材を用いて細胞を培養する工程を含む、細胞の培養方法。
〔16〕 前記〔1〕~〔13〕のいずれかに記載の基材を用いて細胞を培養する工程を含む、スフェロイドの製造方法。
That is, the present invention relates to the following [1] to [16].
[1] A cell culture substrate having a layer having a cell adhesive surface and a fine pattern of a non-cell adhesive substance provided on the surface of the layer, and the cell adhesive surface is a cell culture surface.
[2] The base material according to the above [1], wherein the layer having a cell adhesion surface is composed of a substance exhibiting cell adhesion.
[3] The base material according to the above [1] or [2], wherein the cell adhesion surface contains a polyimide resin.
[4] The cell non-adhesive substance is ethylene glycol, 2-methacryloyloxyethyl phosphorylcholine, hydroxyethyl methacrylate and derivatives thereof, or polymers thereof [polymers containing them at least as a polymerization component (for example, alone or together). Polymer)], and segmented polyurethane and derivatives thereof; the substrate according to any one of [1] to [3] above, which is selected from albumin, agarose, and cellulose.
[5] The base material according to any one of [1] to [4] above, wherein the fine pattern is a pattern composed of a plurality of unit shapes or a pattern composed of gaps between adjacent unit shapes. ..
[6] The base material according to any one of [1] to [5] above, wherein the fine pattern is a pattern selected from a mesh shape, a dot shape, a stripe shape, a honeycomb shape, and an inverse pattern thereof.
[7] The base material according to the above [5] or [6], wherein the shortest distance of the gap is 1 μm or more.
[8] The base material according to any one of [5] to [7] above, wherein the average circle-equivalent diameter of the unit shape is 1000 μm or less.
[9] The base material according to any one of [5] to [8] above, wherein the distance between the centers of perfect circles corresponding to adjacent unit shapes is 1500 μm or less.
[10] The base material according to any one of [1] to [9] above, wherein the thickness of the fine pattern is 10 μm or less.
[11] The fine pattern is microcontact printing method, spin coating method, casting method, roll coating method, die coating method, gravure coating method, spray coating method, bar coating method, flexographic printing method, dip coating method, inkjet method, [1] to the above, which are formed by a method selected from the group consisting of a patterning method formed by injecting a desired substance into the gap by the capillary force generated in the gap of the uneven structure formed on the surface of the base material. The base material according to any one of [10].
[12] The substrate according to any one of [1] to [11] above, wherein the fine pattern occupies 5% or more of the surface of the substrate.
[13] The base material according to any one of [1] to [12] above, which has a thickness of 1 to 1000 μm.
[14] A method for producing a base material for cell culture, which comprises a step of printing a non-cell adhesive substance on a layer having a cell adhesive surface to form a fine pattern.
[15] A method for culturing cells, which comprises a step of culturing cells using the substrate according to any one of [1] to [13] above.
[16] A method for producing a spheroid, which comprises a step of culturing cells using the substrate according to any one of [1] to [13] above.
 本発明では、新規な細胞培養用基材を提供しうる。
 このような本発明の細胞培養用基材の一態様では、簡便に調製することができ、かつ、細胞培養の作業自体も効率的に行なうことが可能となる。
The present invention can provide a novel cell culture substrate.
In such an aspect of the cell culture substrate of the present invention, it can be easily prepared and the cell culture work itself can be efficiently performed.
 また、本発明の細胞培養用基材の別の態様では、予め脱泡処理を施すことなく細胞培養に使用することができる。
 また、本発明の別の態様では、接着させて培養するにもかかわらず、培養した細胞を容易に回収できる細胞培養基材を提供しうる。
 また、本発明の細胞培養用基材のさらに別の態様では、所望のサイズの細胞(スフェロイド)を効率よく製造しうる。
 本発明の細胞培養用基材は、微細パターンにより細胞培養部位が区画分けされているため、この区画に応じた所望のサイズの細胞を効率よく得やすい。特に、パターンの形状(規則)を適宜選択することで、所望のサイズで、均一な(サイズないし粒径の揃った)細胞を効率よく得ることもできる。細胞のサイズを所望のものにできることで、不良なもの(例えば、大きくなりすぎたもの、スフェロイドの中心において酸素欠乏したもの等)の産生を抑えたり、細胞の種類に応じた機能の均一化(例えば、薬効を揃える等)等の点で有利である。
 しかも、前記のように、脱泡処理を経ることなく細胞培養できたり、得られた細胞の回収を簡便に行うこともでき、総じて細胞培養を効率よく行うことができる。そのため、本発明の細胞培養基材によれば、本来、両立しがたい、効率よい細胞培養と、所望のサイズ(さらには均一なサイズ)の細胞の取得とを両立しうる。
Further, in another aspect of the cell culture substrate of the present invention, it can be used for cell culture without prior defoaming treatment.
Further, in another aspect of the present invention, it is possible to provide a cell culture substrate capable of easily recovering the cultured cells even though they are adhered and cultured.
Moreover, in still another aspect of the cell culture substrate of the present invention, cells (spheroids) of a desired size can be efficiently produced.
In the cell culture substrate of the present invention, since the cell culture site is divided by a fine pattern, it is easy to efficiently obtain cells of a desired size according to this division. In particular, by appropriately selecting the shape (rule) of the pattern, it is possible to efficiently obtain cells having a desired size and uniform (size or particle size). By making the cell size the desired size, it is possible to suppress the production of defective cells (for example, those that have grown too large, those that lack oxygen in the center of spheroids, etc.), and to homogenize the functions according to the cell type (for example, those that are deficient in oxygen at the center of the spheroid). For example, it is advantageous in terms of (equalizing the medicinal effects, etc.).
Moreover, as described above, the cells can be cultured without undergoing the defoaming treatment, and the obtained cells can be easily collected, so that the cell culture can be efficiently performed as a whole. Therefore, according to the cell culture substrate of the present invention, it is possible to achieve both efficient cell culture, which is originally incompatible, and acquisition of cells of a desired size (further, a uniform size).
 また、本発明のさらに別の態様の細胞培養用基材を用いることで、所望のサイズや均一性の高い細胞やスフェロイドを安全に調製することができ、ひいては、細胞の品質管理が容易になるという優れた効果を奏することができる。 Further, by using the cell culture substrate of still another aspect of the present invention, cells and spheroids having a desired size and high uniformity can be safely prepared, and thus cell quality control becomes easy. It can produce an excellent effect.
図1は、本発明の細胞培養用基材における微細パターンの一例の模式図を示した図である。FIG. 1 is a diagram showing a schematic diagram of an example of a fine pattern in the cell culture substrate of the present invention. 図2は、実施例1の細胞培養用基材における微細パターンの写真である。FIG. 2 is a photograph of a fine pattern in the cell culture substrate of Example 1. 図3は、実施例1の細胞培養用基材を用いてヒト脂肪由来幹細胞を培養した細胞形態(培養期間:8日)の写真である。FIG. 3 is a photograph of a cell morphology (culture period: 8 days) in which human adipose-derived stem cells were cultured using the cell culture substrate of Example 1. 図4は、実施例1の細胞培養用基材を用いてヒト脂肪由来幹細胞を培養した細胞形態(培養期間:14日)の写真である。FIG. 4 is a photograph of a cell morphology (culture period: 14 days) in which human adipose-derived stem cells were cultured using the cell culture substrate of Example 1. 図5は、実施例1の細胞培養用基材を用いてHCT116細胞(ヒト大腸菌癌細胞株)を培養した細胞形態(培養期間:7日)の写真である。FIG. 5 is a photograph of the cell morphology (culture period: 7 days) in which HCT116 cells (human Escherichia coli cancer cell line) were cultured using the cell culture substrate of Example 1. 図6は、実施例1の細胞培養用基材を用いて初代ラット肝細胞を培養した細胞形態(培養期間:7日)の写真である。FIG. 6 is a photograph of the cell morphology (culture period: 7 days) in which primary rat hepatocytes were cultured using the cell culture substrate of Example 1.
 本発明の細胞培養用基材は、細胞接着性表面を有する層と該層の表面に設けられた細胞非接着性物質の微細パターンを有し、該微細パターンが存在しない細胞接着性表面が細胞培養面となるものであり、該細胞培養面で細胞を接着して培養することができる。本発明の細胞培養用基材は、細胞接着性表面を有する層に、細胞非接着性物質の微細パターンのマスクを有するものであるとも言える。 The cell culture substrate of the present invention has a layer having a cell adhesive surface and a fine pattern of a cell non-adhesive substance provided on the surface of the layer, and the cell adhesive surface in which the fine pattern does not exist is a cell. It serves as a culture surface, and cells can be adhered and cultured on the cell culture surface. It can be said that the cell culture substrate of the present invention has a mask having a fine pattern of a non-cell adhesive substance on a layer having a cell adhesive surface.
 本発明における微細パターンは、複数の単位形状で構成される場合と、隣り合う単位形状間の間隙に相当する形状で構成される場合を含み、細胞非接着性物質で形成されている。例えば、細胞非接着性物質の微細パターンが単位形状で構成される場合は、単位形状間の間隙となる部分に細胞接着性表面が露出する。細胞非接着性物質の微細パターンが隣り合う単位形状間の間隙に相当する形状で構成される場合は、単位形状となる部分に細胞接着性表面が露出する。また、図1に本発明の細胞培養用基材の一例を模式的に示すが(1が単位形状、2が間隙)、1が細胞非接着性物質の微細パターン、2が細胞接着性表面である態様と、1が細胞接着性表面、2が細胞非接着性物質の微細パターンである態様とが例示される。なお、ここでいう単位形状とは、単位パターン、単位型ともいう。 The fine pattern in the present invention includes a case where it is composed of a plurality of unit shapes and a case where it is composed of a shape corresponding to a gap between adjacent unit shapes, and is formed of a cell non-adhesive substance. For example, when the fine pattern of the cell non-adhesive substance is composed of unit shapes, the cell adhesive surface is exposed in the gap between the unit shapes. When the fine pattern of the cell non-adhesive substance is composed of a shape corresponding to a gap between adjacent unit shapes, the cell adhesive surface is exposed at the portion of the unit shape. Further, FIG. 1 schematically shows an example of the cell culture substrate of the present invention (1 is a unit shape, 2 is a gap), 1 is a fine pattern of a non-cell adhesive substance, and 2 is a cell adhesive surface. One embodiment is exemplified by 1 being a cell-adhesive surface and 2 being a fine pattern of a non-cell-adhesive substance. The unit shape referred to here is also referred to as a unit pattern or a unit type.
 単位形状は、その形状に特に制限はなく、直線で構成されるもの、曲線で構成されるもの、面で構成されるもの、それらが組み合わさって構成されるものなどが含まれる。 The unit shape is not particularly limited, and includes those composed of straight lines, those composed of curved lines, those composed of surfaces, and those composed by combining them.
 具体的には、例えば、多角形、楕円形、円形、扇形などで構成されるものが挙げられ、これらは2種以上を組み合わせて一つの単位型を構成してもよい。多角形としては、六角形、五角形、四角形(例えば、正方形、長方形、平行四辺形、ひし形、台形を含む)、三角形、星型などが含まれ、円形としては円のほか、略円形も含まれる。前記単位形状は、微細パターンを形成することができれば複数の単位型が同じ大きさを有するものであっても、異なる大きさを有するものであってもよい。 Specifically, for example, those composed of polygons, ellipses, circles, fans, etc. may be mentioned, and these may be combined with two or more types to form one unit type. Polygons include hexagons, pentagons, quadrilaterals (including, for example, squares, rectangles, parallelograms, diamonds, and trapezoids), triangles, and stars, and circles include circles as well as approximately circles. .. The unit shape may have a plurality of unit types having the same size or different sizes as long as a fine pattern can be formed.
 例えば、領域(区画)を有する単位形状の場合、該単位形状の平均円相当径(最大直径)は、1000μm以下のものが挙げられ、900μm以下であっても、800μm以下であってもよい。下限は、細胞が培養できるのであれば細胞の種類に応じて適宜設定することができる。例えば、30μmが挙げられる。また、隣り合う細胞同士の会合を防ぐ理由から、隣り合う単位形状に対応する真円間の中心間距離が、例えば、1500μm以下、好ましくは1000μm以下、より好ましくは800μm以下であってもよい。 For example, in the case of a unit shape having a region (section), the average circle equivalent diameter (maximum diameter) of the unit shape may be 1000 μm or less, and may be 900 μm or less or 800 μm or less. The lower limit can be appropriately set according to the type of cells as long as the cells can be cultured. For example, 30 μm can be mentioned. Further, for the reason of preventing the association of adjacent cells, the distance between the centers of the perfect circles corresponding to the adjacent unit shapes may be, for example, 1500 μm or less, preferably 1000 μm or less, and more preferably 800 μm or less.
 単位形状が線形である場合には、その幅は、隣接する細胞が産生する液性因子の相互作用を受けられるようにする理由から、10mm以下が好ましく、8mm以下がより好ましく、5mm以下が更に好ましい。下限は、細胞が培養できるのであれば細胞の種類に応じて適宜設定することができ、例えば、5μmが挙げられる。 When the unit shape is linear, its width is preferably 10 mm or less, more preferably 8 mm or less, and further 5 mm or less, for the reason that it allows the interaction of humoral factors produced by adjacent cells. preferable. The lower limit can be appropriately set according to the type of cells as long as the cells can be cultured, and examples thereof include 5 μm.
 また、隣り合う単位形状間の間隙は、細胞同士の相互作用の理由から、最短距離として1μm以上のものが挙げられ、5μm以上であっても、10μm以上であってもよい。上限は、細胞が培養できるのであれば細胞の種類に応じて適宜設定することができ、例えば、100mmが挙げられる。 In addition, the gap between adjacent unit shapes may be 1 μm or more as the shortest distance due to the interaction between cells, and may be 5 μm or more or 10 μm or more. The upper limit can be appropriately set according to the type of cells as long as the cells can be cultured, and examples thereof include 100 mm.
 微細パターンが形成する模様としては、例えば、円形が並んだドット状や多角形が点在する模様の他、ハニカム状、格子状(メッシュ状)、うろこ状、幾何学模様、ストライプ状、放射状、またはそれらの逆パターンから選ばれる形状などが例示される。前記パターンに連続性や対称性があっても、連続性や対称性のない任意の模様でもよい。 The patterns formed by the fine patterns include, for example, a pattern in which circular dots and polygons are scattered, a honeycomb shape, a grid shape (mesh shape), a scale shape, a geometric pattern, a stripe shape, and a radial pattern. Alternatively, a shape selected from those reverse patterns is exemplified. The pattern may have continuity or symmetry, or may be any pattern without continuity or symmetry.
 微細パターンの平均高さ(平均厚み)は、10000nm以下が好ましく、1000nm以下がより好ましく、500nm以下が更に好ましい。
 微細パターンの平均高さ(平均厚み)の下限値は、微細パターンを形成できる限り、特に限定されないが、例えば、1nm、2nm、3nm、5nm、10nm、15nm、20nm、25nm、30nm等であってもよい。
 また、単位形状が細胞非接着性物質である場合と露出した細胞接着性表面である場合のいずれにおいても、微細パターンの平均高さと単位形状の平均円相当径の比(平均高さ/平均円相当径)は、0.5以下となるものが好ましく、0.1以下がより好ましく、0.01以下が更に好ましい。下限は、細胞が配列培養できるのであれば細胞の種類に応じて適宜設定することができる。例えば、0.00001が挙げられる。
 細胞培養用基材では、細胞接着性部位[露出した細胞接着性部位(細胞接着性表面のうち、微細パターンが形成されていない部位)]が、細胞培養部位(例えば、図1において、1が細胞非接着性物質の微細パターンである場合には2が細胞接着性部位であり、2が細胞非接着性物質の微細パターンである場合には1が細胞接着性部位)となる。
 このような細胞接着性部位は、細胞接着性表面が微細パターンで区切(仕切)られた部分ということができる。
 細胞接着性部位の最小幅[例えば、単位形状が細胞非接着である場合には隣接する単位形状の間隙の最小長さ(最短長さ)、単位形状が細胞接着性である場合には単位形状の最小径(最短径)]は、培養する細胞の大きさや得ようとする細胞(スフェロイド)の大きさに応じて選択できるが、例えば、10μm以上(例えば、15μm以上)、好ましくは20μm以上(例えば、30μm以上)、さらに好ましくは50μm以上(例えば、80μm以上)等であってもよく、100μm以上等であってもよい。
 細胞接着性部位の最小幅は、例えば、2000μm以下、1500μm以下、1200μm以下、1000μm以下、900μm以下、800μm以下、700μm以下等であってもよい。
The average height (average thickness) of the fine pattern is preferably 10000 nm or less, more preferably 1000 nm or less, and further preferably 500 nm or less.
The lower limit of the average height (average thickness) of the fine pattern is not particularly limited as long as the fine pattern can be formed, but is, for example, 1 nm, 2 nm, 3 nm, 5 nm, 10 nm, 15 nm, 20 nm, 25 nm, 30 nm and the like. May be good.
In addition, the ratio of the average height of the fine pattern to the average circle equivalent diameter of the unit shape (average height / average circle) regardless of whether the unit shape is a cell non-adhesive substance or an exposed cell adhesion surface. The equivalent diameter) is preferably 0.5 or less, more preferably 0.1 or less, and even more preferably 0.01 or less. The lower limit can be appropriately set according to the type of cells as long as the cells can be arranged and cultured. For example, 0.00001 can be mentioned.
In the cell culture substrate, the cell adhesion site [exposed cell adhesion site (the site of the cell adhesion surface where no fine pattern is formed)] is the cell culture site (for example, 1 in FIG. 1). In the case of a fine pattern of a non-cell adhesive substance, 2 is a cell adhesion site, and in the case of a fine pattern of a non-cell adhesion substance, 1 is a cell adhesion site).
Such a cell adhesion site can be said to be a portion where the cell adhesion surface is divided (partitioned) by a fine pattern.
Minimum width of cell adhesion site [For example, the minimum length (shortest length) of the gap between adjacent unit shapes when the unit shape is non-cell adhesion, and the unit shape when the unit shape is cell adhesion. The minimum diameter (shortest diameter)] can be selected according to the size of the cells to be cultured and the size of the cells (spheroids) to be obtained, but for example, 10 μm or more (for example, 15 μm or more), preferably 20 μm or more ( For example, it may be 30 μm or more), more preferably 50 μm or more (for example, 80 μm or more), or 100 μm or more.
The minimum width of the cell adhesion site may be, for example, 2000 μm or less, 1500 μm or less, 1200 μm or less, 1000 μm or less, 900 μm or less, 800 μm or less, 700 μm or less, and the like.
 基材表面における細胞非接着性物質の微細パターンの占める割合は、好ましくは5%以上、より好ましくは10%以上、更に好ましくは15%以上である。基材表面における細胞非接着性物質の微細パターンの占める割合の上限値は、特に限定されないが、例えば、95%、90%、80%、70%等であってもよい。 The proportion of the fine pattern of the cell non-adhesive substance on the surface of the base material is preferably 5% or more, more preferably 10% or more, still more preferably 15% or more. The upper limit of the proportion of the fine pattern of the cell non-adhesive substance on the surface of the substrate is not particularly limited, but may be, for example, 95%, 90%, 80%, 70% or the like.
 微細パターンは、その表面が細胞非接着性の表面となればよく、例えば、細胞非接着性物質が微細パターン表面に物理的又は化学的に固定されて形成されたものでもよく、微細パターンそのものが細胞非接着性物質からなるものであってもよい。微細パターンの形成方法は特に限定されないが、例えば、感光性の樹脂組成物を硬化して形成したり、プラズマ処理等によって所望のパターンに露光して形成することもできるが、硬化に用いる触媒が残存して細胞に影響を及ぼしたり、プラズマ処理を施す場合にはプラズマ発生装置が必要である他、プラズマ処理によって形成されたパターンは経時的に変化して不安定であったり、除去しきれなかったポリマーが細胞に影響を及ぼしたりすることから、また、脱泡処理が簡便あるいは不要となる観点から、次の方法が好ましい。具体的には、例えば、マイクロコンタクトプリント法、スピンコーティング法、キャスティング法、ロールコーティング法、ダイコーティング法、グラビアコーティング法、スプレイコーティング法、バーコーティング法、フレキソ印刷法、ディップコーティング法、ナノインプリント法、インクジェット法の他、ベース材表面に形成された凹凸構造の間隙に生じる毛細管力によって所望の物質を間隙内に注入して形成するパターニング法などを用いることができる。これらは、公知の条件に従って実施することができる。具体的には、例えば、所望の微細パターン形状を有する転写型を公知の方法に従って作製し、該転写型のパターン面に細胞非接着性物質を接触させ、細胞接着性表面を有する層の表面に該パターン面を印刷(転写)して形成することができる。かかる方法に従って作製された微細パターンを有する細胞培養用基材は、前記効果の他、経時的な安定性に優れるという効果も奏する。
 このように、微細パターンは、プラズマ処理を経たり、感光性成分を用いることなく、形成できる。
 そのため、微細パターンは、プラズマ処理されていないパターンであってもよく、非感光性成分[例えば、感光性でない樹脂(樹脂組成物)]で形成されたパターンであってもよい。
The fine pattern may be formed by physically or chemically fixing the non-cell adhesive substance to the surface of the fine pattern, as long as the surface thereof is a non-cell adhesive surface, and the fine pattern itself may be formed. It may consist of a non-cell adhesive substance. The method for forming the fine pattern is not particularly limited, and for example, it can be formed by curing a photosensitive resin composition or by exposing it to a desired pattern by plasma treatment or the like, but the catalyst used for curing may be used. A plasma generator is required to remain and affect the cells, or to perform plasma treatment, and the pattern formed by plasma treatment changes over time and becomes unstable or cannot be completely removed. The following method is preferable from the viewpoint that the polymer may affect the cells and that the defoaming treatment is simple or unnecessary. Specifically, for example, micro contact printing method, spin coating method, casting method, roll coating method, die coating method, gravure coating method, spray coating method, bar coating method, flexographic printing method, dip coating method, nanoimprint method, In addition to the inkjet method, a patterning method in which a desired substance is injected into the gap by the capillary force generated in the gap of the uneven structure formed on the surface of the base material can be used. These can be carried out according to known conditions. Specifically, for example, a transfer mold having a desired fine pattern shape is prepared according to a known method, and a non-cell adhesive substance is brought into contact with the pattern surface of the transfer mold to form a surface of a layer having a cell adhesion surface. The pattern surface can be printed (transferred) to form the pattern surface. In addition to the above-mentioned effects, the cell culture substrate having a fine pattern produced according to such a method also has an effect of being excellent in stability over time.
As described above, the fine pattern can be formed without undergoing plasma treatment or using a photosensitive component.
Therefore, the fine pattern may be a pattern that has not been plasma-treated, or may be a pattern formed of a non-photosensitive component [for example, a non-photosensitive resin (resin composition)].
 細胞非接着性物質としては、培養に用いる細胞が接着しないか、又は用いる細胞の細胞膜に存在するたんぱく質や糖鎖等の細胞表面分子に対して結合しない物質であれば特に限られず用いることができ、生体適合性を有するものであっても、有さないものであってもよい。また、疎水性を示すものであっても親水性を示すものであってもよく、例えば、超撥水性(超疎水性)のものや超親水性のものであってもよい。細胞の非接着性、スフェロイドの均一性および形成性等の観点から、疎水性(特に超疎水性)[例えば、疎水性又は親水性(特に疎水性)の細胞接着性表面又は当該表面を構成する樹脂(さらにはその接触角)に対してより疎水性(特に超疎水性)]のものが特に好ましいが、親水性(特に超親水性)[例えば、親水性又は疎水性(例えば、疎水性)の細胞接着性表面又は当該表面を構成する樹脂(さらにはその接触角)に対してより親水性(特に超親水性)]を示す物質も好ましい。
 このような物質の一例を示すと、エチレングリコール及びその誘導体、MPC(2-メタクリロイルオキシエチルホスホリルコリン)及びその誘導体、HEMA(ヒドロキシエチルメタクリレート)及びその誘導体等を含む化合物あるいはそれら化合物の重合体、SPC(セグメント化ポリウレタン)及びその誘導体等を含む化合物や、生体から取得されたタンパク質(アルブミン等)、細胞が接着しない糖鎖(アガロース、セルロース等)を、細胞の種類に応じて適宜選択して用いることができる。なかでも、細胞接着性表面との接着性の観点から、または、細胞培養用基材の製造工程を簡素化できる観点から、または得られる細胞又はスフェロイドの均一性が向上する観点等から、MPC及びその誘導体あるいはそれらの重合体が好ましい。
 なお、物質は、取扱性、所望の疎水性(例えば、超疎水性)・親水性(例えば、超親水性)の程度等に応じて、適宜、変性したものを使用してもよい。例えば、親水性の物質を架橋処理等することで、親水性と水に対する低溶解性を両立させてもよい。また、原料となる物質(例えば、疎水性又は親水性)を、適宜、疎水化処理ないし親水化処理(例えば、疎水性基ないし親水性基の導入等)し、所望の疎水性ないし親水性の材質を得てもよい。
 細胞非接着性物質(又は微細パターン、非接着性分子)は、分解性の成分(例えば、光及び/又は熱に応答して分解する成分)であってもよい。このような成分で細胞非接着性物質(又は微細パターン)を形成すると、段階的なパターンの追加や培養経過中のパターン形状の変更等も可能となりうる。
The cell non-adhesive substance is not particularly limited as long as it does not adhere to the cells used for culturing or does not bind to cell surface molecules such as proteins and sugar chains present in the cell membrane of the cells used. , It may or may not have biocompatibility. Further, it may be hydrophobic or hydrophilic, and may be, for example, superhydrophobic (superhydrophobic) or superhydrophilic. From the viewpoint of cell non-adhesiveness, spheroid uniformity and formability, etc., it constitutes a hydrophobic (particularly superhydrophobic) [for example, a hydrophobic or hydrophilic (particularly hydrophobic) cell-adhesive surface or the surface thereof. More hydrophobic (particularly superhydrophobic) to the resin (and its contact angle)] is particularly preferred, but hydrophilic (particularly superhydrophilic) [eg, hydrophilic or hydrophobic (eg, hydrophobic)). A substance that is more hydrophilic (particularly superhydrophilic) to the cell-adhesive surface of the above or the resin (further, the contact angle thereof) constituting the surface is also preferable.
Examples of such substances include ethylene glycol and its derivatives, MPC (2-methacryloyloxyethyl phosphorylcholine) and its derivatives, HEMA (hydroxyethyl methacrylate) and its derivatives, compounds containing them, and polymers of these compounds, SPC. Compounds containing (segmented polyurethane) and its derivatives, proteins (albumin, etc.) obtained from living organisms, and sugar chains (agarose, cellulose, etc.) to which cells do not adhere are appropriately selected and used according to the type of cells. be able to. Among them, MPC and from the viewpoint of adhesion to the cell adhesion surface, from the viewpoint of simplifying the manufacturing process of the cell culture substrate, or from the viewpoint of improving the uniformity of the obtained cells or spheroids, etc. The derivatives or polymers thereof are preferred.
The substance may be appropriately modified according to the handleability, the desired degree of hydrophobicity (for example, superhydrophobicity), hydrophilicity (for example, superhydrophilicity), and the like. For example, hydrophilicity and low solubility in water may be achieved at the same time by cross-linking a hydrophilic substance. Further, the raw material (for example, hydrophobic or hydrophilic) is appropriately hydrophobized or hydrophilized (for example, introduction of a hydrophobic group or a hydrophilic group) to obtain the desired hydrophobic or hydrophilic property. The material may be obtained.
The cell non-adhesive substance (or fine pattern, non-adhesive molecule) may be a degradable component (eg, a component that decomposes in response to light and / or heat). When a cell non-adhesive substance (or a fine pattern) is formed from such a component, it may be possible to add a pattern step by step or change the pattern shape during the culture process.
 また、細胞非接着性物質の微細パターン表面は、形成される細胞組織体のサイズを均一にしたり、円形度を向上させる観点から、その表面特性として、例えば、後述する静的水接触角を指標として判断することができる。例えば、前記したような物質で形成された疎水性表面である場合、静的水接触角は好ましくは90°以上、より好ましくは93°以上、更に好ましくは95°以上となる。また、150°以下となってもよく、好ましくは130°以下、より好ましくは120°以下である。
 一方、親水性表面である場合、静的水接触角は好ましくは65°以下、より好ましくは55°以下、更に好ましくは50°以下となる。また、0°以上となってもよく、好ましくは5°以上、より好ましくは10°以上である。
 一例を挙げると、疎水性が高いMPC(又は当該MPCで形成された表面)では、静的水接触角が、例えば、90°以上、100°以上のような静的水接触角を実現しうる。
 なお、このような静的水接触角は、細胞非接着性表面における値であってもよく、細胞非接着性を示す物質(又は細胞非接着性表面を構成する物質)における値であってもよい。
Further, the fine pattern surface of the cell non-adhesive substance has, for example, a static water contact angle described later as an index as its surface characteristics from the viewpoint of making the size of the formed cell tissue uniform and improving the circularity. Can be judged as. For example, in the case of a hydrophobic surface formed of the above-mentioned substance, the static water contact angle is preferably 90 ° or more, more preferably 93 ° or more, still more preferably 95 ° or more. Further, it may be 150 ° or less, preferably 130 ° or less, and more preferably 120 ° or less.
On the other hand, in the case of a hydrophilic surface, the static water contact angle is preferably 65 ° or less, more preferably 55 ° or less, still more preferably 50 ° or less. Further, it may be 0 ° or more, preferably 5 ° or more, and more preferably 10 ° or more.
As an example, in a highly hydrophobic MPC (or a surface formed by the MPC), a static water contact angle such as 90 ° or more and 100 ° or more can be realized. ..
It should be noted that such a static water contact angle may be a value on a cell non-adhesive surface, or may be a value on a substance exhibiting cell non-adhesion (or a substance constituting a cell non-adhesive surface). Good.
 細胞接着性の表面とは、例えば、培養に用いる溶液中において、細胞が当該表面上に沈降した場合に、当該細胞が、ある一定の接着点を持って接着することである。または、ピペッティング等の液流等によって剥離可能な程度に固定化されるように接着する表面のことである。また、細胞が接着して二次元的に維持又は増殖されるような表面ではなく、層状やスフェロイド状等の立体的な又は三次元の組織体を形成することが可能な程度に接着する表面を挙げることができる。かかる表面は、例えば、細胞接着性を示す物質がベース材表面に物理的又は化学的に固定又は配置されて形成されたものでも、ベース材そのものが細胞接着性を示す物質からなるものであってもよい。また、微細パターンが印刷(転写)等で形成されやすいように、凹凸のない平滑な表面であってもよい。細胞接着性表面を有する層は、その表面が少なくとも細胞接着性を示す物質で構成されていればよい。 The cell-adhesive surface is, for example, that when cells settle on the surface in a solution used for culturing, the cells adhere to each other with a certain adhesion point. Alternatively, it is a surface to be adhered so as to be fixed to such an extent that it can be peeled off by a liquid flow such as pipetting. In addition, a surface that adheres to the extent that it is possible to form a three-dimensional or three-dimensional tissue such as a layered or spheroid, rather than a surface on which cells adhere and maintain or proliferate two-dimensionally. Can be mentioned. Such a surface is formed, for example, by physically or chemically fixing or arranging a substance exhibiting cell adhesion on the surface of the base material, but the base material itself is composed of a substance exhibiting cell adhesion. May be good. Further, a smooth surface having no unevenness may be used so that a fine pattern can be easily formed by printing (transfer) or the like. The layer having a cell adhesion surface may be composed of a substance whose surface exhibits at least cell adhesion.
 細胞接着性を示す物質としては、培養に用いる細胞が接着するか、又は用いる細胞の細胞膜に存在するたんぱく質や糖鎖等の細胞表面分子に対して結合し得る物質であれば特に限られず用いることができる。親水性を示すものであっても疎水性を示すものであってもよいが、細胞接着性やスフェロイドの形成性等の観点から、親水性(特に、超親水性ではない親水性)又は疎水性(特に、超疎水性ではない疎水性)のものが好ましく、更に好ましくは、疎水性を示すものが好ましい。また、細胞接着性を示す物質の接着性の程度は、細胞が細胞培養面から外れない程度であってもよい。このような物質の一例を挙げると、生体から取得され若しくは合成された物質が挙げられ、例えば、タンパク質(コラーゲン、フィブロネクチン、ラミニン等)や、合成樹脂(フッ素樹脂、ポリイミド樹脂、ポリスルホン、ポリエーテルスルホン、ポリジメチルシロキサン、これらの混合物等)が含まれる。合成樹脂を選択する場合、合成樹脂自体の強度や耐熱性から、取り扱い性に優れる細胞培養用基材を得ることができる。また、生体適合性の観点から、接着性の細胞やスフェロイドが得られる観点から、得られる細胞やスフェロイドの均一性が向上する観点から、または種々の細胞と適度に接着することにより培地交換作業が容易となる観点から、ポリイミド樹脂のような合成樹脂を選択することが好ましい。ポリイミド樹脂のような非生物由来の成分を選択することで、ポリイミド樹脂を含む本発明の細胞培養用基材を用いて得られる細胞やスフェロイドは、再生医療や創薬等の分野への適用が容易となる。 The substance exhibiting cell adhesion is not particularly limited as long as it is a substance that the cells used for culture adhere to or can bind to cell surface molecules such as proteins and sugar chains existing in the cell membrane of the cells used. Can be done. It may be hydrophilic or hydrophobic, but from the viewpoint of cell adhesion, spheroid formation, etc., it is hydrophilic (particularly hydrophilic, not superhydrophilic) or hydrophobic. (In particular, hydrophobic ones that are not superhydrophobic) are preferable, and those exhibiting hydrophobicity are more preferable. Further, the degree of adhesion of the substance exhibiting cell adhesion may be such that the cells do not come off from the cell culture surface. Examples of such substances include substances obtained or synthesized from living organisms, such as proteins (collagen, fibronectin, laminin, etc.) and synthetic resins (fluororesin, polyimide resin, polysulfone, polyethersulfone, etc.). , Polydimethylsiloxane, mixtures thereof, etc.). When a synthetic resin is selected, a cell culture substrate having excellent handleability can be obtained from the strength and heat resistance of the synthetic resin itself. In addition, from the viewpoint of biocompatibility, from the viewpoint of obtaining adherent cells and spheroids, from the viewpoint of improving the uniformity of the obtained cells and spheroids, or by appropriately adhering to various cells, the medium exchange work can be performed. From the viewpoint of facilitation, it is preferable to select a synthetic resin such as a polyimide resin. By selecting a non-living component such as a polyimide resin, the cells and spheroids obtained by using the cell culture substrate of the present invention containing the polyimide resin can be applied to fields such as regenerative medicine and drug discovery. It will be easy.
 ポリイミド樹脂としては、以下の式(I)で示される構成単位を含むポリイミド樹脂が例示できる。また、スフェロイド形成が良好であるという観点から、分子内にフッ素原子を有する樹脂が好ましく、含フッ素ポリイミド(含フッ素ポリイミド樹脂)がより好ましい。本発明で用いられるポリイミド樹脂は、典型的には、酸二無水物とジアミンとを各々1種以上重合させて得られるポリアミド酸をイミド化することにより得られる。ポリイミド樹脂は、ポリアミド酸を化学構造の一部に含んでいてもよい。ポリイミド樹脂を製造する方法としては、公知の手法で製造すればよい。一例として二段合成法が使用できる。ポリイミド樹脂の二段合成法は前駆体としてポリアミド酸を合成し、ポリアミド酸をポリイミドに変換する方法である。前駆体としてのポリアミド酸はポリアミド酸誘導体であってもよい。ポリアミド酸誘導体としては、例えばポリアミド酸塩、ポリアミド酸アルキルエステル、ポリアミド酸アミド、ビスメチリデンピロメリチドからのポリアミド酸誘導体、ポリアミド酸シリルエステル、ポリアミド酸イソイミドなどが挙げられる。ポリイミドとしてはピロメリット酸二無水物、ビフェニルテトラカルボン酸二無水物、ベンゾフェノンテトラカルボン酸二無水物等の酸無水物と、オキシジアミン、パラフェニレンジアミン、メタフェニレンジアミン、ベンゾフェノンジアミン等のジアミンとからなるポリイミドが例示できる。フッ素原子を有する樹脂としては、例えば、4,4’-ヘキサフルオロイソプロピリデンジフタル酸無水物(6FDA)/1,4-ビス(アミノフェノキシ)ベンゼン(TPEQ)共重合体、6FDA/1,3-ビス(4-アミノフェノキシ)ベンゼン(TPER)共重合体、6FDA/4,4’-オキシジフタル酸無水物(ODPA)/TPEQ共重合体、4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸(BPADA)/2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン(HFBAPP)、6FDA/2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン(BAPP)共重合体等の以下の式(I)で示される構成単位を含む含フッ素ポリイミド樹脂;エチレン-テトラフルオロエチレン共重合体等が例示できる。 As the polyimide resin, a polyimide resin containing a structural unit represented by the following formula (I) can be exemplified. Further, from the viewpoint of good spheroid formation, a resin having a fluorine atom in the molecule is preferable, and a fluorine-containing polyimide (fluorine-containing polyimide resin) is more preferable. The polyimide resin used in the present invention is typically obtained by imidizing a polyamic acid obtained by polymerizing one or more kinds of acid dianhydride and diamine. The polyimide resin may contain polyamic acid as part of its chemical structure. As a method for producing the polyimide resin, it may be produced by a known method. As an example, the two-stage synthesis method can be used. The two-stage synthesis method of a polyimide resin is a method of synthesizing a polyamic acid as a precursor and converting the polyamic acid into a polyimide. The polyamic acid as a precursor may be a polyamic acid derivative. Examples of the polyamic acid derivative include a polyamic acid salt, a polyamic acid alkyl ester, a polyamic acid amide, a polyamic acid derivative from bismethylidene pyromeride, a polyamic acid silyl ester, and a polyamic acid isoimide. The polyimide consists of acid anhydrides such as pyromellitic dianhydride, biphenyltetracarboxylic dianhydride, and benzophenonetetracarboxylic dianhydride, and diamines such as oxydiamine, paraphenylenediamine, metaphenylenediamine, and benzophenonediamine. Polyimide can be exemplified. Examples of the resin having a fluorine atom include 4,4'-hexafluoroisopropyridene diphthalic acid anhydride (6FDA) / 1,4-bis (aminophenoxy) benzene (TPEQ) copolymer, 6FDA / 1,3. -Bis (4-aminophenoxy) benzene (TPER) copolymer, 6FDA / 4,4'-oxydiphthalic acid anhydride (ODPA) / TPEQ copolymer, 4,4'-(4,4'-isopropyridene Phenoxy) diphthalic acid (BPADA) / 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane (HFBAPP), 6FDA / 2,2-bis (4- (4-aminophenoxy) phenyl) propane A fluorine-containing polyimide resin containing a structural unit represented by the following formula (I) such as a (BAPP) copolymer; an ethylene-tetrafluoroethylene copolymer or the like can be exemplified.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式(I)中、Xは酸素原子、硫黄原子、カルボニル基、スルホニル基、または2価の有機基のいずれかを示し;
Yは2価の有機基を示し;
、Z、Z、Z、Z、及びZは互いに独立して水素原子、フッ素原子、塩素原子、臭素原子またはヨウ素原子のいずれかを示し、
pは0または1である。
なお、ポリイミド樹脂において、式(I)で示される化学構造は、樹脂の構成単位ごとに異なってもよく、同一であってもよい。X、Y、Z、Z、Z、Z、Z、及びZの少なくとも1つはフッ素原子を1個以上含むことが好ましい。
In formula (I) above, X 0 represents either an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group, or a divalent organic group;
Y represents a divalent organic group;
Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , and Z 6 independently indicate either a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
p is 0 or 1.
In the polyimide resin, the chemical structure represented by the formula (I) may be different or the same for each constituent unit of the resin. It is preferable that at least one of X 0 , Y, Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , and Z 6 contains one or more fluorine atoms.
 上記式(I)中、p=0である場合にはXは存在していなくても(換言すれば、左右のベンゼン環が直接結合していても)よいが、p=1である場合には、左右のベンゼン環はXを介して結合する。 In the above formula (I), when p = 0, X 0 may not exist (in other words, the left and right benzene rings may be directly bonded), but when p = 1. the left and right benzene ring linked via X 0.
 Xで示される2価の有機基としては、具体的には、アルキレン基、アリーレン基、アリーレンオキシ基、アリーレンチオ基等が挙げられる。また、縮合環式の2価の炭化水素基、ヘテロ環縮合環式の2価の炭化水素基、及びこれらのオキシ基、チオ基であってもよい。これらの中でも、アルキレン基、アリーレンオキシ基、アリーレンチオ基が好ましく、アルキレン基、アリーレンオキシ基がより好ましく、これらはフッ素原子で置換されていてもよい。上記アルキレン基の炭素数は、例えば1~12であり、好ましくは1~6である。 Specific examples of the divalent organic group represented by X 0 include an alkylene group, an arylene group, an aryleneoxy group, an arylentio group and the like. Further, it may be a fused ring type divalent hydrocarbon group, a heterocyclic fused ring type divalent hydrocarbon group, and these oxy groups and thio groups. Among these, an alkylene group, an aryleneoxy group and an arylenthio group are preferable, an alkylene group and an aryleneoxy group are more preferable, and these may be substituted with a fluorine atom. The alkylene group has, for example, 1 to 12 carbon atoms, preferably 1 to 6 carbon atoms.
 Xの例であるフッ素原子で置換されたアルキレン基としては、例えば、-C(CF-、-C(CF-C(CF-等を例示することができる。Xの例である上述したアルキレン基の中では、-C(CF-が好適である。 Examples of the alkylene group substituted with a fluorine atom, which is an example of X 0 , include -C (CF 3 ) 2- , -C (CF 3 ) 2- C (CF 3 ) 2-, and the like. .. Among the above-mentioned alkylene groups which are examples of X 0 , −C (CF 3 ) 2− is preferable.
 Xの例であるアリーレン基としては、例えば、以下のものを例示することができる。 As the arylene group which is an example of X 0 , for example, the following can be exemplified.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 Xの例であるアリーレンオキシ基としては、例えば、以下のものを例示することができる。 Examples of the arylene oxy group, which is an example of X 0 , include the following.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 Xの例であるアリーレンチオ基としては、例えば、以下のものを例示することができる。 As the arylentio group which is an example of X 0 , for example, the following can be exemplified.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 基材上にスフェロイドを良好に形成しうるという観点からは、Xで示される2価の有機基としては、上記b-2~b-10およびc-2~c-10からなる群から選択されるものでもよく、上記b-7~b-9およびc-7~c-9からなる群から選択されるものでもよく、b-8で表される構造であってもよい。 From the viewpoint that spheroids can be formed well on the substrate, the divalent organic group represented by X 0 is selected from the group consisting of b-2 to b-10 and c-2 to c-10. It may be selected from the group consisting of b-7 to b-9 and c-7 to c-9, and may have a structure represented by b-8.
 Xの例である上述したアリーレン基、アリーレンオキシ基及びアリーレンチオ基は、各々独立して、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子であり、好ましくはフッ素原子または塩素原子であり、より好ましくはフッ素原子である)、メチル基およびトリフルオロメチル基よりなる群から選択される基により置換されていてもよい。これら置換基は複数であってもよく、その場合には置換基の種類は互いに同一であっても異なっていてもよい。アリーレン基、アリーレンオキシ基およびアリーレンチオ基に置換している好適な置換基は、フッ素原子および/またはトリフルオロメチル基であり、好適にはフッ素原子である。アリーレン基、アリーレンオキシ基およびアリーレンチオ基は、Yにフッ素原子が含まれない場合、少なくとも1つ以上のフッ素原子で置換されることが好ましい。 Above arylene group is an example of X 0, arylene group and Arirenchio groups are each independently a halogen atom (e.g., fluorine atom, chlorine atom, bromine atom, iodine atom, preferably fluorine atom or chlorine It may be substituted with a group selected from the group consisting of an atom, more preferably a fluorine atom), a methyl group and a trifluoromethyl group. The number of these substituents may be plural, and in that case, the types of the substituents may be the same or different from each other. Suitable substituents substituted with an arylene group, an aryleneoxy group and an arylentio group are a fluorine atom and / or a trifluoromethyl group, preferably a fluorine atom. The arylene group, the aryleneoxy group and the arylentio group are preferably substituted with at least one fluorine atom when Y does not contain a fluorine atom.
 上記式(I)中、Yで示される2価の有機基としては、特に制限されないが、例えば、芳香環を有する2価の有機基が挙げられる。詳しくは、1個のベンゼン環からなる基もしくは、2個以上のベンゼン環が炭素原子(すなわち、単結合、またはアルキレン基)、酸素原子、硫黄原子を介してまたは直接結合した構造を有する基が挙げられる。具体的には、以下の基を例示することができる。 In the above formula (I), the divalent organic group represented by Y is not particularly limited, and examples thereof include a divalent organic group having an aromatic ring. Specifically, a group consisting of one benzene ring or a group having a structure in which two or more benzene rings are directly bonded via a carbon atom (that is, a single bond or an alkylene group), an oxygen atom, or a sulfur atom. Can be mentioned. Specifically, the following groups can be exemplified.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 Yの例である上述した芳香環を有する2価の有機基は、置換可能であれば、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子であり、好ましくはフッ素原子または塩素原子、より好ましくはフッ素原子である)、メチル基およびトリフルオロメチル基からなる群から選択される基により置換されていてもよい。これら置換基は複数であってもよく、その場合には置換基の種類は互いに同一であっても異なっていてもよい。芳香環を有する2価の有機基に置換している好適な置換基は、特にXにフッ素原子が含まれない場合は、フッ素原子および/またはトリフルオロメチル基であることが好ましく、より好適にはフッ素原子である。 The above-mentioned divalent organic group having an aromatic ring, which is an example of Y, is a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, preferably a fluorine atom or a chlorine atom, if substitutable. , More preferably a fluorine atom), may be substituted with a group selected from the group consisting of a methyl group and a trifluoromethyl group. The number of these substituents may be plural, and in that case, the types of the substituents may be the same or different from each other. A suitable substituent substituting a divalent organic group having an aromatic ring is preferably a fluorine atom and / or a trifluoromethyl group, particularly when X 0 does not contain a fluorine atom, and is more preferable. Is a fluorine atom.
 スフェロイド形成性の観点から、上記式(I)中、Yはd-3、d-9、e-1~e-4、f-6、およびf-7からなる群から選択される構造であることが好ましく、より好ましくはe-1、e-3またはe-4の構造である。 From the viewpoint of spheroid formation, Y is a structure selected from the group consisting of d-3, d-9, e-1 to e-4, f-6, and f-7 in the above formula (I). The structure is preferably e-1, e-3 or e-4.
 上記式(I)中、Z、Z、Z、Z、Z、及びZは、各々同じであってもよく異なっていてもよく、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子またはヨウ素原子から選ばれ、XおよびYの少なくとも一方にフッ素原子が含まれない場合、Z、Z、Z、Z、Z、およびZの少なくとも1つはフッ素原子であることが好ましい。 In the above formula (I), Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , and Z 6 may be the same or different from each other, and each of them independently has a hydrogen atom and a fluorine atom. , Chlorine atom, bromine atom or iodine atom, and if at least one of X 0 and Y does not contain a fluorine atom, at least one of Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , and Z 6 . One is preferably a fluorine atom.
 スフェロイド形成性の観点から、本発明の好ましい一実施形態では、上記式(I)中、Xで示される2価の有機基が、-C(CF-、上記b-2~b-10およびc-2~c-10からなる群から選択され;かつ、Yが、d-3、d-9、e-1~e-4、f-6、およびf-7からなる群から選択される。本発明のより好ましい一実施形態では、上記式(I)中、Xで示される2価の有機基が、-C(CF-、b-7~b-9およびc-7~c-9からなる群から選択され;かつ、Yが、e-1、e-3およびe-4からなる群から選択される。 From the viewpoint of spheroid formation, in a preferred embodiment of the present invention, the divalent organic group represented by X 0 in the above formula (I) is −C (CF 3 ) 2- , the above b-2-b. Selected from the group consisting of -10 and c-2 to c-10; and from the group consisting of d-3, d-9, e-1 to e-4, f-6, and f-7. Be selected. In a more preferred embodiment of the present invention, in the above formula (I), the divalent organic group represented by X 0 is −C (CF 3 ) 2- , b-7 to b-9 and c-7 to. Selected from the group consisting of c-9; and Y is selected from the group consisting of e-1, e-3 and e-4.
 上記の式(I)で示される構成単位からなるポリイミド樹脂は、酸二無水物とジアミンとの重合により得られるポリアミド酸を焼成する手法により得ることができる。なお、上記「式(I)で示される構成単位からなるポリイミド樹脂」のイミド化率は、100%でなくともよい。すなわち、式(I)で示される構成単位からなるポリイミド樹脂は、上記式(I)で表される構造単位のみからなるものであってもよいが、本発明の目的効果が損なわれない範囲において、環状イミド構造が脱水閉環せずにアミド酸のままである構成単位が一部に含まれていてもよい。 The polyimide resin composed of the structural unit represented by the above formula (I) can be obtained by a method of calcining a polyamic acid obtained by polymerizing an acid dianhydride and a diamine. The imidization rate of the above-mentioned "polyimide resin composed of the structural unit represented by the formula (I)" does not have to be 100%. That is, the polyimide resin composed of the structural units represented by the formula (I) may be composed of only the structural units represented by the above formula (I), but as long as the objective effect of the present invention is not impaired. , A structural unit in which the cyclic imide structure remains as an amic acid without dehydration ring closure may be partially contained.
 ポリアミド酸合成反応は有機溶媒中で行われることが好適である。ポリアミド酸合成反応に用いられる有機溶媒としては、原料である酸二無水物とジアミンとの反応が効率よく進行でき、かつこれらの原料に対して不活性であれば、特に限定されるものではない。例えば、N-メチルピロリドン(NMP)、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、テトラヒドロフラン、ジメチルスルホキシド、スルホラン、メチルイソブチルケトン、アセトニトリル、ベンゾニトリル、ニトロベンゼン、ニトロメタン、アセトン、メチルエチルケトン、イソブチルケトン、メタノール等の極性溶媒;トルエンやキシレン等の非極性溶媒等が挙げられる。中でも、極性溶媒を用いることが好ましい。これらの有機溶媒は、単独で使用されてもよいし、2種以上の混合物として使用されてもよい。アミド化反応後の反応混合物をそのまま熱イミド化に供してもよい。前記溶液中のポリアミド酸の濃度は特に限定されないが、得られる樹脂の重合反応性と重合後の粘度、その後の製膜、焼成での取り扱いやすさの観点から、好ましくは、5重量%以上、より好ましくは10重量%以上、好ましくは50重量%以下、より好ましくは40重量%以下である。前記樹脂組成物の粘度は特に限定されるものではないが、後述の実施例に記載の方法に従って測定することができ、例えば、23℃において1~20Pa・s、好ましくは3~15Pa・sの範囲内である。 It is preferable that the polyamic acid synthesis reaction is carried out in an organic solvent. The organic solvent used in the polyamic acid synthesis reaction is not particularly limited as long as the reaction between the acid dianhydride as the raw material and the diamine can proceed efficiently and is inert to these raw materials. .. For example, N-methylpyrrolidone (NMP), N, N-dimethylacetamide, N, N-dimethylformamide, tetrahydrofuran, dimethyl sulfoxide, sulfolane, methyl isobutyl ketone, acetonitrile, benzonitrile, nitrobenzene, nitromethane, acetone, methyl ethyl ketone, isobutyl ketone. , Polar solvents such as methanol; non-polar solvents such as toluene and xylene. Above all, it is preferable to use a polar solvent. These organic solvents may be used alone or as a mixture of two or more. The reaction mixture after the amidation reaction may be directly subjected to thermal imidization. The concentration of the polyamic acid in the solution is not particularly limited, but is preferably 5% by weight or more from the viewpoint of the polymerization reactivity of the obtained resin, the viscosity after the polymerization, and the ease of handling in the subsequent film formation and firing. It is more preferably 10% by weight or more, preferably 50% by weight or less, and more preferably 40% by weight or less. The viscosity of the resin composition is not particularly limited, but can be measured according to the method described in Examples described later, and is, for example, 1 to 20 Pa · s, preferably 3 to 15 Pa · s at 23 ° C. It is within the range.
 前記ポリアミド酸を、熱イミド化または化学イミド化のいずれかによりイミド化して含フッ素ポリイミドを含む樹脂を得る。特定の実施形態では、前記ポリアミド酸を、加熱処理によりイミド化(熱イミド化)して含フッ素ポリイミドを含む樹脂を得る。熱イミド化で得られたポリイミドは、触媒の残存の可能性がなく、細胞培養用途ではより好ましい。 The polyamic acid is imidized by either thermal imidization or chemical imidization to obtain a resin containing a fluorine-containing polyimide. In a specific embodiment, the polyamic acid is imidized (thermally imidized) by heat treatment to obtain a resin containing a fluorine-containing polyimide. The polyimide obtained by thermal imidization has no possibility of residual catalyst and is more preferable for cell culture applications.
 熱イミド化によりイミド化する場合、例えば、前記ポリアミド酸を、空気中で、またはより好ましくは窒素、ヘリウム、アルゴン等の不活性ガス雰囲気下で、或いは真空中で、好ましくは温度50~400℃、より好ましくは100~380℃、好ましくは時間0.1~10時間、より好ましくは0.2~5時間の条件下で焼成してイミド化反応を行うことによりポリイミドを含む樹脂を得ることができる。 When imidizing by thermal imidization, for example, the polyamic acid is placed in air, more preferably in an atmosphere of an inert gas such as nitrogen, helium, or argon, or in vacuum, preferably at a temperature of 50 to 400 ° C. , More preferably 100 to 380 ° C., preferably 0.1 to 10 hours, more preferably 0.2 to 5 hours, to carry out an imidization reaction to obtain a resin containing polyimide.
 熱イミド化反応に供する前記ポリアミド酸は、適当な溶媒中に溶解された形態であることが好ましい。溶媒としては、ポリアミド酸を溶解するものであれば良く、ポリアミド酸合成反応に関して上記した溶媒を用いることもできる。 The polyamic acid to be subjected to the thermal imidization reaction is preferably in the form of being dissolved in a suitable solvent. The solvent may be any one that dissolves polyamic acid, and the above-mentioned solvent for the polyamic acid synthesis reaction can also be used.
 化学イミド化によりイミド化する場合では、適当な溶媒中で後述の脱水環化試薬の使用によりポリアミド酸を直接イミド化することができる。 In the case of imidization by chemical imidization, the polyamic acid can be directly imidized in a suitable solvent by using the dehydration cyclization reagent described later.
 前記脱水環化試薬は、ポリアミド酸を化学的に脱水環化してポリイミドとする作用を有するものであれば、特に制限なく用いることができる。このような脱水環化試薬としては、第三級アミン化合物を単独で用いるか、または、第三級アミン化合物とカルボン酸無水物とを組合せて用いることが、イミド化を効率よく促進させうる点で好ましい。 The dehydration cyclization reagent can be used without particular limitation as long as it has an action of chemically dehydrating and cyclizing polyamic acid to form polyimide. As such a dehydration cyclization reagent, the imidization can be efficiently promoted by using the tertiary amine compound alone or in combination with the tertiary amine compound and the carboxylic acid anhydride. Is preferable.
 第三級アミン化合物としては、例えば、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、ピリジン、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン、N,N,N’,N’-テトラメチルジアミノメタン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラメチル-1,3-プロパンジアミン、N,N,N’,N’-テトラメチル-1,4-フェニレンジアミン、N,N,N’,N’-テトラメチル-1,6-ヘキサンジアミン、N,N,N’,N’-テトラエチルメチレンジアミン、N,N,N’,N’-テトラエチルエチレンジアミン等が挙げられる。これらの中でも特に、ピリジン、DABCO、N,N,N’,N’-テトラメチルジアミノメタンが好ましく、DABCOがより好ましい。3級アミンは1種のみであってもよいし、2種以上であってもよい。 Examples of the tertiary amine compound include trimethylamine, triethylamine, tripropylamine, tributylamine, pyridine, 1,4-diazabicyclo [2.2.2] octane (DABCO), and 1,8-diazabicyclo [5.4. 0] Undec-7-ene, 1,5-diazabicyclo [4.3.0] Nona-5-ene, N, N, N', N'-tetramethyldiaminomethane, N, N, N', N' -Tetramethylethylenediamine, N, N, N', N'-Tetramethyl-1,3-propanediamine, N, N, N', N'-tetramethyl-1,4-phenylenediamine, N, N, N Examples thereof include', N'-tetramethyl-1,6-hexanediamine, N, N, N', N'-tetraethylmethylenediamine, N, N, N', N'-tetraethylethylenediamine and the like. Among these, pyridine, DABCO, N, N, N', N'-tetramethyldiaminomethane are preferable, and DABCO is more preferable. The tertiary amine may be only one kind or two or more kinds.
 カルボン酸無水物としては、例えば、無水酢酸、無水トリフルオロ酢酸、無水プロピオン酸、無水酪酸、無水イソ酪酸、無水コハク酸、無水マレイン酸等が挙げられる。これらの中でも特に、無水酢酸、無水トリフルオロ酢酸が好ましく、無水酢酸がより好ましい。カルボン酸無水物は1種のみであってもよいし、2種以上であってもよい。 Examples of the carboxylic acid anhydride include acetic anhydride, trifluoroacetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride, succinic anhydride, maleic anhydride and the like. Among these, acetic anhydride and trifluoroacetic anhydride are particularly preferable, and acetic anhydride is more preferable. The carboxylic acid anhydride may be only one kind or two or more kinds.
 化学イミド化においてポリアミド酸を溶解する溶媒としては、溶解性に優れる極性溶媒が好適である。例えば、テトラヒドロフラン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチルピロリドン、ジメチルスルホキシド等が挙げられ、これらの中でも特に、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミドおよびN-メチルピロリドンからなる群より選ばれる1種以上であることが均一反応をする観点から好ましい。アミド化反応の溶媒としてこれらの溶媒を用いた場合、アミド化反応後の反応混合物からポリアミド酸を分離せずそのまま化学イミド化に用いることができる。 As the solvent that dissolves polyamic acid in chemical imidization, a polar solvent having excellent solubility is preferable. For example, tetrahydrofuran, N, N-dimethylacetamide, N, N-dimethylformamide, N-methylpyrrolidone, dimethyl sulfoxide and the like can be mentioned, and among these, N, N-dimethylacetamide, N, N-dimethylformamide and N are particularly mentioned. -It is preferable that at least one selected from the group consisting of methylpyrrolidone is used from the viewpoint of uniform reaction. When these solvents are used as the solvent for the amidation reaction, the polyamic acid can be used as it is for chemical imidization without being separated from the reaction mixture after the amidation reaction.
 ポリイミド樹脂の重量平均分子量は、例えば、5000~2000000、好ましくは8000~1000000であり、さらに好ましくは20000~500000である。なお、本明細書において、樹脂の重量平均分子量は後述の実施例に記載の方法に従って測定することができ、重量平均分子量が上記範囲であることにより、ポリイミド樹脂の合成および取扱い、フィルム化、スフェロイド形成性がより良好となる。 The weight average molecular weight of the polyimide resin is, for example, 5000 to 2000000, preferably 8000 to 1000000, and more preferably 20000 to 500000. In this specification, the weight average molecular weight of the resin can be measured according to the method described in Examples described later, and when the weight average molecular weight is within the above range, the synthesis and handling of the polyimide resin, film formation, and spheroids The formability becomes better.
 細胞接着性表面には、前記した細胞接着性を示す物質以外に、可塑剤、酸化防止剤等の添加剤成分がさらに含まれていてもよい。 The cell-adhesive surface may further contain additive components such as a plasticizer and an antioxidant in addition to the above-mentioned substance exhibiting cell adhesion.
 細胞接着性表面を有する層は、細胞が接する面が細胞接着性表面となるのであれば、細胞接着性表面が層の全部又は一部であってもよい。例えば、細胞接着性を示す物質が層の表面に物理的又は化学的に固定又は配置されて形成されたものであっても、層そのものが細胞接着性を示す物質からなるものであってもよい。 As for the layer having the cell adhesive surface, the cell adhesive surface may be all or a part of the layer as long as the surface in contact with the cells is the cell adhesive surface. For example, a substance exhibiting cell adhesion may be formed by being physically or chemically fixed or arranged on the surface of a layer, or the layer itself may be composed of a substance exhibiting cell adhesion. ..
 表面への物質の固定化は、これらを含有する溶液をベース材表面上で乾燥させる方法、当該物質を溶融させて圧着する方法、ベース材に塗布した当該物質をUV等のエネルギー線で硬化させる方法、当該物質が有する官能基とベース材上の官能基との間で化学反応(例えば、カルボキシル基やアミノ基等の官能基間の縮合反応等)を起こさせて共有結合を形成させる方法、又は当該物質が有するチオール基とベース材に予め形成された金属(プラチナ、金等)薄膜とを結合させる方法により、当該ベース材表面上に固定化することができる。固定化する際の厚みは特に限定されず、0.01~1000μmが例示される。また、例えば、表面を剥離処理した離型シート(例えば、ポリエチレン基材等の有機ポリマーフィルム、セラミックス、金属、ガラス等)の上に、当該物質をキャスティング、スプレイコーティング、ディップコーティング、スピンコーティング、ロールコーティングなどの方法により、適当な厚さに塗工して加熱することにより、かかる物質からなる層をシート状に成形することができる。
 なお、細胞接着性表面(細胞接着性表面を有する層)は、プラズマ処理を経たり、感光性成分を用いることなく、形成できる。
 そのため、細胞接着性表面(細胞接着性表面を有する層)は、プラズマ処理されていない表面(層)であってよく、非感光性成分[例えば、感光性でない樹脂(樹脂組成物)]で形成された面(層)であってもよい。
The immobilization of the substance on the surface is a method of drying the solution containing these on the surface of the base material, a method of melting and crimping the substance, and curing the substance applied to the base material with an energy ray such as UV. Method, a method of causing a chemical reaction (for example, a condensation reaction between functional groups such as a carboxyl group and an amino group) between a functional group of the substance and a functional group on a base material to form a covalent bond. Alternatively, it can be immobilized on the surface of the base material by a method of bonding the thiol group of the substance and a thin metal (platinum, gold, etc.) formed in advance on the base material. The thickness at the time of immobilization is not particularly limited, and 0.01 to 1000 μm is exemplified. Further, for example, the substance is cast, spray coated, dip coated, spin coated, rolled on a release sheet (for example, an organic polymer film such as a polyethylene base material, ceramics, metal, glass, etc.) whose surface has been peeled off. By coating to an appropriate thickness by a method such as coating and heating, a layer made of such a substance can be formed into a sheet.
The cell adhesion surface (layer having the cell adhesion surface) can be formed without undergoing plasma treatment or using a photosensitive component.
Therefore, the cell adhesion surface (layer having a cell adhesion surface) may be a surface (layer) that has not been plasma-treated, and is formed of a non-photosensitive component [for example, a non-photosensitive resin (resin composition)]. It may be a surface (layer).
 細胞接着性物質又は細胞接着性表面[疎水性(特に、超疎水性でない疎水性)の細胞接着性物質又は細胞接着性表面]は、好ましくは、静的水接触角が70°以上であってもよく、転落角が15°以上であってもよく、また、静的水接触角が70°以上かつ転落角が15°以上であってもよい。
 細胞接着性物質又は細胞接着性表面がこのような条件を満たすことにより、スフェロイド形成がより一層促進される。
 スフェロイドの接着性およびスフェロイド形成性の観点から、静的水接触角は、より好ましくは75°以上(例えば、75°超)であり、さらに好ましくは77°以上、さらに好ましくは79°以上、よりさらに好ましくは80°以上(例えば、80°超)であり、静的水接触角の上限は、例えば150°未満であり、好ましくは120°以下(例えば、120°未満)であり、より好ましくは110°以下であり、さらに好ましくは100℃以下(例えば、99℃未満、98℃以下、97℃以下、95℃以下等)である。
 一方、細胞接着性物質又は細胞接着性表面[親水性(特に、超親水性でない親水性)の細胞接着性物質又は細胞接着性表面]は、静的水接触角65°以下、より好ましくは55°以下、更に好ましくは50°以下を有していてもよい。なお、下限値は、0°以上となってもよく、好ましくは5°以上、より好ましくは10°以上であってもよい。
 スフェロイド形成性の観点から、転落角は、18°以上、19°以上、20°以上、22°以上、24°以上、26°以上、28°以上、30°以上の順で高いほど好ましい。転落角の上限値は、例えば80°未満であり、好ましくは70°以下(例えば、70°未満)であり、より好ましくは60°以下(例えば、60°未満)であり、さらに好ましくは50°以下(例えば、50°未満)である。なお、上記の静的水接触角や転落角は、以下の方法により測定される値であってもよい。
The cell-adhesive substance or cell-adhesive surface [hydrophobic (particularly non-superhydrophobic hydrophobic) cell-adhesive substance or cell-adhesive surface] preferably has a static water contact angle of 70 ° or more. The roll angle may be 15 ° or more, and the static water contact angle may be 70 ° or more and the fall angle may be 15 ° or more.
When the cell adhesive substance or the cell adhesive surface satisfies such a condition, spheroid formation is further promoted.
From the viewpoint of spheroid adhesion and spheroid formation, the static water contact angle is more preferably 75 ° or more (for example, more than 75 °), still more preferably 77 ° or more, still more preferably 79 ° or more, and more. More preferably, it is 80 ° or more (for example, more than 80 °), and the upper limit of the static water contact angle is, for example, less than 150 °, preferably 120 ° or less (for example, less than 120 °), and more preferably. It is 110 ° C. or lower, more preferably 100 ° C. or lower (for example, less than 99 ° C., 98 ° C. or lower, 97 ° C. or lower, 95 ° C. or lower, etc.).
On the other hand, the cell adhesion substance or cell adhesion surface [hydrophilic (particularly hydrophilic (particularly non-superhydrophilic) hydrophilic substance or cell adhesion surface] has a static water contact angle of 65 ° or less, more preferably 55. It may have ° or less, more preferably 50 ° or less. The lower limit value may be 0 ° or more, preferably 5 ° or more, and more preferably 10 ° or more.
From the viewpoint of spheroid formation, it is preferable that the falling angle is higher in the order of 18 ° or more, 19 ° or more, 20 ° or more, 22 ° or more, 24 ° or more, 26 ° or more, 28 ° or more, and 30 ° or more. The upper limit of the fall angle is, for example, less than 80 °, preferably 70 ° or less (for example, less than 70 °), more preferably 60 ° or less (for example, less than 60 °), and further preferably 50 °. The following (for example, less than 50 °). The static water contact angle and the fall angle may be values measured by the following method.
(静的水接触角の測定方法)
装置:自動接触角計(協和界面科学製:DM-500)
測定方法:表面(細胞非接着性表面又は細胞接着性表面)又はフィルム(細胞非接着性又は細胞接着性の物質で形成したフィルム)上に水2μLを滴下した直後の液滴の付着角度を測定する(測定温度:25℃)。
(Measurement method of static water contact angle)
Equipment: Automatic contact angle meter (Kyowa Interface Science: DM-500)
Measuring method: Measure the adhesion angle of the droplet immediately after dropping 2 μL of water on the surface (non-cell adhesive surface or cell adhesive surface) or film (film formed of non-cell adhesive or cell adhesive substance). (Measurement temperature: 25 ° C).
(転落角の測定方法)
装置:自動接触角計(協和界面科学製:DM-500)
測定方法:表面(細胞非接着性表面又は細胞接着性表面)又はフィルム(細胞非接着性又は細胞接着性の物質で形成したフィルム)上に水25μLを滴下した後、基材を連続的に傾けていき、流れ落ちた際の角度を転落角とする(測定温度:25℃)。
(Measuring method of falling angle)
Equipment: Automatic contact angle meter (Kyowa Interface Science: DM-500)
Measuring method: After dropping 25 μL of water on a surface (non-cell adhesive surface or cell adhesive surface) or a film (film formed of non-cell adhesive or cell adhesive substance), the substrate is continuously tilted. The fall angle is defined as the angle at which the cells flow down (measurement temperature: 25 ° C).
 また、得られるスフェロイドのサイズ均一性や円形度を向上させる点においては、細胞接着性表面と細胞非接着性物質の微細パターン表面の接着程度のバランスをとることが重要でもある。よって、仮に、細胞非接着性物質の微細パターン表面が接着性を示すものであっても、細胞接着性表面より低接着性であればよい。例えば、上記の静的水接触角を指標とした場合、細胞接着性表面(又は細胞接着性物質)と細胞非接着性物質の微細パターン表面(又は細胞非接着性物質)における静的水接触角の差(又はその絶対値)が3°以上(例えば、5°以上)となることが好ましく、10°以上(例えば、12°以上)となることがより好ましく、15°以上となることがさらに好ましい。また、上限は、細胞非接着性物質(表面)及び細胞接着性物質(表面)の疎水性・親水性の組み合わせ等に応じて適宜選択でき、特に限定されないが、例えば、100°、90°、80°、70°、60°、50°、40°、30°などであってもよい。 In addition, in terms of improving the size uniformity and circularity of the obtained spheroids, it is also important to balance the degree of adhesion between the cell-adhesive surface and the fine pattern surface of the cell non-adhesive substance. Therefore, even if the fine pattern surface of the cell non-adhesive substance exhibits adhesiveness, it may be less adhesive than the cell adhesive surface. For example, when the above static water contact angle is used as an index, the static water contact angle on the cell adhesive surface (or cell adhesive substance) and the fine pattern surface (or cell non-adhesive substance) of the cell non-adhesive substance. The difference (or its absolute value) is preferably 3 ° or more (for example, 5 ° or more), more preferably 10 ° or more (for example, 12 ° or more), and further preferably 15 ° or more. preferable. The upper limit can be appropriately selected depending on the combination of hydrophobicity and hydrophilicity of the cell non-adhesive substance (surface) and the cell adhesive substance (surface), and is not particularly limited, but for example, 100 °, 90 °, It may be 80 °, 70 °, 60 °, 50 °, 40 °, 30 ° and the like.
 細胞接着性表面を構成する樹脂は、可塑剤、酸化防止剤等の添加剤成分をさらに含んでもよい。 The resin constituting the cell adhesive surface may further contain additive components such as a plasticizer and an antioxidant.
 本発明の細胞培養用基材は、厚みは特に限定されないが、取り扱い性の観点から、1~1000μmが好ましく、10~1000μmがより好ましい。シート面積も特に限定されず、例えば、0.01~10000cm2、好ましくは0.03~5000cm2が例示される。 The thickness of the cell culture substrate of the present invention is not particularly limited, but is preferably 1 to 1000 μm, more preferably 10 to 1000 μm from the viewpoint of handleability. The sheet area is also not particularly limited, and examples thereof include 0.01 to 10000 cm 2 , preferably 0.03 to 5000 cm 2 .
 かくして得られた細胞培養用基材は、そのまま用いることもできるが、公知の細胞培養装置にそのまま設置して用いる観点から、対象装置の大きさに合わせて、適宜サイジング加工してもよい。その一方の表面に細胞を含む培地を載せて細胞培養を実施すればよく、該細胞培養用基材を培養用のプレート、プレートの各ウェル、培養シャーレ(培養ディッシュ)、フラスコ、培養バック等の筐体に収容して固定し、固定したシートの一部または全面において細胞培養を実施することができる。 The cell culture substrate thus obtained can be used as it is, but from the viewpoint of being installed and used as it is in a known cell culture device, it may be appropriately sized according to the size of the target device. A medium containing cells may be placed on one of the surfaces to carry out cell culture, and the cell culture substrate may be used as a culture plate, each well of the plate, a culture chalet (culture dish), a flask, a culture bag, or the like. It can be housed and fixed in a housing, and cell culture can be carried out on a part or the entire surface of the fixed sheet.
 本発明の細胞培養用基材は、上記した構成を有することにより、細胞播種時に区画ごとに充填する操作や脱泡操作が不要となり、効率よく細胞培養を行なうことができる。また、細胞培養用基材を、例えば、培養庫から取り出す程度の振動では基材上の培養細胞は細胞非接着性物質の微細パターンが形成されていない部分に接着しているため培養時の観察も容易になる一方で、例えば、容器を傾けて生じる液流や送液などの振動を与えることで培養細胞の回収も容易である。 Since the cell culture substrate of the present invention has the above-mentioned structure, it is not necessary to perform a filling operation or a defoaming operation for each section at the time of cell seeding, and cell culture can be efficiently performed. In addition, when the cell culture substrate is vibrated to the extent that it is taken out from the culture chamber, for example, the cultured cells on the substrate are adhered to the portion where the fine pattern of the cell non-adhesive substance is not formed, so that the observation during culture is performed. On the other hand, it is also easy to collect cultured cells by giving vibrations such as liquid flow and liquid feeding generated by tilting the container.
 また、本発明の細胞培養用基材は、硬化などの反応によらず、微細パターン(さらには細胞接着性表面)を形成することもできるので、このような細胞用基材を用いて得られる培養細胞の安全性が高いものである。また、細胞培養用基材表面が所定のパターンを有するため、細胞が接着しうる箇所が均一な形状で露出していることも可能であるから、均一な培養物を得ることができる。例えば、培養物のサイズのバラツキ(SD)が平均値の0.35倍以下、好ましくは0.33倍以下のものを得ることができる。さらには、本発明の細胞培養基材は、経時的に変化するものではなく安定なものとすることも可能であることから、このような細胞用基材を用いて得られる培養物の品質も良好となる。 Further, since the cell culture substrate of the present invention can form a fine pattern (furthermore, a cell adhesive surface) regardless of a reaction such as hardening, it can be obtained by using such a cell substrate. The safety of cultured cells is high. Further, since the surface of the base material for cell culture has a predetermined pattern, it is possible that the portion to which the cells can adhere is exposed in a uniform shape, so that a uniform culture can be obtained. For example, a culture having a variation (SD) in size of 0.35 times or less, preferably 0.33 times or less of the average value can be obtained. Furthermore, since the cell culture substrate of the present invention does not change with time and can be made stable, the quality of the culture obtained by using such a cell culture substrate is also high. It will be good.
 本発明の細胞培養用基材の好適な製造方法としては、細胞接着性表面を有する層に、細胞非接着性物質を印刷して微細パターンを形成する工程を含む方法を挙げることができる。 As a preferable method for producing the cell culture substrate of the present invention, a method including a step of printing a non-cell adhesive substance on a layer having a cell adhesive surface to form a fine pattern can be mentioned.
 微細パターンの形成には、公知の印刷手法を用いることが出来る。印刷方法としては、例えば、マイクロコンタクトプリント法、スピンコーティング法、キャスティング法、ロールコーティング法、ダイコーティング法、グラビアコーティング法、スプレイコーティング法、バーコーティング法、フレキソ印刷法、ディップコーティング法、ナノインプリント法、インクジェット法の他、ベース材表面に形成された凹凸構造の間隙に生じる毛細管力によって所望の物質を間隙内に注入して形成するパターニング法などを用いることができる。 A known printing method can be used to form a fine pattern. Examples of the printing method include microcontact printing method, spin coating method, casting method, roll coating method, die coating method, gravure coating method, spray coating method, bar coating method, flexographic printing method, dip coating method, nanoimprint method, and the like. In addition to the inkjet method, a patterning method in which a desired substance is injected into the gap by the capillary force generated in the gap of the uneven structure formed on the surface of the base material can be used.
 例えば、マイクロコンタクトプリント法による微細パターンの形成には、微細パターンを有する転写型を用いて印刷すればよい。転写型の調製方法に特に制限はない。例えば、エラストマースタンプなどの公知の転写型を調製する方法が挙げられる。具体的には、シリコーン材料などのエラストマーシートへ前述のような所望の形状を公知の加工機を用いて作製し直接微細加工を行って調製する他、微細加工を施したマスター基板からエラストマーで型取りする手法が挙げられる。型取りする場合は、先ず、基板に前述のような所望の形状を公知の加工機を用いて作製したものをマスター型として用い、そこに、エラストマー樹脂溶液を導入して硬化後、該マスター型を剥離して得られたものを複製型として用いる。ここで、複製型は、所望の形状の反転形状を有することになる。次いで、前記複製型に対して、必要により表面処理を施した後、再度前記樹脂溶液を導入して硬化後、該複製型を剥離することで所望の形状を有する転写型を調製することができる。 For example, in order to form a fine pattern by the micro contact printing method, a transfer mold having a fine pattern may be used for printing. There is no particular limitation on the method for preparing the transfer type. For example, a method of preparing a known transfer type such as an elastomer stamp can be mentioned. Specifically, the desired shape as described above is prepared on an elastomer sheet such as a silicone material by using a known processing machine and directly microfabricated, and the master substrate subjected to microfabrication is molded with an elastomer. There is a method to take. In the case of molding, first, a substrate having a desired shape as described above prepared by using a known processing machine is used as a master mold, and an elastomer resin solution is introduced therein and cured, and then the master mold is used. The one obtained by peeling off is used as a duplicate type. Here, the duplicate type will have an inverted shape of a desired shape. Next, the duplicated mold is subjected to surface treatment if necessary, the resin solution is introduced again and cured, and then the duplicated mold is peeled off to prepare a transfer mold having a desired shape. ..
 用いられる基板に特に限定はない。例えば、オレフィン系樹脂(例えば、ポリエチレン、ポリプロピレン)、ポリエステル系樹脂(例えば、ポリエチレンテレフタレート)、ポリカーボネート系樹脂、アクリル系樹脂(例えば、ポリメチル(メタ)アクリレート、スチレン系樹脂(例えば、ポリスチレン)、ポリエーテルケトン、ポリエーテルエーテルケトン、シリコーン系樹脂などの樹脂;天然ゴム、EPDMなどのゴム;ガラス;ステンレス鋼などの金属材料;セラミックなどを挙げることができる。これらは、機械的強度や寸法安定性、透明性などを有するので好適に用いることができる。 There is no particular limitation on the substrate used. For example, olefin resins (eg polyethylene, polypropylene), polyester resins (eg polyethylene terephthalates), polycarbonate resins, acrylic resins (eg polymethyl (meth) acrylates, styrene resins (eg polystyrene), polyethers. Resins such as ketones, polyetheretherketones, and silicone-based resins; natural rubbers, rubbers such as EPDM; glass; metal materials such as stainless steel; ceramics, etc. These include mechanical strength and dimensional stability. Since it has transparency and the like, it can be preferably used.
 基板への形状加工に用いる加工機としては、特に限定はなく、例えば、ドリルによる切削、フォトリソグラフィやインクジェット印刷、スクリーン印刷、レーザーパターン化法に用いられる装置が用いられる。具体的には、例えば、微細掘削加工機、レーザー加工機等が挙げられる。 The processing machine used for shape processing on a substrate is not particularly limited, and for example, an apparatus used for cutting with a drill, photolithography, inkjet printing, screen printing, and laser patterning method is used. Specific examples thereof include a fine excavation machine and a laser machine.
 エラストマー樹脂溶液としては、公知のものであれば特に限定なく用いることができ、例えば、転写型の離型性の観点から、シリコーン材料を好適に用いることができる。シリコーン材料としては、シリコーンゴム、又は、シリコーン樹脂となる硬化性シリコーンゴムオリゴマー若しくはシリコーンモノマー、又は、硬化性シリコーン樹脂オリゴマー若しくはモノマーなどの硬化性シリコーン材料が好ましく、硬化性ポリシロキサンがより好ましい。前記硬化性シリコーン材料としては、通常、液状シリコーンと称されているものが用いられ、剥離性に優れ、機械強度に優れる観点から、硬化剤と組合せて用いる二液混合型のものが好ましい。低粘度の硬化性シリコーン材料を使用すれば、作製時に巻き込む泡の除去等の加工性や転写パターンの精細な型取りをすることができる。また、前記硬化性ポリシロキサンは、一液硬化型若しくは二液硬化型のものでも良く、熱硬化型のものでも室温硬化型のものでも良い。硬化性シリコーン材料の具体例としては、例えば、アルキルシロキサン、アルケニルシロキサン、アルキルアルケニルシロキサン、及びポリアルキル水素シロキサンを含むものが好ましく、中でも、アルキルアルケニルシロキサンとポリアルキル水素シロキサンの2成分混合系で低粘度、室温硬化するものが、剥離性、加工性の点から好ましい。 As the elastomer resin solution, any known one can be used without particular limitation, and for example, a silicone material can be preferably used from the viewpoint of transfer mold releasability. As the silicone material, a curable silicone material such as silicone rubber, a curable silicone rubber oligomer or silicone monomer that becomes a silicone resin, or a curable silicone resin oligomer or monomer is preferable, and a curable polysiloxane is more preferable. As the curable silicone material, a material called liquid silicone is usually used, and from the viewpoint of excellent peelability and mechanical strength, a two-component mixed type used in combination with a curing agent is preferable. If a low-viscosity curable silicone material is used, it is possible to perform processability such as removal of bubbles entrained during production and fine molding of a transfer pattern. Further, the curable polysiloxane may be a one-component curing type or a two-component curing type, and may be a thermosetting type or a room temperature curing type. Specific examples of the curable silicone material include, for example, alkylsiloxane, alkenylsiloxane, alkylalkenylsiloxane, and polyalkylhydroxanesiloxane, and among them, a two-component mixed system of alkylalkenylsiloxane and polyalkylhydroxanesiloxane is low. Those that cure at room temperature are preferable in terms of viscosity and processability.
 エラストマー樹脂溶液を鋳型に導入した際には、必要により、公知の方法に従って脱泡処理などを行ってもよい。 When the elastomer resin solution is introduced into the mold, defoaming treatment or the like may be performed according to a known method, if necessary.
 転写複製型を取るための表面処理としては、型離れを容易にし転写の均一性を向上するよう非接着性面を形成する処理が挙げられる。例えば、フッ素系溶媒等を用いた離形処理の他、表面に、金属(Au、Pt、Ag、Ti、Al、Cr、Pdなど)やカーボンなどを蒸着させた後、コーティングする処理が挙げられる。また、残存する反応性官能基を減少させる処理などを行ってもよい。 Examples of the surface treatment for taking the transfer duplication mold include a treatment of forming a non-adhesive surface so as to facilitate mold release and improve transfer uniformity. For example, in addition to the mold release treatment using a fluorine-based solvent or the like, a treatment in which a metal (Au, Pt, Ag, Ti, Al, Cr, Pd, etc.), carbon, or the like is deposited on the surface and then coated can be mentioned. .. In addition, a treatment for reducing the remaining reactive functional groups may be performed.
 かくして得られた転写型の微細パターンに前述の細胞非接着性物質を付着させてから、細胞接着性表面を有する層に該細胞非接着性物質の微細パターンをコンタクト(密着)させて印刷する。かかる方法により、薄膜で精度よく微細パターンを形成することができる。また、上記工程で反転型を取った状態で、細胞培養基材へエラストマーパターンを設置し、側面から毛細管現象を利用して細胞非接着性物質を注入・形成することでパターンを得ることもできる。 After the above-mentioned non-cell adhesive substance is attached to the transfer-type fine pattern thus obtained, the fine pattern of the non-cell adhesive substance is contacted (adhered) to a layer having a cell adhesive surface for printing. By such a method, a fine pattern can be formed with a thin film with high accuracy. Further, it is also possible to obtain a pattern by placing an elastomer pattern on a cell culture substrate in the state of being inverted in the above step and injecting and forming a non-cell adhesive substance from the side surface by utilizing the capillary phenomenon. ..
 印刷工程後には、細胞非接着物質を細胞接着性表面を有する層へ定着させる目的で、得られた細胞培養基材を乾燥するなどの公知の後処理工程を含んでもよい。 After the printing step, a known post-treatment step such as drying the obtained cell culture substrate may be included for the purpose of fixing the non-cell adhesive substance to the layer having the cell adhesive surface.
 本発明はまた、本発明の細胞培養用基材を用いて細胞を培養する工程を含む、細胞の培養方法を提供する。 The present invention also provides a method for culturing cells, which comprises a step of culturing cells using the cell culture substrate of the present invention.
 適用可能な細胞としては特に制限はない。例えば、ヒト又はヒト以外の動物(サル、ブタ、イヌ、ラット、マウス等)の任意の臓器又は組織(脳、肝臓、膵臓、脾臓、心臓、肺、腸、軟骨、骨、脂肪、腎臓、神経、皮膚、骨髄、胚等)に由来する初代細胞、樹立された株化細胞、又はこれらに遺伝子操作等を施した細胞を用いることができる。また、昆虫細胞、植物細胞、微生物などであってもよい。 There are no particular restrictions on the applicable cells. For example, any organ or tissue (brain, liver, pancreas, spleen, heart, lung, intestine, cartilage, bone, fat, kidney, nerve) of humans or non-human animals (monkeys, pigs, dogs, rats, mice, etc.) , Skin, bone marrow, embryo, etc.), established established cells, or cells subjected to genetic manipulation or the like can be used. Further, it may be an insect cell, a plant cell, a microorganism, or the like.
 より具体的に、例えば、多能性幹細胞(ES細胞、iPS細胞)、体性幹細胞(神経幹細胞、間葉系幹細胞、造血系幹細胞、癌幹細胞その他の未分化な幹細胞)又はその前駆細胞を用いることができる。また、例えば、肝臓系細胞や膵臓系細胞等の消化器系臓器由来の細胞、腎臓系細胞、神経系細胞、心筋細胞等の循環器系臓器由来の細胞、脂肪細胞、皮膚真皮等の結合組織由来の線維芽細胞、皮膚表皮等の上皮系組織由来の上皮細胞、骨系細胞、軟骨系細胞、網膜等の眼組織由来の細胞、血管系細胞、血球系細胞、生殖系細胞等の分化した細胞を用いることもできる。また、癌化した細胞を用いることもできる。酵母、大腸菌、枯草菌、コリネ型細菌、乳酸菌等も用いることができる。このような細胞としては、1種類の細胞を単独で用いることができ、又は2種類以上の細胞を任意の比率で混在させて用いることもできる。 More specifically, for example, pluripotent stem cells (ES cells, iPS cells), somatic stem cells (nerve stem cells, mesenchymal stem cells, hematopoietic stem cells, cancer stem cells and other undifferentiated stem cells) or progenitor cells thereof are used. be able to. In addition, for example, cells derived from digestive system organs such as liver cells and pancreatic cells, cells derived from cardiovascular organs such as kidney cells, nervous system cells, and myocardial cells, and binding tissues such as fat cells and skin dermis. Differentiation of derived fibroblasts, epithelial cells derived from epithelial tissues such as skin epidermis, bone cells, chondrogenic cells, cells derived from eye tissues such as retina, vascular cells, hematogenous cells, germline cells, etc. Cells can also be used. In addition, cancerous cells can also be used. Yeast, Escherichia coli, Bacillus subtilis, coryneform bacteria, lactic acid bacteria and the like can also be used. As such cells, one type of cell can be used alone, or two or more types of cells can be mixed and used in an arbitrary ratio.
 細胞培養の条件としては、本発明の細胞培養用基材を用いるのであれば特に制限はない。例えば、用いる培地は、細胞に合わせて適宜選択すればよい。例えば、任意の細胞培養基本培地や対象細胞の為に開発された専用培地、分化培地、初代培養専用培地等を用いることができる。具体的には、イーグル細小必須培地(EMEM)、ダルベッコ改変イーグル培地(DMEM)、α-MEM、グラスゴーMEM(GMEM)、IMDM、RPMI1640、ハムF-12、MCDB培地、ウィリアムス培地E、Hepatocyte thaw medium、およびこれらの混合培地等が挙げられる。細胞が増殖や分化に必要な成分が含まれる培地であれば利用可能である。さらに、血清、各種成長因子、分化誘導因子、抗生物質、ホルモン、アミノ酸、糖、塩類等を添加した培地を使用してもよい。培養温度も特に制限されないが、通常は25~40℃程度で行う。 The conditions for cell culture are not particularly limited as long as the base material for cell culture of the present invention is used. For example, the medium to be used may be appropriately selected according to the cells. For example, an arbitrary cell culture basal medium, a special medium developed for the target cells, a differentiation medium, a primary culture medium, or the like can be used. Specifically, Eagle's Small Essential Medium (EMEM), Dulbecco's Modified Eagle's Medium (DMEM), α-MEM, Grassgo MEM (GMEM), IMDM, RPMI1640, Ham F-12, MCDB Medium, Williams Medium E, Hepatocyte thick medium , And a mixed medium thereof and the like. Any medium containing the components necessary for cell proliferation and differentiation can be used. Further, a medium to which serum, various growth factors, differentiation-inducing factors, antibiotics, hormones, amino acids, sugars, salts and the like are added may be used. The culture temperature is not particularly limited, but it is usually about 25 to 40 ° C.
 前記細胞培養によって細胞がスフェロイドを形成してもよいことから、本発明の一態様として、本発明の細胞培養用基材を用いて細胞を培養する工程を含む、スフェロイドの製造方法も挙げることができる。 Since cells may form spheroids by the cell culture, one aspect of the present invention is a method for producing spheroids, which comprises a step of culturing cells using the cell culture substrate of the present invention. it can.
 得られたスフェロイドは、細胞を大量に含むことから種々の組織・臓器発生や再生などの研究に使用したり、再生医療への応用、創薬分野においては毒性試験等に使用することができる。得られるスフェロイドの直径は、特に限定されず、例えば10~1000μm、好ましくは10~800μmである。 Since the obtained spheroid contains a large amount of cells, it can be used for research on development and regeneration of various tissues / organs, application to regenerative medicine, toxicity test in the field of drug discovery, etc. The diameter of the obtained spheroid is not particularly limited, and is, for example, 10 to 1000 μm, preferably 10 to 800 μm.
 以下、実施例により本発明を詳細に説明するが、本発明はこれらに限定されるものではない。なお、以下の実施例において、室温とは20~30℃を意味する。 Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto. In the following examples, room temperature means 20 to 30 ° C.
実施例1
<基材> 6FDA/TPEQポリアミド酸の調製
 500mL容量の三口フラスコに、1,4-ビス(アミノフェノキシ)ベンゼン14.882g(50.9ミリモル)、4,4’-ヘキサフルオロイソプロピリデンジフタル酸無水物22.618g(50.9ミリモル)、N-メチルピロリドン212.5gを仕込んだ。窒素雰囲気下、室温で、2時間攪拌後、6日間熟成することで、含フッ素ポリアミド酸樹脂組成物(固形分濃度15.0質量%)を得た。該ポリアミド酸の重量平均分子量は15.7万で粘度(23℃)は7Pa・sであった。なお、ポリアミド酸の重量平均分子量と、焼成後の含フッ素ポリイミドの重量平均分子量とは実質的に同一である。
Example 1
<Base material> Preparation of 6FDA / TPEQ polyamic acid In a 500 mL volume three-necked flask, 14.882 g (50.9 mmol) of 1,4-bis (aminophenoxy) benzene, 4,4'-hexafluoroisopropyridene diphthalic anhydride 22.618 g (50.9 mmol) and 212.5 g of N-methylpyrrolidone were charged. A fluoropolyamic acid resin composition (solid content concentration: 15.0% by mass) was obtained by aging for 6 days after stirring at room temperature for 2 hours in a nitrogen atmosphere. The weight average molecular weight of the polyamic acid was 157,000 and the viscosity (23 ° C.) was 7 Pa · s. The weight average molecular weight of the polyamic acid and the weight average molecular weight of the fluorine-containing polyimide after firing are substantially the same.
 上記で得られた含フッ素ポリアミド酸樹脂組成物を、焼成後の含フッ素ポリイミドフィルムの厚みが40μmとなるようにダイコーターを用いてガラス基体上に塗布し、塗膜を形成した。次いで、360℃にて1時間、窒素雰囲気下で塗膜の焼成を行った。その後、焼成物をガラス基体から剥離して、含フッ素ポリイミドフィルムを得た。この含フッ素ポリイミドフィルムの静的水接触角は83.4°、転落角は20.2°であった。 The fluorine-containing polyamic acid resin composition obtained above was applied onto a glass substrate using a die coater so that the thickness of the fluorine-containing polyimide film after firing was 40 μm to form a coating film. Then, the coating film was calcined at 360 ° C. for 1 hour in a nitrogen atmosphere. Then, the fired product was peeled off from the glass substrate to obtain a fluorine-containing polyimide film. The static water contact angle of this fluorine-containing polyimide film was 83.4 °, and the fall angle was 20.2 °.
 上記における物性の測定方法は以下の通りである。
(重量平均分子量の測定)
装置:東ソー株式会社製HCL-8220GPC
カラム:TSKgel Super AWM-H
溶離液(LiBr・H2O、リン酸入りNMP):0.01mol/L
測定方法:0.5重量%の溶液を溶離液で作製し、ポリスチレンで作製した検量線をもとに分子量を算出する。
(粘度の測定)
装置:アズワン製 粘度計 VISCOMETER TV-22
設定:VI  RANGE:H  ROTOR No.6  SPEED:10rpm
粘度計校正用標準液:日本グリース(株) JS 14000
測定方法:粘度計校正用標準液で校正後、ワニス0.3gを用いて測定する。(測定温度:23℃)
(静的水接触角の測定)
装置:自動接触角計(協和界面科学製:DM-500)
測定方法:フィルム上に水2μLを滴下した直後の液滴の付着角度を測定する(測定温度:25℃)。
(転落角の測定)
装置:自動接触角計(協和界面科学製:DM-500)
測定方法:フィルム上に水25μLを滴下した後、基材を連続的に傾けていき、流れ落ちた際の角度を転落角とする(測定温度:25℃)。
The method for measuring the physical properties in the above is as follows.
(Measurement of weight average molecular weight)
Equipment: HCL-8220GPC manufactured by Tosoh Corporation
Column: TSKgel Super AWM-H
Eluent (LiBr · H2O, NMP containing phosphoric acid): 0.01 mol / L
Measuring method: A 0.5% by weight solution is prepared with an eluent, and the molecular weight is calculated based on a calibration curve prepared with polystyrene.
(Measurement of viscosity)
Equipment: AS ONE Viscometer VISCOMETER TV-22
Setting: VI RANGE: H ROTOR No.6 SPEED: 10rpm
Standard solution for viscometer calibration: Nippon Grease Co., Ltd. JS 14000
Measuring method: After calibrating with a standard solution for viscometer calibration, measure with 0.3 g of varnish. (Measurement temperature: 23 ° C)
(Measurement of static water contact angle)
Equipment: Automatic contact angle meter (Kyowa Interface Science: DM-500)
Measuring method: Measure the adhesion angle of the droplet immediately after dropping 2 μL of water on the film (measurement temperature: 25 ° C.).
(Measurement of falling angle)
Equipment: Automatic contact angle meter (Kyowa Interface Science: DM-500)
Measuring method: After 25 μL of water is dropped on the film, the base material is continuously tilted, and the angle at which it flows down is defined as the falling angle (measurement temperature: 25 ° C.).
<パターン転写型の作製>
 微細掘削加工機((株)ピーエムティー(福岡)製)を用いて、0.7mm厚みのポリメチルメタクリレート(PMMA)板に、直径300μm[この例では細胞接着性部位の幅(最小幅)に相当]の円形をピッチ(円の中心と隣接円の中心との最短距離)500μmで千鳥配置となるよう、微細パターン構造を掘削してマスター型を作製した。なお、前記パターンの間隙の最短距離は200μmである。
<Making a pattern transfer type>
Using a micro excavation machine (manufactured by PMT Co., Ltd. (Fukuoka)), a 0.7 mm thick polymethylmethacrylate (PMMA) plate with a diameter of 300 μm [corresponding to the width (minimum width) of the cell adhesion site in this example. ], A master mold was made by excavating a fine pattern structure so that the circles would be staggered at a pitch (the shortest distance between the center of the circle and the center of the adjacent circle) of 500 μm. The shortest distance between the gaps in the pattern is 200 μm.
 次に、複製型を得るために、100mmディッシュへPDMS(ポリジメチルシロキサン)室温硬化型樹脂液(SILPOT:東レダウコーニング製)を所定の割合(主剤:開始剤=10:1)で計量し、5分間撹拌混合した。その後、PDMSの気泡を除去する為、1時間真空脱気を行った。脱気したPDMS樹脂液へ、PMMA掘削マスター型を表面を上向きにした状態でディッシュ底面まで沈め、もう一度気泡が抜けるまで1時間程度真空で脱気を行った。脱気後、PMMAマスター型入りディッシュを水平台上で通常大気下、室温条件で3日間放置し、PDMSを硬化させた。PDMSの硬化後、PMMAマスター型を剥離してPDMS複製型を得た。 Next, in order to obtain a replica type, PDMS (polydimethylsiloxane) room temperature curable resin solution (SILPOT: manufactured by Toray Dow Corning) was weighed in a predetermined ratio (main agent: initiator = 10: 1) to a 100 mm dish. The mixture was stirred and mixed for 5 minutes. Then, in order to remove the air bubbles of PDMS, vacuum degassing was performed for 1 hour. The PMMA excavation master mold was submerged in the degassed PDMS resin solution to the bottom of the dish with the surface facing up, and degassed in vacuum for about 1 hour until the air bubbles were removed again. After degassing, the PMMA master type dish was left on a horizontal table under normal air and at room temperature for 3 days to cure PDMS. After curing of PDMS, the PMMA master type was peeled off to obtain a PDMS replica type.
 得られた複製型の表面に厚みが6nmとなるようにPt蒸着を行った。続いて、PEG-SH溶液(2mMのPTE-200SH、日油製)でPt表面を覆うように塗布し、遮光状態で30分反応後、PDMS複製型を40~50%EtOH溶液に浸漬して未反応のPEG-SHを除去し、ミリQ水に浸漬させて洗浄後、乾燥することでPEG修飾して非接着面を形成した。得られたPDMS型を洗浄、乾燥することで未反応PEG-SHを除去し、PDMS複製型(PEG修飾のPDMS複製型)を完成した。 Pt vapor deposition was performed on the surface of the obtained duplicate mold so that the thickness was 6 nm. Then, apply PEG-SH solution (2 mM PTE-200SH, manufactured by Nichiyu) so as to cover the Pt surface, react for 30 minutes in a light-shielded state, and then immerse the PDMS replica type in 40-50% EtOH solution. Unreacted PEG-SH was removed, immersed in milliQ water for washing, and then dried to PEG-modify to form a non-adhesive surface. The obtained PDMS type was washed and dried to remove unreacted PEG-SH, and a PDMS replication type (PEG-modified PDMS replication type) was completed.
 上記のPEG修飾のPDMS複製型を用いて上記の型取り操作を繰り返し更にPDMSの反転型を作製することで、PMMAマスター型と同じ微細パターンを有するPDMS転写型を完成した。 By repeating the above molding operation using the above PEG-modified PDMS replication type and further producing an inverted type of PDMS, a PDMS transfer type having the same fine pattern as the PMMA master type was completed.
<パターン付細胞培養用基材>
 上記作製した、PDMS転写型のパターン面をMPCポリマー溶液(1%エタノール溶液(疎水性MPCポリマー)に浸漬後気吹きで余剰液を除去し、マイクロコンタクトプリント法によって、上記で得られた含フッ素ポリイミドフィルム培養基材上へパターンを転写させた。転写後のフィルムを50℃の乾燥機で2時間乾燥し、顕微鏡で観察したところ、フィルム上にMPCポリマーのパターンが転写されていることを確認した(図2)。尚、転写したMPCポリマーの静的水接触角はフィルム(細胞非接着性表面)において107.5°であった。得られたパターン付細胞培養用基材は、培養用基材中、MPCポリマーの微細パターン面積が61%、含フッ素ポリイミドフィルムの露出面積が39%であり、微細パターンの厚みは0.04μm(キーエンス製:レーザー顕微鏡)であった。また、MPCポリマーの平均高さと、含フッ素ポリイミドフィルムに露出した円の平均円相当径の比(平均高さ/平均円相当径)は1.3×10-4であった。
<Base material for cell culture with pattern>
After immersing the PDMS transfer type pattern surface prepared above in an MPC polymer solution (1% ethanol solution (hydrophobic MPC polymer)), the excess liquid was removed by air blowing, and the fluorine-containing polyimide obtained above was obtained by the microcontact printing method. The pattern was transferred onto the film culture substrate. The transferred film was dried in a dryer at 50 ° C. for 2 hours and observed under a microscope. As a result, it was confirmed that the MPC polymer pattern was transferred onto the film. (Fig. 2). The static water contact angle of the transferred MPC polymer was 107.5 ° on the film (cell non-adhesive surface). The obtained patterned cell culture substrate was contained in the culture substrate. The fine pattern area of the MPC polymer was 61%, the exposed area of the fluorine-containing polyimide film was 39%, and the thickness of the fine pattern was 0.04 μm (manufactured by Keyence: laser microscope). The ratio of the average circle equivalent diameter (average height / average circle equivalent diameter) of the circles exposed on the fluorine-containing polyimide film was 1.3 × 10 -4 .
試験例1
 ヒト脂肪細胞由来幹細胞(Human adipose derived stem cell:ADSC、ロンザ社:PT-5006)を5%FBSと1%抗生物質を含んだKBM-ADSC-2培地(コージンバイオ製)にて培養し、2.5×105細胞/mLの濃度となるように細胞懸濁液を調製した。
Test Example 1
Human adipose derived stem cells (ADSC, Ronza: PT-5006) were cultured in KBM-ADSC-2 medium (manufactured by Kojin Bio) containing 5% FBS and 1% antibiotics, and 2.5 A cell suspension was prepared to a concentration of × 10 5 cells / mL.
<スフェロイドの作製>
 上記で作製したパターン付細胞培養用基材を脱泡処理することなく、そのまま35mmシャーレの細胞培養面に配置し、上記で調製した細胞懸濁液を0.2mL播種(5.0×104細胞/シャーレ)し、1時間後、KBM-ADSC-2培地を3.5mL加え、37℃の5%(v/v)CO2インキュベーターに入れて培養した(培養0日目)。なお、前記懸濁液をシャーレ内に注入することで、分注することなく各パターン内に細胞を均一に播種できたことが確認された。培養は培地交換無しで14日目まで実施した。
 播種された細胞は、フィルム培養基材上の細胞接着領域(含フッ素ポリイミド領域)において接着・増殖し、培養の経過に伴い、パターン付細胞培養用基材に保持された(接着した)スフェロイドが出現することが光学顕微鏡を用いた観察によって確認された(図3:培養8日目、図4:培養14日目)。
<Making spheroids>
The patterned cell culture substrate prepared above was placed on the cell culture surface of a 35 mm petri dish as it was without defoaming, and 0.2 mL of the cell suspension prepared above was seeded (5.0 × 10 4 cells / petri dish). ), 1 hour later, 3.5 mL of KBM-ADSC-2 medium was added, and the cells were placed in a 5% (v / v) CO 2 incubator at 37 ° C. and cultured (day 0 of culture). By injecting the suspension into a petri dish, it was confirmed that the cells could be uniformly seeded in each pattern without dispensing. Culturing was carried out until the 14th day without changing the medium.
The seeded cells adhered and proliferated in the cell adhesion region (fluorine-containing polyimide region) on the film culture substrate, and as the culture progressed, spheroids retained (adhered) to the patterned cell culture substrate were formed. The appearance was confirmed by observation using an optical microscope (Fig. 3: 8th day of culture, Fig. 4: 14th day of culture).
<スフェロイドの形態評価>
 培養8日目、14日目にスフェロイドを撮影し、画像解析ソフトであるWinROOF(三谷商事製)でスフェロイドの円相当径を解析した。
 得られたスフェロイドは、サイズの均一性(培養8日目:平均円相当径125.9μm,SD 33.5μm、培養14日目:平均円相当径126.1μm,SD 29.4μm)が高いものであった。よって、本発明の細胞培養用基材を用いることで、均一でかつ大量のスフェロイドが安定的かつ容易に取得することができた。また、撮影後には、シャーレに培養液を送液することで、簡単にスフェロイドを基材から脱離させることができ、回収することが容易であった。
<Spheroid morphology evaluation>
The spheroids were photographed on the 8th and 14th days of the culture, and the circle-equivalent diameter of the spheroids was analyzed using the image analysis software WinROOF (manufactured by Mitani Corporation).
The obtained spheroids had high size uniformity (culture day 8: average circle equivalent diameter 125.9 μm, SD 33.5 μm, culture day 14: average circle equivalent diameter 126.1 μm, SD 29.4 μm). Therefore, by using the cell culture substrate of the present invention, a uniform and large amount of spheroids could be stably and easily obtained. Further, after the imaging, the spheroid could be easily desorbed from the base material by sending the culture solution to the petri dish, and it was easy to recover it.
試験例2
 HCT116細胞(ヒト大腸癌細胞株、理化学研究所:RCB2979)を用いて、実施例1と同様にしてスフェロイドを作製した。培養培地には、DMEM基本培地(ギブコ製)に10%FBSを添加した血清培地を用いた。
Test Example 2
Using HCT116 cells (human colon cancer cell line, RIKEN: RCB2979), spheroids were prepared in the same manner as in Example 1. As the culture medium, a serum medium in which 10% FBS was added to DMEM basal medium (manufactured by Gibco) was used.
 結果、図5に示すとおり、培養の経過に伴い、パターン付細胞培養用基材に保持された(接着した)スフェロイド(培養7日目:平均円相当径239μm, SD 21μm)が出現することが観察され、細胞種が異なっても本発明の細胞培養用基材で培養できることが確認できた。 As a result, as shown in FIG. 5, spheroids (7th day of culture: average circle equivalent diameter 239 μm, SD 21 μm) retained (adhered) on the patterned cell culture substrate may appear as the culture progresses. It was observed that it was confirmed that the cells could be cultured on the cell culture substrate of the present invention even if the cell types were different.
試験例3
 細胞は初代ラット肝細胞(播種密度:1.0×105細胞/シャーレ)を、培地はDMEM+サプリメント培地(無血清)を用いる以外は、試験例1と同様にしてスフェロイドを作製した。
Test Example 3
Spheroids were prepared in the same manner as in Test Example 1 except that primary rat hepatocytes (seed density: 1.0 × 10 5 cells / petri dish) were used as cells and DMEM + supplement medium (serum-free) was used as the medium.
 結果、図6に示すとおり、培養の経過に伴い、パターン付細胞培養用基材に保持された(接着した)スフェロイド(培養7日目:平均円相当径160μm, SD 32μm)が出現することが観察され、細胞種が異なっても本発明の細胞培養用基材で培養できることが確認できた。 As a result, as shown in FIG. 6, spheroids (7 days of culture: average circle equivalent diameter 160 μm, SD 32 μm) retained (adhered) to the patterned cell culture substrate may appear as the culture progresses. It was observed that it was confirmed that the cells could be cultured on the cell culture substrate of the present invention even if the cell types were different.
 本発明の細胞培養用基材は、簡便に調製することができ、細胞培養の作業自体も効率的に行なうことが可能となるので、例えば、スフェロイド含有製剤などの細胞製剤の分野に好適に用いることができる。 Since the cell culture substrate of the present invention can be easily prepared and the cell culture work itself can be efficiently performed, it is suitably used in the field of cell preparations such as spheroid-containing preparations, for example. be able to.
1   単位形状
2   隣り合う単位形状間の間隙
1 Unit shape 2 Gap between adjacent unit shapes

Claims (16)

  1.  細胞接着性表面を有する層と、該層の表面に設けられた細胞非接着性物質の微細パターンを有し、前記細胞接着性表面が細胞培養面である、細胞培養用基材。 A cell culture substrate having a layer having a cell adhesive surface and a fine pattern of non-cell adhesive substances provided on the surface of the layer, and the cell adhesive surface is a cell culture surface.
  2.  細胞接着性表面を有する層が細胞接着性を示す物質で構成される、請求項1記載の基材。 The base material according to claim 1, wherein the layer having a cell adhesive surface is composed of a substance exhibiting cell adhesion.
  3.  細胞接着性表面がポリイミド樹脂を含む、請求項1又は2記載の基材。 The base material according to claim 1 or 2, wherein the cell adhesive surface contains a polyimide resin.
  4.  細胞非接着性物質が、エチレングリコール、2-メタクリロイルオキシエチルホスホリルコリン、ヒドロキシエチルメタクリレート及びそれらの誘導体、あるいは、それらの重合体、ならびに、セグメント化ポリウレタン及びその誘導体;アルブミン、アガロース、ならびにセルロースから選ばれる、請求項1~3のいずれかに記載の基材。 Cell non-adhesive substances are selected from ethylene glycol, 2-methacryloyloxyethyl phosphorylcholine, hydroxyethyl methacrylate and derivatives thereof, or polymers thereof, and segmented polyurethanes and derivatives thereof; albumin, agarose, and cellulose. , The base material according to any one of claims 1 to 3.
  5.  微細パターンが、複数の単位形状で構成されるパターン、又は、隣り合う単位形状間の間隙で構成されるパターンである、請求項1~4のいずれかに記載の基材。 The base material according to any one of claims 1 to 4, wherein the fine pattern is a pattern composed of a plurality of unit shapes or a pattern composed of gaps between adjacent unit shapes.
  6.  微細パターンが、メッシュ状、ドット状、ストライプ状、ハニカム状、及びこれらの逆パターンから選ばれる模様である、請求項1~5のいずれかに記載の基材。 The base material according to any one of claims 1 to 5, wherein the fine pattern is a pattern selected from a mesh shape, a dot shape, a stripe shape, a honeycomb shape, and an inverse pattern thereof.
  7.  間隙の最短距離が1μm以上である、請求項5又は6に記載の基材。 The base material according to claim 5 or 6, wherein the shortest distance between the gaps is 1 μm or more.
  8.  単位形状の平均円相当径が1000μm以下である、請求項5~7のいずれかに記載の基材。 The base material according to any one of claims 5 to 7, wherein the average circle equivalent diameter of the unit shape is 1000 μm or less.
  9.  隣り合う単位形状に対応する真円間の中心間距離が1500μm以下である、請求項5~8のいずれかに記載の基材。 The base material according to any one of claims 5 to 8, wherein the distance between the centers of perfect circles corresponding to adjacent unit shapes is 1500 μm or less.
  10.  微細パターンの厚みが10μm以下である、請求項1~9のいずれかに記載の基材。 The base material according to any one of claims 1 to 9, wherein the thickness of the fine pattern is 10 μm or less.
  11.  微細パターンが、マイクロコンタクトプリンティング法、スピンコーティング法、キャスティング法、ロールコーティング法、ダイコーティング法、グラビアコーティング法、スプレイコーティング法、バーコーティング法、フレキソ印刷法、ディップコーティング法、インクジェット法、及び、ベース材表面に形成された凹凸構造の間隙に生じる毛細管力によって所望の物質を間隙内に注入して形成するパターニング法からなる群より選択される方法により形成される、請求項1~10のいずれかに記載の基材。 Fine patterns include microcontact printing method, spin coating method, casting method, roll coating method, die coating method, gravure coating method, spray coating method, bar coating method, flexographic printing method, dip coating method, inkjet method, and base. Any of claims 1 to 10, which is formed by a method selected from the group consisting of a patterning method formed by injecting a desired substance into a gap by a capillary force generated in a gap of an uneven structure formed on a material surface. The base material described in.
  12.  微細パターンが、基材表面中、5%以上を占める、請求項1~11のいずれかに記載の基材。 The base material according to any one of claims 1 to 11, wherein the fine pattern occupies 5% or more of the surface of the base material.
  13.  1~1000μmの厚みを有する、請求項1~12のいずれかに記載の基材。 The base material according to any one of claims 1 to 12, which has a thickness of 1 to 1000 μm.
  14.  細胞接着性表面を有する層に、細胞非接着性物質を印刷して微細パターンを形成する工程を含む、細胞培養用基材の製造方法。 A method for producing a base material for cell culture, which comprises a step of printing a non-cell adhesive substance on a layer having a cell adhesive surface to form a fine pattern.
  15.  請求項1~13のいずれかに記載の基材を用いて細胞を培養する工程を含む、細胞の培養方法。 A method for culturing cells, which comprises a step of culturing cells using the substrate according to any one of claims 1 to 13.
  16.  請求項1~13のいずれかに記載の基材を用いて細胞を培養する工程を含む、スフェロイドの製造方法。 A method for producing a spheroid, which comprises a step of culturing cells using the substrate according to any one of claims 1 to 13.
PCT/JP2020/029575 2019-08-09 2020-07-31 Cell culture substrate WO2021029241A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021539208A JPWO2021029241A1 (en) 2019-08-09 2020-07-31
JP2023187538A JP2023181426A (en) 2019-08-09 2023-11-01 Substrate for cell culture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019147155 2019-08-09
JP2019-147155 2019-08-09

Publications (1)

Publication Number Publication Date
WO2021029241A1 true WO2021029241A1 (en) 2021-02-18

Family

ID=74570560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029575 WO2021029241A1 (en) 2019-08-09 2020-07-31 Cell culture substrate

Country Status (2)

Country Link
JP (2) JPWO2021029241A1 (en)
WO (1) WO2021029241A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210713A1 (en) * 2021-03-30 2022-10-06 国立大学法人北海道大学 Cell mass-forming member, culture container, method for producing cultured cells, and cultured cells with cell mass-forming member
CN117070462A (en) * 2023-08-17 2023-11-17 镜像绮点(上海)细胞技术有限公司 Isolation and purification of primary cells

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008289362A (en) * 2005-09-01 2008-12-04 Univ Of Tokyo Micro-patterning culture substrate, micro-patterning culture structure and method for making them
JP4336756B2 (en) * 2001-07-26 2009-09-30 株式会社トランスパレント Animal cell culture constructs
JP2017104027A (en) * 2015-12-07 2017-06-15 東洋インキScホールディングス株式会社 Member for cell culture
JP2017212952A (en) * 2016-06-01 2017-12-07 大日本印刷株式会社 Production method of cell aggregate
WO2018101481A1 (en) * 2016-12-02 2018-06-07 株式会社日本触媒 Cell preparation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4336756B2 (en) * 2001-07-26 2009-09-30 株式会社トランスパレント Animal cell culture constructs
JP2008289362A (en) * 2005-09-01 2008-12-04 Univ Of Tokyo Micro-patterning culture substrate, micro-patterning culture structure and method for making them
JP2017104027A (en) * 2015-12-07 2017-06-15 東洋インキScホールディングス株式会社 Member for cell culture
JP2017212952A (en) * 2016-06-01 2017-12-07 大日本印刷株式会社 Production method of cell aggregate
WO2018101481A1 (en) * 2016-12-02 2018-06-07 株式会社日本触媒 Cell preparation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUKUDA, J. ET AL.: "Novel hepatocyte culture system developed using microfabrication and collagen/polyethylene glycol microcontact printing", BIOMATERIALS, vol. 27, no. 7, 19 August 2005 (2005-08-19), pages 1061 - 1070, XP025097063, DOI: 10.1016/j.biomaterials.2005.07.031 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210713A1 (en) * 2021-03-30 2022-10-06 国立大学法人北海道大学 Cell mass-forming member, culture container, method for producing cultured cells, and cultured cells with cell mass-forming member
CN117070462A (en) * 2023-08-17 2023-11-17 镜像绮点(上海)细胞技术有限公司 Isolation and purification of primary cells
CN117070462B (en) * 2023-08-17 2024-02-23 镜像绮点(上海)细胞技术有限公司 Isolation and purification of primary cells

Also Published As

Publication number Publication date
JP2023181426A (en) 2023-12-21
JPWO2021029241A1 (en) 2021-02-18

Similar Documents

Publication Publication Date Title
JP2023181426A (en) Substrate for cell culture
JP6497677B2 (en) Block copolymer, surface treatment agent, membrane thereof, and cell culture substrate coated with the same
JP2023129581A (en) Cell preparation
JP6681664B2 (en) Oxygen gas permeable cell culture substrate containing fluorinated polyimide, cell culture container provided with the substrate, and cell culture method using the substrate
JP7105887B2 (en) Cell culture sheet
Guida et al. Integrating Microstructured Electrospun Scaffolds in an Open Microfluidic System for in Vitro Studies of Human Patient-Derived Primary Cells
JP6901253B2 (en) Adhesive cell culture substrate, cell culture container and cell culture method using this
JP7421909B2 (en) How to transport cells
JP6632205B2 (en) Cell culture substrate containing polyimide on the surface
KR20220139402A (en) Cell culture substrate, manufacturing method and use thereof
JP7263512B2 (en) Method for collecting cells and/or aggregates thereof
JP2023071879A (en) Method for producing cell spheroids
US20150118729A1 (en) Cell programing via geometric cues
JP2015213498A (en) Cell culture substrate whose surface contains fluorine-containing polyimide which is imidized by heat treatment
JP7368470B2 (en) Method for manufacturing cell culture containers
JP2020094044A (en) Hyaluronic acid-containing spheroid and method for producing the same
JP2019033742A (en) Culture base for pluripotent stem cells and method for producing pluripotent stem cells
JP2020137519A (en) Method for producing human adipose-derived stem cell spheroid
KR20190021381A (en) Cell preparation method, cell culture device and kit
JP6901252B2 (en) Adhesive cell culture substrate, cell culture container and cell culture method using this
JP2021159082A (en) Method for producing cell sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852746

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021539208

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20852746

Country of ref document: EP

Kind code of ref document: A1