WO2015008482A1 - レーザ加工装置、レーザ加工方法、及びレーザ発振装置 - Google Patents

レーザ加工装置、レーザ加工方法、及びレーザ発振装置 Download PDF

Info

Publication number
WO2015008482A1
WO2015008482A1 PCT/JP2014/003739 JP2014003739W WO2015008482A1 WO 2015008482 A1 WO2015008482 A1 WO 2015008482A1 JP 2014003739 W JP2014003739 W JP 2014003739W WO 2015008482 A1 WO2015008482 A1 WO 2015008482A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
debris
laser
laser processing
debris removal
Prior art date
Application number
PCT/JP2014/003739
Other languages
English (en)
French (fr)
Inventor
秀知 高橋
道春 太田
芳夫 早崎
智士 長谷川
Original Assignee
アイシン精機株式会社
国立大学法人宇都宮大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機株式会社, 国立大学法人宇都宮大学 filed Critical アイシン精機株式会社
Publication of WO2015008482A1 publication Critical patent/WO2015008482A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0673Dividing the beam into multiple beams, e.g. multifocusing into independently operating sub-beams, e.g. beam multiplexing to provide laser beams for several stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0734Shaping the laser spot into an annular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0736Shaping the laser spot into an oval shape, e.g. elliptic shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/16Removal of by-products, e.g. particles or vapours produced during treatment of a workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/359Working by laser beam, e.g. welding, cutting or boring for surface treatment by providing a line or line pattern, e.g. a dotted break initiation line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Definitions

  • the present invention relates to a laser processing apparatus, a laser processing method, and a laser oscillation apparatus. More specifically, the present invention relates to a laser processing apparatus, a laser processing method, and an ablation process that ablate a workpiece by irradiating a laser beam. The present invention relates to a laser oscillating device that oscillates the laser beam.
  • Ablation processing is a laser processing technique used in micro-processing such as micro-drilling and micro-groove formation such as glass, semiconductor, and metal, and micro-cutting.
  • a workpiece is irradiated with a laser beam with a high energy density, and processing is performed by instantaneously decomposing, evaporating, and scattering substances on the surface of the material.
  • the processing debris (debris) scattered by processing sometimes reattaches around the processing portion.
  • several methods for removing the attached debris have been proposed.
  • Patent Document 1 as a method of forming a laser processing groove, a step of forming a processing groove with an elliptical laser processing beam and a step of removing debris accumulated in the processing groove with an elliptical debris removal beam are alternately implemented.
  • the elliptical beam shape at the time of laser processing has a ratio of the major axis to the minor axis of 30 to 60: 1
  • the elliptical beam shape at the time of debris removal has a ratio of the major axis to the minor axis of 1 to 20: 1.
  • Patent Document 2 discloses that a laser beam is divided into a laser processing beam and a debris removal beam, and debris is removed with a laser simultaneously with the laser processing.
  • the irradiation region of the beam for removing debris includes the irradiation region of the beam for laser processing, and the power density of the beam for removing the debris is lower than the ablation threshold value of the workpiece.
  • JP 2007-305646 A Japanese Patent No. 3052226
  • the width of the irradiation region of the beam for removing debris is the same as the width of the irradiation region for laser processing. Therefore, debris deposited and attached to the processing groove can be removed, but debris attached to the periphery of the processing groove cannot be removed.
  • the irradiation region of the debris removal beam is set to a wide region including the processing portion and the surrounding debris adhesion region.
  • a power density equal to or higher than a threshold value. Therefore, if the area of the irradiation region is increased, the output of the irradiated beam must be increased in accordance with the area. For example, when one laser beam is divided into a laser processing beam and a debris removal beam, a large part of the output of the original laser beam is assigned to the debris removal beam. There may be a problem with insufficient output to allocate. Such a problem becomes prominent when a low-power laser oscillator such as an ultrashort pulse laser is used as a laser light source.
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide a laser processing apparatus and laser processing capable of removing debris adhering to a wide range while reducing the output of the laser beam. It is an object to provide a method and a laser oscillation apparatus used for such laser processing.
  • a laser processing apparatus includes a first beam for ablating a workpiece and a second beam for removing debris generated by the ablation processing.
  • An oscillating device that oscillates the beam and a holding device for holding the workpiece, wherein the first beam is applied to the workpiece held by the holding device, and the second beam Is irradiated to the irradiation position of the first beam of the workpiece or in the vicinity of the irradiation position, and the irradiation shape of the workpiece is linear.
  • the laser processing method oscillates a first beam for ablating a workpiece and a second beam for removing debris generated by the ablation processing.
  • An oscillation step wherein the workpiece is irradiated with the first beam, and the second beam is irradiated on or near the irradiation position of the first beam on the workpiece.
  • the irradiation shape of the second beam on the workpiece is linear.
  • the laser oscillation apparatus is a laser oscillation apparatus that oscillates a first beam for performing ablation processing and a second beam for removing debris generated by the ablation processing. And a shaping means for shaping the shape of a cross section of the second beam perpendicular to the optical axis of the second beam into a linear shape.
  • the irradiation shape of the second beam for removing the debris generated by the ablation processing is linear, it is possible to reduce the output of the laser beam and to remove the debris attached over a wide range. Become.
  • ablation processing is a kind of non-thermal processing, in which a workpiece is irradiated with a high-power density laser beam to decompose, evaporate, and scatter the surface material of the workpiece. Is to do.
  • debris refers to work waste of a workpiece that is generated as a result of ablation.
  • ablation threshold value is a value specific to a material and is a minimum power density that enables ablation processing.
  • FIG. 1A is a schematic diagram of a laser processing apparatus according to the present embodiment.
  • the laser processing apparatus includes an oscillation device 1, a reflection mirror 21, a condenser lens 22, and a holding device 3.
  • the oscillation device 1 includes a laser light source 11, a laser control unit 12, and a beam shaping / dividing unit 13.
  • the holding device 3 includes a holding unit 31 and an XYZ axis stage 32.
  • a broken line with an arrow indicates a laser processing beam 51 for performing ablation processing, and a one-dot broken line with an arrow indicates a debris removal beam 52 for removing debris.
  • the laser light source 11 oscillates a laser beam for performing ablation processing.
  • a femtosecond laser is used as a laser beam oscillated from the laser light source 11, but the present invention is not limited to this.
  • a picosecond laser, excimer laser, YAG laser, CO2 laser, or the like may be used as long as it can perform ablation processing.
  • the controller 12 can control the output, frequency, etc. of the laser beam oscillated by the laser light source 11.
  • the laser beam oscillated from the laser light source 11 enters the beam shaping division unit 13.
  • the beam shaping division unit 13 divides the incident laser beam into two beams, a laser processing beam 51 and a debris removal beam 52, and shapes the shape of the debris removal beam 52.
  • the beam shaping division unit 13 will be described in detail later.
  • the laser processing beam 51 and the debris removal beam 52 change the optical path by the reflecting mirror 21 and are irradiated to the workpiece 4 installed on the holding unit 31 via the condenser lens 22.
  • the workpiece 4 is installed in the holding unit 31.
  • the holding unit 31 is a member that can hold the workpiece 4, and is fixed to the XYZ axis stage 32.
  • the XYZ axis stage 32 can be driven in the XY axis direction and the Z axis direction.
  • the XY axis direction is a surface direction of the installation surface on which the workpiece 4 of the holding unit 31 is installed
  • the Z axis direction is a direction orthogonal to the XY axis direction. Accordingly, by driving the XYZ axis stage 32 while irradiating the workpiece 4 installed on the holding unit 31 with the laser processing beam 51 and the debris removing beam 52, the workpiece 4 is subjected to the laser processing beam 51. Further, a desired processing can be performed by scanning with the debris removing beam 52.
  • the laser processing beam 51 and debris are configured by using a configuration in which the oscillation device 11, the reflecting mirror 21, and the condenser lens 22 are moved together, or using a galvano scanner.
  • the irradiation position of the removal beam 52 may be moved.
  • the laser processing beam 51 and the debris removal beam 52 may be moved while moving the workpiece 4. That is, by moving at least one of the workpiece 4 and the laser processing beam 51 and the debris removal beam 52, the laser processing beam 51 and the debris removal beam 52 are scanned on the processing surface of the workpiece 4. Any configuration may be used.
  • the beam shaping division unit 13 will be described in detail with reference to FIGS. 2A and 2B.
  • the reflection mirror 21 shown in FIG. 1A is not shown in FIGS. 2A and 2B.
  • FIG. 2A is a diagram for explaining how the beam shaping / dividing unit 13 generates the laser processing beam 51 and the debris removal beam 52.
  • FIG. The arrow on the left indicates the incident direction of the laser beam.
  • the right figure of FIG. 2A is a top view which shows the irradiation shape in the workpiece 4 of the beam 51 for laser processing and the beam 52 for debris removal irradiated from the beam shaping division
  • the arrows in the right figure (upward direction in the figure) indicate the scanning directions of the beams 51 and 52.
  • the beam shaping division unit 13 includes a diffractive optical element 131.
  • the diffractive optical element 131 has both a function of dividing the laser beam and a function of shaping the shape of an orthogonal cross section of one optical axis of the divided laser beam.
  • the laser beam oscillated from the laser light source 11 enters the beam shaping / dividing unit 13 and is divided into two beams of a laser processing beam 51 and a debris removal beam 52 by the diffractive optical element 131. Simultaneously with the division, the debris removal beam 52 is shaped into a linear line beam by the diffractive optical element 131.
  • the laser processing beam 51 and the debris removal beam 52 divided by the beam shaping division unit 13 are irradiated on the surface of the workpiece 4 through the condenser lens 22 (right diagram in FIG. 2A).
  • FIG. 2A the method of generating the laser processing beam 51 and the debris removal beam 52 using the diffractive optical element 131 has been described.
  • a debris removal beam 52 may be generated.
  • the laser beam incident on the beam shaping splitting unit 13 is split by the beam splitter 132 into two beams, a laser processing beam 51 and a debris removal beam 52.
  • the debris removal beam 52 is shaped into a linear line beam by the cylindrical lenses 134 and 135 while changing the optical path by the reflection mirror 136.
  • the linearly shaped debris removal beam 52 is superimposed again on the laser processing beam 51 by the reflection mirror 137 and the beam splitter 133, and is emitted from the beam shaping division unit 13 together with the laser processing beam 51.
  • the beam splitters 132 and 133 are not limited to the present embodiment as long as they can divide and combine beams, such as a deflection beam splitter. Further, the beam 51 for laser processing and the beam 52 for removing debris are superposed in the beam splitter 133 while shifting their axes rather than completely matching each optical axis. By adjusting the distance between the axes, the irradiation interval d of the beams 51 and 52 on the workpiece 4 can be changed.
  • FIG. 1B is a diagram for explaining the ablation processing method and the debris removal method according to the present embodiment.
  • the irradiation shape of the debris removal beam 52 is linear, and the workpiece 4 is applied to the workpiece 4 while irradiating the workpiece 4 from above with the laser processing beam 51 and the debris removal beam 52 separated from each other.
  • the processing groove 101 is formed by moving in the XY axis direction (the direction of the white arrow).
  • a solid line arrow indicates a relative movement direction (laser scanning direction) of the irradiation position of the laser processing beam 51 and the debris removal beam 52 with respect to the workpiece 4.
  • the processing groove 101 is formed by moving the irradiation position while irradiating the workpiece 4 with the laser processing beam 51, and is generated around the processing groove 101 with the irradiation of the laser processing beam 51.
  • the debris 102 is scattered and attached.
  • the attached debris 102 is removed by irradiation with the debris removing beam 52.
  • the laser beam 51 is irradiated onto the workpiece 4 with a power density higher than the ablation threshold of the workpiece 4, and the debris removal beam 52 removes the debris 102 generated from the workpiece 4.
  • the workpiece 4 is irradiated with a sufficient power density.
  • the power density of the debris removal beam 52 is less than the ablation threshold value of the workpiece 4.
  • the ablation threshold value of the debris 102 is preferable.
  • the power density of the debris removal beam 52 is within the above range as long as the debris removal effect can be exhibited. It is not limited to. That is, when removing the debris 102, it is desirable to irradiate the beam with a power density that can sufficiently remove the debris 102 without damaging the workpiece 4 or minimizing the damage. .
  • the debris removal beam 52 is irradiated backward from the irradiation position of the laser processing beam 51 in the direction in which the formation of the processing groove 101 formed by the laser processing beam 51 proceeds. Further, the debris removal beam 52 irradiates such that the axis of the linear irradiation shape of the debris removal beam 52 is orthogonal to the forming direction of the processing groove 101. By irradiating and moving the debris removal beam 52 in such an arrangement, the debris 102 generated by the laser processing beam 51 and scattered around can be removed while the debris removal beam 52 follows ( Debris removal region 103).
  • the debris removing beam 52 is irradiated away from the laser processing beam 51 on the rear side in the scanning direction of the laser processing beam 51.
  • the debris 102 scatters in four directions around a part of the processing groove 101 formed by the laser processing beam 51, and a part of the scattered debris 102 centers around a part of the processing groove 101. It adheres to the workpiece 4 with a distribution. That is, the debris 102 attached to the workpiece 4 is formed around the processing groove 101 formed by the irradiation of the laser processing beam 51.
  • the region where the attached debris 102 exists is debris removal beam 52. Will be scanned.
  • the debris removal beam 52 is a linear beam extending in a direction orthogonal to the scanning direction, the debris removal laser 52 can be irradiated to the debris 102 attached to the region away from the processing groove 101. it can. Therefore, the debris generated by processing the laser processing beam 51 and adhering to the workpiece 4 can be satisfactorily removed.
  • irradiation is performed so that the longitudinal direction of the irradiation shape of the debris removal beam 52 is orthogonal to the scanning direction of the laser processing beam 51, but the present invention is not limited to this. Irradiation may be performed at an arbitrary angle other than 0 degrees (parallel). That is, the debris removal beam 52 has a debris removal effect by making the angle formed by the irradiation shape and the scanning direction larger than 0 degree.
  • the length of the debris removal beam 52 is preferably equal to or greater than the width of the range in which the debris 102 scatters.
  • the irradiation interval between the laser processing beam 51 and the debris removal beam 52 is d [ ⁇ m], and the moving speed of the workpiece 4 (relative to the workpiece 4 in the irradiation area of the laser workpiece 4).
  • the moving speed is v [ ⁇ m / s]
  • it is preferable to set the interval d and the speed v so that the time T becomes a constant value at T d / v [s].
  • T [s] is determined when the debris 102 is generated by the laser processing beam 51 in a certain region of the workpiece 4, and then the debris 102 attached to the workpiece 4 is again returned by the debris removal beam 52. It can be regarded as the time until irradiation.
  • the generated debris particles are scattered in the air at the same time as they are generated, and fall for a while and adhere to the surface of the workpiece 4. Furthermore, the debris particles adhering to the surface of the workpiece 4 do not adhere to the workpiece 4 immediately after the adhesion, and if soon after the adhesion, the power lower than the normal ablation threshold of the debris 102 is obtained. Can be removed by density.
  • the relationship between the power density and time that is, the relationship between the power density necessary for removing the attached debris and the time elapsed after the deposition of the debris can be derived by repeated measurement.
  • the value of the irradiation time interval T [s] is preferably set shortly after the scattered debris 102 adheres to the surface of the workpiece 4.
  • Factors that determine the value of T [s] include the output of the laser processing beam 51, the wavelength, the energy absorption rate of the workpiece 4, and the like.
  • the laser processing apparatus irradiates the workpiece 4 with the two beams of the ablation processing beam 51 and the debris removal beam 52.
  • the debris removal beam 52 is a line beam shaped so that the irradiation shape is linear, if the output of the original beam is the same, the beam expanded over a wide range (for example, the diameter of the line beam is The output (power density) per unit area of the beam is higher than that of the disk-shaped beam having the same length as the length. In other words, when beams having the same power density are oscillated, the required beam output can be reduced by forming a linear beam shape instead of a wide range of beams.
  • the debris removal beam 52 irradiated onto the workpiece for example, if the irradiation shape of the debris removal beam 52 is linear, the workpiece 4 is moved in a direction perpendicular to the straight line. To remove debris. That is, in this embodiment, even if a low-power laser is used by irradiating the debris removal beam 52 so that the projected image of the debris removal beam 52 onto the workpiece 4 is linear, the debris removal beam 52 is debris. A power density sufficient to realize removal can be ensured, and an irradiation area along a predetermined direction (for example, a direction orthogonal to the laser scanning direction) can be increased.
  • a predetermined direction for example, a direction orthogonal to the laser scanning direction
  • the irradiation position of the linear debris removal beam 52 is moved as described above, the irradiation area can be expanded over a wide range, and the debris attached over a wide range can be removed while suppressing the output of the laser beam. Is possible.
  • the shape of the debris removal beam 52 is not limited to a straight line, and the irradiation shape may be curved or arcuate. In this case, as shown in FIG. 3A, the debris removal beam 52 is moved while moving the debris removal beam 52 with the curved / arc-shaped opening side of the debris removal beam 52 forward (in the direction of the arrow in FIG. 3A). I do. Further, the irradiation shape of the debris removal beam 52 may be a U-shape (FIG. 3B), a U-shape (FIG. 3C), a line combining a straight line and a curve (FIG. 3D), or the like. The shape of the beam is not necessarily a line in a strict sense.
  • an ellipse having a very large ratio of the length of the major axis to the length of the minor axis (FIG. 3E), etc.
  • the elongated shape is also included in the “line shape”. That is, it can be said that the shape of the debris removal beam 52 is a one-dimensional shape that produces an effect that the substantial irradiation region is expanded two-dimensionally by moving the irradiation region in a specific direction. .
  • FIG. 4 is a schematic diagram of an example according to an embodiment of the present invention.
  • the laser beam oscillated from the laser light source 11 is a femtosecond laser having a pulse width of 500 fs, a repetition frequency of 100 kHz, an average output of 1 w, and a wavelength of 1 ⁇ m.
  • the material of the workpiece 4 is soda-lime glass. It has been found that the ablation threshold value of soda-lime glass is about 0.05 W in terms of the output of the laser beam when the femtosecond laser and the condenser lens 22 described later are used.
  • the spot diameter of the beam condensed by the condenser lens 22 is about 1 ⁇ m.
  • the laser shaping / dividing unit 13 includes a half-wave plate 41, a deflecting beam splitter 42, a reflecting mirror 43, and a spatial light modulator 44.
  • a laser beam with an output of 1 W (pulse energy 10 ⁇ J) oscillated from the laser light source 11 was adjusted to 0.2 W (pulse energy 2 ⁇ J) with a half-wave plate 41 and a deflection beam splitter 42.
  • the laser beam whose output is adjusted is incident on the spatial light modulator 44 via the reflection mirror 43, and the laser beam 51 for output with an output of 0.1 W (pulse energy 1 ⁇ J) and the beam with an output of 0.1 W (pulse energy 1 ⁇ J).
  • the beam was divided into debris removal beams 52.
  • the workpiece 4 was irradiated with the divided laser beam 51 and debris removal beam 52 via the condenser lens 22 (50 times), and scanning was performed.
  • the workpiece 4 is set on a holding unit 31 fixed to the XYZ axis stage 32, and the machining groove 10 is formed and the debris 102 is removed while the XYZ axis stage 32 is moved in the XY axis direction at a speed of 20 ⁇ m / s. Went.
  • a comparison was made between the case where only the laser processing beam 51 was scanned and the case where both the laser processing beam 51 and the debris removal beam 52 were scanned.
  • FIG. 5 is an image of the beam shape irradiated on the workpiece 4.
  • the upper point is the laser processing beam 51, and the lower straight line is the debris removal beam 52.
  • the irradiation interval d between the laser processing beam 51 and the debris removal beam 52 is 10 ⁇ m, and the length of the debris removal beam 52 is 30 ⁇ m. Therefore, the irradiation time interval T [s] between the laser processing beam 51 and the debris removal beam 52 is 0.5 seconds.
  • FIG. 6A is an upper surface image of the processing groove 10 formed only by the laser processing beam 51. It can be seen that debris 102 is adhered around the processing groove 10.
  • FIG. 6B is an upper surface image of the processing groove 10 after the debris removal beam 52 is scanned simultaneously with the laser processing beam 51 and the debris removal is performed. It was confirmed that the scattered debris 102 can be removed by irradiating the debris removing beam 52 0.5 seconds after forming the machining groove 101 with the laser processing beam 51.
  • Example 2 In the laser processing apparatus having the same configuration as that of Example 1 described above, an experiment was performed in which the irradiation interval d [ ⁇ m] between the laser processing beam 51 and the debris removal beam 52 was changed to check the change in the debris removal amount. .
  • the laser processing beam 51 has an output of 0.05 W (pulse energy 0.5 ⁇ J)
  • the debris removal beam 52 has an output of 0.06 W (pulse energy 0.6 ⁇ J)
  • the irradiation time intervals T [s] are 0.026 seconds, 0.078 seconds, and 0.13 seconds, respectively.
  • FIG. 7 is a graph showing the removal amount of the debris 102 when the irradiation interval d [ ⁇ m] between the laser processing beam 51 and the debris removal beam 52 is changed.
  • the ablation threshold value of the debris 102 reattached to the surface of the workpiece 4 is lower than the ablation threshold value of the original workpiece 4. Therefore, in order to remove the reattached debris 102, it is considered that the debris removal beam 52 may be irradiated with a power density slightly lower than the ablation threshold of the workpiece 4. However, the portion where the debris 102 is fixed to the surface is easily absorbed by the workpiece 4 starting from the fixed debris 102, so even if it is less than the ablation threshold of the workpiece 4. There is a possibility of damaging the workpiece 4.
  • FIG. 8A and FIG. 8B are diagrams for explaining how the debris 102 is removed by the debris removal beam 52.
  • the irradiation shape of the debris removal beam 52 is arcuate, and in FIG. 8B, the irradiation shape of the debris removal beam 52 is linear.
  • FIGS. 8A and 8B when the debris removal beam 52 is scanned in the direction of the solid arrow, the attached debris 102 is gradually collected while being blown off to the front side in the scanning direction of the debris removal beam 52 (debris). 102a).
  • the beam shape is a straight line as shown in FIG.
  • the debris 102 can be discharged well by the debris removal beam 52, but the debris 102 is blown away in the direction of the outer side of the irradiation region near both ends of the line beam. In some cases (broken arrows), debris may remain. On the other hand, if the beam shape is an arc shape as shown in FIG. 8A, the debris 102 is likely to be blown away in the inner direction of the irradiation region covered by the beam (broken arrow), so that the debris 102 is not missed. In addition, it can be removed more efficiently.
  • the shape of the debris removal beam 52 having a curved shape, a circular arc shape, a square shape, a U shape, or the like is very effective in controlling the scattering direction of the debris 102.
  • the shape of the debris removal beam 52 is such that the debris removal beam 52 can be gathered in front of the debris removal beam 52 in the scanning direction without further scattering the debris 102 to the surroundings or reducing the amount of scattering. Is preferred.
  • FIG. 9A is a diagram for explaining a method of removing the debris 102 of the laser processing apparatus according to the present embodiment.
  • the irradiation shape of the debris removal beam 52 is an annular shape.
  • a solid arrow indicates the relative movement direction of the beam.
  • the debris 102 moves together with the annular debris removal beam 52 while repeating scattering and adhesion. That is, the generated debris 102 can be guided to the end of the workpiece 4 while being confined in the ring.
  • the irradiation shape of the debris removal beam 52 may be inclined with respect to the scanning direction.
  • FIG. 9B shows a top view of the workpiece 4, and a debris suction device 201 is installed on the lateral side with respect to the relative movement direction of the beam. Since the debris removal beam 52 is irradiated so that the irradiation shape has an angle with respect to the moving direction, the debris 102 is flipped obliquely forward and efficiently recovered by the debris aspirator 201.
  • the variation of the irradiation shape of the debris removal beam 52 has been described, but a configuration in which a similar effect can be obtained by using a plurality of beams is also possible.
  • a plurality of debris removal beams 52 it is possible to control the scattering direction of the debris 102 and efficiently remove the debris 102.
  • One of the advantages of the debris removal beam 52 is that it can flexibly cope with the shape of the workpiece 4 and the required debris removal level by devising the irradiation shape and number of beams.
  • FIG. 10 is a diagram illustrating a top image of the workpiece 4 after processing.
  • the white arrow direction (upward direction of the image) is the beam scanning direction, and the processing groove 101 is formed by performing beam scanning at a constant distance.
  • the removal of the debris 102 is performed simultaneously with the formation of the machining groove 101.
  • the debris 102 adhering to the surface of the workpiece 4 is indicated by a plurality of black dots in the figure.
  • the debris removal beam 52 is irradiated (the left diagram in FIG. 10)
  • the debris removal beam 52 is more forward in the scanning direction than when the debris removal beam 52 is not irradiated (the right diagram in FIG. 10). It can be confirmed that the adhesion amount of the debris 102 is considerably increased. Further, it can be confirmed that the debris 102 is sufficiently removed in the region scanned with the debris removal beam 52 (the lower region 103 of the debris removal beam 52 in the image). Since the left and right diagrams in FIG. 10 are performed under the same conditions except for the use of the debris removal beam 52, the amount of the generated debris 102 is considered to be approximately the same.
  • the debris 102 is accumulated in the front in the scanning direction, the debris 102 is swept out along the scanning direction by the debris removal beam 52, that is, the direction in which the debris is scattered and removed. It was confirmed that control was possible.
  • FIG. 11 is a schematic diagram of a laser processing apparatus according to the present embodiment.
  • the laser processing apparatus includes an oscillation device 1, a beam splitter (half mirror) 91, a condenser lens 22, and a holding device 3.
  • the oscillation device 1 includes laser light sources 11a and 11b, laser control units 12a and 12b, and beam shaping units 93a and 93b.
  • the holding device 3 includes a holding unit 31 and an XYZ axis stage 32.
  • the workpiece 4 is installed on the holding unit 31.
  • a broken line with an arrow indicates a laser processing beam 51 for performing ablation processing, and a one-dot broken line with an arrow indicates a debris removal beam 52 for removing debris.
  • the two laser light sources 11a and 11b are provided. That is, the laser processing beam 51 and the debris removal beam 52 are generated from the laser beams oscillated from the laser light sources 11a and 11b, respectively.
  • the laser processing beam 51 and the laser removal beam 52 oscillated from the oscillation device 1 are combined by a beam splitter (half mirror) 91 and enter the workpiece 4 through the condenser lens 22.
  • the beam splitter 91 is not limited to the present embodiment as long as it can divide and combine beams, such as a deflecting beam splitter.
  • the irradiation interval d between the laser processing beam 51 and the laser removing beam 52 on the workpiece 4 changes the distance between the optical axes when each beam enters the beam splitter (half mirror) 91. Can be adjusted. Further, the workpiece 4 is scanned in a state where the workpiece 4 is irradiated with the laser processing beam 51 and the laser removal beam 52, so that ablation processing and debris removal are simultaneously performed.
  • the debris removal beam 52 may be irradiated so that the irradiation region includes at least a part of the irradiation region of the laser processing beam 51.
  • the debris removal beam 52 can be irradiated so as to overlap the laser processing beam processing hole (FIG. 12).
  • the debris removing beam 52 is rotated around the processing point irradiated with the laser processing beam 51, or the processing point irradiated with the laser processing beam 51 is sandwiched between the processing points.
  • the beam 52 may be configured to reciprocate and scan.

Abstract

 本発明の一実施形態に係るレーザ加工装置は、被加工物をアブレーション加工するためのレーザ加工用ビームと、アブレーション加工によって生じるデブリを除去するためのデブリ除去用ビームとを発振する発振装置と、被加工物を保持するための保持装置とを備え、レーザ加工用ビームは、保持装置に保持された被加工物に照射され、デブリ除去用ビームは、被加工物のレーザ加工用ビームの照射位置又は照射位置の近傍に照射され、デブリ除去用ビームの被加工物における照射形状は線状である。

Description

レーザ加工装置、レーザ加工方法、及びレーザ発振装置
 本発明は、レーザ加工装置、レーザ加工方法、及びレーザ発振装置に関し、より詳細には、レーザビームを照射することにより被加工物をアブレーション加工するレーザ加工装置、レーザ加工方法、及びアブレーション加工のためのレーザビームを発振するレーザ発振装置に関するものである。
 アブレーション加工は、ガラス、半導体、金属等の微細穴あけや微細溝形成等の微細加工、微細切断等で用いられるレーザ加工技術である。アブレーション加工においては、高エネルギー密度のレーザビームを被加工物に照射し、材料表面の物質を瞬時に分解・蒸発・飛散させて加工を行う。しかし、加工により飛散した加工屑(デブリ)は加工部の周囲に再付着してしまうことがある。そこで、付着したデブリを除去する方法がいくつか提案されている。
 特許文献1では、レーザ加工溝を形成する方法として、楕円形のレーザ加工用ビームで加工溝を形成する工程と、楕円形のデブリ除去用ビームで加工溝に堆積しているデブリを除去する工程とを交互に実施することが開示されている。レーザ加工時の楕円ビーム形状は、長軸と短軸との比が30~60:1、デブリ除去時の楕円ビーム形状は、長軸と短軸との比が1~20:1である。
 特許文献2では、レーザビームをレーザ加工用のビームとデブリ除去用のビームとに分割して、レーザ加工と同時にレーザでデブリを除去することが開示されている。デブリ除去用のビームの照射領域はレーザ加工用のビームの照射領域を含み、デブリ除去用のビームのパワー密度は被加工物のアブレーションしきい値以下である。
特開2007-305646号公報 特許第3052226公報
 特許文献1に開示された技術では、デブリ除去用のビームの照射領域の幅は、レーザ加工用の照射領域の幅と同じである。したがって、加工溝に堆積、付着したデブリを除去することはできるが、加工溝周囲に付着したデブリを除去することはできない。
 特許文献2に開示された技術では、デブリ除去用ビームの照射領域は、加工部とその周囲のデブリ付着可能領域を含む広範な領域に設定されている。デブリを除去するためにはしきい値以上のパワー密度でビームを照射する必要があるため、照射領域の面積が広くなれば、照射するビームの出力をその面積に応じて増加させなければならない。例えば、1本のレーザビームをレーザ加工用ビームとデブリ除去用ビームとに分割して用いる場合には、デブリ除去用ビームに元のレーザビームの出力の多くを割り当てた結果、レーザ加工用ビームに割り当てる出力が不足するという問題が生じる可能性がある。このような問題は、超短パルスレーザ等の低出力レーザ発振器をレーザ光源として用いる場合に顕著となる。
 本発明は、このような課題に鑑みてなされたもので、その目的とするところは、レーザビームの出力を低減しつつ、広範囲に付着したデブリを除去することが可能なレーザ加工装置及びレーザ加工方法、並びにそのようなレーザ加工に用いられるレーザ発振装置を提供することにある。
 この目的を達成するために、本発明の第1の態様に係るレーザ加工装置は、被加工物をアブレーション加工するための第1のビームと、前記アブレーション加工によって生じるデブリを除去するための第2のビームとを発振する発振装置と、前記被加工物を保持するための保持装置とを備え、前記第1のビームは、前記保持装置に保持された前記被加工物に照射され、前記第2のビームは、前記被加工物の前記第1のビームの照射位置又は該照射位置の近傍に照射され、前記被加工物における照射形状は線状である。
 また、本発明の第2の態様に係るレーザ加工方法は、被加工物をアブレーション加工するための第1のビームと、前記アブレーション加工によって生じるデブリを除去するための第2のビームとを発振する発振工程を有し、前記第1のビームは、前記被加工物に照射され、前記第2のビームは、前記被加工物の前記第1のビームの照射位置又は該照射位置の近傍に照射され、前記第2のビームの前記被加工物における照射形状は線状である。
 また、本発明の第3の態様に係るレーザ発振装置は、アブレーション加工を行うための第1のビームと、前記アブレーション加工によって生じるデブリを除去するための第2のビームとを発振するレーザ発振装置であって、前記第2のビームの、該第2のビームの光軸に直交する断面の形状を線状に整形する整形手段を備える。
 本発明においては、アブレーション加工によって生じるデブリを除去するための第2のビームの照射形状を線状としているため、レーザビームの出力を低減すると共に、広範囲に付着したデブリを除去することが可能となる。
本発明の一実施形態に係るレーザ加工装置の模式図である。 本発明の一実施形態に係るレーザ加工装置を用いたアブレーション加工及びデブリ除去方法を説明するための図である。 本発明の一実施形態に係るレーザ加工装置のビーム整形分割部を説明するための図である。 本発明の一実施形態に係るレーザ加工装置のビーム整形分割部を説明するための図である。 本発明の一実施形態に係るレーザ加工装置のデブリ除去用ビームの照射形状を説明するための図である。 本発明の一実施形態に係るレーザ加工装置のデブリ除去用ビームの照射形状を説明するための図である。 本発明の一実施形態に係るレーザ加工装置のデブリ除去用ビームの照射形状を説明するための図である。 本発明の一実施形態に係るレーザ加工装置のデブリ除去用ビームの照射形状を説明するための図である。 本発明の一実施形態に係るレーザ加工装置のデブリ除去用ビームの照射形状を説明するための図である。 本発明の一実施形態に係る実施例のレーザ加工装置の模式図である。 本発明の一実施形態に係る実施例で照射したビームの被加工物における照射形状を示す画像である。 レーザ加工用ビームのみによって形成された加工溝と本発明の一実施形態に係る実施例で形成された加工溝との比較を示す被加工物の上面画像である。 本発明の一実施形態に係る実施例のレーザ加工用ビームとデブリ除去用ビームの照射間隔とデブリの除去量との対応関係を示すグラフである。 本発明の一実施形態に係るデブリの除去方法を説明するための図である。 本発明の一実施形態に係るデブリの除去方法を説明するための図である。 本発明の一実施形態に係るデブリの飛散方向が制御される様子を説明するための図である。 本発明の一実施形態に係るデブリの飛散方向が制御される様子を説明するための図である。 本発明の一実施形態に係る実施例のデブリの飛散方向が制御された様子を説明するための図である。 本発明の一実施形態に係るレーザ加工装置の模式図である。 本発明の一実施形態に係るレーザ加工用ビームとデブリ除去用ビームの照射領域を説明するための図である。
 以下、図面を参照して、本発明の実施の形態を説明するが、本発明は本実施形態に限定されるものではない。なお、以下で説明する図面で、同機能を有するものは同一符号を付け、その繰り返しの説明は省略することもある。
 本発明において「アブレーション加工」とは、非熱加工の一種であって、高パワー密度のレーザビームを被加工物に照射することで、被加工物の表面物質を分解・蒸発・飛散させて加工を行うことである。また、本発明において「デブリ」とは、アブレーション加工によって副次的に生じる被加工物の加工屑である。さらに、本発明において「アブレーションしきい値」とは、材料固有の値であって、アブレーション加工を可能とする最小パワー密度のことである。
(第1の実施形態)
 図1Aは、本実施形態に係るレーザ加工装置の模式図である。レーザ加工装置は、発振装置1、反射ミラー21、集光レンズ22、保持装置3を備えている。発振装置1は、レーザ光源11、レーザ制御部12、ビーム整形分割部13を有している。保持装置3は、保持部31、XYZ軸ステージ32を有している。矢印付き破線は、アブレーション加工を行うためのレーザ加工用ビーム51を示し、矢印付き一点破線は、デブリを除去するためのデブリ除去用ビーム52を示している。
 レーザ光源11は、アブレーション加工を行うためのレーザビームを発振する。本実施形態では、レーザ光源11から発振されるレーザビームとしてフェムト秒レーザを用いるが、これに限定されるものではない。アブレーション加工を行うことができるレーザであれば、ピコ秒レーザ、エキシマレーザ、YAGレーザ、CO2レーザ等であっても良い。制御部12は、レーザ光源11で発振するレーザビームの出力、周波数等を制御することができる。レーザ光源11から発振したレーザビームは、ビーム整形分割部13に入射する。ビーム整形分割部13は、入射したレーザビームを、レーザ加工用ビーム51とデブリ除去用ビーム52の2本のビームに分割すると共に、デブリ除去用ビーム52の形状を整形する。ビーム整形分割部13については、詳しく後述する。
 レーザ加工用ビーム51及びデブリ除去用ビーム52は、反射ミラー21によって光路を変え、集光レンズ22を介して保持部31に設置された被加工物4に照射される。
 被加工物4は、保持部31に設置される。保持部31は、被加工物4を保持することが可能な部材であり、XYZ軸ステージ32に固定されている。XYZ軸ステージ32は、X-Y軸方向及びZ軸方向に駆動することができる。ここで、X-Y軸方向とは、保持部31の被加工物4を設置する設置面の面方向であり、Z軸方向とは、X-Y軸方向に直交する方向である。したがって、レーザ加工用ビーム51及びデブリ除去用ビーム52を保持部31に設置された被加工物4に照射させながら、XYZ軸ステージ32を駆動させることで、被加工物4をレーザ加工用ビーム51及びデブリ除去用ビーム52で走査して所望の加工を行うことができる。
 XYZ軸ステージ32により被加工物4を移動させる代わりに、発振装置11、反射ミラー21、及び集光レンズ22を一体で移動させる構成、又はガルバノスキャナを用いる等してレーザ加工用ビーム51及びデブリ除去用ビーム52の照射位置を移動させる構成としても良い。あるいは、被加工物4を移動させながら、レーザ加工用ビーム51及びデブリ除去用ビーム52を移動させても良い。すなわち、被加工物4、並びにレーザ加工用ビーム51及びデブリ除去用ビーム52の少なくとも一方を移動させることにより、被加工物4の加工面をレーザ加工用ビーム51及びデブリ除去用ビーム52が走査されれば、いずれの構成を用いても良い。
 次に、図2A、図2Bを参照しながら、ビーム整形分割部13について詳しく説明する。なお、説明の便宜上、図2A、図2Bにおいては、図1Aに示された反射ミラー21の図示を省略している。
 図2A左図は、ビーム整形分割部13において、レーザ加工用ビーム51及びデブリ除去用ビーム52が生成される様子を説明するための図である。左側の矢印はレーザビームの入射方向を示している。図2A右図は、図2A左図に示されたビーム整形分割部13から照射されるレーザ加工用ビーム51及びデブリ除去用ビーム52の、被加工物4における照射形状を示す上面図である。右図の矢印(図の上方向)は各ビーム51、52の走査方向を示している。ビーム整形分割部13は、回折光学素子131を有している。回折光学素子131は、レーザビームを分割する機能と分割したレーザビームの一方の光軸の直交断面の形状を整形する機能の両方を有している。レーザ光源11から発振されたレーザビームは、ビーム整形分割部13に入射し、回折光学素子131によって、レーザ加工用ビーム51とデブリ除去用ビーム52の2本のビームに分割される。分割と同時に、回折光学素子131によって、デブリ除去用ビーム52は、線状のラインビームに整形される。ビーム整形分割部13によって分割されたレーザ加工用ビーム51及びデブリ除去用ビーム52は、集光レンズ22を介して被加工物4の表面に照射される(図2A右図)。なお、回折光学素子131と集光レンズ22との間の光路長を変えることによって、被加工物4におけるレーザ加工用ビーム51の照射領域と、被加工物4におけるデブリ除去用ビーム51の照射領域との間の距離dを変えることができる。
 図2Aでは、回折光学素子131を用いてレーザ加工用ビーム51とデブリ除去用ビーム52を生成する方法を説明したが、図2Bに示すように、ビームスプリッタ132を用いてレーザ加工用ビーム51とデブリ除去用ビーム52とを生成しても良い。この場合、ビーム整形分割部13に入射したレーザビームは、ビームスプリッタ132によって、レーザ加工用ビーム51とデブリ除去用ビーム52の2本のビームに分割される。さらに、デブリ除去用ビーム52は、反射ミラー136で光路を変えながら、シリンドリカルレンズ134、135によって線状のラインビームに整形される。線状に整形されたデブリ除去用ビーム52は、反射ミラー137、ビームスプリッタ133でレーザ加工用ビーム51と再び重ね合わされ、レーザ加工用ビーム51と共にビーム整形分割部13から出射されるレーザ加工用ビーム51及びデブリ除去用ビーム52は、集光レンズ22を介して被加工物4の表面に照射される(図2B右図)。なお、ビームスプリッタ132、133は、例えば偏向ビームスプリッタのようにビームを分割及び合波できるものであれば良く、本実施形態に限定されるものではない。また、レーザ加工用ビーム51及びデブリ除去用ビーム52は、ビームスプリッタ133において、各光軸を完全に一致させるのではなく軸をずらして重ね合わされる。この軸間の距離を調節することによって、各ビーム51、52の被加工物4における照射間隔dを変化させることができる。
 次に、図1Bに戻って本実施形態に係るレーザ加工装置におけるアブレーション加工及びデブリ除去方法について説明する。図1Bは、本実施形態に係るアブレーション加工方法及びデブリ除去方法を説明するための図である。本実施形態では、デブリ除去用ビーム52の照射形状は直線状であり、レーザ加工用ビーム51及びデブリ除去用ビーム52を離間して上方から被加工物4に照射しながら、被加工物4をX-Y軸方向(白抜き矢印方向)へ移動して加工溝101を形成する。実線矢印は、レーザ加工用ビーム51及びデブリ除去用ビーム52の照射位置の被加工物4に対する相対的な移動方向(レーザの走査方向)を示している。
 レーザ加工用ビーム51を被加工物4に照射しながら、その照射位置を移動することで加工溝101を形成するが、加工溝101の周囲には、レーザ加工用ビーム51の照射に伴って生じたデブリ102が飛散して付着する。付着したデブリ102は、デブリ除去用ビーム52の照射によって除去する。レーザ加工用ビーム51は、被加工物4のアブレーションしきい値よりも高いパワー密度で被加工物4に照射され、デブリ除去用ビーム52は、被加工物4から生じたデブリ102が除去されるのに十分なパワー密度で被加工物4に照射される。一般に、デブリ102は、被加工物4のアブレーションしきい値よりも低いパワー密度で除去することができるため、デブリ除去用ビーム52のパワー密度は、被加工物4のアブレーションしきい値未満で、デブリ102のアブレーションしきい値以上とすることが好ましい。しかしながら、本発明において第2のビーム(デブリ除去用ビーム52)はデブリを除去するために用いられるので、デブリの除去効果が発揮できるのであれば、デブリ除去用ビーム52のパワー密度が上述の範囲に限定されることはない。すなわち、デブリ102を除去する際に、被加工物4にダメージを与えることなく、または与えるダメージを最低限にしながら、デブリ102を十分に除去することができるパワー密度でビームを照射することが望ましい。
 デブリ除去用ビーム52は、レーザ加工用ビーム51により形成される加工溝101の形成が進行する方向に対して、該レーザ加工用ビーム51の照射位置より後方に照射する。さらに該デブリ除去用ビーム52は、該デブリ除去用ビーム52の直線状の照射形状の軸が該加工溝101の形成方向に対して直交するように照射する。このような配置でデブリ除去用ビーム52を照射し、移動することで、レーザ加工用ビーム51によって発生し周囲に飛散したデブリ102を、デブリ除去用ビーム52が追従しながら除去することができる(デブリ除去領域103)。
 すなわち、本実施形態のように、レーザ加工用ビーム51を走査する場合、レーザ加工用ビーム51の走査方向の後段側に該レーザ加工用ビーム51から離間してデブリ除去用ビーム52を照射することが好ましい。ある瞬間においては、レーザ加工用ビーム51により形成された加工溝101の一部を中心にデブリ102が四方に飛散し、飛散したデブリ102の一部は、上記加工溝101の一部を中心に分布を持って被加工物4に付着する。つまり、レーザ加工用ビーム51の照射により形成された加工溝101の周囲に被加工物4に付着したデブリ102が形成されることになる。これに対して、本実施形態では、上述のようにレーザ加工用ビーム51とデブリ除去用ビーム52とを照射しているので、付着してしまったデブリ102が存在する領域をデブリ除去用ビーム52が走査することになる。このとき、デブリ除去用ビーム52が走査方向に直交する方向に延在する線状ビームであるので、加工溝101から離れた領域に付着したデブリ102にまでデブリ除去用レーザ52を照射することができる。よって、レーザ加工用ビーム51の加工により生じ、被加工物4に付着してしまったデブリを良好に除去することができる。
 なお、本実施形態においては、デブリ除去用ビーム52の照射形状の長手方向が、レーザ加工用ビーム51の走査方向に対して直交するように照射されているが、これに限定されるものではなく、0度(平行)以外の任意の角度を成すように照射されても良い。つまり、該照射形状と該走査方向の成す角度を0度よりも大きくすることで、デブリ除去用ビーム52はデブリ102の除去効果を有する。
 デブリ除去用ビーム52の長さは、デブリ102が飛散する範囲の幅以上とするのが好ましい。また、レーザ加工用ビーム51とデブリ除去用ビーム52との照射間隔をd[μm]とし、被加工物4の移動速度(レーザの被加工物4への照射領域の該被加工物4に対する相対移動速度)をv[μm/s]とした場合、T=d/v[s]において、時間Tが一定の値となるように間隔d及び速度vを設定するのが好ましい。T[s]は、具体的には、被加工物4のある領域において、レーザ加工用ビーム51によってデブリ102が発生した後、被加工物4に付着したデブリ102がデブリ除去用ビーム52によって再び照射されるまでの時間とみなすことができる。
 ここで、デブリ102の一粒子に着目してみると、発生したデブリの粒子は発生と同時に空中に飛散し、暫く後に落下して被加工物4の表面に付着する。さらに、被加工物4の表面に付着したデブリ粒子は、付着後すぐに被加工物4に固着するわけではなく、付着後まもなくであれば、デブリ102の通常のアブレーションしきい値よりも低いパワー密度で除去することができる。このパワー密度と時間との関係、つまり、付着したデブリを除去するために必要なパワー密度とデブリ付着後に経過した時間との関係は、繰り返し測定を行うことで導き出すことができる。したがって、照射時間間隔T[s]の値は、飛散したデブリ102が被加工物4の表面に付着後まもなくとすることが好ましい。T[s]の値を決定する要因としては、レーザ加工用ビーム51の出力、波長及び被加工物4のエネルギー吸収率等が考えられる。
 このように、本発明の第1の実施形態に係るレーザ加工装置は、アブレーション加工用ビーム51とデブリ除去用ビーム52の2本のビームを被加工物4に照射する。デブリ除去用ビーム52は、照射形状が線状となるように整形されたラインビームであるため、元のビームの出力が同じである場合、広範囲に拡大したビーム(例えば、その直径がラインビームの長さと同程度の円板形状のビーム)よりもビームの単位面積当たりの出力(パワー密度)は高くなる。言い換えれば、同じパワー密度のビームを発振する場合、広範囲のビームではなく、線状のビーム形状とすることによって、必要なビームの出力を低減することができる。さらに、デブリ除去用ビーム52を被加工物に照射した状態で、例えば、デブリ除去用ビーム52の照射形状が直線状であれば、その直線と直交するような方向へ被加工物4を移動させてデブリの除去を行う。すなわち、本実施形態では、デブリ除去用ビーム52の被加工物4への投影像が線状になるようにデブリ除去用ビーム52を照射することにより、低パワーのレーザを用いたとしても、デブリ除去を実現できる程度のパワー密度を確保し、かつ所定の方向(例えば、レーザの走査方向と直交する方向)に沿った照射面積を大きくすることができる。よって、線状のデブリ除去用ビーム52の照射位置を上述のように移動させれば照射領域を広範囲に拡大することができ、レーザビームの出力を抑えつつ、広範囲に付着したデブリを除去することが可能となる。
 デブリ除去用ビーム52の形状は直線に限定されるものではなく、照射形状が湾曲状・円弧状であっても良い。その場合、図3Aに示されるように、デブリ除去用ビーム52の湾曲状・円弧状の開口側を前方にして該デブリ除去用ビーム52を移動させながら(図3Aの矢印方向)、デブリの除去を行う。さらに、デブリ除去用ビーム52の照射形状は、くの字形(図3B)、コの字形(図3C)、その他直線と曲線を組合せた線(図3D)等であっても良い。ビームの形状が「線状」とは、厳密な意味で線でなくても良く、例えば、短軸の長さに対して長軸の長さの比が非常に大きい楕円形(図3E)等の細長い形状も「線状」に含まれる。つまり、デブリ除去用ビーム52の形状は、その照射領域を特定の方向に移動することで、実質的な照射領域が2次元的に拡大するような効果を生じる1次元的な形状であると言える。
(実施例1)
 図4は、本発明の一実施形態に係る実施例の模式図である。レーザ光源11から発振されるレーザビームは、パルス幅500fs、繰返し周波数100kHz、平均出力1w、波長1μmのフェムト秒レーザである。また、被加工物4の材質は、ソーダ石灰ガラスである。ソーダ石灰ガラスのアブレーションしきい値は、該フェムト秒レーザ及び後述の集光レンズ22を用いた場合、レーザビームの出力に換算して0.05W程度であることが分かっている。なお、該集光レンズ22によって集光されたビームのスポット径は約1μmである。レーザ整形分割部13は、1/2波長板41、偏向ビームスプリッタ42、反射ミラー43、空間光変調素子44を有している。レーザ光源11から発振された出力1W(パスルエネルギー10μJ)のレーザビームを、1/2波長板41及び偏向ビームスプリッタ42で出力を0.2W(パスルエネルギー2μJ)に調整した。さらに、出力を調整したレーザビームを反射ミラー43を介して空間光変調素子44に入射し、出力0.1W(パスルエネルギー1μJ)のレーザ加工用ビーム51と出力0.1W(パスルエネルギー1μJ)のデブリ除去用ビーム52に分割した。分割したレーザ加工用ビーム51及びデブリ除去用ビーム52を集光レンズ22(50倍)を介してそれぞれ被加工物4に照射し、走査を行った。被加工物4はXYZ軸ステージ32に固定された保持部31に設置し、XYZ軸ステージ32をX-Y軸方向へ20μm/sの速度で移動させながら加工溝10の形成とデブリ102の除去を行った。デブリ除去用ビーム52の効果を確認するために、レーザ加工用ビーム51のみを走査した場合と、レーザ加工用ビーム51とデブリ除去用ビーム52を共に走査した場合の比較を行った。
 図5は、被加工物4に照射したビーム形状の画像である。上部の点がレーザ加工用ビーム51、下部の直線がデブリ除去用ビーム52である。レーザ加工用ビーム51とデブリ除去用ビーム52の照射間隔dは10μmであり、デブリ除去用ビーム52の長さは30μmである。したがって、レーザ加工用ビーム51とデブリ除去用ビーム52の照射時間間隔T[s]は0.5秒である。
 図6(a)は、レーザ加工用ビーム51のみによって形成された加工溝10の上面画像である。加工溝10の周囲にデブリ102が付着していることが分かる。図6(b)は、レーザ加工用ビーム51と同時に、デブリ除去用ビーム52を走査してデブリ除去を行った後の加工溝10の上面画像である。レーザ加工用ビーム51で加工溝101を形成してから、0.5秒後にデブリ除去用ビーム52を照射することで、飛散したデブリ102を除去できることが確認された。
(実施例2)
 上述の実施例1と同一構成のレーザ加工装置において、レーザ加工用ビーム51とデブリ除去用ビーム52の照射間隔d[μm]を変化させて、デブリの除去量の変化を確認する実験を行った。レーザ加工用ビーム51は、出力0.05W(パスルエネルギー0.5μJ)、デブリ除去用ビーム52は、出力0.06W(パスルエネルギー0.6μJ)とし、XYZ軸ステージ32の移動速度は100μm/sとした。照射間隔d=2.6μm、7.8μm、13μmの3水準で比較を行った。照射時間間隔T[s]はそれぞれ、0.026秒、0.078秒、0.13秒である。
 図7は、レーザ加工用ビーム51とデブリ除去用ビーム52の照射間隔d[μm]を変化させた時のデブリ102の除去量を示したグラフである。横軸は、加工溝10の中心からの距離を表し、縦軸は、被加工物4の加工前の表面の高さを0とした時の加工後の加工部の高さを表している。d=7.8μmの場合に最もデブリを除去できていることが確認できた。
(第2の実施形態)
 被加工物4の表面に再固着したデブリ102のアブレーションしきい値は、元の被加工物4のアブレーションしきい値よりも低くなっている。そのため、再固着したデブリ102を除去するためには、被加工物4のアブレーションしきい値をわずかに下回るパワー密度でデブリ除去用ビーム52を照射すれば良いと考えられる。しかしながら、表面にデブリ102が固着した部位は、固着したデブリ102を起点としてビームのエネルギーが被加工物4に吸収され易くなっているため、被加工物4のアブレーションしきい値未満であっても被加工物4に損傷を与える可能性がある。
 飛散したデブリ102は、被加工物4に付着後まもなくは、デブリ本来のアブレーションしきい値よりも低いアブレーションしきい値でデブリ102を除去できることがこれまでの実験により分かっている。したがって、飛散したデブリ102が被加工物4に付着後すぐに、デブリ102を除去することが重要となる。
 デブリ除去用ビーム52がデブリ102に照射された時、蒸発して消滅するデブリもあるが、そのデブリの多くが周囲に弾き飛ばされる。例えば、デブリ除去用ビーム52を照射しながらデブリ102に接近させると、デブリ102の多くはデブリ除去用ビーム52の移動方向の前方に弾き飛ばされる。このことは、デブリ除去用ビーム52の形状と移動方向を工夫することによって、デブリ102の飛散方向を制御することができることを示している。例えるならば、デブリ102というゴミをデブリ除去用ビーム52という箒で所望の方向へ掃き出すことができることを意味する。
 図8A、図8Bは、デブリ除去用ビーム52によるデブリ102の除去の様子を説明するための図である。図8Aでは、デブリ除去用ビーム52の照射形状は円弧状であり、図8Bでは、デブリ除去用ビーム52の照射形状は直線状である。図8A、図8Bのそれぞれの場合において、デブリ除去用ビーム52を実線矢印方向に走査すると、付着していたデブリ102はデブリ除去用ビーム52の走査方向前側に弾き飛ばされながら次第に集められる(デブリ102a)。図8Bのようにビーム形状が直線状の場合、デブリ除去用ビーム52によりデブリ102を良好に吐き出すことができるが、ラインビームの両端付近においてはデブリ102が照射領域の外側方向にも弾き飛ばされることもあり(破線矢印)、デブリが残存する可能性がある。これに対して、図8Aのようにビーム形状が円弧状であれば、デブリ102は、ビームによってカバーされる照射領域の内側方向に弾き飛ばされ易くなるため(破線矢印)、デブリ102を逃さずに、より効率良く除去していくことができる。したがって、デブリ除去用ビーム52の形状を、湾曲状、円弧状、くの字形、コの字形等の形状とすることはデブリ102の飛散方向を制御する上で非常に有効である。つまり、デブリ除去用ビーム52の形状は、デブリ102をさらに周囲に飛散させることなく、あるいはその飛散量を低減させて、デブリ除去用ビーム52の走査方向の前方でまとめることができる形状であることが好ましい。
 図9Aは、本実施形態に係るレーザ加工装置のデブリ102の除去方法を説明するための図である。図9Aでは、デブリ除去用ビーム52の照射形状を、円環状としている。実線矢印はビームの相対的な移動方向を示している。デブリ除去用ビーム52の円環内において、デブリ102は飛散と付着を繰り返しながら円環状のデブリ除去用ビーム52と共に移動する。つまり、発生したデブリ102を円環内に閉じこめたまま、被加工物4の端まで誘導することができる。
 また、図9Bに示すように、デブリ除去用ビーム52の照射形状を走査方向に対して斜めにしても良い。図9Bは、被加工物4の上面図を示し、ビームの相対的な移動方向に対して横側にデブリ吸引器201が設置されている。デブリ除去用ビーム52は、照射形状が移動方向に対して角度が付くように照射されるため、デブリ102は斜め前方へ弾き飛ばされてデブリ吸引器201で効率良く回収される。
 なお、本実施形態では、デブリ除去用ビーム52の照射形状のバリエーションを説明したが、ビームを複数本用いて同様の効果を得られる構成としても良い。すなわち、デブリ除去用ビーム52を複数本配置することによって、デブリ102の飛散方向を制御して効率良くデブリ102の除去を行う構成としても良い。デブリ除去用ビーム52の利点の1つは、照射形状・本数等を工夫することで、被加工物4の形状や要求されるデブリの除去レベルに対して柔軟に対応できることである。
(実施例3)
 被加工物4にレーザ加工用ビーム51及びデブリ除去用ビーム52を照射して加工溝101の形成とデブリ102の除去を同時に行った場合と、レーザ加工用ビーム51のみを照射して加工溝101の形成のみを行った場合のデブリ102の付着状況を比較した。図10は、加工後の被加工物4の上面画像を示す図である。白矢印方向(画像の上方向)がビームの走査方向であり、一定距離のビーム走査を行なって加工溝101を形成した。図10の左図においては、加工溝101の形成と同時にデブリ102の除去も同時に行なっている。被加工物4の表面に付着したデブリ102は、図において複数の黒い点で示されている。デブリ除去用ビーム52を照射した場合には(図10左図)、デブリ除去用ビーム52を照射していない場合(図10右図)と比較して、デブリ除去用ビーム52の走査方向前方におけるデブリ102の付着量がかなり増加している様子が確認できる。さらに、デブリ除去用ビーム52を走査した領域(画像ではデブリ除去用ビーム52の下側領域103)は、デブリ102が十分に除去されている様子も確認できる。図10左図と右図とでは、デブリ除去用ビーム52の使用以外は同一の条件で実施したため、発生したデブリ102の量は同程度であると考えられる。したがって、図10左図では走査方向の前方にデブリ102が溜まっていることから、デブリ除去用ビーム52によってデブリ102が走査方向に沿って掃き出されていること、すなわち、デブリ飛散、除去する方向の制御ができていることが確認された。
(第3の実施形態)
 図11は、本実施形態に係るレーザ加工装置の模式図である。レーザ加工装置は、発振装置1、ビームスプリッタ(ハーフミラー)91、集光レンズ22、保持装置3を備えている。発振装置1は、レーザ光源11a、11b、レーザ制御部12a、12b、ビーム整形部93a、93bを有している。保持装置3は、保持部31、XYZ軸ステージ32を有している。被加工物4は保持部31に設置される。矢印付き破線は、アブレーション加工を行うためのレーザ加工用ビーム51を示し、矢印付き一点破線は、デブリを除去するためのデブリ除去用ビーム52を示している。
 このように、本実施形態では、2つのレーザ光源11a、11bを備える構成としている。つまり、レーザ加工用ビーム51及びレデブリ除去用ビーム52が、それぞれレーザ光源11a及び11bから発振されたレーザビームから生成される。発振装置1から発振したレーザ加工用ビーム51及びレーザ除去用ビーム52は、ビームスプリッタ(ハーフミラー)91で合成され、集光レンズ22を介して被加工物4に入射する。なお、ビームスプリッタ91は、例えば偏向ビームスプリッタのようにビームを分割及び合波できるものであれば良く、本実施形態に限定されるものではない。また、被加工物4におけるレーザ加工用ビーム51とレーザ除去用ビーム52との照射間隔dは、各ビームがビームスプリッタ(ハーフミラー)91に入射する際のそれぞれの光軸間の距離を変化させて調整することができる。さらに、レーザ加工用ビーム51及びレーザ除去用ビーム52を被加工物4に照射した状態で被加工物4を走査することで、アブレーション加工及びデブリの除去を同時に行う。
 なお、デブリ除去用ビーム52は、その照射領域がレーザ加工用ビーム51の照射領域の少なくとも一部を含むように照射されても良い。例えば、孔開け加工のようにレーザ加工用ビーム51の照射位置を固定する場合には、デブリ除去用ビーム52を、レーザ加工用ビームの加工孔に重なるように照射することができる(図12)。あるいは、レーザ加工用ビーム51の照射位置を固定して加工を行いつつ、その周囲をデブリ除去用ビーム52のみを走査して付着するデブリを除去するような構成とすることもできる。図12に示すように、レーザ加工用ビーム51が照射される加工点を中心として、デブリ除去用ビーム52を回転させる、またはレーザ加工用ビーム51が照射される加工点を挟んで、デブリ除去用ビーム52を往復走査する等の構成とすれば良い。
 この出願は2013年7月19日に出願された日本国特許出願第2013-150897号からの優先権を主張するものであり、その内容を引用してこの出願の一部とするものである。
 1 発振装置
 11 レーザ光源
 12 レーザ制御部
 13 ビーム整形分割部
 131 回折光学素子
 132、133 ビームスプリッタ
 134、135 シリンドリカルレンズ
 136、137 反射ミラー
 21 反射ミラー
 22 集光レンズ
 3 保持装置
 31 保持部
 32 XYZ軸ステージ
 4 被加工物
 41 1/2波長板
 42 偏向ビームスプリッタ
 43 反射ミラー
 44 空間光変調素子
 51 レーザ加工用ビーム
 52 デブリ除去用ビーム
 91 ビームスプリッタ(ハーフミラー)
 93 ビーム整形部
 101 加工溝
 102 デブリ(デブリ付着領域)
 102a デブリ(デブリ集積領域)
 103 デブリ除去領域
 201 デブリ吸引ノズル

Claims (9)

  1.  被加工物をアブレーション加工するための第1のビームと、前記アブレーション加工によって生じるデブリを除去するための第2のビームとを発振する発振装置と、
     前記被加工物を保持するための保持装置とを備え、
     前記第1のビームは、前記保持装置に保持された前記被加工物に照射され、前記第2のビームは、前記被加工物の前記第1のビームの照射位置又は該照射位置の近傍に照射され、前記第2のビームの前記被加工物における照射形状は線状であるレーザ加工装置。
  2.  前記第1のビームは、前記被加工物のアブレーションしきい値以上のパワー密度で前記被加工物に照射され、前記第2のビームは、前記被加工物のアブレーションしきい値未満かつ前記デブリのアブレーションしきい値以上のパワー密度で前記被加工物に照射される請求項1に記載のレーザ加工装置。
  3.  前記第1のビームは、前記被加工物を走査し、前記第2のビームは、照射形状の長手方向が前記第1のビームの走査方向に対して0度よりも大きい角度を成した状態で、前記走査方向へ前記被加工物を走査する請求項1又は2に記載のレーザ加工装置。
  4.  前記第1のビームは、前記被加工物を走査し、前記第2のビームは、前記第1のビームの走査方向に対して後方に離間して照射されて前記走査方向に前記被加工物を走査する請求項1乃至3のいずれか1項に記載のレーザ加工装置。
  5.  前記第2のビームの照射形状の少なくとも一部が円弧状である請求項1乃至4のいずれか1項に記載のレーザ加工装置。
  6.  前記発振装置は、レーザビームを発生する光源と、前記レーザビームを前記第1のビームと前記第2のビームとに分割する分割部を備える請求項1乃至5のいずれか1項に記載のレーザ加工装置。
  7.  前記発振装置は、前記第1のビームを発振する第1の光源と、上記第2のビームを発振する第2の光源とを備える請求項1乃至5のいずれか1項に記載のレーザ加工装置。
  8.  被加工物をアブレーション加工するための第1のビームと、前記アブレーション加工によって生じるデブリを除去するための第2のビームを発振する発振工程を有し、
     前記第1のビームは、前記被加工物に照射され、前記第2のビームは、前記被加工物の前記第1のビームの照射位置又は該照射位置の近傍に照射され、前記被加工物における照射形状は線状であるレーザ加工方法。
  9.  アブレーション加工を行うための第1のビームと、前記アブレーション加工によって生じるデブリを除去するための第2のビームとを発振するレーザ発振装置であって、
     前記第2のビームの、該第2のビームの光軸に直交する断面の形状を線状に整形する整形手段を備えるレーザ発振装置。
PCT/JP2014/003739 2013-07-19 2014-07-15 レーザ加工装置、レーザ加工方法、及びレーザ発振装置 WO2015008482A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-150897 2013-07-19
JP2013150897A JP2015020195A (ja) 2013-07-19 2013-07-19 レーザ加工装置、レーザ加工方法、及びレーザ発振装置

Publications (1)

Publication Number Publication Date
WO2015008482A1 true WO2015008482A1 (ja) 2015-01-22

Family

ID=52345958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003739 WO2015008482A1 (ja) 2013-07-19 2014-07-15 レーザ加工装置、レーザ加工方法、及びレーザ発振装置

Country Status (3)

Country Link
JP (1) JP2015020195A (ja)
TW (1) TW201509578A (ja)
WO (1) WO2015008482A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020021786A (ja) * 2018-07-31 2020-02-06 株式会社ディスコ チップ製造方法
CN111590194A (zh) * 2020-05-29 2020-08-28 广东工业大学 一种激光套嵌式复合加工方法
EP3659739A4 (en) * 2017-07-27 2021-04-28 Subaru Corporation LASER BLASTING DEVICE
EP3991906A1 (en) * 2020-10-29 2022-05-04 Seiko Epson Corporation Method of manufacturing watch component, and watch component
CN115210611A (zh) * 2020-07-10 2022-10-18 住友电工硬质合金株式会社 衍射光学装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107931850B (zh) * 2017-12-12 2024-03-26 佛山科学技术学院 一种基于扫频oct的激光打标装置
BE1026814B1 (nl) * 2018-11-29 2020-06-30 Netalux Nv Lasergebaseerde behandeling van oppervlakken
CN112935532A (zh) * 2021-02-05 2021-06-11 大族激光科技产业集团股份有限公司 一种双头激光打标机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06344172A (ja) * 1993-06-10 1994-12-20 Sumitomo Heavy Ind Ltd レーザ加工法および加工装置
JPH07254772A (ja) * 1994-03-16 1995-10-03 Fujitsu Ltd 印刷配線板の導体切断方法及び装置
JP2719272B2 (ja) * 1992-06-08 1998-02-25 富士通株式会社 レーザを用いたプリント配線板のパターン切断方法およびパターン切断装置
JP3082013B2 (ja) * 1993-05-31 2000-08-28 住友重機械工業株式会社 レーザ加工方法および装置
JP2002263873A (ja) * 2001-03-05 2002-09-17 Matsushita Electric Ind Co Ltd レーザ加工方法およびレーザ加工装置
JP2002273592A (ja) * 2001-03-19 2002-09-25 Matsushita Electric Ind Co Ltd レーザ加工方法及び加工装置
JP2006289442A (ja) * 2005-04-11 2006-10-26 Sony Corp レーザ加工方法及びレーザ加工装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2719272B2 (ja) * 1992-06-08 1998-02-25 富士通株式会社 レーザを用いたプリント配線板のパターン切断方法およびパターン切断装置
JP3082013B2 (ja) * 1993-05-31 2000-08-28 住友重機械工業株式会社 レーザ加工方法および装置
JPH06344172A (ja) * 1993-06-10 1994-12-20 Sumitomo Heavy Ind Ltd レーザ加工法および加工装置
JPH07254772A (ja) * 1994-03-16 1995-10-03 Fujitsu Ltd 印刷配線板の導体切断方法及び装置
JP2002263873A (ja) * 2001-03-05 2002-09-17 Matsushita Electric Ind Co Ltd レーザ加工方法およびレーザ加工装置
JP2002273592A (ja) * 2001-03-19 2002-09-25 Matsushita Electric Ind Co Ltd レーザ加工方法及び加工装置
JP2006289442A (ja) * 2005-04-11 2006-10-26 Sony Corp レーザ加工方法及びレーザ加工装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3659739A4 (en) * 2017-07-27 2021-04-28 Subaru Corporation LASER BLASTING DEVICE
US11534866B2 (en) 2017-07-27 2022-12-27 Subaru Corporation Laser peening processing apparatus
JP2020021786A (ja) * 2018-07-31 2020-02-06 株式会社ディスコ チップ製造方法
JP7072993B2 (ja) 2018-07-31 2022-05-23 株式会社ディスコ チップ製造方法
CN111590194A (zh) * 2020-05-29 2020-08-28 广东工业大学 一种激光套嵌式复合加工方法
CN115210611A (zh) * 2020-07-10 2022-10-18 住友电工硬质合金株式会社 衍射光学装置
EP3991906A1 (en) * 2020-10-29 2022-05-04 Seiko Epson Corporation Method of manufacturing watch component, and watch component

Also Published As

Publication number Publication date
TW201509578A (zh) 2015-03-16
JP2015020195A (ja) 2015-02-02

Similar Documents

Publication Publication Date Title
WO2015008482A1 (ja) レーザ加工装置、レーザ加工方法、及びレーザ発振装置
KR101241936B1 (ko) 레이저 가공 방법, 피가공물의 분할 방법 및 레이저 가공 장치
KR100829876B1 (ko) 레이저 기계가공의 제어
JP4490883B2 (ja) レーザ加工装置およびレーザ加工方法
JP5432285B2 (ja) 面取りした端部を有する形状にガラスをレーザ加工する方法
JP4418282B2 (ja) レーザ加工方法
JP4175636B2 (ja) ガラスの切断方法
KR101124347B1 (ko) 사각 방향으로 조사되는 스캔된 레이저 빔을 이용한 대상물의 가공 방법 및 그 장치
JP2016516584A (ja) テーパ制御のためのビーム角度とワークピース移動の連係方法
TWI522199B (zh) A laser processing apparatus, a processing method of a workpiece, and a method of dividing a workpiece
JP2008036641A (ja) レーザ加工装置およびレーザ加工方法
CN111055028A (zh) 基于等离子体的扩展可控裂纹的激光切割装置及方法
JP2010138046A (ja) 被割断材の加工方法および加工装置
JP2008055478A (ja) 仕上げ加工方法
JP2005088068A (ja) レーザ加工装置及びレーザ加工工法
JP2006159747A (ja) レーザ加工方法及びその装置
JP2005095936A (ja) レーザ加工装置及びレーザ加工工法
JP2005021964A (ja) レーザーアブレーション加工方法およびその装置
JP2008049380A (ja) レーザによる表面微細構造形成方法
JP4800661B2 (ja) レーザ光線を利用する加工装置
JP2002273592A (ja) レーザ加工方法及び加工装置
WO2021095253A1 (ja) レーザ切断方法及びレーザ切断装置
KR20190087288A (ko) 피가공물의 레이저 가공 방법
JPH06170563A (ja) パルスレーザ光を用いた加工方法
WO2017126506A1 (ja) 加工対象物切断方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826632

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14826632

Country of ref document: EP

Kind code of ref document: A1