WO2015008454A1 - 缶用鋼板およびその製造方法 - Google Patents

缶用鋼板およびその製造方法 Download PDF

Info

Publication number
WO2015008454A1
WO2015008454A1 PCT/JP2014/003613 JP2014003613W WO2015008454A1 WO 2015008454 A1 WO2015008454 A1 WO 2015008454A1 JP 2014003613 W JP2014003613 W JP 2014003613W WO 2015008454 A1 WO2015008454 A1 WO 2015008454A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
cans
temperature
rolling
modulus
Prior art date
Application number
PCT/JP2014/003613
Other languages
English (en)
French (fr)
Inventor
勇人 齋藤
祐介 中川
克己 小島
裕樹 中丸
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2015527166A priority Critical patent/JP6052412B2/ja
Priority to EP14825747.0A priority patent/EP3000906B1/en
Priority to AU2014291557A priority patent/AU2014291557B2/en
Priority to KR1020167002826A priority patent/KR20160027163A/ko
Priority to ES14825747.0T priority patent/ES2670772T3/es
Priority to US14/906,131 priority patent/US10144985B2/en
Priority to CA2916040A priority patent/CA2916040C/en
Priority to CN201480040093.9A priority patent/CN105378134B/zh
Priority to BR112016000907-0A priority patent/BR112016000907B1/pt
Publication of WO2015008454A1 publication Critical patent/WO2015008454A1/ja
Priority to PH12015502714A priority patent/PH12015502714B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a steel plate for cans suitable for can container materials used for food cans and beverage cans and a method for producing the same.
  • the present invention relates to a steel plate for cans excellent in drawing workability and buckling strength of the can body against external pressure, and a method for producing the same.
  • the steel plate for cans of the present invention is useful for application to 2-piece cans.
  • the strength of the steel plate has been increased.
  • the strength (YP) is increased by increasing the strength of the steel sheet, the formability is lowered, which causes a problem in the can manufacturing process. That is, the formability usually decreases due to the increased strength of the steel sheet.
  • the neck processing performed after the can body molding, then the flange molding the problem of increasing the incidence of neck wrinkles and flange cracks, and due to the material anisotropy, the two-piece can is drawn In this case, there is a problem that the “ear” becomes large.
  • increasing the strength of the steel sheet is not necessarily an appropriate method for compensating for the deterioration of the buckling resistance due to the thinning of the steel sheet.
  • the buckling phenomenon of the can body part is caused by the deterioration of the rigidity of the can body due to the thinning of the thickness of the can body part. Therefore, in order to improve the buckling resistance, a method of improving the rigidity by increasing the Young's modulus of the steel sheet itself can be considered.
  • the circumferential direction of the can body after forming does not become a specific direction of the steel plate, so it is necessary to improve the Young's modulus in the steel plate surface on average.
  • the crystal orientation group ( ⁇ fiber) whose ⁇ 110> direction developed by rolling is parallel to the rolling direction increases the Young's modulus, particularly in the direction of 90 ° with respect to the rolling direction, and the ⁇ 111> direction is the plate surface method.
  • the crystal orientation group ( ⁇ fiber) parallel to the linear direction can increase the Young's modulus in the 0 °, 45 °, and 90 ° directions to about 220 GPa with respect to the rolling direction.
  • the crystal orientation of the steel sheet does not show an orientation in a specific orientation, that is, the Young's modulus of the steel sheet with a random texture is about 205 GPa.
  • Patent Document 1 C%: 0.0020% or less, P: 0.05% or less, S: 0.008% or less, Al: 0.005 to 0.1%, N: 0.004% or less, Cr, Ni, Cu, Mo, A rolled steel plate containing 0.1-0.5% of the total of one or more of Mn and Si, with the balance being Fe and inevitable impurities, and a processed structure in which the ratio of the major axis to the minor axis is 4 or more on average And a high-rigidity steel plate having a maximum elastic modulus of 230,000 MPa or more is disclosed.
  • Patent Document 2 by weight%, C: 0.0020% or less, Mn: 0.5% or less, P: 0.02% or less, S: 0.008% or less, Al: 0.005% to 0.1%, N: 0.004% or less, and the remainder.
  • Patent Document 3 C: 0.003% or less, Si: 0.1% or less, Mn: 0.4% or less, S: 0.015% or less, P: 0.02% or less, Al: 0.01% to 0.1%, N: 0.005% by weight ratio
  • the steel and the balance being Fe and unavoidable impurities, and at least all the rolling reduction rolling of 50% or more of the heat in Ar 3 transformation point temperature, after pickling, between 50% or more of cold rolling
  • a method for producing a steel plate for containers is disclosed, which is annealed at a temperature not lower than 400 ° C. and not higher than a recrystallization temperature.
  • the recrystallization temperature is defined as a temperature at which the recrystallization rate becomes 10% with almost no change due to the progress of recrystallization of the texture.
  • Patent Document 4 in mass%, C: 0.003% or less, Si: 0.02% or less, Mn: 0.05 to 0.60%, P: 0.02% or less, S: 0.02% or less, Al: 0.01 to 0.10%, N: Contains 0.0010 to 0.0050%, Nb: 0.001 to 0.05%, B: 0.0005 to 0.002%, the balance consists of Fe and inevitable impurities, and in the center of the plate thickness (accumulated strength in ⁇ 112 ⁇ ⁇ 110> orientation) / ( ⁇ 111 ⁇ ⁇ 112> orientation accumulated strength) ⁇ 1.0, tensile strength in the 90 ° direction from the rolling direction is 550 to 800 MPa, and Young's modulus in the 90 ° direction from the rolling direction is 230 GPa or more.
  • a high strength steel sheet for cans is disclosed.
  • Patent Document 1 has a problem that neck formability and flange formability deteriorate due to large secondary rolling of 50% or more.
  • Patent Document 1 since only the rolling texture develops and the anisotropy increases, there is a problem that drawing workability is lowered.
  • Patent Document 3 has a problem that, as in Patent Document 1, only the rolling texture develops and the anisotropy increases, so that the drawability is lowered. Further, since annealing is performed at a temperature lower than the recrystallization temperature, there is a problem that ductility is low and neck formability and flange formability are low.
  • Patent Document 4 has a problem that recovery annealing can achieve the formability required for a three-piece can, but cannot be applied to applications that require more formability, such as a two-piece can.
  • the present invention has been made in view of such circumstances, and has solved the above-described problems of the prior art and has excellent drawability and excellent buckling strength of the can body against external pressure while maintaining sufficient hardness. It aims at providing the steel plate for cans, and its manufacturing method.
  • the present inventors have conducted intensive research to solve the above problems. As a result, by optimizing chemical composition, hot rolling conditions, cold rolling conditions and annealing conditions, HR30T hardness is 56 or more, excellent drawing workability, and average Young's modulus is 210 GPa or more It was found that it is possible to produce a steel plate for cans with excellent buckling strength of the can body.
  • the present invention has been made based on the above findings, and the gist thereof is as follows.
  • C 0.0030% to 0.0100%
  • Si 0.05% or less
  • Mn 0.10% to 1.0%
  • P 0.030% or less
  • S 0.020% or less
  • Al 0.010% to 0.100%
  • N 0.0050% or less
  • Nb 0.010% or more and 0.050% or less
  • the content of C and Nb satisfies the formula (1)
  • the balance consists of Fe and inevitable impurities
  • the hardness of HR30T is 56
  • [Nb] and [C] are Nb and C contents (% by mass), respectively.
  • C 0.0030% to 0.0100%
  • Si 0.05% or less
  • Mn 0.10% to 1.0%
  • P 0.030% or less
  • S 0.020% or less
  • Al 0.010% to 0.100%
  • N 0.0050% or less
  • Nb 0.010% or more and 0.050% or less
  • the content of C and Nb satisfies the formula (1)
  • the balance consists of Fe and inevitable impurities
  • the hardness of HR30T is 56
  • the average Young's modulus is 210 GPa or more
  • [Nb] and [C] are Nb and C contents (% by mass), respectively.
  • a steel slab having the chemical composition described in (1) or (2) above is heated at a heating temperature of 1100 ° C.
  • a steel slab having the chemical composition described in (1) or (2) above is heated at a heating temperature of 1100 ° C.
  • % indicating the component of steel is “% by mass”.
  • a steel plate for cans having a hardness of HR30T of 56 or more and an average Young's modulus of 210 GPa or more in the rolling direction, the 45 ° direction of rolling and the direction perpendicular to the rolling direction can be obtained. Furthermore, if the steel plate for cans of the present invention is used, a can body can be easily produced in which the buckling strength of the can body with respect to external pressure is higher than the standard value (about 1.5 kgf / cm 2 ) provided by the can and beverage manufacturers. I can do it. Therefore, according to the present invention, the rigidity of the can used for food cans, beverage cans, and the like is improved, and the steel sheet can be further thinned to achieve resource saving and cost reduction.
  • the steel plate for cans of the present invention has good drawability while maintaining sufficient hardness, and is formed by any of the necking performed after the can body forming and the flange forming performed thereafter. Excellent in properties.
  • the steel plate for cans of the present invention has good drawing workability necessary for forming a two-piece can, has an average high Young's modulus in the in-plane direction of the steel plate, and improves the buckling strength of the can body. This is particularly suitable for 2-piece cans.
  • the specific direction of the steel sheet does not become the direction of the can body after canning, so in order to improve the buckling strength of the can body part, This is because it is necessary to improve the Young's modulus in the in-plane direction of the steel sheet on average.
  • the application range of the steel plate according to the present invention can be expected to be applied not only to various metal cans but also to a wide range of dry battery interior cans, various home appliances / electrical parts, automotive parts and the like.
  • the steel plate for cans of the present invention has a composition of mass%, C: 0.0030% or more and 0.0100% or less, Si: 0.05% or less, Mn: 0.10% or more and 1.0% or less, P: 0.030% or less, S: 0.020% or less , Al: 0.010% or more and 0.100% or less, N: 0.0050% or less, Nb: 0.010% or more and 0.050% or less, the content of C and Nb satisfies the formula (1), and the balance is Fe and inevitable impurities
  • the HR30T hardness is 56 or more, and the average Young's modulus calculated from the rolling direction, the 45 ° direction of rolling and the direction perpendicular to the rolling is 210 GPa or more.
  • the steel plate for cans of the present invention is heated to a steel slab having the above composition at a heating temperature of 1100 ° C. or more, rolled at a hot rolling finish temperature of 800 to 950 ° C., and then wound to a winding temperature of 500 to 700 ° C. It can be manufactured by rolling, pickling, cold rolling at a reduction rate of 85% or higher, and annealing at a recrystallization temperature or higher.
  • C 0.0030% to 0.0100%
  • Nb 0.010% to 0.050%
  • Nb is an element having the most important role together with C in the present invention.
  • Nb has the effect of contributing to an increase in hardness by generating NbC and making crystal grains of the annealed plate fine by the pinning effect in addition to making the structure of the hot rolled plate fine.
  • the precipitation strengthening of NbC itself contributes to an increase in hardness.
  • the refinement of hot-rolled sheet grains contributed to the development of textures in the (111) [1-21] orientation and (001) [1-10] to (112) [1-10] orientation. The rate is improved.
  • Nb needs to be 0.010% or more. Further, Nb is preferably 0.015% or more.
  • Nb exceeds 0.050%
  • NbC formation increases, and solid solution C decreases, and the texture of (001) [1-10] to (112) [1-10] orientation does not develop.
  • the average Young's modulus decreases.
  • NbC tends to be coarsened, and the pinning effect is reduced, so that the crystal grains of the annealed plate become coarse and the hardness decreases.
  • the upper limit of Nb is made 0.050%. Preferably it is 0.040% or less, More preferably, it is 0.030% or less.
  • C and Nb need to satisfy 0.10 ⁇ ([Nb] /92.9) / ([C] / 12) ⁇ 0.60.
  • Mn 0.10% to 1.0%
  • Mn has an effect of improving the hardness of the steel sheet by solid solution strengthening, and an effect of preventing a decrease in hot ductility due to S contained in the steel by forming MnS.
  • Mn needs to be added in an amount of 0.10% or more.
  • Mn lowers the Ar 3 transformation point, whereby the crystal grains of the hot-rolled sheet are refined. This contributes to the texture development of the annealed plate and has the effect of improving the average Young's modulus. From this viewpoint, Mn is preferably set to 0.25% or more.
  • S 0.020% or less S forms sulfides in steel and reduces hot ductility. Therefore, the upper limit of S is 0.020% or less. Preferably it is 0.015% or less.
  • Al 0.010% or more and 0.100% or less
  • Al is an element added as a deoxidizer.
  • N by combining with N to form AlN, it has the effect of reducing solid solution N in the steel and improving drawability and aging resistance.
  • Al needs to be added in an amount of 0.010% or more.
  • Nb nitride When Nb nitride is generated, the effective amount of Nb decreases, so that it is preferable to preferentially generate AlN.
  • Al is preferably 0.050% or more. Even if it adds excessively, not only the said effect will be saturated but a manufacturing cost will rise. Further, there arises a problem that inclusions such as alumina increase and drawing workability is lowered. For this reason, the upper limit of Al is 0.100%.
  • N 0.0050% or less
  • N is preferably as small as possible because it combines with Al, Nb or the like to form nitrides or carbonitrides and impairs hot ductility.
  • the upper limit needs to be 0.0050%.
  • N is preferably 0.0010% or more.
  • the balance is Fe and inevitable impurities.
  • Ti and Mo are elements that form carbides, and have an effect of contributing to improvement in hardness by reducing the crystal grain size of the annealed plate by a pinning effect.
  • Ti or Mo carbide By strengthening the precipitation of Ti or Mo carbide itself, it not only contributes to the increase in hardness, but also forms a composite carbide with Nb that is difficult to coarsen, enhancing the effect of grain refinement of the annealed plate and increase in hardness I can do it.
  • Ti: 0.005% or more and Mo: 0.005% or more are preferable in order to reliably obtain these improving effects.
  • HR30T hardness 56 or more It is necessary to harden the steel sheet in order to prevent plastic deformation when subjected to a load, such as by dropping cans, stacking cans, and conveying in a vending machine. For this reason, the Rockwell superficial hardness (scale 30T, HR30T) needs to be 56 or more. Preferably it is 58 or more. If the hardness becomes too high, the moldability is lowered, so it is preferably set to 63 or less. Details of the measurement method will be described later in Examples.
  • the structure of the hot-rolled sheet is refined by setting the finishing temperature and the winding temperature within a predetermined range in the process. Cold rolling at a predetermined rolling reduction and annealing at a recrystallization temperature or higher suppresses NbC coarsening while miniaturizing the crystal grains of the annealed plate. As described above, HR30T hardness can be 56 or more.
  • the average Young's modulus is a particularly important requirement in the present invention.
  • a container that includes drawing, such as a two-piece can because the specific direction of the steel sheet does not become the circumferential direction of the can body after canning, by improving the Young's modulus in the in-plane direction of the steel sheet on average, The buckling strength of the can body can be improved.
  • the average Young's modulus includes Young's modulus in the rolling direction (E [L]), Young's modulus in the 45 ° direction from the rolling direction (E [D]), and Young's modulus in the direction perpendicular to the rolling (E [C]).
  • the average Young's modulus 210 GPa or more By making the average Young's modulus 210 GPa or more, the effect of improving the buckling strength of the can body can be obtained. Preferably it is 215 GPa or more. Details of the measurement method will be described later in Examples.
  • As a method for setting the average Young's modulus in such a range it is preferable to develop the texture to a state described below. That is, the steel composition is kept within a predetermined range, and in particular, the balance between C and Nb is controlled, and the finishing temperature and the coiling temperature are controlled in the hot rolling process, thereby developing the texture in the cold rolling and annealing processes. By promoting cold rolling and recrystallization annealing of 85% or more, a desirable texture can be obtained.
  • (111) [1-21] orientation is a crystal orientation that is effective in improving the average Young's modulus. Yes, preferably 6.0 or more. More preferably, it is 8.0 or more.
  • the ears are generated during drawing by developing the texture simultaneously with the (111) [1-21] orientation.
  • the average integrated strength in the (001) [1-10] to (112) [1-10] orientations is 3.0 or more. More preferably, it is 6.0 or more.
  • the texture of (001) [1-10] to (112) [1-10] orientation develops excessively, the balance of anisotropy changes and conversely the generation of ears increases. It is preferable that The texture generally varies depending on the plate thickness position, but in the present invention, a good correlation was obtained between the measured value on the 1/4 thickness plane and the Young's modulus and drawability. 1/4 plane.
  • Average ferrite grain size less than 7 ⁇ m (preferred conditions)
  • the ferrite average crystal grain size of the annealed plate is preferably less than 7 ⁇ m, more preferably less than 6.5 ⁇ m.
  • the steel plate for cans of the present invention is heated to a steel slab having the above composition at a heating temperature of 1100 ° C. or more, rolled at a hot rolling finish temperature of 800 to 950 ° C., and then wound at a winding temperature of 500 to 700 ° C.
  • a heating temperature of 1100 ° C. or more rolled at a hot rolling finish temperature of 800 to 950 ° C.
  • a winding temperature of 500 to 700 ° C Produced by pickling, pickling, cold rolling at a reduction rate of 85% or more, and annealing at a recrystallization temperature or higher.
  • Hot rolling finish rolling temperature 800 ⁇ 950 °C When the hot rolling finish rolling temperature is higher than 950 ° C., the crystal grains of the hot-rolled sheet become coarse and inhibit the development of the texture, and the crystal grains of the annealed sheet become coarse and the hardness decreases. When the hot rolling finish rolling temperature is less than 800 ° C., the rolling becomes below the transformation point, and the formation of coarse grains and the remaining of the processed structure makes it difficult for the texture to develop. Therefore, the hot rolling finish rolling temperature is set to 800 to 950 ° C. The temperature is preferably 850 to 950 ° C.
  • the coiling temperature after hot rolling 500 ⁇ 700 °C
  • NbC becomes coarse and the pinning effect is reduced.
  • the crystal grains of the hot-rolled sheet become coarse so that the crystal grains of the annealed sheet become coarse and the hardness decreases.
  • the crystal grains of the hot-rolled sheet become coarse, the development of the texture is inhibited, and the average Young's modulus decreases.
  • the coiling temperature after hot rolling is 700 ° C. or lower. Preferably it is set to 650 ° C. or lower.
  • the coiling temperature after hot rolling is 500 ° C. or higher.
  • it is set to 530 ° C. or higher.
  • the pickling conditions are not particularly limited as long as the surface scale can be removed. Pickling can be performed by a conventional method.
  • Cold rolling reduction ratio 85% or more
  • the cold rolling reduction ratio is 85% or more in order to achieve the average Young's modulus improvement due to the development of the texture and the HR30T hardness of 56 or more. If the rolling reduction is less than 85%, the texture does not develop sufficiently and the average Young's modulus decreases. In addition, the crystal grains become coarse and a predetermined hardness cannot be obtained. From the viewpoint of texture development, it is preferably 88% or more. If the rolling reduction of the cold rolling is too high, the anisotropy becomes too large and the drawability is lowered. More preferably, it is less than 90%.
  • Annealing temperature Recrystallization temperature or higher
  • the annealing temperature is set to the recrystallization temperature or higher. From the viewpoint of the development of texture due to grain growth, it is preferable to perform soaking at 710 ° C or higher for 10 seconds or longer. More preferably, it is 740 ° C. or higher. If the temperature is too high, the crystal grains become coarse, and NbC also becomes coarse and the hardness decreases. Therefore, the annealing temperature is preferably set to 800 ° C. or lower. Although the annealing method is not limited, the continuous annealing method is preferable from the viewpoint of material uniformity.
  • the recrystallization temperature as used in the present application means a temperature at which the recrystallization sufficiently proceeds, and specifically, is a temperature at which the recrystallization rate is 99% or more in terms of area ratio.
  • the steel sheet after temper rolling reduction reduction annealing is preferably subjected to temper rolling from the viewpoint of shape correction and adjustment of surface roughness and hardness. From the viewpoint of suppressing the occurrence of stretcher strain, it is preferable to perform rolling at a rolling reduction of 0.5% or more. On the other hand, when rolling is performed at a reduction ratio exceeding 5.0% or more, the steel sheet is hardened so that the drawability is lowered and the anisotropy is increased, and the ears in the drawing process are increased. Therefore, the temper rolling reduction ratio is preferably 5.0% or less. More preferably, it is 0.7% to 3.5%.
  • the thickness of the steel sheet of the present invention is not limited, but is preferably 0.25 mm or less from the viewpoint of thinning. In addition, if the plate thickness becomes too thin, the buckling strength of the can body portion tends to decrease, so the plate thickness is preferably 0.16 mm or more.
  • the steel sheet for cans according to the present invention having an HR30T hardness of 56 or more and excellent drawing workability and excellent buckling strength of the can body against external pressure can be obtained.
  • a steel slab was obtained by melting steel containing components of steel symbols A to V shown in Table 1, with the balance being Fe and inevitable impurities.
  • the obtained steel slab was heated and then hot-rolled under the conditions shown in Table 2, and the scale was removed by pickling and then cold-rolled. Subsequently, the steel sheet was soaked for 20 s at each annealing temperature in a continuous annealing furnace, cooled, and temper-rolled to obtain steel plates (steel symbols 1 to 32) having a thickness of 0.220 mm. Characteristic evaluation was performed by the following method with respect to the steel plate obtained from the above.
  • the average grain size of the ferrite was determined by etching the ferrite structure of the cross section in the rolling direction with a 3% nital solution to reveal grain boundaries, and using a 400x photograph taken using an optical microscope, steel of JIS G 0551- Based on the microscopic test method for the crystal grain size, the average crystal grain size was measured by a cutting method to obtain the ferrite average crystal grain size.
  • the area ratio of the recrystallized region was determined by image processing using an optical microscope photograph in which the ferrite average crystal grain size was measured, and was defined as the recrystallization ratio. When the recrystallization rate was 99% or more, it was determined that the crystal was recrystallized.
  • the average Young's modulus was evaluated by cutting out a 10 x 35 mm test piece with the 0 °, 45 ° and 90 ° directions as the longitudinal direction with respect to the rolling direction, and using a transverse vibration type resonance frequency measuring device, the American Society for The Young's modulus (GPa) in each direction was measured according to the Testing Materials standard (C1259), and the average Young's modulus was calculated from (E [L] + 2E [D] + E [C]) / 4.
  • the steel plate was subjected to a chromium plating (tin-free) treatment as a surface treatment, and then a laminated steel plate coated with an organic film was produced.
  • the laminated steel sheet is punched into a circular shape, and then subjected to deep drawing processing, ironing processing, etc., and applied to beverage cans.
  • a can body similar to a two-piece can was molded and subjected to measurement.
  • the measurement method is as follows. The can was placed inside the pressurizing chamber, and pressurization inside the pressurizing chamber was carried out by introducing pressurized air into the chamber at 0.016 MPa / s via an air introduction valve. The pressure inside the chamber was confirmed through a pressure gauge, a pressure sensor, an amplifier for amplifying the detection signal, a signal processing device for displaying the detection signal, data processing, and the like.
  • the buckling pressure was the pressure at the pressure change point accompanying buckling.
  • the external pressure strength is required to be 0.15 MPa or more with respect to the pressure change caused by the heat sterilization treatment. From this, a case where the external pressure strength was higher than 0.15 MPa was indicated as ⁇ , and a case where the external pressure strength was 0.15 MPa or less was indicated as x. For steel sheets with poor drawing workability, the buckling strength of the can body was not evaluated, so “ ⁇ ” was displayed.
  • Each of the inventive examples has an HR30T of 56 or more and an average Young's modulus of 210 GPa or more, and is excellent in moldability and buckling strength as a can body. Furthermore, the ferrite average crystal grain size is less than 7 ⁇ m, the adhesion of the coated organic film is good, and the corrosion resistance is excellent. On the other hand, in the comparative example, any one or more of the above characteristics are inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

良好な絞り加工性および外圧に対する缶胴部の座屈強度に優れた缶用鋼板およびその製造方法を提供することを目的とする。 C:0.0030%以上0.0100%以下、Si:0.05%以下、Mn:0.10%以上1.0%以下、P:0.030%以下、S:0.020%以下、Al:0.010%以上0.100%以下、N:0.0050%以下、Nb:0.010%以上0.050%以下を含有し、CおよびNbの含有量が0.10≦([Nb]/92.9)/([C]/12)<0.60を満足し、残部はFeおよび不可避的不純物からなり、HR30T硬さが56以上であり、平均ヤング率が210GPa以上であることを特徴とする缶用鋼板。熱延鋼板を85%以上の圧下率で冷間圧延し、再結晶温度以上で焼鈍することで得られる。

Description

缶用鋼板およびその製造方法
 本発明は、食缶や飲料缶に用いられる缶容器材料に適した缶用鋼板およびその製造方法に関するものである。特に、絞り加工性と外圧に対する缶胴部の座屈強度に優れた缶用鋼板およびその製造方法に関するものである。なお、本発明の缶用鋼板は2ピース缶への適用に有用である。
 近年の環境負荷低減およびコスト削減の観点から食缶や飲料缶に用いられる鋼板の使用量削減が求められており、2ピース、3ピース缶に関わらず鋼板の薄肉化が進行している。これに伴い、製缶、搬送工程および市場におけるハンドリング時に作用する外力による缶体の変形と、内容物の加熱殺菌処理等における缶内部の圧力の増減による缶胴部の座屈変形が問題視されている。
 従来、この缶胴部の耐座屈変形性を向上させるために鋼板の高強度化が行われてきた。しかし、鋼板の高強度化によって強度(YP)が上昇すると、成形性が低下し、製缶工程において問題となる。すなわち、鋼板の高強度化により通常、成形性は低下する。その結果、缶胴部成形後に行われるネック加工、次いでフランジ成形において、ネックしわ及びフランジ割れの発生率が増加するという問題や、また、材質の異方性に起因して2ピース缶では絞り加工の際に「耳」が大きくなるといった問題がある。このように、鋼板の高強度化は必ずしも鋼板の薄肉化に伴う耐座屈変形性の劣化を補う方法としては適切ではない。
 一方、缶胴部の座屈現象は、缶胴部板厚が薄肉化されたことによる缶体の剛性の劣化によって生じている。従って、耐座屈変形性を向上させるためには、鋼板自体のヤング率を高めて剛性を向上させる方法が考えられる。特に2ピース缶では、成形後の缶胴の円周方向が鋼板の特定の方向にならないため、鋼板面内のヤング率を平均的に向上させる必要がある。
 鉄のヤング率と結晶方位とは強い相関がある。圧延によって発達する<110>方向が圧延方向に平行な結晶方位群(αファイバー)は、特に圧延方向に対して90°となる方向のヤング率を高め、また、<111>方向が板面法線方向に平行な結晶方位群(γファイバー)は圧延方向に対して0°、45°、90°方向のヤング率を約220GPaまで高めることができる。一方、鋼板の結晶方位が特定の方位への配向を示さない場合、即ち集合組織がランダムである鋼板のヤング率は、約205GPaである。
 例えば、特許文献1には、重量%でC :0.0020%以下、P :0.05%以下、S :0.008%以下、Al:0.005~0.1%、N :0.004%以下、Cr、Ni、Cu、Mo、Mn、Siの1種あるいは2種以上の合計が0.1~0.5%を含み残部がFe及び不可避的不純物からなる圧延鋼板で、結晶粒の短径に対する長径の比が平均で4以上である加工組織を呈し、最大弾性係数が230000MPa 以上を有することを特徴とする高剛性容器用鋼板が開示されている。さらに、上記化学成分を含有する鋼を冷延焼鈍後、50%以上の二次冷延を行い強い圧延集合組織を形成させ、圧延方向に対して90°方向のヤング率を高めることにより鋼板の剛性を上げる方法が開示されている。
 特許文献2では、重量%でC :0.0020%以下、Mn:0.5%以下、P :0.02%以下、S :0.008%以下、Al:0.005%~0.1%、N :0.004%以下、を含み残部がFeおよび不可避的不純物からなる鋼を通常の熱延、酸洗後、60%以上冷延し、その後全く焼鈍をしないことを特徴とする容器用鋼板の製造方法が開示されている。
 特許文献3では、重量比でC :0.003%以下、Si:0.1%以下、Mn:0.4%以下、S :0.015%以下、P :0.02%以下、Al:0.01%~0.1%、N :0.005%以下を含み、残部がFeおよび不可避的不純物からなる鋼を、Ar3 変態点以下の温度で少なくとも全圧下率が50%以上の熱間圧延をし、酸洗後、50%以上の冷間圧延をしてから、400℃以上、再結晶温度以下で焼鈍することを特徴とする容器用鋼板の製造方法が開示されている。冷延率の増加に従う圧延の集合組織の形成により、面内における最大の弾性係数の値を大きくする方法が開示されている。なお、ここでいう再結晶温度とは、集合組織の再結晶の進行による変化がほとんどみられない、再結晶率が10%になる温度と定義されている。
 特許文献4には、質量%で、C:0.003%以下、Si:0.02%以下、Mn:0.05~0.60%、P:0.02%以下、S:0.02%以下、Al:0.01~0.10%、N: 0.0010~0.0050%、Nb:0.001~0.05%、B:0.0005~0.002%を含有し、残部はFeおよび不可避的不純物からなり、板厚中央部において、({112}<110>方位の集積強度)/({111}<112>方位の集積強度)≧1.0であり、圧延方向から90°方向の引張強度が550~800MPa、圧延方向から90°方向のヤング率が230GPa以上であることを特徴とする高強度缶用鋼板が開示されている。
特開平6-212353号公報 特開平6-248332号公報 特開平6-248339号公報 特開2012-107315号公報
 しかし、上記従来技術には下記に示す問題が挙げられる。例えば、特許文献1では、50%以上という大きな二次圧延によりネック成形性およびフランジ成形性が低下するという問題がある。加えて、圧延集合組織のみが発達して、異方性が大きくなるため、絞り加工性が低下するという問題がある。 
 特許文献2では、冷間圧延まま素材では強度が高すぎて延性も低いことから、深絞り成形性が劣位という問題がある。加えて、ネック成形性およびフランジ成形性が低下してしまうという問題がある。
 特許文献3では、特許文献1と同様に圧延集合組織のみが発達し、異方性が大きくなるため、絞り加工性が低下するという問題がある。また、再結晶温度より低い温度で焼鈍しているため、延性が低くネック成形性およびフランジ成形性が低いという問題がある。
 特許文献4では、回復焼鈍により、3ピース缶に要求される程度の成形性は得られるものの、2ピース缶のようにより厳しい成形性が要求される用途には適用できないという問題がある。
 本発明は、かかる事情に鑑みなされたもので、上述した従来技術の問題を解決し、十分な硬さを維持しつつ、良好な絞り加工性および外圧に対する缶胴部の座屈強度に優れた缶用鋼板およびその製造方法を提供することを目的とする。
 本発明者らは、前記課題を解決するために鋭意研究を行った。その結果、化学成分、熱間圧延条件、冷間圧延条件および焼鈍条件を最適化することで、HR30T硬さが56以上で、絞り加工性に優れ、かつ、平均ヤング率が210GPa以上である外圧に対する缶胴部の座屈強度に優れた缶用鋼板の製造が実現可能であることを見出した。
 本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
(1)質量%で、C:0.0030%以上0.0100%以下、Si:0.05%以下、Mn:0.10%以上1.0%以下、P:0.030%以下、S:0.020%以下、Al:0.010%以上0.100%以下、N: 0.0050%以下、Nb:0.010%以上0.050%以下を含有し、CおよびNbの含有量が式(1)を満足し、残部はFeおよび不可避的不純物からなり、HR30T硬さが56以上、かつ、平均ヤング率が210GPa以上であることを特徴とする缶用鋼板。
 0.10≦([Nb]/92.9)/([C]/12)<0.60  ・・・式(1)
 [Nb]、[C]はそれぞれNb、Cの含有量(質量%)
(2)質量%で、C:0.0030%以上0.0100%以下、Si:0.05%以下、Mn:0.10%以上1.0%以下、P:0.030%以下、S:0.020%以下,Al:0.010%以上0.100%以下、N:0.0050%以下、Nb:0.010%以上0.050%以下を含有し、CおよびNbの含有量が式(1)を満足し、残部はFeおよび不可避的不純物からなり、HR30T硬さが56以上、かつ、平均ヤング率が210GPa以上であり、板厚1/4面にて測定した集合組織が、BungeのEuler角表示で、φ1=30°、Φ=55°、φ2=45°の方位の集積強度が6.0以上、かつ、φ1=0°、Φ=0~35°、φ2=45°の方位の平均集積強度が3.0以上10.0以下であることを特徴とする缶用鋼板。
 0.10≦([Nb]/92.9)/([C]/12)<0.60  ・・・式(1)
 [Nb]、[C]はそれぞれNb、Cの含有量(質量%)
(3)フェライト平均結晶粒径が7μm未満であることを特徴とする上記(1)または(2)に記載の缶用鋼板。
(4)さらに、質量%で、成分組成としてTi:0.020%以下、Mo:0.020%以下の内から選ばれる一種以上を含有することを特徴とする上記(1)~(3)のいずれかに記載の缶用鋼板。
(5)上記(1)または(2)に記載の化学成分を有する鋼スラブを、加熱温度1100℃以上にて加熱し、熱延仕上げ温度800~950℃として圧延した後、巻取り温度500~700℃にて巻取り、酸洗して、85%以上の圧下率で冷間圧延し、再結晶温度以上で焼鈍を行うことを特徴とする缶用鋼板の製造方法。
(6)上記(1)または(2)に記載の化学成分を有する鋼スラブを、加熱温度1100℃以上にて加熱し、熱延仕上げ温度800~950℃として圧延した後、巻取り温度500~700℃にて巻取り、酸洗して、85%以上93%以下の圧下率で冷間圧延し、再結晶温度以上で焼鈍を行うことを特徴とする缶用鋼板の製造方法。
なお、本明細書において、鋼の成分を示す%はすべて質量%である。
 本発明によれば、HR30T硬さが56以上であり、圧延方向、圧延45°方向および圧延直角方向の平均ヤング率が210GPa以上である缶用鋼板が得られる。
さらに、本発明の缶用鋼板を用いれば、外圧に対する缶胴部の座屈強度が、製缶および飲料メーカーが設けている基準値(約1.5kgf/cm2)より高い缶体を容易に製造することが出来る。したがって、本発明によれば、食缶や飲料缶等に使用される缶体の剛性が向上し、鋼板の更なる薄肉化が可能になり、省資源化および低コスト化を達成することができ、産業上格段の効果を奏する。
また、本発明の缶用鋼板は十分な硬さを維持しつつ、良好な絞り加工性を有しており、さらに缶胴部成形後に行われるネック加工、次いで行われるフランジ成形のいずれにおいても成形性に優れる。
本発明の缶用鋼板は、2ピース缶の成形に必要な良好な絞り加工性を具備するとともに,鋼板面内方向のヤング率が平均的に高く、缶胴部の座屈強度を向上させることが出来るため、特に2ピース缶向けとして好適である。これは、2ピース缶のように、絞り加工が含まれる容器では、鋼板の特定の方向が、製缶後の缶胴方向にならないため、缶胴部の座屈強度を向上させるためには、鋼板面内方向のヤング率を平均的に向上させることが必要となるためである。
そして、本発明による鋼板の適用範囲は、各種金属缶のみならず、乾電池内装缶、各種家電・電気部品、自動車用部品等の幅広い範囲への適用も期待できる。
 以下、本発明を詳細に説明する。
本発明の缶用鋼板は、成分組成が質量%で、C:0.0030%以上0.0100%以下、Si:0.05%以下、Mn:0.10%以上1.0%以下、P:0.030%以下、S:0.020%以下、Al:0.010%以上0.100%以下、N: 0.0050%以下、Nb:0.010%以上0.050%以下を含有し、CおよびNbの含有量が式(1)を満足し、残部はFeおよび不可避的不純物からなり、HR30T硬さが56以上、圧延方向、圧延45°方向および圧延直角方向から計算される平均ヤング率が210GPa以上である。そして、本発明の缶用鋼板は、上記成分組成を有する鋼スラブに、加熱温度1100℃以上にて加熱し、熱延仕上げ温度800~950℃として圧延した後、巻取り温度500~700℃にて巻取り、酸洗して、85%以上の圧下率で冷間圧延し、再結晶温度以上で焼鈍を行うことで製造可能である。
 まず、本発明の缶用鋼板の成分組成について説明する。
C:0.0030%以上0.0100%以下
Cは本発明において特に重要な元素である。NbCによる結晶粒微細化および固溶Cにより硬さが上昇し、さらにαファイバーの一部である(001)[1-10]~(112)[1-10]方位(BungeのEuler角表示でφ1=0°、Φ=0~35°、φ2=45°)の集合組織が発達し、ヤング率が向上する。これらの効果を得るためにはCを0.0030%以上とする必要がある。特に結晶粒微細化による硬さ上昇効果の観点からは、0.0040%以上とすることが好ましい。一方、Cを0.0100%超えで含有すると、(001)[1-10]~(112)[1-10]方位の集合組織が過剰に発達するとともに、(111)[1-21]方位(BungeのEuler角表示でφ1=30°、Φ=55°、φ2=45°)の集合組織が発達しなくなり平均ヤング率が低下する。さらに、異方性が大きくなることから絞り加工時に耳が大きくなり、絞り加工性が低下する。これらの理由により、Cの上限を0.0100%とする。特に(111)[1-21]方位の集合組織の発達による平均ヤング率の向上の観点からは、Cは0.0080%以下とすることが好ましい。
 Nb:0.010%以上0.050%以下
Nbは、本発明において、Cと共に最も重要な役割を有する元素である。すなわち、Nbは、熱延板の組織を微細にすることに加え、NbCを生成してピン止め効果により焼鈍板の結晶粒を微細化し、硬さの上昇に寄与する効果がある。加えて、NbC自体の析出強化により、硬さの上昇に寄与する。同時に熱延板の結晶粒微細化により、(111)[1-21]方位および(001)[1-10]~(112)[1-10]方位の集合組織の発達に寄与し、平均ヤング率が向上する。これらの効果を得るため、Nbは0.010%以上とする必要がある。さらに、Nbは0.015%以上とすることが好ましい。一方、Nbは、0.050%を超えると、NbCの生成が多くなり、固溶Cが減少して(001)[1-10]~(112)[1-10]方位の集合組織が発達せず、平均ヤング率が低下する。加えて、NbCが粗大化しやすくなり、ピン止め効果が小さくなることで焼鈍板の結晶粒が粗大になり硬さが低下する。このため、Nbの上限は0.050%とする。好ましくは0.040%以下であり、さらに好ましくは0.030%以下である。
 0.10≦([Nb]/92.9)/([C]/12)<0.60
[Nb]、[C]はそれぞれNb、Cの含有量(質量%)
本発明において、CおよびNbは、それぞれの含有量を所定の範囲内とすることに加え、バランスを調節することで、缶用鋼板として好適な硬さ、平均ヤング率、絞り加工性を向上させることが出来る。([Nb]/92.9)/([C]/12)が0.10より低い場合、固溶Cが過剰になり、(111)[1-21]方位の集合組織の発達が阻害されて平均ヤング率が低下する。加えて、(001)[1-10]~(112)[1-10]方位の集合組織が過剰に発達して、絞り加工時の耳が大きくなって絞り加工性が低下する。([Nb]/92.9)/([C]/12)が0.60以上では、NbCが粗大化し易くなり、ピン止め効果が小さくなることで、焼鈍板での結晶粒が粗大化して硬さが低下する。加えて、固溶Cが著しく低下するため、(001)[1-10]~(112)[1-10]方位の集合組織が発達しなくなり、異方性のバランスが変化し、絞り加工での耳が大きくなり絞り加工性が低下する。このため、CおよびNbは、0.10≦([Nb]/92.9)/([C]/12)<0.60とする必要がある。好ましくは、0.10≦([Nb]/92.9)/([C]/12)<0.40である。
 Si:0.05%以下
Siは、多量に添加すると鋼板表面への濃化により表面処理性を劣化させ、さらに耐食性を低下させる。そのため、Siは、0.05%以下とする必要がある。好ましくは0.02%以下である。
 Mn:0.10%以上1.0%以下
Mnは、固溶強化により鋼板の硬さを向上させる効果や、MnSを形成することで、鋼中に含まれるSに起因する熱間延性の低下を防止する効果がある。これの効果を得るためには、Mnは、0.10%以上添加が必要である。さらに、MnはAr3変態点を低下させることにより、熱延板の結晶粒が微細化する。これにより、焼鈍板の集合組織発達に寄与し、平均ヤング率を向上させる効果がある。この観点からは、Mnは、0.25%以上とすることが好ましい。一方、Mnが1.0%を超えると、焼鈍時に集合組織が発達しにくくなり、特に(111)[1-21]方位が低下して、平均ヤング率が低下するため、Mnの上限を1.0%とする。好ましくは0.60%以下である。
 P:0.030%以下
Pは、多量に添加すると鋼板の過剰な硬質化や中央偏析により成形性を低下させ、さらに耐食性を低下させる。このため、Pの上限は0.030%とする。好ましくは0.020%以下である。
 S:0.020%以下
Sは、鋼中で硫化物を形成して、熱間延性を低下させる。よって、Sの上限は0.020%以下とする。好ましくは0.015%以下である。
 Al:0.010%以上0.100%以下
Alは、脱酸剤として添加される元素である。また、Nと結合してAlNを形成することにより、鋼中の固溶Nを減少させ、絞り加工性や耐時効性を向上させる効果を有する。これらの効果を得るためには、Alは、0.010%以上の添加が必要である。Nb窒化物が生成すると有効なNb量が低下するため、優先的にAlNを生成させることが好ましく、この観点から、Alは、0.050%以上とすることが好ましい。過剰に添加しても、上記効果が飽和するだけでなく、製造コストが上昇する。また、アルミナなどの介在物が増加して絞り加工性が低下するなどの問題が生ずる。このため、Alの上限は0.100%である。
 N:0.0050%以下
Nは、AlやNb等と結合し窒化物や炭窒化物を形成し熱間延性を害するため、少ないほど好ましい。また、多量に添加されると集合組織の発達が阻害され平均ヤング率が低下する。そのため、上限を0.0050%とする必要がある。一方、Nを安定して0.0010%未満とするのは難しく、製造コストも上昇する。よって、Nは好ましくは0.0010%以上である。
残部はFeおよび不可避的不純物である。
 上記の成分組成に加えて、本発明では、以下の元素を添加することができる。
 Ti:0.020%以下、Mo:0.020%以下の内から選ばれる一種以上
TiおよびMoは、炭化物を形成する元素であり、ピン止め効果により焼鈍板の結晶粒径を微細化し硬さの向上に寄与する効果がある。TiまたはMo炭化物自体の析出強化により、硬さの上昇に寄与するだけでは無く、粗大化しにくいNbとの複合炭化物を形成し、焼鈍板の結晶粒の微細化や硬さの上昇の効果を高めることが出来る。添加する場合は、これらの向上効果を確実に得るためには、Ti:0.005%以上、Mo:0.005%以上が好ましい。一方、過剰に添加すると、固溶Cが減少して(001)[1-10]~(112)[1-10]方位の集合組織が発達せず、平均ヤング率が低下する。このため、Ti、Moを添加する場合は、Ti: 0.020%以下、Mo:0.020%以下とする。(111)[1-21]方位の集合組織を発達させ、かつ、炭化物の粗大化を抑制する観点から、以下の式を満足することが好ましい。
0.10≦([Nb]/92.9+[Ti]/47.9+[Mo]/95.4)/([C]/12)≦2.0
[Nb]、[Ti]、[Mo]、[C]はそれぞれNb、Ti、Mo、Cの含有量(質量%)
 次に、本発明の材質特性について説明する。
HR30T硬さ:56以上
缶の落下、缶の積み重ねおよび自動販売機内の搬送等により、荷重を受けた際の塑性変形を防止するためには、鋼板を硬質化させることが必要である。このため、ロックウェルスーパーフィシャル硬さ(スケール30T、HR30T)で56以上とする必要がある。好ましくは58以上である。硬さが大きくなり過ぎると成形性が低下するため、63以下とすることが好ましい。測定方法の詳細は実施例に後述する。上述の化学成分を含有する鋼を熱間圧延するに際し、工程において、所定の範囲の仕上げ温度、巻取り温度とすることで熱延板の組織を微細化する。所定の圧下率にて冷間圧延し、再結晶温度以上で焼鈍することにより、焼鈍板の結晶粒を微細化しつつ、NbCの粗大化を抑制する。以上により、HR30T硬さで56以上とすることが出来る。
 平均ヤング率:210GPa以上
平均ヤング率は、本発明において特に重要な要件である。2ピース缶のように、絞り加工が含まれる容器では、鋼板の特定の方向が、製缶後の缶胴周方向にならないため、鋼板面内方向のヤング率を平均的に向上させることで、缶胴部の座屈強度を向上させることが出来る。本発明においては、平均ヤング率は、圧延方向のヤング率(E[L])、圧延方向から45°方向のヤング率(E[D])、圧延直角方向のヤング率(E[C])から(E[L]+2E[D]+E[C])/4として算出される。
平均ヤング率を210GPa以上とすることで、缶胴部の座屈強度向上効果が得られる。好ましくは215GPa以上である。測定方法の詳細は実施例に後述する。平均ヤング率をこのような範囲とする方法としては、集合組織を以下に述べる状態に発達させることが好ましい。すなわち、鋼成分を所定の範囲内とし、特にCとNbのバランスを制御し、熱延工程にて、仕上げ温度および巻取温度を制御することにより、冷延および焼鈍工程での集合組織の発達を促進し、85%以上の冷間圧延と再結晶焼鈍することにより、望ましい集合組織が得られる。
 板厚1/4面での集合組織が、BungeのEuler角表示で、φ1=30°、Φ=55°、φ2=45°の方位の集積強度:6.0以上、かつ、φ1=0°、Φ=0~35°、φ2=45°の方位の平均集積強度:3.0以上10.0以下
本発明においては、集合組織を制御することで、平均ヤング率を向上させて缶胴部の座屈強度向上効果が得られることに加え、さらに、絞り加工時の耳の発生を抑え、絞り加工性を向上させることができる。(111)[1-21]方位(BungeのEuler角表示で、φ1=30°、Φ=55°、φ2=45°の方位)は、平均ヤング率の向上に効果的な結晶方位であり、6.0以上とすることが好ましい。8.0以上とすることがさらに好ましい。(001)[1-10]~(112)[1-10]方位(BungeのEuler角表示で、φ1=0°、Φ=0~35°、φ2=45°の方位)は、特に圧延直角方向のヤング率を向上させることにより、平均ヤング率の向上に効果があることに加え、(111)[1-21]方位と同時に集合組織を発達させることにより絞り加工時の耳の発生を抑制し絞り加工性を向上することが出来る。このため、(001)[1-10]~(112)[1-10]方位の平均集積強度を3.0以上とすることが好ましい。6.0以上とすることがさらに好ましい。一方、(001)[1-10]~(112)[1-10]方位の集合組織が過剰に発達すると、異方性のバランスが変化して逆に耳の発生が大きくなるため、10.0以下とすることが好ましい。集合組織は、一般に板厚位置により変化するが、本願発明においては、板厚1/4面での測定値と、ヤング率や絞り加工性と良好な相関が得られたため、測定位置を板厚1/4面とした。
 フェライト平均結晶粒径:7μm未満(好適条件)
焼鈍板のフェライト平均結晶粒径を7μm未満とすることで、所定の硬さが得られやすくなり、搬送等での荷重を受けた際の塑性変形を防止する効果がより一層得られる。さらに、鋼板表面に有機皮膜を被覆したラミネート鋼板とする場合は、フェライト平均結晶粒径を微細にすることにより、製缶加工時の肌荒れが抑制されて有機皮膜の密着性が向上し、良好な耐食性得られる。よって、フェライト平均結晶粒径は好ましくは7μm未満、より好ましくは、6.5μm未満である。
 次に、本発明の、HR30T硬さが56以上で良好な絞り加工性および外圧に対する缶胴部の座屈強度に優れた缶用鋼板を得るための製造方法の一例について説明する。
本発明の缶用鋼板は、上記成分組成を有する鋼スラブに、加熱温度1100℃以上にて加熱し、熱延仕上げ温度800~950℃として圧延した後、巻取り温度500~700℃にて巻取り、酸洗して、85%以上の圧下率で冷間圧延し、再結晶温度以上で焼鈍を行うことで製造される。
 熱間圧延前加熱温度:1100℃以上
熱間圧延前の加熱温度が低すぎると、粗大なNbCが残留し、結晶粒の微細化効果や析出強化による硬さ上昇効果が得られにくい。よって、熱間圧延前の加熱温度は1100℃以上とする。加熱温度が高すぎるとスケールが過剰に発生して製品表面の欠陥になりやすい。よって、1300℃以下とすることが好ましい。
 熱延仕上げ圧延温度800~950℃
熱延仕上げ圧延温度が950℃よりも高くなると、熱延板の結晶粒が粗大になり、集合組織の発達を阻害すると共に、焼鈍板の結晶粒が粗大になり硬さが低下する。熱延仕上げ圧延温度が800℃未満となると、変態点以下の圧延となり、粗大粒の生成や加工組織の残存により、集合組織が発達しにくくなる。よって、熱延仕上げ圧延温度は、800~950℃とする。好ましくは850~950℃とする。
 熱延後の巻取温度500~700℃
熱延後の巻取温度が700℃を超えると、NbCが粗大化してピン止め効果が小さくなる。加えて、熱延板の結晶粒が粗大になることで焼鈍板の結晶粒が粗大になってしまい硬さが低下する。さらに、熱延板の結晶粒が粗大になることで集合組織の発達は阻害され、平均ヤング率が低下する。以上の理由により、熱延後の巻取温度は700℃以下とする。好ましくは650℃以下とする。巻取温度が低すぎる場合には、NbCの析出が十分に起こらず、ピン止め効果が低下することや析出強化が低下するため、焼鈍板の硬さが低下してしまう。また、固溶Cが過剰となってしまうため、(111)[1-21]方位の集合組織の発達が阻害されて平均ヤング率が低下し、(001)[1-10]~(112)[1-10]方位の集合組織が過剰に発達して異方性のバランスが劣化するため、絞り加工での絞り加工性を低下させる。このため、熱延後の巻取温度は500℃以上とする。好ましくは530℃以上とする。
 酸洗条件は、表層スケールが除去できればよく特に条件は規定しない。常法により、酸洗することができる。
 冷間圧延圧下率:85%以上
冷間圧延の圧下率は、集合組織の発達による平均ヤング率向上とHR30T硬さ56以上を達成するために、85%以上とする。圧下率85%未満では、集合組織が十分に発達せず、平均ヤング率が低下する。加えて、結晶粒が粗大化して所定の硬さが得られない。集合組織の発達の観点から好ましくは88%以上である。冷間圧延の圧下率が高すぎると、異方性が大きくなりすぎ、絞り加工性が低下するため、93%以下とすることが好ましい。より好ましくは90%未満である。
 焼鈍温度:再結晶温度以上
集合組織の制御および絞り加工性の向上の観点から、焼鈍温度は再結晶温度以上とする。粒成長による集合組織の発達の観点からは710℃以上にて10s以上の均熱をおこなうことが好ましい。さらに好ましくは740℃以上である。温度が高すぎると、結晶粒が粗大となり、また、NbCも粗大化して、硬さが低下するため、焼鈍温度は800℃以下とすることが好ましい。焼鈍方法は限定するものではないが、材質の均一性の観点から連続焼鈍法が好ましい。本願でいう再結晶温度は、再結晶が十分に進行する温度を意味し、具体的には面積率で再結晶率が99%以上となる温度である。
 調質圧延圧下率
焼鈍後の鋼板は、形状矯正ならびに表面粗さおよび硬さの調整の観点から、調質圧延を施すことが好ましい。ストレッチャーストレイン発生の抑制の観点から、0.5%以上の圧下率で圧延するのが好ましい。一方、圧下率が5.0%以上を超える圧下率で圧延すると、鋼板が硬質化することにより絞り加工性が低下するとともに異方性が大きくなり、絞り加工での耳が大きくなる。そのため、調質圧延圧下率は5.0%以下とすることが好ましい。さらに好ましくは0.7%~3.5%である。
 鋼板の表面処理としてSnめっき、Niめっき、Crめっき等を施しても良く、さらに化成処理やラミネート等の有機皮膜を施しても良い。
 本発明の鋼板の板厚は限定されるものでは無いが、薄肉化の観点からは0.25mm以下とすることが好ましい。また、板厚が薄くなり過ぎると、缶胴部の座屈強度が低下しやすくなるため、板厚は0.16mm以上とすることが好ましい。
 以上により、本発明の、HR30T硬さが56以上で良好な絞り加工性および外圧に対する缶胴部の座屈強度に優れた缶用鋼板が得られる。
 表1に示す鋼記号A~Vの成分を含有し、残部がFeおよび不可避的不純物からなる鋼を溶製し、鋼スラブを得た。得られた鋼スラブを表2に示す条件にて、加熱後、熱間圧延し、酸洗にてスケールを除去した後、冷間圧延した。次いで、連続焼鈍炉にて、各焼鈍温度にて20sの均熱をして冷却後、調質圧延を施して、板厚0.220mmの鋼板(鋼板記号1~32)を得た。以上より得られた鋼板に対して、以下の方法で特性評価を行った。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 フェライト平均結晶粒径は、圧延方向断面のフェライト組織を3%ナイタール溶液でエッチングして粒界を現出させ、光学顕微鏡を用いて撮影した400倍の写真を用いて、JIS G 0551の鋼-結晶粒度の顕微鏡試験方法に準拠して、切断法により平均結晶粒径を測定し、フェライト平均結晶粒径とした。
 フェライト平均結晶粒径を測定した光学顕微鏡写真を用いて、画像処理により、再結晶した領域の面積率を求め、再結晶率とした。再結晶率が99%以上の場合に再結晶しているものと判定し、○とし、99%未満のものを未再結晶と判定し、×とした。
 平均ヤング率の評価は、圧延方向に対して0°、45°および90°方向を長手方向として、10×35mmの試験片を切り出し、横振動型の共振周波数測定装置を用いて、American Society for Testing Materialsの基準(C1259)に従い、各方向のヤング率(GPa)を測定し、(E[L]+2E[D]+E[C])/4により平均ヤング率を算出した。
 JIS Z 2245のロックウェル硬さ試験方法に準拠して、JIS G 3315に規定された位置におけるロックウェルスーパーフィシャル30T硬さ(HR30T)を測定した。
 板厚1/4面での集合組織において、BungeのEuler角表示で、φ1=30°、Φ=55°、φ2=45°の方位の集積強度、および、φ1=0°、Φ=0~35°、φ2=45°の方位の平均集積強度は、X線回折により極点図を測定し、結晶方位分布関数(ODF:Orientation Distribution Function)を計算して評価した。板厚1/4部まで、機械研削、および、加工歪みの影響を除去するためシュウ酸による化学研磨にて減厚し、Schulzの反射法により(110)、(200)、(211)、(222)極点図を作成した。これらの極点図から級数展開法によりODFを算出し、BungeのEuler角表示で、φ1=30°、Φ=55°、φ2=45°の方位を評価し、φ1=0°、Φ=0~35°、φ2=45°の方位のODFの値の算術平均を平均集積強度として評価した。
 さらに絞り加工性と缶胴の座屈強度を評価するため、上記鋼板に対して、表面処理としてクロムめっき(ティンフリー)処理を施した後、有機皮膜を被覆したラミネート鋼板を作製した。
 絞り加工性を評価するため、180mm径の円形に打抜いた後、絞り比1.6の円筒深絞り加工をおこない、耳高さ(缶全周の缶胴部高さ)を測定し、耳高さの最大値と最小値との差を全周の高さの平均値で割ってイヤリング率を算出し、3%以下であれば良好(○)、3%を超えたものは劣(×)とした。
 絞り加工性が良好な鋼板について、缶胴の座屈強度を評価するため、上記のラミネート鋼板を円形に打抜いた後、深絞り加工、しごき加工等を施して、飲料缶で適用されている2ピース缶と同様の缶体を成形し、測定に供した。測定方法は以下のとおりである。缶体を加圧チャンバーの内部に設置し、加圧チャンバー内部の加圧は、空気導入バルブを介してチャンバーに0.016MPa/sで加圧空気を導入することで行った。チャンバーの内部の圧力の確認は、圧力ゲージ、圧力センサ、その検出信号を増幅するアンプ、検出信号の表示、データ処理などを行う信号処理装置を介して行った。座屈圧力は座屈に伴う圧力変化点の圧力とした。一般的に、加熱殺菌処理による圧力変化に対して、外圧強度は0.15MPa以上が必要とされている。これより、外圧強度が0.15MPaより高いものを○、外圧強度が0.15MPa以下のものを×としてそれぞれ表示した。なお、絞り加工性が不良な鋼板については、缶胴の座屈強度評価を行っていないので、-と表示した。
Figure JPOXMLDOC01-appb-T000003
 結果を表3に示す。本発明例は、いずれもHR30Tが56以上で、平均ヤング率が210GPa以上であり、成形性と缶体としての座屈強度に優れる。さらに、フェライト平均結晶粒径が7μm未満で、被覆した有機皮膜の密着性が良好で耐食性に優れる。一方、比較例では、上記特性のいずれか一つ以上が劣っている。

Claims (6)

  1.  質量%で、C:0.0030%以上0.0100%以下、Si:0.05%以下、Mn:0.10%以上1.0%以下、P:0.030%以下、S:0.020%以下、Al:0.010%以上0.100%以下、N: 0.0050%以下、Nb:0.010%以上0.050%以下を含有し、CおよびNbの含有量が式(1)を満足し、残部はFeおよび不可避的不純物からなり、HR30T硬さが56以上、かつ、平均ヤング率が210GPa以上であることを特徴とする缶用鋼板。
     0.10≦([Nb]/92.9)/([C]/12)<0.60  ・・・式(1)
     [Nb]、[C]はそれぞれNb、Cの含有量(質量%)
  2.  質量%で、C:0.0030%以上0.0100%以下、Si:0.05%以下、Mn:0.10%以上1.0%以下、P:0.030%以下、S:0.020%以下,Al:0.010%以上0.100%以下、N:0.0050%以下、Nb:0.010%以上0.050%以下を含有し、CおよびNbの含有量が式(1)を満足し、残部はFeおよび不可避的不純物からなり、HR30T硬さが56以上、かつ、平均ヤング率が210GPa以上であり、板厚1/4面にて測定した集合組織が、BungeのEuler角表示で、φ1=30°、Φ=55°、φ2=45°の方位の集積強度が6.0以上、かつ、φ1=0°、Φ=0~35°、φ2=45°の方位の平均集積強度が3.0以上10.0以下であることを特徴とする缶用鋼板。
     0.10≦([Nb]/92.9)/([C]/12)<0.60  ・・・式(1)
     [Nb]、[C]はそれぞれNb、Cの含有量(質量%)
  3.  フェライト平均結晶粒径が7μm未満であることを特徴とする請求項1または2に記載の缶用鋼板。
  4.  さらに、質量%で、成分組成としてTi:0.020%以下、Mo:0.020%以下の内から選ばれる一種以上を含有することを特徴とする請求項1~3のいずれか一項に記載の缶用鋼板。
  5.  請求項1または2に記載の化学成分を有する鋼スラブを、加熱温度1100℃以上にて加熱し、熱延仕上げ温度800~950℃として圧延した後、巻取り温度500~700℃にて巻取り、酸洗して、85%以上の圧下率で冷間圧延し、再結晶温度以上で焼鈍を行うことを特徴とする缶用鋼板の製造方法。
  6.  請求項1または2に記載の化学成分を有する鋼スラブを、加熱温度1100℃以上にて加熱し、熱延仕上げ温度800~950℃として圧延した後、巻取り温度500~700℃にて巻取り、酸洗して、85%以上93%以下の圧下率で冷間圧延し、再結晶温度以上で焼鈍を行うことを特徴とする缶用鋼板の製造方法。
PCT/JP2014/003613 2013-07-17 2014-07-08 缶用鋼板およびその製造方法 WO2015008454A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2015527166A JP6052412B2 (ja) 2013-07-17 2014-07-08 缶用鋼板およびその製造方法
EP14825747.0A EP3000906B1 (en) 2013-07-17 2014-07-08 Steel sheet for can and method for manufacturing same
AU2014291557A AU2014291557B2 (en) 2013-07-17 2014-07-08 Steel sheet for can, and method for manufacturing same
KR1020167002826A KR20160027163A (ko) 2013-07-17 2014-07-08 캔용 강판 및 그의 제조 방법
ES14825747.0T ES2670772T3 (es) 2013-07-17 2014-07-08 Lámina de acero para lata y método para fabricar la misma
US14/906,131 US10144985B2 (en) 2013-07-17 2014-07-08 Steel sheet for can and method for manufacturing the same
CA2916040A CA2916040C (en) 2013-07-17 2014-07-08 Steel sheet for can and method for manufacturing the same
CN201480040093.9A CN105378134B (zh) 2013-07-17 2014-07-08 罐用钢板及其制造方法
BR112016000907-0A BR112016000907B1 (pt) 2013-07-17 2014-07-08 chapa de aço para lata e método para fabricar a mesma
PH12015502714A PH12015502714B1 (en) 2013-07-17 2015-12-04 Steel sheet for can and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013148126 2013-07-17
JP2013-148126 2013-07-17

Publications (1)

Publication Number Publication Date
WO2015008454A1 true WO2015008454A1 (ja) 2015-01-22

Family

ID=52345934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003613 WO2015008454A1 (ja) 2013-07-17 2014-07-08 缶用鋼板およびその製造方法

Country Status (13)

Country Link
US (1) US10144985B2 (ja)
EP (1) EP3000906B1 (ja)
JP (1) JP6052412B2 (ja)
KR (1) KR20160027163A (ja)
CN (1) CN105378134B (ja)
AU (1) AU2014291557B2 (ja)
BR (1) BR112016000907B1 (ja)
CA (1) CA2916040C (ja)
ES (1) ES2670772T3 (ja)
MY (1) MY175146A (ja)
PH (1) PH12015502714B1 (ja)
TW (1) TWI515308B (ja)
WO (1) WO2015008454A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016160438A (ja) * 2015-02-26 2016-09-05 Jfeスチール株式会社 缶用鋼板およびその製造方法
WO2018194135A1 (ja) * 2017-04-19 2018-10-25 新日鐵住金株式会社 絞り缶用冷延鋼板、及びその製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6032298B2 (ja) 2015-02-03 2016-11-24 Jfeスチール株式会社 高強度冷延鋼板、高強度めっき鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
JP6052474B1 (ja) 2015-02-26 2016-12-27 Jfeスチール株式会社 王冠用鋼板、王冠用鋼板の製造方法および王冠
CN111344075B (zh) * 2017-11-27 2022-07-08 杰富意钢铁株式会社 钢板及其制造方法以及二次冷轧机
CN114918622B (zh) * 2022-05-31 2023-10-20 江苏苏讯新材料科技股份有限公司 一种深冲罐加工工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212353A (ja) 1993-01-11 1994-08-02 Nippon Steel Corp 高剛性容器用鋼板及びその製造方法
JPH06248332A (ja) 1993-02-26 1994-09-06 Nippon Steel Corp 容器用鋼板の製造方法
JPH06248339A (ja) 1993-02-26 1994-09-06 Nippon Steel Corp 高剛性容器用鋼板の製造方法
JPH1060542A (ja) * 1996-08-19 1998-03-03 Kawasaki Steel Corp 缶用鋼板の製造方法
JP2010229486A (ja) * 2009-03-27 2010-10-14 Jfe Steel Corp 絞りおよびしごき加工後の表面性状に優れた缶用鋼板およびその製造方法
JP2011058036A (ja) * 2009-09-09 2011-03-24 Nippon Steel Corp 絞り缶用鋼板および絞り缶用めっき鋼板
JP2011094178A (ja) * 2009-10-29 2011-05-12 Jfe Steel Corp 耐肌荒れ性に優れた缶用鋼板およびその製造方法
JP2012107315A (ja) 2010-10-18 2012-06-07 Jfe Steel Corp 高強度缶用鋼板およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960007431B1 (ko) 1992-04-06 1996-05-31 가와사끼 세이데쓰 가부시끼가이샤 캔용강판 및 그 제조방법
DE69418172T2 (de) * 1993-07-28 1999-12-02 Nippon Steel Corp Stahlblech mit hoher spannungsrisskorrosionsbeständigkeit für die herstellung von dosen
JPH08246060A (ja) 1995-03-10 1996-09-24 Kawasaki Steel Corp 缶用鋼板の製造方法
JPH11209845A (ja) * 1998-01-28 1999-08-03 Kawasaki Steel Corp 加工性と耐肌荒れ性に優れる缶用鋼板ならびにその製造方法
JP5794004B2 (ja) * 2011-07-12 2015-10-14 Jfeスチール株式会社 フランジ加工性に優れる高強度缶用鋼板およびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212353A (ja) 1993-01-11 1994-08-02 Nippon Steel Corp 高剛性容器用鋼板及びその製造方法
JPH06248332A (ja) 1993-02-26 1994-09-06 Nippon Steel Corp 容器用鋼板の製造方法
JPH06248339A (ja) 1993-02-26 1994-09-06 Nippon Steel Corp 高剛性容器用鋼板の製造方法
JPH1060542A (ja) * 1996-08-19 1998-03-03 Kawasaki Steel Corp 缶用鋼板の製造方法
JP2010229486A (ja) * 2009-03-27 2010-10-14 Jfe Steel Corp 絞りおよびしごき加工後の表面性状に優れた缶用鋼板およびその製造方法
JP2011058036A (ja) * 2009-09-09 2011-03-24 Nippon Steel Corp 絞り缶用鋼板および絞り缶用めっき鋼板
JP2011094178A (ja) * 2009-10-29 2011-05-12 Jfe Steel Corp 耐肌荒れ性に優れた缶用鋼板およびその製造方法
JP2012107315A (ja) 2010-10-18 2012-06-07 Jfe Steel Corp 高強度缶用鋼板およびその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016160438A (ja) * 2015-02-26 2016-09-05 Jfeスチール株式会社 缶用鋼板およびその製造方法
WO2018194135A1 (ja) * 2017-04-19 2018-10-25 新日鐵住金株式会社 絞り缶用冷延鋼板、及びその製造方法
JP6428986B1 (ja) * 2017-04-19 2018-11-28 新日鐵住金株式会社 絞り缶用冷延鋼板、及びその製造方法
US10907236B2 (en) 2017-04-19 2021-02-02 Nippon Steel Corporation Cold rolled steel sheet for drawn can and method for manufacturing same

Also Published As

Publication number Publication date
US10144985B2 (en) 2018-12-04
TW201512423A (zh) 2015-04-01
BR112016000907B1 (pt) 2019-11-12
KR20160027163A (ko) 2016-03-09
AU2014291557B2 (en) 2017-07-13
CN105378134B (zh) 2018-01-23
MY175146A (en) 2020-06-10
CN105378134A (zh) 2016-03-02
EP3000906A4 (en) 2016-08-03
PH12015502714A1 (en) 2016-03-14
EP3000906B1 (en) 2018-03-14
PH12015502714B1 (en) 2016-03-14
ES2670772T3 (es) 2018-06-01
CA2916040C (en) 2019-02-12
JPWO2015008454A1 (ja) 2017-03-02
CA2916040A1 (en) 2015-01-22
AU2014291557A1 (en) 2015-12-24
US20160160308A1 (en) 2016-06-09
TWI515308B (zh) 2016-01-01
JP6052412B2 (ja) 2016-12-27
EP3000906A1 (en) 2016-03-30

Similar Documents

Publication Publication Date Title
JP6052412B2 (ja) 缶用鋼板およびその製造方法
US10174393B2 (en) Steel sheet for can with high barrel-part buckling strength under external pressure and with excellent formability and excellent surface properties after forming, and process for producing same
JP6288331B2 (ja) 缶用鋼板およびその製造方法
JP2001335888A (ja) 軽量2ピース缶用鋼板およびその製造方法
CN109440004B (zh) 罐用钢板及其制造方法
KR101805277B1 (ko) 3피스 캔용 강판 및 그 제조 방법
JP5900711B2 (ja) 缶用鋼板およびその製造方法
WO2016157760A1 (ja) 缶用鋼板およびその製造方法
JP6503578B2 (ja) 缶用鋼板およびその製造方法
JP5900712B2 (ja) 缶用鋼板およびその製造方法
JP6164273B2 (ja) 缶用鋼板及び缶用鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14825747

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015527166

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12015502714

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 2916040

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2014825747

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014291557

Country of ref document: AU

Date of ref document: 20140708

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14906131

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016000907

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20167002826

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201600884

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 112016000907

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160115