WO2015007011A1 - 一种自修复水泥基材料的制备方法 - Google Patents

一种自修复水泥基材料的制备方法 Download PDF

Info

Publication number
WO2015007011A1
WO2015007011A1 PCT/CN2013/082511 CN2013082511W WO2015007011A1 WO 2015007011 A1 WO2015007011 A1 WO 2015007011A1 CN 2013082511 W CN2013082511 W CN 2013082511W WO 2015007011 A1 WO2015007011 A1 WO 2015007011A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement
carrier
calcium
based material
repair
Prior art date
Application number
PCT/CN2013/082511
Other languages
English (en)
French (fr)
Inventor
钱春香
任立夫
荣辉
李瑞阳
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2015007011A1 publication Critical patent/WO2015007011A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1003Non-compositional aspects of the coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00663Uses not provided for elsewhere in C04B2111/00 as filling material for cavities or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/72Repairing or restoring existing buildings or building materials

Definitions

  • the invention belongs to the cross-scientific technology in the field of microbiology and building materials, and relates to a novel microbial crack repairing technology.
  • Cement concrete is currently the most widely used building material.
  • cancer the cracking problem
  • inorganic material repair and organic matter repair are widely used, inorganic materials such as grouting repair are simple but the repair effect is not satisfactory.
  • organic matter repair can obtain better results, the durability of organic matter restricts its application. And most organics do not have environmentally friendly properties.
  • Microbial self-repairing concrete is a new type of intelligent material with self-sensing and self-repairing.
  • the microbial remediation agent is embedded in the interior of the cement-based material. When cracking occurs, the microorganisms induce the formation of ore after the water and air enter. The material crack area is filled, which has the advantages of self-adaptation, self-repair, self-repair and environmental friendliness compared with the traditional repair method.
  • the present invention provides a method for repairing cracks in cement-based materials that is faster to repair.
  • the method for repairing cracks in a cement-based material of the present invention comprises the following steps:
  • the calcium source is evenly buried in the cement-based material, and the calcium source accounts for 2% to 5% of the cement material in the cement-based material, and the carrier carrying the concentrated bacteria solution of Bacillus licheniformis is concentrated in the test piece. Within 5 mm below the surface area, the carrier accounts for 10% to 20% by mass of the cementitious material.
  • the calcium source in the present invention is calcium chloride, calcium nitrate or calcium lactate.
  • the calcium source When molding the cement-based material, the calcium source is uniformly buried inside the cement-based material, the quality of the calcium source accounts for 2% to 5% of the cementitious material, and the carrier carrying the bacteria is concentrated in the range of 5 mm below the surface area of the test piece, and the carrier quality It accounts for 10% ⁇ 20% of cementitious materials.
  • the test piece After the test piece is cured, cracks are artificially made, placed in a constant temperature water bath, and continuously air-conditioned. The results of the repair test showed that after 5 days of repair, the permeability coefficient was greatly reduced, and the crack was completely repaired for 30 days.
  • the invention has the following advantages:
  • the microorganism can automatically perceive the generation of cracks, induce mineral production at the cracking point in time, and realize active repair;
  • the present invention Compared with the existing microbial repairing cement-based material cracking technology - using Bacillus licheniformis to decompose the substrate calcium lactate to induce mineral production, the present invention fully utilizes carbonic anhydrase microorganisms to capture CO 2 and promote CO 2 to CO 3 2- Conversion, accelerated carbonate mineralization, compared with the two techniques of repairing cracks under the same conditions, the effect of repairing 1 ⁇ 3d with Bacillus licheniformis is equivalent to that of Bacillus bacillus repairing 5 ⁇ 10d, and repairing cracks is faster.
  • the present invention finds in a variety of calcium sources that can be determined by calcium ion deposition test.
  • the present invention uses calcium lactate to act as a calcium source, it has a faster calcium ion deposition rate, and calcium lactate is preferred as a calcium source. Compared to other calcium sources, faster carbonate deposition rates and more carbonate precipitation can be achieved, and cracks are repaired more quickly.
  • the present invention concentrates the ceramsite immobilized with bacteria on the surface area of the cement-based material, which is different from the conventional uniform distribution in the cement-based material; the current experimental research shows that the microbial repair agent is below the surface of the crack when repairing the crack.
  • the effect of inducing ore-repairing cracks in the depth range of 2mm is obvious.
  • the repair effect of microbial repairing agent is not obvious when the crack depth exceeds 5mm.
  • the conventional method is to distribute the repairing agent evenly on the whole material, and the non-surface area microbial repairing agent can not play its role, resulting in the repairing agent.
  • Waste; the ceramsite immobilized with bacteria is concentrated on the surface area of the material, on the one hand, reducing the amount of the repair agent carrier, reducing the influence of the lightweight aggregate carrier on the mechanical properties of the cement-based material, and on the other hand, concentrating a large amount of microbial repair agent on the surface of the material, Strengthen the repair effect and repair the crack faster.
  • Figure 1 shows the trend of the permeability coefficient of the cracked specimens with the repair time without the use of this repair method (control group) and the repair method (test group).
  • Figure 2 shows the XRD pattern of the mineralized product in the fracture area when the repair method is used to repair the crack.
  • Figure 3 is an SEM image of the mineralized product of the fracture area when the repair method is used to repair the crack.
  • Fig. 4 is a graph showing changes in calcium ion concentration with time under the same conditions, maintaining the same initial calcium ion concentration, dissolving different calcium sources in an equal amount of the same concentration of Bacillus licheniformis.
  • Figure 5a shows the initial state of the crack when this repair method is not used.
  • Figure 5b shows the filling of the crack surface area when the repair method is not used.
  • Figure 5c shows the filling condition of the crack surface area when the repair method is not used for 30d.
  • Figure 6a shows the initial state of the crack when this repair method is used.
  • Figure 6b shows the filling condition of the crack surface area when the repair method is used for 5d.
  • Fig. 6c shows the filling condition of the crack surface area when the repair method is used for 30d.
  • Bacillus bacillus used in the present invention (Bacillus Mucilaginous) is from the China Industrial Microbial Culture Collection, number 21698.
  • the method for repairing cracks of cement-based materials of the invention is as follows:
  • Bacillus mucilaginous concentrated bacterial solution Bacillus mucilaginous is inoculated into the sterilized medium solution, and each liter of the medium contains sucrose 8-12 g, Na 2 HPO 4 • 12H 2 O 2 ⁇ 3g, MgSO 4 0.4 ⁇ 0.6g, CaCO 3 0.5 ⁇ 1.5g, KCl 0.1 ⁇ 0.2g, (NH 4 ) 2 SO 4 0.4 ⁇ 0.6g, yeast extract 0.2 ⁇ 0.4g, and pH control For 7 ⁇ 8, shake culture at 30 ⁇ 37 °C for 24h to obtain Bacillus mucilaginous bacteria solution. After centrifugation at 6000 ⁇ 8000 rpm for 10 ⁇ 15min at 4°C, remove the upper culture medium. Deionized water was added to the material, and the concentration of the bacteria contained in the concentrated bacterial solution was 10 6 to 10 7 /mL.
  • Calcium source, calcium nitrate or calcium lactate can be used for calcium source.
  • calcium ion deposition test is carried out: three groups of test groups are set, respectively, calcium chloride and nitric acid are taken. Calcium and calcium lactate were fully dissolved in the same concentration of Bacillus licheniformis. The initial Ca 2+ concentration in the three groups of bacteria was the same, and the culture was shaken by exposure to air. The concentration of Ca 2+ in each group was measured within 7 days. Measured every 1d over time. The results showed that the calcium ion concentration in the calcium lactate group decreased faster than that in the calcium chloride group and the calcium nitrate group.
  • the curve of Ca 2+ concentration in each group over time in 7d is shown in Figure 4.
  • the bacteria are immobilized on the carrier, the carrier is ceramsite, and the particle size is 0.6-0.3 mm.
  • the method is to soak the ceramsite in the concentrated bacteria solution of Bacillus licheniformis for 16-24 hours, and the glial spore
  • the ratio of the concentrated bacteria solution to the carrier is 50mL: 100g ⁇ 100 mL: 200 g.
  • Figure 1 shows that the permeability coefficient after 5d repaired by this repair method is similar to that after 30d maintenance without this repair method. After repairing for 30 days, almost no water seepage occurs after repair.
  • Figure 2 shows that the mineralized product is calcium carbonate.
  • Figure 3 shows the microscopic morphology of mineralized products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Medicinal Preparation (AREA)

Abstract

一种自修复水泥基材料的制备方法,包括:将胶质芽孢杆菌接种至培养基培养后制备胶质芽孢杆菌浓缩菌液;将细菌固载于载体;成型水泥基材料时把钙源均匀埋入水泥基材料内部;将固载有细菌的载体集中在试件表面区域以下5m范围内。所述方法利用碳酸酐酶微生物产生碳酸酐酶捕捉CO2,促进CO2转化为CO3 2—,加速裂缝表面区域碳酸钙的沉积,较其它微生物修复裂缝具有更快的修复速度。

Description

[根据细则37.2由ISA制定的发明名称] 一种自修复水泥基材料的制备方法 技术领域
本发明属于微生物学领域和建筑材料领域的交叉科学技术,涉及一种新型微生物裂缝修复技术。
背景技术
水泥混凝土是目前应用最为广泛的建筑材料,在造成水泥混凝土耐久性下降的众多因素中,开裂问题堪称水泥混凝土的“癌症”并始终困扰着众多水泥混凝土研究人员。虽然传统的修复方法如无机物修复、有机物修复等方法应用广泛,无机物修复如灌浆修复虽工艺简便但修复效果并不理想,有机物修复虽能获得较好效果,但有机物耐久性问题制约其应用,且大多有机物并不具有环境友好特性。
微生物自修复混凝土是一种具有自感知和自修复的新型智能材料,将微生物修复剂预埋入水泥基材料内部,当发生开裂时,微生物在水和空气进入后诱导产矿的形成对水泥基材料裂缝区域进行填充,与传统修复方法相比,其有着自适应、自检测、自修复和环境友好等优点。
技术问题
本发明提供一种修复速度更快的用于修复水泥基材料裂缝的方法。
技术解决方案
本发明的用于修复水泥基材料裂缝的方法,包括以下步骤:
1)将胶质芽孢杆菌接种至培养基培养中,制备菌体浓度为106~107个/mL的胶质芽孢杆菌浓缩菌液;
2)将载体浸泡在制备得到的胶质芽孢杆菌浓缩菌液中16~24h,使胶质芽孢杆菌固载于载体中,载体为粒径在0.6~0.3mm的陶粒,浓缩菌液和载体的配比为50mL:100g~ 100mL:200g;
3)把钙源均匀埋入水泥基材料内部,钙源占水泥基材料中胶凝材料的质量百分比为2%~5%,将固载有胶质芽孢杆菌浓缩菌液的载体集中在试件表面区域以下5mm范围内,载体占胶凝材料的质量百分比为10%~20%。
本发明中的钙源为氯化钙、硝酸钙或乳酸钙。
成型水泥基材料时把钙源均匀埋入水泥基材料内部,钙源质量占胶凝材料2%~5%,并将固载有细菌的载体集中在试件表面区域以下5mm范围内,载体质量占胶凝材料10%~20%。待试件固化后人工制作裂缝,放入恒温水浴,并持续通入空气养护。修复试验结果表明,修复5d,渗透系数大大降低,连续修复30d,裂缝完全修复。
有益效果
本发明与现有技术相比,具有以下优点:
1、与传统的被动修复技术相比,微生物能自动感知裂缝的产生,及时在开裂处诱导产矿,从而实现主动修复;
2、与目前常用的有机类材料修复水泥基材料裂缝相比,微生物诱导矿化发生修复裂缝产生的碳酸钙以方解石形式存在,化学性质较稳定,确保了裂缝修补区域材料的耐久性,修复过程碳酸酐酶微生物吸收温室气体CO2,减缓温室效应。
3、与已有微生物修复水泥基材料裂缝技术—采用巴氏芽孢杆菌分解底物乳酸钙诱导产矿相比,本发明充分利用碳酸酐酶微生物捕捉CO2,促进CO2向CO3 2-的转化,加速碳酸盐矿化,同等条件下两种修复裂缝技术相比,采用胶质芽孢杆菌修复1~3d效果与巴氏芽孢杆菌修复5~10d效果相当,修复裂缝更快速。
4、本发明在多种可选用钙源中,通过钙离子沉积试验探明,本发明采用胶质芽孢杆菌作用乳酸钙时,具有更快的钙离子沉积速率,优先选用乳酸钙作为钙源,相比其他钙源,能获得更快的碳酸盐沉积速率和更多的碳酸盐沉淀量,修复裂缝更快速。
5、本发明将固载有细菌的陶粒集中在水泥基材料表面区域,与常规的均匀分布在水泥基材料整体不同;目前试验研究表明,微生物修复剂在修复裂缝时,在裂缝表面区域以下2mm深度范围内诱导产矿修复裂缝效果明显,裂缝深度超过5mm微生物修复剂修复效果不明显,常规方式是将修复剂均匀分布于材料整体,非表面区域微生物修复剂无法发挥作用,造成修复剂的浪费;将固载有细菌的陶粒集中在材料表面区域,一方面减少修复剂载体用量,减轻轻骨料载体对水泥基材料力学性能的影响,另一方面集中大量微生物修复剂于材料表面,强化修复效应,修复裂缝更快速。
附图说明
图1为不采用此修复方法(对照组)和采用此修复方法(试验组)下开裂试件渗透系数随修复时间变化趋势。
图2为采用此修复方法修复裂缝时裂缝区域矿化产物XRD图谱。
图3为采用此修复方法修复裂缝时裂缝区域矿化产物SEM图。
图4为在相同条件下,保持相同初始钙离子浓度,将不同钙源溶于等量等浓度胶质芽孢杆菌菌液中培养,钙离子浓度随时间变化曲线图。
图5 a为未采用此修复方法时裂缝初始状态。
图5 b为未采用此修复方法时养护5d时裂缝表面区域填充状况。
图5 c为未采用此修复方法时养护30d时裂缝表面区域填充状况。
图6 a为采用此修复方法时裂缝初始状态。
图6 b为采用此修复方法时修复5d时裂缝表面区域填充状况。
图6 c为采用此修复方法时修复30d时裂缝表面区域填充状况。
本发明的实施方式
本发明所用的胶质芽孢杆菌(Bacillus mucilaginous)来源于中国工业微生物菌种保藏中心,编号为21698。
本发明用于修复水泥基材料裂缝的方法,方法步骤如下:
(1)获取胶质芽孢杆菌(Bacillus mucilaginous)浓缩菌液:将胶质芽孢杆菌(Bacillus mucilaginous)接种于灭菌后的培养基溶液,每升培养基含有蔗糖8~12g、Na2HPO4•12H2O 2~3g、MgSO4 0.4~0.6g、CaCO3 0.5~1.5g、KCl 0.1~0.2g、(NH4)2SO4 0.4~0.6g、酵母提取物 0.2~0.4g,并控制pH为7~8,于30~37℃下振荡培养24h,得到含有胶质芽孢杆菌(Bacillus mucilaginous)的菌液,在4℃下经6000~8000 rpm高速离心10~15min后,除去上层培养基营养物质后加去离子水,浓缩菌液中所含菌体浓度为106~107个/mL。
(2)钙源选取:钙源选用氯化钙、硝酸钙或乳酸钙均可,为探究最佳钙源选取方案,进行钙离子沉积试验:设置三组试验组,分别取氯化钙、硝酸钙和乳酸钙于等量等浓度胶质芽孢杆菌菌液中充分溶解,三组别菌液中初始Ca2+浓度相同,暴露在空气环境下振荡培养,测量7d内各组别Ca2+浓度随时间变化情况,每隔1d测量一次。试验结果表明:乳酸钙组全程钙离子浓度随时间下降均比氯化钙组和硝酸钙组快,7d乳酸钙组钙离子浓度下降率达58.4%,7d实际产生沉淀量为0.4176g;氯化钙组、硝酸钙组钙离子浓度下降率分别为27.5%和39.4%,7d实际产生沉淀量分别为0.2495g和0.2624g;表明选用乳酸钙可获取更快的钙离子沉积速率和更多的碳酸钙沉淀量。7d内各组别Ca2+浓度随时间变化曲线具体见图4。
(3)固载细菌:将细菌固载于载体,载体为陶粒,粒径为0.6~0.3mm,其方法是将陶粒于胶质芽孢杆菌浓缩菌液中浸泡16~24h,胶质芽孢杆菌浓缩菌液和载体的配比为50mL:100g~ 100mL:200g。
(4)成型水泥基材料:成型水泥基材料时把钙源均匀埋入水泥基材料内部,钙源质量占胶凝材料2%~5%,并将固载有细菌的载体集中在试件表面区域以下5mm范围内,载体质量占胶凝材料10%~20%。
(5)养护修复:待试件固化后人工制作裂缝,放入恒温水浴,并持续通入空气养护。修复试验结果表明,修复5d,渗透系数大大降低,连续修复30d,裂缝完全修复。
图1中显示采用此修复方法修复5d后渗透系数与不采用此修复方法养护30d后渗透系数相近,采用此修复方法修复30d后几乎无渗水发生。
图2显示矿化产物为碳酸钙。
图3显示矿化产物微观形态。
实施例1:
(1)称取蔗糖12g、Na2HPO4•12H2O 3g、MgSO4 0.6g、CaCO3 1.5g、KCl 0.2g、(NH4)2SO4 0.6g、酵母提取物0.4g于1000mL去离子水中溶解,配置成所需培养基溶液,调节pH为7,125℃高温下灭菌25分钟后取出待冷却,将胶质芽孢杆菌接种至冷却培养基溶液中,30℃下振荡培养,振荡频率为170 r/min,培养时间24h;
(2)将培养好的菌液高速离心10min,离心机转速为8000 rpm,温度为4℃,去除上层培养基营养物质,加去离子水100mL制成浓缩菌液;
(3)取陶粒200g浸泡于100mL胶质芽孢杆菌(Bacillus mucilaginous)浓缩菌液中24h待用,成型水泥基材料水胶比W/C=0.36,胶凝材料用量1300g,称量20g无水氯化钙与胶凝材料混合均匀,采用内径Ф为110mm,高H为45mm的塑料圆柱形试模成型,装模过程将固载有细菌的陶粒集中分布在材料上下表面区域以下5mm范围内;
(4)待试件固化后人工制作裂缝,放入恒温水浴,并持续通入空气养护修复。
修复5d后,裂缝得到较大程度填充,渗透系数大大降低,连续修复30d,裂缝修复完全,达到优异的修复效果。
实施例2:
(1)称取蔗糖9.6g、Na2HPO4•12H2O 2.4g、MgSO4 0.48g、CaCO3 1.2g、KCl 0.16g、(NH4)2SO4 0.48g、酵母提取物0.32g于800mL去离子水中溶解,配置成所需培养基溶液,调节pH为7,125℃高温下灭菌25分钟后取出待冷却,将胶质芽孢杆菌接种至冷却培养基溶液中,30℃下振荡培养,振荡频率为170 r/min,培养时间24h;
(2)将培养好的菌液高速离心10min,离心机转速为8000 rpm,温度为4℃,去除上层培养基营养物质,加去离子水80mL制成浓缩菌液;
(3)取陶粒150g浸泡于80mL胶质芽孢杆菌(Bacillus mucilaginous)浓缩菌液中24h待用,成型水泥基材料水胶比W/C=0.36,胶凝材料用量1300g,称量40g四水硝酸钙与胶凝材料混合均匀,采用内径Ф为110mm,高H为45mm的塑料圆柱形试模成型,装模过程将固载有细菌的陶粒集中分布在材料上下表面区域以下5mm范围内;
(4)待试件固化后人工制作裂缝,放入恒温水浴,并持续通入空气养护修复。
修复5d后,裂缝得到较大程度填充,渗透系数大大降低,连续修复30d,裂缝修复完全,达到优异的修复效果。
实施例3:
(1)称取蔗糖8g、Na2HPO4•12H2O 2g、MgSO4 0.4g、CaCO3 0.5g、KCl 0.1g、(NH4)2SO4 0.4g、酵母提取物0.2g于500mL去离子水中溶解,配置成所需培养基溶液,调节pH为7,125℃高温下灭菌25分钟后取出待冷却,将胶质芽孢杆菌接种至冷却培养基溶液中,30℃下振荡培养,振荡频率为170 r/min,培养时间24h;
(2)将培养好的菌液高速离心10min,离心机转速为8000 rpm,温度为4℃,去除上层培养基营养物质,加去离子水50mL制成浓缩菌液;
(3)取陶粒100g浸泡于50mL胶质芽孢杆菌(Bacillus mucilaginous)浓缩菌液中24h待用,成型水泥基材料水胶比W/C=0.36,胶凝材料用量1300g,称量65g五水乳酸钙与胶凝材料混合均匀,采用内径φ为110mm,高H为45mm的塑料圆柱形试模成型,装模过程将固载有细菌的陶粒集中分布在材料上下表面区域以下5mm范围内;
(4)待试件固化后人工制作裂缝,放入恒温水浴,并持续通入空气养护修复。
修复5d后,裂缝得到较大程度填充,渗透系数大大降低,连续修复30d,可达到优异的修复效果。

Claims (2)

  1. 一种用于修复水泥基材料裂缝的方法,其特征在于,该方法包括以下步骤:
    1)将胶质芽孢杆菌接种至培养基培养中,制备菌体浓度为106~107个/mL的胶质芽孢杆菌浓缩菌液;
    2)将载体浸泡在制备得到的胶质芽孢杆菌浓缩菌液中16~24h,使胶质芽孢杆菌固载于载体中,所述载体为粒径在0.6~0.3mm的陶粒,浓缩菌液和载体的配比为50mL:100g~ 100mL:200g;
    3)把钙源均匀埋入水泥基材料内部,钙源占水泥基材料中胶凝材料的质量百分比为2%~5%,将固载有胶质芽孢杆菌浓缩菌液的载体集中在试件表面区域以下5mm范围内,所述载体占胶凝材料的质量百分比为10%~20%。
  2. 根据权利要求1所述的用于修复水泥基材料裂缝的方法,其特征在于,所述钙源为氯化钙、硝酸钙或乳酸钙。
PCT/CN2013/082511 2013-07-18 2013-08-29 一种自修复水泥基材料的制备方法 WO2015007011A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310301782.8A CN103342484B (zh) 2013-07-18 2013-07-18 一种用于修复水泥基材料裂缝的方法
CN201310301782.8 2013-07-18

Publications (1)

Publication Number Publication Date
WO2015007011A1 true WO2015007011A1 (zh) 2015-01-22

Family

ID=49277326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/082511 WO2015007011A1 (zh) 2013-07-18 2013-08-29 一种自修复水泥基材料的制备方法

Country Status (2)

Country Link
CN (1) CN103342484B (zh)
WO (1) WO2015007011A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018156896A1 (en) * 2017-02-24 2018-08-30 Worcester Polytechnic Institute Method for enzymatic repair of cementitious surfaces
CN111458206A (zh) * 2020-05-28 2020-07-28 兰州理工大学 微生物制备多孔混凝土试块的循环试验装置及试验方法
CN113149496A (zh) * 2020-06-05 2021-07-23 江苏科技大学 一种混凝土自修复材料及其制备方法和具有其的混凝土
CN114292127A (zh) * 2021-11-30 2022-04-08 华中科技大学 一种高耐受度的环保微生物改性剂及其制备方法和应用
CN114956737A (zh) * 2022-06-22 2022-08-30 东南大学 一种以泡沫混凝土为载体的自修复混凝土
CN114989781A (zh) * 2022-06-21 2022-09-02 宁夏大学 利用高吸水树脂和混菌矿化修复混凝土裂缝的材料及方法
CN115448696A (zh) * 2022-09-06 2022-12-09 合肥埠里新型建材有限公司 一种煤矸石陶粒空心砖制备的方法
CN115717045A (zh) * 2022-11-02 2023-02-28 中铁四局集团有限公司 一种混凝土微裂缝修复材料及其制备方法
CN116730677A (zh) * 2023-06-03 2023-09-12 广州市兴耀混凝土有限公司 一种抗渗抗裂混凝土及其制备方法

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014131913A1 (en) * 2013-03-01 2014-09-04 Devan Chemicals Nv Microcapsules and concrete containing the same
CN103664227B (zh) * 2013-12-16 2015-12-09 东南大学 利用微生物矿化捕获co2的水泥基材料表面覆膜防护剂及其使用的方法
CN103725288B (zh) * 2013-12-16 2016-08-17 东南大学 一种利用碳酸酐酶微生物固结土壤的试剂及其使用方法
CN103773314A (zh) * 2014-01-13 2014-05-07 东南大学 一种基于微生物制备的抑尘剂及其使用方法
CN103834413A (zh) * 2014-03-24 2014-06-04 陈明德 一种固化类路面基层和底基层的粉状土壤固化剂
CN104196131B (zh) * 2014-09-11 2016-06-01 山东建筑大学 微生物沉积碳酸钙封堵混凝土现浇板楼板或底板裂缝方法
CN104261736B (zh) * 2014-09-15 2016-03-16 东南大学 一种具有深层自修复功能的水泥基材料的制备方法
CN104402287B (zh) * 2014-11-03 2016-04-06 东南大学 一种用于增强水泥基材料抗泛碱性能的方法
CN105036697B (zh) * 2015-07-27 2016-08-24 盐城工学院 一种利用微生物技术制作环保生态板材的方法
CN105349104A (zh) * 2015-11-05 2016-02-24 东南大学 一种基于微生物制备的煤炭运输用抑尘剂及其使用方法
CN108947340B (zh) * 2016-11-16 2021-10-01 济南城投建设发展有限公司 一种能够持续修复地铁工程混凝土的微生物胶囊
CN106747176A (zh) * 2016-11-16 2017-05-31 东南大学 一种具有固碳能力的新型胶凝材料及其制备与使用方法
CN106966673A (zh) * 2017-01-24 2017-07-21 东南大学 一种加速微生物矿化碱性固体废弃物的方法
CN107859350B (zh) * 2017-11-07 2020-03-20 温州大学 旧混凝土柱的修复工艺及其使用的模板构造
CN108102947B (zh) * 2017-12-13 2021-04-02 深圳大学 一株需氧型高效钙矿化芽孢杆菌及在混凝土修复上的应用
CN108191400B (zh) * 2018-04-10 2020-08-28 常德东旺建材科技有限责任公司 一种工业矿渣基烧结砖的制备方法
CN108643387A (zh) * 2018-06-26 2018-10-12 温州大学 极靓保姆菌微生物菌剂强化再生骨料保温墙体的方法
EP3820828A1 (de) * 2018-07-11 2021-05-19 Evonik Operations GmbH Zusammensetzung umfassend mindestens einen mikroorganismus und deren verwendung
CN108823198A (zh) * 2018-07-20 2018-11-16 山东科技大学 一种可持续自修复煤矿堵漏风材料裂缝的微胶囊及其制备方法
CN109851305B (zh) * 2019-02-14 2021-02-23 成都顺佳美恒新材料有限公司 一种混凝土修补砂浆制备方法
CN110863668B (zh) * 2019-11-13 2021-02-02 同济大学 一种适用于已建钢筋混凝土结构的微生物自修复方法
CN110951816A (zh) * 2019-11-29 2020-04-03 东南大学 一种微生物诱导沉积方解石晶粒尺寸的调控方法
CN111157421A (zh) * 2019-12-30 2020-05-15 扬州大学 水泥基材料裂缝自修复水渗透性测试装置及其测试方法
CN111056782B (zh) * 2019-12-31 2021-07-30 中交路桥华南工程有限公司 一种隧道衬砌混凝土裂缝的微生物自修复方法
CN111470844B (zh) * 2020-04-17 2022-02-22 太原理工大学 基于兼性好氧混菌矿化沉积的混凝土裂缝修复材料及方法
CN111718144B (zh) * 2020-06-05 2021-11-26 江苏科技大学 一种水泥基材料添加剂的制备方法及其应用
CN111848048B (zh) * 2020-08-03 2022-05-06 淮阴工学院 一种废弃碱渣再利用方法及其制备的碱渣自修复水泥基材料
CN112029685B (zh) * 2020-09-02 2022-03-25 浙江工业大学 一种耐硼赖氨酸芽孢杆菌及其在混凝土裂缝修复中的应用
CN111978026B (zh) * 2020-09-04 2021-08-27 中国矿业大学(北京) 一种矿化封存co2的矿用微生物胶结充填材料及其制备方法
CN112745067B (zh) * 2021-01-25 2022-10-28 肇庆市武大环境技术研究院 一种生活垃圾填埋场底基层材料及其制备方法
CN113185206A (zh) * 2021-03-16 2021-07-30 山东大学 一种自修复水泥基复合材料及其制备方法与应用
CN113185230B (zh) * 2021-05-12 2022-08-16 郑州大学 一种适用于结构受拉区的微生物定位自修复混凝土材料及其制备方法
CN113416014B (zh) * 2021-06-28 2022-09-23 东南大学 一种可调控颜色的修复剂及制法和含有该修复剂的混凝土
CN113698870B (zh) * 2021-08-31 2022-05-24 河南金欧特实业集团股份有限公司 沥青路面高效还原修复剂、制备方法及应用
CN113735552A (zh) * 2021-09-07 2021-12-03 中建安装集团有限公司 一种纤维改性增强水泥基材料性能的方法及其应用
CN113788658A (zh) * 2021-09-25 2021-12-14 成都新豪鼎盛建材有限公司 一种高强度抗开裂混凝土及其制备工艺
CN114214249B (zh) * 2021-12-29 2023-08-15 北京建工环境修复股份有限公司 一种双菌菌剂及在荒漠化土壤修复的应用
WO2023123082A1 (zh) * 2021-12-29 2023-07-06 北京建工环境修复股份有限公司 一种双菌菌剂的制备方法和一种土壤修复方法
AU2023221958A1 (en) * 2022-02-17 2024-09-05 Worcester Polytechnic Institute Enzymatic construction material for repair and corrosion resistance and durability

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1778934A (zh) * 2005-10-10 2006-05-31 东南大学 利用微生物沉积制备碳酸钙的方法
CN101302484A (zh) * 2008-01-15 2008-11-12 东南大学 利用微生物修复水泥基材料裂缝方法及培养液和修复营养液
CN101759410A (zh) * 2010-01-14 2010-06-30 东南大学 一种微生物增强型水泥基材料的制备方法
CN101768013A (zh) * 2010-01-15 2010-07-07 东南大学 采用羧甲基纤维素钠固载微生物修复水泥基材料缺陷的方法
CN102071710A (zh) * 2010-11-26 2011-05-25 清华大学 位于土中的混凝土结构裂缝的一种封堵修复方法
CN102584073A (zh) * 2012-03-02 2012-07-18 东南大学 裂缝自修复水泥基材料添加剂及其使用方法和水泥基材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1778934A (zh) * 2005-10-10 2006-05-31 东南大学 利用微生物沉积制备碳酸钙的方法
CN101302484A (zh) * 2008-01-15 2008-11-12 东南大学 利用微生物修复水泥基材料裂缝方法及培养液和修复营养液
CN101759410A (zh) * 2010-01-14 2010-06-30 东南大学 一种微生物增强型水泥基材料的制备方法
CN101768013A (zh) * 2010-01-15 2010-07-07 东南大学 采用羧甲基纤维素钠固载微生物修复水泥基材料缺陷的方法
CN102071710A (zh) * 2010-11-26 2011-05-25 清华大学 位于土中的混凝土结构裂缝的一种封堵修复方法
CN102584073A (zh) * 2012-03-02 2012-07-18 东南大学 裂缝自修复水泥基材料添加剂及其使用方法和水泥基材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHOU XUEYING ET AL.: "Effect of different culture conditions on carbonic anhydrase from Bacillus mucilaginosus inducing calcium carbonate crystal formation", ACTA MICROBIOLOGICA SINICA, vol. 50, no. ISSUE, 4 July 2010 (2010-07-04), pages 955 - 961 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018156896A1 (en) * 2017-02-24 2018-08-30 Worcester Polytechnic Institute Method for enzymatic repair of cementitious surfaces
US10647617B2 (en) 2017-02-24 2020-05-12 Worcester Polytechnic Institute Method for enzymatic repair of cementitious surfaces
CN111458206A (zh) * 2020-05-28 2020-07-28 兰州理工大学 微生物制备多孔混凝土试块的循环试验装置及试验方法
CN111458206B (zh) * 2020-05-28 2024-03-01 兰州理工大学 微生物制备多孔混凝土试块的循环试验装置及试验方法
CN113149496A (zh) * 2020-06-05 2021-07-23 江苏科技大学 一种混凝土自修复材料及其制备方法和具有其的混凝土
CN114292127A (zh) * 2021-11-30 2022-04-08 华中科技大学 一种高耐受度的环保微生物改性剂及其制备方法和应用
CN114989781A (zh) * 2022-06-21 2022-09-02 宁夏大学 利用高吸水树脂和混菌矿化修复混凝土裂缝的材料及方法
CN114989781B (zh) * 2022-06-21 2023-09-15 宁夏大学 利用高吸水树脂和混菌矿化修复混凝土裂缝的材料及方法
CN114956737A (zh) * 2022-06-22 2022-08-30 东南大学 一种以泡沫混凝土为载体的自修复混凝土
CN115448696A (zh) * 2022-09-06 2022-12-09 合肥埠里新型建材有限公司 一种煤矸石陶粒空心砖制备的方法
CN115717045A (zh) * 2022-11-02 2023-02-28 中铁四局集团有限公司 一种混凝土微裂缝修复材料及其制备方法
CN115717045B (zh) * 2022-11-02 2024-05-10 中铁四局集团有限公司 一种混凝土微裂缝修复材料及其制备方法
CN116730677A (zh) * 2023-06-03 2023-09-12 广州市兴耀混凝土有限公司 一种抗渗抗裂混凝土及其制备方法
CN116730677B (zh) * 2023-06-03 2023-12-22 广州市兴耀混凝土有限公司 一种抗渗抗裂混凝土及其制备方法

Also Published As

Publication number Publication date
CN103342484A (zh) 2013-10-09
CN103342484B (zh) 2014-09-03

Similar Documents

Publication Publication Date Title
WO2015007011A1 (zh) 一种自修复水泥基材料的制备方法
Wu et al. Growth environment optimization for inducing bacterial mineralization and its application in concrete healing
Su et al. Application potential of Bacillus megaterium encapsulated by low alkaline sulphoaluminate cement in self-healing concrete
Su et al. Influence of bacterial self-healing agent on early age performance of cement-based materials
CN111672900B (zh) 一种微生物诱导碳酸钙沉淀修复土壤重金属污染的方法
Chen et al. Crack sealing evaluation of self-healing mortar with Sporosarcina pasteurii: Influence of bacterial concentration and air-entraining agent
Akindahunsi et al. The use of bacteria (Bacillus subtilis) in improving the mechanical properties of concrete
CN102584073B (zh) 裂缝自修复水泥基材料添加剂及其使用方法和水泥基材料
Han et al. Insights into the effects of microbial consortia-enhanced recycled concrete aggregates on crack self-healing in concrete
CN104261736A (zh) 一种具有深层自修复功能的水泥基材料的制备方法
Qian et al. Living concrete with self-healing function on cracks attributed to inclusion of microorganisms: Theory, technology and engineering applications—A review
Pourfallahi et al. Effect of direct addition of two different bacteria in concrete as self-healing agent
Li et al. Effect of basalt fibers on the mechanical and self-healing properties of expanded perlite solid-loaded microbial mortars
CN110395884B (zh) 一种仿生自修复混凝土及其制备方法
Nosouhian et al. Reducing permeability of concrete by bacterial mediation on surface using treatment gel
Yang et al. Self-healing cement composites based on bleaching earth immobilized bacteria
Sidhu et al. Biomineralization of cyanobacteria Synechocystis pevalekii improves the durability properties of cement mortar
CN113603407A (zh) 微生物诱导碳酸钙沉淀固化稀土尾矿砂制备生物砖的方法
Yi et al. The influence of microbial agent on the mineralization rate of steel slag
Hu et al. Biomineralization Performance of Bacillus sphaericus under the Action of Bacillus mucilaginosus
Jeong et al. Effect of calcium organic additives on the self-healing of concrete microcracks in the presence of a new isolate Bacillus sp. BY1
CN114164202A (zh) 一种微生物活性多功能载体及其制备方法
Iheanyichukwu et al. A review on self-healing concrete using bacteria
Polat et al. A research for bacterial self-healing in metakaolin based geopolymer mortars
Huang et al. Enhancing Concrete Crack Healing: Revealing the Synergistic Impacts of Multicomponent Microbial Repair Systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE