WO2015006994A1 - 基于有机p-n结的红外探测器件及其制作方法与使用该器件的红外图像探测器 - Google Patents

基于有机p-n结的红外探测器件及其制作方法与使用该器件的红外图像探测器 Download PDF

Info

Publication number
WO2015006994A1
WO2015006994A1 PCT/CN2013/080055 CN2013080055W WO2015006994A1 WO 2015006994 A1 WO2015006994 A1 WO 2015006994A1 CN 2013080055 W CN2013080055 W CN 2013080055W WO 2015006994 A1 WO2015006994 A1 WO 2015006994A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
glass substrate
infrared
type material
junction
Prior art date
Application number
PCT/CN2013/080055
Other languages
English (en)
French (fr)
Inventor
刘亚伟
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/118,228 priority Critical patent/US20160118444A1/en
Publication of WO2015006994A1 publication Critical patent/WO2015006994A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Infrared detector device based on organic p-n junction, manufacturing method thereof and infrared image detector using the same
  • the invention relates to the field of infrared detection technology, in particular to an infrared detector component based on an organic p-n junction, a manufacturing method thereof and an infrared image detector using the same. Background technique
  • Infrared is an electromagnetic wave with a wavelength between microwave and visible light. The wavelength is between 760 nm and 1 mm. It is a non-visible light with a longer wavelength than red light. Infrared has a wide range of applications in communications, probing, medical, military, etc. For example, the 850, 1330, and 1550 nm window wavelengths for fiber optic communications are all in the infrared. In addition, the infrared band also involves applications such as data processing, storage, security marking, infrared detection, and infrared guidance.
  • the Infrared Detector is a device that converts an incident infrared signal into an electrical signal output.
  • Infrared is an electromagnetic wave with a wavelength between visible light and microwave. It is not visible to the human eye. Therefore, to detect the presence of infrared light and measure its strength, it must be transformed into other physical quantities that can be detected and measured.
  • any effect caused by infrared radiation on an object can be used to measure the intensity of infrared light as long as the effect can be measured and is sensitive enough.
  • Modern infrared detectors use mainly infrared thermal effects and photoelectric effects. The output of these effects is mostly electricity, or can be converted into electricity by an appropriate method.
  • the technique of detecting invisible infrared light and converting it into a measurable signal is called infrared detection technology.
  • the infrared system has the characteristics of small size, light weight and low power consumption
  • infrared detection technology has its unique advantages, it has been widely researched and applied in the military defense and civilian fields, especially under the impetus of military demand traction and related technology development, as a high-tech infrared detection technology. In the future, the application will be more extensive and the status will be more important.
  • the existing infrared detectors are classified into infrared heat detectors and infrared photodetectors.
  • the infrared photodetector When the infrared photodetector absorbs photons, it changes its electronic state, causing photon effects such as internal photoelectric effect and external photoelectric effect. The number of photons absorbed can be determined from the photon effect. Specifically divided into photoconductive detectors, photovoltaic detectors, light emission - Schottky barrier detector, quantum well detector (QWIP). The raw materials required for the preparation of the existing infrared photodetectors are relatively expensive and the production cost is high.
  • the infrared heat detector absorbs infrared rays, the temperature rises, and the detected material can generate temperature difference electromotive force, resistivity change, spontaneous polarization intensity change, or gas volume and pressure change, etc., by measuring changes in these physical properties, the absorbed energy can be measured. Infrared radiation energy or power.
  • a variety of heat detectors can be made by utilizing the different properties described above, respectively.
  • Japan In terms of charge-coupled device (CCD) camera arrays, Japan is the world's first monolithic infrared focal plane array that achieves 1 million pixel integration. In terms of varieties, products such as HgCdTe, InSb, GaAlAs/GaAs quantum wells and PtSi to non-cooled infrared focal plane arrays are introduced to the market to seize business opportunities. In recent years, China's infrared imaging technology has developed by leaps and bounds, and the technological level gap with Western countries is gradually narrowing. The advanced nature of some devices can also be synchronized with the technological level of Western countries. For example, a 1000 X 1000 pixel detector array with an area of less than 30 ⁇ m 2 can be produced. Due to the use of a new device based on indium antimonide, the temperature difference of less than o.orc has been achieved, so that the target can be identified. Achieve a higher level.
  • infrared thermal imaging technology has the following disadvantages:
  • the infrared thermal imager is imaged by temperature difference, and the general target temperature difference is not large, the contrast of the infrared thermal image is low, and the ability to distinguish details is deteriorated.
  • Infrared thermal imaging cameras rely on temperature difference imaging, and transparent obstacles like window glass, Infrared thermal imagers do not detect the temperature difference of the objects behind them, so they cannot see the target through transparent obstacles.
  • the object of the present invention is to provide an infrared detector component based on an organic pn junction, which is made of an organic material, has low toxicity, low cost, various types and wide sources, and the infrared detector component can be prepared on a flexible substrate. Increase the wide angle of shooting.
  • Another object of the present invention is to provide a method for fabricating an infrared detector device based on an organic p-n junction, which has a simple manufacturing process and low production cost.
  • the method can prepare an infrared detecting device on a flexible substrate, and can increase the wide angle of shooting.
  • Another object of the present invention is to provide an infrared image detector which uses an organic P-n junction based infrared detector device, has a simple manufacturing process, low production cost, and is low in toxicity, low in cost, variety, and widely used.
  • the infrared image detector captures a wide angle.
  • the present invention provides an infrared ray detector based on an organic pn junction, comprising: an active glass substrate and a package glass substrate disposed opposite to each other, and a number disposed between the active glass substrate and the package glass substrate And an organic pn junction and an encapsulation material disposed on the peripheral edge regions of the active glass substrate and the package glass substrate, wherein the plurality of organic pn junctions are distributed in a matrix on the active glass substrate.
  • Each of the organic pn junctions includes: an anode disposed on the active glass substrate, an organic material layer disposed on the anode, and a cathode disposed on the organic material layer, the cathode being offset from the package glass substrate by.
  • the organic material layer comprises an organic p-type material and an organic n-type material
  • the organic p-type material is an infrared light absorbing material
  • the infrared light absorbing material is hexadecafluoro copper phthalocyanine or DCDSTCY
  • the organic n-type material is rich A olefin derivative.
  • the invention also provides a method for fabricating an organic p-n junction device, comprising the following steps:
  • Step 1 Providing a glass substrate, and depositing an indium tin oxide layer (ITO) on the glass substrate;
  • ITO indium tin oxide layer
  • Step 2 using a photolithography technique to image the indium tin oxide layer to form a plurality of anodes arranged in a matrix; Step 3, forming an organic material layer on each anode;
  • Step 4 forming a cathode on each of the organic material layers
  • Step 5 Providing a packaged glass substrate, and bonding the packaged glass substrate and the glass substrate on which the indium tin oxide layer is formed by using a packaging material to form an infrared detector based on an organic p-n junction.
  • the organic p-type material and the organic n-type material are simultaneously vapor-deposited to each anode by a co-evaporation method in a vacuum evaporation technique to form an organic material layer, or the vacuum evaporation technique is adopted in the step 3.
  • An organic p-type material is first vapor-deposited on each anode, and an organic n-type material is evaporated on the organic p-type material to form an organic material layer, wherein the ratio of the organic p-type material to the organic n-type material 5-7: 3-5.
  • the organic p-type material has a thickness of 30 nm to 150 nm, and the organic n-type material has a thickness of 20 nm to 50 nm.
  • the organic p-type material and the organic n-type material are simultaneously dissolved in an organic solvent, and then the mask plate and the indium tin oxide layer are pasted together, and the organic p-type material and the organic n-type material are dissolved organically.
  • the solvent is applied to the reticle. After the organic solvent is dried, the mask is removed to form an organic material layer, wherein the ratio of the organic p-type material to the organic n-type material is 5-7: 3-5.
  • a sealant is applied on the peripheral edge of the packaged glass substrate, and the sealed glass substrate coated with the sealant is pressed together with the glass substrate formed with the indium tin oxide layer, and the frame is cured by ultraviolet rays.
  • Glue encapsulating the package glass substrate with the glass substrate formed with the indium tin oxide layer, or applying a frit paste or a metal glue to the periphery of the package glass substrate, and baking the glue to form indium tin oxide the glass substrate and the encapsulation layer is bonded to the group on the glass substrate, laser light having a wavelength of 800-1200 nm of carbon dioxide (C0 2) laser or an infrared laser described above to dry the gum was dissolved, and then the glass substrate is formed of indium-tin oxide layer Sealed and welded with the packaged glass substrate.
  • C0 2 carbon dioxide
  • the organic material layer comprises an organic p-type material and an organic n-type material
  • the organic p-type material is an infrared light absorbing material
  • the infrared light absorbing material is hexadecafluoro copper phthalocyanine or DCDSTCY
  • the organic n-type material is rich A olefin derivative.
  • the present invention also provides an infrared image detector comprising: a housing, an infrared permeable filter mounted on the housing, an organic device mounted in the housing and disposed relative to the infrared permeable filter An infrared detector component of the pn junction, a circuit structure mounted in the housing and electrically connected to the organic pn junction-based infrared detector device, and a circuit structure mounted on the housing and electrically connected to the circuit structure a display device
  • the organic pn junction-based infrared detector device includes: an active glass substrate and a package glass substrate disposed opposite to each other, a plurality of organic pn junctions disposed between the active glass substrate and the package glass substrate, and Provided on the active glass substrate and the package glass The packaging material of the peripheral edge region of the glass substrate, wherein the plurality of organic pn junctions are distributed in a matrix on the active glass substrate, the circuit structure comprising: electrically connecting with the organic pn junction-based infrared detector device The photocurrent collecting and
  • the active glass substrate of the organic pn junction-based infrared detector device is disposed toward the infrared permeable filter, the housing is provided with a first opening and a second opening, and the infrared permeable filter is mounted and On the first opening, the display device is mounted on the second opening;
  • each of the organic pn junctions includes: an anode disposed on the active glass substrate, an organic material layer disposed on the anode, and a device a cathode on the organic material layer, the cathode abutting the package glass substrate;
  • the organic material layer comprises an organic p-type material and an organic n-type material, the organic p-type material is an infrared light absorbing material, the infrared
  • the light absorbing material is hexadecafluoro copper phthalocyanine or DCDSTCY;
  • the organic n-type material is a fullerene derivative.
  • the organic pn junction-based infrared detector device of the present invention and the manufacturing method thereof and the infrared image detector using the same absorb infrared rays by photons of an organic pn junction, and form excitons (electron-hole pairs)
  • the exciton is separated at the interface between the organic p material and the organic n material, the electrons flow to the cathode, and the holes flow to the anode, and the circuit structure collects the photocurrent, and after amplification, finally presents a monochrome human eye on the display device.
  • the visible image has high contrast and strong detail resolution.
  • the infrared detector has simple manufacturing process, low production cost, low toxicity, low cost, variety and wide source, and the infrared detector can be prepared in polycrystalline. On the amorphous and flexible substrates, you can increase the wide angle of shooting.
  • FIG. 1 is a schematic structural view of an infrared detector device based on an organic p-n junction according to the present invention
  • FIG. 2 is a schematic diagram showing the arrangement of several organic p-n junctions in an infrared detector device based on an organic p-n junction;
  • FIG. 3 is a molecular structural formula of an embodiment of an infrared ray absorbing material in an infrared ray detector based on an organic pn junction
  • 4 is a schematic diagram showing the peak value of the infrared absorption material of the infrared light absorbing material shown in FIG. 3
  • FIG. 5 is a molecular structural formula of another embodiment of the infrared light absorbing material in the infrared ray detector based on the organic pn junction
  • Figure 6 is a schematic diagram showing the peak value of the infrared absorption of the infrared light absorbing material shown in Figure 5;
  • FIG. 8 is a flow chart of a method for fabricating an infrared detector based on an organic p-n junction according to the present invention
  • FIG. 9 is a perspective view of an infrared image detector of the present invention.
  • FIG. 10 is a schematic diagram showing the connection of circuit structures in the infrared image detector of the present invention.
  • FIG 11 is a schematic diagram of the operation of the infrared image detector of the present invention. detailed description
  • the present invention provides an infrared detector based on an organic p-n junction.
  • a device structure with a pixel matrix is prepared. Specifically, the method includes: an active glass substrate 42 and a package glass substrate 44 disposed opposite to each other, a plurality of organic pn junctions 43 disposed between the active glass substrate 42 and the package glass substrate 44, and the active region
  • the glass substrate 42 and the encapsulating material 48 of the peripheral edge region of the encapsulating glass substrate 44, the plurality of organic pn junctions 43 are distributed in a matrix, which is advantageous for improving the application of the infrared image detector 10 based on the organic pn junction infrared detecting device 40.
  • Sensitivity; sealing and bonding the active glass substrate 42 and the package glass substrate 44 by using the encapsulation material 48 can prevent water and oxygen from intruding into the interior of the packaged infrared detector device 40, and maintaining the performance of the infrared detector device 40. And extend the service life.
  • Each of the organic pn junctions 43 includes: an anode 45 disposed on the active glass substrate 42, an organic material layer 46 disposed on the anode 45, and a cathode 47 disposed on the organic material layer 46, the cathode 47 abuts against the package glass substrate 44.
  • the organic material layer 46 has a thickness of 50-200 nm, and includes an organic p-type material and an organic n-type material.
  • the organic p-type material forms an interface with the organic n-type material, and the organic material layer 46 absorbs infrared rays. Excitons are formed later, and the excitons are separated into holes and electrons at the interface, electrons flow to the cathode, and holes flow to the anode to form a photocurrent.
  • the organic p-type material is an infrared light absorbing material
  • the infrared light absorbing material is preferably hexadecafluoro copper phthalocyanine (CuPcF 16 ), and its molecular structure is shown in FIG. 3, and the solid film has a peak infrared absorption value of 793 nm.
  • the infrared light absorbing material may also be selected from 5,5'-dicarboxy-indole, fluorene-disulfobutyl-3,3,3',3'-tetramethylphosphonium tricarbonate.
  • the organic n-type material is preferably a fullerene derivative (PCBM), which has good solubility, good electron transporting ability and high electron affinity, and its HOMO (The highest occupied orbital level is 6.0eV, the LUMO (lowest unoccupied orbit) energy level is 4.2eV, and the carrier mobility is 10 - 3 cm 2 /Vs, which is an excellent solar cell electron transport material.
  • PCBM fullerene derivative
  • HOMO The highest occupied orbital level is 6.0eV
  • the LUMO (lowest unoccupied orbit) energy level is 4.2eV
  • the carrier mobility is 10 - 3 cm 2 /Vs, which is an excellent solar cell electron transport material.
  • the present invention further provides a method for fabricating the organic p-n junction-based infrared detector device 40, which specifically includes the following steps:
  • Step 1 A glass substrate is provided, and an indium tin oxide layer is deposited on the glass substrate.
  • a layer of about 150 nm thick indium tin oxide is plated on the glass substrate by a physical vapor deposition process (PVD) to form an indium tin oxide layer.
  • PVD physical vapor deposition process
  • Step 2 The indium tin oxide layer is imaged by photolithography to form a plurality of anodes 45 arranged in a matrix.
  • Step 3 An organic material layer 46 is formed on each of the anodes 45, respectively.
  • the organic material layer 46 has a thickness of 50 to 200 nm.
  • the organic p-type material and the organic n-type material can be simultaneously vapor-deposited to each anode by a co-evaporation method in a vacuum evaporation technique.
  • an organic material layer 46 is formed to form an organic material layer 46; an organic p-type material may also be first vapor-deposited on each anode 45 by a vacuum evaporation technique, and an organic n-type material is evaporated on the organic p-type material to form an organic material layer. 46, wherein the ratio of the organic p-type material to the organic n-type material is 5-7: 3-
  • the organic p-type material has a thickness of 30-150 nm, and the organic n-type material has a thickness of 20-50 nm.
  • the organic p-type material and the organic n-type material may be simultaneously dissolved in an organic solvent, and then the mask plate and the indium tin oxide layer are pasted together, and the organic p-type material and the organic n-type material are dissolved.
  • the organic solvent is coated on the mask, and after the organic solvent is dried, the mask is removed to form an organic material layer 46, wherein the ratio of the organic p-type material to the organic n-type material is 5-
  • the organic p-type material is an infrared light absorbing material
  • the infrared light absorbing material is preferably hexadecafluorocopper phthalocyanine (CuPcF 16 ), and the molecular structure thereof is as shown in FIG. 3, and the solid film has a peak infrared absorption value of 793 nm.
  • the infrared light absorbing material may also be selected as DCDSTCY, and its molecular structure is shown in FIG. 5, and the peak of the infrared absorption spectrum of the solution formed is 755 nm, as shown in FIG. As shown in FIG.
  • the organic n-type material is preferably a fullerene derivative (PCBM), which has good solubility, good electron transporting ability and high electron affinity, and its HOMO ( The highest occupied track) Energy level is 6.0eV, LUMO (most Low unoccupied orbital) The energy level is 4.2eV and the carrier mobility is 10 - 3 cm 2 /Vs, which is an excellent solar cell electron transport material.
  • PCBM fullerene derivative
  • Step 4 A cathode 47 is formed on each of the organic material layers 46, respectively.
  • a metal material aluminum is selected to form the cathode 47.
  • the metal aluminum is vapor deposited on each of the organic material layers 46 by vacuum evaporation.
  • Step 5 providing a packaged glass substrate 44, and bonding the package glass substrate 44 and the glass substrate formed with the indium tin oxide layer (ie, the active glass substrate 42) by using the encapsulation material 48 to form an organic pn junction.
  • Infrared detector element 40 Infrared detector element 40.
  • the cathode 47 is abutted against the package glass substrate 44.
  • a sealant may be applied on the peripheral edge of the packaged glass substrate 44, and the framed glass substrate 44 coated with the sealant may be pressed together with the glass substrate on which the indium tin oxide layer is formed, and irradiated with ultraviolet rays.
  • the sealant is cured, and the packaged glass substrate 44 is hermetically sealed with the glass substrate on which the indium tin oxide layer is formed to form an organic pn junction-based infrared detector device 40.
  • a frit paste or a metal glue may be applied to the periphery of the package glass substrate 44, and the glue is baked, and the glass substrate on which the indium tin oxide layer is formed is bonded to the package glass substrate 44, and the laser is used.
  • the above-mentioned baked glue is dissolved by carbon dioxide or an infrared laser having a wavelength of 800 to 1200 nm, and the glass substrate on which the indium tin oxide layer is formed is sealed and welded to the package glass substrate 44 to form an infrared ray junction member 40 based on the organic pn junction.
  • the present invention further provides an infrared image detector 10 using an organic pn junction infrared detector device, comprising: a housing 20 mounted on the housing 20 An infrared permeable filter 30, an organic pn junction-based infrared detector 40 mounted in the housing 20 and disposed opposite to the infrared permeable filter 30, mounted in the housing 20 a circuit structure 50 electrically connected to the organic pn junction infrared detecting device 40, and a display device 60 mounted on the housing 20 and electrically connected to the circuit structure 50, the organic pn junction based
  • the infrared detector device 40 includes: an active glass substrate 42 and a package glass substrate 44 disposed opposite to each other, a plurality of organic pn junctions 43 disposed between the active glass substrate 42 and the package glass substrate 44, and The packaging material 48 of the source glass substrate 42 and the peripheral edge region of the package glass substrate 44, the plurality of organic pn junctions 43 are distributed in a matrix
  • the active glass substrate 42 of the organic pn junction-based infrared detector device 40 faces the infrared
  • the filter 30 is disposed through the filter, and the infrared ray 70 of the outside is filtered through the infrared ray filter 30, and then incident on the organic pn junction-based infrared ray detector 40 from the side of the active glass substrate 42.
  • the housing 20 is correspondingly provided with a first opening 22 and a second opening 24, and the infrared transparent filter 30 is mounted on the first opening 22, so that the infrared ray 70 of the outside can be directly irradiated to the infrared.
  • the display device 60 is selectively mounted on the second opening 24 for displaying the intensity of the infrared light 70 detected by the infrared image detector 10, that is, displaying a monochrome human eye. image.
  • the display device 60 can also be separated from the casing 20, and separately distributed, and can be installed in a place convenient for the user to observe, thereby improving operability.
  • the circuit structure 50 includes: a photocurrent collecting and amplifying module 52 electrically connected to the organic pn junction-based infrared detecting device 40, and a display driving module 54 electrically connected to the photocurrent collecting and amplifying module 52.
  • the organic pn junction-based infrared detector device 40 generates excitons (electron-hole pairs) under the irradiation of the infrared rays 70, and the excitons are finally separated to form a photocurrent, and the photocurrent collecting and amplifying module 52 collects the photocurrent.
  • the size of the infrared ray 70 irradiated onto the infrared ray detector 40 based on the organic pn junction is collected and amplified, and transmitted to the display driving module 54.
  • the display driving module 54 is further electrically connected to the display device 60, and further drives the display device 60 to display a monochrome image according to the photocurrent signal, and displays the intensity of the infrared ray 70 irradiated onto the infrared ray junction member 40 based on the organic pn junction. .
  • Each of the organic pn junctions 43 includes: an anode 45 disposed on the active glass substrate 42, an organic material layer 46 disposed on the anode 45, and a cathode 47 disposed on the organic material layer 46, the cathode 47 abuts against the package glass substrate 44.
  • the organic material layer 46 includes an organic p-type material and an organic n-type material, and the organic p-type material forms an interface with the organic n-type material, and the excitons are separated into holes and electrons at the interface, and electrons Flows toward the cathode, and holes flow toward the anode, thereby forming a photocurrent.
  • the organic p-type material is an infrared light absorbing material, and the infrared light absorbing material is preferably hexadecafluoro copper phthalocyanine (CuPcF 16 ), and the molecular structure thereof is as shown in FIG. 3 , and the solid film has a peak infrared absorption value of 793 nm.
  • the infrared light absorbing material may also be selected from DCDSTCY, and the molecular structure is shown in FIG. 5, and the solution has a peak infrared absorption value of 755 nm, as shown in FIG. As shown in FIG.
  • the organic n-type material is preferably a fullerene derivative (PCBM), which has good solubility, good electron transporting ability and high electron affinity, and HOMO (The highest occupied orbital level is 6.0eV, the LUMO (lowest unoccupied orbit) energy level is 4.2eV, and the carrier mobility is l() - 3 cm 2 /Vs, which is an excellent solar cell electron transport material.
  • PCBM fullerene derivative
  • HOMO The highest occupied orbital level is 6.0eV
  • the LUMO (lowest unoccupied orbit) energy level is 4.2eV
  • the carrier mobility is l() - 3 cm 2 /Vs, which is an excellent solar cell electron transport material.
  • the infrared ray filter 30 is used to filter out visible light (wavelength range 390 nm-760 nm) and shorter wavelength electromagnetic waves.
  • the machine pn junction 43 absorbs the radiation photons of the infrared rays 70 to form excitons (electron-hole pairs), exciton separation at the interface between the organic p material and the organic n material, electrons flow to the cathode, holes flow to the anode, and circuit structure 50 is collected.
  • the photocurrent, and after amplification, eventually presents a monochromatic image visible to the human eye on display device 60.
  • the image has high contrast and strong detail resolution; the infrared detector 40 has a simple manufacturing process, low production cost, low toxicity, low cost, variety and wide range of materials, and the infrared detector 40 can be prepared in polycrystalline or non-crystalline On the crystal and on the flexible substrate, it is possible to increase the wide angle of shooting.
  • the infrared image detector 10 of the present invention uses an organic pn junction-based infrared detector component 40, which can be used to detect a target in a dark or thick cloud, and can be further used to detect a camouflaged target and a high-speed moving target; It can also be widely used in civil, industrial, agricultural, medical, fire, archaeological, transportation, geology, public security reconnaissance and other civil fields. As shown in the following aspects:
  • soldiers can pass each other, receive infrared signals, and are not discovered by the enemy. They have the ability to observe through fog, rain, etc. They can also be used to detect enemy planes, warships, tanks, etc.
  • the organic pn junction-based infrared detector device of the present invention and the manufacturing method thereof and the infrared image detector using the device absorb the infrared radiation photons through the organic pn junction to form excitons (electron-hole pairs) Excitons are separated at the interface between the organic p material and the organic n material, electrons flow to the cathode, and holes flow to the anode to form a photocurrent, and the circuit structure collects the photocurrent, and after amplification, finally presents a single on the display device.
  • the infrared detector has simple manufacturing process, low production cost, low toxicity, low cost, various types and wide sources, and the infrared detector can be The preparation can be performed on polycrystalline, amorphous and flexible substrates to increase the wide angle of shooting.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

一种基于有机p-n结的红外探测器件及其制作方法与使用有机p-n结的红外探测器件的红外图像探测器,基于有机p-n结的红外探测器件包括:相对平行设置的有源玻璃基板(42)与封装玻璃基板(44)、设于有源玻璃基板(42)与封装玻璃基板(44)之间的数个有机p-n结(43)、及设于有源玻璃基板(42)与封装玻璃基板(44)的四周边缘区域的封装材料(48),数个有机p-n结(43)在有源玻璃基板(42)上呈矩阵式分布。红外探测器基于有机p-n结,制作工艺简单,原料低毒、便宜、种类多且来源广泛,并且可制备在柔性衬底上,可以增大拍摄广角。

Description

基于有机 p-n结的红外探测器件及其制作方法与使用该器件的红 外图像探测器
技术领域
本发明涉及红外探测技术领域, 尤其涉及一种基于有机 p-n结的红外 探测器件及其制作方法与使用该器件的红外图像探测器。 背景技术
红外线是波长介乎微波与可见光之间的电磁波, 波长在 760纳米至 1 毫米之间, 是波长比红光长的非可见光。 红外线在通讯、 探测、 医疗、 军 事等方面有广泛的用途, 例如光纤通信的 850、 1330、 1550nm窗口波长都 位于红外波段内。 另外, 红外波段还涉及到数据处理、 储存、 安全标记、 红外探测以及红外制导等方面的应用。
红外探测器 (Infrared Detector )是将入射的红外线信号转变成电信号 输出的器件。 红外线是波长介于可见光与微波之间的电磁波, 人眼察觉不 到, 故要察觉红外线的存在并测量其强弱, 必须把它转变成可以察觉和测 量的其他物理量。 一般说来, 红外线照射物体所引起的任何效应, 只要效 果可以测量而且足够灵敏, 均可用来度量红外线的强弱。 现代红外探测器 所利用的主要是红外热效应和光电效应, 这些效应的输出大都是电量, 或 者可用适当的方法转变成电量。 将不可见的红外线探测出并将其转换为可 测量的信号的技术称为红外探测技术。
红外探测技术具有如下几个优点:
1、 环境适应性优于可见光, 尤其是在夜间和恶劣天气下的工作能 力;
2、 隐蔽性好, 一般都是被动接收目标的信号, 比雷达和激光探测安 全且保密性强, 不易被干扰;
3、 由于是对目标和背景之间的温差和发射率差形成的红外辐射特性 进行探测, 因而识别伪装目标的能力优于可见光;
4、 与雷达系统相比, 红外系统具有体积小, 重量轻, 功耗低等特 点;
5、 探测器从单元发展到多元、 从多元发展到焦平面, 进而发展了种 类繁多的探测器和系统, 从单波段探测向多波段探测发展, 从制冷型探测 器发展到室温探测器, 光谱响应从短波扩展到长波;
6、 由于红外探测技术有其独特的优点从而使其在军事国防和民用领 域得到了广泛的研究和应用, 尤其是在军事需求的牵引和相关技术发展的 推动下, 作为高新技术的红外探测技术在未来的应用将更加广泛, 地位更 加重要。
现有的红外探测器分为红外热探测器与红外光电探测器。
红外光电探测器吸收光子后, 本身发生电子状态的改变, 从而引起内 光电效应和外光电效应等光子效应, 从光子效应的大小可以测定被吸收的 光子数。 具体分为光电导探测器、 光伏探测器、 光发射 -Schottky势垒探测 器、 量子阱探测器 (QWIP ) 。 现有红外光电探测器制备所需的原料价格 较为昂贵, 生产成本高。
红外热探测器吸收红外线后, 温度升高, 可以使探测材料产生温差电 动势、 电阻率变化, 自发极化强度变化, 或者气体体积与压强变化等, 通 过测量这些物理性能的变化就可以测定被吸收的红外辐射能量或功率。 通 过分别利用上述不同性能可以制成多种热探测器。
随着红外焦平面阵列技术的迅速发展, 美、 英、 法、 德、 日、 加拿 大、 以色列等西方发达国家都在竟相研制和生产先进的红外焦平面阵列摄 像仪, 其中美国在红外焦平面阵列传感器的发展水平方面处于遥遥领先地 位, 其焦平面阵列规模已大达 2048 x 2048元, 已接近于可见光硅。
在电荷耦合元件 ( Charge-coupled Device, CCD )摄像阵列方面, 日 本是世界上最先实现了 100万像元集成度的单片式红外焦平面阵列。 在品 种方面, 从 HgCdTe、 InSb、 GaAlAs/GaAs量子阱和 PtSi到非致冷红外焦平 面阵列等种类产品推向市场, 抢占商机。 近几年来, 中国的红外成像技术 得到突飞猛进的发展, 与西方国家的技术水平差距正在逐步缩小, 有些设 备的先进性也可同西方国家的技术水平同步。 如目前己能生产面积小于 30 μ ιη2的 1000 X 1000 像素的探测器阵列, 由于采用了基于锑化铟的新器 件, 目前己达到了分辨率小于 o.orc的温差, 使对目标的识别达到更高的 水平。
但, 红外热成像技术存在如下缺点:
①图像对比度低, 分辨细节能力较差
由于红外热成像仪靠温差成像, 而一般目标温差都不大, 因此红外热 图像对比度低, 使分辨细节能力变差。
②不能透过透明的障碍物看清目标, 如窗户玻璃
由于红外热成像仪靠温差成像, 而像窗户玻璃这种透明的障碍物, 使 红外热成像仪探测不到其后物体的温差, 因而不能透过透明的障碍物看清 目标。
③成本高、 价格贵
目前红外热成像仪的成本仍是限制它广泛使用的最大因素。
④基于 HgCdTe、 InSb、 GaAlAs/GaAs量子阱和 PtSi无机半导体红外 探测器件, 存在工艺复杂, 材料昂贵且有毒, 不能在多晶、 非晶以及柔性 塑料衬底上制备薄膜等问题。 发明内容
本发明的目的在于提供一种基于有机 p-n结的红外探测器件, 采用有 机材料制作而成, 原料低毒、 便宜、 种类多且来源广泛, 并且该红外探测 器件可制备在柔性衬底上, 可以增大拍摄广角。
本发明的另一目的在于提供一种基于有机 p-n结的红外探测器件的制 作方法, 制作工艺简单, 生产成本低, 该方法可在柔性衬底上制备红外探 测器件, 可以增大拍摄广角。
本发明的又一目的在于提供一种红外图像探测器, 其采用基于有机 P- n结的红外探测器件, 制作工艺简单, 生产成本低, 且采用的原料低毒、 便宜、 种类多且来源广泛, 该红外图像探测器拍摄广角大。
为实现上述目的, 本发明提供一种基于有机 p-n结的红外探测器件, 包括: 相对平行设置的有源玻璃基板与封装玻璃基板、 设于所述有源玻璃 基板与封装玻璃基板之间的数个有机 p-n结、 及设于所述有源玻璃基板与 封装玻璃基板的四周边缘区域的封装材料, 所述数个有机 p-n结在所述有 源玻璃基板上呈矩阵式分布。
每一所述有机 p-n结包括: 设于有源玻璃基板上的阳极、 设于所述阳 极上的有机材料层、 及设于有机材料层上的阴极, 所述阴极与所述封装玻 璃基板相抵靠。
所述有机材料层包括有机 p型材料和有机 n型材料, 所述有机 p型材 料为红外吸光材料, 所述红外吸光材料为十六氟铜酞菁或 DCDSTCY; 所 述有机 n型材料为富勒烯衍生物。
本发明还提供一种有机 p-n结器件制作方法, 包括以下步骤:
步骤 1、 提供一玻璃基板, 在所述玻璃基板上沉积形成一氧化铟锡层 ( ITO ) ;
步骤 2、 采用光刻技术图像化所述氧化铟锡层, 形成数个呈矩阵式分 布的阳极; 步骤 3、 在每一阳极上分别形成有机材料层;
步骤 4、 在每一有机材料层上分别形成阴极;
步骤 5、 提供封装玻璃基板, 并利用封装材料将所述封装玻璃基板与 上述形成有氧化铟锡层的玻璃基板贴合在一起, 形成基于有机 p-n结的红 外探测器件。
所述步骤 3 中通过真空蒸镀技术中的共蒸法将有机 p型材料与有机 n 型材料同时蒸镀到每一阳极上来形成有机材料层, 或者, 所述步骤 3 中通 过真空蒸镀技术在每一阳极先蒸镀有机 p型材料, 再在所述有机 p型材料 上蒸镀一层有机 n型材料来形成有机材料层, 其中, 所述有机 p型材料与 有机 n型材料的比例 5-7: 3-5 , 蒸镀后, 所述有机 p型材料的厚度为 30 纳米 -150纳米, 所述有机 n型材料的厚度为 20纳米 -50纳米。
所述步骤 3 中将有机 p型材料与有机 n型材料同时溶解于有机溶剂 中, 然后将掩膜版与氧化铟锡层贴在一起, 将溶解有有机 p型材料与有机 n 型材料的有机溶剂涂覆于掩膜版上, 待该有机溶剂干燥后, 移除掩膜 版, 形成有机材料层, 其中, 有机 p 型材料与有机 n型材料的比例为 5- 7: 3-5。
所述步骤 5 中采用在封装玻璃基板的四周边缘涂上框胶, 并将涂有框 胶的封装玻璃基板与形成有氧化铟锡层的玻璃基板压合在一起, 并采用紫 外线照射, 固化框胶, 将封装玻璃基板与形成有氧化铟锡层的玻璃基板密 封封装在一起, 或, 在封装玻璃基板四周边缘涂上熔块胶或金属胶, 并将 胶烤干, 将形成有氧化铟锡层的玻璃基板与封装玻璃基板对组贴合, 用激 光波长为 800-1200纳米的二氧化碳(C02 )激光器或红外激光器将上述烤 干的胶溶解, 进而将形成有氧化铟锡层的玻璃基板与封装玻璃基板密封焊 接在一起。
所述有机材料层包括有机 p型材料和有机 n型材料, 所述有机 p型材 料为红外吸光材料, 所述红外吸光材料为十六氟铜酞菁或 DCDSTCY; 所 述有机 n型材料为富勒烯衍生物。
本发明还提供一种红外图像探测器包括: 壳体、 安装于所述壳体上的 红外透过滤光片、 安装于所述壳体内并相对所述红外透过滤光片设置的基 于有机 p-n 结的红外探测器件、 安装于所述壳体内并与所述基于有机 p-n 结的红外探测器件电性连接的电路结构、 及安装于所述壳体上并与所述电 路结构电性连接的显示器件, 所述基于有机 p-n结的红外探测器件包括: 相对平行设置的有源玻璃基板与封装玻璃基板、 设于所述有源玻璃基板与 封装玻璃基板之间的数个有机 p-n结、 及设于所述有源玻璃基板与封装玻 璃基板的四周边缘区域的封装材料, 所述数个有机 p-n结在所述有源玻璃 基板上呈矩阵式分布, 所述电路结构包括: 与所述基于有机 p-n结的红外 探测器件电性连接的光电流收集并放大模块、 及与光电流收集并放大模块 电性连接的显示驱动模块, 所述显示驱动模块还与所述显示器件电性连 接。
所述基于有机 p-n结的红外探测器件的有源玻璃基板朝向红外透过滤 光片设置, 所述壳体设有第一开口及第二开口, 所述红外透过滤光片安装 与所述第一开口上, 所述显示器件安装于所述第二开口上; 每一所述有机 p-n 结包括: 设于有源玻璃基板上的阳极、 设于所述阳极上的有机材料 层、 及设于有机材料层上的阴极, 所述阴极与所述封装玻璃基板相抵靠; 所述有机材料层包括有机 p型材料和有机 n型材料, 所述有机 p型材料为 红外吸光材料, 所述红外吸光材料为十六氟铜酞菁或 DCDSTCY; 所述有 机 n型材料为富勒烯衍生物。
本发明的有益效果: 本发明的基于有机 p-n结的红外探测器件及其制 作方法与使用该器件的红外图像探测器, 通过有机 p-n结吸收红外线的辐 射光子, 形成激子 (电子-空穴对) , 在有机 p材料与有机 n材料的界面处 激子分离, 电子流向阴极, 空穴流向阳极, 电路结构收集该光电流, 并经 过放大后, 最终在显示器件上呈现出单色的人眼可见的图像, 该图像对比 度高, 分辨细节能力强, 该红外探测器件制作工艺简单, 生产成本低, 所 需材料低毒、 便宜、 种类多且来源广泛, 并且该红外探测器件可制备在多 晶、 非晶以及柔性衬底上, 可以增大拍摄广角。
为了能更进一步了解本发明的特征以及技术内容, 请参阅以下有关本 发明的详细说明与附图, 然而附图仅提供参考与说明用, 并非用来对本发 明加以限制。 附图说明
下面结合附图, 通过对本发明的具体实施方式详细描述, 将使本发明 的技术方案及其它有益效果显而易见。
附图中,
图 1为本发明基于有机 p-n结的红外探测器件的结构示意图; 图 2为本发明基于有机 p-n结的红外探测器件中的数个有机 p-n结设 置示意图;
图 3为本发明基于有机 p-n结的红外探测器件中红外吸光材料一实施 例的分子结构式; 图 4为图 3所示红外吸光材料红外吸收语峰值示意图; 图 5为本发明基于有机 p-n结的红外探测器件中红外吸光材料另一实 施例的分子结构式;
图 6为图 5所示红外吸光材料红外吸收语峰值示意图;
图 7本发明基于有机 p-n结的红外探测器件中有机 n型材料一实施例 的分子结构式;
图 8为本发明基于有机 p-n结的红外探测器件制作方法流程图; 图 9为本发明红外图像探测器的立体图;
图 10为本发明红外图像探测器中电路结构连接示意图;
图 11为本发明红外图像探测器的工作原理图。 具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果, 以下结合本发明 的优选实施例及其附图进行详细描述。
请参阅图 1 至 2 , 本发明提供一种基于有机 p-n 结的红外探测器件
40, 利用新一代太阳能电池技术 -有机太阳能电池的技术, 制备出具有像素 点矩阵的器件结构。 其具体包括: 相对平行设置的有源玻璃基板 42 与封 装玻璃基板 44、 设于所述有源玻璃基板 42与封装玻璃基板 44之间的数个 有机 p-n结 43、 及设于所述有源玻璃基板 42与封装玻璃基板 44的四周边 缘区域的封装材料 48, 所述数个有机 p-n结 43 呈矩阵式分布, 有利于提 高应用该基于有机 p-n结红外探测器件 40 的红外图像探测器 10 的灵敏 度; 利用封装材料 48将所述有源玻璃基板 42与封装玻璃基板 44密封粘 接在一起, 可以阻止水、 氧气侵入该封装后的红外探测器件 40 的内部, 保持红外探测器件 40的性能, 并且延长使用寿命。
每一所述有机 p-n结 43 包括: 设于有源玻璃基板 42上的阳极 45、 设 于所述阳极 45上的有机材料层 46、 及设于有机材料层 46上的阴极 47, 所述阴极 47与所述封装玻璃基板 44相抵靠。 所述有机材料层 46的厚度 为 50-200 纳米, 其包括有机 p型材料和有机 n型材料, 所述有机 p型材料与 有机 n型材料之间形成一界面, 该有机材料层 46 吸收红外线后会形成激 子, 所述激子在该界面处分离成空穴与电子, 电子流向阴极, 空穴流向阳 极, 从而形成光电流。 所述有机 p型材料为红外吸光材料, 所述红外吸光 材料优先选用十六氟铜酞菁(CuPcF16 ) , 其分子结构式如图 3所示, 其形 成的固体薄膜红外吸收语峰值为 793nm, 如图 4所示; 所述红外吸光材料 还可以选用 5,5'-二羧基 -Ι,Γ-二磺丁基 -3,3,3',3'-四甲基吲哚三碳菁 ( DCDSTCY ) , 分子结构式如图 5 所示, 其形成的溶液红外吸收语峰值 为 755nm, 如图 6所示。 如图 7所示, 所述有机 n型材料优先选用富勒烯 衍生物 (PCBM ) , 它具有良好的溶解性, 同时具有较好的电子传输能力 及较高的电子亲和势, 其 HOMO (最高已占轨道) 能级为 6.0eV, LUMO (最低未占轨道) 能级为 4.2eV, 载流子迁移率为 10-3cm2/Vs, 是优良的 太阳能电池电子传输材料。
请结合参阅图 1、 图 2及图 8, 本发明还提供所述基于有机 p-n结的红 外探测器件 40制作方法, 其具体包括以下步骤:
步骤 1、 提供一玻璃基板, 在所述玻璃基板上沉积形成一氧化铟锡 层。
采用物理气相沉积工艺 (PVD )在所述玻璃基板上镀上一层约 150nm 厚的氧化铟锡, 形成氧化铟锡层。
步骤 2、 采用光刻技术图像化所述氧化铟锡层, 形成数个呈矩阵式分 布的阳极 45。
步骤 3、 在每一阳极 45上分别形成有机材料层 46。
所述有机材料层 46的厚度为 50-200纳米。 在该步骤中可以通过真空 蒸镀技术中的共蒸法将有机 p型材料与有机 n型材料同时蒸镀到每一阳极
45上来形成有机材料层 46; 也可以通过真空蒸镀技术在每一阳极 45先蒸 镀有机 p型材料, 再在所述有机 p型材料上蒸镀一层有机 n型材料来形成 有机材料层 46, 其中, 所述有机 p型材料与有机 n型材料的比例 5-7: 3-
5 , 蒸镀后, 所述有机 p型材料的厚度为 30-150纳米, 所述有机 n型材料 的厚度为 20-50纳米。
在该步骤中还可以将有机 p型材料与有机 n型材料同时溶解于有机溶 剂中, 然后将掩膜版与氧化铟锡层贴在一起, 将溶解有有机 p型材料与有 机 n型材料的有机溶剂涂覆于掩膜版上, 待该有机溶剂干燥后, 移除掩膜 版, 形成有机材料层 46, 其中, 有机 p型材料与有机 n型材料的比例为 5-
7: 3-5。
所述有机 p型材料为红外吸光材料, 所述红外吸光材料优先选用十六 氟铜酞菁(CuPcF16 ) , 其分子结构式如图 3所示, 其形成的固体薄膜红外 吸收语峰值为 793nm , 如图 4 所示; 所述红外吸光材料还可以选用 DCDSTCY, 其分子结构式如图 5 所示, 其形成的溶液红外吸收谱峰值为 755nm, 如图 6所示。 如图 7所示, 所述有机 n型材料优先选用富勒烯衍生 物 (PCBM ) , 它具有良好的溶解性, 同时具有较好的电子传输能力及较 高的电子亲和势, 其 HOMO (最高已占轨道) 能级为 6.0eV, LUMO (最 低未占轨道) 能级为 4.2eV, 载流子迁移率为 10-3cm2/Vs, 是优良的太阳 能电池电子传输材料。
步骤 4、 在每一有机材料层 46上分别形成阴极 47。
在本实施例中, 选取金属材料铝来形成阴极 47。 该金属铝采用真空蒸 镀技术蒸镀于每一有机材料层 46上。
步骤 5、 提供封装玻璃基板 44, 并利用封装材料 48将所述封装玻璃 基板 44 与上述形成有氧化铟锡层的玻璃基板 (即有源玻璃基板 42 )贴合 在一起, 形成基于有机 p-n结的红外探测器件 40。
其中, 所述阴极 47与封装玻璃基板 44相抵靠。
在该步骤中可以采用在封装玻璃基板 44 的四周边缘涂上框胶, 并将 涂有框胶的封装玻璃基板 44 与形成有氧化铟锡层的玻璃基板压合在一 起, 并采用紫外线照射, 固化框胶, 将封装玻璃基板 44 与形成有氧化铟 锡层的玻璃基板密封封装在一起, 形成基于有机 p-n 结的红外探测器件 40。
在该步骤中还可以在封装玻璃基板 44 四周边缘涂上熔块胶或金属 胶, 并将胶烤干, 将形成有氧化铟锡层的玻璃基板与封装玻璃基板 44 对 组贴合, 用激光波长为 800-1200nm 的二氧化碳或红外激光器将上述烤干 的胶溶解, 进而将形成有氧化铟锡层的玻璃基板与封装玻璃基板 44 密封 焊接在一起, 形成基于有机 p-n结的红外探测器件 40。
请参阅图 1至图 7、 及图 9至图 10, 本发明还提供一种使用基于有机 p-n结红外探测器件的红外图像探测器 10, 其包括: 壳体 20、 安装于所述 壳体 20上的红外透过滤光片 30、 安装于所述壳体 20内并相对所述红外透 过滤光片 30设置的基于有机 p-n结的红外探测器件 40、 安装于所述壳体 20内并与所述基于有机 p-n结红外探测器件 40电性连接的电路结构 50、 及安装于所述壳体 20上并与所述电路结构 50电性连接的显示器件 60, 所 述基于有机 p-n结的红外探测器件 40 包括: 相对设置的有源玻璃基板 42 与封装玻璃基板 44、 设于所述有源玻璃基板 42与封装玻璃基板 44之间的 数个有机 p-n结 43、 及设于所述有源玻璃基板 42与封装玻璃基板 44的四 周边缘区域的封装材料 48, 所述数个有机 p-n结 43呈矩阵式分布, 有利 于提高红外图像探测器 10性能; 利用封装材料 48将所述有源玻璃基板 42 与封装玻璃基板 44 密封粘接在一起, 可以阻止水、 氧气侵入该封装后的 红外探测器件 40内部, 保持红外探测器件 40性能, 并且延长基于有机 P- n结的红外探测器件 40的寿命。
所述基于有机 p-n结的红外探测器件 40的有源玻璃基板 42朝向红外 透过滤光片 30设置, 外界的红外线 70 经过该红外透过滤光片 30 过滤 后, 从有源玻璃基板 42侧入射到基于有机 p-n结的红外探测器件 40内。 所述壳体 20对应设有第一开口 22及第二开口 24, 所述红外透过滤光片 30安装于所述第一开口 22上, 可以使得外界的红外线 70可以直接照射至 红外透过滤光片 30的表面; 所述显示器件 60可以选择安装于所述第二开 口 24上, 用于显示该红外图像探测器 10探测到的红外线 70的强度, 即 显示单色的人眼可见的图像。 另外, 该显示器件 60 也可以与壳体 20 分 离, 另外单独分布, 进而可以安装在方便用户观察到的地方, 提高可操作 性。
所述电路结构 50包括: 与所述基于有机 p-n结的红外探测器件 40电 性连接的光电流收集并放大模块 52、 及与光电流收集并放大模块 52 电性 连接的显示驱动模块 54, 所述基于有机 p-n结的红外探测器件 40在红外 线 70 照射下会产生激子 (电子-空穴对) , 该些激子最后分离形成光电 流, 所述光电流收集并放大模块 52 收集该光电流的大小, 即采集照射至 基于有机 p-n结的红外探测器件 40上的红外线 70强弱, 并对该光电流进 行放大, 传输给显示驱动模块 54。 所述显示驱动模块 54还与所述显示器 件 60电性连接, 进而根据光电流信号驱动显示器件 60显示单色图像, 显 示照射至基于有机 p-n结的红外探测器件 40上的红外线 70的强弱。
每一所述有机 p-n结 43 包括: 设于有源玻璃基板 42上的阳极 45、 设 于所述阳极 45上的有机材料层 46、 及设于有机材料层 46上的阴极 47, 所述阴极 47与所述封装玻璃基板 44相抵靠。 所述有机材料层 46 包括有 机 p型材料和有机 n型材料, 所述有机 p型材料与有机 n型材料之间形成一界 面, 所述激子在该界面处分离成空穴与电子, 电子流向阴极, 空穴流向阳 极, 从而形成光电流。 所述有机 p型材料为红外吸光材料, 所述红外吸光 材料优选选用十六氟铜酞菁(CuPcF16 ) , 其分子结构式如图 3所示, 其形 成的固体薄膜红外吸收语峰值为 793nm, 如图 4所示; 所述红外吸光材料 还可以选用 DCDSTCY, 分子结构式如图 5 所示, 其形成的溶液红外吸收 语峰值为 755nm, 如图 6所示。 如图 7所示, 所述有机 n型材料优选选用 富勒烯衍生物 (PCBM ) , 它具有良好的溶解性, 同时具有较好的电子传 输能力及较高的电子亲和势, 其 HOMO (最高已占轨道) 能级为 6.0eV, LUMO (最低未占轨道) 能级为 4.2eV, 载流子迁移率为 l()-3cm2/Vs , 是 优良的太阳能电池电子传输材料。
请参阅图 11 , 本发明具体的实现过程如下: 利用红外透过滤光片 30 将可见光(波长范围 390nm-760nm )及更短波长的电磁波过滤掉, 通过有 机 p-n结 43吸收红外线 70的辐射光子, 形成激子 (电子-空穴对) , 在有 机 p 材料与有机 n材料的界面处激子分离, 电子流向阴极, 空穴流向阳 极, 电路结构 50收集该光电流, 并经过放大后, 最终在显示器件 60上呈 现出单色的人眼可见的图像。 该图像对比度高, 分辨细节能力强; 该红外 探测器件 40 制作工艺简单, 生产成本低, 所需材料低毒、 便宜、 种类多 且来源广泛, 并且该红外探测器件 40 可制备在多晶、 非晶以及柔性衬底 上, 可以增大拍摄广角。
本发明红外图像探测器 10使用基于有机 p-n结的红外探测器件 40, 可以使用在黑夜或浓厚幕云雾中探测目标, 进一步可以用来探测伪装的目 标和高速运动的目标; 除了应用在军事应用外, 还可广泛应用于工业、 农 业、 医疗、 消防、 考古、 交通、 地质、 公安侦察等民用领域。 如下面几方 面所示:
( 1 )可以用于电力系统、 航空航天系统等的检修。
( 2 )可以用于石化、 钢铁、 电子等行业的质量控制。
( 3 )可以用于家庭电线、 建筑物漏水等的监控。
( 4 ) 可以用于战场环境。 夜间士兵间可以互相传递、 接受红外信 号, 并且不被敌人发现, 并具有透过雾、 雨等进行观察的能力, 也可以用 来探测敌对方的飞机、 军舰、 坦克等。
综上所述, 本发明的基于有机 p-n结的红外探测器件及其制作方法与 使用该器件的红外图像探测器, 通过有机 p-n结吸收红外线的辐射光子, 形成激子 (电子-空穴对) , 在有机 p材料与有机 n材料的界面处激子分 离, 电子流向阴极, 空穴流向阳极, 从而形成光电流, 电路结构收集该光 电流, 并经过放大后, 最终在显示器件上呈现出单色的人眼可见的图像, 该图像对比度高, 分辨细节能力强, 该红外探测器件制作工艺简单, 生产 成本低, 所需材料低毒、 便宜、 种类多且来源广泛, 并且该红外探测器件 可制备在多晶、 非晶以及柔性衬底上, 可以增大拍摄广角。
以上所述, 对于本领域的普通技术人员来说, 可以根据本发明的技术 方案和技术构思作出其他各种相应的改变和变形, 而所有这些改变和变形 都应属于本发明权利要求的保护范围。

Claims

权 利 要 求
1、 一种基于有机 p-n结的红外探测器件, 包括: 相对平行设置的有源 玻璃基板与封装玻璃基板、 设于所述有源玻璃基板与封装玻璃基板之间的 数个有机 p-n结、 及设于所述有源玻璃基板与封装玻璃基板的四周边缘区 域的封装材料, 所述数个有机 p-n 结在所述有源玻璃基板上呈矩阵式分 布。
2、 如权利要求 1所述的基于有机 p-n结的红外探测器件, 其中, 每一 所述有机 p-n结包括: 设于有源玻璃基板上的阳极、 设于所述阳极上的有 机材料层、 及设于有机材料层上的阴极, 所述阴极与所述封装玻璃基板相 抵靠。
3、 如权利要求 2所述的基于有机 p-n结的红外探测器件, 其中, 所述 有机材料层包括有机 p型材料和有机 n型材料, 所述有机 p型材料为红外 吸光材料, 所述红外吸光材料为十六氟铜酞菁或 DCDSTCY; 所述有机 n 型材料为富勒烯衍生物。
4、 一种基于有机 p-n结的红外探测器件的制作方法, 包括以下步骤: 步骤 1、 提供一玻璃基板, 在所述玻璃基板上沉积形成一氧化铟锡 层;
步骤 2、 采用光刻技术图像化所述氧化铟锡层, 形成数个呈矩阵式分 布的阳极;
步骤 3、 在每一阳极上分别形成有机材料层;
步骤 4、 在每一有机材料层上分别形成阴极;
步骤 5、 提供封装玻璃基板, 并利用封装材料将所述封装玻璃基板与 上述形成有氧化铟锡层的玻璃基板贴合在一起, 形成基于有机 p-n结的红 外探测器件。
5、 如权利要求 4所述的基于有机 p-n结的红外探测器件的制作方法, 其中, 所述步骤 3中通过真空蒸镀技术中的共蒸法将有机 p型材料与有机 n型材料同时蒸镀到每一阳极上来形成有机材料层, 或者, 所述步骤 3 中 通过真空蒸镀技术在每一阳极先蒸镀有机 p型材料, 再在所述有机 p型材 料上蒸镀一层有机 n型材料来形成有机材料层, 其中, 所述有机 p型材料 与有机 n型材料的比例 5-7: 3-5 , 蒸镀后, 所述有机 p 型材料的厚度为 30-150纳米, 所述有机 n型材料的厚度为 20-50纳米。
6、 如权利要求 4所述的基于有机 p-n结的红外探测器件的制作方法, 其中, 所述步骤 3中将有机 p型材料与有机 n型材料同时溶解于有机溶剂 中, 然后将掩膜版与氧化铟锡层贴在一起, 将溶解有有机 p型材料与有机 n 型材料的有机溶剂涂覆于掩膜版上, 待该有机溶剂干燥后, 移除掩膜 版, 形成有机材料层, 其中, 有机 p 型材料与有机 n型材料的比例为 5- 7: 3-5。
7、 如权利要求 4所述的基于有机 p-n结的红外探测器件的制作方法, 其中, 所述步骤 5 中采用在封装玻璃基板的四周边缘涂上框胶, 并将涂有 框胶的封装玻璃基板与形成有氧化铟锡层的玻璃基板压合在一起, 并采用 紫外线照射, 固化框胶, 将封装玻璃基板与形成有氧化铟锡层的玻璃基板 密封封装在一起, 或, 在封装玻璃基板四周边缘涂上熔块胶或金属胶, 并 将胶烤干, 将形成有氧化铟锡层的玻璃基板与封装玻璃基板对组贴合, 用 激光波长为 800-1200纳米的二氧化碳激光器或红外激光器将上述烤干的胶 溶解, 进而将形成有氧化铟锡层的玻璃基板与封装玻璃基板密封焊接在一 起。
8、 如权利要求 4所述的基于有机 p-n结的红外探测器件的制作方法, 其中, 所述有机材料层包括有机 p型材料和有机 n型材料, 所述有机 p型 材料为红外吸光材料, 所述红外吸光材料为十六氟铜酞菁或 DCDSTCY; 所述有机 n型材料为富勒烯衍生物。
9、 一种使用基于有机 p-n结红外探测器件的红外图像探测器, 包括: 壳体、 安装于所述壳体上的红外透过滤光片、 安装于所述壳体内并相对所 述红外透过滤光片设置的基于有机 p-n 结的红外探测器件、 安装于所述壳 体内并与所述基于有机 p-n结的红外探测器件电性连接的电路结构、 及安 装于所述壳体上并与所述电路结构电性连接的显示器件, 所述基于有机 P- n 结的红外探测器件包括: 相对平行设置的有源玻璃基板与封装玻璃基 板、 设于所述有源玻璃基板与封装玻璃基板之间的数个有机 p-n结、 及设 于所述有源玻璃基板与封装玻璃基板的四周边缘区域的封装材料, 所述数 个有机 p-n结在所述有源玻璃基板上呈矩阵式分布, 所述电路结构包括: 与所述基于有机 p-n 结的红外探测器件电性连接的光电流收集并放大模 块、 及与光电流收集并放大模块电性连接的显示驱动模块, 所述显示驱动 模块还与所述显示器件电性连接。
10、 如权利要求 9所述的使用基于有机 p-n结红外探测器件的红外图 像探测器, 其中, 所述基于有机 p-n结的红外探测器件的有源玻璃基板朝 向红外透过滤光片设置, 所述壳体设有第一开口及第二开口, 所述红外透 过滤光片安装于所述第一开口上, 所述显示器件安装于所述第二开口上; 每一所述有机 p-n结包括: 设于有源玻璃基板上的阳极、 设于所述阳极上 的有机材料层、 及设于有机材料层上的阴极, 所述阴极与所述封装玻璃基 板相抵靠; 所述有机材料层包括有机 p型材料和有机 n型材料, 所述有机 p 型材料为红外吸光材料, 所述红外吸光材料为十六氟铜酞菁或 DCDSTCY; 所述有机 n型材料为富勒烯衍生物。
PCT/CN2013/080055 2013-07-17 2013-07-24 基于有机p-n结的红外探测器件及其制作方法与使用该器件的红外图像探测器 WO2015006994A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/118,228 US20160118444A1 (en) 2013-07-17 2013-07-24 Organic p-n junction based infrared detection device and manufacturing method thereof and infrared image detector using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310300607.7 2013-07-17
CN201310300607.7A CN103390630B (zh) 2013-07-17 2013-07-17 基于有机p-n结的红外探测器件及其制作方法与使用该器件的红外图像探测器

Publications (1)

Publication Number Publication Date
WO2015006994A1 true WO2015006994A1 (zh) 2015-01-22

Family

ID=49534851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080055 WO2015006994A1 (zh) 2013-07-17 2013-07-24 基于有机p-n结的红外探测器件及其制作方法与使用该器件的红外图像探测器

Country Status (3)

Country Link
US (1) US20160118444A1 (zh)
CN (1) CN103390630B (zh)
WO (1) WO2015006994A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103594625B (zh) 2013-11-15 2016-08-17 深圳市华星光电技术有限公司 基于有机p-n结的紫外探测器件及使用该器件的紫外图像探测器
CN107246889A (zh) * 2017-06-22 2017-10-13 江苏物联网研究发展中心 用于非制冷红外传感器真空封装的管壳结构及红外传感器封装结构
WO2020072100A1 (en) 2018-05-05 2020-04-09 Azoulay Jason D Open-shell conjugated polymer conductors, composites, and compositions
WO2020106361A2 (en) 2018-09-21 2020-05-28 Joshua Tropp Thiol-based post-modification of conjugated polymers
US11781986B2 (en) 2019-12-31 2023-10-10 University Of Southern Mississippi Methods for detecting analytes using conjugated polymers and the inner filter effect
CN112133626B (zh) * 2020-10-12 2023-06-06 成都海威华芯科技有限公司 一种金属硬掩膜的制作方法和晶圆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101110469A (zh) * 2007-07-27 2008-01-23 北京大学 转换光信号的方法、红外探测器及其制备方法
CN101931058A (zh) * 2010-07-06 2010-12-29 电子科技大学 一种有机电致发光器件的封装结构及其封装方法
CN102256107A (zh) * 2011-01-17 2011-11-23 深圳市保千里电子有限公司 一种自动跟踪系统及其实现自动跟踪的方法
CN103000821A (zh) * 2011-09-16 2013-03-27 江苏广发光电科技有限公司 有机电致发光器件的快速固化封装方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3462135B2 (ja) * 1999-01-14 2003-11-05 シャープ株式会社 二次元画像検出器およびアクティブマトリクス基板並びに表示装置
WO2011041421A1 (en) * 2009-09-29 2011-04-07 Research Triangle Institute, International Quantum dot-fullerene junction based photodetectors
JP5853476B2 (ja) * 2011-08-04 2016-02-09 セイコーエプソン株式会社 赤外線検出素子及び電子機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101110469A (zh) * 2007-07-27 2008-01-23 北京大学 转换光信号的方法、红外探测器及其制备方法
CN101931058A (zh) * 2010-07-06 2010-12-29 电子科技大学 一种有机电致发光器件的封装结构及其封装方法
CN102256107A (zh) * 2011-01-17 2011-11-23 深圳市保千里电子有限公司 一种自动跟踪系统及其实现自动跟踪的方法
CN103000821A (zh) * 2011-09-16 2013-03-27 江苏广发光电科技有限公司 有机电致发光器件的快速固化封装方法

Also Published As

Publication number Publication date
CN103390630A (zh) 2013-11-13
CN103390630B (zh) 2015-11-11
US20160118444A1 (en) 2016-04-28

Similar Documents

Publication Publication Date Title
Xu et al. Photodetectors based on solution-processable semiconductors: Recent advances and perspectives
US9337437B2 (en) Photoelectric conversion element and imaging device
WO2015006994A1 (zh) 基于有机p-n结的红外探测器件及其制作方法与使用该器件的红外图像探测器
Jansen‐van Vuuren et al. Organic photodiodes: the future of full color detection and image sensing
KR102410028B1 (ko) 이미지 센서 및 이를 포함하는 전자 장치
Lan et al. Electrically switchable color-selective organic photodetectors for full-color imaging
US7888759B2 (en) Photoelectric conversion device, imaging device, and process for producing the photoelectric conversion device
KR101666600B1 (ko) 유기 광전변환막을 이용한 입체용 컬러 이미지센서
AU2012268322A1 (en) Infrared imaging device integrating an IR up-conversion device with a CMOS image sensor
WO2017115646A1 (ja) 光電変換素子および撮像装置
Wu et al. Recent Progress on Wavelength‐Selective Perovskite Photodetectors for Image Sensing
US20160154315A1 (en) Organic p-n junction based infrared detection device and manufacturing method thereof and infrared image detector using same
JP2009060051A (ja) 有機太陽電池及び光センサ
CN103178076A (zh) 红外光与可见光转换器件
JP6128593B2 (ja) 有機光電変換素子および撮像素子
JP2017054939A (ja) 有機光電変換素子、及び固体撮像素子
WO2015115229A1 (ja) 光電変換素子、撮像素子、光センサ
Pecunia Organic Narrowband Photodetectors: Materials, Devices and Applications
Huang et al. Green-solvent-processed high-performance broadband organic photodetectors
JP2018195683A (ja) 固体撮像素子
CN115734629A (zh) Cmos量子点成像芯片及其制备方法和驱动方法
Cao et al. Double-Side Selective Spectral Response Organic Photodetectors for Demultiplexing Optical Signals
US20150263303A1 (en) Polarization sensitive devices utilizing stacked organic and inorganic photovoltaics and related methods
US9691823B2 (en) Image sensors and electronic devices including the same
KR101653744B1 (ko) 수광소자 및 이를 포함한 촬상소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13889636

Country of ref document: EP

Kind code of ref document: A1