WO2015006991A1 - 穿反两用型电润湿显示面板 - Google Patents

穿反两用型电润湿显示面板 Download PDF

Info

Publication number
WO2015006991A1
WO2015006991A1 PCT/CN2013/079971 CN2013079971W WO2015006991A1 WO 2015006991 A1 WO2015006991 A1 WO 2015006991A1 CN 2013079971 W CN2013079971 W CN 2013079971W WO 2015006991 A1 WO2015006991 A1 WO 2015006991A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
light
polar
display panel
reflective electrode
Prior art date
Application number
PCT/CN2013/079971
Other languages
English (en)
French (fr)
Inventor
陈孝贤
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/008,594 priority Critical patent/US9158105B2/en
Publication of WO2015006991A1 publication Critical patent/WO2015006991A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/004Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
    • G02B26/005Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid based on electrowetting

Definitions

  • the present invention relates to the field of display technology, and in particular to a transversal electrowetting display panel. Background technique
  • Electrowetting refers to changing the wettability of a droplet on a substrate by changing the voltage between the droplet and the insulating substrate, that is, changing the contact angle to cause the droplet to deform and shift.
  • electrowetting is a technique for a reflective display that changes the surface tension of the aqueous liquid by applying a voltage to the aqueous liquid. For example, when a voltage is applied to a pixel defining space including a waterproof insulator, an electrode, an aqueous liquid, and a non-aqueous liquid, the surface tension of the non-aqueous liquid changes, moving from the non-aqueous liquid.
  • the non-aqueous colored liquid moves to one side to change the emitted light, thereby adjusting the color.
  • a typical electrowetting display panel includes an upper electrode, a lower electrode, and a layer of a non-polar solution sandwiched between the electrodes and a layer of a non-polar solution. When no voltage is applied, the layer of non-polar solution fills the pixel region. Or color development effect. 'Reverse: When the pixel area is to be in a bright state, 'there is a voltage applied to the upper and lower electrodes to shrink the non-polar solution layer to the edge of the pixel area, so that no light is blocked, and the light is generated. Through the effect, and does not absorb part of the spectrum, does not affect the color change, the exposed area is permeable.
  • the reflective layer is disposed below the polar solution layer, so that the incident light is reflected by the reflective layer to present a bright state. If a light source is disposed under the non-polar solution layer, the light can be transmitted through the non-polar solution layer to be in a bright state.
  • Electro Wetting Display is a technique that utilizes different surface tensions of ink and water.
  • As a display medium driving principle it is like a general display. Generally speaking, it is a full-wear type. The external environment is in a high-brightness state, the picture cannot be clearly displayed, and the contrast is lowered. Summary of the invention
  • the object of the present invention is to provide a transflective dual-use electrowetting display panel, wherein each sub-pixel is controlled by four electrodes, which realizes the conversion between the penetration mode and the reflection mode, and improves the use of the electrowetting display panel. Elasticity, while improving the contrast and penetration of the electrowetting display panel.
  • the present invention provides a transversal-type electrowetting display panel having two working modes of penetration and reflection.
  • the anti-dual-type electrowetting display panel includes a plurality of main pixels, each of which The main pixel includes three sub-pixels, and the three sub-pixels are a red sub-pixel, a green sub-pixel, and a blue sub-pixel; each of the sub-pixels includes: first, second, and third substrates disposed in parallel with each other a light-shielding control layer disposed between the first and second substrates and a color-developing layer disposed between the second and third substrates; the light-shielding control layer comprising: a first reflective electrode disposed on the first substrate a first penetrating electrode, and a first polarity solution and a non-polar light absorbing solution disposed on the first reflective electrode and the first penetrating electrode; the color developing layer includes: a second reflection disposed on the second substrate An electrode and a second penetrating electrode, and a second polarity solution and a non-polar color developing solution disposed on the second reflecting electrode and the second penetrating electrode; the
  • the anti-dual electrowetting display panel operates in a reflective mode; when the driving voltage is applied to the first penetrating electrode, the non-polar light absorbing solution shrinks above the first reflective electrode, and the anti-reflection
  • the dual-use electrowetting display panel operates in a penetration mode.
  • the transimpedance type electrowetting display panel further includes: a plurality of first upper baffles disposed between the second and third substrates; and a plurality of first under the first and second substrates
  • the baffle plate is disposed corresponding to the first lower baffle, and further divides the anti-dual-type electrowetting display panel into a plurality of main pixels.
  • the light shielding control layer further includes a first electrode protection layer disposed on the first reflective electrode and the first penetration electrode, wherein the first polarity solution and the non-polar light absorption solution are disposed on the first electrode protection layer;
  • the chromogenic layer further includes a second electrode protection layer disposed on the second reflective electrode and the second penetration electrode, and the second polarity solution and the non-polar chromogenic solution are disposed on the second electrode protection layer .
  • Each of the main pixels further includes: two second lower baffles disposed between the second substrate and the first electrode protective layer; and two second baffles disposed between the third substrate and the second electrode protective layer
  • the baffle plate is disposed corresponding to the second lower baffle, and further divides each main pixel into: a red sub-pixel, a green sub-pixel, and a blue sub-pixel.
  • the light shielding control layer further includes a first light shielding baffle disposed on the upper surface of the first substrate and located between the first reflective electrode and the first penetrating electrode.
  • the color developing layer further includes a second light shielding baffle disposed on the upper surface of the second electrode protective layer and located directly between the second reflective electrode and the second penetrating electrode.
  • the first reflective electrode is made of aluminum.
  • the first reflective electrode, the first penetration electrode, the second reflection electrode, and the second penetration electrode Drive with the same drive voltage or different drive voltages.
  • the non-polar color developing solution fills the display area of each sub-pixel
  • the non-polar light absorbing solution fills the display area of each sub-pixel.
  • the non-polar light absorbing solution shrinks above the first penetrating electrode or the first reflective electrode; when the second reflective electrode or the second The non-polar color developing solution shrinks above the second penetrating electrode or the second reflecting electrode when the driving electrode is driven by the driving voltage.
  • the invention also provides a transversal electrowetting display panel having two working modes of penetration and reflection, the anti-dual-type electrowetting display panel comprising a plurality of main pixels, each of the main The pixel includes three sub-pixels, and the three sub-pixels are a red sub-pixel, a green sub-pixel, and a blue sub-pixel.
  • Each of the sub-pixels includes: first, second, and third substrates disposed in parallel with each other.
  • the light shielding control layer comprises: a first reflective electrode disposed on the first substrate and the first penetrating layer An electrode, and a first polarity solution and a non-polar light absorbing solution disposed on the first reflective electrode and the first penetrating electrode;
  • the color developing layer includes: a second reflective electrode and a second electrode disposed on the second substrate a penetrating electrode, and a second polarity solution and a non-polar color developing solution disposed on the second reflective electrode and the second penetrating electrode; the first penetrating electrode, the second penetrating electrode and the second reflecting electrode Made of transparent conductive materials
  • the first reflective electrode is made of a highly reflective conductive material; when the driving voltage is applied to the first reflective electrode, the non-polar light absorbing solution shrinks above the first through electrode, and the reverse
  • the dual-use electrowetting display panel operates in a reflective mode; when the driving voltage is applied to the first penetrating electrode for driving, the non-polar light
  • the method further includes: a plurality of first upper baffles disposed between the second and third substrates; and a plurality of first lower baffles disposed between the first and second substrates, the first upper baffle and the first
  • the baffle is correspondingly arranged, and then the anti-dual-type electrowetting display panel is divided into a plurality of main pixels;
  • the light shielding control layer further includes a first electrode protection layer disposed on the first reflective electrode and the first penetration electrode, wherein the first polarity solution and the non-polar light absorption solution are disposed on the first electrode protection layer
  • the chromogenic layer further includes a second electrode protection layer disposed on the second reflective electrode and the second penetration electrode, wherein the second polarity solution and the non-polar color development solution are disposed on the second electrode protection layer On the floor
  • Each of the main pixels further includes: two second lower baffles disposed between the second substrate and the first electrode protective layer; and two second portions disposed between the third substrate and the second electrode protective layer
  • the second upper baffle is disposed corresponding to the second lower baffle, and further divides each main pixel into: Red sub-pixel, green sub-pixel, and blue sub-pixel;
  • the first light shielding layer is disposed on the upper surface of the first substrate and between the first reflective electrode and the first penetrating electrode;
  • the coloring layer further includes a second light shielding baffle disposed on the upper surface of the second electrode protective layer and located directly between the second reflective electrode and the second penetrating electrode .
  • the first reflective electrode is made of aluminum.
  • the first reflective electrode, the first through electrode, the second reflective electrode, and the second through electrode are driven by the same driving voltage or different driving voltages.
  • the non-polar color developing solution fills the display area of each sub-pixel
  • the non-polar light absorbing solution fills the display area of each sub-pixel.
  • the non-polar light absorbing solution shrinks above the first penetrating electrode or the first reflective electrode; when the second reflective electrode or the second The non-polar color developing solution shrinks above the second penetrating electrode or the second reflecting electrode when the driving electrode is driven by the driving voltage.
  • the transflective dual-use electrowetting display panel of the present invention uses four electrodes for controlling the contraction direction of the non-polar light absorbing solution and the non-polar color developing solution in each sub-pixel. , shrinks to the reflective electrode area, shrinks to the penetrating electrode area in the reflective mode, realizes the conversion of the penetration mode and the reflection mode, improves the elasticity of use of the electrowetting display panel, and improves the electrowetting display panel Contrast and penetration.
  • FIG. 1 is a schematic view showing the full black mode display of the anti-dual-type electrowetting display panel of the present invention
  • FIG. 2 is a schematic view showing the red light of the transflective type electrowetting display panel in the transflective mode of the present invention
  • FIG. 4 is a schematic diagram showing a blue light in a transmissive mode of a transversal electrowetting display panel according to the present invention
  • FIG. The state of the white light mode in the electrowetting display panel penetration mode Schematic diagram
  • FIG. 6 is a schematic view showing a red light in a reflective mode of a transversal electrowetting display panel according to the present invention
  • FIG. 7 is a schematic view showing a green light in a reflective mode of a transversal electrowetting display panel according to the present invention
  • the reflective mode of the anti-dual-type electrowetting display panel shows a blue light diagram
  • FIG. 9 is a schematic view showing the state of the white light mode in the reflection mode of the anti-dual-type electrowetting display panel of the present invention.
  • the present invention provides a transversal electrowetting display panel, the mode of operation of which includes a transmissive mode and a reflective mode.
  • Figure 1 it is a schematic diagram of the structure when no driving voltage is applied, that is, a schematic diagram showing the full black mode, the thick arrow is the selected backlight (Bright), the light path is thin, and the thin arrow is external.
  • the ambient light source (reflection) light path is illustrated by taking three sub-pixels for each main pixel as an example.
  • the anti-dual-type electrowetting display panel comprises a plurality of main pixels 20, a plurality of first upper baffles 32 and a plurality of first lower baffles 34, each of the main pixels 20 comprising three sub-pixels 22,
  • the three sub-pixels 22 are a red sub-pixel 25, a green sub-pixel 26, and a blue sub-pixel 27;
  • each of the sub-pixels 22 includes: first, second, and third substrates 42 , 44 , 49 disposed in parallel with each other a light-shielding control layer 46 disposed between the first and second substrates 42 and 44, and a color-developing layer 48 disposed between the second and third substrates 44 and 49.
  • the light-shielding control layer 46 includes: a first reflective electrode 53 and a first penetrating electrode 54 on a substrate 42 and a first polar solution 55 and a non-polar light absorbing solution 56 disposed on the first reflective electrode 53 and the first penetrating electrode 54;
  • the color layer 48 includes: a second reflective electrode 63 and a second penetration electrode 64 disposed on the second substrate 44, and a second polar solution disposed on the second reflective electrode 63 and the second penetration electrode 64.
  • the first and second polar solutions 55, 65 are preferably in a transparent state.
  • the light shielding control layer 46 further includes a first electrode protection layer 52 disposed on the first reflective electrode 53 and the first penetration electrode 54.
  • the first polarity solution 55 and the non-polar light absorption solution 56 are disposed in the first electrode.
  • An electrode protection layer 52; the color development layer 48 further includes a second electrode protection layer 62 disposed on the second reflection electrode 63 and the second penetration electrode 64, the second polarity solution 65 and the non-polarity
  • a color developing solution 66 is provided on the second electrode protective layer 62.
  • the plurality of first upper baffles 32 are disposed between the second and third substrates 44 and 49.
  • the plurality of first lower baffles 34 are disposed between the first and second substrates 42 and 44.
  • Each of the main pixel 20 further comprising: a second £ disposed between the two second lower flap 44 and the substrate protective layer 52 of the first electrode and the second electrode 38, and protective layer 49 disposed on the third substrate 62 of the Two second upper baffles 36 are disposed, and the second upper baffle 36 is disposed corresponding to the second lower baffle 38, thereby dividing each main pixel 20 into a red sub-pixel 25, a green sub-pixel 26, and a blue
  • the sub-pixels 27, in turn, can be separately controlled to display red, green or blue light.
  • the light shielding control layer 46 further includes a first light shielding shutter 57 disposed on the upper surface of the first substrate 42 and located between the first reflective electrode 53 and the first penetration electrode 54.
  • the first reflective electrode 53 is separated from the first penetrating electrode 54 by the first light shielding plate 57 to prevent short circuit between the two, and the first light shielding plate 57 is used to block light and prevent light from being transmitted from the first reflective electrode.
  • the gap between the 53 and the first penetration electrode 54 leaks out, thereby leaking light.
  • the color-developing layer 48 further includes a second light-shielding baffle 67 disposed on the upper surface of the second electrode protection layer 62 and located at the second reflective electrode 63 and the second penetrating electrode 64.
  • the second light blocking plate 67 is used to block the light, and the light of the light shielding control layer 46 or the color developing layer 48 is prevented from leaking from the gap between the second reflective electrode 63 and the second penetrating electrode 64 to the color development.
  • Layer 48 or shading control layer 46 affects display quality.
  • the first reflective electrode 53, the first through electrode 54, the second reflective electrode 63, and the second through electrode 64 may be driven by the same driving voltage or different driving voltages. Therefore, when the first reflective electrode 53, the first through electrode 54, the second reflective electrode 63 or the second through electrode 64 are respectively driven by different driving voltages, the individual main pixels 20 or the sub-pixels 22 can be Make separate settings to complete brightness or other settings to meet user needs.
  • the non-polar color developing solution 66 is filled with each In the display area of the sub-pixel 22, the non-polar light absorbing solution 56 fills the display area of each sub-pixel 22, so that after the light is incident, optical absorption is performed, thereby generating a light-shielding effect or a color-developing effect.
  • the non-polar light absorbing solution 56 shrinks above the first penetrating electrode 54 or the first reflecting electrode 53;
  • the reflective electrode 63 or the second penetrating electrode 64 is driven by a driving voltage, the non-polar color developing solution 66 shrinks above the second penetrating electrode 64 or the second reflecting electrode 63, so that light is not absorbed, and thus Shading, producing a penetration effect; and not absorbing some of the spectrum, does not affect the color change.
  • the first through electrode 54, the second through electrode 64 and the second reflective electrode 64 are all made of a transparent conductive material, so that light can pass through and realize a display effect; the first reflective electrode 53 is high.
  • the reflective material is made of conductive material, which can reflect the light of the ambient light source to the maximum extent, and then the ambient light source can be used to realize the reflection mode of the display panel.
  • the first reflective electrode 53 is made of aluminum.
  • the R mode is displayed, and the red sub-pixel 25 is shielded from light.
  • the first penetrating electrode 54 of the control layer 46 is energized, a driving voltage is applied, and the non-polar light absorbing solution 56 of the red sub-pixel 25 is shrunk to the reflective electrode region, that is, above the first reflective electrode 53, and the blue sub-pixel 27
  • the first penetrating electrode 54 of the light-shielding control layer of the green sub-pixel 26 does not apply a driving voltage, so the light penetrates the display region of the light-shielding control layer 46 of the red sub-pixel 25, and passes through the color-developing layer 48 of the red sub-pixel 25.
  • the non-polar color developing solution 66 red light is generated.
  • the G mode is displayed, and the first penetration of the light shielding control layer 46 of the green sub-pixel 26 is required.
  • the electrode 54 is energized, a driving voltage is applied, and the non-polar light absorbing solution 56 of the green sub-pixel 26 is shrunk to the reflective electrode region, that is, above the first reflective electrode 53, and the shading control of the red sub-pixel 25 and the blue sub-pixel 27 is performed.
  • the first penetrating electrode 54 of the layer 46 does not apply a driving voltage, so the light penetrates the display region of the light-shielding control layer 46 of the green sub-pixel 26, and passes through the non-polar coloring solution 66 in the color-developing layer 48 of the green sub-pixel 26. After that, it produces green light.
  • the backlight when the backlight is used to display the blue light using the penetration mode of the electrowetting display panel, that is, the B mode is displayed, the first penetration of the light shielding control layer 46 of the blue sub-pixel 27 is required.
  • the electrode 54 is energized, a driving voltage is applied, and the non-polar light absorbing solution 56 of the blue sub-pixel 27 is shrunk to the reflective electrode region, that is, above the first reflective electrode 53, and the shading control of the red sub-pixel 25 and the green sub-pixel 26 is performed.
  • the first penetrating electrode 54 of the layer 46 does not apply a driving voltage, so the light penetrates the display region of the light-shielding control layer 46 of the blue sub-pixel 27, and passes through the non-polar color developing in the color-developing layer 48 of the blue sub-pixel 27. After solution 66, blue light is produced.
  • FIG. 1 and FIG. 5 it is a state of a white pattern in the penetration mode of the electrowetting display panel of the present invention, and the first of the red sub-pixel 25, the blue sub-pixel 27 and the green sub-pixel 26
  • the second penetration electrodes 54 and 64 are both energized to apply a driving voltage, the non-polar light absorbing solution 56 is shrunk to the reflective electrode region (above the first reflective electrode 53), and the non-polar color developing solution 66 is also shrunk to the reflective electrode region. (above the second reflective electrode 63), after the light is emitted from the backlight, it is not blocked by the non-polar light absorbing solution 56 of the light-shielding control layer 46, and is not exposed to the color-developing layer 48.
  • the non-polar chromogenic solution 66 absorbs a portion of the spectrum, so the penetration rate is greatly increased.
  • the R mode is displayed, and the first reflective electrode 53 of the light-shielding control layer 46 of the red sub-pixel 25 is energized.
  • the non-polar light absorbing solution 56 of the red sub-pixel 25 is shrunk to the penetrating electrode region, that is, above the first penetrating electrode 54, so that the light of the ambient light penetrates the light-shielding control layer 46 of the red sub-pixel 25.
  • the chromogenic layer 48 of the red sub-pixel 25 is emitted, and the first reflective electrode 53 of the light-shielding control layer 46 of the blue sub-pixel 27 and the green sub-pixel 26 is not applied with a driving voltage. In turn, only red light is produced.
  • the G mode is displayed, and the first reflective electrode 53 of the light-shielding control layer 46 of the green sub-pixel 26 is energized.
  • the non-polar light absorbing solution 56 of the green sub-pixel 26 is shrunk to the penetrating electrode region, that is, above the first penetrating electrode 54, so that the light of the ambient light penetrates the light-shielding control layer 46 of the green sub-pixel 26.
  • the chromogenic layer 48 of the green sub-pixel 26 is emitted, and the first reflective electrode 53 of the light-shielding control layer 46 of the blue sub-pixel 27 and the red sub-pixel 25 is not applied with a driving voltage. In turn, only green light is produced.
  • the ambient light when the ambient light is used to display the blue light using the electrowetting display panel reflection mode, the B mode is displayed, and the first reflective electrode 53 of the light shielding control layer 46 of the blue sub-pixel 27 needs to be energized.
  • Applying a driving voltage shrinking the non-polar light absorbing solution 56 of the blue sub-pixel 27 to the penetrating electrode region, that is, above the first penetrating electrode 54, so that the light of the ambient light penetrates the shading control of the blue sub-pixel 27.
  • the layer 46 is reflected by the first reflective electrode 53 and then exits through the color-developing layer 48 of the blue sub-pixel 27, and the first reflective electrode 53 of the light-shielding control layer 46 of the green sub-pixel 26 and the red sub-pixel 25 is not driven.
  • the voltage which in turn produces only blue light.
  • the electrowetting display panel of the present invention displays the state of the white light mode in the reflective mode, and the first and second reflections of the red sub-pixel 25 , the blue sub-pixel 27 , and the green sub-pixel 26 .
  • the electrodes 53, 63 are both energized, a driving voltage is applied, the non-polar light absorbing solution 56 is shrunk to the penetrating electrode region (above the first penetrating electrode 54), and the non-polar color developing solution 66 is also shrunk to the penetrating electrode region (the first The light is not blocked by the non-polar light absorbing solution 56 of the light-shielding control layer 46, and is not absorbed by the non-polar color developing solution 66 of the color-developing layer 48, so that the transmittance is greatly improved.
  • the contrast is defined as L255/L0, so the contrast is better than the traditional electrowetting display panel.
  • the transflective dual-use electrowetting display panel of the present invention uses four electrodes for controlling the contraction direction of the non-polar light absorbing solution and the non-polar color developing solution in each sub-pixel, in the penetration mode. , shrinks to the reflective electrode area, shrinks to the penetrating electrode area in the reflective mode, realizes the conversion of the penetration mode and the reflection mode, improves the elasticity of use of the electrowetting display panel, and simultaneously improves The contrast and transmittance of the electrowetting display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

一种穿反两用型电润湿显示面板,其具有穿透与反射两种工作模式,具体包括数个主像素(20),每一主像素(20)包括数个子像素(22);每一子像素(22)包括:第一、第二、第三基板(42、44、49)、遮光控制层(46)及显色层(48);所述遮光控制层(46)包括:第一反射电极(53)与第一穿透电极(54)、以及第一极性溶液(55)与非极性吸光溶液(56);所述显色层(48)包括:第二反射电极(63)与第二穿透电极(64)、以及第二极性溶液(65)与非极性显色溶液(66)。提高了电润湿显示面板的使用弹性、对比度及穿透率。

Description

穿反两用型电润湿显示面板 技术领域
本发明涉及显示技术领域, 尤其涉及一种穿反两用型电润湿显示面 板。 背景技术
电润湿 ( Electrowetting , EW )是指通过改变液滴与绝缘基板之间电 压, 来改变液滴在基板上的润湿性, 即改变接触角, 使液滴发生形变、 位 移的现象。 一般地, 电润湿是一种用于反射型显示器的技术, 其通过对含 水液体施加电压来改变该含水液体的表面张力。 例如, 当将电压施加到包 括防水绝缘体、 电极、 含水液体和非含水液体的一个像素界定空间时, 非 含水液体的表面张力改变, 从而非含水液体移动。 当将正电压施加到包括 含水液体和非含水着色液体的液体且将负电压施加到绝缘体时, 非含水着 色液体移动到一侧来改变发射的光, 由此调整颜色。
一般电润湿显示面板包括上电极、 下电极以及夹于两电极之间的极 ' I"生 溶液层以及非极性溶液层。 当未施加电压时, 非极性溶液层布满像素区。 或者 显色效果。'反 : 当欲使像素区 现亮态时,、'则 其上下两电极施 加电压, 以使非极性溶液层收缩至所述像素区的边缘, 因而不遮光, 产生 穿透效果, 以及不吸收部分光谱, 不影响颜色的变化, 此时露出的区域呈 现可透光状态。 极性溶液层下方若设置有反射层, 可使入射光被反射层反 射而呈现亮态。 非极性溶液层下方若设置有光源, 可使光线透过非极性溶 液层而呈亮态。
如上所述, 电润湿显示技术(Electro Wetting Display, EWD )是利用 油墨与水不同表面张力的特质, 作为显示介质驱动原理的技术, 如同一般 显示器, 普遍上而言, 为全穿式, 于外在环境处于高亮度的状态, 画面无 法清楚的显示, 对比度下降。 发明内容
本发明的目的在于提供一种穿反型两用电润湿显示面板, 每一子像素 采用四个电极进行控制, 实现了穿透模式与反射模式的转换, 提高了电润 湿显示面板的使用弹性, 同时提高了电润湿显示面板的对比度及穿透率。 为实现上述目的, 本发明提供一种穿反两用型电润湿显示面板, 具有 穿透与反射两种工作模式, 所述穿反两用型电润湿显示面板包括数个主像 素, 每一所述主像素包括三个子像素, 所述三个子像素为红色子像素、 绿 色子像素及蓝色子像素; 每一所述子像素包括: 相互平行设置的第一、 第 二、 第三基板、 设于第一与第二基板之间的遮光控制层及设于第二与第三 基板之间的显色层; 所述遮光控制层包括: 设于第一基板上的第一反射电 极与第一穿透电极、 以及设于第一反射电极与第一穿透电极上的第一极性 溶液与非极性吸光溶液; 所述显色层包括: 设于第二基板上的第二反射电 极与第二穿透电极、 以及设于第二反射电极与第二穿透电极上的第二极性 溶液与非极性显色溶液; 所述第一穿透电极、 第二穿透电极及第二反射电 极均采用透明导电材料制作而成, 第一反射电极采用高反射率的导电材料 制作而成; 当对第一反射电极施加驱动电压进行驱动时, 所述非极性吸光 溶液收缩于第一穿透电极的上方, 所述穿反两用电润湿显示面板工作于反 射模式; 当对第一穿透电极施加驱动电压进行驱动时, 所述非极性吸光溶 液收缩于第一反射电极的上方, 所述穿反两用电润湿显示面板工作于穿透 模式。
所述穿反两用型电润湿显示面板还包括: 设于第二、 第三基板之间的 数个第一上挡板及设于第一、 第二基板之间的数个第一下挡板, 所述第一 上挡板与第一下挡板对应设置, 进而将该穿反两用型电润湿显示面板划分 为数个主像素。
所述遮光控制层还包括设于第一反射电极与第一穿透电极上的第一电 极保护层, 所述第一极性溶液与非极性吸光溶液设于该第一电极保护层 上; 所述显色层还包括设于第二反射电极与第二穿透电极上的第二电极保 护层, 所述第二极性溶液与非极性显色溶液设于该第二电极保护层上。
每一所述主像素还包括: 设于第二基板与第一电极保护层之间的两个 第二下挡板及设于第三基板与第二电极保护层之间的两个第二上挡板, 所 述第二上挡板与第二下挡板对应设置, 进而将每一主像素划分为: 红色子 像素、 绿色子像素及蓝色子像素。
所述遮光控制层还包括第一遮光挡板, 所述第一遮光挡板设于第一基 板的上表面, 且位于第一反射电极与第一穿透电极之间。
所述显色层还包括第二遮光挡板, 所述第二遮光挡板设于第二电极保 护层的上表面, 且位于第二反射电极与第二穿透电极之间的正上方。
第一反射电极采用铝制作而成。
所述第一反射电极、 第一穿透电极、 第二反射电极及第二穿透电极采 用相同的驱动电压或不同的驱动电压进行驱动。
当未对所述第一反射电极、 第一穿透电极、 第二反射电极及第二穿透 电极施加驱动电压进行驱动时, 所述非极性显色溶液布满每一子像素的显 示区, 所述非极性吸光溶液布满每一子像素的显示区。
当对第一反射电极或第一穿透电极施加驱动电压进行驱动时, 所述非 极性吸光溶液收缩于第一穿透电极或第一反射电极的上方; 当对第二反射 电极或第二穿透电极施加驱动电压进行驱动时, 所述非极性显色溶液收缩 于第二穿透电极或第二反射电极的上方。
本发明还提供一种穿反两用型电润湿显示面板, 具有穿透与反射两种 工作模式, 所述穿反两用型电润湿显示面板包括数个主像素, 每一所述主 像素包括三个子像素, 所述三个子像素为红色子像素、 绿色子像素及蓝色 子像素; 每一所述子像素包括: 相互平行设置的第一、 第二、 第三基板、 设于第一与第二基板之间的遮光控制层及设于第二与第三基板之间的显色 层; 所述遮光控制层包括: 设于第一基板上的第一反射电极与第一穿透电 极、 以及设于第一反射电极与第一穿透电极上的第一极性溶液与非极性吸 光溶液; 所述显色层包括: 设于第二基板上的第二反射电极与第二穿透电 极、 以及设于第二反射电极与第二穿透电极上的第二极性溶液与非极性显 色溶液; 所述第一穿透电极、 第二穿透电极及第二反射电极均采用透明导 电材料制作而成, 第一反射电极采用高反射率的导电材料制作而成; 当对 第一反射电极施加驱动电压进行驱动时, 所述非极性吸光溶液收缩于第一 穿透电极的上方, 所述穿反两用电润湿显示面板工作于反射模式; 当对第 一穿透电极施加驱动电压进行驱动时, 所述非极性吸光溶液收缩于第一反 射电极的上方, 所述穿反两用电润湿显示面板工作于穿透模式;
还包括: 设于第二、 第三基板之间的数个第一上挡板及设于第一、 第 二基板之间的数个第一下挡板, 所述第一上挡板与第一下挡板对应设置, 进而将该穿反两用型电润湿显示面板划分为数个主像素;
其中, 所述遮光控制层还包括设于第一反射电极与第一穿透电极上的 第一电极保护层, 所述第一极性溶液与非极性吸光溶液设于该第一电极保 护层上; 所述显色层还包括设于第二反射电极与第二穿透电极上的第二电 极保护层, 所述第二极性溶液与非极性显色溶液设于该第二电极保护层 上;
其中, 每一所述主像素还包括: 设于第二基板与第一电极保护层之间 的两个第二下挡板及设于第三基板与第二电极保护层之间的两个第二上挡 板, 所述第二上挡板与第二下挡板对应设置, 进而将每一主像素划分为: 红色子像素、 绿色子像素及蓝色子像素;
其中, 所述遮光控制层还包括第一遮光挡板, 所述第一遮光挡板设于 第一基板的上表面, 且位于第一反射电极与第一穿透电极之间;
其中, 所述显色层还包括第二遮光挡板, 所述第二遮光挡板设于第二 电极保护层的上表面, 且位于第二反射电极与第二穿透电极之间的正上 方。
第一反射电极采用铝制作而成。
所述第一反射电极、 第一穿透电极、 第二反射电极及第二穿透电极采 用相同的驱动电压或不同的驱动电压进行驱动。
当未对所述第一反射电极、 第一穿透电极、 第二反射电极及第二穿透 电极施加驱动电压进行驱动时, 所述非极性显色溶液布满每一子像素的显 示区, 所述非极性吸光溶液布满每一子像素的显示区。
当对第一反射电极或第一穿透电极施加驱动电压进行驱动时, 所述非 极性吸光溶液收缩于第一穿透电极或第一反射电极的上方; 当对第二反射 电极或第二穿透电极施加驱动电压进行驱动时, 所述非极性显色溶液收缩 于第二穿透电极或第二反射电极的上方。
本发明的有益效果: 本发明穿反型两用电润湿显示面板, 每一子像素 采用四个电极进行控制非极性吸光溶液及非极性显色溶液的收缩方向, 在 穿透模式时, 收缩至反射电极区, 在反射模式时, 收缩至穿透电极区, 实 现了穿透模式与反射模式的转换, 提高了电润湿显示面板的使用弹性, 同 时提高了电润湿显示面板的对比度及穿透率。
为了能更进一步了解本发明的特征以及技术内容, 请参阅以下有关本 发明的详细说明与附图, 然而附图仅提供参考与说明用, 并非用来对本发 明加以限制。 附图说明
下面结合附图, 通过对本发明的具体实施方式详细描述, 将使本发明 的技术方案及其它有益效果显而易见。
附图中,
图 1为本发明穿反两用型电润湿显示面板的全黑模式显示示意图; 图 2为本发明穿反两用型电润湿显示面板穿透模式显示红光示意图; 图 3为本发明穿反两用型电润湿显示面板穿透模式显示绿光示意图; 图 4为本发明穿反两用型电润湿显示面板穿透模式显示蓝光示意图; 图 5 为本发明穿反两用型电润湿显示面板穿透模式中白光模式的状态 示意图;
图 6为本发明穿反两用型电润湿显示面板反射模式显示红光示意图; 图 7为本发明穿反两用型电润湿显示面板反射模式显示绿光示意图; 图 8为本发明穿反两用型电润湿显示面板反射模式显示蓝光示意图; 图 9为本发明穿反两用型电润湿显示面板反射模式中白光模式的状态 示意图。 具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果, 以下结合本发明 的优选实施例及其附图进行详细描述。
本发明提供一种穿反两用型电润湿显示面板, 其工作模式包括穿透模 式和反射模式。 如图 1 所示, 其为未施加驱动电压时的结构示意图, 即全 黑模式显示示意图, 粗箭头为所选用背光源 (Back light, BL ) (穿透) 光线路径, 细箭头则为外在环境光源 (反射)光线路径, 图中以每一主像素 包括三个子像素为例进行说明。 所述穿反两用型电润湿显示面板包括数个 主像素 20、 数个第一上挡板 32及数个第一下挡板 34, 每一所述主像素 20 包括三个子像素 22, 所述三个子像素 22为红色子像素 25、 绿色子像素 26 及蓝色子像素 27; 每一所述子像素 22 包括: 相互平行设置的第一、 第 二、 第三基板 42、 44、 49、 设于第一与第二基板 42、 44之间的遮光控制 层 46及设于第二与第三基板 44、 49之间的显色层 48; 所述遮光控制层 46 包括: 设于第一基板 42上的第一反射电极 53与第一穿透电极 54、 以 及设于第一反射电极 53与第一穿透电极 54上的第一极性溶液 55与非极 性吸光溶液 56; 所述显色层 48包括: 设于第二基板 44上的第二反射电极 63与第二穿透电极 64、 以及设于第二反射电极 63与第二穿透电极 64上 的第二极性溶液 65与非极性显色溶液 66; 当对第一反射电极 53施加驱动 电压进行驱动时, 所述非极性吸光溶液 56 收缩于第一穿透电极 54 的上 方, 所述穿反两用电润湿显示面板工作于反射模式; 当对第一穿透电极 54 施加驱动电压进行驱动时, 所述非极性吸光溶液 56 收缩于第一反射电极 53 的上方, 所述穿反两用电润湿显示面板工作于穿透模式。 所述第一、 第 二极性溶液 55、 65优选为透明状态。
所述遮光控制层 46还包括设于第一反射电极 53 与第一穿透电极 54 上的第一电极保护层 52, 所述第一极性溶液 55与非极性吸光溶液 56设于 该第一电极保护层 52上; 所述显色层 48还包括设于第二反射电极 63与 第二穿透电极 64上的第二电极保护层 62, 所述第二极性溶液 65与非极性 显色溶液 66设于该第二电极保护层 62上。
所述数个第一上挡板 32设于第二、 第三基板 44、 49之间, 所述数个 第一下挡板 34设于第一、 第二基板 42、 44之间, 所述第一上挡板 32与 ^主像素' 20。 每一所述主像素 20还包括: 设于第二£基板 44与第一电极保 护层 52之间的两个第二下挡板 38及设于第三基板 49与第二电极保护层 62之间的两个第二上挡板 36 , 所述第二上挡板 36与第二下挡板 38对应 设置, 进而将每一主像素 20划分为红色子像素 25、 绿色子像素 26及蓝色 子像素 27 , 进而可以进行分别控制来显示红光、 绿光或蓝光。
所述遮光控制层 46还包括一第一遮光挡板 57 , 所述第一遮光挡板 57 设于第一基板 42 的上表面, 且位于第一反射电极 53 与第一穿透电极 54 之间, 利用所述第一遮光挡板 57 将第一反射电极 53 与第一穿透电极 54 隔开, 防止两者短路, 同时利用第一遮光挡板 57 来遮挡光线, 防止光线 从第一反射电极 53与第一穿透电极 54之间的缝隙漏出, 进而漏光。 所述 显色层 48还包括一第二遮光挡板 67 , 所述第二遮光挡板 67设于第二电极 保护层 62的上表面, 且位于第二反射电极 63与第二穿透电极 64之间的 正上方, 利用第二遮光挡板 67来遮挡光线, 防止遮光控制层 46或显色层 48的光线从第二反射电极 63与第二穿透电极 64之间的缝隙泄露到显色层 48或遮光控制层 46, 影响显示质量。
所述第一反射电极 53、 第一穿透电极 54、 第二反射电极 63及第二穿 透电极 64 可以采用相同的驱动电压或不同的驱动电压进行驱动。 因此, 当采用不同的驱动电压分别驱动所述第一反射电极 53、 第一穿透电极 54、 第二反射电极 63或第二穿透电极 64时, 就可以对个别主像素 20或 子像素 22 进行单独设置, 完成亮度或其它的设置, 满足用户需求。 当未 对所述第一反射电极 53、 第一穿透电极 54、 第二反射电极 63及第二穿透 电极 64施加驱动电压进行驱动时, 所述非极性显色溶液 66布满每一子像 素 22的显示区, 所述非极性吸光溶液 56布满每一子像素 22的显示区, 如此可使光线入射后, 进行光学吸收, 因此产生遮光效果, 或者是显色效 果。 当对第一反射电极 53或第一穿透电极 54施加驱动电压进行驱动时, 所述非极性吸光溶液 56收缩于第一穿透电极 54或第一反射电极 53 的上 方; 当对第二反射电极 63或第二穿透电极 64施加驱动电压进行驱动时, 所述非极性显色溶液 66收缩于第二穿透电极 64或第二反射电极 63 的上 方, 因此不吸收光线, 因而不遮光, 产生穿透效果; 以及不吸收部分光 谱, 不影响颜色的变化。 所述第一穿透电极 54、 第二穿透电极 64及第二反射电极 64均采用透 明导电材料制作而成, 使得光线可以从中穿透而过, 实现显示效果; 第一 反射电极 53 采用高反射率的导电材料制作而成, 可以将环境光源的光线 最大限度地反射回去, 进而可以利用环境光源实现显示面板的反射模式。 优选的, 第一反射电极 53采用铝制作而成。
下面对该穿反两用型电润湿显示面板的工作原理进行说明:
请结合参阅图 1 及图 2 , 当想利用背光源 (未图示)使用电润湿显示 面板的穿透模式显示红光时, 即显示 R模式(pattern ) , 需将红色子像素 25的遮光控制层 46的第一穿透电极 54通电, 施加驱动电压, 将其中红色 子像素 25 的非极性吸光溶液 56 收缩至反射电极区, 即第一反射电极 53 的上方, 而蓝色子像素 27及绿色子像素 26的遮光控制层的第一穿透电极 54不施加驱动电压, 因此光线穿透红色子像素 25的遮光控制层 46的显示 区, 通过红色子像素 25的显色层 48 中的非极性显色溶液 66后, 产生红 光。
请结合参阅图 1 及图 3 , 当想利用背光源使用电润湿显示面板的穿透 模式显示绿光时, 即显示 G模式, 需将绿色子像素 26的遮光控制层 46的 第一穿透电极 54通电, 施加驱动电压, 将其中绿色子像素 26的非极性吸 光溶液 56收缩至反射电极区, 即第一反射电极 53的上方, 而红色子像素 25及蓝色子像素 27 的遮光控制层 46 的第一穿透电极 54 不施加驱动电 压, 因此光线穿透绿色子像素 26的遮光控制层 46的显示区, 通过绿色子 像素 26的显色层 48中的非极性显色溶液 66后, 产生绿光。
请结合参阅图 1 及图 4, 当想利用背光源使用电润湿显示面板的穿透 模式显示蓝光时, 即显示 B模式, 需将蓝色子像素 27的遮光控制层 46的 第一穿透电极 54通电, 施加驱动电压, 将其中蓝色子像素 27的非极性吸 光溶液 56收缩至反射电极区, 即第一反射电极 53的上方, 而红色子像素 25及绿色子像素 26 的遮光控制层 46 的第一穿透电极 54 不施加驱动电 压, 因此光线穿透蓝色子像素 27的遮光控制层 46的显示区, 通过蓝色子 像素 27的显色层 48中的非极性显色溶液 66后, 产生蓝光。
请结合参阅图 1 及图 5 , 其为本发明电润湿显示面板穿透模式下的白 光模式(white pattern ) 的状态, 红色子像素 25、 蓝色子像素 27及绿色子 像素 26的第一、 第二穿透电极 54、 64均通电, 施加驱动电压, 非极性吸 光溶液 56收缩至反射电极区 (第一反射电极 53的上方 ) , 非极性显色溶 液 66也收缩至反射电极区 (第二反射电极 63的上方) , 光线由背光源射 出后, 不被遮光控制层 46 的非极性吸光溶液 56 遮挡, 亦不被显色层 48 的非极性显色溶液 66吸收部分光谱, 因此穿透率大幅提升。
请结合参阅图 1 及图 6 , 当想利用环境光使用电润湿显示面板反射模 式进行显示红光时, 显示 R模式, 需将红色子像素 25的遮光控制层 46的 第一反射电极 53通电, 施加驱动电压, 将红色子像素 25的非极性吸光溶 液 56收缩至穿透电极区, 即第一穿透电极 54的上方, 因此环境光的光线 穿透红色子像素 25的遮光控制层 46, 经第一反射电极 53反射之后通过红 色子像素 25 的显色层 48 , 出射出去, 而蓝色子像素 27及绿色子像素 26 的遮光控制层 46的第一反射电极 53不施加驱动电压, 进而只产生红光。
请结合参阅图 1 及图 7 , 当想利用环境光使用电润湿显示面板反射模 式进行显示绿光时, 显示 G模式, 需将绿色子像素 26的遮光控制层 46的 第一反射电极 53通电, 施加驱动电压, 将绿色子像素 26的非极性吸光溶 液 56收缩至穿透电极区, 即第一穿透电极 54的上方, 因此环境光的光线 穿透绿色子像素 26的遮光控制层 46, 经第一反射电极 53反射之后通过绿 色子像素 26的显色层 48 , 出射出去, 而蓝色子像素 27及红色子像素 25 的遮光控制层 46的第一反射电极 53不施加驱动电压, 进而只产生绿光。
请结合参阅图 1 及图 8 , 当想利用环境光使用电润湿显示面板反射模 式进行显示蓝光时, 显示 B模式, 需将蓝色子像素 27的遮光控制层 46的 第一反射电极 53通电, 施加驱动电压, 将蓝色子像素 27的非极性吸光溶 液 56收缩至穿透电极区, 即第一穿透电极 54的上方, 因此环境光的光线 穿透蓝色子像素 27的遮光控制层 46, 经第一反射电极 53反射之后通过蓝 色子像素 27的显色层 48 , 出射出去, 而绿色子像素 26及红色子像素 25 的遮光控制层 46的第一反射电极 53不施加驱动电压, 进而只产生蓝光。
请结合参阅图 1 及图 9 , 其为本发明电润湿显示面板显示反射模式下 的白光模式的状态, 红色子像素 25、 蓝色子像素 27及绿色子像素 26的第 一、 第二反射电极 53、 63均通电, 施加驱动电压, 非极性吸光溶液 56收 缩至穿透电极区 (第一穿透电极 54的上方) , 非极性显色溶液 66也收缩 至穿透电极区 (第二穿透电极 64的上方 ) , 光线不被遮光控制层 46的非 极性吸光溶液 56遮挡, 亦不被显色层 48的非极性显色溶液 66吸收部分 光谱, 因此穿透率大幅提升, 而对比的定义则为 L255/L0 , 因此对比度优 于传统的电润湿显示面板。
综上所述, 本发明的穿反型两用电润湿显示面板, 每一子像素采用四 个电极进行控制非极性吸光溶液及非极性显色溶液的收缩方向, 在穿透模 式时, 收缩至反射电极区, 在反射模式时, 收缩至穿透电极区, 实现了穿 透模式与反射模式的转换, 提高了电润湿显示面板的使用弹性, 同时提高 了电润湿显示面板的对比度及穿透率。
以上所述, 对于本领域的普通技术人员来说, 可以根据本发明的技术 方案和技术构思作出其他各种相应的改变和变形, 而所有这些改变和变形 都应属于本发明权利要求的保护范围。

Claims

权 利 要 求
1、 一种穿反两用型电润湿显示面板, 具有穿透与反射两种工作模 式, 所述穿反两用型电润湿显示面板包括数个主像素, 每一所述主像素包 括三个子像素, 所述三个子像素为红色子像素、 绿色子像素及蓝色子像 素; 每一所述子像素包括: 相互平行设置的第一、 第二、 第三基板、 设于 第一与第二基板之间的遮光控制层及设于第二与第三基板之间的显色层; 所述遮光控制层包括: 设于第一基板上的第一反射电极与第一穿透电极、 以及设于第一反射电极与第一穿透电极上的第一极性溶液与非极性吸光溶 液; 所述显色层包括: 设于第二基板上的第二反射电极与第二穿透电极、 以及设于第二反射电极与第二穿透电极上的第二极性溶液与非极性显色溶 液; 所述第一穿透电极、 第二穿透电极及第二反射电极均采用透明导电材 料制作而成, 第一反射电极采用高反射率的导电材料制作而成; 当对第一 反射电极施加驱动电压进行驱动时, 所述非极性吸光溶液收缩于第一穿透 电极的上方, 所述穿反两用电润湿显示面板工作于反射模式; 当对第一穿 透电极施加驱动电压进行驱动时, 所述非极性吸光溶液收缩于第一反射电 极的上方, 所述穿反两用电润湿显示面板工作于穿透模式。
2、 如权利要求 1 所述的穿反两用型电润湿显示面板, 还包括: 设于 第二、 第三基板之间的数个第一上挡板及设于第一、 第二基板之间的数个 第一下挡板, 所述第一上挡板与第一下挡板对应设置, 进而将该穿反两用 型电润湿显示面板划分为数个主像素。
3、 如权利要求 1 所述的穿反两用型电润湿显示面板, 其中, 所述遮 光控制层还包括设于第一反射电极与第一穿透电极上的第一电极保护层, 所述第一极性溶液与非极性吸光溶液设于该第一电极保护层上; 所述显色 层还包括设于第二反射电极与第二穿透电极上的第二电极保护层, 所述第 二极性溶液与非极性显色溶液设于该第二电极保护层上。
4、 如权利要求 3 所述的穿反两用型电润湿显示面板, 其中, 每一所 述主像素还包括: 设于第二基板与第一电极保护层之间的两个第二下挡板 及设于第三基板与第二电极保护层之间的两个第二上挡板, 所述第二上挡 板与第二下挡板对应设置, 进而将每一主像素划分为: 红色子像素、 绿色 子像素及蓝色子像素。
5、 如权利要求 1 所述的穿反两用型电润湿显示面板, 其中, 所述遮 光控制层还包括第一遮光挡板, 所述第一遮光挡板设于第一基板的上表 面, 且位于第一反射电极与第一穿透电极之间。
6、 如权利要求 3 所述的穿反两用型电润湿显示面板, 其中, 所述显 色层还包括第二遮光挡板, 所述第二遮光挡板设于第二电极保护层的上表 面, 且位于第二反射电极与第二穿透电极之间的正上方。
7、 如权利要求 1 所述的穿反两用型电润湿显示面板, 其中, 第一反 射电极采用铝制作而成。
8、 如权利要求 1 所述的穿反两用型电润湿显示面板, 其中, 所述第 一反射电极、 第一穿透电极、 第二反射电极及第二穿透电极采用相同的驱 动电压或不同的驱动电压进行驱动。
9、 如权利要求 1 所述的穿反两用型电润湿显示面板, 其中, 当未对 所述第一反射电极、 第一穿透电极、 第二反射电极及第二穿透电极施加驱 动电压进行驱动时, 所述非极性显色溶液布满每一子像素的显示区, 所述 非极性吸光溶液布满每一子像素的显示区。
10、 如权利要求 9所述的穿反两用型电润湿显示面板, 其中, 当对第 一反射电极或第一穿透电极施加驱动电压进行驱动时, 所述非极性吸光溶 液收缩于第一穿透电极或第一反射电极的上方; 当对第二反射电极或第二 穿透电极施加驱动电压进行驱动时, 所述非极性显色溶液收缩于第二穿透 电极或第二反射电极的上方。
11、 一种穿反两用型电润湿显示面板, 具有穿透与反射两种工作模 式, 所述穿反两用型电润湿显示面板包括数个主像素, 每一所述主像素包 括三个子像素, 所述三个子像素为红色子像素、 绿色子像素及蓝色子像 素; 每一所述子像素包括: 相互平行设置的第一、 第二、 第三基板、 设于 第一与第二基板之间的遮光控制层及设于第二与第三基板之间的显色层; 所述遮光控制层包括: 设于第一基板上的第一反射电极与第一穿透电极、 以及设于第一反射电极与第一穿透电极上的第一极性溶液与非极性吸光溶 液; 所述显色层包括: 设于第二基板上的第二反射电极与第二穿透电极、 以及设于第二反射电极与第二穿透电极上的第二极性溶液与非极性显色溶 液; 所述第一穿透电极、 第二穿透电极及第二反射电极均采用透明导电材 料制作而成, 第一反射电极采用高反射率的导电材料制作而成; 当对第一 反射电极施加驱动电压进行驱动时, 所述非极性吸光溶液收缩于第一穿透 电极的上方, 所述穿反两用电润湿显示面板工作于反射模式; 当对第一穿 透电极施加驱动电压进行驱动时, 所述非极性吸光溶液收缩于第一反射电 极的上方, 所述穿反两用电润湿显示面板工作于穿透模式;
还包括: 设于第二、 第三基板之间的数个第一上挡板及设于第一、 第 二基板之间的数个第一下挡板, 所述第一上挡板与第一下挡板对应设置, 进而将该穿反两用型电润湿显示面板划分为数个主像素;
其中, 所述遮光控制层还包括设于第一反射电极与第一穿透电极上的 第一电极保护层, 所述第一极性溶液与非极性吸光溶液设于该第一电极保 护层上; 所述显色层还包括设于第二反射电极与第二穿透电极上的第二电 极保护层, 所述第二极性溶液与非极性显色溶液设于该第二电极保护层 上;
其中, 每一所述主像素还包括: 设于第二基板与第一电极保护层之间 的两个第二下挡板及设于第三基板与第二电极保护层之间的两个第二上挡 板, 所述第二上挡板与第二下挡板对应设置, 进而将每一主像素划分为: 红色子像素、 绿色子像素及蓝色子像素;
其中, 所述遮光控制层还包括第一遮光挡板, 所述第一遮光挡板设于 第一基板的上表面, 且位于第一反射电极与第一穿透电极之间;
其中, 所述显色层还包括第二遮光挡板, 所述第二遮光挡板设于第二 电极保护层的上表面, 且位于第二反射电极与第二穿透电极之间的正上 方。
12、 如权利要求 11 所述的穿反两用型电润湿显示面板, 其中, 第一 反射电极采用铝制作而成。
13、 如权利要求 11 所述的穿反两用型电润湿显示面板, 其中, 所述 第一反射电极、 第一穿透电极、 第二反射电极及第二穿透电极采用相同的 驱动电压或不同的驱动电压进行驱动。
14、 如权利要求 11 所述的穿反两用型电润湿显示面板, 其中, 当未 对所述第一反射电极、 第一穿透电极、 第二反射电极及第二穿透电极施加 驱动电压进行驱动时, 所述非极性显色溶液布满每一子像素的显示区, 所 述非极性吸光溶液布满每一子像素的显示区。
15、 如权利要求 14 所述的穿反两用型电润湿显示面板, 其中, 当对 第一反射电极或第一穿透电极施加驱动电压进行驱动时, 所述非极性吸光 溶液收缩于第一穿透电极或第一反射电极的上方; 当对第二反射电极或第 二穿透电极施加驱动电压进行驱动时, 所述非极性显色溶液收缩于第二穿 透电极或第二反射电极的上方。
PCT/CN2013/079971 2013-07-18 2013-07-24 穿反两用型电润湿显示面板 WO2015006991A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/008,594 US9158105B2 (en) 2013-07-18 2013-07-24 Transmission/reflection dual-functional electrowetting display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310300669.8A CN103353671B (zh) 2013-07-18 2013-07-18 穿反两用型电润湿显示面板
CN201310300669.8 2013-07-18

Publications (1)

Publication Number Publication Date
WO2015006991A1 true WO2015006991A1 (zh) 2015-01-22

Family

ID=49310057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079971 WO2015006991A1 (zh) 2013-07-18 2013-07-24 穿反两用型电润湿显示面板

Country Status (3)

Country Link
US (1) US9158105B2 (zh)
CN (1) CN103353671B (zh)
WO (1) WO2015006991A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103760705A (zh) * 2013-12-31 2014-04-30 深圳市华星光电技术有限公司 一种具有穿透效果的显示面板
KR20170105582A (ko) * 2015-01-20 2017-09-19 후아웨이 테크놀러지 컴퍼니 리미티드 Nfv 및 sdn과 연동하기 위한 sdt를 위한 시스템들 및 방법들
CN106125293A (zh) * 2016-08-26 2016-11-16 京东方科技集团股份有限公司 电湿润显示面板及其控制方法
JP7219219B2 (ja) 2017-01-05 2023-02-07 リバイバーエムエックス,インク. デジタル・ライセンス・プレートのための熱制御システム
WO2018129343A1 (en) 2017-01-05 2018-07-12 Revivermx, Inc. Power and communication modes for digital license plate
KR102533546B1 (ko) 2017-01-05 2023-05-17 리바이버맥스, 인코포레이티드. 도난방지 시스템을 구비한 디지털 차량 번호판 시스템
CN107167916B (zh) * 2017-06-15 2019-09-20 华南师范大学 一种全彩电润湿显示器件
US11163192B2 (en) * 2019-06-17 2021-11-02 PlayNitride Display Co., Ltd. Display apparatus
CN110649051A (zh) * 2019-09-02 2020-01-03 Oppo广东移动通信有限公司 滤光元件、图像传感器、摄像模组及终端设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101355838A (zh) * 2007-07-25 2009-01-28 群康科技(深圳)有限公司 电润湿显示器
US20090103159A1 (en) * 2007-10-18 2009-04-23 Industrial Technology Research Institute Electrowetting Display Devices
US20100060974A1 (en) * 2008-09-11 2010-03-11 Yi-Ching Wang Color Display Device
CN102269867A (zh) * 2011-06-15 2011-12-07 友达光电股份有限公司 可切换透明式电润湿显示装置
CN102652280A (zh) * 2009-12-15 2012-08-29 夏普株式会社 可切换透射/反射电润湿显示器、显示系统和方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6900458B2 (en) * 2003-02-21 2005-05-31 Universal Display Corporation Transflective display having an OLED backlight
KR101549838B1 (ko) * 2008-12-24 2015-09-04 삼성디스플레이 주식회사 표시 기판, 이의 제조 방법 및 이 표시 기판을 갖는 전기습윤 표시패널
US8896928B2 (en) * 2010-09-22 2014-11-25 Sekisui Chemical Co., Ltd. Electrowetting display
TWI427321B (zh) * 2011-05-05 2014-02-21 Au Optronics Corp 電濕潤顯示器及其驅動方法
CN102707430B (zh) * 2011-10-10 2014-10-15 京东方科技集团股份有限公司 电润湿显示面板
TWI472799B (zh) * 2012-09-21 2015-02-11 Au Optronics Corp 顯示面板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101355838A (zh) * 2007-07-25 2009-01-28 群康科技(深圳)有限公司 电润湿显示器
US20090103159A1 (en) * 2007-10-18 2009-04-23 Industrial Technology Research Institute Electrowetting Display Devices
US20100060974A1 (en) * 2008-09-11 2010-03-11 Yi-Ching Wang Color Display Device
CN102652280A (zh) * 2009-12-15 2012-08-29 夏普株式会社 可切换透射/反射电润湿显示器、显示系统和方法
CN102269867A (zh) * 2011-06-15 2011-12-07 友达光电股份有限公司 可切换透明式电润湿显示装置

Also Published As

Publication number Publication date
US20150029576A1 (en) 2015-01-29
CN103353671A (zh) 2013-10-16
CN103353671B (zh) 2015-10-07
US9158105B2 (en) 2015-10-13

Similar Documents

Publication Publication Date Title
WO2015006991A1 (zh) 穿反两用型电润湿显示面板
US8059328B1 (en) Electrowetting display devices
JP6008490B2 (ja) ディスプレイ装置
TWI395974B (zh) 彩色電潤濕式顯示器裝置
KR101557802B1 (ko) 전기습윤을 이용한 디스플레이 장치
TW201107832A (en) Full-color reflective display
US9366902B2 (en) Display device
JP2015138123A (ja) 表示装置
US8797630B2 (en) Display panel
CN106526993A (zh) 一种液晶显示器及其驱动方法
CN113031345A (zh) 显示装置
CN106652960A (zh) 显示面板、显示装置及其控制方法
WO2013163878A1 (zh) 调光装置及显示器
TWI460470B (zh) 電濕潤顯示裝置
US11327375B2 (en) Reflective cholesteric liquid crystal display
US9726958B2 (en) Display panel and display device including hydrophobic and hydrophilic treatment of substrates
JP2010039365A (ja) 表示素子および表示装置
KR20080066255A (ko) 반사형 디스플레이장치
US10795203B2 (en) Reflective liquid crystal display device having a composite layer formed on a side of the backlight unit away from the display panel
JP2009092972A (ja) 表示装置
TW201447368A (zh) 畫素結構
CN218995827U (zh) 一种显示面板
CN214409503U (zh) 显示面板和显示装置
JPH0743699A (ja) 透過光制御型表示装置
WO2023150045A1 (en) Reflective and transflective displays including quantum dot layers

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14008594

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13889585

Country of ref document: EP

Kind code of ref document: A1