WO2015004911A1 - Drive control device - Google Patents

Drive control device Download PDF

Info

Publication number
WO2015004911A1
WO2015004911A1 PCT/JP2014/003639 JP2014003639W WO2015004911A1 WO 2015004911 A1 WO2015004911 A1 WO 2015004911A1 JP 2014003639 W JP2014003639 W JP 2014003639W WO 2015004911 A1 WO2015004911 A1 WO 2015004911A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor element
gate drive
time
voltage
current
Prior art date
Application number
PCT/JP2014/003639
Other languages
French (fr)
Japanese (ja)
Inventor
剛志 井上
岩村 剛宏
昌弘 山本
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013144560A external-priority patent/JP5935768B2/en
Priority claimed from JP2014134227A external-priority patent/JP5939281B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US14/901,767 priority Critical patent/US9590616B2/en
Priority to CN201480039343.7A priority patent/CN105379086B/en
Publication of WO2015004911A1 publication Critical patent/WO2015004911A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/74Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of diodes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/538Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration
    • H02M7/53803Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/165Modifications for eliminating interference voltages or currents in field-effect transistor switches by feedback from the output circuit to the control circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/168Modifications for eliminating interference voltages or currents in composite switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/30Modifications for providing a predetermined threshold before switching
    • H03K2017/307Modifications for providing a predetermined threshold before switching circuits simulating a diode, e.g. threshold zero
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0036Means reducing energy consumption

Definitions

  • the present disclosure includes Japanese application number 2013-144561 filed on July 10, 2013, Japanese application number 2013-144560 filed on July 10, 2013, and application filed on June 30, 2014. Which is based on Japanese Patent Application No. 2014-134227, which is incorporated herein by reference.
  • the present disclosure relates to a drive control device for a semiconductor element in which an insulated gate transistor structure and a diode structure are formed on the same semiconductor substrate.
  • Transistor element and diode element such as RC-IGBT, MOS transistor, diode with MOS gate, etc. are formed on the same semiconductor substrate, transistor element conducting electrode (collector, emitter or drain, source) and diode element conducting electrode A semiconductor element having a common electrode (cathode, anode) is known (see Non-Patent Document 1).
  • a semiconductor element is used as a switching element in a power conversion device such as an inverter or a converter, it is necessary to reduce switching loss and / or conduction loss.
  • the power conversion device has a half-bridge circuit as a basic configuration, and performs AC-DC voltage conversion and DC-AC voltage conversion by complementarily turning on and off the semiconductor elements of the upper and lower arms, or boosts and steps down the input voltage.
  • this half-bridge circuit in order to prevent a power supply short circuit (arm short circuit), a dead time for simultaneously turning off the upper and lower semiconductor elements is provided.
  • the load current flows back to the diode element of one semiconductor element.
  • the load current is switched from the diode element to the other semiconductor element.
  • a reverse recovery current flows due to the emission of carriers accumulated in the diode element. This reverse recovery current increases switching loss and causes noise.
  • Non-Patent Document 1 discloses a method in which a positive gate drive voltage is applied to one semiconductor element slightly before the other semiconductor element is turned on. According to this method, the hole current decreases as the electron current of the semiconductor element increases, hole injection is suppressed, and the reverse recovery current can be reduced.
  • the semiconductor element described above has a characteristic that, when a gate drive voltage is applied in a state where a current flows through the diode element, a channel is formed and hole injection is suppressed, so that conduction loss increases. is doing.
  • drive control in which it is determined whether or not a current is flowing through the diode element, the gate drive voltage is cut off when the current is flowing, and the gate drive voltage is applied when the current is not flowing.
  • Non-Patent Document 1 that suppresses carrier injection by temporarily applying a gate drive voltage (gate drive pulse) to a semiconductor element is effective in reducing the reverse recovery current.
  • a gate drive pulse since it is necessary to apply a gate drive pulse at the time of switching current between two semiconductor elements constituting the half-bridge circuit, an arm short circuit occurs when the application timing is slightly delayed. Conversely, if the application timing is early, the amount of holes injected again after the application of the gate drive pulse is increased, and the effect of reducing the reverse recovery current is reduced.
  • Non-Patent Document 1 does not show the specific application timing or pulse width of the gate drive pulse. In order to put this method into practical use, it is necessary to establish means for applying such a gate drive pulse.
  • the characteristics of the conduction loss of the semiconductor element due to application / cutoff of the gate drive voltage vary greatly depending on the type of the semiconductor element (RC-IGBT, MOS transistor, etc.). For this reason, there is a case in which the conduction loss cannot be sufficiently reduced according to the conventional criterion for determining whether or not a current flows through the semiconductor element in the forward direction of the diode element.
  • a switching loss can be reduced by applying a gate drive pulse at an appropriate timing to a semiconductor element in which a transistor structure and a diode structure are formed on the same semiconductor substrate.
  • An object of the present invention is to provide a drive control device that can sufficiently reduce the conduction loss of a semiconductor element regardless of the type of the semiconductor element.
  • each semiconductor element has an insulated gate transistor structure and a diode structure to which a gate driving voltage is applied, which are formed on the same semiconductor substrate.
  • the two semiconductor elements constitute a half bridge circuit. The first time and the second time are set in advance so as not to cause an arm short circuit between the two semiconductor elements.
  • the gate drive signal necessary for applying the gate drive voltage at a desired timing starting from the input time point of the off command signal can be accurately set.
  • the reinjection time can be controlled to be short while preventing the arm short circuit, the reverse recovery current is reduced and the switching loss can be reduced.
  • the first control means can apply the gate drive signal using the off command signal as a reference timing, a separate timing signal is not required, and the replacement from the conventionally used drive control device is facilitated.
  • an insulated gate transistor structure to which a gate driving voltage is applied and a diode structure are formed on the same semiconductor substrate, and the current-carrying electrode of the transistor structure and the current-carrying electrode of the diode structure are
  • a common drive control device for a semiconductor element includes: a current detection unit that outputs a current detection signal corresponding to a current flowing through the semiconductor element; and the current detection signal during a period when an ON command signal is input to the semiconductor element. If the current of the semiconductor element flowing in the forward direction of the diode structure is determined to be greater than or equal to the current threshold value based on the second, a gate drive signal for commanding the interruption of the gate drive voltage is output. Control means.
  • the second control means is configured such that the current of the semiconductor element that flows in the forward direction of the diode structure is based on the current detection signal during the period when the ON command signal for the semiconductor element is input. If it is determined that the value is less than the value, a gate drive signal for instructing application of the gate drive voltage is output. When a current flows through the semiconductor element in the forward direction of the diode structure, the conduction loss when the gate drive voltage is cut off is equal to the conduction loss when the gate drive voltage is applied. The current value is measured in advance and set as a current threshold value.
  • the conduction loss can be appropriately reduced regardless of the type and breakdown voltage of the semiconductor element.
  • the gate drive voltage is reliably applied to the semiconductor element during the period in which the current flows in the reverse direction of the diode structure, the current according to the ON command signal can be supplied to the transistor structure.
  • each semiconductor element has an insulated gate transistor structure and a diode structure to which a gate driving voltage is applied, which are formed on the same semiconductor substrate.
  • the detection means detects a change in the current detection signal, a pulse is output so that an arm short circuit does not occur between the two semiconductor elements.
  • the time is prior to the point of input of the ON command signal for the one of the semiconductor elements, two semiconductor elements constitute a half-bridge circuit.
  • each semiconductor element has an insulated gate transistor structure and a diode structure to which a gate driving voltage is applied, which are formed on the same semiconductor substrate, and the transistor structure is energized.
  • the drive control device for two semiconductor elements in which the electrode and the current-carrying electrode of the diode structure are common, a voltage detection means for outputting a voltage detection signal based on the electrode potential of one of the semiconductor elements, and the one semiconductor element
  • Control means for outputting a pulse from an input time point of an ON command signal to the one semiconductor element so as not to cause an arm short circuit.
  • the two semiconductor elements constitute a half bridge circuit.
  • Each semiconductor element has the insulated gate type transistor structure and diode structure to which a gate drive voltage is applied formed in the same semiconductor substrate, and electricity supply of the said transistor structure
  • a pulse is generated in response to an OFF command signal being input to the input means.
  • And means for outputting comprises a control means for outputting a pulse a predetermined time before the input time of the ON command signal for the one of the semiconductor element so arm short circuit does not occur between the two semiconductor elements.
  • the two semiconductor elements constitute a half bridge circuit.
  • each semiconductor element has an insulated gate transistor structure and a diode structure to which a gate drive voltage is applied, which are formed on the same semiconductor substrate, and the transistor structure is energized.
  • a drive control device for two semiconductor elements in which an electrode and a current-carrying electrode of the diode structure are common, a voltage detection means for outputting a voltage detection signal based on an electrode potential of one of the semiconductor elements, and the other semiconductor element Input means for inputting a command signal to the one semiconductor element, and when the off-command signal for the one semiconductor element is input, the one semiconductor element has the diode structure based on the voltage detection signal and the input signal of the input means.
  • a pulse is generated in response to an OFF command signal being input to the input means.
  • the two semiconductor elements constitute a half bridge circuit.
  • each semiconductor element has an insulated gate transistor structure and a diode structure to which a gate driving voltage is applied, which are formed on the same semiconductor substrate, and the transistor structure is energized.
  • the ON command signal Starting from the time when the OFF command signal is input through the input, the gate drive power is supplied from the time when the first time has elapsed to the time when the second time has elapsed.
  • a control means for outputting a gate drive signal for commanding the application The first time and the second time are set in advance so as not to cause an arm short circuit between the two semiconductor elements.
  • an insulated gate transistor structure to which a gate drive voltage is applied and a diode structure are formed on the same semiconductor substrate, and the conduction electrode of the transistor structure and the conduction electrode of the diode structure are
  • the drive control device for a semiconductor element having a common electrode includes a current detection unit that outputs a current detection signal corresponding to a current flowing through the semiconductor element, and an on command signal for the semiconductor element based on the current detection signal.
  • a preset first time elapses from the input time point of the subsequent off command signal Control means for outputting a gate drive signal for instructing application of the gate drive voltage from a time point until a lapse of a second time; and If the input signal and a drive circuit for outputting the gate drive voltage.
  • the time width between the first time and the second time is set to a value corresponding to the magnitude of the current flowing in the semiconductor element during the period when the ON command signal for the semiconductor element is input.
  • the time from when the gate drive pulse is applied to one semiconductor element until the reverse recovery current starts to flow for example, the time when carriers (holes) are injected again into the diode structure after the application of the gate drive pulse is completed.
  • Carrier reinjection time can be accurately controlled. Therefore, according to this means, the reinjection time can be controlled to be short while preventing an arm short circuit, so that the reverse recovery current is reduced and the switching loss can be reduced.
  • the control means can apply the gate drive signal using the off command signal as a reference timing, a separate timing signal is not required, and replacement from a conventionally used drive control device is facilitated.
  • FIG. 1 is a configuration diagram of a drive control system showing the first embodiment.
  • FIG. 2 is a circuit configuration diagram of the main element and the sense element.
  • FIG. 3 is a schematic longitudinal sectional view of a semiconductor element
  • FIG. 4 is a voltage-current characteristic diagram in the forward direction of the diode element.
  • FIG. 5 is a waveform diagram relating to Vf control and pulse control.
  • FIG. 6 shows the second embodiment, and is a voltage-current characteristic diagram in the case where current flows in the forward direction of the diode element in the MOS transistor.
  • FIG. 1 is a configuration diagram of a drive control system showing the first embodiment.
  • FIG. 2 is a circuit configuration diagram of the main element and the sense element.
  • FIG. 3 is a schematic longitudinal sectional view of a semiconductor element
  • FIG. 4 is a voltage-current characteristic diagram in the forward direction of the diode element.
  • FIG. 5 is a waveform diagram relating to Vf control and pulse control.
  • FIG. 6 shows the
  • FIG. 7 is a waveform diagram relating to Vf control and pulse control when using synchronous rectification
  • FIG. 8 is a configuration diagram of a drive control system showing the third embodiment.
  • FIG. 9 is a configuration diagram of the drive control system showing the fourth embodiment.
  • FIG. 10 is a configuration diagram of the drive control system showing the fifth embodiment.
  • FIG. 11 is a configuration diagram of a drive control system showing the sixth embodiment.
  • FIG. 12 is a configuration diagram of a drive control system showing the seventh embodiment.
  • FIG. 13 is a configuration diagram of a drive control system showing the eighth embodiment.
  • FIG. 14 is a configuration diagram of the drive control system showing the ninth embodiment.
  • FIG. 15 is a diagram illustrating a modification of the current detection configuration.
  • FIG. 16 is a diagram illustrating a modification of the current detection configuration.
  • FIG. 15 is a diagram illustrating a modification of the current detection configuration.
  • FIG. 17 is a configuration diagram of a drive control system showing the tenth embodiment.
  • FIG. 18 is a waveform diagram relating to Vf control and pulse control according to the tenth embodiment
  • FIG. 19 is a waveform diagram relating to Vf control and pulse control when using synchronous rectification according to the eleventh embodiment.
  • FIG. 20 is a configuration diagram of the drive control system showing the twelfth embodiment.
  • FIG. 21 is a block diagram of a drive control system showing the thirteenth embodiment.
  • FIG. 22 is a configuration diagram of the drive control system showing the fourteenth embodiment.
  • FIG. 23 is a configuration diagram of the drive control system showing the fifteenth embodiment
  • FIG. 24 is a schematic cross-sectional view of a semiconductor structure showing an intermediate potential detection mode according to the sixteenth embodiment, FIG.
  • FIG. 25 is an explanatory diagram schematically showing a change characteristic of the collector electrode potential according to the direction and magnitude of the load current in each embodiment.
  • FIG. 26 is an explanatory diagram schematically showing a change characteristic of the collector electrode potential according to the direction and magnitude (near zero current) of the load current in each embodiment.
  • FIG. 27 is a waveform diagram relating to Vf control and pulse control when using synchronous rectification showing a modification of the first to sixteenth embodiments;
  • FIG. 28 is a configuration diagram of a drive control system showing a modification of the first to sixteenth embodiments,
  • FIG. 29 is a configuration diagram of a drive control system showing a modification of the first to sixteenth embodiments, FIG.
  • FIG. 30 is a configuration diagram of a drive control system showing a modification of the first to sixteenth embodiments
  • FIG. 31 is a configuration diagram of a drive control system showing a modification of the first to sixteenth embodiments
  • FIG. 32 is a waveform diagram relating to Vf control and pulse control when using synchronous rectification showing a modification of the first to sixteenth embodiments
  • FIG. 33 is a configuration diagram of a drive control system showing a seventeenth embodiment of the present disclosure.
  • FIG. 34 is a configuration diagram of the drive capability switching circuit of the drive circuit.
  • FIG. 35 is a block diagram of the pulse control unit.
  • FIG. 36 is a block diagram of the pulse start determination unit
  • FIG. 37 is a voltage-current characteristic diagram in the forward direction of the diode element.
  • FIG. 38 is a waveform diagram relating to Vf control and pulse control
  • FIG. 39 is a diagram showing the device current, the gate drive voltage, and the carrier concentration in the diode device
  • FIG. 40 is a waveform diagram when the reinjection time becomes zero
  • FIG. 41 is a diagram showing the relationship between reinjection time and switching loss
  • FIG. 42 is a diagram showing the relationship between the pulse width and the switching loss
  • FIG. 43 is an explanatory diagram of the first time and the second time
  • FIG. 44 is a diagram for explaining the operation of the pulse start determining unit.
  • FIG. 45 is a waveform diagram when the mirror period exists and when it does not exist
  • FIG. 46 is a waveform diagram of the gate drive voltage for different drive capabilities
  • FIG. 47 is a diagram showing a modification of the current detection configuration.
  • FIG. 48 is a diagram illustrating a modification of the current detection configuration.
  • the drive control system shown in FIG. 1 is used in a power conversion device such as an inverter device that drives an inductive load such as a motor, or a converter device that includes an inductor and boosts / steps down a DC voltage.
  • the semiconductor elements 1A and 1B which are switching elements, are arranged in series between the high-potential side DC power supply line 2 and the low-potential side DC power supply line 3 with the output terminal Nt interposed therebetween to form the half-bridge circuit 4. is doing.
  • the semiconductor elements 1A and 1B having the same structure are reverse conducting IGBTs (RC-IGBTs) in which the insulated gate transistor element 5 and the diode element 6 are formed on the same semiconductor substrate.
  • the energizing electrodes (collector and emitter) of the transistor element 5 and the energizing electrodes (cathode and anode) of the diode element 6 are common electrodes.
  • a sense element comprising a transistor element 5s and a diode element 6s for passing a minute current proportional to the current flowing through the main element is formed on the semiconductor substrate as shown in FIG. In FIG. 1, the main element and the sense element are simply shown.
  • Sense resistors 7A and 7B are connected between the sense terminals S1 and S2 of the semiconductor elements 1A and 1B, respectively.
  • the sense resistors 7A and 7B constitute current detection means together with a current detection unit 25 described later.
  • FIG. 3 shows an RC-IGBT having a vertical structure as an example of the semiconductor elements 1A and 1B.
  • the transistor structure and the diode structure are provided on the same semiconductor substrate.
  • the semiconductor substrate 8 is composed of an n-type silicon substrate.
  • a guard ring is formed in the vicinity of the periphery of the element formation region of the semiconductor substrate 8 so as to surround the element formation region.
  • a p-type base layer 9 is formed on the upper surface portion of the semiconductor substrate 8.
  • a plurality of trenches having a depth penetrating the base layer 9 are formed in the base layer 9.
  • Polysilicon is buried in the trench, whereby the gate electrode 10 having a trench structure is formed.
  • a gate drive voltage is input to each gate electrode 10 through a common gate wiring 11.
  • the gate electrodes 10 are provided in stripes at equal intervals in one direction along the surface layer portion of the base layer 9.
  • the base layer 9 is partitioned into a plurality of first regions 12 and a plurality of second regions 13 that are electrically separated from each other along the one direction. These first regions 12 and second regions 13 are alternately arranged, and the width of the second region 13 is wider than the width of the first region 12.
  • an n + -type emitter region 14 is formed adjacent to the gate electrode 10.
  • An emitter electrode 15 is formed on the first region 12.
  • the emitter electrode 15 is connected to the base layer 9 and the emitter region 14 in the first region 12.
  • the first region 12 operates as a channel region of the transistor element 5 and also operates as an anode region of the diode element 6. That is, the emitter electrode 15 for the first region 12 becomes the emitter electrode of the transistor element 5 and the anode electrode of the diode element 6.
  • the second region 13a provided above the collector region 16 (described later) is not connected to any electrode.
  • a second region 13 b provided above the cathode region 17 (described later) is connected to the emitter electrode 15. Accordingly, only the second region 13 b provided above the cathode region 17 in the second region 13 operates as the anode region of the diode element 6. That is, the emitter electrode 15 becomes an anode electrode of the diode element 6 in the second region 13b.
  • a p + type collector region 16 is formed corresponding to a range (left side of the broken line) where the second region 13a is formed, and a range where the second region 13b is formed (broken line) N + type cathode region 17 is formed corresponding to the right side of FIG.
  • the collector region 16 and the cathode region 17 are connected to the collector electrode 18. That is, the cathode electrode of the diode element 6 is in common with the collector electrode 18 of the transistor element 5.
  • An n-type field stop layer 19 is formed between the semiconductor substrate 8 and the collector region 16 and the cathode region 17.
  • the microcomputer 21 includes a PWM signal generation unit 22 that generates the high-side and low-side PWM signals FH and FL of the half-bridge circuit 4.
  • the PWM signals FH and FL have a fixed dead time Td that is simultaneously at the L level (off command level).
  • the PWM signals FH and FL are input to the drive ICs 24A and 24B via the photocouplers 23A and 23B, respectively.
  • the ON command signal referred to in the present disclosure is the PWM signals FH and FL having the H level (ON command level), and the OFF command signal is the PWM signals FH and FL having the L level (OFF command level).
  • the drive ICs 24A and 24B include a current detection unit 25, a Vf control unit 26, a pulse control unit 27, and a drive circuit 28, and operate when supplied with power supply voltages VDDA and VDDB (for example, 15V). Separate drive ICs 24A and 24B are provided for the high-side semiconductor element 1A and the low-side semiconductor element 1B, respectively. For this reason, the drive ICs 24A and 24B have a sufficient withstand voltage (that is, a withstand voltage according to the gate drive voltage) according to the power supply voltages VDDA and VDDB. Since the drive ICs 24A and 24B have the same configuration, the configuration of the drive IC 24B will be mainly described.
  • the current detector 25 is a current detector that outputs a current detection signal (polarity and magnitude of current) corresponding to the current flowing through the semiconductor element 1B based on the sense voltage VSL generated in the sense resistor 7B.
  • the Vf control unit 26 and the pulse control unit 27 generate the gate drive signal SGL based on the PWM signal FL.
  • the drive circuit 28 receives the gate drive signal SGL and outputs a gate drive voltage VGL.
  • the Vf control unit 26 controls to cut off the gate drive voltage VGL when the current of the semiconductor element 1B flowing in the forward direction of the diode element 6 is equal to or greater than the current threshold It during the period in which the PWM signal FL is at the H level. I do.
  • This control has the effect of reducing the conduction loss by lowering the voltage of the semiconductor element 1B (in the case of RC-IGBT, the forward voltage Vf of the diode element 6). In the following description, this is referred to as Vf control.
  • the pulse control unit 27 performs pulse-shaped gate driving with reference to the falling edge of the PWM signal FL when a current in the forward direction of the diode element 6 flows through the semiconductor element 1B during the period in which the PWM signal FL is at the H level.
  • the signal SGL is output.
  • a pulsed gate drive voltage VGL (hereinafter referred to as a gate drive pulse) is applied to the gate of the semiconductor element 1B.
  • This control has the effect of reducing the holes accumulated in the diode element 6 and reducing the reverse recovery current. In the following description, this is referred to as pulse control.
  • the gate drive signal SGL generated by the Vf control unit 26 and the pulse control unit 27 is given to the gate of the semiconductor element 1B via the drive circuit 28.
  • the drive circuit 28 can switch the driving ability to charge / discharge the gate in a plurality of ways. That is, when a sharp change occurs in the current (element current) or voltage flowing through the semiconductor element 1B, such as at the rising edge of the PWM signal FL or at the falling edge of the PWM signal FL from the state where the current flows in the transistor element 5, In order to suppress the occurrence of a voltage surge, the driving capability can be switched to a low level. In this case, the drive circuit 28 is driven by using a constant current circuit at the time of turn-on, and is driven by using a switch element having an increased on-resistance at the time of turn-off.
  • the drive circuit 28 is driven by using a constant voltage circuit at the time of turn-on, and is driven by connecting in parallel a switch element having a higher on-resistance and a switch element having a lower on-resistance at the time of turn-off.
  • Threshold value setting circuits 29A, 30A, 31A are externally attached to the driving IC 24A.
  • Threshold setting circuits 29B, 30B, 31B are externally attached to the driving IC 24B.
  • the threshold setting circuits 29A, 30A, 31A are configured with a floating ground FG equal to the emitter potential of the semiconductor element 1A as a reference potential.
  • the threshold setting circuits 29A and 29B divide the voltages VDDA and VDDB by the resistors R1 and R2 to generate a threshold voltage Vt.
  • the threshold setting circuits 30A and 30B divide the voltages VDDA and VDDB by resistors R3 and R4 to generate a specified voltage Vm1.
  • the threshold setting circuits 31A and 31B divide the voltages VDDA and VDDB by the resistors R5 and R6 to generate a specified voltage Vm2.
  • the threshold voltage Vt determines the magnitude of the current threshold It used in the Vf control unit 26. As will be described later, the characteristic of the forward voltage Vf with respect to the forward current If of the diode element 6 varies depending on the type of element (RC-IGBT, MOS transistor, etc.) and the breakdown voltage of the element. Therefore, the Vf control unit 26 selects an appropriate current threshold It based on the switching signal Sk and the threshold voltage Vt given from the outside.
  • the specified voltage Vm1 determines the magnitude of the specified value Im1 used for determining whether or not to stop the Vf control.
  • the specified voltage Vm2 determines the magnitude of the specified value Im2 used for determining whether or not to stop the pulse control.
  • the drive control device 32A is configured by the drive IC 24A and the sense resistor 7A described above, and the drive control device 32B is configured by the drive IC 24B and the sense resistor 7B.
  • Vf control will be described.
  • the semiconductor elements 1A and 1B which are RC-IGBTs
  • a gate drive voltage is applied in a state where a current flows through the diode element 6, a channel is formed in the first region 12 and hole injection is suppressed.
  • the forward voltage Vf of the diode element 6 through which the forward current If flows increases, and the conduction loss (Vf ⁇ If) of the diode element 6 increases.
  • the semiconductor elements 1A and 1B are MOS transistors (see the second embodiment).
  • the thickness of the drift region increases due to the higher breakdown voltage of the element, the resistance ratio of the channel occupying the entire on-resistance decreases, and the conduction loss of the diode element 6 tends to increase when a gate drive voltage is applied.
  • the diode element 6 has a small current value (current threshold It) at which the conduction loss when the gate drive voltage is cut off is equal to the conduction loss when the gate drive voltage is applied. . In the case shown in FIG. 4, it is almost zero.
  • the conduction loss of the diode element 6 when the gate drive voltage is cut off is equal to the conduction loss of the transistor element 5 when the gate drive voltage is applied.
  • the current value (current threshold value It) is a relatively large value (see FIG. 6). That is, the current threshold It varies depending on the type and breakdown voltage of the semiconductor elements 1A and 1B, and is measured in advance.
  • the switching signal Sk When driving the RC-IGBT, the switching signal Sk is switched to L level, for example, and when driving the MOS transistor, the switching signal Sk is switched to H level, for example.
  • the switching signal Sk is a threshold value specifying signal for specifying the current threshold value It from the outside.
  • the Vf control unit 26 sets the current threshold It to zero and executes Vf control.
  • the switching signal Sk is at the H level, the current threshold value It corresponding to the threshold voltage Vt input from the outside is set and the Vf control is executed.
  • FIG. 5 shows a case where the semiconductor element 1A is turned off and the semiconductor element 1B is turned on when the current flows from the output terminal Nt toward the load, and then the semiconductor element 1B is turned off and the semiconductor element 1A is turned on again. It is a waveform.
  • the current of the semiconductor element 1A, the gate drive voltages VGH and VGL, the PWM signal FH, and the gate drive signal SGL and the PWM signal FL for commanding the gate drive voltage VGL are shown.
  • Vth is the threshold voltage of the semiconductor element 1A.
  • the Vf control unit 26 of the drive IC 24B determines whether or not the detected current of the diode element 6 is equal to or higher than the current threshold It in the forward direction during the period when the PWM signal FL is at the H level (time t2 to t3). If it is determined that the current is less than the current threshold It, an H level gate drive signal SGL is output. Based on the gate drive signal SGL, the gate drive voltage VGL is applied to the gate of the semiconductor element 1B in accordance with the delay in the drive circuit 28, the charging time of the element capacitance of the semiconductor element 1B, and the like. On the other hand, if it is determined that the detected current is equal to or greater than the current threshold It (in the case shown in FIG. 5), an L level gate drive signal SGL is output. Thereby, the gate drive voltage VGL is cut off.
  • pulse control when the current flows through the diode element 6 of the semiconductor element 1B during the period in which the PWM signal FL is at the H level, after the PWM signal FL falls to the L level and before the reverse recovery current starts to flow, This is control for applying a gate drive pulse to the semiconductor element 1B. This is also the case when a current flows through the diode element 6 of the semiconductor element 1A during the period in which the PWM signal FH is at the H level, and the same applies after the PWM signal FH falls to the L level. As a result, carriers (holes) accumulated in the diode element 6 are reduced, so that an effect of reducing the reverse recovery current can be obtained.
  • the pulse control unit 27 causes a current to flow through the diode element 6 of the semiconductor element 1B when the PWM signal FL is at the H level, more preferably when the PWM signal FL falls to the L level (time t3). It is determined whether or not.
  • current is flowing (however, when the detected current value is equal to or greater than the specified value Im2)
  • the second time T2 has elapsed from the time when the first time T1 has elapsed (time t4), starting from the falling time of the PWM signal FL.
  • the gate drive signal SGL is kept at the H level until the time (time t6).
  • the gate drive signal SGL is at the L level at the time of falling of the PWM signal FL.
  • the pulse control unit 27 continues to determine whether or not a current is flowing through the diode element 6 of the semiconductor element 1B even after the PWM signal FL falls to the L level. When the current detection value falls below the specified value Im2, the pulse control unit 27 immediately returns the gate drive signal SGL to the L level even after the first time T1 has elapsed and before the second time T2 has elapsed.
  • the pulse control unit 27 determines that no current flows through the diode element 6 when the PWM signal FL falls to the L level, the pulse control unit 27 immediately maintains the gate drive signal SGL at the L level. That is, no gate drive pulse is applied.
  • the first time T1 and the second time T2 are set in advance so as not to cause an arm short circuit.
  • the waveform of the gate drive voltage VGL when a gate drive pulse is applied differs between when the current flows through the diode element 6 and when the current flows through the transistor element 5 while the PWM signal FL is at the L level. .
  • the drive circuit 28 can output the gate drive voltage VGL with a higher gate drive capability than usual when the gate drive voltage VGL rises and falls. Further, when a current flows through the diode element 6, there is no possibility of short-circuiting along a path through the semiconductor elements 1A and 1B. For this reason, in the process of increasing the gate drive voltage VGL, it is necessary to perform the two-stage drive for temporarily holding the gate drive voltage VGL at the intermediate voltage and reducing the short-circuit current when the semiconductor element 1A on the other side is short-circuited. There is no.
  • the first time T1 and the second time T2 are monotonous according to the gate drive capability of the drive circuit 28 in consideration of the waveform of the gate drive voltage VGL when the gate drive pulse is applied and the drive mode of the drive circuit 28. Set to increase or decrease monotonically.
  • the time Tc carrier reinjection time
  • the allowable injection time is specified according to the allowable reverse recovery current.
  • the first time T1 and the second time T2 vary the current flowing through the diode element 6 while changing the current flowing through the diode element 6 and starting from the falling point of the PWM signal FL.
  • the timing at which the drive voltage VGL is applied and the timing at which the reverse recovery current starts to flow are set in advance by measurement.
  • the first time T1 and the second time T2 are stored in a memory or the like in the pulse control unit 27 in association with the current.
  • the first time T1 and the second time T2 can also be generated using one or several patterns of logic circuits or analog delay circuits.
  • the pulse control unit 27 When applying the gate drive pulse, the pulse control unit 27 refers to the current detection signal to obtain the current flowing in the diode element 6 and calculates the first time T1 and the second time T2 corresponding to the current value from the memory. read out.
  • the pulse control unit 27 starts from the falling point of the PWM signal FL, and raises the gate driving signal SGL when the first time T1 has elapsed, and lowers the gate driving signal SGL when the second time T2 has elapsed.
  • the drive control devices 32A and 32B have the currents (diodes of the semiconductor elements 1A and 1B flowing in the forward direction of the diode element 6 during the period in which the PWM signals FH and FL are at the H level, respectively. If it is determined that (current) is equal to or greater than the current threshold It (0 in this embodiment), the gate drive signals SGH and SGL are set to the L level.
  • the current threshold It is the conduction loss of the semiconductor elements 1A and 1B when the gate drive voltages VGH and VGL are cut off, and the conduction of the semiconductor elements 1A and 1B when the gate drive voltages VGH and VGL are applied. This is the current value at which the loss becomes equal. With this Vf control, the conduction loss of the diode element 6 can be reduced regardless of the type and breakdown voltage of the semiconductor elements 1A and 1B.
  • the pulse control unit 27 of the drive ICs 24A and 24B sets the gate drive signals SGH and SGL to the H level from the time when the first time T1 has elapsed to the time when the second time T2 has elapsed, starting from the falling time of the PWM signals FH and FL. To do. Since the falling point of the PWM signals FH and FL is also the starting point of the dead time Td, the gate driving pulse can be applied while effectively preventing the arm short circuit by effectively using the dead time Td having a certain time.
  • the first time T1 and the second time T2 are set based on the dead time Td, the delay and variation of the gate drive voltages VGH and VGL measured in advance corresponding to the element current, and the time until the reverse recovery current starts to flow. ing.
  • the first time T1 and the second time T2 are set in consideration of the waveform of the gate drive voltage and the drive mode of the drive circuit 28 when the gate drive pulse is applied. Thereby, a wide pulse width Tw of the gate drive pulse can be secured.
  • the accuracy of the application timing of the gate drive pulse can be increased, and the reinjection time Tc can be accurately controlled. As a result, the reinjection time Tc can be controlled to be short while preventing an arm short circuit, and the switching loss can be further reduced.
  • the pulse control unit 27 stops the current from flowing through the diode element 6 even during the period (time t4 to t6) in which the gate drive pulse is applied based on the pulse control (the detected current value is less than the specified value Im2). If it is determined that there is a possibility or no current is flowing, the application of the gate drive pulse is immediately stopped. Thereby, even when the load current changes suddenly, an arm short circuit can be reliably prevented. Furthermore, since it is not necessary to set the specified value Im2 higher in preparation for a sudden change in the load current, a wide current range for performing the pulse control can be secured, and the switching loss can be further reduced.
  • the pulse control unit 27 applies the gate drive signal starting from the falling point of the PWM signals FH and FL, no separate timing signal is required, and the replacement from the conventionally used drive control device is easy. Become.
  • the drive control devices 32A and 32B have high response because the control loop is short. Since the drive ICs 24A and 24B are provided on the half bridge circuit 4 side via the photocouplers 23A and 23B, the current detection unit 25 does not need an insulating function.
  • the Vf control unit 26 and the pulse control unit 27 stop the Vf control and the pulse control and perform the normal control when the magnitude of the load current becomes smaller than the specified values Im1 and Im2, respectively.
  • the normal control is control that raises the gate drive signal when the PWM signal rises and lowers the gate drive signal when the PWM signal falls regardless of the current flowing through the diode element 6. Thereby, erroneous control due to a decrease in current detection accuracy can be prevented.
  • FIGS. 1A and 1B A second embodiment using MOS transistors for the semiconductor elements 1A and 1B will be described with reference to FIGS.
  • the configuration of the drive control devices 32A and 32B is as shown in FIG.
  • the operation of the drive control device 32B on the low side will be mainly described.
  • the operation of the drive control device 32A on the high side is the same.
  • the switching signal Sk is switched to, for example, the H level.
  • Drive control device 32B sets current threshold It according to threshold voltage Vt input from threshold setting circuit 29B, and executes Vf control.
  • FIG. 6 is a voltage-current characteristic diagram when a current flows through the MOS transistor in the forward direction of the diode element 6.
  • the forward voltage Vf of the diode element 6 when the gate drive voltage is cut off and the drain-source voltage VDS of the transistor element 5 when the gate drive voltage is applied
  • the magnitude relationship of is reversed.
  • region 1 where voltage VDS ⁇ voltage Vf
  • region 2 where voltage VDS ⁇ voltage Vf, conduction loss can be reduced by cutting off the gate drive voltage.
  • the Vf control unit 26 When the current in the region 1 flows through the semiconductor element 1B during the period when the PWM signal FL is at the H level, the Vf control unit 26 performs normal control (synchronous rectification) to apply the gate drive voltage VGL. Thereafter, when the PWM signal FL becomes L level, it is necessary to apply a gate drive pulse to the semiconductor element 1B.
  • the pulse control unit 27 starts from the time when the PWM signal FL falls and the second time T2 elapses from the time when the first time T1 elapses.
  • the gate drive signal SGL may be kept at the H level until the time point.
  • the conduction loss can be reduced by continuously applying the gate drive voltage VGL until the second time T2 elapses, rather than once interrupting the gate drive voltage VGL. Therefore, the Vf control unit 26 performs pulse control following the Vf control, and outputs the H-level gate drive signal SGL by extending it beyond the time t3 until the elapse of the second time T2 (time t6) ( Pulse expansion).
  • the Vf control unit 26 and the pulse control unit 27 are the same as the RC-IGBT control shown in FIG.
  • the gate drive signal SGL is output.
  • the current in the range of the regions 1 and 2 does not flow through the semiconductor element 1B during the period in which the PWM signal FL is at the H level, that is, the current in the forward direction of the MOS transistor (the reverse direction of the diode element 6).
  • the Vf control unit 26 and the pulse control unit 27 perform normal control. According to this embodiment, the same effect as that of the first embodiment can be obtained.
  • (Third, fourth and fifth embodiments) 8, 9, and 10 show drive control devices 52, 54, and 56 using drive ICs 51, 53, and 55 that have a high breakdown voltage.
  • the high breakdown voltage is a breakdown voltage according to the power supply voltage applied to the half bridge circuit 4.
  • the drive control devices 52, 54, and 56 drive and control the two semiconductor elements 1 ⁇ / b> A and 1 ⁇ / b> B that constitute the half-bridge circuit 4.
  • the driving ICs 51, 53, and 55 are provided with a common Vf control unit 26 and a common pulse control unit 27 for the semiconductor elements 1A and 1B, and operate when supplied with a power supply voltage VDD (for example, 15 V).
  • VDD power supply voltage
  • the gate drive signal SGH is given to the semiconductor element 1A via the level shift circuit 57 and the drive circuit 28, and the gate drive signal SGL is given to the semiconductor element 1B via the drive circuit 28.
  • the drive IC 51 includes a current detection unit 25 that outputs a current detection signal based on the sense voltages VSH and VSL generated in the sense resistors 7A and 7B.
  • the high-side current detection unit 25 outputs a current detection signal via the level shift circuit 58.
  • the drive IC 53 has a configuration in which the high-side current detection unit 25 and the level shift circuit 58 are omitted.
  • the drive IC 55 includes a current detection circuit 60 and inputs a sense signal from the hall sensor 59 or the like instead of the sense voltage VSL.
  • the current detection unit 25 of the drive IC 53 and the current detection circuit 60 of the drive IC 55 estimate the current flowing to the other (for example, the semiconductor element 1A) based on the current detection signal flowing to either one (for example, the semiconductor element 1B).
  • Other configurations are the same as those of the first embodiment.
  • the pulse control unit 27 Since the pulse control unit 27 generates the gate drive signals SGH and SGL, the gate drive voltage applied to the other semiconductor element during the period in which the gate drive voltage is applied to one of the two semiconductor elements 1A and 1B. Can be prohibited. As a result, since the PWM signals FH and FL are input to the Vf control unit 26 of the control IC 63, the Vf control unit 26 and the pulse control unit 27 can collectively control the one and the other arms. , Arm short circuit can be surely prevented. Further, since the current detection unit 25 or the current detection circuit 60 can be shared between the high side and the low side, the circuit configuration can be simplified (FIGS. 9 and 10).
  • the high-side specified values Im1 and Im2 may be set larger than in the first embodiment based on the specified voltages Vm1 and Vm2 generated by the threshold setting circuits 30 and 31. preferable.
  • operations and effects similar to those of the first and second embodiments can be obtained.
  • FIGSixth and seventh embodiments 11 and 12 show drive control devices 61 and 62 configured by separating the control unit and the drive circuit.
  • the drive control devices 61 and 62 drive and control the two semiconductor elements 1A and 1B constituting the half bridge circuit 4.
  • the drive control device 61 includes a control IC 63, photocouplers 64A and 64B, drive ICs 65A and 65B, a current detection circuit 60, and the like.
  • the control IC 63 includes a dedicated ASIC, a microcomputer hardware IP (Intellectual Property), an FPGA, and the like, and the Vf control unit 26 and the pulse control unit 27 described above are mounted thereon.
  • the photocouplers 64A and 64B are insulation circuits that electrically insulate the gate drive signals SGH and SGL and transmit them to the drive ICs 65A and 65B.
  • the drive ICs 65A and 65B include a drive circuit 28, which receives gate drive signals SGH and SGL and outputs gate drive voltages VGH and VGL.
  • the current detection circuit 60 detects a load current with the hall sensor 59 or the like, and outputs a current detection signal to the control IC 63.
  • the drive control device 62 includes photocouplers 67A and 67B that receive the sense voltages VSH and VSL and a current polarity detection circuit 68 in place of the hall sensor 59 and the current detection circuit 60.
  • the current polarity detection circuit 68 detects the value of current flowing in the semiconductor elements 1A and 1B or the direction (polarity) of the current. That is, the magnitude of the current may be detected or only the polarity of the current may be detected. Thereby, pulse control and Vf control for RC-IGBT can be executed.
  • the pulse control unit 27 can prohibit the application of the gate drive voltage to the other semiconductor element during the period in which the gate drive voltage is applied to one of the two semiconductor elements 1A and 1B. . Thereby, an arm short circuit can be prevented reliably.
  • Example 7 As in the fourth embodiment, either one of the photocouplers 67A and 67B may be omitted. At this time, the sense elements (5s, 6s) and the sense resistor (7) corresponding to the omitted photocouplers 67A and 67B may be omitted.
  • the current polarity detection unit 68 estimates the polarity of the current flowing in the other (for example, the semiconductor element 1A) based on the polarity detection signal of the current flowing in one (for example, the semiconductor element 1B).
  • a photocoupler having the same configuration as that of the photocouplers 67A and 67B may be provided not in the previous stage of the current polarity detection unit 68 but in the subsequent stage of the current polarity detection unit 68.
  • the current detection circuit 60 and the current polarity detection circuit 68 may be formed in the control IC 63 or the drive IC 65.
  • FIG. 13 and 14 show drive control devices 71 and 72 having a configuration in which the control unit and the drive circuit are separated and the Vf control unit 26, the pulse control unit 27, and the current detection unit 25 are incorporated in the microcomputer 21. .
  • the drive control devices 71 and 72 drive and control the two semiconductor elements 1A and 1B constituting the half bridge circuit 4.
  • the drive control device 71 includes the microcomputer 21, photocouplers 64A and 64B, drive ICs 65A and 65B, and the like.
  • the drive control device 72 includes photocouplers 67A and 67B that receive the sense voltages VSH and VSL.
  • the microcomputer 21 implements the functions of the Vf control unit 26, the pulse control unit 27, and the current detection unit 25 described above by executing a control program stored in advance in the memory 73.
  • the microcomputer 21 of the drive control device 71 receives a sense signal from the hall sensor 59 and obtains a current detection signal.
  • the microcomputer 21 of the drive control device 72 obtains a current detection signal via the output signals of the photocouplers 67A and 67B.
  • the memory 73 also stores a first time T1, a second time T2, a threshold value, and the like.
  • the pulse control unit 27 can prohibit the application of the gate drive voltage to the other semiconductor element during the period in which the gate drive voltage is applied to one of the two semiconductor elements 1A and 1B. . Thereby, an arm short circuit can be prevented reliably.
  • the Vf control unit 26 and the pulse control unit 27 can collectively control the one and other arms. According to this embodiment, the same operation and effect as those of the first and second embodiments can be obtained.
  • Example 9 as in the fourth embodiment, either one of the photocouplers 67A and 67B may be omitted.
  • the sense elements (5s, 6s) and the sense resistor (7) corresponding to the omitted photocouplers 67A and 67B may be omitted.
  • the current polarity detection unit 68 estimates the polarity of the current flowing in the other (for example, the semiconductor element 1A) based on the polarity detection signal of the current flowing in one (for example, the semiconductor element 1B).
  • Each embodiment may be changed to a configuration in which only the Vf control is performed among the Vf control by the Vf control unit 26 and the pulse control by the pulse control unit 27, or a configuration in which only the pulse control is performed.
  • the Vf control unit 26 applies the gate drive voltage to one of the semiconductor elements 1A and 1B during the other semiconductor element. Of course, the application of the gate drive voltage to is prohibited.
  • the configuration for inputting the switching signal Sk and the threshold voltage Vt (setting of the current threshold value It) may be provided as necessary.
  • the Vf control unit 26 and the pulse control unit 27 stop the Vf control and the pulse control and perform the normal control when the magnitude of the load current becomes smaller than the specified values Im1 and Im2, respectively.
  • the switching control may be executed as necessary.
  • the current detection unit 25 may obtain a current detection signal by inputting a sense signal of the Hall sensor 59 instead of the sense voltages VSH and VSL.
  • the Vf control and the pulse control may be stopped and the normal control may be performed, respectively.
  • the control switching function between the region 1 and the region 2 may be omitted from the Vf control unit 26. That is, the Vf control unit 26 always applies the gate drive voltage VGL to the gate of the semiconductor element 1B while the PWM signal FL is at the H level.
  • the Vf control unit 26 determines that the current flows in the forward direction of the diode element 6 in the semiconductor element 1B during the period, the Vf control unit 26 determines that the second time T2 has elapsed (time t6) as in the second embodiment. ) To extend the pulse.
  • a threshold value specifying signal for specifying the current threshold value It can be input from the outside, and threshold setting circuits 29A and 29B are provided. Good. Further, the threshold setting circuits 30A, 30B, 31A and 31B may be provided, and when the magnitude of the load current becomes smaller than the specified values Im1 and Im2, the Vf control and the pulse control are stopped and the normal control is performed.
  • the third to ninth embodiments can be applied to the configuration using MOS transistors for the semiconductor elements 1A and 1B in the same manner as the second embodiment.
  • the semiconductor elements 1A and 1B may be elements having a control gate and having a parasitic diode formed thereon, for example, diodes having MOS gates.
  • the RC-IGBT is not limited to the trench gate type but may be a planar gate type.
  • the MOS transistor is not limited to a trench gate type but may be a planar gate type.
  • the MOS transistor may have an SJ (Super Junction) structure.
  • the sense resistors 7A and 7B are provided as the current detection means after forming the sense elements in the semiconductor elements 1A and 1B.
  • a hall sensor 59 is provided.
  • sense resistors 7A and 7B may be provided in series with the semiconductor elements 1A and 1B excluding the sense elements. Since the sense resistors 7A and 7B and the main element are directly connected, high response is possible.
  • Hall sensors 59A and 59B may be provided for the semiconductor elements 1A and 1B. In any configuration, the current can be detected with high accuracy.
  • an insulated current sensor such as a GMR (Giant Magneto Resistance) sensor may be used instead of the Hall sensor.
  • the operation region of the drive control system is always region 1, so that the control switching function is omitted, and in the configuration shown in FIG.
  • the current detection unit 25 or the current detection circuit 60 may be replaced with the current polarity detection circuit 68, and the pulse control and the Vf control may be executed similarly to the seventh embodiment.
  • application of the gate drive voltage to the other semiconductor element can be prohibited while the gate drive voltage is applied to one of the semiconductor elements 1A and 1B.
  • the current polarity detection circuit 68 can estimate the polarity of the current flowing through the other semiconductor element based on the polarity detection signal of the current flowing through the one semiconductor element.
  • the current polarity detection circuit 68 is based on the collector-emitter voltage (or drain-source voltage) or the gate drive voltages VGH, VGL of the transistor element 5 instead of the sense voltages VSH, VSL generated in the sense resistors 7A, 7B. The polarity of the current flowing through the semiconductor elements 1A and 1B can be detected.
  • FIGS. 17 to 18 show a tenth embodiment, in which semiconductor elements 101A and 101B are used instead of the semiconductor elements 1A and 1B, and a voltage detector 125 is used instead of the current detector 25.
  • FIG. The same or similar components are denoted by the same or similar reference numerals and description thereof is omitted.
  • the semiconductor elements 101A and 101B are reverse conducting IGBTs (RC-IGBTs) in which the insulated gate transistor element 105 and the diode element 106 are formed on the same semiconductor substrate 8, and the transistor elements 5 of the above-described embodiment Main elements (transistor element 105 and diode element 106) respectively corresponding to the diode element 6 are shown.
  • the current-carrying electrodes (collector and emitter) of the transistor element 105 and the current-carrying electrodes (cathode and anode) of the diode element 106 are common electrodes.
  • a sense element for detecting the collector potential (corresponding to the electrode potential) of the main element is configured on the semiconductor substrate.
  • the conducting electrodes (collector and emitter) of the sense transistor 105s and the conducting electrodes (cathode and anode) of the sense diode 106s are common electrodes.
  • the gate and emitter of the insulated gate type sense transistor 105s are connected in common.
  • Sense resistors 107A and 107B are connected between the emitter electrode of the sense transistor 105s and the emitter electrode of the transistor element 105.
  • the sense resistors 107A and 107B constitute a voltage detection unit together with the voltage detection unit 125.
  • the voltage detection part 125 is comprised in drive IC124A, 124B replaced with drive IC24A, 24B.
  • the drive ICs 124A and 124B are configured with a Vf control unit 26, a pulse control unit 27, and a drive circuit 28.
  • the configurations of the Vf control unit 26, the pulse control unit 27, and the drive circuit 28 are denoted by the same reference numerals in the drawing because the control method is similar to that of the above-described embodiment. Since the drive ICs 124A and 124B have the same configuration, only the configuration of the voltage detection unit 125, which is a different part in the drive IC 124B, will be described.
  • the voltage detector 125 is a voltage detector that outputs a voltage detection signal of the semiconductor element 101B based on the sense voltage VSL generated in the sense resistor 107B.
  • the voltage detector 125 detects a divided voltage divided by the voltage across the sense diode 106s and the sense resistors 107A, 107B.
  • the Vf control unit 26 and the pulse control unit 27 generate the gate drive signal SGL based on the PWM signal FL.
  • the drive circuit 28 receives the gate drive signal SGL and outputs a gate drive voltage VGL. Since other configurations are the same as those of the above-described embodiment, detailed description thereof is omitted. Further, although the operation is almost the same as that of the first embodiment, the pulse control which is different from the first embodiment will be described with reference to FIG.
  • the semiconductor element 101B is gated. It is the same in that a drive pulse is applied. However, the condition determination for applying the gate drive pulse is different from that in the first embodiment.
  • the collector-emitter voltage of the semiconductor element 101A increases.
  • the collector electrode potential Vco of the semiconductor element 101B decreases.
  • the voltage detector 125 can detect the decrease timing of the electrode potential Vco by the sense elements (105s, 106s). Note that the collector-emitter voltage of the semiconductor element 101A gradually increases in the mirror period and then rapidly increases. For this reason, the collector electrode potential Vco gradually decreases during the mirror period, and then rapidly decreases.
  • the voltage detector 125 detects the decrease timing of the collector electrode potential Vco during the above-described mirror period (time t1a).
  • the Vf control unit 26 can detect a decrease in the electrode potential Vco by the voltage detection unit 125 and estimate the polarity according to the relationship between the on / off command signal of the input PWM signal FL and the collector electrode potential Vco.
  • the Vf control unit 26 of the driving IC 124B determines whether or not to input the ON command signal of the PWM signal FL from the time (t1a) when it is detected that the collector electrode potential Vco has decreased, and when the ON command signal is input
  • the L level gate drive signal SGL is output to (time t2 to t3).
  • a gate drive voltage VGL corresponding to the gate drive signal SGL is applied to the gate of the semiconductor element 101B.
  • the gate drive voltage VGL is cut off.
  • the polarity determination is continued.
  • FIG. 25 and FIG. 26 show reference diagrams of the change characteristics of the collector electrode potential according to the direction and magnitude of the load current.
  • the load current is defined as negative in the direction in which current flows from the load to the node Nt shown in FIG. 17 (left column in FIG. 25A), and the load current is defined as positive in the direction flowing out from the node Nt in FIG. 25 (a) right column).
  • FIG. 25B which is an enlarged view of the portion NM in FIG. 25A
  • the collector electrode potential Vco increases in principle. Since the current flows out from the node Nt to the load side when the load current is positive, an enlarged view of the portion NP in FIG. 25A is shown in FIG. Lower.
  • the detection voltage by the voltage detection unit 125 is determined according to the balance of the on-resistance of the semiconductor elements 101A and 101B.
  • the collector electrode potential Vco largely fluctuates or causes chattering.
  • the Vf control unit 26 continues to output the L level gate drive signal SGL.
  • the Vf control unit 26 instructs the PWM signal FL to A gate drive signal SGL that matches the signal is output. In this case, control response performance can be improved.
  • the collector electrode potential Vco may be input before the timing at which the voltage rapidly decreases.
  • the Vf control unit 26 performs the same control as described above on the condition that the voltage detection unit 125 detects that the collector electrode potential Vco rapidly decreases within a predetermined time from the input time point of the ON command signal of the PWM signal FL.
  • the gate drive signal SGL may be output by a technique.
  • the voltage detection unit 125 can detect the increase timing of the electrode potential Vco by the divided voltage of the voltage of the diode 6 and the voltage of the resistor 107A by the sense elements (105s, 106s).
  • the pulse control unit 27 receives the OFF command signal of the PWM signal FL (time t3).
  • the gate drive signal SGL is set to the H level from the elapsed time (time t4) of the first time T1 to the elapsed time (time t6) of the second time T2.
  • a gate drive pulse VGL is applied to the gate of the semiconductor element 101B.
  • the pulse control unit 27 determines whether or not the voltage of the voltage detection unit 125 has changed, so that a current flows through the diode element 106 of the semiconductor element 101B. Continue to determine whether or not. On the other hand, if the pulse control unit 27 determines that no current flows through the diode element 6 when the PWM signal FL falls to the L level, the pulse control unit 27 immediately maintains the gate drive signal SGL at the L level. That is, no gate drive pulse is applied.
  • the first time T1 and the second time T2 shown in FIG. 18 are set in advance so as not to cause an arm short circuit.
  • the waveform of the gate drive voltage VGL when a gate drive pulse is applied differs between when the current flows through the diode element 106 and when the current flows through the transistor element 105 while the PWM signal FL is at the L level. .
  • the drive circuit 28 can output the gate drive voltage VGL with a higher gate drive capability than usual when the gate drive voltage VGL rises and falls.
  • the first time T1 and the second time T2 take into account the waveform of the gate drive voltage VGL when the gate drive pulse is applied and the drive mode of the drive circuit 28, and the gate drive voltage VGL is monotonous according to the gate drive capability of the drive circuit 28. It is set to increase or decrease monotonically.
  • the time Tc carrier reinjection time
  • the allowable injection time is specified according to the allowable reverse recovery current.
  • the first time T1 and the second time T2 change the current flowing through the diode element 106 in various ways, starting from the falling point of the PWM signal FL, and the application timing of the gate drive signal SGL, actually the gate
  • the timing at which the drive voltage VGL is applied and the timing at which the reverse recovery current starts to flow are set in advance by measurement.
  • the first time T1 and the second time T2 are stored in a memory or the like in the pulse control unit 27 in this embodiment.
  • the first time T1 and the second time T2 can also be configured using one or several patterns of logic circuits or analog delay circuits.
  • the pulse control unit 27 reads the first time T1 and the second time T2 from the memory when applying the gate drive pulse.
  • the pulse control unit 27 starts the gate drive signal SGL at the time when the first time T1 has elapsed, and lowers the gate drive signal SGL at the time when the second time T2 has elapsed, starting from the detection timing of the decrease in the collector electrode potential Vco.
  • FIG. 19 shows an eleventh embodiment, and shows a timing chart when conduction loss can be reduced by performing synchronous rectification using MOS transistors or the like for the semiconductor elements 101A and 101B.
  • the configuration of the drive control devices 132A and 132B is as shown in FIG. Here, the operation of the drive control device 132B on the low side will be mainly described. The operation of the drive control device 132A on the high side is the same.
  • the MOS transistor as shown in FIG. 6, in the region 1 where the voltage VDS ⁇ the voltage Vf, the conduction loss can be reduced by applying the gate drive voltage. In region 2 where voltage VDS ⁇ voltage Vf, conduction loss can be reduced by cutting off the gate drive voltage.
  • the voltage detector 125 detects the decrease timing of the collector electrode potential Vco during the above-described mirror period (time t1a).
  • the Vf control unit 26 can detect a decrease in the electrode potential Vco by the voltage detection unit 125 and estimate the polarity according to the relationship between the on / off command signal of the input PWM signal FL and the collector electrode potential Vco.
  • the Vf control unit 26 of the driving IC 124B determines whether or not to input the ON command signal of the PWM signal FL from the time (t1a) when it is detected that the collector electrode potential Vco has decreased, and when the ON command signal is input H level gate drive signal SGL is output at time t2 to t3. At this time, a gate drive voltage VGL corresponding to the gate drive signal SGL is applied to the gate of the semiconductor element 101B.
  • the Vf control unit 26 performs normal control (synchronous rectification) for applying the gate drive voltage VGL. Execute. Thereafter, when the PWM signal FL becomes L level, the Vf control unit 26 applies a gate drive pulse to the semiconductor element 101B.
  • the pulse control unit 27 may set the gate drive signal SGL to the H level from the time when the first time T1 has elapsed to the time when the second time T2 has elapsed, starting from the input time of the off command signal.
  • the conduction loss can be reduced by continuously applying the gate drive voltage VGL until the second time T2 elapses, rather than once interrupting the gate drive voltage VGL. Therefore, since the Vf control unit 26 performs pulse control following the Vf control, the Vf control unit 26 may output the H-level gate drive signal SGL by extending it beyond the time t3 to the lapse of the second time T2 (time t6). (Pulse extension).
  • the control means (Vf control unit 26 or pulse control unit 27) outputs the ON command signal input time (t2) retroactively so as to follow the normal Vf control by the Vf control unit 26.
  • pulse control may be performed (refer to the expansion of the pulse in the interval from time t1b ⁇ t2).
  • the gate drive voltage VGL is from the time when the gate drive voltage VGH becomes less than the threshold voltage Vth (ie, when the current stops flowing) to the time when the threshold voltage Vth is reached again (ie when the current starts flowing). Can be raised.
  • the Vf control unit 26 and the pulse control unit 27 From the time when the gate drive signal SGL is given until the gate drive voltage VGL is raised, the Vf control unit 26 and the pulse control unit 27 generate delay times for performing various processes such as a signal generation process. This delay time is measured in advance using experiments, simulations, and the like, and the Vf control unit 26 and the pulse control unit 27 drive the gate so that no arm short circuit occurs during the period when the gate drive voltage VGL is increased. It is preferable to extend the pulse of the signal SGL.
  • a margin time (margin time Ma in FIG. 19) between the timing when the gate driving voltage VGH becomes less than the threshold voltage Vth (that is, when the current stops flowing) and the timing when the gate driving voltage VGL becomes equal to or higher than the threshold voltage Vth. It is good to provide.
  • a margin time (margin time Mb in FIG. 19) is provided between the timing when the gate drive voltage VGL becomes lower than the threshold voltage Vth and the timing when the gate drive voltage VGH becomes equal to or higher than the threshold voltage Vth (that is, when current flows). good.
  • delay variation from when the voltage is detected by the voltage detection unit 125 until actual control is performed (variation of the voltage detection unit 125, configuration variation of the semiconductor element 101A, etc., change in temperature characteristics, aging deterioration, etc.
  • the voltage detector 125 detects the decrease timing of the collector electrode potential Vco during the above-described mirror period (time t1a).
  • the Vf control unit 26 can detect a decrease in the electrode potential Vco by the voltage detection unit 125 and estimate the polarity according to the relationship between the on / off command signal of the input PWM signal FL and the collector electrode potential Vco. This polarity estimation method is the same as the method shown in the tenth embodiment.
  • the Vf control unit 26 executes normal control (synchronous rectification) in which the gate drive voltage VGL is applied. Thereafter, when the PWM signal FL becomes L level, it is necessary to apply a gate drive pulse to the semiconductor element 101B.
  • the pulse control unit 27 starts from the time when the PWM signal FL falls and the second time T2 elapses from the time when the first time T1 elapses.
  • the gate drive signal SGL may be kept at the H level until the time point.
  • the conduction loss can be reduced by continuously applying the gate drive voltage VGL until the second time T2 elapses, rather than once interrupting the gate drive voltage VGL. Therefore, the Vf control unit 26 performs pulse control following the Vf control, and outputs the H-level gate drive signal SGL by extending it beyond the time t3 until the elapse of the second time T2 (time t6) ( Pulse expansion).
  • the detection process from the time point t1a to the time point t2 is performed by the same method as in the tenth embodiment.
  • the Vf control unit 26 keeps the gate drive signal SGL at the H level after the time point t2, the condition that the load current is close to zero. Even when the polarity of the load current is reversed, the chattering described in the tenth embodiment is not caused. Therefore, the Vf control unit 26 may continue to output the H level gate drive signal SGL as it is from time t2 to time t6.
  • FIG. 20 shows a twelfth embodiment
  • FIG. 21 shows a thirteenth embodiment, both of which show drive control devices 152 and 154 using drive ICs 151 and 153 having a high breakdown voltage.
  • the high breakdown voltage is a breakdown voltage according to the power supply voltage applied to the half bridge circuit 4.
  • the drive control devices 152 and 154 drive and control the two semiconductor elements 101A and 101B constituting the half bridge circuit 4.
  • the drive ICs 151 and 153 are provided with a common Vf control unit 26 and a common pulse control unit 27 for the semiconductor elements 101A and 101B, and operate when supplied with a power supply voltage VDD (for example, 15V).
  • VDD power supply voltage
  • the gate drive signal SGH is given to the semiconductor element 101A via the level shift unit 57 and the drive circuit 28, and the gate drive signal SGL is given to the semiconductor element 101B via the drive circuit 28.
  • the drive IC 151 includes a voltage detection unit 125 that outputs a voltage detection signal based on the sense voltages VSH and VSL generated in the sense resistors 107A and 107B.
  • the high-side voltage detection unit 125 outputs a voltage detection signal via the level shift circuit 58.
  • the drive IC 153 has a configuration in which the high-side voltage detection unit 125 and the level shift circuit 58 are omitted.
  • the pulse control unit 27 Since the pulse control unit 27 generates the gate drive signals SGH and SGL, the gate drive voltage applied to the other semiconductor element during the period when the gate drive voltage is applied to one of the two semiconductor elements 101A and 101B. Can be prohibited. Thereby, an arm short circuit can be prevented reliably.
  • the circuit configuration can be simplified.
  • the sense elements (105s, 106s) and the sense resistor (107) corresponding to the voltage detection unit 125 omitted by sharing may be omitted.
  • sharing it is preferable to set the specified voltage on the high side larger than that in the tenth embodiment based on the specified voltages Vm1 and Vm2 generated by the threshold setting circuits 30 and 31.
  • operations and effects similar to those of the tenth and eleventh embodiments can be obtained.
  • FIG. 22 shows a fourteenth embodiment and shows a drive control device 162 configured by separating a control unit and a drive circuit.
  • the drive control device 162 controls the drive of the two semiconductor elements 101A and 101B constituting the half bridge circuit 4.
  • the drive control device 162 includes a control IC 163, photocouplers 64A, 64B, 67A, 67B, drive ICs 65A, 65B, a voltage detection unit 168, and the like.
  • the control IC 163 includes a dedicated ASIC, a microcomputer hardware IP (Intellectual Property), an FPGA, and the like, and the Vf control unit 26 and the pulse control unit 27 described above are mounted thereon.
  • the photocouplers 64A and 64B are insulation circuits that electrically insulate the gate drive signals SGH and SGL and transmit them to the drive ICs 65A and 65B.
  • the drive ICs 65A and 65B include a drive circuit 28, which receives gate drive signals SGH and SGL and outputs gate drive voltages VGH and VGL.
  • the voltage detector 168 detects the sense voltages VSH and VSL through the photocouplers 67A and 67B.
  • the voltage detection unit 168 can detect the value of the current flowing in the semiconductor elements 101A and 101B or the direction (polarity) of the current based on the divided voltage of the voltage applied to the sense elements 105s and 106s and the voltage applied to the resistors 107A and 107B. Thereby, pulse control and Vf control for RC-IGBT can be executed.
  • the pulse control unit 27 can prohibit the application of the gate drive voltage to the other semiconductor element during the period in which the gate drive voltage is applied to one of the two semiconductor elements 101A and 101B. . Thereby, an arm short circuit can be prevented reliably. Further, either one of the photocouplers 67A and 67B may be omitted. At this time, the sense elements (105s, 106s) and the sense resistor (107) corresponding to the omitted photocouplers 67A and 67B may be omitted. In this case, the voltage detection unit 168 estimates the polarity of the current flowing through the other semiconductor element 101A based on the polarity detection signal of the current flowing through the semiconductor element 101B.
  • a photocoupler having a configuration similar to that of the photocouplers 67A and 67B may be provided not in the previous stage of the voltage detection unit 168 but in the subsequent stage of the voltage detection unit 168.
  • the voltage detection unit 168 may be formed in the control IC 63 or the drive IC 65.
  • the Vf control unit 26 and the pulse control unit 27 can collectively control the one and the other arms. Also according to this embodiment, the same operation and effect as those of the tenth and eleventh embodiments can be obtained.
  • FIG. 23 shows a fifteenth embodiment, in which a controller and a drive circuit are separated, and a drive controller 172 having a configuration in which a Vf controller 26, a pulse controller 27, and a voltage detector 125 are incorporated in a microcomputer 121. Is shown.
  • the drive control device 172 controls the drive of the two semiconductor elements 101A and 101B constituting the half bridge circuit 4.
  • the drive control device 172 includes a microcomputer 121, photocouplers 64A and 64B, drive ICs 65A and 65B, and the like.
  • the drive controller 172 includes photocouplers 67A and 67B that receive the sense voltages VSH and VSL.
  • the microcomputer 121 implements the functions of the Vf control unit 26, the pulse control unit 27, and the voltage detection unit 125 described above by executing a control program stored in advance in the memory 73.
  • the microcomputer 121 of the drive control device 172 obtains a voltage detection signal via the output signals of the photocouplers 67A and 67B.
  • the memory 73 also stores a first time T1, a second time T2, a threshold value, and the like.
  • the microcomputer 121 can prohibit the application of the gate drive voltage to the other semiconductor element during the period in which the gate drive voltage is applied to one of the two semiconductor elements 101A and 101B. Thereby, an arm short circuit can be prevented reliably. Further, either one of the photocouplers 67A and 67B may be omitted. At this time, the sense elements (105s, 106s) and the sense resistor (107) corresponding to the omitted photocouplers 67A and 67B may be omitted. In the case of sharing, it is preferable to set the specified voltage on the high side larger than that in the tenth embodiment based on the specified voltages Vm1 and Vm2 generated by the threshold setting circuits 30 and 31. In addition, operations and effects similar to those of the tenth and eleventh embodiments can be obtained.
  • the Vf control unit 26 and the pulse control unit 27 can collectively control the one and the other arms.
  • the photocoupler 67A may be omitted. Also in these embodiments, the same operations and effects as those in the tenth and eleventh embodiments can be obtained.
  • FIG. 24 shows a sixteenth embodiment and shows a mode in which a voltage detection unit 180 is provided as voltage detection means for detecting a voltage of an intermediate potential. 24 is provided so as to detect the potential of the guard ring 8a provided on the semiconductor substrate 8 on the outer peripheral side of the element formation region 100 of the transistor element 105 and the diode structure 106.
  • the voltage detector 180 shown in FIG. The cathode region 17 of the diode structure 6 and the collector electrode 18 of the transistor structure 5 are formed on the lower surface side layer portion of the semiconductor substrate 8. The region 101 is reached.
  • a guard ring 8a is formed in the pressure resistant holding region 101.
  • a plurality of guard rings 8a are formed.
  • the guard ring 8a is formed in a conductivity type different from that of the semiconductor layer 8 (in this case, p + (reverse conductivity type)), and is formed concentrically in a plan view so as to surround the outer periphery of the element formation region 100. Has been.
  • an n + equivalent potential ring (EQR) 8b having the same conductivity type as that of the semiconductor substrate 8 is formed as a channel stopper region in the outermost peripheral region which is the outer peripheral region of the guard ring 8a of the semiconductor substrate 8.
  • the guard rings 8a are formed to be separated from each other on the outer peripheral edge side of the semiconductor substrate 8, and are provided to alleviate the electric field generated between the outermost equivalent potential ring 8b and the source electrode provided on the element forming region 100 side. ing.
  • the potential of these guard rings 8a decreases step by step from the outer peripheral side and can maintain a withstand voltage.
  • the voltage detector 180 can detect the intermediate potential between the collector and emitter by detecting the voltage from the upper part of any one of the guard ring 8a layers.
  • the change in the intermediate potential is the same change as the change in the collector electrode potential VCO described in the above-described embodiment, and even if the voltage detection unit 180 detects the intermediate potential as described above, it can be controlled similarly.
  • the voltage detection unit 180 shown in this embodiment can be used in place of the voltage detection unit 125 of the tenth to fifteenth embodiments, or may be used together with the voltage detection unit 125. Further, it may be used in combination with the configuration of the current detection means (7A, 7B, 25, 59, 60, 68) shown in the respective embodiments of the first to ninth embodiments.
  • the intermediate potential detected from the voltage detection unit 180 may be further stepped down by resistance division or the like as necessary.
  • Each embodiment may be changed to a configuration in which only the Vf control is performed among the Vf control by the Vf control unit 26 and the pulse control by the pulse control unit 27, or a configuration in which only the pulse control is performed.
  • the Vf control unit 26 applies the gate drive voltage to one of the semiconductor elements 1A and 1B during the other semiconductor element. Of course, the application of the gate drive voltage to is prohibited.
  • the Vf control unit 26 and the pulse control unit 27 stop the Vf control and the pulse control and perform the normal control when the magnitude of the detected voltage becomes smaller than the specified value, respectively. What is necessary is just to perform as needed.
  • the Vf control and the pulse control may be stopped and the normal control may be performed, respectively.
  • the control switching function between the region 1 and the region 2 may be omitted from the Vf control unit 26. That is, the Vf control unit 26 always applies the gate drive voltage VGL to the gate of the semiconductor element 1B while the PWM signal FL is at the H level. If the Vf control unit 26 determines that a current flows in the forward direction of the diode element 6 in the semiconductor element 1B during the period, the second time T2 elapses from the time t2 as in the eleventh embodiment. The pulse is expanded until the time (time t6).
  • the twelfth to sixteenth embodiments can be applied to a configuration using MOS transistors for the semiconductor elements 101A and 101B in the same manner as the eleventh embodiment.
  • the semiconductor elements 101A and 101B may be elements having a control gate and formed with a parasitic diode, for example, a diode having a MOS gate.
  • the RC-IGBT is not limited to the trench gate type but may be a planar gate type.
  • the MOS transistor is not limited to a trench gate type but may be a planar gate type.
  • the MOS transistor may have an SJ (Super Junction) structure.
  • the sense diode 106s is configured alone as a sense element, and the voltage detection unit 125 has a direct current voltage applied to both ends of the sense element ( DC voltage) may be detected.
  • DC voltage DC voltage
  • These configurations can be used not only for voltage detection but also for current detection.
  • a DC voltage DC voltage
  • the sense transistor 105s may be used alone as a sense element. In this case, since the sense transistor 105s functions as a transistor capacitance, a voltage change can be detected as a pulse voltage / current.
  • the current detection unit 25 detects the current of the semiconductor element 1A, and at the time t1c when the fluctuation of this current is detected, the Vf control unit 26 precedes t2.
  • the pulse may be extended to output the gate drive signal SGL as the H level.
  • another form of the current detection unit 25 may be provided, or the current polarity detection circuit 68 of the seventh embodiment may be provided.
  • a voltage detector 225 for detecting the gate drive voltage VGH on the reverse arm side is provided as a control voltage detector based on the configuration shown in FIG. 17 and is detected by this voltage detector 225.
  • the Vf control unit 26 extends the pulse before t2 and outputs the gate drive signal SGL as the H level. You may do it.
  • Waveforms of control signals, drive signals, and the like at each node relating to Vf control and pulse control are the same as those in FIG.
  • the voltage detection unit 225 may be incorporated in the drive ICs 124A and 124B or may be configured independently of the drive ICs 124A and 124B.
  • a voltage detection unit 225 for detecting the gate drive voltage VGH on the reverse arm side is provided via the photocouplers 267A and 267B, respectively.
  • the Vf control unit 26 extends the pulse before t2 and outputs the gate drive signal SGL as the H level. You may do it.
  • the waveforms of control signals, drive signals, etc. at each node are the same as in FIG.
  • the voltage detection unit 225 shown in FIG. 29 may be incorporated in the control IC 63 or may be configured independently of the control IC 63.
  • the drive ICs 24A and 24B on the own arm side input the PWM signal FL or FH on the opposite arm side to the Vf control unit 26 (or pulse control unit 27), and the Vf control unit 26 (or At a timing when a predetermined time has elapsed since the pulse control unit 27) detected the fall of the PWM signal, the Vf control unit 26 performs pulse expansion before t2 and outputs the gate drive signal SGL as the H level. May be.
  • the predetermined time may be set to a predetermined time so as not to short-circuit between the arms in advance.
  • the drive ICs 124A and 124B on the own arm side input the PWM signal FL or FH on the opposite arm side to the Vf control unit 26 (or pulse control unit 27), and the Vf control unit 26 (or At a timing when a predetermined time has elapsed since the pulse control unit 27) detected the fall of the PWM signal, the Vf control unit 26 performs pulse expansion before t2 and outputs the gate drive signal SGL as the H level. May be.
  • the predetermined time may be set to a predetermined time so as not to short-circuit between the arms in advance.
  • FIGS. 28 to 31 show an example.
  • the current detection means current detection unit 25, hall sensor 59, current detection circuit 60, current polarity detection circuit 68 shown in the first to ninth embodiments is shown.
  • Etc. a combination of any two of the voltage detection means (voltage detection section 125, voltage detection section 168, etc.) and control voltage detection means (voltage detection section 225) shown in the tenth to fifteenth embodiments. You may do it.
  • the Vf control unit 26 expands the pulse from the time point t1b before the time point t2 to drive the gate without causing an arm short circuit.
  • the signal SGL can be output as an H level.
  • the margin period Ma (see FIG. 19) of the gate drive voltage VGL can be made the shortest ( ⁇ 0).
  • the form in which the PWM signals FH and FL on the reverse arm side are input to the Vf control unit 26 or the pulse control unit 27 of the drive ICs 24A and 24B on the own arm side is determined by the current detection unit 25, the voltage detection unit 125, and the voltage detection unit 225. Or you may combine with the form which detects and controls a voltage.
  • the falling detection time of the collector electrode potential Vco is the semiconductor element 101A. It can be seen that it is faster than the current falling point.
  • the forward direction of the diode structure 6 is based on the voltage detection signal.
  • the gate drive voltage VGL rises, the timing at which the current starts to flow to the semiconductor element 101A t1c (for example, the current flows to the semiconductor element 101B), as shown in FIG.
  • the gate drive signal SGL may be pulse-expanded from the time point t1b before the timing t2 so as to be later than the timing at which it flows out.
  • a predetermined delay time is required until the gate drive voltage VGL is generated after the pulse is extended and the gate drive signal SGL is output. For this reason, the delay time may be measured in advance, and the timing t1b at which the pulse expansion starts may be set in advance before the time t2 in anticipation of the measurement time.
  • various delay variations occur in the voltage detection unit 125, the driver 28, the semiconductor elements 101A and 101B, and the delay variation is measured in advance to allow for a margin. good.
  • the timing of the pulse expansion start can be determined at the time when the voltage fluctuation is detected (t1a). It is not necessary to set the timing for starting the pulse expansion before the time t2 after measurement in advance.
  • the pulse expansion of the eleventh embodiment performed by the Vf control unit 26 is performed at a faster time point than when the control is performed using only the current detection means described in the first to ninth embodiments.
  • the time required for the gate driving process can be secured and the synchronous rectification period can be extended, and the maximum effect can be obtained.
  • 1A, 1B, 101A and 101B are semiconductor elements
  • 4 is a half-bridge circuit
  • 5 and 105 are transistor elements (transistor structure)
  • 6 and 106 are diode elements (diode structure)
  • 7A, 7B, 107A and 107B are Sense resistor (current detection means)
  • 8 is a semiconductor substrate
  • 8a is a guard ring (electric field limiting ring)
  • 15 is an emitter electrode (energized electrode)
  • 18 is a collector electrode (energized electrode)
  • 21 and 121 are microcomputers (control IC) 24A, 24B, 124A, 124B, 51, 53, 55, 151, and 153 are drive ICs (ICs)
  • 25 is a current detector (current detector)
  • 125 and 168 are voltage detectors (voltage detector)
  • 26 Is a Vf control section (control means, second control means, input means)
  • 27 is a pulse control section (control means, first control means, input means)
  • FIG. 33 (corresponding to FIG. 1 of the first embodiment) which is a basic configuration.
  • the drive control system shown in FIG. 33 is used in a power conversion device such as an inverter device that drives an inductive load such as a motor or a converter device that includes an inductor and boosts / steps down a DC voltage.
  • the semiconductor elements 1001A and 1001B which are switching elements, are arranged in series with the output terminal Nt sandwiched between the high potential side DC power supply line 1002 and the low potential side DC power supply line 1003 to form a half-bridge circuit 1004. is doing.
  • the gate drive signal SGL generated by the Vf control unit 1026 and the pulse control unit 1027 is given to the gate of the semiconductor element 1001B through the drive circuit 1028.
  • the drive circuit 1028 can switch the gate drive capability in a plurality of ways as shown in FIG.
  • the drive circuit 1028 drives the gate by the MOS transistor 1029 when it is turned on.
  • the output voltage (A side) of the constant current drive amplifier 1031 or the voltage of the floating ground FG (B side) is applied to the gate of the MOS transistor 1029 via the changeover switch 1030.
  • the drive circuit 1028 performs a protection operation against a short-circuit current during driving in the case of normal driving capability. Therefore, the constant current drive amplifier 1031 temporarily keeps the gate drive voltage VGL at the intermediate voltage in the process of increasing the gate drive voltage VGL.
  • the drive circuit 1028 drives the gate by the MOS transistors 1032 and 1033 when turned off.
  • the changeover switch 1034 is switched to the A side and driven only by the MOS transistor 1032, normal driving capability is obtained, and when the changeover switch 1034 is switched to the B side and driven by the MOS transistors 1032, 1033, high driving capability is obtained.
  • the MOS transistor 1033 has a lower on-resistance than the MOS transistor 1032. Note that the MOS transistor 1033 is also used when the semiconductor element 1001B is held in an off state.
  • Threshold value setting circuits 1035A, 1036A, and 1037A are externally attached to the driving IC 1024A. Threshold setting circuits 1035B, 1036B, and 1037B are externally attached to the driving IC 1024B.
  • the threshold setting circuits 1029A, 1030A, 1031A are configured with a floating ground FG equal to the emitter potential of the semiconductor element 1001A as a reference potential.
  • the threshold setting circuits 1035A and 1035B divide the voltages VDDA and VDDB by the resistors R1 and R2 to generate the threshold voltage Vt.
  • the threshold setting circuits 1036A and 1036B divide the voltages VDDA and VDDB by the resistors R3 and R4 to generate the specified voltage Vm1.
  • the threshold setting circuits 1037A and 1037B divide the voltages VDDA and VDDB by the resistors R5 and R6 to generate a specified voltage Vm2.
  • the threshold voltage Vt determines the magnitude of the current threshold It used in the Vf control unit 1026.
  • the characteristic of the forward voltage Vf with respect to the forward current If of the diode element 1006 varies depending on the type of element (RC-IGBT, MOS transistor, etc.) and the breakdown voltage of the element. Therefore, the Vf control unit 1026 selects an appropriate current threshold It based on the switching signal Sk and the threshold voltage Vt given from the outside.
  • the specified voltage Vm1 determines the magnitude of the specified value Im1 used for determining whether or not to stop the Vf control.
  • the specified voltage Vm2 determines the magnitude of the specified value Im2 used for determining whether or not to stop the pulse control.
  • the drive control device 1038A is configured by the drive IC 1024A and the sense resistor 1007A described above, and the drive control device 1038B is configured by the drive IC 1024B and the sense resistor 1007B.
  • Vf control will be briefly described.
  • a gate drive voltage is applied to the semiconductor elements 1001A and 1001B that are RC-IGBTs while a current is flowing through the diode element 1006, a channel is formed in the first region 1012 and hole injection is suppressed.
  • the forward voltage Vf of the diode element 1006 through which the forward current If flows increases, and the conduction loss (Vf ⁇ If) of the diode element 1006 increases.
  • the conduction loss can be reduced by cutting off the gate drive voltage.
  • the current threshold It is substantially zero in the case of RC-IGBT, and is greater than zero in the case of a MOS transistor depending on the breakdown voltage or the like.
  • the switching signal Sk is switched to L level, for example, and when the MOS transistor is driven, the switching signal Sk is switched to H level, for example.
  • the Vf control unit 1026 sets the current threshold It according to the threshold voltage Vt and executes Vf control.
  • FIG. 38 shows a case where the semiconductor element 1001A is turned off and the semiconductor element 1001B is turned on and then the semiconductor element 1001B is turned off and the semiconductor element 1001A is turned on again when a current flows from the output terminal Nt toward the load. It is a waveform.
  • the current of the semiconductor element 1001A, the gate drive voltages VGH and VGL, the PWM signal FH, the gate drive signal SGL, and the PWM signal FL are shown.
  • Vth is a threshold voltage of the semiconductor element 1001A.
  • the Vf control unit 1026 of the driving IC 1024B determines whether or not the detected current of the diode element 1006 is equal to or higher than the current threshold It in the forward direction during the period when the PWM signal FL is at the H level (time t2 to t3). If it is determined that the detected current is greater than or equal to the current threshold It, an L level gate drive signal SGL is output as shown in FIG. As a result, the gate drive voltage VGL is cut off and the conduction loss is reduced.
  • pulse control when the current flows through the diode element 1006 of the semiconductor element 1001B during the period in which the PWM signal FL is at the H level, after the PWM signal FL falls to the L level and before the reverse recovery current starts to flow, This is control for applying a gate drive pulse to the semiconductor element 1001B.
  • carriers (holes) accumulated in the diode element 1006 are reduced, so that an effect of reducing the reverse recovery current can be obtained.
  • the pulse control unit 1027 has a current flowing through the diode element 1006 of the semiconductor element 1001B (the current detection value is equal to or greater than the specified value Im2).
  • the gate drive signal SGL is set to the H level from the time when the first time T1 has elapsed (time t4) to the time when the second time T2 has elapsed (time t6).
  • the gate drive signal SGL is at the L level at the time of falling of the PWM signal FL.
  • the pulse control unit 1027 continues to determine whether or not a current is flowing through the diode element 1006 of the semiconductor element 1001B even after the PWM signal FL falls to the L level. When the detected current value falls below the specified value Im2, the pulse controller 1027 immediately returns the gate drive signal SGL to the L level even after the first time T1 has elapsed and before the second time T2 has elapsed.
  • the pulse control unit 1027 determines that no current flows through the diode element 1006 when the PWM signal FL falls to the L level, the pulse control unit 1027 immediately maintains the gate drive signal SGL at the L level. That is, no gate drive pulse is applied.
  • the reinjection time Tc is controlled to be equal to or less than the allowable injection time corresponding to the allowable reverse recovery current.
  • FIG. 40 shows a case where the reinjection time Tc becomes zero. Actually, in order to prevent an arm short circuit, the reinjection time Tc is controlled to be equal to or longer than the short circuit margin time Tm (> 0).
  • the time (time t10) at which reverse recovery current begins to flow is delayed. For this reason, when the application end point of the gate drive voltage VGL is fixed starting from the falling point of the PWM signal FL (time t8), the reinjection time becomes Tc1 when the load current is 100A, and reinjection when the load current is 200A. Time becomes Tc2 (> Tc1). That is, the larger the load current, the longer the reinjection time, and the reverse recovery current increases. Further, since the carrier concentration itself stored in the diode element 1006 is higher as the load current is larger, in order to sufficiently reduce the carrier concentration and reduce the switching loss, the gate drive pulse width is ensured to some extent as shown in FIG. Therefore, it is necessary to secure a sufficient time for carrier reduction.
  • the pulse controller 1027 controls the application timing of the gate drive voltage VGL according to the load current.
  • the pulse control unit 1027 starts from the falling point of the PWM signal FL, and sets the time width Tw between the first time T1 when the gate drive signal SGL is set to the H level and the second time T2 when the gate drive signal SGL is returned to the L level.
  • the value is set according to the magnitude of the current flowing in the diode element 1006 during the H level period. Specifically, the longer time width is set as the current flowing through the diode element 1006 during the period when the PWM signal FL is at the H level is larger.
  • the application timing of the gate drive signal SGL and the actual gate drive voltage VGL are applied starting from the falling point of the PWM signal FL while changing the current flowing through the diode element 6 in various ways.
  • the timing at which the reverse recovery current starts to flow and the timing at which the reverse recovery current starts to flow are set in advance.
  • the first time T1 and the second time T2 are stored in a memory 1039 or the like (which may be designed with an analog circuit or the like) described later in association with the current.
  • FIG. 35 is a block diagram of the pulse control unit 1027 for the drive IC 1024B.
  • the memory 1039 receives the current detection signal and outputs the first time T1 and the second time T2 (or the first time T1 and the pulse width Tw) necessary for the pulse control.
  • the pulse start determining unit 1040 generates a rising timing signal of the gate drive signal SGL from the PWM signal FL and the first time T1.
  • the pulse width determination unit 1041 generates a falling timing signal of the gate drive signal SGL from the PWM signal FL and the second time T2 (or pulse width Tw).
  • the pulse generation unit 1042 generates a gate drive signal SGL based on these timing signals and outputs it to the drive circuit 1028.
  • the pulse start determination unit 1040 has a configuration shown in FIG. 36, for example. During the period when the PWM signal FL is at the H level, the MOS transistor 1044 is turned on by the gate voltage via the buffer 1043, so the voltage of the capacitor 1045 is zero. When the PWM signal FL falls to the L level, the MOS transistor 1044 is turned off, and the capacitor 1045 is charged by the constant current circuit 1046. The comparator 1047 compares the voltage of the capacitor 1045 with a reference voltage corresponding to the first time T1, and outputs a timing signal. The pulse width determination unit 1041 has the same configuration.
  • the first time T1 that is, the reference voltage output from the memory 1039 changes according to the current flowing in the diode element 1006 during the period in which the PWM signal FL is at the H level, and thereby the rise of the gate drive signal SGL. This shows how the timing signal changes.
  • the first time T1 may be stored in the memory 1039, and the read value may be changed according to the element current.
  • the waveform of the gate drive voltage VGL when a gate drive pulse is applied differs between when the current flows through the diode element 1006 and when the current flows through the transistor element 1005 while the PWM signal FL is at the L level. . Therefore, in consideration of the following items (1) to (3), it is assumed that the gate drive voltage VGL monotonously increases or monotonously decreases according to the gate drive capability of the drive circuit 1028.
  • the second time T2 (or the first time T1 and the pulse width Tw) is set.
  • Dead time Td The dead time Td of the PWM signals FH and FL is a fixed time.
  • FIG. 45 shows the reinjection time when the gate drive pulse timing is set assuming that the mirror period exists, and when the gate drive pulse timing is set assuming that the mirror period does not exist.
  • the reinjection time Tc when the reinjection time Tc is set assuming the mirror period, the actual reinjection time becomes longer than Tc because the mirror period does not actually occur.
  • the target reinjection time Tc can be set. Therefore, the timing of the gate drive pulse is set using the time excluding the mirror period. This also has an effect of ensuring a longer pulse width Tw of the gate drive pulse.
  • (3) Drive capability of drive circuit 1028 When a gate drive pulse is output, the drive circuit 1028 switches the changeover switches 1030 and 1034 (see FIG.
  • the gate drive voltage VGL is output with a high gate drive capability (here, the maximum gate drive capability). This is because, during the application period of the gate drive pulse, current continues to flow through the diode element 1006, so that a surge due to a steep current change does not occur.
  • the drive circuit 1028 outputs a gate drive voltage VGL while maintaining a certain gate drive capability when the gate drive voltage VGL is raised.
  • the other semiconductor element 1001A is short-circuited by temporarily holding the gate drive voltage VGL at the intermediate voltage Vm (for example, 12V) in the process of increasing the gate drive voltage VGL.
  • Vm for example, 12V
  • a method for reducing the short-circuit current is used.
  • a forward current flows through the diode element 1006 of the semiconductor element 1001B, there is no possibility of short-circuiting along the path through the semiconductor elements 1001A and 1001B. This eliminates the need for two-step driving using the intermediate voltage Vm.
  • the drive circuit 1028 maintains a high driving capability and outputs the gate drive voltage VGL. Deviation from time Tm can be reduced. That is, the reinjection time Tc can be accurately controlled. Further, variation in the pulse width Tw of the gate drive pulse is reduced, and a longer pulse width Tw can be secured.
  • the semiconductor elements 1001A and 1001B are in the order of the diode elements 1006 during the period when the PWM signals FH and FL are at the H level, respectively. If it is determined that the current is flowing in the direction, the gate drive signals SGH and SGL for instructing the application of the gate drive pulse are output. By this pulse control, holes accumulated in the diode element 1006 are reduced and the reverse recovery current is reduced, so that switching loss can be reduced.
  • the pulse control unit 1027 of the drive ICs 1024A and 1024B sets the gate drive signals SGH and SGL to the H level from the time when the first time T1 elapses to the time when the second time T2 elapses, starting from the falling time of the PWM signals FH and FL. To do. Since the falling point of the PWM signals FH and FL is also the starting point of the dead time Td, the gate driving pulse can be applied while effectively preventing the arm short circuit by effectively using the dead time Td having a certain time.
  • the first time T1 and the second time T2 are the dead time Td, the delay and variation of the gate drive voltages VGH and VGL measured in advance corresponding to the element current, and the reverse recovery current. Is set based on the time until the flow starts, and is stored in the memory 1039 of the pulse control unit 27.
  • the time width (pulse width Tw) between the first time T1 and the second time T2 is set longer as the current flowing through the diode element 1006 during the period in which the PWM signals FH and FL are at the H level is larger.
  • the first time T1 and the second time T2 are set so that the reinjection time Tc is greater than zero. Thereby, it is possible to prevent a short-circuit current from flowing through the half bridge circuit 4. Further, the pulse width Tw is set to be equal to or shorter than a predetermined allowable injection time. As a result, the reverse recovery current can be limited to a value corresponding to the allowable injection time or less, and the switching loss can be reduced.
  • the first time T1 and the second time T2 are set in consideration of the waveform of the gate drive voltage and the drive mode of the drive circuit 1028 when the gate drive pulse is applied. That is, if a gate drive pulse is applied when a current flows through the diode element 1006, the mirror period does not occur. Therefore, the first time T1 and the second time T2 are set as those in which the mirror period does not occur.
  • the drive circuit 1028 outputs the gate drive voltages VGH and VGL according to the maximum gate drive capability that the drive circuit 1028 has. Furthermore, if a current flows through the diode element 1006, there is no possibility of a short circuit. Therefore, the drive circuit 1028 monotonously increases the gate drive voltages VGL and VGH while maintaining a constant gate drive capability when the gate drive voltages VGL and VGH are raised.
  • the first time T1 and the second time T2 are set in accordance with such a driving mode.
  • the gate driving voltage when using a driving mode peculiar to such a gate driving pulse has a smaller delay and variation than the gate driving voltage when using a driving mode that cuts off the transistor element 1005. Therefore, the drive ICs 1024A and 1024B can increase the accuracy of the application timing of the gate drive pulse, and can accurately control the reinjection time Tc. As a result, the reinjection time can be controlled to be short while preventing an arm short circuit, and the switching loss can be further reduced. Further, a wider pulse width Tw of the gate drive pulse can be secured. Further, since the pulse control unit 1027 applies the gate drive signal starting from the falling point of the PWM signals FH and FL, no separate timing signal is required, and the conventional drive control device can be replaced. It becomes easy.
  • the pulse control unit 1027 stops the current from flowing through the diode element 1006 even during the period (time t4 to t6) in which the gate drive pulse is applied based on the pulse control (the detected current value becomes less than the specified value Im2). If it is determined that there is a possibility or no current is flowing, the application of the gate drive pulse is immediately stopped. Thereby, even when the load current changes suddenly, an arm short circuit can be reliably prevented. Furthermore, since it is not necessary to set the specified value Im2 higher in preparation for a sudden change in the load current, a wide current range for performing the pulse control can be secured, and the switching loss can be further reduced.
  • the conduction loss can be reduced by using a MOS transistor or the like for the semiconductor elements 1A and 1B as described in the second embodiment and performing the synchronous rectification, a diode is added to the semiconductor element. If it is determined that the current is flowing in the forward direction of the structure, instead of the first time T1, the rising edge (t2) of the gate drive control signals SGL and SGH and the second time T2 as shown in FIG. Accordingly, it is preferable to output the gate drive voltages VGH and VGL with a high drive capability.
  • the drive control system having a circuit configuration corresponding to the first embodiment has been described.
  • the present invention can also be applied to the drive control system described in the fifth, sixth, seventh, eighth, and ninth embodiments.
  • the semiconductor element 1A, 1B described in FIGS. 8, 9, 10, 11, 12, 13, 14 can be reduced in conduction loss by performing synchronous rectification using a MOS transistor or the like, the semiconductor element If it is determined that the current flows in the forward direction of the diode structure, the rise (t2) of the gate drive control signals SGL and SGH and the second time as shown in FIG. 7 instead of the first time T1. It is preferable to output the gate drive voltages VGH and VGL with high drive capability according to T2.
  • the drive control system having a circuit configuration corresponding to the first embodiment has been described.
  • 13, 14, and 15 can also be applied to the drive control system.
  • the order of the diode structure in the semiconductor element is reduced. If it is determined that a current is flowing in the direction of the direction, instead of the first time T1, as shown in FIG. 19, it is high according to the rise (t2) of the gate drive control signals SGL and SGH and the second time T2.
  • the gate drive voltages VGH and VGL may be output with the drive capability.
  • the drive control system having the circuit configuration corresponding to the first embodiment has been described.
  • FIG. 33 corresponding to the first embodiment
  • FIG. , 19, 27, 32 can be applied to the drive control system described in the modified examples of the first to sixteenth embodiments.
  • gate drive is performed with high driving capability in accordance with the rise (t2, t1c, t1b) of the gate drive control signals SGL, SGH and the second time T2.
  • the voltages VGH and VGL should be output.
  • RC-IGBT is not limited to a trench gate type, but may be a planar gate type.
  • the semiconductor elements 1001A and 1001B may be elements having a control gate and formed with a parasitic diode, for example, a MOS transistor and a diode having a MOS gate.
  • the MOS transistor is not limited to a trench gate type but may be a planar gate type.
  • the MOS transistor may have an SJ (Super Junction) structure.
  • the sense resistors 1007A and 1007B are provided as the current detection means after the sense elements are formed in the semiconductor elements 1001A and 1001B.
  • sense resistors 1007A and 1007B may be provided in series with the semiconductor elements 1001A and 1001B excluding the sense elements. Since the sense resistors 1007A and 1007B and the main element are directly connected, a high-speed answer is possible.
  • Hall sensors 1059A and 1059B may be provided for the semiconductor elements 1001A and 1001B.
  • Hall sensors may be provided on the output lines from the output terminal Nt to the load. In any configuration, the current can be detected with high accuracy.
  • An insulated current sensor such as a GMR (Giant Magneto Resistance) sensor may be used instead of the Hall sensor.
  • This disclosure includes the following aspects.
  • each semiconductor element has an insulated gate transistor structure and a diode structure to which a gate driving voltage is applied, which are formed on the same semiconductor substrate.
  • the two semiconductor elements constitute a half bridge circuit. The first time and the second time are set in advance so as not to cause an arm short circuit between the two semiconductor elements.
  • the semiconductor element to be driven has a common gate structure for the transistor structure and the diode structure.
  • the first control unit applies a gate drive voltage to the one semiconductor element in a state where a current flows through the diode structure of one semiconductor element, the current is accumulated in the diode structure.
  • the number of holes to be reduced is reduced, and the effect of reducing the reverse recovery current occurs.
  • a device current flows in the reverse direction when a device current (for example, a diode current) flows in the forward direction of the diode structure.
  • the waveform of the gate drive voltage when a gate drive pulse is applied is different.
  • the drive control device applies a gate drive pulse only when a current flows through the semiconductor element in the forward direction of the diode structure, so control based on small delays and variations in the former case is possible, and the application timing Can improve the accuracy.
  • the first control means inputs at least one of the command signals (for example, PWM signals) on the high potential side (high side) and the low potential side (low side) that change in a complementary manner.
  • a gate drive voltage is applied to the semiconductor element.
  • This command signal has a dead time (period in which both sides are off to prevent arm short circuit) at the time of switching. Since the dead time is a fixed time, the time from the input of the off command signal on one side to the input of the on command signal on the other side is accurately guaranteed.
  • the gate drive signal necessary for applying the gate drive voltage at a desired timing starting from the input time point of the off command signal can be accurately set.
  • the time from when the gate drive pulse is applied to one semiconductor element until the reverse recovery current starts to flow for example, the time when carriers (holes) are injected again into the diode structure after the application of the gate drive pulse is completed. (Reinjection time) can be accurately controlled. As a result, since the reinjection time can be controlled to be short while preventing an arm short circuit, the reverse recovery current is reduced and the switching loss can be reduced. In addition, since the first control means can apply the gate drive signal using the off command signal as a reference timing, a separate timing signal is not required, and the replacement from the conventionally used drive control device is facilitated.
  • the drive control device may be configured such that the current of the semiconductor element that flows in the forward direction of the diode structure is a current based on the current detection signal during a period in which an ON command signal is input to the semiconductor element to be driven and controlled. If it is determined that the threshold value is equal to or greater than the threshold value, a second control unit that outputs a gate drive signal that instructs to shut off the gate drive voltage may be further provided.
  • the second control means is configured to cause the current of the semiconductor element that flows in the forward direction of the diode structure based on the current detection signal during a period in which an ON command signal is input to the semiconductor element to be driven and controlled, to the current direction.
  • a gate drive signal for instructing application of the gate drive voltage is output.
  • the conduction loss when the gate drive voltage is cut off is equal to the conduction loss when the gate drive voltage is applied.
  • the current value is measured in advance and set as a current threshold value.
  • the semiconductor element has a characteristic that the conduction loss differs when the gate drive voltage is cut off and when it is applied. This is because hole injection is affected by channel formation.
  • the magnitude relationship between the conduction loss when the gate drive voltage is cut off and the conduction loss when the gate drive voltage is applied varies depending on the type of semiconductor element, withstand voltage, and the like. Therefore, in this means, this relationship is measured in advance, and a current threshold value at which the magnitude relationship is switched is set.
  • the second control means outputs a gate drive voltage cutoff command when the current flowing in the forward direction of the diode structure in the semiconductor element is equal to or greater than the current threshold, and when the current is less than the current threshold, the gate drive voltage The application command is output.
  • the conduction loss can be appropriately reduced regardless of the type and breakdown voltage of the semiconductor element.
  • the gate drive voltage is reliably applied to the semiconductor element during the period in which the current flows in the reverse direction of the diode structure, the current according to the ON command signal can be supplied to the transistor structure.
  • the second control means is configured such that a current less than the current threshold is applied to the semiconductor element in a forward direction of the diode structure during a period in which an ON command signal is input to the semiconductor element to be driven and controlled. If it is determined that the current is flowing, the gate drive signal for instructing the application of the gate drive voltage may be output after the input time of the off command signal to the semiconductor element is extended to the time point of the second time. .
  • control by the second control means and the control by the first control means can be executed by a series of gate drive voltages, and the conduction loss can be further reduced.
  • the drive control device outputs a gate drive signal for instructing application of the gate drive voltage during a period in which an on-command signal for the semiconductor element to be driven is input, and the diode is supplied to the semiconductor element during the period
  • a gate drive signal for instructing application of the gate drive voltage is set to a time point at which the second time has passed after an input time point of the off command signal to the semiconductor element.
  • a second control means for extending the output to the output.
  • the gate drive voltage during the period when the ON command signal is inputted and the gate drive voltage related to the control of the first control means can be executed as a series of gate drive voltages, and the conduction loss can be further reduced.
  • an insulated gate transistor structure to which a gate driving voltage is applied and a diode structure are formed on the same semiconductor substrate, and the current-carrying electrode of the transistor structure and the current-carrying electrode of the diode structure are
  • a common drive control device for a semiconductor element includes: a current detection unit that outputs a current detection signal corresponding to a current flowing through the semiconductor element; and the current detection signal during a period when an ON command signal is input to the semiconductor element. If the current of the semiconductor element flowing in the forward direction of the diode structure is determined to be greater than or equal to the current threshold value based on the second, a gate drive signal for commanding the interruption of the gate drive voltage is output. Control means.
  • the second control means is configured such that the current of the semiconductor element that flows in the forward direction of the diode structure is based on the current detection signal during the period when the ON command signal for the semiconductor element is input. If it is determined that the value is less than the value, a gate drive signal for instructing application of the gate drive voltage is output. When a current flows through the semiconductor element in the forward direction of the diode structure, the conduction loss when the gate drive voltage is cut off is equal to the conduction loss when the gate drive voltage is applied. The current value is measured in advance and set as a current threshold value.
  • the second control means determines that the current flowing in the forward direction of the diode structure in the semiconductor element is greater than or equal to the current threshold based on the current detection signal during the period when the ON command signal for the semiconductor element is input. Then, a gate drive signal for instructing shutoff of the gate drive voltage is output. If it is determined that it is less than the current threshold value, a gate drive signal for instructing application of the gate drive voltage is output. According to this configuration, it is possible to obtain the same operation and effect as the first aspect described above. Furthermore, the conduction loss can be appropriately reduced regardless of the type and breakdown voltage of the semiconductor element. In addition, since the gate drive voltage is reliably applied to the semiconductor element during the period in which the current flows in the reverse direction of the diode structure, the current according to the ON command signal can be supplied to the transistor structure.
  • the second control means may be configured to be able to input a threshold value specifying signal for specifying the current threshold value from the outside.
  • the second control means uses a current threshold value corresponding to the input threshold value specifying signal for determination of a current flowing through the semiconductor element during a period in which the ON command signal is input.
  • the drive control device can drive various semiconductor elements of different types, withstand voltages, etc. with low conduction loss.
  • At least one of the first control means or the second control means may perform normal control.
  • at least one of the first control means and the second control means receives an ON command signal for the semiconductor element to be driven and controlled when the current flowing to the load through the semiconductor element is smaller than a specified value.
  • a gate drive signal for instructing application of the gate drive voltage.
  • at least one of the first control means and the second control means receives an off command signal for the semiconductor element to be driven and controlled when the current flowing through the semiconductor element to the load is smaller than a specified value.
  • a gate drive signal for instructing to cut off the gate drive voltage.
  • the drive control device may further include a drive circuit that inputs the gate drive signal and outputs the gate drive voltage.
  • the drive circuit is composed of an IC having a withstand voltage corresponding to the gate drive voltage.
  • a drive control device is provided for each semiconductor element constituting the half bridge circuit. Since it is only necessary to replace the drive control device (drive IC) with a drive system for semiconductor elements that has already been widely used, the drive system can be easily changed.
  • the drive control device may drive and control two semiconductor elements constituting the half bridge circuit.
  • the drive control device is composed of an IC having a withstand voltage corresponding to the power supply voltage applied to the half bridge circuit.
  • the IC includes a drive circuit that inputs the gate drive signal and outputs the gate drive voltage.
  • the current detection means is provided so as to detect a current flowing in at least one of the two semiconductor elements.
  • At least one of the first control means and the second control means is configured to apply the gate drive voltage to the other semiconductor element during the period in which the gate drive voltage is applied to one of the two semiconductor elements. Prohibit application.
  • the current detection means detects a current flowing through at least one of the two semiconductor elements. If one current can be detected, the current of the other semiconductor element can also be detected indirectly.
  • This drive control device can grasp the drive state of the two semiconductor elements constituting the half bridge circuit.
  • the control unit prohibits application of the gate drive voltage to the other semiconductor element during the period in which the gate drive voltage is applied to one of the two semiconductor elements. Thereby, an arm short circuit can be prevented reliably.
  • the drive control device may drive and control the two semiconductor elements constituting the half bridge circuit.
  • the drive control device includes a control IC that provides at least one of the first control means and the second control means, and a drive that applies the gate drive voltage to each semiconductor element based on a gate drive signal input from the control IC. It comprises an IC, an insulating circuit that electrically insulates the gate drive signal output from the control IC and transmits the signal to the drive IC, and the current detection means.
  • the control IC outputs a gate drive signal for prohibiting application of the gate drive voltage to the other semiconductor element during a period in which the gate drive voltage is applied to one of the two semiconductor elements.
  • This drive control device can grasp the drive state of the two semiconductor elements constituting the half bridge circuit.
  • the control IC outputs a gate drive signal for prohibiting application of the gate drive voltage to the other semiconductor element during a period in which the gate drive voltage is applied to one of the two semiconductor elements. Thereby, an arm short circuit can be prevented reliably.
  • the current detection means can detect only one of the two semiconductor elements, the current of the other semiconductor element can also be indirectly detected.
  • the current detection means may be provided by the control IC.
  • control IC performs software processing for each control described above.
  • each semiconductor element has an insulated gate transistor structure and a diode structure to which a gate driving voltage is applied, which are formed on the same semiconductor substrate.
  • the detection means detects a change in the current detection signal, a pulse is output so that an arm short circuit does not occur between the two semiconductor elements.
  • the time is prior to the point of input of the ON command signal for the one of the semiconductor elements, two semiconductor elements constitute a half-bridge circuit.
  • each semiconductor element has an insulated gate transistor structure and a diode structure to which a gate driving voltage is applied, which are formed on the same semiconductor substrate, and the transistor structure is energized.
  • the drive control device for two semiconductor elements in which the electrode and the current-carrying electrode of the diode structure are common, a voltage detection means for outputting a voltage detection signal based on the electrode potential of one of the semiconductor elements, and the one semiconductor element
  • Control means for outputting a pulse from an input time point of an ON command signal to the one semiconductor element so as not to cause an arm short circuit.
  • the two semiconductor elements constitute a half bridge circuit.
  • the drive control device includes: a current detection unit that outputs a current detection signal corresponding to a current flowing through at least one semiconductor element; and the current detection signal when an off command signal is input to the one semiconductor element.
  • a current detection unit that outputs a current detection signal corresponding to a current flowing through at least one semiconductor element; and the current detection signal when an off command signal is input to the one semiconductor element.
  • Each semiconductor element has the insulated gate type transistor structure and diode structure to which a gate drive voltage is applied formed in the same semiconductor substrate, and electricity supply of the said transistor structure
  • a pulse is generated in response to an OFF command signal being input to the input means.
  • And means for outputting comprises a control means for outputting a pulse a predetermined time before the input time of the ON command signal for the one of the semiconductor element so arm short circuit does not occur between the two semiconductor elements.
  • the two semiconductor elements constitute a half bridge circuit.
  • each semiconductor element has an insulated gate transistor structure and a diode structure to which a gate drive voltage is applied, which are formed on the same semiconductor substrate, and the transistor structure is energized.
  • a drive control device for two semiconductor elements in which an electrode and a current-carrying electrode of the diode structure are common, a voltage detection means for outputting a voltage detection signal based on an electrode potential of one of the semiconductor elements, and the other semiconductor element Input means for inputting a command signal to the one semiconductor element, and when the off-command signal for the one semiconductor element is input, the one semiconductor element has the diode structure based on the voltage detection signal and the input signal of the input means.
  • a pulse is generated in response to an OFF command signal being input to the input means.
  • the two semiconductor elements constitute a half bridge circuit.
  • the drive control device may further include control voltage detection means for outputting a control voltage detection signal corresponding to the control voltage of the other semiconductor element.
  • the control means outputs a pulse based on the fluctuation of the control voltage detection signal of the control voltage detection means.
  • each semiconductor element has an insulated gate transistor structure and a diode structure to which a gate driving voltage is applied, which are formed on the same semiconductor substrate, and the transistor structure is energized.
  • the ON command signal Starting from the time when the OFF command signal is input through the input, the gate drive power is supplied from the time when the first time has elapsed to the time when the second time has elapsed.
  • a control means for outputting a gate drive signal for commanding the application The first time and the second time are set in advance so as not to cause an arm short circuit between the two semiconductor elements.
  • control means may determine the current flowing through the load by determining whether or not the voltage has changed by the voltage detector. When the control means determines that the current of the load is within a predetermined range near 0, the control means outputs a gate drive signal for instructing cutoff of the gate drive voltage. When the control means determines that the load current is outside a predetermined range near 0, the control means outputs a gate drive signal for instructing application of the gate drive voltage.
  • control means determines that the current flows in the forward direction of the diode structure based on the voltage detection signal during a period in which an ON command signal is input to the semiconductor element to be driven and controlled.
  • You may output the gate drive signal which designates interruption
  • the control means determines that the current does not flow in the forward direction of the diode structure based on the voltage detection signal during a period in which an ON command signal is input to the semiconductor element to be driven and controlled, A gate drive signal for commanding application is output.
  • the drive control device may further include a drive circuit that inputs the gate drive signal and outputs the gate drive voltage.
  • the drive circuit is composed of an IC having a withstand voltage corresponding to the gate drive voltage.
  • the drive control device may drive and control the two semiconductor elements constituting the half bridge circuit.
  • the drive control device is composed of an IC having a withstand voltage corresponding to the power supply voltage applied to the half bridge circuit.
  • the IC provides a drive circuit that inputs the gate drive signal and outputs the gate drive voltage.
  • the voltage detecting means is provided so as to detect at least one voltage of the two semiconductor elements.
  • the control means prohibits application of the gate drive voltage to the other semiconductor element during a period in which the gate drive voltage is applied to one of the two semiconductor elements.
  • the drive control device may drive and control the two semiconductor elements constituting the half bridge circuit.
  • the drive control device includes a control IC having the control means, a drive IC for applying the gate drive voltage to the semiconductor element based on a gate drive signal input from the control IC, and a gate drive output from the control IC
  • An insulating circuit that electrically insulates the signal and transmits the signal to the drive IC and the voltage detection means are configured.
  • the control IC outputs a gate drive signal for prohibiting application of the gate drive voltage to the other semiconductor element during a period in which the gate drive voltage is applied to one of the two semiconductor elements.
  • the voltage detection means may be provided by the control IC.
  • the voltage detection means may be formed on the semiconductor substrate apart from the outer periphery of the element formation region of the semiconductor element.
  • the voltage detecting means detects an intermediate potential using an electric field limiting ring having a conductivity type opposite to the conductivity type of the semiconductor substrate.
  • an insulated gate transistor structure to which a gate drive voltage is applied and a diode structure are formed on the same semiconductor substrate, and the conduction electrode of the transistor structure and the conduction electrode of the diode structure are
  • the drive control device for a semiconductor element having a common electrode includes a current detection unit that outputs a current detection signal corresponding to a current flowing through the semiconductor element, and an on command signal for the semiconductor element based on the current detection signal.
  • a preset first time elapses from the input time point of the subsequent off command signal Control means for outputting a gate drive signal for instructing application of the gate drive voltage from a time point until a lapse of a second time; and If the input signal and a drive circuit for outputting the gate drive voltage.
  • the time width between the first time and the second time is set to a value corresponding to the magnitude of the current flowing in the semiconductor element during the period when the ON command signal for the semiconductor element is input.
  • the semiconductor element to be driven has a common gate structure for the transistor structure and the diode structure.
  • a control means applies a gate drive voltage to the one semiconductor element in a state where current flows in the diode structure of one semiconductor element, holes accumulated in the diode structure Decreases, and the effect of reducing the reverse recovery current occurs.
  • a device current flows in the reverse direction when a device current (for example, a diode current) flows in the forward direction of the diode structure.
  • the waveform of the gate drive voltage when a gate drive pulse is applied is different.
  • the rise time and fall time of the gate drive voltage are shortened (or can be shortened). This reduces the delay and variation of the gate drive pulse.
  • the delay and variation of the gate drive pulse increase.
  • the drive control device applies a gate drive pulse only when a current flows through the semiconductor element in the forward direction of the diode structure, so control based on small delays and variations in the former case is possible, and the application timing Can improve the accuracy.
  • the semiconductor element is, for example, arranged in series on the high potential side (high side) and the low potential side (low side) across the output terminal to constitute a half bridge circuit.
  • the drive control device inputs at least one command signal among high-side and low-side command signals (for example, PWM signals) that change complementarily, and applies a gate drive voltage to at least one side semiconductor element.
  • This command signal has a dead time at the time of switching. Since the dead time is a fixed time, the time from the input of the off command signal on one side to the input of the on command signal on the other side is accurately guaranteed.
  • the control means measures the delay and variation described above in advance, grasps the dead time, and sets the time width between the first time and the second time during the period when the ON command signal for the semiconductor element is input.
  • the value is controlled according to the magnitude of the current flowing in the current.
  • the time from when the gate drive pulse is applied to one semiconductor element until the reverse recovery current starts to flow for example, the time when carriers (holes) are injected again into the diode structure after the application of the gate drive pulse (carrier)
  • the reinjection time can be accurately controlled. Therefore, according to this means, the reinjection time can be controlled to be short while preventing an arm short circuit, so that the reverse recovery current is reduced and the switching loss can be reduced.
  • the control means can apply the gate drive signal using the off command signal as a reference timing, a separate timing signal is not required, and replacement from a conventionally used drive control device is facilitated.
  • the semiconductor element may include one semiconductor element and the other semiconductor element.
  • One semiconductor element and the other semiconductor element constitute a half-bridge circuit. After an off command signal is input to the semiconductor element in a state where a current flows in the forward direction of the diode structure, an on command signal is input to the other semiconductor element after a certain dead time.
  • an on command signal is input to the other semiconductor element after a certain dead time.
  • the gate drive voltage is cut off after the second time has elapsed, and when a current exceeding the current flowing in the one semiconductor element starts flowing in the transistor structure of the other semiconductor element.
  • the first time and the second time are set so that the time width is greater than zero and less than or equal to a predetermined allowable injection time.
  • the above time width is the above-described carrier reinjection time. By setting this time larger than zero, it is possible to prevent a short-circuit current from flowing through the half-bridge circuit. In addition, by setting this time to be equal to or less than the predetermined allowable injection time, the reverse recovery current can be limited to a magnitude corresponding to the allowable injection time, and switching loss can be reduced.
  • the time width between the first time and the second time is set to be longer as the current flowing in the semiconductor element is larger during the period when the ON command signal to the semiconductor element is input. May be.
  • the time width between the first time and the second time is set to be longer as the current flowing through the semiconductor element is larger during the period when the ON command signal is input to the semiconductor element. ing. This is because the larger the current, the longer the time from when the OFF command signal is input until the reverse recovery current starts to flow. As a result, an increase in reinjection time can be suppressed regardless of the magnitude of current, and switching loss can be reduced.
  • the gate drive voltage based on the gate drive signal output from the time point of the first time to the time point of the second time monotonously increases or decreases monotonously according to the gate drive capability of the drive circuit.
  • the first time and the second time may be set.
  • the gate drive pulse applied after the input of the off command signal has the effect of reducing the holes accumulated in the diode structure and does not have the effect of energizing or disconnecting the semiconductor element. For this reason, the voltage between the current-carrying terminals of the transistor elements (between CE and DS) does not change and the mirror period does not occur. Further, during the application period of the gate drive pulse, a current continues to flow in the semiconductor element in the forward direction of the diode structure, so that a special gate drive voltage having a protective action in preparation for an arm short circuit is not necessary. Therefore, the carrier reinjection time can be controlled to a desired value by setting the gate drive signal so that the gate drive voltage monotonously increases or decreases.
  • the first time and the second time are set on the assumption that a mirror period does not occur in the gate drive voltage based on the gate drive signal output from the elapse of the first time to the elapse of the second time. May be.
  • the first time and the second time are set on the assumption that the mirror period does not occur in the gate drive voltage based on the gate drive signal output from the elapse of the first time to the elapse of the second time. Yes.
  • an increase in the carrier reinjection time can be suppressed as compared with the case where the gate drive signal is set assuming the occurrence of the mirror period.
  • the drive circuit may output the gate drive voltage while maintaining a constant gate drive capability when the gate drive signal changes at the time when the first time has elapsed.
  • the drive circuit outputs a gate drive voltage while maintaining a constant gate drive capability when the gate drive signal changes at the elapse of the first time.
  • a method of reducing a short-circuit current when the semiconductor element has a short-circuit fault is used by temporarily holding the gate drive voltage at an intermediate voltage in the process of increasing the gate drive voltage. .
  • a gate drive pulse is applied at an appropriate timing, a short-circuit current will not flow. According to this means, by maintaining a constant gate drive capability and eliminating unnecessary intermediate voltages, variations in the rise time of the gate drive voltage can be reduced and the reinjection time can be accurately controlled.
  • the drive circuit has a high driving capability when the gate driving signal changes at the time when the first time elapses and at the time when the second time elapses.
  • a drive voltage may be output.
  • the drive circuit increases the gate drive voltage with a higher driving capability than when the semiconductor element is disconnected. Output. This is because, during the application period of the gate drive pulse, current continues to flow through the semiconductor element in the forward direction of the diode structure, so that a surge due to a steep current change or voltage change does not occur. Thereby, variations in the rise time and fall time of the gate drive voltage can be reduced, and the reinjection time can be accurately controlled.
  • each section is expressed as S100, for example.
  • each section can be divided into a plurality of subsections, while a plurality of sections can be combined into one section.
  • each section configured in this manner can be referred to as a device, module, or means.

Abstract

This drive control device (32A, 32B, 52, 54, 56, 61, 62, 71, 72) of two semiconductor elements (1A, 1B) having a diode structure (6) and a transistor structure (5) having a powered electrode (15, 18) in common is provided with: a current detection means (7A, 7B, 25, 59, 60, 68) that outputs a current detection signal of the semiconductor elements; and a first control means (27) that, when it has been determined that current is flowing in the forward direction of the diode structure in the semiconductor element during the period that an on command signal is being input to the semiconductor element, outputs a gate drive signal from the point in time that a first time has elapsed to the point of time a second time has elapsed relative to the point in time that a subsequent off command signal is input. The first time and second time are pre-set in a manner such that an arm short-circuit does not arise between the two semiconductor elements.

Description

駆動制御装置Drive control device 関連出願の相互参照Cross-reference of related applications
 本開示は、2013年7月10日に出願された日本出願番号2013-144561号と、2013年7月10日に出願された日本出願番号2013-144560号と、2014年6月30日に出願された日本出願番号2014-134227号とに基づくもので、ここにその記載内容を援用する。 The present disclosure includes Japanese application number 2013-144561 filed on July 10, 2013, Japanese application number 2013-144560 filed on July 10, 2013, and application filed on June 30, 2014. Which is based on Japanese Patent Application No. 2014-134227, which is incorporated herein by reference.
 本開示は、絶縁ゲート型のトランジスタ構造とダイオード構造とが同一の半導体基板に形成された半導体素子の駆動制御装置に関するものである。 The present disclosure relates to a drive control device for a semiconductor element in which an insulated gate transistor structure and a diode structure are formed on the same semiconductor substrate.
 RC-IGBT、MOSトランジスタ、MOSゲートを備えたダイオードなど、トランジスタ素子とダイオード素子とが同一の半導体基板に形成され、トランジスタ素子の通電電極(コレクタ、エミッタまたはドレイン、ソース)とダイオード素子の通電電極(カソード、アノード)とが共通の電極とされた半導体素子が知られている(非特許文献1参照)。こうした半導体素子を、インバータやコンバータなどの電力変換装置においてスイッチング素子として用いる場合、スイッチング損失および/または導通損失を低減することが必要である。 Transistor element and diode element such as RC-IGBT, MOS transistor, diode with MOS gate, etc. are formed on the same semiconductor substrate, transistor element conducting electrode (collector, emitter or drain, source) and diode element conducting electrode A semiconductor element having a common electrode (cathode, anode) is known (see Non-Patent Document 1). When such a semiconductor element is used as a switching element in a power conversion device such as an inverter or a converter, it is necessary to reduce switching loss and / or conduction loss.
 電力変換装置は、ハーフブリッジ回路を基本構成とし、上下アームの半導体素子を相補的にオンオフさせることで交流-直流電圧変換、直流-交流電圧変換を行い、或いは入力電圧を昇圧、降圧する。このハーフブリッジ回路において、電源短絡(アーム短絡)を防止するため、上下の半導体素子を同時にオフするデッドタイムが設けられている。 The power conversion device has a half-bridge circuit as a basic configuration, and performs AC-DC voltage conversion and DC-AC voltage conversion by complementarily turning on and off the semiconductor elements of the upper and lower arms, or boosts and steps down the input voltage. In this half-bridge circuit, in order to prevent a power supply short circuit (arm short circuit), a dead time for simultaneously turning off the upper and lower semiconductor elements is provided.
 デッドタイムの期間中は、一方の半導体素子のダイオード素子に負荷電流が還流する。デッドタイムの終了後、他方の半導体素子がオンすると、負荷電流が上記ダイオード素子から当該他方の半導体素子に切り替わる。この際、ダイオード素子に蓄積されていたキャリアの放出による逆回復電流が流れる。この逆回復電流は、スイッチング損失を増加させるとともにノイズの発生要因となる。 During the dead time, the load current flows back to the diode element of one semiconductor element. When the other semiconductor element is turned on after the dead time is over, the load current is switched from the diode element to the other semiconductor element. At this time, a reverse recovery current flows due to the emission of carriers accumulated in the diode element. This reverse recovery current increases switching loss and causes noise.
 これに対し、非特許文献1には、他方の半導体素子がターンオンする少し前に、一方の半導体素子に正のゲート駆動電圧を印加する方法が開示されている。この方法によれば、半導体素子の電子電流の増加とともにホール電流が減少し、ホールの注入が抑制され、逆回復電流が低減できる。 On the other hand, Non-Patent Document 1 discloses a method in which a positive gate drive voltage is applied to one semiconductor element slightly before the other semiconductor element is turned on. According to this method, the hole current decreases as the electron current of the semiconductor element increases, hole injection is suppressed, and the reverse recovery current can be reduced.
 一方、上述した半導体素子は、ダイオード素子に電流が流れている状態でゲート駆動電圧が印加されると、チャネルが形成されてホールの注入が抑制されるので、導通損失が増大するという特性を有している。これに対し、ダイオード素子に電流が流れているか否かを判定し、電流が流れているときにはゲート駆動電圧を遮断し、流れていないときにはゲート駆動電圧を印加する駆動制御が提案されている。 On the other hand, the semiconductor element described above has a characteristic that, when a gate drive voltage is applied in a state where a current flows through the diode element, a channel is formed and hole injection is suppressed, so that conduction loss increases. is doing. On the other hand, there has been proposed drive control in which it is determined whether or not a current is flowing through the diode element, the gate drive voltage is cut off when the current is flowing, and the gate drive voltage is applied when the current is not flowing.
 半導体素子に一時的にゲート駆動電圧(ゲート駆動パルス)を印加してキャリアの注入を抑制させる非特許文献1記載の方法は、逆回復電流を低減するために有効である。しかし、ハーフブリッジ回路を構成する2つの半導体素子の間で電流を切り替える過渡時にゲート駆動パルスを印加する必要があるため、印加タイミングがわずかでも遅れるとアーム短絡が発生する。逆に印加タイミングが早いと、ゲート駆動パルスの印加終了後に再び注入されるホールの量が増え、逆回復電流の低減効果が減少する。上記非特許文献1には、ゲート駆動パルスの具体的な印加タイミングやパルス幅が示されていない。当該方法を実用化するには、こうしたゲート駆動パルスの印加手段の確立が必要である。 The method described in Non-Patent Document 1 that suppresses carrier injection by temporarily applying a gate drive voltage (gate drive pulse) to a semiconductor element is effective in reducing the reverse recovery current. However, since it is necessary to apply a gate drive pulse at the time of switching current between two semiconductor elements constituting the half-bridge circuit, an arm short circuit occurs when the application timing is slightly delayed. Conversely, if the application timing is early, the amount of holes injected again after the application of the gate drive pulse is increased, and the effect of reducing the reverse recovery current is reduced. Non-Patent Document 1 does not show the specific application timing or pulse width of the gate drive pulse. In order to put this method into practical use, it is necessary to establish means for applying such a gate drive pulse.
 一方、ゲート駆動電圧の印加/遮断による半導体素子の導通損失の特性は、半導体素子の種類(RC-IGBT、MOSトランジスタ等)により大きく異なる。このため、半導体素子にダイオード素子の順方向の向きに電流が流れているか否かの従来の判定基準では、導通損失を十分に低減できない場合が生じる。 On the other hand, the characteristics of the conduction loss of the semiconductor element due to application / cutoff of the gate drive voltage vary greatly depending on the type of the semiconductor element (RC-IGBT, MOS transistor, etc.). For this reason, there is a case in which the conduction loss cannot be sufficiently reduced according to the conventional criterion for determining whether or not a current flows through the semiconductor element in the forward direction of the diode element.
 本開示は、トランジスタ構造とダイオード構造とが同一の半導体基板に形成された半導体素子に対し、第1に、ゲート駆動パルスを適切なタイミングで印加することによりスイッチング損失を低減でき、第2に、半導体素子の種類にかかわらず半導体素子の導通損失を十分に低減できる駆動制御装置を提供することを目的とする。 In the present disclosure, first, a switching loss can be reduced by applying a gate drive pulse at an appropriate timing to a semiconductor element in which a transistor structure and a diode structure are formed on the same semiconductor substrate. An object of the present invention is to provide a drive control device that can sufficiently reduce the conduction loss of a semiconductor element regardless of the type of the semiconductor element.
 本開示の第一の態様において、各々の半導体素子が、同一の半導体基板に形成された、ゲート駆動電圧が印加される絶縁ゲート型のトランジスタ構造とダイオード構造とを有し、前記トランジスタ構造の通電電極と前記ダイオード構造の通電電極とが共通である、二つの半導体素子の駆動制御装置は、前記2つの半導体素子のうち少なくとも一方に流れる電流に応じた電流検出信号を出力する電流検出手段と、前記電流検出信号に基づいて、前記半導体素子に対するオン指令信号が入力されている期間に前記半導体素子に前記ダイオード構造の順方向の向きに電流が流れていると判定した場合、その後のオフ指令信号の入力時点を起点として、第1時間の経過時点から第2時間の経過時点まで、前記ゲート駆動電圧の印加を指令するゲート駆動信号を出力する第1の制御手段とを備える。二つの半導体素子は、ハーフブリッジ回路を構成する。第1時間と第2時間は、二つの半導体素子の間でアーム短絡が生じないように予め設定されている。 In the first aspect of the present disclosure, each semiconductor element has an insulated gate transistor structure and a diode structure to which a gate driving voltage is applied, which are formed on the same semiconductor substrate. The drive control device for two semiconductor elements, wherein the electrode and the current-carrying electrode of the diode structure are common, current detection means for outputting a current detection signal corresponding to a current flowing in at least one of the two semiconductor elements; On the basis of the current detection signal, when it is determined that a current flows in the forward direction of the diode structure in the semiconductor element during a period in which an ON command signal for the semiconductor element is input, a subsequent OFF command signal Starting from the input time point of the first to the second time point, the gate commanding the application of the gate drive voltage And a first control means for outputting a motion signal. The two semiconductor elements constitute a half bridge circuit. The first time and the second time are set in advance so as not to cause an arm short circuit between the two semiconductor elements.
 本手段によれば、上述した遅延やばらつきを予め測定しデッドタイムを把握した上で、オフ指令信号の入力時点を起点として、ゲート駆動電圧を所望のタイミングで印加するために必要なゲート駆動信号のタイミング、すなわち第1時間と第2時間を正確に設定することが可能となる。 According to this means, after measuring the delay and variation described above in advance and grasping the dead time, the gate drive signal necessary for applying the gate drive voltage at a desired timing starting from the input time point of the off command signal. That is, the first time and the second time can be accurately set.
 その結果、アーム短絡を防止しつつ再注入時間を短く制御することができるので、逆回復電流が減少し、スイッチング損失を低減できる。また、第1の制御手段は、オフ指令信号を基準タイミングとしてゲート駆動信号を印加できるので、別のタイミング信号が不要となり、従来から使用している駆動制御装置からの置き替えが容易になる。 As a result, since the reinjection time can be controlled to be short while preventing the arm short circuit, the reverse recovery current is reduced and the switching loss can be reduced. In addition, since the first control means can apply the gate drive signal using the off command signal as a reference timing, a separate timing signal is not required, and the replacement from the conventionally used drive control device is facilitated.
 本開示の第二の態様において、ゲート駆動電圧が印加される絶縁ゲート型のトランジスタ構造とダイオード構造とが同一の半導体基板に形成され、前記トランジスタ構造の通電電極と前記ダイオード構造の通電電極とが共通とされた半導体素子の駆動制御装置は、前記半導体素子に流れる電流に応じた電流検出信号を出力する電流検出手段と、前記半導体素子に対するオン指令信号が入力されている期間、前記電流検出信号に基づいて、前記ダイオード構造の順方向の向きに流れる前記半導体素子の電流が前記電流しきい値以上であると判定すると、前記ゲート駆動電圧の遮断を指令するゲート駆動信号を出力する第2の制御手段とを備えている。第2の制御手段は、前記半導体素子に対するオン指令信号が入力されている期間、前記電流検出信号に基づいて、前記ダイオード構造の順方向の向きに流れる前記半導体素子の電流が前記電流しきい値未満であると判定すると、前記ゲート駆動電圧の印加を指令するゲート駆動信号を出力する。前記半導体素子に前記ダイオード構造の順方向の向きに電流が流れる場合において、前記ゲート駆動電圧が遮断されている時における導通損失と前記ゲート駆動電圧が印加されている時における導通損失とが等しくなる電流値が予め測定されて、電流しきい値として設定されている。 In a second aspect of the present disclosure, an insulated gate transistor structure to which a gate driving voltage is applied and a diode structure are formed on the same semiconductor substrate, and the current-carrying electrode of the transistor structure and the current-carrying electrode of the diode structure are A common drive control device for a semiconductor element includes: a current detection unit that outputs a current detection signal corresponding to a current flowing through the semiconductor element; and the current detection signal during a period when an ON command signal is input to the semiconductor element. If the current of the semiconductor element flowing in the forward direction of the diode structure is determined to be greater than or equal to the current threshold value based on the second, a gate drive signal for commanding the interruption of the gate drive voltage is output. Control means. The second control means is configured such that the current of the semiconductor element that flows in the forward direction of the diode structure is based on the current detection signal during the period when the ON command signal for the semiconductor element is input. If it is determined that the value is less than the value, a gate drive signal for instructing application of the gate drive voltage is output. When a current flows through the semiconductor element in the forward direction of the diode structure, the conduction loss when the gate drive voltage is cut off is equal to the conduction loss when the gate drive voltage is applied. The current value is measured in advance and set as a current threshold value.
 この構成によれば、上述した第一の態様と同様の作用および効果を得ることができる。さらに、半導体素子の種類や耐圧にかかわらず、導通損失を適切に低減することができる。また、半導体素子にダイオード構造の逆方向の向きに電流が流れる期間に確実にゲート駆動電圧が印加されるので、トランジスタ構造にオン指令信号に従った電流を流すことができる。 According to this configuration, it is possible to obtain the same operation and effect as the first aspect described above. Furthermore, the conduction loss can be appropriately reduced regardless of the type and breakdown voltage of the semiconductor element. In addition, since the gate drive voltage is reliably applied to the semiconductor element during the period in which the current flows in the reverse direction of the diode structure, the current according to the ON command signal can be supplied to the transistor structure.
 本開示の第三の態様において、各々の半導体素子が、同一の半導体基板に形成された、ゲート駆動電圧が印加される絶縁ゲート型のトランジスタ構造とダイオード構造とを有し、前記トランジスタ構造の通電電極と前記ダイオード構造の通電電極とが共通である、二つの半導体素子の駆動制御装置は、前記2つの半導体素子のうち少なくとも一方に流れる電流に応じた電流検出信号を出力する電流検出手段と、前記一方の半導体素子に対するオフ指令信号が入力されているときに前記電流検出信号に基づいて前記一方の半導体素子に前記ダイオード構造の順方向の向きに電流が流れていると判定した場合、前記電流検出手段により電流検出信号の変動を検出した時点で、二つの半導体素子の間でアーム短絡が生じないようにパルスを出力させる制御手段とを備え、当該時点は、前記一方の半導体素子に対するオン指令信号の入力時点の前である、二つの半導体素子は、ハーフブリッジ回路を構成する。 In a third aspect of the present disclosure, each semiconductor element has an insulated gate transistor structure and a diode structure to which a gate driving voltage is applied, which are formed on the same semiconductor substrate. The drive control device for two semiconductor elements, wherein the electrode and the current-carrying electrode of the diode structure are common, current detection means for outputting a current detection signal corresponding to a current flowing in at least one of the two semiconductor elements; When it is determined that a current flows in the forward direction of the diode structure to the one semiconductor element based on the current detection signal when an off command signal is input to the one semiconductor element, the current When the detection means detects a change in the current detection signal, a pulse is output so that an arm short circuit does not occur between the two semiconductor elements. And a that control means, the time is prior to the point of input of the ON command signal for the one of the semiconductor elements, two semiconductor elements constitute a half-bridge circuit.
 この構成によれば、上述した第一の態様と同様の作用および効果を得ることができる。 According to this configuration, it is possible to obtain the same operation and effect as the first aspect described above.
 本開示の第四の態様において、各々の半導体素子が、同一の半導体基板に形成された、ゲート駆動電圧が印加される絶縁ゲート型のトランジスタ構造とダイオード構造とを有し、前記トランジスタ構造の通電電極と前記ダイオード構造の通電電極とが共通である、二つの半導体素子の駆動制御装置は、一方の前記半導体素子の電極電位に基づく電圧検出信号を出力する電圧検出手段と、前記一方の半導体素子に対するオフ指令信号が入力されているときに前記電圧検出信号に基づいて前記一方の半導体素子に前記ダイオード構造の順方向の向きに電流が流れていると判定した場合、二つの半導体素子の間でアーム短絡が生じないように前記一方の半導体素子に対するオン指令信号の入力時点からパルスを出力させる制御手段と、を備える。二つの半導体素子は、ハーフブリッジ回路を構成する。 In the fourth aspect of the present disclosure, each semiconductor element has an insulated gate transistor structure and a diode structure to which a gate driving voltage is applied, which are formed on the same semiconductor substrate, and the transistor structure is energized. The drive control device for two semiconductor elements, in which the electrode and the current-carrying electrode of the diode structure are common, a voltage detection means for outputting a voltage detection signal based on the electrode potential of one of the semiconductor elements, and the one semiconductor element When it is determined that a current flows in the forward direction of the diode structure in the one semiconductor element based on the voltage detection signal when an off command signal is input to the two semiconductor elements, Control means for outputting a pulse from an input time point of an ON command signal to the one semiconductor element so as not to cause an arm short circuit. The two semiconductor elements constitute a half bridge circuit.
 この構成によれば、上述した第一の態様と同様の作用および効果を得ることができる。 According to this configuration, it is possible to obtain the same operation and effect as the first aspect described above.
 本開示の第五の態様において、各々の半導体素子が、同一の半導体基板に形成された、ゲート駆動電圧が印加される絶縁ゲート型のトランジスタ構造とダイオード構造とを有し、前記トランジスタ構造の通電電極と前記ダイオード構造の通電電極とが共通である、二つの半導体素子の駆動制御装置は、一方の前記半導体素子に流れる電流に応じた電流検出信号を出力する電流検出手段と、他方の前記半導体素子に対する指令信号を入力する入力手段と、前記一方の半導体素子に対するオフ指令信号が入力されているときに前記電流検出信号及び前記入力手段の入力信号に基づいて前記一方の半導体素子に前記ダイオード構造の順方向の向きに電流が流れていると判定した場合、前記入力手段にオフ指令信号が入力されることに応じてパルスを出力させる手段であって、二つの半導体素子の間でアーム短絡が生じないように前記一方の半導体素子に対するオン指令信号の入力時点より所定時間前にパルスを出力させる制御手段を備える。二つの半導体素子は、ハーフブリッジ回路を構成する。 5th aspect of this indication WHEREIN: Each semiconductor element has the insulated gate type transistor structure and diode structure to which a gate drive voltage is applied formed in the same semiconductor substrate, and electricity supply of the said transistor structure The drive control device for two semiconductor elements, in which the electrode and the current-carrying electrode of the diode structure are common, current detection means for outputting a current detection signal corresponding to the current flowing through one of the semiconductor elements, and the other semiconductor An input means for inputting a command signal for the element, and the diode structure in the one semiconductor element based on the current detection signal and the input signal of the input means when an OFF command signal for the one semiconductor element is input. When it is determined that a current is flowing in the forward direction, a pulse is generated in response to an OFF command signal being input to the input means. And means for outputting comprises a control means for outputting a pulse a predetermined time before the input time of the ON command signal for the one of the semiconductor element so arm short circuit does not occur between the two semiconductor elements. The two semiconductor elements constitute a half bridge circuit.
 この構成によれば、上述した第一の態様と同様の作用および効果を得ることができる。 According to this configuration, it is possible to obtain the same operation and effect as the first aspect described above.
 本開示の第六の態様において、各々の半導体素子が、同一の半導体基板に形成された、ゲート駆動電圧が印加される絶縁ゲート型のトランジスタ構造とダイオード構造とを有し、前記トランジスタ構造の通電電極と前記ダイオード構造の通電電極とが共通である、二つの半導体素子の駆動制御装置は、一方の前記半導体素子の電極電位に基づく電圧検出信号を出力する電圧検出手段と、他方の前記半導体素子に対する指令信号を入力する入力手段と、前記一方の半導体素子に対するオフ指令信号が入力されているときに前記電圧検出信号及び前記入力手段の入力信号に基づいて前記一方の半導体素子に前記ダイオード構造の順方向の向きに電流が流れていると判定した場合、前記入力手段にオフ指令信号が入力されることに応じてパルスを出力させる手段であって、二つの半導体素子の間でアーム短絡が生じないように前記一方の半導体素子に対するオン指令信号の入力時点より所定時間前にパルスを出力させる制御手段を備える。二つの半導体素子は、ハーフブリッジ回路を構成する。 In a sixth aspect of the present disclosure, each semiconductor element has an insulated gate transistor structure and a diode structure to which a gate drive voltage is applied, which are formed on the same semiconductor substrate, and the transistor structure is energized. A drive control device for two semiconductor elements, in which an electrode and a current-carrying electrode of the diode structure are common, a voltage detection means for outputting a voltage detection signal based on an electrode potential of one of the semiconductor elements, and the other semiconductor element Input means for inputting a command signal to the one semiconductor element, and when the off-command signal for the one semiconductor element is input, the one semiconductor element has the diode structure based on the voltage detection signal and the input signal of the input means. When it is determined that a current is flowing in the forward direction, a pulse is generated in response to an OFF command signal being input to the input means. A means for force, a control means for outputting a pulse a predetermined time before the input time of the ON command signal for the one of the semiconductor element so arm short circuit does not occur between the two semiconductor elements. The two semiconductor elements constitute a half bridge circuit.
 この構成によれば、上述した第一の態様と同様の作用および効果を得ることができる。 According to this configuration, it is possible to obtain the same operation and effect as the first aspect described above.
 本開示の第七の態様において、各々の半導体素子が、同一の半導体基板に形成された、ゲート駆動電圧が印加される絶縁ゲート型のトランジスタ構造とダイオード構造とを有し、前記トランジスタ構造の通電電極と前記ダイオード構造の通電電極とが共通である、二つの半導体素子の駆動制御装置は、少なくとも一方の半導体素子の電極電位に応じた電圧検出信号を出力する電圧検出手段と、前記一方の半導体素子に対するオフ指令信号が入力されているときに前記電圧検出信号に基づいて前記一方の半導体素子に前記ダイオード構造の順方向の向きに電流が流れていると判定した場合、その後にオン指令信号の入力を経てオフ指令信号が入力された時点を起点として、第1時間の経過時点から第2時点の経過時点まで、前記ゲート駆動電圧の印加を指令するゲート駆動信号を出力する制御手段と、を備える。第1時間と第2時間は、二つの半導体素子の間でアーム短絡が生じないように予め設定されている。二つの半導体素子は、ハーフブリッジ回路を構成する。 In a seventh aspect of the present disclosure, each semiconductor element has an insulated gate transistor structure and a diode structure to which a gate driving voltage is applied, which are formed on the same semiconductor substrate, and the transistor structure is energized. The drive control device for two semiconductor elements, in which the electrode and the current-carrying electrode of the diode structure are common, a voltage detection means for outputting a voltage detection signal corresponding to the electrode potential of at least one of the semiconductor elements, and the one semiconductor When it is determined that a current flows in the forward direction of the diode structure to the one semiconductor element based on the voltage detection signal when an off command signal is input to the element, the ON command signal Starting from the time when the OFF command signal is input through the input, the gate drive power is supplied from the time when the first time has elapsed to the time when the second time has elapsed. And a control means for outputting a gate drive signal for commanding the application. The first time and the second time are set in advance so as not to cause an arm short circuit between the two semiconductor elements. The two semiconductor elements constitute a half bridge circuit.
 この構成によれば、上述した第一の態様と同様の作用および効果を得ることができる。 According to this configuration, it is possible to obtain the same operation and effect as the first aspect described above.
 本開示の第八の態様において、ゲート駆動電圧が印加される絶縁ゲート型のトランジスタ構造とダイオード構造とが同一の半導体基板に形成され、前記トランジスタ構造の通電電極と前記ダイオード構造の通電電極とが共通の電極とされた半導体素子の駆動制御装置は、前記半導体素子に流れる電流に応じた電流検出信号を出力する電流検出手段と、前記電流検出信号に基づいて、前記半導体素子に対するオン指令信号が入力されている期間に前記半導体素子に前記ダイオード構造の順方向の向きに電流が流れていると判定した場合、その後のオフ指令信号の入力時点を起点として、予め設定された第1時間の経過時点から第2時間の経過時点まで前記ゲート駆動電圧の印加を指令するゲート駆動信号を出力する制御手段と、前記ゲート駆動信号を入力して前記ゲート駆動電圧を出力するドライブ回路とを備える。前記第1時間と前記第2時間との時間幅は、前記半導体素子に対するオン指令信号が入力されている期間に前記半導体素子に流れていた電流の大きさに応じた値に設定されている。 In an eighth aspect of the present disclosure, an insulated gate transistor structure to which a gate drive voltage is applied and a diode structure are formed on the same semiconductor substrate, and the conduction electrode of the transistor structure and the conduction electrode of the diode structure are The drive control device for a semiconductor element having a common electrode includes a current detection unit that outputs a current detection signal corresponding to a current flowing through the semiconductor element, and an on command signal for the semiconductor element based on the current detection signal. When it is determined that a current is flowing in the semiconductor element in the forward direction of the diode structure during the input period, a preset first time elapses from the input time point of the subsequent off command signal Control means for outputting a gate drive signal for instructing application of the gate drive voltage from a time point until a lapse of a second time; and If the input signal and a drive circuit for outputting the gate drive voltage. The time width between the first time and the second time is set to a value corresponding to the magnitude of the current flowing in the semiconductor element during the period when the ON command signal for the semiconductor element is input.
 上記によれば、一方の半導体素子に対するゲート駆動パルスの印加終了時点から逆回復電流が流れ始めるまでの時間、例えばゲート駆動パルスの印加終了後に当該ダイオード構造に再びキャリア(ホール)が注入される時間(キャリアの再注入時間)を正確に制御可能となる。従って、本手段によれば、アーム短絡を防止しつつ再注入時間を短く制御することができるので、逆回復電流が減少し、スイッチング損失を低減できる。また、制御手段は、オフ指令信号を基準タイミングとしてゲート駆動信号を印加できるので、別のタイミング信号が不要となり、従来から使用している駆動制御装置からの置き替えが容易になる。 According to the above, the time from when the gate drive pulse is applied to one semiconductor element until the reverse recovery current starts to flow, for example, the time when carriers (holes) are injected again into the diode structure after the application of the gate drive pulse is completed. (Carrier reinjection time) can be accurately controlled. Therefore, according to this means, the reinjection time can be controlled to be short while preventing an arm short circuit, so that the reverse recovery current is reduced and the switching loss can be reduced. In addition, since the control means can apply the gate drive signal using the off command signal as a reference timing, a separate timing signal is not required, and replacement from a conventionally used drive control device is facilitated.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1の実施形態を示す駆動制御システムの構成図であり、 図2は、メイン素子とセンス素子の回路構成図であり、 図3は、半導体素子の模式的な縦断面図であり、 図4は、ダイオード素子の順方向の電圧電流特性図であり、 図5は、Vf制御とパルス制御に係る波形図であり、 図6は、第2の実施形態を示し、MOSトランジスタにおいてダイオード素子の順方向の向きに電流が流れる場合の電圧電流特性図であり、 図7は、同期整流を使用したときの、Vf制御とパルス制御に係る波形図であり、 図8は、第3の実施形態を示す駆動制御システムの構成図であり、 図9は、第4の実施形態を示す駆動制御システムの構成図であり、 図10は、第5の実施形態を示す駆動制御システムの構成図であり、 図11は、第6の実施形態を示す駆動制御システムの構成図であり、 図12は、第7の実施形態を示す駆動制御システムの構成図であり、 図13は、第8の実施形態を示す駆動制御システムの構成図であり、 図14は、第9の実施形態を示す駆動制御システムの構成図であり、 図15は、電流検出構成の変形例を示す図であり、 図16は、電流検出構成の変形例を示す図であり、 図17は、第10の実施形態を示す駆動制御システムの構成図であり、 図18は、第10の実施形態を示すVf制御とパルス制御に係る波形図であり、 図19は、第11の実施形態を示す同期整流を使用したときのVf制御とパルス制御に係る波形図であり、 図20は、第12の実施形態を示す駆動制御システムの構成図であり、 図21は、第13の実施形態を示す駆動制御システムの構成図であり、 図22は、第14の実施形態を示す駆動制御システムの構成図であり、 図23は、第15の実施形態を示す駆動制御システムの構成図であり、 図24は、第16の実施形態を示す中間電位の検出態様を示す模式的な半導体構造断面図であり、 図25は、各実施形態において負荷電流の方向、大きさに応じたコレクタ電極電位の変化特性を概略的に示す説明図であり、 図26は、各実施形態における負荷電流の方向、大きさ(ゼロ電流付近)に応じたコレクタ電極電位の変化特性を概略的に示す説明図であり、 図27は、第1~第16の実施形態の変形例を示す同期整流を使用したときのVf制御とパルス制御に係る波形図であり、 図28は、第1~第16の実施形態の変形例を示す駆動制御システムの構成図であり、 図29は、第1~第16の実施形態の変形例を示す駆動制御システムの構成図であり、 図30は、第1~第16の実施形態の変形例を示す駆動制御システムの構成図であり、 図31は、第1~第16の実施形態の変形例を示す駆動制御システムの構成図であり、 図32は、第1~第16の実施形態の変形例を示す同期整流を使用したときのVf制御とパルス制御に係る波形図であり、 図33は、本開示の第17実施形態を示す駆動制御システムの構成図であり、 図34は、ドライブ回路の駆動能力切替回路の構成図であり、 図35は、パルス制御部のブロック構成図であり、 図36は、パルス開始決定部の構成図であり、 図37は、ダイオード素子の順方向の電圧電流特性図であり、 図38は、Vf制御とパルス制御に係る波形図であり、 図39は、素子電流、ゲート駆動電圧およびダイオード素子内のキャリア濃度を示す図であり、 図40は、再注入時間がゼロとなる場合の波形図であり、 図41は、再注入時間とスイッチング損失との関係を示す図であり、 図42は、パルス幅とスイッチング損失との関係を示す図であり、 図43は、第1時間と第2時間の説明図であり、 図44は、パルス開始決定部の動作説明図であり、 図45は、ミラー期間が存在する場合と存在しない場合の波形図であり、 図46は、異なる駆動能力に対するゲート駆動電圧の波形図であり、 図47は、電流検出構成の変形例を示す図であり、 図48は、電流検出構成の変形例を示す図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a configuration diagram of a drive control system showing the first embodiment. FIG. 2 is a circuit configuration diagram of the main element and the sense element. FIG. 3 is a schematic longitudinal sectional view of a semiconductor element, FIG. 4 is a voltage-current characteristic diagram in the forward direction of the diode element. FIG. 5 is a waveform diagram relating to Vf control and pulse control. FIG. 6 shows the second embodiment, and is a voltage-current characteristic diagram in the case where current flows in the forward direction of the diode element in the MOS transistor. FIG. 7 is a waveform diagram relating to Vf control and pulse control when using synchronous rectification, FIG. 8 is a configuration diagram of a drive control system showing the third embodiment. FIG. 9 is a configuration diagram of the drive control system showing the fourth embodiment. FIG. 10 is a configuration diagram of the drive control system showing the fifth embodiment. FIG. 11 is a configuration diagram of a drive control system showing the sixth embodiment. FIG. 12 is a configuration diagram of a drive control system showing the seventh embodiment. FIG. 13 is a configuration diagram of a drive control system showing the eighth embodiment. FIG. 14 is a configuration diagram of the drive control system showing the ninth embodiment. FIG. 15 is a diagram illustrating a modification of the current detection configuration. FIG. 16 is a diagram illustrating a modification of the current detection configuration. FIG. 17 is a configuration diagram of a drive control system showing the tenth embodiment. FIG. 18 is a waveform diagram relating to Vf control and pulse control according to the tenth embodiment, FIG. 19 is a waveform diagram relating to Vf control and pulse control when using synchronous rectification according to the eleventh embodiment. FIG. 20 is a configuration diagram of the drive control system showing the twelfth embodiment. FIG. 21 is a block diagram of a drive control system showing the thirteenth embodiment. FIG. 22 is a configuration diagram of the drive control system showing the fourteenth embodiment. FIG. 23 is a configuration diagram of the drive control system showing the fifteenth embodiment, FIG. 24 is a schematic cross-sectional view of a semiconductor structure showing an intermediate potential detection mode according to the sixteenth embodiment, FIG. 25 is an explanatory diagram schematically showing a change characteristic of the collector electrode potential according to the direction and magnitude of the load current in each embodiment. FIG. 26 is an explanatory diagram schematically showing a change characteristic of the collector electrode potential according to the direction and magnitude (near zero current) of the load current in each embodiment. FIG. 27 is a waveform diagram relating to Vf control and pulse control when using synchronous rectification showing a modification of the first to sixteenth embodiments; FIG. 28 is a configuration diagram of a drive control system showing a modification of the first to sixteenth embodiments, FIG. 29 is a configuration diagram of a drive control system showing a modification of the first to sixteenth embodiments, FIG. 30 is a configuration diagram of a drive control system showing a modification of the first to sixteenth embodiments, FIG. 31 is a configuration diagram of a drive control system showing a modification of the first to sixteenth embodiments, FIG. 32 is a waveform diagram relating to Vf control and pulse control when using synchronous rectification showing a modification of the first to sixteenth embodiments; FIG. 33 is a configuration diagram of a drive control system showing a seventeenth embodiment of the present disclosure. FIG. 34 is a configuration diagram of the drive capability switching circuit of the drive circuit. FIG. 35 is a block diagram of the pulse control unit. FIG. 36 is a block diagram of the pulse start determination unit, FIG. 37 is a voltage-current characteristic diagram in the forward direction of the diode element. FIG. 38 is a waveform diagram relating to Vf control and pulse control, FIG. 39 is a diagram showing the device current, the gate drive voltage, and the carrier concentration in the diode device, FIG. 40 is a waveform diagram when the reinjection time becomes zero, FIG. 41 is a diagram showing the relationship between reinjection time and switching loss, FIG. 42 is a diagram showing the relationship between the pulse width and the switching loss, FIG. 43 is an explanatory diagram of the first time and the second time, FIG. 44 is a diagram for explaining the operation of the pulse start determining unit. FIG. 45 is a waveform diagram when the mirror period exists and when it does not exist, FIG. 46 is a waveform diagram of the gate drive voltage for different drive capabilities, FIG. 47 is a diagram showing a modification of the current detection configuration. FIG. 48 is a diagram illustrating a modification of the current detection configuration.
 各実施形態において実質的に同一部分には同一符号を付して説明を省略する。 In each embodiment, substantially the same parts are denoted by the same reference numerals and description thereof is omitted.
 (第1の実施形態)
 以下、本開示の第1の実施形態について図1ないし図5を参照しながら説明する。図1に示す駆動制御システムは、モータ等の誘導性負荷を駆動するインバータ装置、インダクタを備えて直流電圧を昇圧/降圧するコンバータ装置などの電力変換装置に用いられる。スイッチング素子である半導体素子1A、1Bは、高電位側の直流電源線2と低電位側の直流電源線3との間に出力端子Ntを挟んで直列に配されて、ハーフブリッジ回路4を構成している。
(First embodiment)
Hereinafter, a first embodiment of the present disclosure will be described with reference to FIGS. 1 to 5. The drive control system shown in FIG. 1 is used in a power conversion device such as an inverter device that drives an inductive load such as a motor, or a converter device that includes an inductor and boosts / steps down a DC voltage. The semiconductor elements 1A and 1B, which are switching elements, are arranged in series between the high-potential side DC power supply line 2 and the low-potential side DC power supply line 3 with the output terminal Nt interposed therebetween to form the half-bridge circuit 4. is doing.
 同一構造を持つ半導体素子1A、1Bは、絶縁ゲート型のトランジスタ素子5とダイオード素子6とが同一の半導体基板に形成された逆導通型IGBT(RC-IGBT)である。トランジスタ素子5の通電電極(コレクタ、エミッタ)とダイオード素子6の通電電極(カソード、アノード)は共通の電極とされている。 The semiconductor elements 1A and 1B having the same structure are reverse conducting IGBTs (RC-IGBTs) in which the insulated gate transistor element 5 and the diode element 6 are formed on the same semiconductor substrate. The energizing electrodes (collector and emitter) of the transistor element 5 and the energizing electrodes (cathode and anode) of the diode element 6 are common electrodes.
 このメイン素子に加え、半導体基板には、図2に示すようにメイン素子に流れる電流に比例した微小な電流を流すトランジスタ素子5sとダイオード素子6sとからなるセンス素子が形成されている。図1ではメイン素子とセンス素子を簡易的に表している。半導体素子1A、1Bのセンス端子S1、S2間には、それぞれセンス抵抗7A、7Bが接続されている。センス抵抗7A、7Bは、後述する電流検出部25とともに電流検出手段を構成している。 In addition to this main element, a sense element comprising a transistor element 5s and a diode element 6s for passing a minute current proportional to the current flowing through the main element is formed on the semiconductor substrate as shown in FIG. In FIG. 1, the main element and the sense element are simply shown. Sense resistors 7A and 7B are connected between the sense terminals S1 and S2 of the semiconductor elements 1A and 1B, respectively. The sense resistors 7A and 7B constitute current detection means together with a current detection unit 25 described later.
 半導体素子1A、1Bの一例として、図3に縦型構造のRC-IGBTを示す。本実施形態のRC-IGBTは、トランジスタ構造とダイオード構造とが同一の半導体基板に設けられている。半導体基板8は、n-型のシリコン基板により構成されている。図示しないが、半導体基板8の素子形成領域の周縁部近傍には、当該素子形成領域を囲むようにガードリングが形成されている。 FIG. 3 shows an RC-IGBT having a vertical structure as an example of the semiconductor elements 1A and 1B. In the RC-IGBT of this embodiment, the transistor structure and the diode structure are provided on the same semiconductor substrate. The semiconductor substrate 8 is composed of an n-type silicon substrate. Although not shown, a guard ring is formed in the vicinity of the periphery of the element formation region of the semiconductor substrate 8 so as to surround the element formation region.
 半導体基板8の上面側表層部には、p型のベース層9が形成されている。ベース層9には、ベース層9を貫通する深さを持つ複数のトレンチが形成されている。トレンチ内にはポリシリコンが埋め込まれており、これによりトレンチ構造を持つゲート電極10が形成されている。各ゲート電極10には、共通のゲート配線11を通してゲート駆動電圧が入力される。ゲート電極10は、ベース層9の表層部に沿う一方向に等間隔でストライプ状に設けられている。これにより、ベース層9は、上記一方向に沿って互いに電気的に分離した複数の第1領域12と複数の第2領域13とに区画される。これら第1領域12と第2領域13は交互に配設されており、第2領域13の幅は第1領域12の幅よりも広くなっている。 A p-type base layer 9 is formed on the upper surface portion of the semiconductor substrate 8. A plurality of trenches having a depth penetrating the base layer 9 are formed in the base layer 9. Polysilicon is buried in the trench, whereby the gate electrode 10 having a trench structure is formed. A gate drive voltage is input to each gate electrode 10 through a common gate wiring 11. The gate electrodes 10 are provided in stripes at equal intervals in one direction along the surface layer portion of the base layer 9. Thereby, the base layer 9 is partitioned into a plurality of first regions 12 and a plurality of second regions 13 that are electrically separated from each other along the one direction. These first regions 12 and second regions 13 are alternately arranged, and the width of the second region 13 is wider than the width of the first region 12.
 第1領域12の表層部には、ゲート電極10に隣接してn+型のエミッタ領域14が形成されている。第1領域12の上にはエミッタ電極15が形成されている。エミッタ電極15は、第1領域12のベース層9とエミッタ領域14とに接続されている。第1領域12は、トランジスタ素子5のチャネル領域として動作するとともに、ダイオード素子6のアノード領域として動作する。すなわち、第1領域12に対するエミッタ電極15は、トランジスタ素子5のエミッタ電極およびダイオード素子6のアノード電極となる。 In the surface layer portion of the first region 12, an n + -type emitter region 14 is formed adjacent to the gate electrode 10. An emitter electrode 15 is formed on the first region 12. The emitter electrode 15 is connected to the base layer 9 and the emitter region 14 in the first region 12. The first region 12 operates as a channel region of the transistor element 5 and also operates as an anode region of the diode element 6. That is, the emitter electrode 15 for the first region 12 becomes the emitter electrode of the transistor element 5 and the anode electrode of the diode element 6.
 コレクタ領域16(後述)の上方に設けられた第2領域13aは、何れの電極にも接続されていない。カソード領域17(後述)の上方に設けられた第2領域13bは、エミッタ電極15と接続されている。これにより、第2領域13のうちカソード領域17の上方に設けられた第2領域13bだけが、ダイオード素子6のアノード領域として動作する。すなわち、エミッタ電極15は、第2領域13bにおいてダイオード素子6のアノード電極となる。 The second region 13a provided above the collector region 16 (described later) is not connected to any electrode. A second region 13 b provided above the cathode region 17 (described later) is connected to the emitter electrode 15. Accordingly, only the second region 13 b provided above the cathode region 17 in the second region 13 operates as the anode region of the diode element 6. That is, the emitter electrode 15 becomes an anode electrode of the diode element 6 in the second region 13b.
 半導体基板8の下面側表層部には、第2領域13aが形成される範囲(破線の左側)に対応してp+型のコレクタ領域16が形成され、第2領域13bが形成される範囲(破線の右側)に対応してn+型のカソード領域17が形成されている。コレクタ領域16とカソード領域17は、コレクタ電極18と接続されている。すなわち、ダイオード素子6のカソード電極は、トランジスタ素子5のコレクタ電極18と共通になっている。半導体基板8とコレクタ領域16およびカソード領域17との間には、n型のフィールドストップ層19が形成されている。 In the lower surface layer portion of the semiconductor substrate 8, a p + type collector region 16 is formed corresponding to a range (left side of the broken line) where the second region 13a is formed, and a range where the second region 13b is formed (broken line) N + type cathode region 17 is formed corresponding to the right side of FIG. The collector region 16 and the cathode region 17 are connected to the collector electrode 18. That is, the cathode electrode of the diode element 6 is in common with the collector electrode 18 of the transistor element 5. An n-type field stop layer 19 is formed between the semiconductor substrate 8 and the collector region 16 and the cathode region 17.
 図1に示す駆動制御システムにおいて、マイクロコンピュータ(マイコン)21は、ハーフブリッジ回路4のハイサイドとローサイドのPWM信号FH、FLを生成するPWM信号生成部22を備えている。PWM信号FH、FLは、同時にLレベル(オフ指令レベル)となる一定幅のデッドタイムTdを有している。PWM信号FH、FLは、それぞれフォトカプラ23A、23Bを介して駆動IC24A、24Bに入力される。本開示で言うオン指令信号とは、Hレベル(オン指令レベル)を持つPWM信号FH、FLであり、オフ指令信号とは、Lレベル(オフ指令レベル)を持つPWM信号FH、FLである。 In the drive control system shown in FIG. 1, the microcomputer 21 includes a PWM signal generation unit 22 that generates the high-side and low-side PWM signals FH and FL of the half-bridge circuit 4. The PWM signals FH and FL have a fixed dead time Td that is simultaneously at the L level (off command level). The PWM signals FH and FL are input to the drive ICs 24A and 24B via the photocouplers 23A and 23B, respectively. The ON command signal referred to in the present disclosure is the PWM signals FH and FL having the H level (ON command level), and the OFF command signal is the PWM signals FH and FL having the L level (OFF command level).
 駆動IC24A、24Bは、電流検出部25、Vf制御部26、パルス制御部27およびドライブ回路28を備えており、電源電圧VDDA、VDDB(例えば15V)が供給されることで動作する。ハイサイド側の半導体素子1A、ローサイド側の半導体素子1Bに対し、それぞれ別個の駆動IC24A、24Bが設けられている。このため、駆動IC24A、24Bは、電源電圧VDDA、VDDBに応じた耐圧(すなわちゲート駆動電圧に応じた耐圧)で十分である。駆動IC24A、24Bは同一構成であるため、主に駆動IC24Bについての構成を説明する。 The drive ICs 24A and 24B include a current detection unit 25, a Vf control unit 26, a pulse control unit 27, and a drive circuit 28, and operate when supplied with power supply voltages VDDA and VDDB (for example, 15V). Separate drive ICs 24A and 24B are provided for the high-side semiconductor element 1A and the low-side semiconductor element 1B, respectively. For this reason, the drive ICs 24A and 24B have a sufficient withstand voltage (that is, a withstand voltage according to the gate drive voltage) according to the power supply voltages VDDA and VDDB. Since the drive ICs 24A and 24B have the same configuration, the configuration of the drive IC 24B will be mainly described.
 電流検出部25は、センス抵抗7Bに生じるセンス電圧VSLに基づいて、半導体素子1Bに流れる電流に応じた電流検出信号(電流の極性と大きさ)を出力する電流検出手段である。Vf制御部26とパルス制御部27は、PWM信号FLに基づいてゲート駆動信号SGLを生成する。ドライブ回路28は、ゲート駆動信号SGLを入力してゲート駆動電圧VGLを出力する。 The current detector 25 is a current detector that outputs a current detection signal (polarity and magnitude of current) corresponding to the current flowing through the semiconductor element 1B based on the sense voltage VSL generated in the sense resistor 7B. The Vf control unit 26 and the pulse control unit 27 generate the gate drive signal SGL based on the PWM signal FL. The drive circuit 28 receives the gate drive signal SGL and outputs a gate drive voltage VGL.
 Vf制御部26は、PWM信号FLがHレベルの期間において、ダイオード素子6の順方向の向きに流れる半導体素子1Bの電流が電流しきい値It以上のときに、ゲート駆動電圧VGLを遮断する制御を行う。この制御は、半導体素子1Bの電圧(RC-IGBTの場合にはダイオード素子6の順方向電圧Vf)を低下させて導通損失を低減する作用を持つ。以下の説明ではVf制御と称する。 The Vf control unit 26 controls to cut off the gate drive voltage VGL when the current of the semiconductor element 1B flowing in the forward direction of the diode element 6 is equal to or greater than the current threshold It during the period in which the PWM signal FL is at the H level. I do. This control has the effect of reducing the conduction loss by lowering the voltage of the semiconductor element 1B (in the case of RC-IGBT, the forward voltage Vf of the diode element 6). In the following description, this is referred to as Vf control.
 パルス制御部27は、PWM信号FLがHレベルの期間に半導体素子1Bにダイオード素子6の順方向の向きの電流が流れているとき、PWM信号FLの立ち下がりを基準として、パルス状のゲート駆動信号SGLを出力する。このゲート駆動信号SGLにより、半導体素子1Bのゲートにパルス状のゲート駆動電圧VGL(以下、ゲート駆動パルスと称す)が印加される。この制御は、ダイオード素子6に蓄積されるホールを減少させ、逆回復電流を低減する作用を持つ。以下の説明ではパルス制御と称する。 The pulse control unit 27 performs pulse-shaped gate driving with reference to the falling edge of the PWM signal FL when a current in the forward direction of the diode element 6 flows through the semiconductor element 1B during the period in which the PWM signal FL is at the H level. The signal SGL is output. By this gate drive signal SGL, a pulsed gate drive voltage VGL (hereinafter referred to as a gate drive pulse) is applied to the gate of the semiconductor element 1B. This control has the effect of reducing the holes accumulated in the diode element 6 and reducing the reverse recovery current. In the following description, this is referred to as pulse control.
 Vf制御部26とパルス制御部27とで生成されたゲート駆動信号SGLは、ドライブ回路28を介して半導体素子1Bのゲートに与えられる。ドライブ回路28は、ゲートを充放電する駆動能力を複数通りに切り替えられる。すなわち、PWM信号FLの立ち上がり時、トランジスタ素子5に電流が流れている状態からのPWM信号FLの立ち下がり時など、半導体素子1Bに流れる電流(素子電流)や電圧に急峻な変化が生じるときには、電圧サージの発生を抑制するため低い駆動能力に切り替えられる。この場合、ドライブ回路28は、ターンオン時においては定電流回路を用いて駆動し、ターンオフ時においてはオン抵抗を高めたスイッチ素子を用いて駆動する。 The gate drive signal SGL generated by the Vf control unit 26 and the pulse control unit 27 is given to the gate of the semiconductor element 1B via the drive circuit 28. The drive circuit 28 can switch the driving ability to charge / discharge the gate in a plurality of ways. That is, when a sharp change occurs in the current (element current) or voltage flowing through the semiconductor element 1B, such as at the rising edge of the PWM signal FL or at the falling edge of the PWM signal FL from the state where the current flows in the transistor element 5, In order to suppress the occurrence of a voltage surge, the driving capability can be switched to a low level. In this case, the drive circuit 28 is driven by using a constant current circuit at the time of turn-on, and is driven by using a switch element having an increased on-resistance at the time of turn-off.
 これに対し、パルス制御のように素子電流や電圧に急峻な変化が生じないときには、高い駆動能力に切り替えられる。この場合、ドライブ回路28は、ターンオン時においては定電圧回路を用いて駆動し、ターンオフ時においてはオン抵抗を高めたスイッチ素子とオン抵抗を下げたスイッチ素子とを並列に接続して駆動する。 On the other hand, when there is no steep change in the device current or voltage as in pulse control, the driving capability can be switched to high. In this case, the drive circuit 28 is driven by using a constant voltage circuit at the time of turn-on, and is driven by connecting in parallel a switch element having a higher on-resistance and a switch element having a lower on-resistance at the time of turn-off.
 駆動IC24Aには、しきい値設定回路29A、30A、31Aが外付けされている。駆動IC24Bには、しきい値設定回路29B、30B、31Bが外付けされている。しきい値設定回路29A、30A、31Aは、半導体素子1Aのエミッタ電位に等しいフローティンググランドFGを基準電位として構成されている。しきい値設定回路29A、29Bは、電圧VDDA、VDDBを抵抗R1、R2で分圧してしきい値電圧Vtを生成する。しきい値設定回路30A、30Bは、電圧VDDA、VDDBを抵抗R3、R4で分圧して規定電圧Vm1を生成する。しきい値設定回路31A、31Bは、電圧VDDA、VDDBを抵抗R5、R6で分圧して規定電圧Vm2を生成する。 Threshold value setting circuits 29A, 30A, 31A are externally attached to the driving IC 24A. Threshold setting circuits 29B, 30B, 31B are externally attached to the driving IC 24B. The threshold setting circuits 29A, 30A, 31A are configured with a floating ground FG equal to the emitter potential of the semiconductor element 1A as a reference potential. The threshold setting circuits 29A and 29B divide the voltages VDDA and VDDB by the resistors R1 and R2 to generate a threshold voltage Vt. The threshold setting circuits 30A and 30B divide the voltages VDDA and VDDB by resistors R3 and R4 to generate a specified voltage Vm1. The threshold setting circuits 31A and 31B divide the voltages VDDA and VDDB by the resistors R5 and R6 to generate a specified voltage Vm2.
 しきい値電圧Vtは、Vf制御部26で用いられる電流しきい値Itの大きさを決定する。後述するように、ダイオード素子6の順方向電流Ifに対する順方向電圧Vfの特性は、素子の種類(RC-IGBT、MOSトランジスタ等)や素子の耐圧によって異なる。そこで、Vf制御部26は、外部から与えられる切替信号Skとしきい値電圧Vtとに基づいて、適切な電流しきい値Itを選択する。 The threshold voltage Vt determines the magnitude of the current threshold It used in the Vf control unit 26. As will be described later, the characteristic of the forward voltage Vf with respect to the forward current If of the diode element 6 varies depending on the type of element (RC-IGBT, MOS transistor, etc.) and the breakdown voltage of the element. Therefore, the Vf control unit 26 selects an appropriate current threshold It based on the switching signal Sk and the threshold voltage Vt given from the outside.
 規定電圧Vm1は、Vf制御を停止するか否かの判定に用いる規定値Im1の大きさを決定する。規定電圧Vm2は、パルス制御を停止するか否かの判定に用いる規定値Im2の大きさを決定する。電流検出時と、その検出電流の極性に基づいてゲート駆動電圧VGH、VGLを印加した時とでは、制御の遅れにより電流極性が反転している虞もある。このため、Vf制御部26は、電流検出値が規定値Im1を下回るとVf制御を停止し、パルス制御部27は、電流検出値が規定値Im2を下回るとパルス制御を停止する。 The specified voltage Vm1 determines the magnitude of the specified value Im1 used for determining whether or not to stop the Vf control. The specified voltage Vm2 determines the magnitude of the specified value Im2 used for determining whether or not to stop the pulse control. When the current is detected and when the gate drive voltages VGH and VGL are applied based on the polarity of the detected current, there is a possibility that the current polarity is reversed due to a delay in control. Therefore, the Vf control unit 26 stops the Vf control when the current detection value falls below the specified value Im1, and the pulse control unit 27 stops the pulse control when the current detection value falls below the specified value Im2.
 以上説明した駆動IC24Aとセンス抵抗7Aにより駆動制御装置32Aが構成され、駆動IC24Bとセンス抵抗7Bにより駆動制御装置32Bが構成されている。 The drive control device 32A is configured by the drive IC 24A and the sense resistor 7A described above, and the drive control device 32B is configured by the drive IC 24B and the sense resistor 7B.
 次に、図4および図5を参照しながら、主としてローサイド側の駆動制御装置32Bの作用について説明する。ハイサイド側の駆動制御装置32Aの作用も同様となる。 Next, the operation of the drive control device 32B on the low side will be mainly described with reference to FIGS. The operation of the drive control device 32A on the high side is the same.
 はじめにVf制御について説明する。RC-IGBTである半導体素子1A、1Bは、ダイオード素子6に電流が流れている状態でゲート駆動電圧が印加されると、第1領域12にチャネルが形成されてホールの注入が抑制される。このため、図4に示すように、順方向電流Ifが流れているダイオード素子6の順方向電圧Vfが高くなり、ダイオード素子6の導通損失(Vf×If)が増大する。 First, Vf control will be described. In the semiconductor elements 1A and 1B, which are RC-IGBTs, when a gate drive voltage is applied in a state where a current flows through the diode element 6, a channel is formed in the first region 12 and hole injection is suppressed. For this reason, as shown in FIG. 4, the forward voltage Vf of the diode element 6 through which the forward current If flows increases, and the conduction loss (Vf × If) of the diode element 6 increases.
 半導体素子1A、1BがMOSトランジスタの場合(第2の実施形態を参照)でも同様の作用が生じる。一般に、素子の高耐圧化によりドリフト領域の厚さが増すほど、全体のオン抵抗に占めるチャネルの抵抗割合が小さくなり、ゲート駆動電圧の印加時にダイオード素子6の導通損失が増大する傾向を示す。 The same effect occurs even when the semiconductor elements 1A and 1B are MOS transistors (see the second embodiment). Generally, as the thickness of the drift region increases due to the higher breakdown voltage of the element, the resistance ratio of the channel occupying the entire on-resistance decreases, and the conduction loss of the diode element 6 tends to increase when a gate drive voltage is applied.
 RC-IGBTの場合、ダイオード素子6について、ゲート駆動電圧が遮断されている時における導通損失と印加されている時における導通損失とが等しくなる電流値(電流しきい値It)は小さい値になる。図4に示す場合にはほぼゼロである。これに対し、MOSトランジスタ等の場合には、ゲート駆動電圧が遮断されている時におけるダイオード素子6の導通損失と、ゲート駆動電圧が印加されている時におけるトランジスタ素子5の導通損失とが等しくなる電流値(電流しきい値It)は、比較的大きい値になる(図6参照)。すなわち、電流しきい値Itは、半導体素子1A、1Bの種類や耐圧によって異なるため、予め測定されている。 In the case of the RC-IGBT, the diode element 6 has a small current value (current threshold It) at which the conduction loss when the gate drive voltage is cut off is equal to the conduction loss when the gate drive voltage is applied. . In the case shown in FIG. 4, it is almost zero. On the other hand, in the case of a MOS transistor or the like, the conduction loss of the diode element 6 when the gate drive voltage is cut off is equal to the conduction loss of the transistor element 5 when the gate drive voltage is applied. The current value (current threshold value It) is a relatively large value (see FIG. 6). That is, the current threshold It varies depending on the type and breakdown voltage of the semiconductor elements 1A and 1B, and is measured in advance.
 RC-IGBTを駆動する場合には切替信号Skが例えばLレベルに切り替えられ、MOSトランジスタを駆動する場合には切替信号Skが例えばHレベルに切り替えられる。切替信号Skは、外部から電流しきい値Itを特定するしきい値特定信号である。Vf制御部26は、切替信号SkがLレベルのときに、電流しきい値Itをゼロに設定してVf制御を実行する。一方、切替信号SkがHレベルのときに、外部から入力するしきい値電圧Vtに応じた電流しきい値Itを設定してVf制御を実行する。 When driving the RC-IGBT, the switching signal Sk is switched to L level, for example, and when driving the MOS transistor, the switching signal Sk is switched to H level, for example. The switching signal Sk is a threshold value specifying signal for specifying the current threshold value It from the outside. When the switching signal Sk is at the L level, the Vf control unit 26 sets the current threshold It to zero and executes Vf control. On the other hand, when the switching signal Sk is at the H level, the current threshold value It corresponding to the threshold voltage Vt input from the outside is set and the Vf control is executed.
 図5は、出力端子Ntから負荷に向かって電流が流れている場合に、半導体素子1Aをオフして半導体素子1Bをオンした後、半導体素子1Bをオフして再度半導体素子1Aをオンしたときの波形である。上から順に、半導体素子1Aの電流、ゲート駆動電圧VGH、VGL、PWM信号FH、ゲート駆動電圧VGLを指令するゲート駆動信号SGL、PWM信号FLを示している。Vthは、半導体素子1Aのしきい値電圧である。 FIG. 5 shows a case where the semiconductor element 1A is turned off and the semiconductor element 1B is turned on when the current flows from the output terminal Nt toward the load, and then the semiconductor element 1B is turned off and the semiconductor element 1A is turned on again. It is a waveform. In order from the top, the current of the semiconductor element 1A, the gate drive voltages VGH and VGL, the PWM signal FH, and the gate drive signal SGL and the PWM signal FL for commanding the gate drive voltage VGL are shown. Vth is the threshold voltage of the semiconductor element 1A.
 上下アーム間で通電が切り替わるとき、ゲート駆動電圧VGHがしきい値電圧Vth以上になると(時刻t9)、半導体素子1Aのトランジスタ素子5に流れる電流が増加する。図5に示す場合、増加するトランジスタ素子5の電流のうち、半導体素子1Bのダイオード素子6に流れていた電流を超える電流が逆回復電流である。図面ではハッチングで示している(時刻t10~t11)。 When energization is switched between the upper and lower arms, when the gate drive voltage VGH becomes equal to or higher than the threshold voltage Vth (time t9), the current flowing through the transistor element 5 of the semiconductor element 1A increases. In the case shown in FIG. 5, among the increasing current of the transistor element 5, the current exceeding the current flowing in the diode element 6 of the semiconductor element 1B is the reverse recovery current. In the drawing, hatching is indicated (time t10 to t11).
 駆動IC24BのVf制御部26は、PWM信号FLがHレベルの期間(時刻t2~t3)、ダイオード素子6の検出電流がその順方向において電流しきい値It以上であるか否かを判定する。ここで、電流しきい値It未満であると判定すると、Hレベルのゲート駆動信号SGLを出力する。このゲート駆動信号SGLに基づいて、ドライブ回路28での遅延、半導体素子1Bの素子容量の充電時間などに応じて、ゲート駆動電圧VGLが半導体素子1Bのゲートに印加される。これに対し、検出電流が電流しきい値It以上であると判定すると(図5に示す場合)、Lレベルのゲート駆動信号SGLを出力する。これにより、ゲート駆動電圧VGLが遮断される。 The Vf control unit 26 of the drive IC 24B determines whether or not the detected current of the diode element 6 is equal to or higher than the current threshold It in the forward direction during the period when the PWM signal FL is at the H level (time t2 to t3). If it is determined that the current is less than the current threshold It, an H level gate drive signal SGL is output. Based on the gate drive signal SGL, the gate drive voltage VGL is applied to the gate of the semiconductor element 1B in accordance with the delay in the drive circuit 28, the charging time of the element capacitance of the semiconductor element 1B, and the like. On the other hand, if it is determined that the detected current is equal to or greater than the current threshold It (in the case shown in FIG. 5), an L level gate drive signal SGL is output. Thereby, the gate drive voltage VGL is cut off.
 次に、パルス制御について説明する。パルス制御は、PWM信号FLがHレベルの期間に半導体素子1Bのダイオード素子6に電流が流れている場合、PWM信号FLがLレベルに立ち下がった後、逆回復電流が流れ始める前までに、半導体素子1Bにゲート駆動パルスを印加する制御である。PWM信号FHがHレベルの期間に半導体素子1Aのダイオード素子6に電流が流れている場合であって、PWM信号FHがLレベルに立ち下がった後も同様である。これにより、ダイオード素子6に蓄積されるキャリア(ホール)が減少するので、逆回復電流を低減する作用が得られる。 Next, pulse control will be described. In the pulse control, when the current flows through the diode element 6 of the semiconductor element 1B during the period in which the PWM signal FL is at the H level, after the PWM signal FL falls to the L level and before the reverse recovery current starts to flow, This is control for applying a gate drive pulse to the semiconductor element 1B. This is also the case when a current flows through the diode element 6 of the semiconductor element 1A during the period in which the PWM signal FH is at the H level, and the same applies after the PWM signal FH falls to the L level. As a result, carriers (holes) accumulated in the diode element 6 are reduced, so that an effect of reducing the reverse recovery current can be obtained.
 図5において、パルス制御部27は、PWM信号FLがHレベルの期間、より好ましくはPWM信号FLがLレベルに立ち下がったときに(時刻t3)、半導体素子1Bのダイオード素子6に電流が流れているか否かを判定する。電流が流れている場合(ただし、電流検出値が規定値Im2以上の場合)、PWM信号FLの立ち下がり時点を起点として、第1時間T1の経過時点(時刻t4)から第2時間T2の経過時点(時刻t6)までゲート駆動信号SGLをHレベルにする。上述したVf制御により、PWM信号FLの立ち下がり時点では、ゲート駆動信号SGLはLレベルになっている。 In FIG. 5, the pulse control unit 27 causes a current to flow through the diode element 6 of the semiconductor element 1B when the PWM signal FL is at the H level, more preferably when the PWM signal FL falls to the L level (time t3). It is determined whether or not. When current is flowing (however, when the detected current value is equal to or greater than the specified value Im2), the second time T2 has elapsed from the time when the first time T1 has elapsed (time t4), starting from the falling time of the PWM signal FL. The gate drive signal SGL is kept at the H level until the time (time t6). By the above-described Vf control, the gate drive signal SGL is at the L level at the time of falling of the PWM signal FL.
 パルス制御部27は、PWM信号FLがLレベルに立ち下がった後も、半導体素子1Bのダイオード素子6に電流が流れているか否かを判定し続ける。パルス制御部27は、電流検出値が規定値Im2を下回ると、第1時間T1が経過した後、第2時間T2が経過する前であっても、直ちにゲート駆動信号SGLをLレベルに戻す。 The pulse control unit 27 continues to determine whether or not a current is flowing through the diode element 6 of the semiconductor element 1B even after the PWM signal FL falls to the L level. When the current detection value falls below the specified value Im2, the pulse control unit 27 immediately returns the gate drive signal SGL to the L level even after the first time T1 has elapsed and before the second time T2 has elapsed.
 一方、パルス制御部27は、PWM信号FLがLレベルに立ち下がったときにダイオード素子6に電流が流れていないと判定すると、直ちにゲート駆動信号SGLをLレベルにして維持する。すなわち、ゲート駆動パルスを印加しない。 On the other hand, when the pulse control unit 27 determines that no current flows through the diode element 6 when the PWM signal FL falls to the L level, the pulse control unit 27 immediately maintains the gate drive signal SGL at the L level. That is, no gate drive pulse is applied.
 第1時間T1と第2時間T2は、アーム短絡が生じないように予め設定されている。PWM信号FLがLレベルの期間にダイオード素子6に電流が流れている場合と、トランジスタ素子5に電流が流れている場合とでは、ゲート駆動パルスを与えたときのゲート駆動電圧VGLの波形が異なる。 The first time T1 and the second time T2 are set in advance so as not to cause an arm short circuit. The waveform of the gate drive voltage VGL when a gate drive pulse is applied differs between when the current flows through the diode element 6 and when the current flows through the transistor element 5 while the PWM signal FL is at the L level. .
 ダイオード素子6に電流が流れている場合には、半導体素子1Bのコレクタ・エミッタ間電圧が変化しないのでミラー期間が生じない。また、半導体素子1Bに急峻な電流変化、電圧変化が生じない。このため、ドライブ回路28は、ゲート駆動電圧VGLの立ち上げ時および立ち下げ時に、通常よりも高いゲート駆動能力でゲート駆動電圧VGLを出力できる。さらに、ダイオード素子6に電流が流れているときには、半導体素子1A、1Bを介した経路で短絡する可能性がない。このため、ゲート駆動電圧VGLの増加過程で、ゲート駆動電圧VGLを一時的に中間電圧に留め、他方サイドの半導体素子1Aが短絡故障している時の短絡電流を低減する2段階駆動を行う必要がない。 When a current flows through the diode element 6, the collector-emitter voltage of the semiconductor element 1B does not change, so that no mirror period occurs. In addition, no steep current change or voltage change occurs in the semiconductor element 1B. Therefore, the drive circuit 28 can output the gate drive voltage VGL with a higher gate drive capability than usual when the gate drive voltage VGL rises and falls. Further, when a current flows through the diode element 6, there is no possibility of short-circuiting along a path through the semiconductor elements 1A and 1B. For this reason, in the process of increasing the gate drive voltage VGL, it is necessary to perform the two-stage drive for temporarily holding the gate drive voltage VGL at the intermediate voltage and reducing the short-circuit current when the semiconductor element 1A on the other side is short-circuited. There is no.
 第1時間T1と第2時間T2は、ゲート駆動パルスの印加時におけるゲート駆動電圧VGLの波形およびドライブ回路28の駆動態様を考慮して、ゲート駆動電圧VGLがドライブ回路28のゲート駆動能力に従って単調に増加または単調に減少するものとして設定されている。その際、ゲート駆動パルスの印加終了時点から逆回復電流が流れ始めるまでの時間Tc(キャリアの再注入時間)が、ゼロよりも長く且つ注入許容時間以下となるように設定される。注入許容時間は、許容される逆回復電流の大きさに応じて規定されている。 The first time T1 and the second time T2 are monotonous according to the gate drive capability of the drive circuit 28 in consideration of the waveform of the gate drive voltage VGL when the gate drive pulse is applied and the drive mode of the drive circuit 28. Set to increase or decrease monotonically. At this time, the time Tc (carrier reinjection time) from the end of application of the gate drive pulse until the reverse recovery current starts to flow is set to be longer than zero and shorter than the allowable injection time. The allowable injection time is specified according to the allowable reverse recovery current.
 具体的には、第1時間T1と第2時間T2は、ダイオード素子6に流れる電流を種々に変えながら、PWM信号FLの立ち下がり時点を起点として、ゲート駆動信号SGLの印加タイミング、実際にゲート駆動電圧VGLが印加されるタイミング、および逆回復電流が流れ始めるタイミングを予め測定して設定されている。この第1時間T1と第2時間T2は、本実施形態では電流と対応付けてパルス制御部27内のメモリ等に記憶されている。なお、この第1時間T1と第2時間T2は1又は数パターンのロジック回路又はアナログ遅延回路などを用いて生成することもできる。 Specifically, the first time T1 and the second time T2 vary the current flowing through the diode element 6 while changing the current flowing through the diode element 6 and starting from the falling point of the PWM signal FL. The timing at which the drive voltage VGL is applied and the timing at which the reverse recovery current starts to flow are set in advance by measurement. In this embodiment, the first time T1 and the second time T2 are stored in a memory or the like in the pulse control unit 27 in association with the current. The first time T1 and the second time T2 can also be generated using one or several patterns of logic circuits or analog delay circuits.
 パルス制御部27は、ゲート駆動パルスを印加する場合、電流検出信号を参照してダイオード素子6に流れている電流を求め、その電流値に応じた第1時間T1と第2時間T2をメモリから読み出す。パルス制御部27は、PWM信号FLの立ち下がり時点を起点として、第1時間T1の経過時点でゲート駆動信号SGLの立ち上げ、第2時間T2の経過時点でゲート駆動信号SGLを立ち下げる。 When applying the gate drive pulse, the pulse control unit 27 refers to the current detection signal to obtain the current flowing in the diode element 6 and calculates the first time T1 and the second time T2 corresponding to the current value from the memory. read out. The pulse control unit 27 starts from the falling point of the PWM signal FL, and raises the gate driving signal SGL when the first time T1 has elapsed, and lowers the gate driving signal SGL when the second time T2 has elapsed.
 以上説明したように、本実施形態の駆動制御装置32A、32Bは、それぞれPWM信号FH、FLがHレベルの期間に、ダイオード素子6の順方向の向きに流れる半導体素子1A、1Bの電流(ダイオード電流)が電流しきい値It(本実施形態では0)以上であると判定すると、ゲート駆動信号SGH、SGLをLレベルにする。電流しきい値Itは、ゲート駆動電圧VGH、VGLが遮断されている時における半導体素子1A、1Bの導通損失と、ゲート駆動電圧VGH、VGLが印加されている時における半導体素子1A、1Bの導通損失とが等しくなる電流値である。このVf制御により、半導体素子1A、1Bの種類や耐圧にかかわらず、ダイオード素子6の導通損失を低減することができる。 As described above, the drive control devices 32A and 32B according to the present embodiment have the currents (diodes of the semiconductor elements 1A and 1B flowing in the forward direction of the diode element 6 during the period in which the PWM signals FH and FL are at the H level, respectively. If it is determined that (current) is equal to or greater than the current threshold It (0 in this embodiment), the gate drive signals SGH and SGL are set to the L level. The current threshold It is the conduction loss of the semiconductor elements 1A and 1B when the gate drive voltages VGH and VGL are cut off, and the conduction of the semiconductor elements 1A and 1B when the gate drive voltages VGH and VGL are applied. This is the current value at which the loss becomes equal. With this Vf control, the conduction loss of the diode element 6 can be reduced regardless of the type and breakdown voltage of the semiconductor elements 1A and 1B.
 駆動制御装置32A、32Bは、上下アーム間で通電が切り替わるとき、それぞれPWM信号FH、FLがHレベルの期間に半導体素子1A、1Bにダイオード素子6の順方向の向きに電流が流れていると判定すると、ゲート駆動パルスの印加を指令するゲート駆動信号SGH、SGLを出力する。このパルス制御により、ダイオード素子6に蓄積されるホールが減少して逆回復電流が低減するので、スイッチング損失を低減できる。 In the drive control devices 32A and 32B, when energization is switched between the upper and lower arms, current flows in the forward direction of the diode element 6 in the semiconductor elements 1A and 1B during the period in which the PWM signals FH and FL are at the H level, respectively. When it is determined, gate drive signals SGH and SGL for instructing application of the gate drive pulse are output. By this pulse control, the holes accumulated in the diode element 6 are reduced and the reverse recovery current is reduced, so that the switching loss can be reduced.
 駆動IC24A、24Bのパルス制御部27は、PWM信号FH、FLの立ち下がり時点を起点として、第1時間T1の経過時点から第2時間T2の経過時点までゲート駆動信号SGH、SGLをHレベルにする。PWM信号FH、FLの立ち下がり時点はデッドタイムTdの起点でもあるので、一定の時間を持つデッドタイムTdを有効に利用して、アーム短絡を防止しながらゲート駆動パルスを印加することができる。 The pulse control unit 27 of the drive ICs 24A and 24B sets the gate drive signals SGH and SGL to the H level from the time when the first time T1 has elapsed to the time when the second time T2 has elapsed, starting from the falling time of the PWM signals FH and FL. To do. Since the falling point of the PWM signals FH and FL is also the starting point of the dead time Td, the gate driving pulse can be applied while effectively preventing the arm short circuit by effectively using the dead time Td having a certain time.
 第1時間T1と第2時間T2は、デッドタイムTd、素子電流に対応させて予め測定されたゲート駆動電圧VGH、VGLの遅延やばらつきおよび逆回復電流が流れ始めるまでの時間に基づいて設定されている。また、第1時間T1と第2時間T2は、ゲート駆動パルスの印加時におけるゲート駆動電圧の波形およびドライブ回路28の駆動態様を考慮して設定されている。これにより、ゲート駆動パルスのパルス幅Twを広く確保できる。また、ゲート駆動パルスの印加タイミングの精度を高めることができ、再注入時間Tcを正確に制御可能となる。その結果、アーム短絡を防止しつつ再注入時間Tcを短く制御することが可能となり、スイッチング損失を一層低減できる。 The first time T1 and the second time T2 are set based on the dead time Td, the delay and variation of the gate drive voltages VGH and VGL measured in advance corresponding to the element current, and the time until the reverse recovery current starts to flow. ing. The first time T1 and the second time T2 are set in consideration of the waveform of the gate drive voltage and the drive mode of the drive circuit 28 when the gate drive pulse is applied. Thereby, a wide pulse width Tw of the gate drive pulse can be secured. In addition, the accuracy of the application timing of the gate drive pulse can be increased, and the reinjection time Tc can be accurately controlled. As a result, the reinjection time Tc can be controlled to be short while preventing an arm short circuit, and the switching loss can be further reduced.
 パルス制御部27は、パルス制御に基づきゲート駆動パルスを印加している期間(時刻t4~t6)であっても、ダイオード素子6に電流が流れなくなる(電流検出値が規定値Im2未満となる)可能性があるまたは電流が流れていないと判定すると、直ちにゲート駆動パルスの印加を停止する。これにより、負荷電流が急変した場合でもアーム短絡を確実に防止できる。さらに、負荷電流の急変に備えて規定値Im2を高めに設定する必要がなくなるので、パルス制御を実行する電流範囲を広く確保でき、スイッチング損失を一層低減できる。 The pulse control unit 27 stops the current from flowing through the diode element 6 even during the period (time t4 to t6) in which the gate drive pulse is applied based on the pulse control (the detected current value is less than the specified value Im2). If it is determined that there is a possibility or no current is flowing, the application of the gate drive pulse is immediately stopped. Thereby, even when the load current changes suddenly, an arm short circuit can be reliably prevented. Furthermore, since it is not necessary to set the specified value Im2 higher in preparation for a sudden change in the load current, a wide current range for performing the pulse control can be secured, and the switching loss can be further reduced.
 パルス制御部27は、PWM信号FH、FLの立ち下がり時点を起点としてゲート駆動信号を印加するので、別のタイミング信号が不要となり、従来から使用している駆動制御装置からの置き替えが容易になる。駆動制御装置32A、32Bは、制御ループが短いので高応答が得られる。駆動IC24A、24Bは、フォトカプラ23A、23Bを介してハーフブリッジ回路4側に設けられているので、電流検出部25に絶縁機能が不要となる。 Since the pulse control unit 27 applies the gate drive signal starting from the falling point of the PWM signals FH and FL, no separate timing signal is required, and the replacement from the conventionally used drive control device is easy. Become. The drive control devices 32A and 32B have high response because the control loop is short. Since the drive ICs 24A and 24B are provided on the half bridge circuit 4 side via the photocouplers 23A and 23B, the current detection unit 25 does not need an insulating function.
 Vf制御部26、パルス制御部27は、それぞれ負荷電流の大きさが規定値Im1、Im2よりも小さくなるとVf制御、パルス制御を停止して通常制御を行う。通常制御とは、ダイオード素子6に流れる電流にかかわらず、PWM信号が立ち上がるとゲート駆動信号を立ち上げ、PWM信号が立ち下がるとゲート駆動信号を立ち下げる制御である。これにより、電流検出精度の低下による誤制御を防止することができる。 The Vf control unit 26 and the pulse control unit 27 stop the Vf control and the pulse control and perform the normal control when the magnitude of the load current becomes smaller than the specified values Im1 and Im2, respectively. The normal control is control that raises the gate drive signal when the PWM signal rises and lowers the gate drive signal when the PWM signal falls regardless of the current flowing through the diode element 6. Thereby, erroneous control due to a decrease in current detection accuracy can be prevented.
 (第2の実施形態)
 半導体素子1A、1BにMOSトランジスタを用いた第2の実施形態について、図6および図7を参照しながら説明する。駆動制御装置32A、32Bの構成は、図1に示した通りである。ここでは、主としてローサイド側の駆動制御装置32Bの作用について説明する。ハイサイド側の駆動制御装置32Aの作用も同様となる。
(Second Embodiment)
A second embodiment using MOS transistors for the semiconductor elements 1A and 1B will be described with reference to FIGS. The configuration of the drive control devices 32A and 32B is as shown in FIG. Here, the operation of the drive control device 32B on the low side will be mainly described. The operation of the drive control device 32A on the high side is the same.
 半導体素子1A、1BとしてMOSトランジスタを用いる場合、切替信号Skが例えばHレベルに切り替えられる。駆動制御装置32Bは、しきい値設定回路29Bから入力したしきい値電圧Vtに応じて電流しきい値Itを設定し、Vf制御を実行する。 When MOS transistors are used as the semiconductor elements 1A and 1B, the switching signal Sk is switched to, for example, the H level. Drive control device 32B sets current threshold It according to threshold voltage Vt input from threshold setting circuit 29B, and executes Vf control.
 図6は、MOSトランジスタにダイオード素子6の順方向の向きに電流が流れる場合の電圧電流特性図である。電流しきい値Itを境界として、ゲート駆動電圧が遮断されている時のダイオード素子6の順方向電圧Vfと、ゲート駆動電圧が印加されている時のトランジスタ素子5のドレイン・ソース間電圧VDSとの大小関係が反転する。電圧VDS<電圧Vfとなる領域1では、ゲート駆動電圧を印加することにより導通損失を低減できる。電圧VDS≧電圧Vfとなる領域2では、ゲート駆動電圧を遮断することにより導通損失を低減できる。 FIG. 6 is a voltage-current characteristic diagram when a current flows through the MOS transistor in the forward direction of the diode element 6. With the current threshold It as a boundary, the forward voltage Vf of the diode element 6 when the gate drive voltage is cut off, and the drain-source voltage VDS of the transistor element 5 when the gate drive voltage is applied The magnitude relationship of is reversed. In region 1 where voltage VDS <voltage Vf, conduction loss can be reduced by applying a gate drive voltage. In region 2 where voltage VDS ≧ voltage Vf, conduction loss can be reduced by cutting off the gate drive voltage.
 PWM信号FLがHレベルの期間において、半導体素子1Bに領域1の範囲内の電流が流れている場合、Vf制御部26は、ゲート駆動電圧VGLを印加する通常制御(同期整流)を実行する。その後PWM信号FLがLレベルになると、半導体素子1Bにゲート駆動パルスを印加する必要がある。 When the current in the region 1 flows through the semiconductor element 1B during the period when the PWM signal FL is at the H level, the Vf control unit 26 performs normal control (synchronous rectification) to apply the gate drive voltage VGL. Thereafter, when the PWM signal FL becomes L level, it is necessary to apply a gate drive pulse to the semiconductor element 1B.
 この場合、Vf制御部26がゲート駆動信号SGLをLレベルにした後、パルス制御部27が、PWM信号FLの立ち下がり時点を起点として、第1時間T1の経過時点から第2時間T2の経過時点までゲート駆動信号SGLをHレベルにすればよい。しかし、ゲート駆動電圧VGLを一旦遮断するよりも、第2時間T2の経過時点までゲート駆動電圧VGLを連続して印加する方が導通損失を低減することができる。そこで、Vf制御部26は、Vf制御に続きパルス制御を行うため、Hレベルのゲート駆動信号SGLを、時刻t3を越えて第2時間T2の経過時点(時刻t6)まで延長して出力する(パルスの拡張)。 In this case, after the Vf control unit 26 sets the gate drive signal SGL to the L level, the pulse control unit 27 starts from the time when the PWM signal FL falls and the second time T2 elapses from the time when the first time T1 elapses. The gate drive signal SGL may be kept at the H level until the time point. However, the conduction loss can be reduced by continuously applying the gate drive voltage VGL until the second time T2 elapses, rather than once interrupting the gate drive voltage VGL. Therefore, the Vf control unit 26 performs pulse control following the Vf control, and outputs the H-level gate drive signal SGL by extending it beyond the time t3 until the elapse of the second time T2 (time t6) ( Pulse expansion).
 PWM信号FLがHレベルの期間において、半導体素子1Bに領域2の範囲内の電流が流れている場合、Vf制御部26とパルス制御部27は、図5に示したRC-IGBTの制御と同様のゲート駆動信号SGLを出力する。また、PWM信号FLがHレベルの期間において、半導体素子1Bに領域1、2の範囲内の電流が流れていない場合、つまりMOSトランジスタの順方向(ダイオード素子6の逆方向)の向きの電流が流れる場合には、Vf制御部26とパルス制御部27は通常制御を行う。本実施形態によっても第1の実施形態と同様の効果が得られる。 When the current in the region 2 flows through the semiconductor element 1B during the period in which the PWM signal FL is at the H level, the Vf control unit 26 and the pulse control unit 27 are the same as the RC-IGBT control shown in FIG. The gate drive signal SGL is output. Further, when the current in the range of the regions 1 and 2 does not flow through the semiconductor element 1B during the period in which the PWM signal FL is at the H level, that is, the current in the forward direction of the MOS transistor (the reverse direction of the diode element 6). When flowing, the Vf control unit 26 and the pulse control unit 27 perform normal control. According to this embodiment, the same effect as that of the first embodiment can be obtained.
 (第3、第4、第5の実施形態)
 図8、図9、図10は、何れも高耐圧を持つ駆動IC51、53、55を用いた駆動制御装置52、54、56である。高耐圧とは、ハーフブリッジ回路4に印加される電源電圧に応じた耐圧である。駆動制御装置52、54、56は、ハーフブリッジ回路4を構成する2つの半導体素子1A、1Bを駆動制御する。
(Third, fourth and fifth embodiments)
8, 9, and 10 show drive control devices 52, 54, and 56 using drive ICs 51, 53, and 55 that have a high breakdown voltage. The high breakdown voltage is a breakdown voltage according to the power supply voltage applied to the half bridge circuit 4. The drive control devices 52, 54, and 56 drive and control the two semiconductor elements 1 </ b> A and 1 </ b> B that constitute the half-bridge circuit 4.
 駆動IC51、53、55は、半導体素子1A、1Bに対し共通のVf制御部26と共通のパルス制御部27を備えており、電源電圧VDD(例えば15V)が供給されることで動作する。ゲート駆動信号SGHは、レベルシフト回路57とドライブ回路28を介して半導体素子1Aに与えられ、ゲート駆動信号SGLは、ドライブ回路28を介して半導体素子1Bに与えられる。 The driving ICs 51, 53, and 55 are provided with a common Vf control unit 26 and a common pulse control unit 27 for the semiconductor elements 1A and 1B, and operate when supplied with a power supply voltage VDD (for example, 15 V). The gate drive signal SGH is given to the semiconductor element 1A via the level shift circuit 57 and the drive circuit 28, and the gate drive signal SGL is given to the semiconductor element 1B via the drive circuit 28.
 駆動IC51は、センス抵抗7A、7Bに生じるセンス電圧VSH、VSLに基づいて電流検出信号を出力する電流検出部25を備えている。ハイサイド側の電流検出部25は、レベルシフト回路58を介して電流検出信号を出力する。駆動IC53は、ハイサイド側の電流検出部25とレベルシフト回路58を省いた構成を備えている。駆動IC55は、電流検出回路60を備え、センス電圧VSLに替えてホールセンサ59等のセンス信号を入力する。駆動IC53の電流検出部25および駆動IC55の電流検出回路60は、いずれか一方(例えば半導体素子1B)に流れる電流検出信号に基づいて、他方(例えば半導体素子1A)に流れる電流を推定する。その他の構成は、第1の実施形態と同様である。 The drive IC 51 includes a current detection unit 25 that outputs a current detection signal based on the sense voltages VSH and VSL generated in the sense resistors 7A and 7B. The high-side current detection unit 25 outputs a current detection signal via the level shift circuit 58. The drive IC 53 has a configuration in which the high-side current detection unit 25 and the level shift circuit 58 are omitted. The drive IC 55 includes a current detection circuit 60 and inputs a sense signal from the hall sensor 59 or the like instead of the sense voltage VSL. The current detection unit 25 of the drive IC 53 and the current detection circuit 60 of the drive IC 55 estimate the current flowing to the other (for example, the semiconductor element 1A) based on the current detection signal flowing to either one (for example, the semiconductor element 1B). Other configurations are the same as those of the first embodiment.
 パルス制御部27は、ゲート駆動信号SGH、SGLを生成するので、2つの半導体素子1A、1Bのうち一方の半導体素子にゲート駆動電圧を印加している期間、他方の半導体素子へのゲート駆動電圧の印加を禁止できる。これにより、PWM信号FH、FLが制御IC63のVf制御部26に入力されているため、Vf制御部26およびパルス制御部27は、一方及び他方のアームの制御を統括的に実行することができ、アーム短絡を確実に防止できる。また、ハイサイド側とローサイド側とで電流検出部25または電流検出回路60を共用化できるので、回路構成を簡単化できる(図9、図10)。共用化する場合には、しきい値設定回路30、31で生成される規定電圧Vm1、Vm2に基づいて、ハイサイド側の規定値Im1、Im2を第1の実施形態よりも大きく設定することが好ましい。その他、第1、第2の実施形態と同様の作用および効果が得られる。 Since the pulse control unit 27 generates the gate drive signals SGH and SGL, the gate drive voltage applied to the other semiconductor element during the period in which the gate drive voltage is applied to one of the two semiconductor elements 1A and 1B. Can be prohibited. As a result, since the PWM signals FH and FL are input to the Vf control unit 26 of the control IC 63, the Vf control unit 26 and the pulse control unit 27 can collectively control the one and the other arms. , Arm short circuit can be surely prevented. Further, since the current detection unit 25 or the current detection circuit 60 can be shared between the high side and the low side, the circuit configuration can be simplified (FIGS. 9 and 10). In the case of sharing, the high-side specified values Im1 and Im2 may be set larger than in the first embodiment based on the specified voltages Vm1 and Vm2 generated by the threshold setting circuits 30 and 31. preferable. In addition, operations and effects similar to those of the first and second embodiments can be obtained.
 (第6、第7の実施形態)
 図11、図12は、制御部とドライブ回路とを分離して構成した駆動制御装置61、62を示している。駆動制御装置61、62は、ハーフブリッジ回路4を構成する2つの半導体素子1A、1Bを駆動制御する。駆動制御装置61は、制御IC63、フォトカプラ64A、64B、駆動IC65A、65B、電流検出回路60などから構成されている。
(Sixth and seventh embodiments)
11 and 12 show drive control devices 61 and 62 configured by separating the control unit and the drive circuit. The drive control devices 61 and 62 drive and control the two semiconductor elements 1A and 1B constituting the half bridge circuit 4. The drive control device 61 includes a control IC 63, photocouplers 64A and 64B, drive ICs 65A and 65B, a current detection circuit 60, and the like.
 制御IC63は、専用ASIC、マイコンのハードIP(Intellectual Property)、FPGAなどから構成されており、上述したVf制御部26とパルス制御部27が実装されている。フォトカプラ64A、64Bは、ゲート駆動信号SGH、SGLを電気的に絶縁して駆動IC65A、65Bに伝送する絶縁回路である。駆動IC65A、65Bは、ドライブ回路28を備えており、ゲート駆動信号SGH、SGLを入力してゲート駆動電圧VGH、VGLを出力する。電流検出回路60は、ホールセンサ59等で負荷電流を検出し、制御IC63に対し電流検出信号を出力する。 The control IC 63 includes a dedicated ASIC, a microcomputer hardware IP (Intellectual Property), an FPGA, and the like, and the Vf control unit 26 and the pulse control unit 27 described above are mounted thereon. The photocouplers 64A and 64B are insulation circuits that electrically insulate the gate drive signals SGH and SGL and transmit them to the drive ICs 65A and 65B. The drive ICs 65A and 65B include a drive circuit 28, which receives gate drive signals SGH and SGL and outputs gate drive voltages VGH and VGL. The current detection circuit 60 detects a load current with the hall sensor 59 or the like, and outputs a current detection signal to the control IC 63.
 駆動制御装置62は、ホールセンサ59と電流検出回路60に替えて、センス電圧VSH、VSLを入力とするフォトカプラ67A、67Bと電流極性検出回路68を備えている。電流極性検出回路68は、半導体素子1A、1Bに流れる電流値または電流の向き(極性)を検出する。つまり、電流の大きさを検出してもよいし、電流の極性を検出するだけでもよい。これにより、パルス制御およびRC-IGBTに対するVf制御を実行できる。 The drive control device 62 includes photocouplers 67A and 67B that receive the sense voltages VSH and VSL and a current polarity detection circuit 68 in place of the hall sensor 59 and the current detection circuit 60. The current polarity detection circuit 68 detects the value of current flowing in the semiconductor elements 1A and 1B or the direction (polarity) of the current. That is, the magnitude of the current may be detected or only the polarity of the current may be detected. Thereby, pulse control and Vf control for RC-IGBT can be executed.
 本実施形態によっても、パルス制御部27は、2つの半導体素子1A、1Bのうち一方の半導体素子にゲート駆動電圧を印加している期間、他方の半導体素子へのゲート駆動電圧の印加を禁止できる。これにより、アーム短絡を確実に防止できる。 Also in this embodiment, the pulse control unit 27 can prohibit the application of the gate drive voltage to the other semiconductor element during the period in which the gate drive voltage is applied to one of the two semiconductor elements 1A and 1B. . Thereby, an arm short circuit can be prevented reliably.
 PWM信号FH、FLが制御IC63のVf制御部26に入力されているため、Vf制御部26およびパルス制御部27は、一方及び他方のアームの制御を統括的に実行することができる。この実施形態によっても、第1、第2の実施形態と同様の作用および効果が得られる。また実施例7において、第4の実施形態と同様にフォトカプラ67A、67Bの何れか一方を省略してもよい。このとき、省略したフォトカプラ67A,67Bに対応したセンス素子(5s、6s)およびセンス抵抗(7)を省略しても良い。この場合には、電流極性検出部68はいずれか一方(例えば半導体素子1B)に流れる電流の極性検出信号に基づいて、他方(例えば半導体素子1A)に流れる電流の極性を推定する。電流極性検出部68の前段ではなく電流極性検出部68の後段にフォトカプラ67A、67Bと同様の構成のフォトカプラを設けても良い。電流検出回路60、電流極性検出回路68を制御IC63もしくは駆動IC65内に形成してもよい。 Since the PWM signals FH and FL are input to the Vf control unit 26 of the control IC 63, the Vf control unit 26 and the pulse control unit 27 can collectively control the one and the other arms. According to this embodiment, the same operation and effect as those of the first and second embodiments can be obtained. In Example 7, as in the fourth embodiment, either one of the photocouplers 67A and 67B may be omitted. At this time, the sense elements (5s, 6s) and the sense resistor (7) corresponding to the omitted photocouplers 67A and 67B may be omitted. In this case, the current polarity detection unit 68 estimates the polarity of the current flowing in the other (for example, the semiconductor element 1A) based on the polarity detection signal of the current flowing in one (for example, the semiconductor element 1B). A photocoupler having the same configuration as that of the photocouplers 67A and 67B may be provided not in the previous stage of the current polarity detection unit 68 but in the subsequent stage of the current polarity detection unit 68. The current detection circuit 60 and the current polarity detection circuit 68 may be formed in the control IC 63 or the drive IC 65.
 (第8、第9の実施形態)
 図13、図14は、制御部とドライブ回路とを分離するとともに、Vf制御部26、パルス制御部27および電流検出部25をマイコン21に取り込んだ構成の駆動制御装置71、72を示している。駆動制御装置71、72は、ハーフブリッジ回路4を構成する2つの半導体素子1A、1Bを駆動制御する。駆動制御装置71は、マイコン21、フォトカプラ64A、64B、駆動IC65A、65Bなどから構成されている。駆動制御装置72は、センス電圧VSH、VSLを入力とするフォトカプラ67A、67Bを備えている。
(Eighth and ninth embodiments)
13 and 14 show drive control devices 71 and 72 having a configuration in which the control unit and the drive circuit are separated and the Vf control unit 26, the pulse control unit 27, and the current detection unit 25 are incorporated in the microcomputer 21. . The drive control devices 71 and 72 drive and control the two semiconductor elements 1A and 1B constituting the half bridge circuit 4. The drive control device 71 includes the microcomputer 21, photocouplers 64A and 64B, drive ICs 65A and 65B, and the like. The drive control device 72 includes photocouplers 67A and 67B that receive the sense voltages VSH and VSL.
 マイコン21は、メモリ73に予め記憶された制御プログラムを実行することにより、上述したVf制御部26、パルス制御部27および電流検出部25の機能を実現する。駆動制御装置71のマイコン21は、ホールセンサ59のセンス信号を入力して電流検出信号を得る。駆動制御装置72のマイコン21は、フォトカプラ67A、67Bの出力信号を介して電流検出信号を得る。メモリ73には、制御プログラムの他に、第1時間T1と第2時間T2、しきい値なども記憶されている。
本実施形態によっても、パルス制御部27は、2つの半導体素子1A、1Bのうち一方の半導体素子にゲート駆動電圧を印加している期間、他方の半導体素子へのゲート駆動電圧の印加を禁止できる。これにより、アーム短絡を確実に防止できる。
The microcomputer 21 implements the functions of the Vf control unit 26, the pulse control unit 27, and the current detection unit 25 described above by executing a control program stored in advance in the memory 73. The microcomputer 21 of the drive control device 71 receives a sense signal from the hall sensor 59 and obtains a current detection signal. The microcomputer 21 of the drive control device 72 obtains a current detection signal via the output signals of the photocouplers 67A and 67B. In addition to the control program, the memory 73 also stores a first time T1, a second time T2, a threshold value, and the like.
Also in this embodiment, the pulse control unit 27 can prohibit the application of the gate drive voltage to the other semiconductor element during the period in which the gate drive voltage is applied to one of the two semiconductor elements 1A and 1B. . Thereby, an arm short circuit can be prevented reliably.
 PWM信号FH、FLがマイコン21のVf制御部26に入力されているため、Vf制御部26およびパルス制御部27は、一方及び他方のアームの制御を統括的に実行することができる。この実施形態によっても、第1、第2の実施形態と同様の作用および効果が得られる。また実施例9において、第4の実施形態と同様にフォトカプラ67A、67Bの何れか一方を省略してもよい。このとき、省略したフォトカプラ67A,67Bに対応したセンス素子(5s、6s)およびセンス抵抗(7)を省略しても良い。この場合には、電流極性検出部68はいずれか一方(例えば半導体素子1B)に流れる電流の極性検出信号に基づいて、他方(例えば半導体素子1A)に流れる電流の極性を推定する。 Since the PWM signals FH and FL are input to the Vf control unit 26 of the microcomputer 21, the Vf control unit 26 and the pulse control unit 27 can collectively control the one and other arms. According to this embodiment, the same operation and effect as those of the first and second embodiments can be obtained. In Example 9, as in the fourth embodiment, either one of the photocouplers 67A and 67B may be omitted. At this time, the sense elements (5s, 6s) and the sense resistor (7) corresponding to the omitted photocouplers 67A and 67B may be omitted. In this case, the current polarity detection unit 68 estimates the polarity of the current flowing in the other (for example, the semiconductor element 1A) based on the polarity detection signal of the current flowing in one (for example, the semiconductor element 1B).
 (第1~第9実施形態についての他の実施形態)
 以上、第1~第9の実施形態について説明したが、以下のように開示の要旨を逸脱しない範囲内で種々の変形、拡張を行うことができる。
(Other embodiments of the first to ninth embodiments)
While the first to ninth embodiments have been described above, various modifications and extensions can be made without departing from the scope of the disclosure as follows.
 各実施形態は、Vf制御部26によるVf制御とパルス制御部27によるパルス制御のうちVf制御だけを行う構成またはパルス制御だけを行う構成に変更してもよい。第3から第7の実施形態においてVf制御だけを行う構成の場合、Vf制御部26が、半導体素子1A、1Bのうち一方の半導体素子にゲート駆動電圧を印加している期間、他方の半導体素子へのゲート駆動電圧の印加が禁止されることは勿論である。 Each embodiment may be changed to a configuration in which only the Vf control is performed among the Vf control by the Vf control unit 26 and the pulse control by the pulse control unit 27, or a configuration in which only the pulse control is performed. In the case where only the Vf control is performed in the third to seventh embodiments, the Vf control unit 26 applies the gate drive voltage to one of the semiconductor elements 1A and 1B during the other semiconductor element. Of course, the application of the gate drive voltage to is prohibited.
 切替信号Skとしきい値電圧Vt(電流しきい値Itの設定)を入力する構成は、必要に応じて備えればよい。 The configuration for inputting the switching signal Sk and the threshold voltage Vt (setting of the current threshold value It) may be provided as necessary.
 Vf制御部26、パルス制御部27は、それぞれ負荷電流の大きさが規定値Im1、Im2よりも小さくなるとVf制御、パルス制御を停止して通常制御を行うようにしたが、この通常制御への切り替え制御は必要に応じて実行すればよい。 The Vf control unit 26 and the pulse control unit 27 stop the Vf control and the pulse control and perform the normal control when the magnitude of the load current becomes smaller than the specified values Im1 and Im2, respectively. The switching control may be executed as necessary.
 第1、第2の実施形態においても、電流検出部25は、センス電圧VSH、VSLに替えてホールセンサ59のセンス信号を入力して電流検出信号を得てもよい。 Also in the first and second embodiments, the current detection unit 25 may obtain a current detection signal by inputting a sense signal of the Hall sensor 59 instead of the sense voltages VSH and VSL.
 第2の実施形態においても、負荷電流の大きさが規定値Im1、Im2よりも小さくなると、それぞれVf制御、パルス制御を停止して通常制御を行う構成としてもよい。また、駆動制御システムの運転領域が常に図6に示す領域1にある場合には、Vf制御部26から、領域1と領域2との間での制御切替機能を省いてもよい。すなわち、Vf制御部26は、PWM信号FLがHレベルの期間、常にゲート駆動電圧VGLを半導体素子1Bのゲートに印加する。Vf制御部26は、当該期間において半導体素子1Bにダイオード素子6の順方向の向きに電流が流れていると判定すると、第2の実施形態と同様にして第2時間T2の経過時点(時刻t6)までパルスの拡張を行う。 Also in the second embodiment, when the magnitude of the load current becomes smaller than the specified values Im1 and Im2, the Vf control and the pulse control may be stopped and the normal control may be performed, respectively. Further, when the operation region of the drive control system is always in the region 1 shown in FIG. 6, the control switching function between the region 1 and the region 2 may be omitted from the Vf control unit 26. That is, the Vf control unit 26 always applies the gate drive voltage VGL to the gate of the semiconductor element 1B while the PWM signal FL is at the H level. When the Vf control unit 26 determines that the current flows in the forward direction of the diode element 6 in the semiconductor element 1B during the period, the Vf control unit 26 determines that the second time T2 has elapsed (time t6) as in the second embodiment. ) To extend the pulse.
 第8、第9の実施形態においても、外部から電流しきい値Itを特定するしきい値特定信号(切替信号Sk)を入力可能に構成し、しきい値設定回路29A、29Bを備えてもよい。また、しきい値設定回路30A、30B、31A、31Bを備え、負荷電流の大きさが規定値Im1、Im2よりも小さくなるとVf制御、パルス制御を停止して通常制御を行う構成としてもよい。 Also in the eighth and ninth embodiments, a threshold value specifying signal (switching signal Sk) for specifying the current threshold value It can be input from the outside, and threshold setting circuits 29A and 29B are provided. Good. Further, the threshold setting circuits 30A, 30B, 31A and 31B may be provided, and when the magnitude of the load current becomes smaller than the specified values Im1 and Im2, the Vf control and the pulse control are stopped and the normal control is performed.
 第3から第9の実施形態は、半導体素子1A、1BにMOSトランジスタを用いた構成に対しても、第2の実施形態と同様にして適用できる。半導体素子1A、1Bは、コントロール用のゲートを有し寄生ダイオードが形成された素子、例えばMOSゲートを備えたダイオードであってもよい。RC-IGBTは、トレンチゲート型に限らずプレーナゲート型などであってもよい。MOSトランジスタは、トレンチゲート型に限らずプレーナゲート型などであってもよい。MOSトランジスタは、SJ(Super Junction)構造であってもよい。 The third to ninth embodiments can be applied to the configuration using MOS transistors for the semiconductor elements 1A and 1B in the same manner as the second embodiment. The semiconductor elements 1A and 1B may be elements having a control gate and having a parasitic diode formed thereon, for example, diodes having MOS gates. The RC-IGBT is not limited to the trench gate type but may be a planar gate type. The MOS transistor is not limited to a trench gate type but may be a planar gate type. The MOS transistor may have an SJ (Super Junction) structure.
 上記実施形態では、電流検出手段として、半導体素子1A、1Bにセンス素子を形成した上でセンス抵抗7A、7Bを備えた。或いは、ホールセンサ59を備えた。これらに替えて、図15に示すように、センス素子を除いた半導体素子1A、1Bと直列にセンス抵抗7A、7Bを設けてもよい。センス抵抗7A、7Bとメイン素子とが直接接続されているので、高応答が可能となる。また、図16に示すように、半導体素子1A、1Bに対しホールセンサ59A、59Bを設けてもよい。何れの構成でも、電流を高精度に検出できる。これらの変形例は、第1、第2の実施形態のみならず、第3から第9の実施形態についても適用できる。さらに、ホールセンサに替えてGMR(Giant Magneto Resistance)センサなどの絶縁型電流センサを用いてもよい。 In the above embodiment, the sense resistors 7A and 7B are provided as the current detection means after forming the sense elements in the semiconductor elements 1A and 1B. Alternatively, a hall sensor 59 is provided. Instead of these, as shown in FIG. 15, sense resistors 7A and 7B may be provided in series with the semiconductor elements 1A and 1B excluding the sense elements. Since the sense resistors 7A and 7B and the main element are directly connected, high response is possible. Further, as shown in FIG. 16, Hall sensors 59A and 59B may be provided for the semiconductor elements 1A and 1B. In any configuration, the current can be detected with high accuracy. These modifications can be applied not only to the first and second embodiments but also to the third to ninth embodiments. Further, an insulated current sensor such as a GMR (Giant Magneto Resistance) sensor may be used instead of the Hall sensor.
 第1、第3、第4、第9の実施形態、第2の実施形態で駆動制御システムの運転領域が常に領域1のため制御切替機能を省いた構成の場合、および図15に示す構成においても、電流検出部25または電流検出回路60を電流極性検出回路68に置き替え、第7の実施形態と同様にパルス制御およびVf制御を実行してもよい。これらの場合、第7の実施形態と同様に、半導体素子1A、1Bのうち一方の半導体素子にゲート駆動電圧を印加している期間、他方の半導体素子へのゲート駆動電圧の印加を禁止できる。また、電流極性検出回路68は、一方の半導体素子に流れる電流の極性検出信号に基づいて、他方の半導体素子に流れる電流の極性を推定できる。 In the first, third, fourth, ninth, and second embodiments, the operation region of the drive control system is always region 1, so that the control switching function is omitted, and in the configuration shown in FIG. Alternatively, the current detection unit 25 or the current detection circuit 60 may be replaced with the current polarity detection circuit 68, and the pulse control and the Vf control may be executed similarly to the seventh embodiment. In these cases, as in the seventh embodiment, application of the gate drive voltage to the other semiconductor element can be prohibited while the gate drive voltage is applied to one of the semiconductor elements 1A and 1B. Further, the current polarity detection circuit 68 can estimate the polarity of the current flowing through the other semiconductor element based on the polarity detection signal of the current flowing through the one semiconductor element.
 電流極性検出回路68は、センス抵抗7A、7Bに生じるセンス電圧VSH、VSLに替えて、トランジスタ素子5のコレクタ・エミッタ間電圧(またはドレイン・ソース間電圧)またはゲート駆動電圧VGH、VGLに基づいて半導体素子1A、1Bに流れる電流の極性を検出できる。 The current polarity detection circuit 68 is based on the collector-emitter voltage (or drain-source voltage) or the gate drive voltages VGH, VGL of the transistor element 5 instead of the sense voltages VSH, VSL generated in the sense resistors 7A, 7B. The polarity of the current flowing through the semiconductor elements 1A and 1B can be detected.
 (第10の実施形態)
 図17~図18は第10の実施形態を示すもので、半導体素子1A,1Bに替えて半導体素子101A,101Bを使用すると共に電流検出部25に替えて電圧検出部125を使用した形態を示す。同一または類似の構成については同一または類似の符号を付して説明を省略する。
(Tenth embodiment)
FIGS. 17 to 18 show a tenth embodiment, in which semiconductor elements 101A and 101B are used instead of the semiconductor elements 1A and 1B, and a voltage detector 125 is used instead of the current detector 25. FIG. . The same or similar components are denoted by the same or similar reference numerals and description thereof is omitted.
 半導体素子101A、101Bは、絶縁ゲート型のトランジスタ素子105と、ダイオード素子106とが同一の半導体基板8に形成された逆導通型IGBT(RC-IGBT)であり、前述実施形態のトランジスタ素子5とダイオード素子6とにそれぞれ対応したメイン素子(トランジスタ素子105、ダイオード素子106)を示している。トランジスタ素子105の通電電極(コレクタ、エミッタ)とダイオード素子106の通電電極(カソード、アノード)とはそれぞれ共通の電極とされている。 The semiconductor elements 101A and 101B are reverse conducting IGBTs (RC-IGBTs) in which the insulated gate transistor element 105 and the diode element 106 are formed on the same semiconductor substrate 8, and the transistor elements 5 of the above-described embodiment Main elements (transistor element 105 and diode element 106) respectively corresponding to the diode element 6 are shown. The current-carrying electrodes (collector and emitter) of the transistor element 105 and the current-carrying electrodes (cathode and anode) of the diode element 106 are common electrodes.
 また、このメイン素子に加えて、半導体基板にはメイン素子のコレクタ電位(電極電位相当)を検出するためのセンス素子(センストランジスタ105s、センスダイオード106s)が構成されている。センストランジスタ105sの通電電極(コレクタ、エミッタ)とセンスダイオード106sの通電電極(カソード、アノード)とはそれぞれ共通の電極とされている。絶縁ゲート型のセンストランジスタ105sのゲートエミッタ間は共通接続されている。センストランジスタ105sのエミッタ電極とトランジスタ素子105のエミッタ電極との間にはセンス抵抗107A、107Bが接続されている。センス抵抗107A、107Bは、電圧検出部125と共に電圧検出手段を構成している。 In addition to the main element, a sense element (sense transistor 105s, sense diode 106s) for detecting the collector potential (corresponding to the electrode potential) of the main element is configured on the semiconductor substrate. The conducting electrodes (collector and emitter) of the sense transistor 105s and the conducting electrodes (cathode and anode) of the sense diode 106s are common electrodes. The gate and emitter of the insulated gate type sense transistor 105s are connected in common. Sense resistors 107A and 107B are connected between the emitter electrode of the sense transistor 105s and the emitter electrode of the transistor element 105. The sense resistors 107A and 107B constitute a voltage detection unit together with the voltage detection unit 125.
 駆動IC24A、24Bに替わる駆動IC124A、124Bには、電圧検出部125が構成されている。駆動IC124A、124Bには、Vf制御部26、パルス制御部27、ドライブ回路28が構成されている。これらのVf制御部26、パルス制御部27、ドライブ回路28の構成は、前述の実施形態と制御手法が類似するため図中には同一符号を付している。駆動IC124A、124Bは互いに同一構成であるため、駆動IC124B内の異なる部分となる電圧検出部125の構成のみを説明する。 The voltage detection part 125 is comprised in drive IC124A, 124B replaced with drive IC24A, 24B. The drive ICs 124A and 124B are configured with a Vf control unit 26, a pulse control unit 27, and a drive circuit 28. The configurations of the Vf control unit 26, the pulse control unit 27, and the drive circuit 28 are denoted by the same reference numerals in the drawing because the control method is similar to that of the above-described embodiment. Since the drive ICs 124A and 124B have the same configuration, only the configuration of the voltage detection unit 125, which is a different part in the drive IC 124B, will be described.
 電圧検出部125は、センス抵抗107Bに生じるセンス電圧VSLに基づいて、半導体素子101Bの電圧検出信号を出力する電圧検出手段である。電圧検出部125は、センス素子(105s、106s)を用いると、センスダイオード106sの端子間電圧とセンス抵抗107A、107Bとで分圧された分圧電圧を検出する。Vf制御部26とパルス制御部27は、PWM信号FLに基づいてゲート駆動信号SGLを生成する。ドライブ回路28は、ゲート駆動信号SGLを入力してゲート駆動電圧VGLを出力する。その他の構成は前述実施形態と同様であるため詳細説明を省略する。また、作用についてもほぼ第1の実施形態の説明とほぼ同様であるが、第1の実施形態と異なる部分となるパルス制御について、図18を参照して説明する。 The voltage detector 125 is a voltage detector that outputs a voltage detection signal of the semiconductor element 101B based on the sense voltage VSL generated in the sense resistor 107B. When the sense element (105s, 106s) is used, the voltage detector 125 detects a divided voltage divided by the voltage across the sense diode 106s and the sense resistors 107A, 107B. The Vf control unit 26 and the pulse control unit 27 generate the gate drive signal SGL based on the PWM signal FL. The drive circuit 28 receives the gate drive signal SGL and outputs a gate drive voltage VGL. Since other configurations are the same as those of the above-described embodiment, detailed description thereof is omitted. Further, although the operation is almost the same as that of the first embodiment, the pulse control which is different from the first embodiment will be described with reference to FIG.
 図18に示すように、本実施形態のパルス制御でも第1の実施形態と同様に、PWM信号FLがLレベルに立ち下がった後、逆回復電流が流れ始める前までに、半導体素子101Bにゲート駆動パルスを印加する点では同じである。しかし、このゲート駆動パルスを印加する条件判定が第1の実施形態とは異なる。 As shown in FIG. 18, in the pulse control of this embodiment as well as in the first embodiment, after the PWM signal FL falls to the L level, before the reverse recovery current starts to flow, the semiconductor element 101B is gated. It is the same in that a drive pulse is applied. However, the condition determination for applying the gate drive pulse is different from that in the first embodiment.
 すなわち、図18において、PWM信号FHがHレベルからLレベルに立ち下がると、半導体素子101Aのコレクタエミッタ間電圧が増加し、このとき同時に半導体素子101Bのコレクタ電極電位Vco(トランジスタ素子105Bのコレクタ電極電位)が低下する。このとき、電圧検出部125はセンス素子(105s、106s)により電極電位Vcoの低下タイミングを検出できる。なお、半導体素子101Aのコレクタエミッタ間電圧はミラー期間において徐々に増加しその後に急速増加する。このため、ミラー期間中にはコレクタ電極電位Vcoは徐々に低下し、その後、急速低下する。 That is, in FIG. 18, when the PWM signal FH falls from the H level to the L level, the collector-emitter voltage of the semiconductor element 101A increases. At the same time, the collector electrode potential Vco of the semiconductor element 101B (the collector electrode of the transistor element 105B) (Potential) decreases. At this time, the voltage detector 125 can detect the decrease timing of the electrode potential Vco by the sense elements (105s, 106s). Note that the collector-emitter voltage of the semiconductor element 101A gradually increases in the mirror period and then rapidly increases. For this reason, the collector electrode potential Vco gradually decreases during the mirror period, and then rapidly decreases.
 電圧検出部125は、前述のミラー期間中にコレクタ電極電位Vcoの低下タイミングを検出する(時刻t1a)。Vf制御部26は、電圧検出部125により電極電位Vcoの低下を検出し、入力されるPWM信号FLのオンオフ指令信号とコレクタ電極電位Vcoとの関係に応じて極性を推定できる。 The voltage detector 125 detects the decrease timing of the collector electrode potential Vco during the above-described mirror period (time t1a). The Vf control unit 26 can detect a decrease in the electrode potential Vco by the voltage detection unit 125 and estimate the polarity according to the relationship between the on / off command signal of the input PWM signal FL and the collector electrode potential Vco.
 駆動IC124BのVf制御部26は、コレクタ電極電位Vcoが低下したことを検出した時点(t1a)からPWM信号FLのオン指令信号を入力するか否かを判定し、オン指令信号が入力されたときにLレベルのゲート駆動信号SGLを出力する(時刻t2~t3)。このとき、このゲート駆動信号SGLに応じたゲート駆動電圧VGLが半導体素子101Bのゲートに印加される。これによりゲート駆動電圧VGLが遮断される。この間、極性判定をし続ける。 The Vf control unit 26 of the driving IC 124B determines whether or not to input the ON command signal of the PWM signal FL from the time (t1a) when it is detected that the collector electrode potential Vco has decreased, and when the ON command signal is input The L level gate drive signal SGL is output to (time t2 to t3). At this time, a gate drive voltage VGL corresponding to the gate drive signal SGL is applied to the gate of the semiconductor element 101B. As a result, the gate drive voltage VGL is cut off. During this time, the polarity determination is continued.
 図25および図26は負荷電流の方向、大きさに応じたコレクタ電極電位の変化特性の参考図を示す。図17に示すノードNtに負荷から電流が流れ込む方向について負荷電流を負とし(図25(a)左欄)、図17のノードNtから負荷側に流れ出す方向について負荷電流を正と定義する(図25(a)右欄)。 FIG. 25 and FIG. 26 show reference diagrams of the change characteristics of the collector electrode potential according to the direction and magnitude of the load current. The load current is defined as negative in the direction in which current flows from the load to the node Nt shown in FIG. 17 (left column in FIG. 25A), and the load current is defined as positive in the direction flowing out from the node Nt in FIG. 25 (a) right column).
 負荷電流が負となっているときにはノードNtには電流が流れ込む。このため、図25(a)の部分NMの拡大図を図25(b)に示すように、原理的にコレクタ電極電位Vcoは高くなる。負荷電流が正となっているときにはノードNtから電流が負荷側に流出することになるため、図25(a)の部分NPの拡大図を図25(c)に示すようにコレクタ電極電位Vcoは低くなる。 When the load current is negative, current flows into the node Nt. For this reason, as shown in FIG. 25B, which is an enlarged view of the portion NM in FIG. 25A, the collector electrode potential Vco increases in principle. Since the current flows out from the node Nt to the load side when the load current is positive, an enlarged view of the portion NP in FIG. 25A is shown in FIG. Lower.
 したがって、負荷電流が0付近となる条件で負荷電流の極性が反転するとき、半導体素子101A、101Bのオン抵抗のバランスに応じて電圧検出部125による検出電圧が決定される。負荷電流の極性が反転すると、図26に示すように、コレクタ電極電位Vcoが大きく変動したり、チャタリングを引き起こす。このため、前述したように、電圧検出部125の検出電圧が大きく変動したか否かを判定することで、負荷電流、ダイオード素子106の電流が0付近の所定範囲であるか否かを判定し、この条件を満たし負荷電流が0付近となりほとんど流れていないと判定した場合には、Vf制御部26はLレベルのゲート駆動信号SGLを出力し続ける。これにより、制御の信頼性、安定性を高めることができる。 Therefore, when the polarity of the load current is reversed under the condition that the load current is close to 0, the detection voltage by the voltage detection unit 125 is determined according to the balance of the on-resistance of the semiconductor elements 101A and 101B. When the polarity of the load current is reversed, as shown in FIG. 26, the collector electrode potential Vco largely fluctuates or causes chattering. For this reason, as described above, it is determined whether or not the load current and the current of the diode element 106 are within a predetermined range near 0 by determining whether or not the detection voltage of the voltage detection unit 125 has greatly fluctuated. When it is determined that this condition is satisfied and the load current is near 0 and hardly flows, the Vf control unit 26 continues to output the L level gate drive signal SGL. Thereby, the reliability and stability of control can be improved.
 逆に、極性を判定してゲート駆動信号SGLをLレベルに出力し続けている間に、その途中でコレクタ電極電位Vcoが大きく変動したことを検出すると、Vf制御部26はPWM信号FLの指令信号に合わせたゲート駆動信号SGLを出力する。この場合、制御の応答性能を高めることができる。 Conversely, while the polarity is determined and the gate drive signal SGL continues to be output to the L level, if it is detected that the collector electrode potential Vco fluctuates significantly during the process, the Vf control unit 26 instructs the PWM signal FL to A gate drive signal SGL that matches the signal is output. In this case, control response performance can be improved.
 また、時点t1と時点t2との間のデッドタイムTdが短くなったり、PWM信号FHのオフ指令信号の発生タイミングからゲート駆動電圧VGHの立下りの遅延時間が長くなったりすると、コレクタ電極電位Vcoが急激に低下するタイミングよりも前にPWM信号FLのオン指令信号が入力されることもある。この場合、PWM信号FLのオン指令信号の入力時点から所定時間以内に電圧検出部125によりコレクタ電極電位Vcoが急激に低下することを検出したことを条件として、Vf制御部26が前述同様の制御手法によりゲート駆動信号SGLを出力すると良い。 Further, when the dead time Td between the time point t1 and the time point t2 is shortened or the delay time of the fall of the gate drive voltage VGH is increased from the generation timing of the OFF command signal of the PWM signal FH, the collector electrode potential Vco The ON command signal for the PWM signal FL may be input before the timing at which the voltage rapidly decreases. In this case, the Vf control unit 26 performs the same control as described above on the condition that the voltage detection unit 125 detects that the collector electrode potential Vco rapidly decreases within a predetermined time from the input time point of the ON command signal of the PWM signal FL. The gate drive signal SGL may be output by a technique.
 他方、図18において、PWM信号FHがLレベルからHレベルに立ち上がると(時刻t7)、その後、半導体素子101Bのコレクタエミッタ間電圧が増加し、半導体素子101Bの電極電位Vco(トランジスタ素子105Bのコレクタ電位)が増加する。このとき、電圧検出部125は、センス素子(105s、106s)によりダイオード6の電圧と抵抗107Aの電圧との分圧電圧により電極電位Vcoの増加タイミングを検出できる。 On the other hand, in FIG. 18, when the PWM signal FH rises from the L level to the H level (time t7), the collector-emitter voltage of the semiconductor element 101B increases thereafter, and the electrode potential Vco of the semiconductor element 101B (the collector of the transistor element 105B). Potential) increases. At this time, the voltage detection unit 125 can detect the increase timing of the electrode potential Vco by the divided voltage of the voltage of the diode 6 and the voltage of the resistor 107A by the sense elements (105s, 106s).
 Vf制御部26による極性判定を受けて、ダイオード素子106に対し順方向に電流が流れていると判定したときには、パルス制御部27が、PWM信号FLのオフ指令信号の入力された時点(時刻t3)を起点として第1時間T1の経過時点(時刻t4)から第2時間T2の経過時点(時刻t6)までゲート駆動信号SGLをHレベルにする。このゲート駆動信号SGLにより、半導体素子101Bのゲートにゲート駆動パルスVGLが印加される。 In response to the polarity determination by the Vf control unit 26, when it is determined that a current is flowing in the forward direction with respect to the diode element 106, the pulse control unit 27 receives the OFF command signal of the PWM signal FL (time t3). ) As a starting point, the gate drive signal SGL is set to the H level from the elapsed time (time t4) of the first time T1 to the elapsed time (time t6) of the second time T2. By this gate drive signal SGL, a gate drive pulse VGL is applied to the gate of the semiconductor element 101B.
 また、パルス制御部27はPWM信号FLがLレベルに立ち下がった後も、電圧検出部125の電圧が変動したか否かを判定することで、半導体素子101Bのダイオード素子106に電流が流れているか否かを判定し続ける。一方、パルス制御部27は、PWM信号FLがLレベルに立ち下がったときにダイオード素子6に電流が流れていないと判定すると、直ちにゲート駆動信号SGLをLレベルにして維持する。すなわち、ゲート駆動パルスを印加しない。 Further, even after the PWM signal FL falls to the L level, the pulse control unit 27 determines whether or not the voltage of the voltage detection unit 125 has changed, so that a current flows through the diode element 106 of the semiconductor element 101B. Continue to determine whether or not. On the other hand, if the pulse control unit 27 determines that no current flows through the diode element 6 when the PWM signal FL falls to the L level, the pulse control unit 27 immediately maintains the gate drive signal SGL at the L level. That is, no gate drive pulse is applied.
 図18に示す第1時間T1と第2時間T2は、アーム短絡が生じないように予め設定されている。PWM信号FLがLレベルの期間にダイオード素子106に電流が流れている場合と、トランジスタ素子105に電流が流れている場合とでは、ゲート駆動パルスを与えたときのゲート駆動電圧VGLの波形が異なる。 The first time T1 and the second time T2 shown in FIG. 18 are set in advance so as not to cause an arm short circuit. The waveform of the gate drive voltage VGL when a gate drive pulse is applied differs between when the current flows through the diode element 106 and when the current flows through the transistor element 105 while the PWM signal FL is at the L level. .
 ダイオード素子106に電流が流れている場合には、半導体素子101Bのコレクタ・エミッタ間電圧が変化しない。また、半導体素子101Bに急峻な電流変化、電圧変化が生じない。このため、ドライブ回路28は、ゲート駆動電圧VGLの立ち上げ時および立ち下げ時に、通常よりも高いゲート駆動能力でゲート駆動電圧VGLを出力できる。 When a current flows through the diode element 106, the collector-emitter voltage of the semiconductor element 101B does not change. Further, no steep current change or voltage change occurs in the semiconductor element 101B. Therefore, the drive circuit 28 can output the gate drive voltage VGL with a higher gate drive capability than usual when the gate drive voltage VGL rises and falls.
 第1時間T1と第2時間T2は、ゲート駆動パルスの印加時におけるゲート駆動電圧VGLの波形およびドライブ回路28の駆動態様を考慮し、ゲート駆動電圧VGLがドライブ回路28のゲート駆動能力に従って単調に増加または単調に減少するものとして設定されている。その際、ゲート駆動パルスの印加終了時点から逆回復電流が流れ始めるまでの時間Tc(キャリアの再注入時間)が、ゼロよりも長く且つ注入許容時間以下となるように設定される。注入許容時間は、許容される逆回復電流の大きさに応じて規定されている。 The first time T1 and the second time T2 take into account the waveform of the gate drive voltage VGL when the gate drive pulse is applied and the drive mode of the drive circuit 28, and the gate drive voltage VGL is monotonous according to the gate drive capability of the drive circuit 28. It is set to increase or decrease monotonically. At this time, the time Tc (carrier reinjection time) from the end of application of the gate drive pulse until the reverse recovery current starts to flow is set to be longer than zero and shorter than the allowable injection time. The allowable injection time is specified according to the allowable reverse recovery current.
 具体的には、第1時間T1と第2時間T2は、ダイオード素子106に流れる電流を種々に変えながら、PWM信号FLの立下り時点を起点とし、ゲート駆動信号SGLの印加タイミング、実際にゲート駆動電圧VGLが印加されるタイミング、および逆回復電流が流れ始めるタイミングを予め測定して設定されている。この第1時間T1と第2時間T2は、本実施形態ではパルス制御部27内のメモリ等に記憶されている。なお、この第1時間T1と第2時間T2は1又は数パターンのロジック回路又はアナログ遅延回路などを用いて構成することもできる。 Specifically, the first time T1 and the second time T2 change the current flowing through the diode element 106 in various ways, starting from the falling point of the PWM signal FL, and the application timing of the gate drive signal SGL, actually the gate The timing at which the drive voltage VGL is applied and the timing at which the reverse recovery current starts to flow are set in advance by measurement. The first time T1 and the second time T2 are stored in a memory or the like in the pulse control unit 27 in this embodiment. The first time T1 and the second time T2 can also be configured using one or several patterns of logic circuits or analog delay circuits.
 パルス制御部27は、ゲート駆動パルスを印加する場合、第1時間T1と第2時間T2をメモリから読み出す。パルス制御部27は、コレクタ電極電位Vcoの低下検出タイミングを起点として、第1時間T1の経過時点でゲート駆動信号SGLの立ち上げ、第2時間T2の経過時点でゲート駆動信号SGLを立ち下げる。 The pulse control unit 27 reads the first time T1 and the second time T2 from the memory when applying the gate drive pulse. The pulse control unit 27 starts the gate drive signal SGL at the time when the first time T1 has elapsed, and lowers the gate drive signal SGL at the time when the second time T2 has elapsed, starting from the detection timing of the decrease in the collector electrode potential Vco.
 以上説明したように、第10の実施形態の構成においても第1の実施形態が制御不可能な電流閾値以下でもほぼ同様の効果を奏する可能性がある。 As described above, even in the configuration of the tenth embodiment, there is a possibility that the same effect can be obtained even when the first embodiment is below the current threshold that cannot be controlled.
 (第11の実施形態)
 図19は第11の実施形態を示すもので、半導体素子101A、101BにMOSトランジスタなどを使用し同期整流を行った方が導通損失を低減できる場合のタイミングチャートを示している。駆動制御装置132A、132Bの構成は、図17に示した通りである。ここでは、主としてローサイド側の駆動制御装置132Bの作用について説明する。ハイサイド側の駆動制御装置132Aの作用も同様となる。MOSトランジスタの場合で説明すると、その特性は図6に示したように、電圧VDS<電圧Vfとなる領域1では、ゲート駆動電圧を印加することにより導通損失を低減できる。電圧VDS≧電圧Vfとなる領域2では、ゲート駆動電圧を遮断することにより導通損失を低減できる。前述実施形態と動作が同一部分については説明を省略する。電圧検出部125は、前述のミラー期間中にコレクタ電極電位Vcoの低下タイミングを検出する(時刻t1a)。Vf制御部26は、電圧検出部125により電極電位Vcoの低下を検出し、入力されるPWM信号FLのオンオフ指令信号とコレクタ電極電位Vcoとの関係に応じて極性を推定できる。
(Eleventh embodiment)
FIG. 19 shows an eleventh embodiment, and shows a timing chart when conduction loss can be reduced by performing synchronous rectification using MOS transistors or the like for the semiconductor elements 101A and 101B. The configuration of the drive control devices 132A and 132B is as shown in FIG. Here, the operation of the drive control device 132B on the low side will be mainly described. The operation of the drive control device 132A on the high side is the same. In the case of the MOS transistor, as shown in FIG. 6, in the region 1 where the voltage VDS <the voltage Vf, the conduction loss can be reduced by applying the gate drive voltage. In region 2 where voltage VDS ≧ voltage Vf, conduction loss can be reduced by cutting off the gate drive voltage. The description of the same operation as that in the above embodiment is omitted. The voltage detector 125 detects the decrease timing of the collector electrode potential Vco during the above-described mirror period (time t1a). The Vf control unit 26 can detect a decrease in the electrode potential Vco by the voltage detection unit 125 and estimate the polarity according to the relationship between the on / off command signal of the input PWM signal FL and the collector electrode potential Vco.
 駆動IC124BのVf制御部26は、コレクタ電極電位Vcoが低下したことを検出した時点(t1a)からPWM信号FLのオン指令信号を入力するか否かを判定し、オン指令信号が入力されたときにHレベルのゲート駆動信号SGLを出力する(時刻t2~t3)。このとき、このゲート駆動信号SGLに応じたゲート駆動電圧VGLが半導体素子101Bのゲートに印加される。 The Vf control unit 26 of the driving IC 124B determines whether or not to input the ON command signal of the PWM signal FL from the time (t1a) when it is detected that the collector electrode potential Vco has decreased, and when the ON command signal is input H level gate drive signal SGL is output at time t2 to t3. At this time, a gate drive voltage VGL corresponding to the gate drive signal SGL is applied to the gate of the semiconductor element 101B.
 また、PWM信号FLがHレベルの期間においては、半導体素子101Bに領域1の範囲内の電流が流れている場合、Vf制御部26は、ゲート駆動電圧VGLを印加する通常制御(同期整流)を実行する。その後PWM信号FLがLレベルになると、Vf制御部26は、半導体素子101Bにゲート駆動パルスを印加する。 Further, in the period in which the PWM signal FL is at the H level, when a current in the range of the region 1 flows through the semiconductor element 101B, the Vf control unit 26 performs normal control (synchronous rectification) for applying the gate drive voltage VGL. Execute. Thereafter, when the PWM signal FL becomes L level, the Vf control unit 26 applies a gate drive pulse to the semiconductor element 101B.
 この場合、パルス制御部27が、オフ指令信号の入力時点を起点として、第1時間T1の経過時点から第2時間T2の経過時点までゲート駆動信号SGLをHレベルにすればよい。しかし、ゲート駆動電圧VGLを一旦遮断するよりも、第2時間T2の経過時点までゲート駆動電圧VGLを連続して印加する方が導通損失を低減できる。そこで、Vf制御部26は、Vf制御に続きパルス制御を行うため、Hレベルのゲート駆動信号SGLを、時刻t3を越えて第2時間T2の経過時点(時刻t6)まで延長して出力すると良い(パルスの拡張)。 In this case, the pulse control unit 27 may set the gate drive signal SGL to the H level from the time when the first time T1 has elapsed to the time when the second time T2 has elapsed, starting from the input time of the off command signal. However, the conduction loss can be reduced by continuously applying the gate drive voltage VGL until the second time T2 elapses, rather than once interrupting the gate drive voltage VGL. Therefore, since the Vf control unit 26 performs pulse control following the Vf control, the Vf control unit 26 may output the H-level gate drive signal SGL by extending it beyond the time t3 to the lapse of the second time T2 (time t6). (Pulse extension).
 PWM信号FLがHレベルの期間において、半導体素子101Bに図6に示す領域2の範囲内の電流が流れている場合、Vf制御部26とパルス制御部27は、図5に示したRC-IGBTの制御と同様のゲート駆動信号SGLを出力する。 When the current within the range of the region 2 shown in FIG. 6 flows through the semiconductor element 101B during the period in which the PWM signal FL is at the H level, the Vf control unit 26 and the pulse control unit 27 perform the RC-IGBT shown in FIG. A gate drive signal SGL similar to the control in step S3 is output.
 さて、PWM信号FLがLレベルの期間においても、第10の実施形態で説明したように、電圧検出部125がセンス素子(105s、106s)によりコレクタ電極電位Vcoの立ち下がりを検出した時点(時刻t1a)よりも後において、Vf制御部26による通常のVf制御に続くように、制御手段(Vf制御部26又はパルス制御部27)はオン指令信号の入力時点(t2)を遡って出力するようにパルス制御を行っても良い(時刻t1b→t2の区間のパルスの拡張参照)。 Even when the PWM signal FL is at the L level, as described in the tenth embodiment, the time point (time) when the voltage detection unit 125 detects the falling edge of the collector electrode potential Vco by the sense elements (105s, 106s). After t1a), the control means (Vf control unit 26 or pulse control unit 27) outputs the ON command signal input time (t2) retroactively so as to follow the normal Vf control by the Vf control unit 26. Alternatively, pulse control may be performed (refer to the expansion of the pulse in the interval from time t1b → t2).
 アーム短絡を防ぐためには、ゲート駆動電圧VGHが閾値電圧Vth未満となる時点(すなわち流が流れなくなる時点)から再度閾値電圧Vthに達する時点(すなわち電流が流れ出す時点)までの間、ゲート駆動電圧VGLを上昇させることができる。 In order to prevent an arm short circuit, the gate drive voltage VGL is from the time when the gate drive voltage VGH becomes less than the threshold voltage Vth (ie, when the current stops flowing) to the time when the threshold voltage Vth is reached again (ie when the current starts flowing). Can be raised.
 ゲート駆動信号SGLが与えられてからゲート駆動電圧VGLを上昇させるまで、Vf制御部26及びパルス制御部27は、信号生成処理などの各種処理を行うための遅延時間を生じる。この遅延時間を実験、シミュレーションなどを用いて予め測定しておき、このゲート駆動電圧VGLを上昇させている期間中にアーム短絡が生じないように、Vf制御部26およびパルス制御部27がゲート駆動信号SGLのパルス拡張すると良い。 From the time when the gate drive signal SGL is given until the gate drive voltage VGL is raised, the Vf control unit 26 and the pulse control unit 27 generate delay times for performing various processes such as a signal generation process. This delay time is measured in advance using experiments, simulations, and the like, and the Vf control unit 26 and the pulse control unit 27 drive the gate so that no arm short circuit occurs during the period when the gate drive voltage VGL is increased. It is preferable to extend the pulse of the signal SGL.
 このとき、ゲート駆動電圧VGHの閾値電圧Vth未満となるタイミング(すなわち電流が流れなくなる時点)とゲート駆動電圧VGLが閾値電圧Vth以上となるタイミングとの間に余裕時間(図19のマージン時間Ma)を設けると良い。ゲート駆動電圧VGLが閾値電圧Vth未満となるタイミングと、ゲート駆動電圧VGHが閾値電圧Vth以上となるタイミング(すなわち電流が流れ出す時点)との間に余裕時間(図19のマージン時間Mb)を設けると良い。 At this time, a margin time (margin time Ma in FIG. 19) between the timing when the gate driving voltage VGH becomes less than the threshold voltage Vth (that is, when the current stops flowing) and the timing when the gate driving voltage VGL becomes equal to or higher than the threshold voltage Vth. It is good to provide. When a margin time (margin time Mb in FIG. 19) is provided between the timing when the gate drive voltage VGL becomes lower than the threshold voltage Vth and the timing when the gate drive voltage VGH becomes equal to or higher than the threshold voltage Vth (that is, when current flows). good.
 すなわち、電圧検出部125により電圧が検出されてから実際に制御が実施されるまでの遅延バラつき(電圧検出部125のバラつき、半導体素子101A等の構成バラつき、温度特性の変化、経年劣化等による遅延バラつき、等)を生じるが、これらの遅延バラつきをマージンとして考慮した遅延時間を見込んでパルス拡張すると良い。 That is, delay variation from when the voltage is detected by the voltage detection unit 125 until actual control is performed (variation of the voltage detection unit 125, configuration variation of the semiconductor element 101A, etc., change in temperature characteristics, aging deterioration, etc. However, it is preferable to extend the pulse in consideration of the delay time considering the delay variation as a margin.
 電圧検出部125は、前述のミラー期間中にコレクタ電極電位Vcoの低下タイミングを検出する(時刻t1a)。Vf制御部26は、電圧検出部125により電極電位Vcoの低下を検出し、入力されるPWM信号FLのオンオフ指令信号とコレクタ電極電位Vcoとの関係に応じて極性を推定できる。この極性の推定方法は第10の実施形態に示した方法と同様である。 The voltage detector 125 detects the decrease timing of the collector electrode potential Vco during the above-described mirror period (time t1a). The Vf control unit 26 can detect a decrease in the electrode potential Vco by the voltage detection unit 125 and estimate the polarity according to the relationship between the on / off command signal of the input PWM signal FL and the collector electrode potential Vco. This polarity estimation method is the same as the method shown in the tenth embodiment.
 実験的又はシミュレーションなどにより領域1または領域2の範囲内の電流が流れているか否かを判定し、領域1が支配的(制御時間が所定割合以上)であると判定されたときには、Vf制御部26は、ゲート駆動電圧VGLを印加する通常制御(同期整流)を実行する。その後PWM信号FLがLレベルになると、半導体素子101Bにゲート駆動パルスを印加する必要がある。 It is determined whether a current in the range of the region 1 or the region 2 is flowing experimentally or by simulation, and when it is determined that the region 1 is dominant (control time is a predetermined ratio or more), the Vf control unit 26 executes normal control (synchronous rectification) in which the gate drive voltage VGL is applied. Thereafter, when the PWM signal FL becomes L level, it is necessary to apply a gate drive pulse to the semiconductor element 101B.
 この場合、Vf制御部26がゲート駆動信号SGLをLレベルにした後、パルス制御部27が、PWM信号FLの立ち下がり時点を起点として、第1時間T1の経過時点から第2時間T2の経過時点までゲート駆動信号SGLをHレベルにすればよい。しかし、ゲート駆動電圧VGLを一旦遮断するよりも、第2時間T2の経過時点までゲート駆動電圧VGLを連続して印加する方が導通損失を低減することができる。そこで、Vf制御部26は、Vf制御に続きパルス制御を行うため、Hレベルのゲート駆動信号SGLを、時刻t3を越えて第2時間T2の経過時点(時刻t6)まで延長して出力する(パルスの拡張)。 In this case, after the Vf control unit 26 sets the gate drive signal SGL to the L level, the pulse control unit 27 starts from the time when the PWM signal FL falls and the second time T2 elapses from the time when the first time T1 elapses. The gate drive signal SGL may be kept at the H level until the time point. However, the conduction loss can be reduced by continuously applying the gate drive voltage VGL until the second time T2 elapses, rather than once interrupting the gate drive voltage VGL. Therefore, the Vf control unit 26 performs pulse control following the Vf control, and outputs the H-level gate drive signal SGL by extending it beyond the time t3 until the elapse of the second time T2 (time t6) ( Pulse expansion).
 時点t1aからt2までの検出処理は第10の実施形態と同様の方法で行うが、時点t2以降についてVf制御部26がゲート駆動信号SGLをHレベルとしているため、負荷電流が0付近となる条件で負荷電流の極性が反転するときにも、第10の実施形態で説明したチャタリングが引き起こされることはない。したがって、Vf制御部26は、そのままHレベルのゲート駆動信号SGLを、時点t2以降、時点t6まで出力し続ければ良い。 The detection process from the time point t1a to the time point t2 is performed by the same method as in the tenth embodiment. However, since the Vf control unit 26 keeps the gate drive signal SGL at the H level after the time point t2, the condition that the load current is close to zero. Even when the polarity of the load current is reversed, the chattering described in the tenth embodiment is not caused. Therefore, the Vf control unit 26 may continue to output the H level gate drive signal SGL as it is from time t2 to time t6.
 本実施形態によっても第2または第10の実施形態と同様の効果が得られる。 Also in this embodiment, the same effect as that of the second or tenth embodiment can be obtained.
 (第12、第13の実施形態)
 図20は第12の実施形態を示し、図21は第13の実施形態を示すもので、何れも高耐圧を持つ駆動IC151、153を用いた駆動制御装置152、154を示している。高耐圧とは、ハーフブリッジ回路4に印加される電源電圧に応じた耐圧である。駆動制御装置152、154は、ハーフブリッジ回路4を構成する2つの半導体素子101A、101Bを駆動制御する。
(Twelfth and thirteenth embodiments)
FIG. 20 shows a twelfth embodiment, and FIG. 21 shows a thirteenth embodiment, both of which show drive control devices 152 and 154 using drive ICs 151 and 153 having a high breakdown voltage. The high breakdown voltage is a breakdown voltage according to the power supply voltage applied to the half bridge circuit 4. The drive control devices 152 and 154 drive and control the two semiconductor elements 101A and 101B constituting the half bridge circuit 4.
 駆動IC151、153は、半導体素子101A、101Bに対し共通のVf制御部26と共通のパルス制御部27を備えており、電源電圧VDD(例えば15V)が供給されることで動作する。ゲート駆動信号SGHは、レベルシフト部57とドライブ回路28を介して半導体素子101Aに与えられ、ゲート駆動信号SGLは、ドライブ回路28を介して半導体素子101Bに与えられる。 The drive ICs 151 and 153 are provided with a common Vf control unit 26 and a common pulse control unit 27 for the semiconductor elements 101A and 101B, and operate when supplied with a power supply voltage VDD (for example, 15V). The gate drive signal SGH is given to the semiconductor element 101A via the level shift unit 57 and the drive circuit 28, and the gate drive signal SGL is given to the semiconductor element 101B via the drive circuit 28.
 駆動IC151は、センス抵抗107A、107Bに生じるセンス電圧VSH、VSLに基づいて電圧検出信号を出力する電圧検出部125を備えている。ハイサイド側の電圧検出部125は、レベルシフト回路58を介して電圧検出信号を出力する。駆動IC153は、ハイサイド側の電圧検出部125とレベルシフト回路58を省いた構成を備えている。 The drive IC 151 includes a voltage detection unit 125 that outputs a voltage detection signal based on the sense voltages VSH and VSL generated in the sense resistors 107A and 107B. The high-side voltage detection unit 125 outputs a voltage detection signal via the level shift circuit 58. The drive IC 153 has a configuration in which the high-side voltage detection unit 125 and the level shift circuit 58 are omitted.
 パルス制御部27は、ゲート駆動信号SGH、SGLを生成するので、2つの半導体素子101A、101Bのうち一方の半導体素子にゲート駆動電圧を印加している期間、他方の半導体素子へのゲート駆動電圧の印加を禁止できる。これにより、アーム短絡を確実に防止できる。 Since the pulse control unit 27 generates the gate drive signals SGH and SGL, the gate drive voltage applied to the other semiconductor element during the period when the gate drive voltage is applied to one of the two semiconductor elements 101A and 101B. Can be prohibited. Thereby, an arm short circuit can be prevented reliably.
 また、第13の実施形態を示す図21に示すように、ハイサイド側とローサイド側とで電圧検出部125を共用化できるので、回路構成を簡単化できる。この場合、共用化することで省略した電圧検出部125に対応したセンス素子(105s、106s)およびセンス抵抗(107)を省略しても良い。共用化する場合には、しきい値設定回路30、31で生成される規定電圧Vm1、Vm2に基づいて、ハイサイド側の規定電圧を第10の実施形態よりも大きく設定することが好ましい。その他、第10、第11の実施形態と同様の作用および効果が得られる。 Further, as shown in FIG. 21 showing the thirteenth embodiment, since the voltage detection unit 125 can be shared between the high side and the low side, the circuit configuration can be simplified. In this case, the sense elements (105s, 106s) and the sense resistor (107) corresponding to the voltage detection unit 125 omitted by sharing may be omitted. In the case of sharing, it is preferable to set the specified voltage on the high side larger than that in the tenth embodiment based on the specified voltages Vm1 and Vm2 generated by the threshold setting circuits 30 and 31. In addition, operations and effects similar to those of the tenth and eleventh embodiments can be obtained.
 (第14の実施形態)
 図22は第14の実施形態を示すもので、制御部とドライブ回路とを分離して構成した駆動制御装置162を示している。駆動制御装置162は、ハーフブリッジ回路4を構成する2つの半導体素子101A、101Bを駆動制御する。駆動制御装置162は、制御IC163、フォトカプラ64A、64B、67A、67B、駆動IC65A、65B、電圧検出部168などから構成されている。
(Fourteenth embodiment)
FIG. 22 shows a fourteenth embodiment and shows a drive control device 162 configured by separating a control unit and a drive circuit. The drive control device 162 controls the drive of the two semiconductor elements 101A and 101B constituting the half bridge circuit 4. The drive control device 162 includes a control IC 163, photocouplers 64A, 64B, 67A, 67B, drive ICs 65A, 65B, a voltage detection unit 168, and the like.
 制御IC163は、専用ASIC、マイコンのハードIP(Intellectual Property)、FPGAなどから構成されており、上述したVf制御部26とパルス制御部27が実装されている。フォトカプラ64A、64Bは、ゲート駆動信号SGH、SGLを電気的に絶縁して駆動IC65A、65Bに伝送する絶縁回路である。駆動IC65A、65Bは、ドライブ回路28を備えており、ゲート駆動信号SGH、SGLを入力してゲート駆動電圧VGH、VGLを出力する。 The control IC 163 includes a dedicated ASIC, a microcomputer hardware IP (Intellectual Property), an FPGA, and the like, and the Vf control unit 26 and the pulse control unit 27 described above are mounted thereon. The photocouplers 64A and 64B are insulation circuits that electrically insulate the gate drive signals SGH and SGL and transmit them to the drive ICs 65A and 65B. The drive ICs 65A and 65B include a drive circuit 28, which receives gate drive signals SGH and SGL and outputs gate drive voltages VGH and VGL.
 電圧検出部168は、フォトカプラ67A、67Bを通じてセンス電圧VSH、VSLを検出する。電圧検出部168は、半導体素子101A、101Bに流れる電流値または電流の向き(極性)をセンス素子105s、106sにかかる電圧と抵抗107A、107Bにかかる電圧の分圧電圧により検出できる。これにより、パルス制御およびRC-IGBTに対するVf制御を実行できる。 The voltage detector 168 detects the sense voltages VSH and VSL through the photocouplers 67A and 67B. The voltage detection unit 168 can detect the value of the current flowing in the semiconductor elements 101A and 101B or the direction (polarity) of the current based on the divided voltage of the voltage applied to the sense elements 105s and 106s and the voltage applied to the resistors 107A and 107B. Thereby, pulse control and Vf control for RC-IGBT can be executed.
 本実施形態によっても、パルス制御部27は、2つの半導体素子101A、101Bのうち一方の半導体素子にゲート駆動電圧を印加している期間、他方の半導体素子へのゲート駆動電圧の印加を禁止できる。これにより、アーム短絡を確実に防止できる。また、フォトカプラ67A、67Bの何れか一方を省略してもよい。このとき、省略したフォトカプラ67A,67Bに対応したセンス素子(105s、106s)およびセンス抵抗(107)を省略しても良い。この場合には、電圧検出部168は、半導体素子101Bに流れる電流の極性検出信号に基づいて、他方の半導体素子101Aに流れる電流の極性を推定する。電圧検出部168の前段ではなく電圧検出部168の後段にフォトカプラ67A、67Bと同様の構成のフォトカプラを設けても良い。電圧検出部168を制御IC63もしくは駆動IC65内に形成してもよい。 Also in this embodiment, the pulse control unit 27 can prohibit the application of the gate drive voltage to the other semiconductor element during the period in which the gate drive voltage is applied to one of the two semiconductor elements 101A and 101B. . Thereby, an arm short circuit can be prevented reliably. Further, either one of the photocouplers 67A and 67B may be omitted. At this time, the sense elements (105s, 106s) and the sense resistor (107) corresponding to the omitted photocouplers 67A and 67B may be omitted. In this case, the voltage detection unit 168 estimates the polarity of the current flowing through the other semiconductor element 101A based on the polarity detection signal of the current flowing through the semiconductor element 101B. A photocoupler having a configuration similar to that of the photocouplers 67A and 67B may be provided not in the previous stage of the voltage detection unit 168 but in the subsequent stage of the voltage detection unit 168. The voltage detection unit 168 may be formed in the control IC 63 or the drive IC 65.
 PWM信号FH、FLが制御IC163のVf制御部26に入力されているため、Vf制御部26およびパルス制御部27は、一方及び他方のアームの制御を統括的に実行することができる。この実施形態によっても、第10、第11の実施形態と同様の作用および効果が得られる。 Since the PWM signals FH and FL are input to the Vf control unit 26 of the control IC 163, the Vf control unit 26 and the pulse control unit 27 can collectively control the one and the other arms. Also according to this embodiment, the same operation and effect as those of the tenth and eleventh embodiments can be obtained.
 (第15の実施形態)
 図23は第15の実施形態を示すもので、制御部とドライブ回路とを分離するとともに、Vf制御部26、パルス制御部27および電圧検出部125をマイコン121に取り込んだ構成の駆動制御装置172を示している。駆動制御装置172は、ハーフブリッジ回路4を構成する2つの半導体素子101A、101Bを駆動制御する。駆動制御装置172は、マイコン121、フォトカプラ64A、64B、駆動IC65A、65Bなどから構成されている。駆動制御装置172は、センス電圧VSH、VSLを入力とするフォトカプラ67A、67Bを備えている。
(Fifteenth embodiment)
FIG. 23 shows a fifteenth embodiment, in which a controller and a drive circuit are separated, and a drive controller 172 having a configuration in which a Vf controller 26, a pulse controller 27, and a voltage detector 125 are incorporated in a microcomputer 121. Is shown. The drive control device 172 controls the drive of the two semiconductor elements 101A and 101B constituting the half bridge circuit 4. The drive control device 172 includes a microcomputer 121, photocouplers 64A and 64B, drive ICs 65A and 65B, and the like. The drive controller 172 includes photocouplers 67A and 67B that receive the sense voltages VSH and VSL.
 マイコン121は、メモリ73に予め記憶された制御プログラムを実行することにより、上述したVf制御部26、パルス制御部27および電圧検出部125の機能を実現する。駆動制御装置172のマイコン121は、フォトカプラ67A、67Bの出力信号を介して電圧検出信号を得る。メモリ73には、制御プログラムの他に、第1時間T1と第2時間T2、しきい値なども記憶されている。 The microcomputer 121 implements the functions of the Vf control unit 26, the pulse control unit 27, and the voltage detection unit 125 described above by executing a control program stored in advance in the memory 73. The microcomputer 121 of the drive control device 172 obtains a voltage detection signal via the output signals of the photocouplers 67A and 67B. In addition to the control program, the memory 73 also stores a first time T1, a second time T2, a threshold value, and the like.
 本実施形態によっても、マイコン121は、2つの半導体素子101A、101Bのうち一方の半導体素子にゲート駆動電圧を印加している期間、他方の半導体素子へのゲート駆動電圧の印加を禁止できる。これにより、アーム短絡を確実に防止できる。また、フォトカプラ67A、67Bの何れか一方を省略してもよい。このとき、省略したフォトカプラ67A,67Bに対応したセンス素子(105s、106s)およびセンス抵抗(107)を省略しても良い。共用化する場合には、しきい値設定回路30、31で生成される規定電圧Vm1、Vm2に基づいて、ハイサイド側の規定電圧を第10の実施形態よりも大きく設定することが好ましい。その他、第10、第11の実施形態と同様の作用および効果が得られる。 Also in the present embodiment, the microcomputer 121 can prohibit the application of the gate drive voltage to the other semiconductor element during the period in which the gate drive voltage is applied to one of the two semiconductor elements 101A and 101B. Thereby, an arm short circuit can be prevented reliably. Further, either one of the photocouplers 67A and 67B may be omitted. At this time, the sense elements (105s, 106s) and the sense resistor (107) corresponding to the omitted photocouplers 67A and 67B may be omitted. In the case of sharing, it is preferable to set the specified voltage on the high side larger than that in the tenth embodiment based on the specified voltages Vm1 and Vm2 generated by the threshold setting circuits 30 and 31. In addition, operations and effects similar to those of the tenth and eleventh embodiments can be obtained.
 PWM信号FH、FLが制御IC163のVf制御部26に入力されているため、Vf制御部26およびパルス制御部27は、一方及び他方のアームの制御を統括的に実行することができる。第14の実施形態と同様に、フォトカプラ67Aを省略してもよい。これらの実施形態によっても、第10、第11の実施形態と同様の作用および効果が得られる。 Since the PWM signals FH and FL are input to the Vf control unit 26 of the control IC 163, the Vf control unit 26 and the pulse control unit 27 can collectively control the one and the other arms. As in the fourteenth embodiment, the photocoupler 67A may be omitted. Also in these embodiments, the same operations and effects as those in the tenth and eleventh embodiments can be obtained.
 (第16の実施形態)
 図24は第16の実施形態を示すもので、中間電位を電圧検出する電圧検出手段としての電圧検出部180を設けた形態を示す。図24に示す電圧検出部180は、トランジスタ素子105、ダイオード構造106の素子形成領域100の外周側の半導体基板8に設けられるガードリング8aの電位を検出するように設けられる。半導体基板8の下面側表層部には、ダイオード構造6のカソード領域17、トランジスタ構造5のコレクタ電極18が形成されているが、これらの素子形成領域100だけでなくそのまま外周縁側に連通され耐圧保持領域101に及んでいる。
(Sixteenth embodiment)
FIG. 24 shows a sixteenth embodiment and shows a mode in which a voltage detection unit 180 is provided as voltage detection means for detecting a voltage of an intermediate potential. 24 is provided so as to detect the potential of the guard ring 8a provided on the semiconductor substrate 8 on the outer peripheral side of the element formation region 100 of the transistor element 105 and the diode structure 106. The voltage detector 180 shown in FIG. The cathode region 17 of the diode structure 6 and the collector electrode 18 of the transistor structure 5 are formed on the lower surface side layer portion of the semiconductor substrate 8. The region 101 is reached.
 この耐圧保持領域101にはガードリング8aが形成される。このガードリング8aは複数形成されている。このガードリング8aは、半導体層8とは異なる導電型(この場合、p+(逆導電型))に形成されており、素子形成領域100の外周を囲むように平面的には例えば同心円状に形成されている。 A guard ring 8a is formed in the pressure resistant holding region 101. A plurality of guard rings 8a are formed. The guard ring 8a is formed in a conductivity type different from that of the semiconductor layer 8 (in this case, p + (reverse conductivity type)), and is formed concentrically in a plan view so as to surround the outer periphery of the element formation region 100. Has been.
 そして、半導体基板8のガードリング8aよりも外周領域となる最外周領域には、通常半導体基板8と同一導電型となるn+の等価電位リング(EQR:Equivalent Potential ing)8bがチャネルストッパ領域として形成され、ドレイン電位を固定するために設けられる。ガードリング8aは、半導体基板8の外周縁側において互いに離間して形成され、最外周の等価電位リング8bと素子形成領域100側に設けられるソース電極との間に発生する電界緩和のために設けられている。 Then, an n + equivalent potential ring (EQR) 8b having the same conductivity type as that of the semiconductor substrate 8 is formed as a channel stopper region in the outermost peripheral region which is the outer peripheral region of the guard ring 8a of the semiconductor substrate 8. Provided to fix the drain potential. The guard rings 8a are formed to be separated from each other on the outer peripheral edge side of the semiconductor substrate 8, and are provided to alleviate the electric field generated between the outermost equivalent potential ring 8b and the source electrode provided on the element forming region 100 side. ing.
 これらのガードリング8aは外周側から順に段階的に電位が低くなり耐圧を保持できる。電圧検出部180は、このうち何れか一つのガードリング8aの層の上部から電圧を検出することでコレクタエミッタ間の中間電位を検出できる。この中間電位の変化は、前述の実施形態で説明したコレクタ電極電位VCOの変化と同様の変化であり、このように電圧検出部180がこの中間電位を検出したとしても同様に制御できる。 The potential of these guard rings 8a decreases step by step from the outer peripheral side and can maintain a withstand voltage. The voltage detector 180 can detect the intermediate potential between the collector and emitter by detecting the voltage from the upper part of any one of the guard ring 8a layers. The change in the intermediate potential is the same change as the change in the collector electrode potential VCO described in the above-described embodiment, and even if the voltage detection unit 180 detects the intermediate potential as described above, it can be controlled similarly.
 この実施形態に示した電圧検出部180は、第10~第15の実施形態の電圧検出部125に替えて用いることができるし、電圧検出部125と共に用いても良い。また、前述した第1~第9の実施形態の各実施形態に示した電流検出手段(7A、7B、25、59、60、68)の構成と組み合わせて用いても良い。 The voltage detection unit 180 shown in this embodiment can be used in place of the voltage detection unit 125 of the tenth to fifteenth embodiments, or may be used together with the voltage detection unit 125. Further, it may be used in combination with the configuration of the current detection means (7A, 7B, 25, 59, 60, 68) shown in the respective embodiments of the first to ninth embodiments.
 また電圧検出部180から検出した中間電位は必要に応じて抵抗分圧等によりさらに降圧して用いてもよい。 Further, the intermediate potential detected from the voltage detection unit 180 may be further stepped down by resistance division or the like as necessary.
 (第1~第16の実施形態についての他の実施形態)
 以上、第1~第16の実施形態について説明したが、以下のように開示の要旨を逸脱しない範囲内で種々の変形、拡張を行うことができる。
(Other embodiments of the first to sixteenth embodiments)
Although the first to sixteenth embodiments have been described above, various modifications and extensions can be made without departing from the scope of the disclosure as follows.
 各実施形態は、Vf制御部26によるVf制御とパルス制御部27によるパルス制御のうちVf制御だけを行う構成またはパルス制御だけを行う構成に変更してもよい。第3から第7の実施形態においてVf制御だけを行う構成の場合、Vf制御部26が、半導体素子1A、1Bのうち一方の半導体素子にゲート駆動電圧を印加している期間、他方の半導体素子へのゲート駆動電圧の印加が禁止されることは勿論である。 Each embodiment may be changed to a configuration in which only the Vf control is performed among the Vf control by the Vf control unit 26 and the pulse control by the pulse control unit 27, or a configuration in which only the pulse control is performed. In the case where only the Vf control is performed in the third to seventh embodiments, the Vf control unit 26 applies the gate drive voltage to one of the semiconductor elements 1A and 1B during the other semiconductor element. Of course, the application of the gate drive voltage to is prohibited.
 Vf制御部26、パルス制御部27は、それぞれ検出電圧の大きさが規定値よりも小さくなるとVf制御、パルス制御を停止して通常制御を行うようにしたが、この通常制御への切り替え制御は必要に応じて実行すればよい。 The Vf control unit 26 and the pulse control unit 27 stop the Vf control and the pulse control and perform the normal control when the magnitude of the detected voltage becomes smaller than the specified value, respectively. What is necessary is just to perform as needed.
 第11の実施形態においても、負荷電流の大きさが規定値Im1、Im2よりも小さくなると、それぞれVf制御、パルス制御を停止して通常制御を行う構成としてもよい。また、駆動制御システムの運転領域が常に図6に示す領域1にある場合には、Vf制御部26から、領域1と領域2との間での制御切替機能を省いてもよい。すなわち、Vf制御部26は、PWM信号FLがHレベルの期間、常にゲート駆動電圧VGLを半導体素子1Bのゲートに印加する。Vf制御部26は、当該期間において半導体素子1Bにダイオード素子6の順方向の向きに電流が流れていると判定すると、第11の実施形態と同様にして、時刻t2から第2時間T2の経過時点(時刻t6)までパルスの拡張を行う。 Also in the eleventh embodiment, when the magnitude of the load current becomes smaller than the specified values Im1 and Im2, the Vf control and the pulse control may be stopped and the normal control may be performed, respectively. Further, when the operation region of the drive control system is always in the region 1 shown in FIG. 6, the control switching function between the region 1 and the region 2 may be omitted from the Vf control unit 26. That is, the Vf control unit 26 always applies the gate drive voltage VGL to the gate of the semiconductor element 1B while the PWM signal FL is at the H level. If the Vf control unit 26 determines that a current flows in the forward direction of the diode element 6 in the semiconductor element 1B during the period, the second time T2 elapses from the time t2 as in the eleventh embodiment. The pulse is expanded until the time (time t6).
 第12から第16の実施形態は、半導体素子101A、101BにMOSトランジスタを用いた構成に対しても、第11の実施形態と同様にして適用できる。半導体素子101A、101Bは、コントロール用のゲートを有し寄生ダイオードが形成された素子、例えばMOSゲートを備えたダイオードであってもよい。RC-IGBTは、トレンチゲート型に限らずプレーナゲート型などであってもよい。MOSトランジスタは、トレンチゲート型に限らずプレーナゲート型などであってもよい。MOSトランジスタは、SJ(Super Junction)構造であってもよい。 The twelfth to sixteenth embodiments can be applied to a configuration using MOS transistors for the semiconductor elements 101A and 101B in the same manner as the eleventh embodiment. The semiconductor elements 101A and 101B may be elements having a control gate and formed with a parasitic diode, for example, a diode having a MOS gate. The RC-IGBT is not limited to the trench gate type but may be a planar gate type. The MOS transistor is not limited to a trench gate type but may be a planar gate type. The MOS transistor may have an SJ (Super Junction) structure.
 センス素子105s、106sを並列接続した構成を用いて説明したが、これに替えて、センスダイオード106s、を単独でセンス素子として構成し、電圧検出部125がこのセンス素子の両端にかかる直流電圧(DC電圧)を検出するようにしても良い。これらの構成の場合、電圧検出だけでなく電流検出用としても共用できる。また、センスダイオード106sに替えて抵抗を使用して直流電圧(DC電圧)を検出するようにしても良い。あるいは、センストランジスタ105sを単独でセンス素子として使用しても良い。この場合、センストランジスタ105sはトランジスタ容量として機能するため電圧変化をパルス電圧/電流として検出できる。 Although the description has been given using the configuration in which the sense elements 105s and 106s are connected in parallel, instead of this, the sense diode 106s is configured alone as a sense element, and the voltage detection unit 125 has a direct current voltage applied to both ends of the sense element ( DC voltage) may be detected. These configurations can be used not only for voltage detection but also for current detection. Further, a DC voltage (DC voltage) may be detected using a resistor instead of the sense diode 106s. Alternatively, the sense transistor 105s may be used alone as a sense element. In this case, since the sense transistor 105s functions as a transistor capacitance, a voltage change can be detected as a pulse voltage / current.
 図1の構成を採用した場合、図27に示すように、電流検出部25が半導体素子1Aの電流を検出し、この電流の変動を検出した時点t1cで、Vf制御部26がt2よりも前にパルスを拡張してゲート駆動信号SGLをHレベルとして出力しても良い。図1の電流検出部25に替えてその他の形態の電流検出部25を設けても良く、第7の実施形態の電流極性検出回路68を設けても良い。 When the configuration of FIG. 1 is adopted, as shown in FIG. 27, the current detection unit 25 detects the current of the semiconductor element 1A, and at the time t1c when the fluctuation of this current is detected, the Vf control unit 26 precedes t2. Alternatively, the pulse may be extended to output the gate drive signal SGL as the H level. Instead of the current detection unit 25 of FIG. 1, another form of the current detection unit 25 may be provided, or the current polarity detection circuit 68 of the seventh embodiment may be provided.
 また、図28に示すように、図17に示す形態を基本構成として逆アーム側のゲート駆動電圧VGHを検出する電圧検出部225を制御電圧検出手段として設け、この電圧検出部225により検出されるゲート駆動電圧VGHがしきい値電圧Vth未満になることが検出された時点で、Vf制御部26(制御手段)がt2よりも前にパルスを拡張してゲート駆動信号SGLをHレベルとして出力するようにしても良い。Vf制御、パルス制御に係る各ノードの制御信号、駆動信号等の波形は図27と同じであるため省略する。電圧検出部225は駆動IC124A、124B内に組み込んでも駆動IC124A、124Bとは独立に構成しても良い。 Further, as shown in FIG. 28, a voltage detector 225 for detecting the gate drive voltage VGH on the reverse arm side is provided as a control voltage detector based on the configuration shown in FIG. 17 and is detected by this voltage detector 225. When it is detected that the gate drive voltage VGH is lower than the threshold voltage Vth, the Vf control unit 26 (control means) extends the pulse before t2 and outputs the gate drive signal SGL as the H level. You may do it. Waveforms of control signals, drive signals, and the like at each node relating to Vf control and pulse control are the same as those in FIG. The voltage detection unit 225 may be incorporated in the drive ICs 124A and 124B or may be configured independently of the drive ICs 124A and 124B.
 同様に、図12に対応して表す図29に示すように、フォトカプラ267A、267Bを介して逆アーム側のゲート駆動電圧VGHを検出する電圧検出部225をそれぞれ設け、この電圧検出部225によりゲート駆動電圧VGHがしきい値電圧Vth未満になることが検出された時点で、Vf制御部26(制御手段)がt2よりも前にパルスを拡張してゲート駆動信号SGLをHレベルとして出力するようにしても良い。各ノードの制御信号、駆動信号等の波形は図27と同じであるため図示を省略している。同様に、図29に示す電圧検出部225もまた、制御IC63内に組み込んでも制御IC63とは独立に構成しても良い。 Similarly, as shown in FIG. 29 corresponding to FIG. 12, a voltage detection unit 225 for detecting the gate drive voltage VGH on the reverse arm side is provided via the photocouplers 267A and 267B, respectively. When it is detected that the gate drive voltage VGH is lower than the threshold voltage Vth, the Vf control unit 26 (control means) extends the pulse before t2 and outputs the gate drive signal SGL as the H level. You may do it. The waveforms of control signals, drive signals, etc. at each node are the same as in FIG. Similarly, the voltage detection unit 225 shown in FIG. 29 may be incorporated in the control IC 63 or may be configured independently of the control IC 63.
 また、図30に示すように、自アーム側の駆動IC24A、24Bが、逆アーム側のPWM信号FL又はFHをVf制御部26(又はパルス制御部27)に入力し、Vf制御部26(又はパルス制御部27)がこのPWM信号の立下りを検出した時点から所定時間経過したタイミングにおいて、Vf制御部26がt2よりも前にパルス拡張してゲート駆動信号SGLをHレベルとして出力するようにしても良い。この所定時間は予めアーム間短絡しないように予め定められた時間に設定すると良い。 Further, as shown in FIG. 30, the drive ICs 24A and 24B on the own arm side input the PWM signal FL or FH on the opposite arm side to the Vf control unit 26 (or pulse control unit 27), and the Vf control unit 26 (or At a timing when a predetermined time has elapsed since the pulse control unit 27) detected the fall of the PWM signal, the Vf control unit 26 performs pulse expansion before t2 and outputs the gate drive signal SGL as the H level. May be. The predetermined time may be set to a predetermined time so as not to short-circuit between the arms in advance.
 また、図31に示すように、自アーム側の駆動IC124A、124Bが、逆アーム側のPWM信号FL又はFHをVf制御部26(又はパルス制御部27)に入力し、Vf制御部26(又はパルス制御部27)がこのPWM信号の立下りを検出した時点から所定時間経過したタイミングにおいて、Vf制御部26がt2よりも前にパルス拡張してゲート駆動信号SGLをHレベルとして出力するようにしても良い。この所定時間は予めアーム間短絡しないように予め定められた時間に設定すると良い。 Further, as shown in FIG. 31, the drive ICs 124A and 124B on the own arm side input the PWM signal FL or FH on the opposite arm side to the Vf control unit 26 (or pulse control unit 27), and the Vf control unit 26 (or At a timing when a predetermined time has elapsed since the pulse control unit 27) detected the fall of the PWM signal, the Vf control unit 26 performs pulse expansion before t2 and outputs the gate drive signal SGL as the H level. May be. The predetermined time may be set to a predetermined time so as not to short-circuit between the arms in advance.
 図28~図31には一例を示したが、その他にも、第1~第9実施形態に示した電流検出手段(電流検出部25、ホールセンサ59、電流検出回路60、電流極性検出回路68など)、第10~第15の実施形態に示した電圧検出手段(電圧検出部125、電圧検出部168など)、制御電圧検出手段(電圧検出部225)、の何れか2つを組み合わせて構成しても良い。 FIGS. 28 to 31 show an example. In addition, the current detection means (current detection unit 25, hall sensor 59, current detection circuit 60, current polarity detection circuit 68 shown in the first to ninth embodiments is shown. Etc.), a combination of any two of the voltage detection means (voltage detection section 125, voltage detection section 168, etc.) and control voltage detection means (voltage detection section 225) shown in the tenth to fifteenth embodiments. You may do it.
 特に、電流検出手段と電圧検出手段を組み合わせて構成すると、図32に示すように、アーム短絡を生じない程度で、Vf制御部26が時点t2よりも前の時点t1bからパルス拡張してゲート駆動信号SGLをHレベルとして出力できる。この図32に示す例の場合、ゲート駆動電圧VGLのマージン期間Ma(図19参照)を最短(≒0)にできる。 In particular, when the current detection unit and the voltage detection unit are combined, as shown in FIG. 32, the Vf control unit 26 expands the pulse from the time point t1b before the time point t2 to drive the gate without causing an arm short circuit. The signal SGL can be output as an H level. In the example shown in FIG. 32, the margin period Ma (see FIG. 19) of the gate drive voltage VGL can be made the shortest (≈0).
 逆アーム側のPWM信号FH、FLを自アーム側の駆動IC24A、24BのVf制御部26又はパルス制御部27に入力する形態を、電流検出部25、電圧検出部125、電圧検出部225により電流または電圧を検出して制御する形態に組み合わせても良い。 The form in which the PWM signals FH and FL on the reverse arm side are input to the Vf control unit 26 or the pulse control unit 27 of the drive ICs 24A and 24B on the own arm side is determined by the current detection unit 25, the voltage detection unit 125, and the voltage detection unit 225. Or you may combine with the form which detects and controls a voltage.
 例えば、図18、図19に示したように、半導体素子101Aの電流の立下り時点とコレクタ電極電位Vcoの立下り検出時点とを比較すると、コレクタ電極電位Vcoの立下り検出時点が半導体素子101Aの電流の立下り時点よりも速いことがわかる。 For example, as shown in FIG. 18 and FIG. 19, when the falling time of the current of the semiconductor element 101A and the falling detection time of the collector electrode potential Vco are compared, the falling detection time of the collector electrode potential Vco is the semiconductor element 101A. It can be seen that it is faster than the current falling point.
 したがって、例えば第10の実施形態等で説明した電圧検出手段を用い、Vf制御部26にPWM信号FLのオフ指令信号が入力されているときに、電圧検出信号に基づいてダイオード構造6の順方向の向きに電流が流れていると判定した場合、図32に示すように、ゲート駆動電圧VGLが上昇するタイミングが、半導体素子101Aに電流が流れなくなり始めるタイミングt1c(例えば、半導体素子101Bに電流が流れ出すタイミング)よりも後となるように、ゲート駆動信号SGLをタイミングt2よりも前の時点t1bからパルス拡張すると良い。 Therefore, for example, when the voltage detection means described in the tenth embodiment or the like is used and the OFF command signal of the PWM signal FL is input to the Vf control unit 26, the forward direction of the diode structure 6 is based on the voltage detection signal. 32, when the gate drive voltage VGL rises, the timing at which the current starts to flow to the semiconductor element 101A t1c (for example, the current flows to the semiconductor element 101B), as shown in FIG. The gate drive signal SGL may be pulse-expanded from the time point t1b before the timing t2 so as to be later than the timing at which it flows out.
 なお、パルス拡張してゲート駆動信号SGLを出力してからゲート駆動電圧VGLを生成するまでに所定の遅延時間を要する。このため、この遅延時間を予め測定し、この測定時間を見込んで時点t2よりも前にパルス拡張開始するタイミングt1bを予め設定しても良い。第11の実施形態で説明したように、電圧検出部125、ドライバ28、半導体素子101A、101Bなどには各種の遅延バラつきを生じるが、この遅延バラつきを予め測定しておきマージンを見込んでおくと良い。しかし、電圧検出部125及び電流検出部25などを用いて電圧検出制御及び電流検出制御を組み合わせれば、電圧変動を検出した時点(t1a)においてパルス拡張開始のタイミングを決定できるため、遅延バラつきを予め測定し時点t2よりも前にパルス拡張開始するタイミングを設定しなくても良くなる。 It should be noted that a predetermined delay time is required until the gate drive voltage VGL is generated after the pulse is extended and the gate drive signal SGL is output. For this reason, the delay time may be measured in advance, and the timing t1b at which the pulse expansion starts may be set in advance before the time t2 in anticipation of the measurement time. As described in the eleventh embodiment, various delay variations occur in the voltage detection unit 125, the driver 28, the semiconductor elements 101A and 101B, and the delay variation is measured in advance to allow for a margin. good. However, if voltage detection control and current detection control are combined using the voltage detection unit 125, the current detection unit 25, etc., the timing of the pulse expansion start can be determined at the time when the voltage fluctuation is detected (t1a). It is not necessary to set the timing for starting the pulse expansion before the time t2 after measurement in advance.
 このような制御を行うと、第1~第9の実施形態で説明した電流検出手段のみを用いて制御を行うよりもVf制御部26が行う第11の実施形態のパルス拡張をより速い時点から行うことができ、ゲート駆動処理に要する時間の確保と同期整流期間の拡張ができ、最大限の効果が得られる。 When such control is performed, the pulse expansion of the eleventh embodiment performed by the Vf control unit 26 is performed at a faster time point than when the control is performed using only the current detection means described in the first to ninth embodiments. The time required for the gate driving process can be secured and the synchronous rectification period can be extended, and the maximum effect can be obtained.
 図面中、1A、1B、101A、101Bは半導体素子、4はハーフブリッジ回路、5、105はトランジスタ素子(トランジスタ構造)、6、106はダイオード素子(ダイオード構造)、7A、7B、107A、107Bはセンス抵抗(電流検出手段)、8は半導体基板、8aはガードリング(電界制限リング)、15はエミッタ電極(通電電極)、18はコレクタ電極(通電電極)、21、121はマイコン(制御IC)、24A、24B、124A、124B、51、53、55、151、153は駆動IC(IC)、25は電流検出部(電流検出手段)、125、168は電圧検出部(電圧検出手段)、26はVf制御部(制御手段,第2の制御手段,入力手段)、27はパルス制御部(制御手段,第1の制御手段,入力手段)、28はドライブ回路、32A、32B、132A、132B、52、54、56、152、154、61、62、162、71、72、172は駆動制御装置、59はホールセンサ(電流検出手段)、60は電流検出回路(電流検出手段)、63は制御IC、64A、64B、67A、67Bはフォトカプラ(絶縁回路)、65A、65Bは駆動IC、68は電流極性検出回路(電流検出手段)、180は電圧検出部(電圧検出手段)、225は電圧検出部(制御電圧検出手段)である。 In the drawings, 1A, 1B, 101A and 101B are semiconductor elements, 4 is a half-bridge circuit, 5 and 105 are transistor elements (transistor structure), 6 and 106 are diode elements (diode structure), 7A, 7B, 107A and 107B are Sense resistor (current detection means), 8 is a semiconductor substrate, 8a is a guard ring (electric field limiting ring), 15 is an emitter electrode (energized electrode), 18 is a collector electrode (energized electrode), and 21 and 121 are microcomputers (control IC) 24A, 24B, 124A, 124B, 51, 53, 55, 151, and 153 are drive ICs (ICs), 25 is a current detector (current detector), 125 and 168 are voltage detectors (voltage detector), 26 Is a Vf control section (control means, second control means, input means), 27 is a pulse control section (control means, first control means, input means) 28 is a drive circuit, 32A, 32B, 132A, 132B, 52, 54, 56, 152, 154, 61, 62, 162, 71, 72, and 172 are drive control devices, 59 is a hall sensor (current detection means), 60 Is a current detection circuit (current detection means), 63 is a control IC, 64A, 64B, 67A and 67B are photocouplers (insulation circuit), 65A and 65B are drive ICs, 68 is a current polarity detection circuit (current detection means), 180 Is a voltage detector (voltage detector), and 225 is a voltage detector (control voltage detector).
 (第17の実施形態)
 以下、本開示の第17の実施形態について図面を参照しながら説明する。上述した全ての実施形態に適用可能であるが、基本構成である図33(第1の実施形態の図1に相当)の駆動制御システムを用いて説明する。図33に示す駆動制御システムは、モータ等の誘導性負荷を駆動するインバータ装置、インダクタを備えて直流電圧を昇圧/降圧するコンバータ装置などの電力変換装置に用いられる。スイッチング素子である半導体素子1001A、1001Bは、高電位側の直流電源線1002と低電位側の直流電源線1003との間に出力端子Ntを挟んで直列に配されて、ハーフブリッジ回路1004を構成している。
(Seventeenth embodiment)
Hereinafter, a seventeenth embodiment of the present disclosure will be described with reference to the drawings. Although applicable to all the embodiments described above, description will be made using the drive control system of FIG. 33 (corresponding to FIG. 1 of the first embodiment) which is a basic configuration. The drive control system shown in FIG. 33 is used in a power conversion device such as an inverter device that drives an inductive load such as a motor or a converter device that includes an inductor and boosts / steps down a DC voltage. The semiconductor elements 1001A and 1001B, which are switching elements, are arranged in series with the output terminal Nt sandwiched between the high potential side DC power supply line 1002 and the low potential side DC power supply line 1003 to form a half-bridge circuit 1004. is doing.
 Vf制御部1026とパルス制御部1027とで生成されたゲート駆動信号SGLは、ドライブ回路1028を介して半導体素子1001Bのゲートに与えられる。ドライブ回路1028は、図34に示すようにゲート駆動能力を複数通りに切り替えることができる。 The gate drive signal SGL generated by the Vf control unit 1026 and the pulse control unit 1027 is given to the gate of the semiconductor element 1001B through the drive circuit 1028. The drive circuit 1028 can switch the gate drive capability in a plurality of ways as shown in FIG.
 ドライブ回路1028は、ターンオン時に、MOSトランジスタ1029によりゲートを駆動する。MOSトランジスタ1029のゲートには、切替スイッチ1030を介して定電流駆動アンプ1031の出力電圧(A側)またはフローティンググランドFGの電圧(B側)が与えられる。前者の場合に通常の駆動能力となり、後者の場合に高い駆動能力となる。また、ドライブ回路1028は、通常の駆動能力の場合に、駆動途中で短絡電流に対する保護動作を行う。このため、定電流駆動アンプ1031は、ゲート駆動電圧VGLの増加過程で、ゲート駆動電圧VGLを一時的に中間電圧に留める。 The drive circuit 1028 drives the gate by the MOS transistor 1029 when it is turned on. The output voltage (A side) of the constant current drive amplifier 1031 or the voltage of the floating ground FG (B side) is applied to the gate of the MOS transistor 1029 via the changeover switch 1030. In the former case, the normal driving capability is obtained, and in the latter case, the driving capability is high. Further, the drive circuit 1028 performs a protection operation against a short-circuit current during driving in the case of normal driving capability. Therefore, the constant current drive amplifier 1031 temporarily keeps the gate drive voltage VGL at the intermediate voltage in the process of increasing the gate drive voltage VGL.
 ドライブ回路1028は、ターンオフ時に、MOSトランジスタ1032、1033によりゲートを駆動する。切替スイッチ1034をA側に切り替えてMOSトランジスタ1032のみで駆動すると通常の駆動能力となり、切替スイッチ1034をB側に切り替えてMOSトランジスタ1032、1033で駆動すると高い駆動能力となる。MOSトランジスタ1033は、MOSトランジスタ1032よりも低いオン抵抗を持つ。なお、MOSトランジスタ1033は、半導体素子1001Bをオフ状態に保持するときにも用いられる。 The drive circuit 1028 drives the gate by the MOS transistors 1032 and 1033 when turned off. When the changeover switch 1034 is switched to the A side and driven only by the MOS transistor 1032, normal driving capability is obtained, and when the changeover switch 1034 is switched to the B side and driven by the MOS transistors 1032, 1033, high driving capability is obtained. The MOS transistor 1033 has a lower on-resistance than the MOS transistor 1032. Note that the MOS transistor 1033 is also used when the semiconductor element 1001B is held in an off state.
 PWM信号FLの立ち上がり時、トランジスタ素子1005に電流が流れている状態からのPWM信号FLの立ち下がり時など、半導体素子1001Bに流れる電流(素子電流)、電圧に急峻な変化が生じるときには、電圧サージの発生を抑制するため通常の駆動能力に切り替えられる。これに対し、パルス制御のように素子電流や電圧に急峻な変化が生じないときには、高い駆動能力に切り替えられる。 When a sharp change occurs in the current (element current) and voltage flowing through the semiconductor element 1001B, such as when the PWM signal FL rises, when the PWM signal FL falls from the state where the current flows in the transistor element 1005, a voltage surge occurs. In order to suppress the occurrence of this, it is switched to a normal driving capability. On the other hand, when there is no steep change in the device current or voltage as in pulse control, the driving capability is switched to high.
 駆動IC1024Aには、しきい値設定回路1035A、1036A、1037Aが外付けされている。駆動IC1024Bには、しきい値設定回路1035B、1036B、1037Bが外付けされている。しきい値設定回路1029A、1030A、1031Aは、半導体素子1001Aのエミッタ電位に等しいフローティンググランドFGを基準電位として構成されている。しきい値設定回路1035A、1035Bは、電圧VDDA、VDDBを抵抗R1、R2で分圧してしきい値電圧Vtを生成する。しきい値設定回路1036A、1036Bは、電圧VDDA、VDDBを抵抗R3、R4で分圧して規定電圧Vm1を生成する。しきい値設定回路1037A、1037Bは、電圧VDDA、VDDBを抵抗R5、R6で分圧して規定電圧Vm2を生成する。 Threshold value setting circuits 1035A, 1036A, and 1037A are externally attached to the driving IC 1024A. Threshold setting circuits 1035B, 1036B, and 1037B are externally attached to the driving IC 1024B. The threshold setting circuits 1029A, 1030A, 1031A are configured with a floating ground FG equal to the emitter potential of the semiconductor element 1001A as a reference potential. The threshold setting circuits 1035A and 1035B divide the voltages VDDA and VDDB by the resistors R1 and R2 to generate the threshold voltage Vt. The threshold setting circuits 1036A and 1036B divide the voltages VDDA and VDDB by the resistors R3 and R4 to generate the specified voltage Vm1. The threshold setting circuits 1037A and 1037B divide the voltages VDDA and VDDB by the resistors R5 and R6 to generate a specified voltage Vm2.
 しきい値電圧Vtは、Vf制御部1026で用いられる電流しきい値Itの大きさを決定する。ダイオード素子1006の順方向電流Ifに対する順方向電圧Vfの特性は、素子の種類(RC-IGBT、MOSトランジスタ等)や素子の耐圧によって異なる。そこで、Vf制御部1026は、外部から与えられる切替信号Skとしきい値電圧Vtとに基づいて、適切な電流しきい値Itを選択する。 The threshold voltage Vt determines the magnitude of the current threshold It used in the Vf control unit 1026. The characteristic of the forward voltage Vf with respect to the forward current If of the diode element 1006 varies depending on the type of element (RC-IGBT, MOS transistor, etc.) and the breakdown voltage of the element. Therefore, the Vf control unit 1026 selects an appropriate current threshold It based on the switching signal Sk and the threshold voltage Vt given from the outside.
 規定電圧Vm1は、Vf制御を停止するか否かの判定に用いる規定値Im1の大きさを決定する。規定電圧Vm2は、パルス制御を停止するか否かの判定に用いる規定値Im2の大きさを決定する。電流検出時と、その検出電流の極性に基づいてゲート駆動電圧VGH、VGLを印加した時とでは、制御の遅れにより電流極性が反転している虞もある。このため、Vf制御部1026は、電流検出値が規定値Im1を下回るとVf制御を停止し、パルス制御部1027は、電流検出値が規定値Im2を下回るとパルス制御を停止する。 The specified voltage Vm1 determines the magnitude of the specified value Im1 used for determining whether or not to stop the Vf control. The specified voltage Vm2 determines the magnitude of the specified value Im2 used for determining whether or not to stop the pulse control. When the current is detected and when the gate drive voltages VGH and VGL are applied based on the polarity of the detected current, there is a possibility that the current polarity is reversed due to a delay in control. Therefore, the Vf control unit 1026 stops the Vf control when the current detection value falls below the specified value Im1, and the pulse control unit 1027 stops the pulse control when the current detection value falls below the specified value Im2.
 以上説明した駆動IC1024Aとセンス抵抗1007Aにより駆動制御装置1038Aが構成され、駆動IC1024Bとセンス抵抗1007Bにより駆動制御装置1038Bが構成されている。 The drive control device 1038A is configured by the drive IC 1024A and the sense resistor 1007A described above, and the drive control device 1038B is configured by the drive IC 1024B and the sense resistor 1007B.
 次に、図35から図46を参照しながら、主としてローサイド側の駆動制御装置1038Bの作用について説明する。ハイサイド側の駆動制御装置1038Aの作用も同様となる。はじめにVf制御について簡単に説明する。RC-IGBTである半導体素子1001A、1001Bは、ダイオード素子1006に電流が流れている状態でゲート駆動電圧が印加されると、第1領域1012にチャネルが形成されてホールの注入が抑制される。このため、図37に示すように、順方向電流Ifが流れているダイオード素子1006の順方向電圧Vfが高くなり、ダイオード素子1006の導通損失(Vf×If)が増大する。 Next, the operation of the drive control device 1038B on the low side will be mainly described with reference to FIGS. The operation of the drive control device 1038A on the high side is the same. First, Vf control will be briefly described. When a gate drive voltage is applied to the semiconductor elements 1001A and 1001B that are RC-IGBTs while a current is flowing through the diode element 1006, a channel is formed in the first region 1012 and hole injection is suppressed. For this reason, as shown in FIG. 37, the forward voltage Vf of the diode element 1006 through which the forward current If flows increases, and the conduction loss (Vf × If) of the diode element 1006 increases.
 そこで、ダイオード素子1006に電流しきい値It以上の電流が流れている場合には、ゲート駆動電圧を遮断することにより導通損失を低減できる。電流しきい値Itは、RC-IGBTの場合にはほぼゼロであり、MOSトランジスタの場合には耐圧等に応じてゼロよりも大きい値になる。RC-IGBTを駆動する場合には切替信号Skが例えばLレベルに切り替えられ、MOSトランジスタを駆動する場合には切替信号Skが例えばHレベルに切り替えられる。Vf制御部1026は、切替信号SkがHレベルのときに、しきい値電圧Vtに応じた電流しきい値Itを設定してVf制御を実行する。 Therefore, when a current greater than or equal to the current threshold It flows through the diode element 1006, the conduction loss can be reduced by cutting off the gate drive voltage. The current threshold It is substantially zero in the case of RC-IGBT, and is greater than zero in the case of a MOS transistor depending on the breakdown voltage or the like. When the RC-IGBT is driven, the switching signal Sk is switched to L level, for example, and when the MOS transistor is driven, the switching signal Sk is switched to H level, for example. When the switching signal Sk is at the H level, the Vf control unit 1026 sets the current threshold It according to the threshold voltage Vt and executes Vf control.
 図38は、出力端子Ntから負荷に向かって電流が流れている場合に、半導体素子1001Aをオフして半導体素子1001Bをオンした後、半導体素子1001Bをオフして再度半導体素子1001Aをオンしたときの波形である。上から順に、半導体素子1001Aの電流、ゲート駆動電圧VGH、VGL、PWM信号FH、ゲート駆動信号SGL、PWM信号FLを示している。Vthは、半導体素子1001Aのしきい値電圧である。 FIG. 38 shows a case where the semiconductor element 1001A is turned off and the semiconductor element 1001B is turned on and then the semiconductor element 1001B is turned off and the semiconductor element 1001A is turned on again when a current flows from the output terminal Nt toward the load. It is a waveform. In order from the top, the current of the semiconductor element 1001A, the gate drive voltages VGH and VGL, the PWM signal FH, the gate drive signal SGL, and the PWM signal FL are shown. Vth is a threshold voltage of the semiconductor element 1001A.
 駆動IC1024BのVf制御部1026は、PWM信号FLがHレベルの期間(時刻t2~t3)、ダイオード素子1006の検出電流がその順方向において電流しきい値It以上であるか否かを判定する。ここで、検出電流が電流しきい値It以上であると判定すると、図38に示すようにLレベルのゲート駆動信号SGLを出力する。これにより、ゲート駆動電圧VGLが遮断され、導通損失が低減する。 The Vf control unit 1026 of the driving IC 1024B determines whether or not the detected current of the diode element 1006 is equal to or higher than the current threshold It in the forward direction during the period when the PWM signal FL is at the H level (time t2 to t3). If it is determined that the detected current is greater than or equal to the current threshold It, an L level gate drive signal SGL is output as shown in FIG. As a result, the gate drive voltage VGL is cut off and the conduction loss is reduced.
 次に、パルス制御について説明する。パルス制御は、PWM信号FLがHレベルの期間に半導体素子1001Bのダイオード素子1006に電流が流れている場合、PWM信号FLがLレベルに立ち下がった後、逆回復電流が流れ始める前までに、半導体素子1001Bにゲート駆動パルスを印加する制御である。PWM信号FHがHレベルの期間に半導体素子1001Aのダイオード素子1006に電流が流れている場合であって、PWM信号FHがLレベルに立ち下がった後も同様である。これにより、ダイオード素子1006に蓄積されるキャリア(ホール)が減少するので、逆回復電流を低減する作用が得られる。 Next, pulse control will be described. In the pulse control, when the current flows through the diode element 1006 of the semiconductor element 1001B during the period in which the PWM signal FL is at the H level, after the PWM signal FL falls to the L level and before the reverse recovery current starts to flow, This is control for applying a gate drive pulse to the semiconductor element 1001B. The same applies to the case where a current flows through the diode element 1006 of the semiconductor element 1001A during the period in which the PWM signal FH is at the H level, and after the PWM signal FH falls to the L level. As a result, carriers (holes) accumulated in the diode element 1006 are reduced, so that an effect of reducing the reverse recovery current can be obtained.
 図38において、パルス制御部1027は、PWM信号FLがLレベルに立ち下がったとき(時刻t3)に半導体素子1001Bのダイオード素子1006に電流が流れている(電流検出値が規定値Im2以上)と判定すると、その立ち下がり時点を起点として、第1時間T1の経過時点(時刻t4)から第2時間T2の経過時点(時刻t6)までゲート駆動信号SGLをHレベルにする。上述したVf制御により、PWM信号FLの立ち下がり時点では、ゲート駆動信号SGLはLレベルになっている。 In FIG. 38, when the PWM signal FL falls to the L level (time t3), the pulse control unit 1027 has a current flowing through the diode element 1006 of the semiconductor element 1001B (the current detection value is equal to or greater than the specified value Im2). When the determination is made, the gate drive signal SGL is set to the H level from the time when the first time T1 has elapsed (time t4) to the time when the second time T2 has elapsed (time t6). By the above-described Vf control, the gate drive signal SGL is at the L level at the time of falling of the PWM signal FL.
 パルス制御部1027は、PWM信号FLがLレベルに立ち下がった後も、半導体素子1001Bのダイオード素子1006に電流が流れているか否かを判定し続ける。パルス制御部1027は、電流検出値が規定値Im2を下回ると、第1時間T1が経過した後、第2時間T2が経過する前であっても、直ちにゲート駆動信号SGLをLレベルに戻す。 The pulse control unit 1027 continues to determine whether or not a current is flowing through the diode element 1006 of the semiconductor element 1001B even after the PWM signal FL falls to the L level. When the detected current value falls below the specified value Im2, the pulse controller 1027 immediately returns the gate drive signal SGL to the L level even after the first time T1 has elapsed and before the second time T2 has elapsed.
 一方、パルス制御部1027は、PWM信号FLがLレベルに立ち下がったときにダイオード素子1006に電流が流れていないと判定すると、直ちにゲート駆動信号SGLをLレベルにして維持する。すなわち、ゲート駆動パルスを印加しない。 On the other hand, if the pulse control unit 1027 determines that no current flows through the diode element 1006 when the PWM signal FL falls to the L level, the pulse control unit 1027 immediately maintains the gate drive signal SGL at the L level. That is, no gate drive pulse is applied.
 図38に示すように、上下アーム間で通電が切り替わるとき、ゲート駆動電圧VGHがしきい値電圧Vth以上になると(時刻t9)、半導体素子1001Aのトランジスタ素子1005に流れる電流が増加する。このトランジスタ素子1005に流れる電流のうち、半導体素子1001Bのダイオード素子1006に流れていた電流を超える電流が逆回復電流である。図面ではハッチングで示している(時刻t10~t11)。図39、図40には、負荷電流(半導体素子1001A、1001Bに流れる電流)が100Aの場合と200Aの場合を併せて示している。 As shown in FIG. 38, when the energization is switched between the upper and lower arms, when the gate drive voltage VGH becomes equal to or higher than the threshold voltage Vth (time t9), the current flowing through the transistor element 1005 of the semiconductor element 1001A increases. Of the current flowing through the transistor element 1005, the current exceeding the current flowing through the diode element 1006 of the semiconductor element 1001B is the reverse recovery current. In the drawing, hatching is indicated (time t10 to t11). 39 and 40 show the case where the load current (current flowing through the semiconductor elements 1001A and 1001B) is 100A and 200A.
 図39に示すように、ゲート駆動電圧VGL(ゲート駆動パルス)が印加されると、半導体素子1001Bのダイオード素子1006内のキャリアが減少するのでキャリア濃度が低下する(時刻t5~t8)。ゲート駆動パルスの印加が終了すると、ダイオード素子1006に再びキャリアが注入されるのでキャリア濃度が上昇する。このゲート駆動パルスの印加終了時点(時刻t8)から逆回復電流が流れ始めるまで(時刻t10)の時間Tc(Tc1、Tc2)は、キャリアの再注入時間である。 As shown in FIG. 39, when a gate drive voltage VGL (gate drive pulse) is applied, carriers in the diode element 1006 of the semiconductor element 1001B decrease, so that the carrier concentration decreases (time t5 to t8). When the application of the gate drive pulse is completed, carriers are injected again into the diode element 1006, so that the carrier concentration increases. The time Tc (Tc1, Tc2) from the end of application of the gate drive pulse (time t8) until the reverse recovery current starts to flow (time t10) is the carrier reinjection time.
 再注入時間Tcが短いほど、ダイオード素子1006に蓄積されるキャリア濃度が低いので、逆回復電流が小さくなる。図41に示すように、再注入時間Tcが短いほどスイッチング損失が減少する。従って、再注入時間Tcは、許容される逆回復電流の大きさに対応する注入許容時間以下となるように制御される。図40は、再注入時間Tcがゼロとなる場合を示している。実際には、アーム短絡を防止するため、再注入時間Tcが短絡余裕時間Tm(>0)以上となるように制御される。 As the reinjection time Tc is shorter, the carrier concentration accumulated in the diode element 1006 is lower, so the reverse recovery current is smaller. As shown in FIG. 41, the switching loss decreases as the reinjection time Tc is shorter. Therefore, the reinjection time Tc is controlled to be equal to or less than the allowable injection time corresponding to the allowable reverse recovery current. FIG. 40 shows a case where the reinjection time Tc becomes zero. Actually, in order to prevent an arm short circuit, the reinjection time Tc is controlled to be equal to or longer than the short circuit margin time Tm (> 0).
 図39に示すように、負荷電流が大きいほど逆回復電流が流れ始める時点(時刻t10)が遅れる。このため、PWM信号FLの立ち下がり時点を起点としてゲート駆動電圧VGLの印加終了時点を固定すると(時刻t8)、負荷電流が100Aのときには再注入時間がTc1となり、負荷電流が200Aのときには再注入時間がTc2(>Tc1)となる。つまり、負荷電流が大きいほど再注入時間が長くなり、逆回復電流が大きくなってしまう。また、負荷電流が大きいほどダイオード素子1006に蓄積されるキャリア濃度自体が高いので、キャリア濃度を十分に下げてスイッチング損失を低減するには、図42に示すようにゲート駆動パルスの幅をある程度確保して、キャリア減少のための時間を十分に確保することが必要である。 39, as the load current increases, the time (time t10) at which reverse recovery current begins to flow is delayed. For this reason, when the application end point of the gate drive voltage VGL is fixed starting from the falling point of the PWM signal FL (time t8), the reinjection time becomes Tc1 when the load current is 100A, and reinjection when the load current is 200A. Time becomes Tc2 (> Tc1). That is, the larger the load current, the longer the reinjection time, and the reverse recovery current increases. Further, since the carrier concentration itself stored in the diode element 1006 is higher as the load current is larger, in order to sufficiently reduce the carrier concentration and reduce the switching loss, the gate drive pulse width is ensured to some extent as shown in FIG. Therefore, it is necessary to secure a sufficient time for carrier reduction.
 こうした理由により、パルス制御部1027は、負荷電流に応じてゲート駆動電圧VGLの印加タイミングを制御する。パルス制御部1027は、PWM信号FLの立ち下がり時点を起点として、ゲート駆動信号SGLをHレベルにする第1時間T1とLレベルに戻す第2時間T2との時間幅Twを、PWM信号FLがHレベルの期間にダイオード素子1006に流れていた電流の大きさに応じた値に設定する。具体的には、PWM信号FLがHレベルの期間にダイオード素子1006に流れていた電流が大きいほど、長い時間幅を設定する。 For these reasons, the pulse controller 1027 controls the application timing of the gate drive voltage VGL according to the load current. The pulse control unit 1027 starts from the falling point of the PWM signal FL, and sets the time width Tw between the first time T1 when the gate drive signal SGL is set to the H level and the second time T2 when the gate drive signal SGL is returned to the L level. The value is set according to the magnitude of the current flowing in the diode element 1006 during the H level period. Specifically, the longer time width is set as the current flowing through the diode element 1006 during the period when the PWM signal FL is at the H level is larger.
 第1時間T1と第2時間T2は、ダイオード素子6に流れる電流を種々に変えながら、PWM信号FLの立ち下がり時点を起点として、ゲート駆動信号SGLの印加タイミング、実際にゲート駆動電圧VGLが印加されるタイミング、および逆回復電流が流れ始めるタイミングを予め測定して設定されている。この第1時間T1と第2時間T2は、電流と対応付けて後述するメモリ1039等(アナログ回路等で設計してもよい)に記憶されている。第1時間T1と第2時間T2に替えて、第1時間T1とパルス幅Tw(=T2-T1)を記憶してもよい。 In the first time T1 and the second time T2, the application timing of the gate drive signal SGL and the actual gate drive voltage VGL are applied starting from the falling point of the PWM signal FL while changing the current flowing through the diode element 6 in various ways. The timing at which the reverse recovery current starts to flow and the timing at which the reverse recovery current starts to flow are set in advance. The first time T1 and the second time T2 are stored in a memory 1039 or the like (which may be designed with an analog circuit or the like) described later in association with the current. Instead of the first time T1 and the second time T2, the first time T1 and the pulse width Tw (= T2-T1) may be stored.
 図35は、駆動IC1024Bについてのパルス制御部1027のブロック構成図である。メモリ1039は、電流検出信号を入力し、パルス制御に必要な第1時間T1と第2時間T2(または第1時間T1とパルス幅Tw)を出力する。パルス開始決定部1040は、図43に示すように、PWM信号FLと第1時間T1から、ゲート駆動信号SGLの立ち上がりのタイミング信号を生成する。パルス幅決定部1041は、PWM信号FLと第2時間T2(またはパルス幅Tw)から、ゲート駆動信号SGLの立ち下がりタイミング信号を生成する。パルス生成部1042は、これらのタイミング信号に基づいてゲート駆動信号SGLを生成し、ドライブ回路1028に出力する。 FIG. 35 is a block diagram of the pulse control unit 1027 for the drive IC 1024B. The memory 1039 receives the current detection signal and outputs the first time T1 and the second time T2 (or the first time T1 and the pulse width Tw) necessary for the pulse control. As shown in FIG. 43, the pulse start determining unit 1040 generates a rising timing signal of the gate drive signal SGL from the PWM signal FL and the first time T1. The pulse width determination unit 1041 generates a falling timing signal of the gate drive signal SGL from the PWM signal FL and the second time T2 (or pulse width Tw). The pulse generation unit 1042 generates a gate drive signal SGL based on these timing signals and outputs it to the drive circuit 1028.
 パルス開始決定部1040は、例えば図36に示す構成を備えている。PWM信号FLがHレベルの期間は、バッファ1043を介したゲート電圧によりMOSトランジスタ1044がオンするので、コンデンサ1045の電圧はゼロとなる。PWM信号FLがLレベルに立ち下がると、MOSトランジスタ1044がオフし、定電流回路1046によりコンデンサ1045が充電される。コンパレータ1047は、コンデンサ1045の電圧と、第1時間T1に応じた基準電圧とを比較してタイミング信号を出力する。パルス幅決定部1041も、同様の構成を備えている。 The pulse start determination unit 1040 has a configuration shown in FIG. 36, for example. During the period when the PWM signal FL is at the H level, the MOS transistor 1044 is turned on by the gate voltage via the buffer 1043, so the voltage of the capacitor 1045 is zero. When the PWM signal FL falls to the L level, the MOS transistor 1044 is turned off, and the capacitor 1045 is charged by the constant current circuit 1046. The comparator 1047 compares the voltage of the capacitor 1045 with a reference voltage corresponding to the first time T1, and outputs a timing signal. The pulse width determination unit 1041 has the same configuration.
 図44は、PWM信号FLがHレベルの期間にダイオード素子1006に流れていた電流に応じて、メモリ1039から出力される第1時間T1すなわち基準電圧が変化し、それによりゲート駆動信号SGLの立ち上がりのタイミング信号が変化する様子を示している。なお、メモリ1039に第1時間T1を記憶させ、読み出した値を素子電流に応じて変化させてもよい。 In FIG. 44, the first time T1, that is, the reference voltage output from the memory 1039 changes according to the current flowing in the diode element 1006 during the period in which the PWM signal FL is at the H level, and thereby the rise of the gate drive signal SGL. This shows how the timing signal changes. The first time T1 may be stored in the memory 1039, and the read value may be changed according to the element current.
 PWM信号FLがLレベルの期間にダイオード素子1006に電流が流れている場合と、トランジスタ素子1005に電流が流れている場合とでは、ゲート駆動パルスを与えたときのゲート駆動電圧VGLの波形が異なる。そこで、以下の述べる(1)から(3)に示す事項を考慮した上で、ゲート駆動電圧VGLがドライブ回路1028のゲート駆動能力に従って単調に増加または単調に減少するものとして、第1時間T1と第2時間T2(または第1時間T1とパルス幅Tw)が設定されている。
(1)デッドタイムTd
 PWM信号FH、FLのデッドタイムTdは一定時間である。このため、PWM信号FLがLレベルなってからPWM信号FHがHレベルになるまでの時間、およびPWM信号FHがLレベルなってからPWM信号FLがHレベルになるまでの時間が正確に保証されている。このデッドタイムTdを利用することにより、アーム短絡を防止しつつゲート駆動パルスを印加することができる。
(2)ミラー期間
 トランジスタ素子1005に電流が流れる場合には、ゲート駆動電圧VGLの印加時および遮断時にコレクタ・エミッタ間電圧の変化が生じるので、ミラー期間が生じる。このミラー期間は長く、例えば条件によっては数μsecの時間となる場合がある。これに対し、ダイオード素子1006に電流が流れる場合には、コレクタ・エミッタ間電圧は変化しないので、ミラー期間は生じない。
The waveform of the gate drive voltage VGL when a gate drive pulse is applied differs between when the current flows through the diode element 1006 and when the current flows through the transistor element 1005 while the PWM signal FL is at the L level. . Therefore, in consideration of the following items (1) to (3), it is assumed that the gate drive voltage VGL monotonously increases or monotonously decreases according to the gate drive capability of the drive circuit 1028. The second time T2 (or the first time T1 and the pulse width Tw) is set.
(1) Dead time Td
The dead time Td of the PWM signals FH and FL is a fixed time. Therefore, the time from when the PWM signal FL becomes L level until the PWM signal FH becomes H level and the time from when the PWM signal FH becomes L level until the PWM signal FL becomes H level are accurately guaranteed. ing. By utilizing this dead time Td, a gate drive pulse can be applied while preventing an arm short circuit.
(2) Mirror period When a current flows through the transistor element 1005, the collector-emitter voltage changes when the gate drive voltage VGL is applied and when the gate drive voltage VGL is applied. This mirror period is long, and may be several μsec depending on conditions, for example. On the other hand, when a current flows through the diode element 1006, the collector-emitter voltage does not change, so that no mirror period occurs.
 図45は、ミラー期間が存在するものとしてゲート駆動パルスのタイミングを設定する場合と、ミラー期間が存在しないものとしてゲート駆動パルスのタイミングを設定する場合の再注入時間を示している。前者の場合、ミラー期間を想定して再注入時間Tcを設定すると、実際にはミラー期間が生じないため、実際の再注入時間はTcよりも長くなる。これに対し、当初からミラー期間が生じないものとして設定すれば、目標通りの再注入時間Tcを設定することができる。従って、ミラー期間を除いた時間を用いてゲート駆動パルスのタイミングを設定する。これにより、ゲート駆動パルスのパルス幅Twをより長く確保できる効果もある。
(3)ドライブ回路1028の駆動能力
 ゲート駆動パルスを出力する場合、ドライブ回路1028は、ゲート駆動電圧VGLの立ち上げ時および立ち下げ時に、切替スイッチ1030、1034(図34参照)をB側に切り替えて、高いゲート駆動能力(ここでは最大のゲート駆動能力)でゲート駆動電圧VGLを出力する。ゲート駆動パルスの印加期間では、ダイオード素子1006に電流が流れ続けているので、急峻な電流変化によるサージが発生しないからである。
FIG. 45 shows the reinjection time when the gate drive pulse timing is set assuming that the mirror period exists, and when the gate drive pulse timing is set assuming that the mirror period does not exist. In the former case, when the reinjection time Tc is set assuming the mirror period, the actual reinjection time becomes longer than Tc because the mirror period does not actually occur. On the other hand, if it is set from the beginning that the mirror period does not occur, the target reinjection time Tc can be set. Therefore, the timing of the gate drive pulse is set using the time excluding the mirror period. This also has an effect of ensuring a longer pulse width Tw of the gate drive pulse.
(3) Drive capability of drive circuit 1028 When a gate drive pulse is output, the drive circuit 1028 switches the changeover switches 1030 and 1034 (see FIG. 34) to the B side when the gate drive voltage VGL rises and falls. Thus, the gate drive voltage VGL is output with a high gate drive capability (here, the maximum gate drive capability). This is because, during the application period of the gate drive pulse, current continues to flow through the diode element 1006, so that a surge due to a steep current change does not occur.
 また、ドライブ回路1028は、ゲート駆動電圧VGLの立ち上げ時に、一定のゲート駆動能力を維持してゲート駆動電圧VGLを出力する。トランジスタ素子1005に電流が流れる場合には、ゲート駆動電圧VGLの増加過程でゲート駆動電圧VGLを一時的に中間電圧Vm(例えば12V)に留めることで、他方の半導体素子1001Aが短絡故障している時の短絡電流を低減する方法が用いられている。しかし、半導体素子1001Bのダイオード素子1006に順方向電流が流れているときには、半導体素子1001A、1001Bを介した経路で短絡する可能性がない。このため、中間電圧Vmを用いた2段階駆動は不要となる。 Further, the drive circuit 1028 outputs a gate drive voltage VGL while maintaining a certain gate drive capability when the gate drive voltage VGL is raised. When a current flows through the transistor element 1005, the other semiconductor element 1001A is short-circuited by temporarily holding the gate drive voltage VGL at the intermediate voltage Vm (for example, 12V) in the process of increasing the gate drive voltage VGL. A method for reducing the short-circuit current is used. However, when a forward current flows through the diode element 1006 of the semiconductor element 1001B, there is no possibility of short-circuiting along the path through the semiconductor elements 1001A and 1001B. This eliminates the need for two-step driving using the intermediate voltage Vm.
 図46は、ドライブ回路1028が通常の駆動能力で且つ2段階駆動によりゲート駆動電圧VGLを出力する場合と、ドライブ回路1028が高い駆動能力を維持してゲート駆動電圧VGLを出力する場合の波形を対比して示している。ドライブ回路1028の駆動能力、半導体素子1001Bのゲート容量などにはばらつきがあるため、ゲート駆動電圧VGLの立ち上がり時間および立ち下がり時間にもばらつきが生じる。このばらつきは、駆動能力が低いほど大きく現れる。 46 shows waveforms when the drive circuit 1028 outputs the gate drive voltage VGL with the normal drive capability and the two-stage drive, and when the drive circuit 1028 maintains the high drive capability and outputs the gate drive voltage VGL. In contrast. Since there are variations in the drive capability of the drive circuit 1028, the gate capacitance of the semiconductor element 1001B, etc., variations also occur in the rise time and fall time of the gate drive voltage VGL. This variation becomes more significant as the driving capability is lower.
 このため、再注入時間Tcが常に短絡余裕時間Tm以上となるように設定した場合、ドライブ回路1028が高い駆動能力を維持してゲート駆動電圧VGLを出力することにより、再注入時間Tcと短絡余裕時間Tmとの乖離を小さくすることができる。すなわち、再注入時間Tcを正確に制御することができる。また、ゲート駆動パルスのパルス幅Twのばらつきが低減するとともに、より長いパルス幅Twを確保できる。 For this reason, when the reinjection time Tc is always set to be equal to or longer than the short circuit margin time Tm, the drive circuit 1028 maintains a high driving capability and outputs the gate drive voltage VGL. Deviation from time Tm can be reduced. That is, the reinjection time Tc can be accurately controlled. Further, variation in the pulse width Tw of the gate drive pulse is reduced, and a longer pulse width Tw can be secured.
 以上説明したように、本実施形態の駆動制御装置1038A、1038Bは、上下アーム間で通電が切り替わるとき、それぞれPWM信号FH、FLがHレベルの期間に半導体素子1001A、1001Bにダイオード素子1006の順方向の向きに電流が流れていると判定すると、ゲート駆動パルスの印加を指令するゲート駆動信号SGH、SGLを出力する。このパルス制御により、ダイオード素子1006に蓄積されるホールが減少して逆回復電流が低減するので、スイッチング損失を低減できる。 As described above, in the drive control devices 1038A and 1038B according to the present embodiment, when the energization is switched between the upper and lower arms, the semiconductor elements 1001A and 1001B are in the order of the diode elements 1006 during the period when the PWM signals FH and FL are at the H level, respectively. If it is determined that the current is flowing in the direction, the gate drive signals SGH and SGL for instructing the application of the gate drive pulse are output. By this pulse control, holes accumulated in the diode element 1006 are reduced and the reverse recovery current is reduced, so that switching loss can be reduced.
 駆動IC1024A、1024Bのパルス制御部1027は、PWM信号FH、FLの立ち下がり時点を起点として、第1時間T1の経過時点から第2時間T2の経過時点までゲート駆動信号SGH、SGLをHレベルにする。PWM信号FH、FLの立ち下がり時点はデッドタイムTdの起点でもあるので、一定の時間を持つデッドタイムTdを有効に利用して、アーム短絡を防止しながらゲート駆動パルスを印加することができる。 The pulse control unit 1027 of the drive ICs 1024A and 1024B sets the gate drive signals SGH and SGL to the H level from the time when the first time T1 elapses to the time when the second time T2 elapses, starting from the falling time of the PWM signals FH and FL. To do. Since the falling point of the PWM signals FH and FL is also the starting point of the dead time Td, the gate driving pulse can be applied while effectively preventing the arm short circuit by effectively using the dead time Td having a certain time.
 第1時間T1と第2時間T2(または第1時間T1とパルス幅Tw)は、デッドタイムTd、素子電流に対応させて予め測定されたゲート駆動電圧VGH、VGLの遅延やばらつきおよび逆回復電流が流れ始めるまでの時間に基づいて設定され、パルス制御部27のメモリ1039に記憶されている。 The first time T1 and the second time T2 (or the first time T1 and the pulse width Tw) are the dead time Td, the delay and variation of the gate drive voltages VGH and VGL measured in advance corresponding to the element current, and the reverse recovery current. Is set based on the time until the flow starts, and is stored in the memory 1039 of the pulse control unit 27.
 上下アーム間で通電が切り替わるとき、負荷電流が大きいほど逆回復電流が流れるタイミングが遅くなる。そこで、第1時間T1と第2時間T2との時間幅(パルス幅Tw)は、PWM信号FH、FLがHレベルの期間にダイオード素子1006に流れていた電流が大きいほど長く設定されている。これにより、負荷電流の大きさにかかわらず、ダイオード素子1006に対するキャリアの再注入時間Tc(ゲート駆動パルスの印加終了から逆回復電流が流れ始めるまでの時間)の増大を抑えることができ、スイッチング損失を低減することができる。 ¡When energization is switched between the upper and lower arms, the greater the load current, the slower the reverse recovery current flows. Therefore, the time width (pulse width Tw) between the first time T1 and the second time T2 is set longer as the current flowing through the diode element 1006 during the period in which the PWM signals FH and FL are at the H level is larger. Thereby, regardless of the magnitude of the load current, it is possible to suppress an increase in the carrier reinjection time Tc (the time from the end of application of the gate drive pulse until the reverse recovery current starts flowing) to the diode element 1006, and the switching loss. Can be reduced.
 第1時間T1と第2時間T2は、再注入時間Tcがゼロより大きくなるように設定されている。これにより、ハーフブリッジ回路4に短絡電流が流れることを防止できる。また、パルス幅Twは、所定の注入許容時間以下となるように設定されている。これにより、逆回復電流を注入許容時間に応じた大きさ以下に制限することができ、スイッチング損失を低減できる。 The first time T1 and the second time T2 are set so that the reinjection time Tc is greater than zero. Thereby, it is possible to prevent a short-circuit current from flowing through the half bridge circuit 4. Further, the pulse width Tw is set to be equal to or shorter than a predetermined allowable injection time. As a result, the reverse recovery current can be limited to a value corresponding to the allowable injection time or less, and the switching loss can be reduced.
 さらに、第1時間T1と第2時間T2は、ゲート駆動パルスの印加時におけるゲート駆動電圧の波形およびドライブ回路1028の駆動態様を考慮して設定されている。すなわち、ダイオード素子1006に電流が流れているときにゲート駆動パルスを与えると、ミラー期間が生じない。そこで、ミラー期間が生じないものとして、第1時間T1と第2時間T2が設定される。 Furthermore, the first time T1 and the second time T2 are set in consideration of the waveform of the gate drive voltage and the drive mode of the drive circuit 1028 when the gate drive pulse is applied. That is, if a gate drive pulse is applied when a current flows through the diode element 1006, the mirror period does not occur. Therefore, the first time T1 and the second time T2 are set as those in which the mirror period does not occur.
 また、ゲート駆動パルスの印加期間では、ダイオード素子1006に電流が流れ続けているので、急峻な電流変化、電圧変化によるサージは発生しない。このため、ドライブ回路1028は、自ら有する最大のゲート駆動能力に従ってゲート駆動電圧VGH、VGLを出力する。さらに、ダイオード素子1006に電流が流れているのであれば、短絡の可能性がない。このため、ドライブ回路1028は、ゲート駆動電圧VGL、VGHの立ち上げ時に、一定のゲート駆動能力を維持して、ゲート駆動電圧VGL、VGHを単調に増加させる。こうした駆動態様を用いた場合に合わせて、第1時間T1と第2時間T2が設定される。 In addition, during the gate drive pulse application period, current continues to flow through the diode element 1006, so that a surge due to a sudden current change or voltage change does not occur. Therefore, the drive circuit 1028 outputs the gate drive voltages VGH and VGL according to the maximum gate drive capability that the drive circuit 1028 has. Furthermore, if a current flows through the diode element 1006, there is no possibility of a short circuit. Therefore, the drive circuit 1028 monotonously increases the gate drive voltages VGL and VGH while maintaining a constant gate drive capability when the gate drive voltages VGL and VGH are raised. The first time T1 and the second time T2 are set in accordance with such a driving mode.
 こうしたゲート駆動パルスに特有の駆動態様を用いたときのゲート駆動電圧は、トランジスタ素子1005を通断電させる駆動態様を用いたときのゲート駆動電圧に比べ、遅延やばらつきが小さくなる。そのため、駆動IC1024A、1024Bは、ゲート駆動パルスの印加タイミングの精度を高めることができ、再注入時間Tcを正確に制御可能となる。その結果、アーム短絡を防止しつつ再注入時間を短く制御することが可能となり、スイッチング損失を一層低減できる。また、ゲート駆動パルスのパルス幅Twをより広く確保できる。さらに、パルス制御部1027は、PWM信号FH、FLの立ち下がり時点を起点としてゲート駆動信号を印加するので、別のタイミング信号が不要となり、従来から使用している駆動制御装置からの置き替えが容易になる。 The gate driving voltage when using a driving mode peculiar to such a gate driving pulse has a smaller delay and variation than the gate driving voltage when using a driving mode that cuts off the transistor element 1005. Therefore, the drive ICs 1024A and 1024B can increase the accuracy of the application timing of the gate drive pulse, and can accurately control the reinjection time Tc. As a result, the reinjection time can be controlled to be short while preventing an arm short circuit, and the switching loss can be further reduced. Further, a wider pulse width Tw of the gate drive pulse can be secured. Further, since the pulse control unit 1027 applies the gate drive signal starting from the falling point of the PWM signals FH and FL, no separate timing signal is required, and the conventional drive control device can be replaced. It becomes easy.
 パルス制御部1027は、パルス制御に基づきゲート駆動パルスを印加している期間(時刻t4~t6)であっても、ダイオード素子1006に電流が流れなくなる(電流検出値が規定値Im2未満となる)可能性があるまたは電流が流れていないと判定すると、直ちにゲート駆動パルスの印加を停止する。これにより、負荷電流が急変した場合でもアーム短絡を確実に防止できる。さらに、負荷電流の急変に備えて規定値Im2を高めに設定する必要がなくなるので、パルス制御を実行する電流範囲を広く確保でき、スイッチング損失を一層低減できる。 The pulse control unit 1027 stops the current from flowing through the diode element 1006 even during the period (time t4 to t6) in which the gate drive pulse is applied based on the pulse control (the detected current value becomes less than the specified value Im2). If it is determined that there is a possibility or no current is flowing, the application of the gate drive pulse is immediately stopped. Thereby, even when the load current changes suddenly, an arm short circuit can be reliably prevented. Furthermore, since it is not necessary to set the specified value Im2 higher in preparation for a sudden change in the load current, a wide current range for performing the pulse control can be secured, and the switching loss can be further reduced.
 また、第17の実施形態において、第2の実施形態に記載のように半導体素子1A、1BにMOSトランジスタなどを使用し同期整流を行った方が導通損失を低減できる場合は、半導体素子にダイオード構造の順方向の向きに電流が流れていると判定すると、上記第1時間T1に代わり、図7に記載のようにゲート駆動制御信号SGL,SGHの立ち上がり(t2)と上記第2時間T2に応じて高い駆動能力でゲート駆動電圧VGH、VGLを出力するようにするとよい。 Further, in the seventeenth embodiment, if the conduction loss can be reduced by using a MOS transistor or the like for the semiconductor elements 1A and 1B as described in the second embodiment and performing the synchronous rectification, a diode is added to the semiconductor element. If it is determined that the current is flowing in the forward direction of the structure, instead of the first time T1, the rising edge (t2) of the gate drive control signals SGL and SGH and the second time T2 as shown in FIG. Accordingly, it is preferable to output the gate drive voltages VGH and VGL with a high drive capability.
 また、第17の実施形態では第1の実施形態に相当する回路構成の駆動制御システムについて説明したが、図33に示す回路構成(第1の実施形態に相当)に代えて、第3、4、5、6、7、8、9の実施形態に記載の駆動制御システムにも適用できる。この場合においても図8、9、10、11、12、13、14に記載の半導体素子1A、1BにMOSトランジスタなどを使用し同期整流を行った方が導通損失を低減できる場合は、半導体素子にダイオード構造の順方向の向きに電流が流れていると判定すると、上記第1時間T1に代わり、図7に記載のようにゲート駆動制御信号SGL,SGHの立ち上がり(t2)と上記第2時間T2に応じて高い駆動能力でゲート駆動電圧VGH、VGLを出力するとよい。 In the seventeenth embodiment, the drive control system having a circuit configuration corresponding to the first embodiment has been described. However, instead of the circuit configuration (corresponding to the first embodiment) shown in FIG. The present invention can also be applied to the drive control system described in the fifth, sixth, seventh, eighth, and ninth embodiments. Also in this case, if the semiconductor element 1A, 1B described in FIGS. 8, 9, 10, 11, 12, 13, 14 can be reduced in conduction loss by performing synchronous rectification using a MOS transistor or the like, the semiconductor element If it is determined that the current flows in the forward direction of the diode structure, the rise (t2) of the gate drive control signals SGL and SGH and the second time as shown in FIG. 7 instead of the first time T1. It is preferable to output the gate drive voltages VGH and VGL with high drive capability according to T2.
 また、第17の実施形態では第1の実施形態に相当する回路構成の駆動制御システムについて説明したが、図33に示す回路構成(第1の実施形態に相当)に代えて、第11、12、13、14、15の実施形態に記載の駆動制御システムにも適用できる。この場合において図17、20、21、22、23に記載の半導体素子101A、101BにMOSトランジスタなどを使用し同期整流を行った方が導通損失を低減できる場合は、半導体素子にダイオード構造の順方向の向きに電流が流れていると判定すると、上記第1時間T1に代わり、図19に記載のようにゲート駆動制御信号SGL,SGHの立ち上がり(t2)と上記第2時間T2に応じて高い駆動能力でゲート駆動電圧VGH、VGLを出力するとよい。
また、第17の実施形態では第1の実施形態に相当する回路構成の駆動制御システムについて説明したが、図33に示す回路構成(第1の実施形態に相当)に代えて、上述した図7、19、27、32記載の制御を実施する第1~第16の実施形態の変形例に記載の駆動制御システムにも適用できる。この場合において半導体素子1A、1Bもしくは101A、101BにMOSトランジスタなどを使用し同期整流を行った方が導通損失を低減できる場合は、半導体素子にダイオード構造の順方向の向きに電流が流れていると判定すると、上記第1時間T1に代わり、図27に記載のようにゲート駆動制御信号SGL,SGHの立ち上がり(t2、t1c、t1b)と上記第2時間T2に応じて高い駆動能力でゲート駆動電圧VGH、VGLを出力するとよい。
In the seventeenth embodiment, the drive control system having a circuit configuration corresponding to the first embodiment has been described. However, instead of the circuit configuration (corresponding to the first embodiment) shown in FIG. , 13, 14, and 15 can also be applied to the drive control system. In this case, when conducting rectification using a MOS transistor or the like for the semiconductor elements 101A and 101B shown in FIGS. 17, 20, 21, 22, and 23 can reduce conduction loss, the order of the diode structure in the semiconductor element is reduced. If it is determined that a current is flowing in the direction of the direction, instead of the first time T1, as shown in FIG. 19, it is high according to the rise (t2) of the gate drive control signals SGL and SGH and the second time T2. The gate drive voltages VGH and VGL may be output with the drive capability.
In the seventeenth embodiment, the drive control system having the circuit configuration corresponding to the first embodiment has been described. However, instead of the circuit configuration shown in FIG. 33 (corresponding to the first embodiment), FIG. , 19, 27, 32 can be applied to the drive control system described in the modified examples of the first to sixteenth embodiments. In this case, when conducting rectification can be reduced by using a MOS transistor or the like for the semiconductor elements 1A, 1B or 101A, 101B, current flows in the semiconductor element in the forward direction of the diode structure. , Instead of the first time T1, as shown in FIG. 27, gate drive is performed with high driving capability in accordance with the rise (t2, t1c, t1b) of the gate drive control signals SGL, SGH and the second time T2. The voltages VGH and VGL should be output.
 以上、本開示の好適な実施形態について説明したが、本開示は上述した実施形態に限定されるものではなく、開示の要旨を逸脱しない範囲内で種々の変形、拡張を行うことができる。 The preferred embodiments of the present disclosure have been described above. However, the present disclosure is not limited to the above-described embodiments, and various modifications and extensions can be made without departing from the gist of the disclosure.
 RC-IGBTは、トレンチゲート型に限らずプレーナゲート型などであってもよい。半導体素子1001A、1001Bは、コントロール用のゲートを有し寄生ダイオードが形成された素子、例えばMOSトランジスタ、MOSゲートを備えたダイオードであってもよい。MOSトランジスタは、トレンチゲート型に限らずプレーナゲート型などであってもよい。MOSトランジスタは、SJ(Super Junction)構造であってもよい。 RC-IGBT is not limited to a trench gate type, but may be a planar gate type. The semiconductor elements 1001A and 1001B may be elements having a control gate and formed with a parasitic diode, for example, a MOS transistor and a diode having a MOS gate. The MOS transistor is not limited to a trench gate type but may be a planar gate type. The MOS transistor may have an SJ (Super Junction) structure.
 上記実施形態では、電流検出手段として、半導体素子1001A、1001Bにセンス素子を形成した上でセンス抵抗1007A、1007Bを備えた。これに替えて、図47に示すように、センス素子を除いた半導体素子1001A、1001Bと直列にセンス抵抗1007A、1007Bを設けてもよい。センス抵抗1007A、1007Bとメイン素子とが直接接続されているので、高速答が可能となる。また、図48に示すように、半導体素子1001A、1001Bに対しホールセンサ1059A、1059Bを設けてもよい。ホールセンサ1059A、1059Bに替えて、出力端子Ntから負荷に至る出力線にホールセンサを設けてもよい。何れの構成でも、電流を高精度に検出できる。ホールセンサに替えてGMR(Giant Magneto Resistance)センサなどの絶縁型電流センサを用いてもよい。 In the above embodiment, the sense resistors 1007A and 1007B are provided as the current detection means after the sense elements are formed in the semiconductor elements 1001A and 1001B. Instead, as shown in FIG. 47, sense resistors 1007A and 1007B may be provided in series with the semiconductor elements 1001A and 1001B excluding the sense elements. Since the sense resistors 1007A and 1007B and the main element are directly connected, a high-speed answer is possible. As shown in FIG. 48, Hall sensors 1059A and 1059B may be provided for the semiconductor elements 1001A and 1001B. Instead of the Hall sensors 1059A and 1059B, Hall sensors may be provided on the output lines from the output terminal Nt to the load. In any configuration, the current can be detected with high accuracy. An insulated current sensor such as a GMR (Giant Magneto Resistance) sensor may be used instead of the Hall sensor.
 本開示は、下記の態様を含む。 This disclosure includes the following aspects.
 本開示の第一の態様において、各々の半導体素子が、同一の半導体基板に形成された、ゲート駆動電圧が印加される絶縁ゲート型のトランジスタ構造とダイオード構造とを有し、前記トランジスタ構造の通電電極と前記ダイオード構造の通電電極とが共通である、二つの半導体素子の駆動制御装置は、前記2つの半導体素子のうち少なくとも一方に流れる電流に応じた電流検出信号を出力する電流検出手段と、前記電流検出信号に基づいて、前記半導体素子に対するオン指令信号が入力されている期間に前記半導体素子に前記ダイオード構造の順方向の向きに電流が流れていると判定した場合、その後のオフ指令信号の入力時点を起点として、第1時間の経過時点から第2時間の経過時点まで、前記ゲート駆動電圧の印加を指令するゲート駆動信号を出力する第1の制御手段とを備える。二つの半導体素子は、ハーフブリッジ回路を構成する。第1時間と第2時間は、二つの半導体素子の間でアーム短絡が生じないように予め設定されている。 In the first aspect of the present disclosure, each semiconductor element has an insulated gate transistor structure and a diode structure to which a gate driving voltage is applied, which are formed on the same semiconductor substrate. The drive control device for two semiconductor elements, wherein the electrode and the current-carrying electrode of the diode structure are common, current detection means for outputting a current detection signal corresponding to a current flowing in at least one of the two semiconductor elements; On the basis of the current detection signal, when it is determined that a current flows in the forward direction of the diode structure in the semiconductor element during a period in which an ON command signal for the semiconductor element is input, a subsequent OFF command signal Starting from the input time point of the first to the second time point, the gate commanding the application of the gate drive voltage And a first control means for outputting a motion signal. The two semiconductor elements constitute a half bridge circuit. The first time and the second time are set in advance so as not to cause an arm short circuit between the two semiconductor elements.
 駆動対象の半導体素子は、トランジスタ構造とダイオード構造に対し共通のゲート構造を備えている。上下アーム間で通電が切り替わる時、例えば一方の半導体素子のダイオード構造に電流が流れている状態で、第1の制御手段が当該一方の半導体素子にゲート駆動電圧を印加すると、当該ダイオード構造に蓄積されるホールが減少し、逆回復電流を低減する作用が生じる。 The semiconductor element to be driven has a common gate structure for the transistor structure and the diode structure. When energization is switched between the upper and lower arms, for example, when the first control unit applies a gate drive voltage to the one semiconductor element in a state where a current flows through the diode structure of one semiconductor element, the current is accumulated in the diode structure. The number of holes to be reduced is reduced, and the effect of reducing the reverse recovery current occurs.
 しかし、オフ指令信号が入力された半導体素子について、ダイオード構造の順方向の向きに素子電流(例えばダイオード電流)が流れている場合と、逆方向の向きに素子電流(トランジスタ電流)が流れている場合とでは、ゲート駆動パルスを与えたときのゲート駆動電圧の波形が異なる。例えば、前者の場合には半導体素子間の電圧・電流の急峻な変化やミラー期間が生じないので、ゲート駆動電圧の立ち上がり時間および立ち下がり時間は短くなる(或いは短くできる)。これにより、ゲート駆動パルスの遅延やばらつきが小さくなる。一方、後者の場合には半導体素子間の電圧・電流の急峻な変化やミラー期間が生じるので、ゲート駆動パルスの遅延やばらつきが大きくなる。駆動制御装置は、半導体素子にダイオード構造の順方向の向きに電流が流れている場合に限りゲート駆動パルスを印加するので、前者の場合の小さい遅延やばらつきに基づいた制御が可能となり、印加タイミングの精度を高めることができる。 However, for a semiconductor element to which an off command signal is input, a device current (transistor current) flows in the reverse direction when a device current (for example, a diode current) flows in the forward direction of the diode structure. In some cases, the waveform of the gate drive voltage when a gate drive pulse is applied is different. For example, in the former case, there is no steep change in the voltage / current between the semiconductor elements or a mirror period, so that the rise time and fall time of the gate drive voltage are shortened (or can be shortened). This reduces the delay and variation of the gate drive pulse. On the other hand, in the latter case, a sharp change in the voltage and current between the semiconductor elements and a mirror period occur, so that the delay and variation of the gate drive pulse increase. The drive control device applies a gate drive pulse only when a current flows through the semiconductor element in the forward direction of the diode structure, so control based on small delays and variations in the former case is possible, and the application timing Can improve the accuracy.
 第1の制御手段は、相補的に変化する高電位側(ハイサイド)と低電位側(ローサイド)の指令信号(例えばPWM信号)のうち少なくとも一方の指令信号を入力し、少なくとも一方のサイドの半導体素子にゲート駆動電圧を印加する。この指令信号は、切り替え時にデッドタイム(アーム短絡防止のため両サイドがオフしている期間)を有している。デッドタイムは一定時間であるため、一方サイドのオフ指令信号の入力から他方サイドのオン指令信号の入力までの時間が正確に保証されている。 The first control means inputs at least one of the command signals (for example, PWM signals) on the high potential side (high side) and the low potential side (low side) that change in a complementary manner. A gate drive voltage is applied to the semiconductor element. This command signal has a dead time (period in which both sides are off to prevent arm short circuit) at the time of switching. Since the dead time is a fixed time, the time from the input of the off command signal on one side to the input of the on command signal on the other side is accurately guaranteed.
 本手段によれば、上述した遅延やばらつきを予め測定しデッドタイムを把握した上で、オフ指令信号の入力時点を起点として、ゲート駆動電圧を所望のタイミングで印加するために必要なゲート駆動信号のタイミング、すなわち第1時間と第2時間を正確に設定することが可能となる。 According to this means, after measuring the delay and variation described above in advance and grasping the dead time, the gate drive signal necessary for applying the gate drive voltage at a desired timing starting from the input time point of the off command signal. That is, the first time and the second time can be accurately set.
 これにより、一方の半導体素子に対するゲート駆動パルスの印加終了時点から逆回復電流が流れ始めるまでの時間、例えばゲート駆動パルスの印加終了後にダイオード構造に再びキャリア(ホール)が注入される時間(キャリアの再注入時間)を正確に制御可能となる。その結果、アーム短絡を防止しつつ再注入時間を短く制御することができるので、逆回復電流が減少し、スイッチング損失を低減できる。また、第1の制御手段は、オフ指令信号を基準タイミングとしてゲート駆動信号を印加できるので、別のタイミング信号が不要となり、従来から使用している駆動制御装置からの置き替えが容易になる。 Accordingly, the time from when the gate drive pulse is applied to one semiconductor element until the reverse recovery current starts to flow, for example, the time when carriers (holes) are injected again into the diode structure after the application of the gate drive pulse is completed. (Reinjection time) can be accurately controlled. As a result, since the reinjection time can be controlled to be short while preventing an arm short circuit, the reverse recovery current is reduced and the switching loss can be reduced. In addition, since the first control means can apply the gate drive signal using the off command signal as a reference timing, a separate timing signal is not required, and the replacement from the conventionally used drive control device is facilitated.
 代案として、駆動制御装置は、駆動制御する前記半導体素子に対するオン指令信号が入力されている期間、前記電流検出信号に基づいて、前記ダイオード構造の順方向の向きに流れる前記半導体素子の電流が電流しきい値以上であると判定すると、前記ゲート駆動電圧の遮断を指令するゲート駆動信号を出力する第2の制御手段をさらに備えてもよい。第2の制御手段は、駆動制御する前記半導体素子に対するオン指令信号が入力されている期間、前記電流検出信号に基づいて、前記ダイオード構造の順方向の向きに流れる前記半導体素子の電流が前記電流しきい値未満であると判定すると、前記ゲート駆動電圧の印加を指令するゲート駆動信号を出力する。前記半導体素子に前記ダイオード構造の順方向の向きに電流が流れる場合において、前記ゲート駆動電圧が遮断されている時における導通損失と前記ゲート駆動電圧が印加されている時における導通損失とが等しくなる電流値が予め測定されて、電流しきい値として設定されている。 As an alternative, the drive control device may be configured such that the current of the semiconductor element that flows in the forward direction of the diode structure is a current based on the current detection signal during a period in which an ON command signal is input to the semiconductor element to be driven and controlled. If it is determined that the threshold value is equal to or greater than the threshold value, a second control unit that outputs a gate drive signal that instructs to shut off the gate drive voltage may be further provided. The second control means is configured to cause the current of the semiconductor element that flows in the forward direction of the diode structure based on the current detection signal during a period in which an ON command signal is input to the semiconductor element to be driven and controlled, to the current direction. If it is determined that it is less than the threshold value, a gate drive signal for instructing application of the gate drive voltage is output. When a current flows through the semiconductor element in the forward direction of the diode structure, the conduction loss when the gate drive voltage is cut off is equal to the conduction loss when the gate drive voltage is applied. The current value is measured in advance and set as a current threshold value.
 半導体素子は、ゲート駆動電圧が遮断されている時と印加されている時における導通損失が相違する特性を有している。これは、チャネルの形成によりホールの注入が影響を受けるからである。ゲート駆動電圧が遮断されている時の導通損失と印加されている時の導通損失との大小関係は、半導体素子の種類、耐圧などにより異なる。そこで、本手段では、この関係を予め測定して大小関係が入れ替わる電流しきい値を設定する。 The semiconductor element has a characteristic that the conduction loss differs when the gate drive voltage is cut off and when it is applied. This is because hole injection is affected by channel formation. The magnitude relationship between the conduction loss when the gate drive voltage is cut off and the conduction loss when the gate drive voltage is applied varies depending on the type of semiconductor element, withstand voltage, and the like. Therefore, in this means, this relationship is measured in advance, and a current threshold value at which the magnitude relationship is switched is set.
 第2の制御手段は、半導体素子にダイオード構造の順方向の向きに流れる電流が電流しきい値以上のときにゲート駆動電圧の遮断指令を出力し、電流しきい値未満のときにゲート駆動電圧の印加指令を出力する。これにより、半導体素子の種類や耐圧にかかわらず、導通損失を適切に低減することができる。また、半導体素子にダイオード構造の逆方向の向きに電流が流れる期間に確実にゲート駆動電圧が印加されるので、トランジスタ構造にオン指令信号に従った電流を流すことができる。 The second control means outputs a gate drive voltage cutoff command when the current flowing in the forward direction of the diode structure in the semiconductor element is equal to or greater than the current threshold, and when the current is less than the current threshold, the gate drive voltage The application command is output. As a result, the conduction loss can be appropriately reduced regardless of the type and breakdown voltage of the semiconductor element. In addition, since the gate drive voltage is reliably applied to the semiconductor element during the period in which the current flows in the reverse direction of the diode structure, the current according to the ON command signal can be supplied to the transistor structure.
 代案として、前記第2の制御手段は、駆動制御する前記半導体素子に対するオン指令信号が入力されている期間、前記半導体素子に前記ダイオード構造の順方向の向きに前記電流しきい値未満の電流が流れていると判定すると、前記ゲート駆動電圧の印加を指令するゲート駆動信号を、当該半導体素子に対するオフ指令信号の入力時点を越えて前記第2時間の経過時点まで延長して出力してもよい。 As an alternative, the second control means is configured such that a current less than the current threshold is applied to the semiconductor element in a forward direction of the diode structure during a period in which an ON command signal is input to the semiconductor element to be driven and controlled. If it is determined that the current is flowing, the gate drive signal for instructing the application of the gate drive voltage may be output after the input time of the off command signal to the semiconductor element is extended to the time point of the second time. .
 これにより、第2制御手段による制御と第1制御手段による制御とを一連のゲート駆動電圧により実行でき、導通損失を一層低減できる。 Thereby, the control by the second control means and the control by the first control means can be executed by a series of gate drive voltages, and the conduction loss can be further reduced.
 代案として、駆動制御装置は、駆動制御する前記半導体素子に対するオン指令信号が入力されている期間、前記ゲート駆動電圧の印加を指令するゲート駆動信号を出力し、当該期間において前記半導体素子に前記ダイオード構造の順方向の向きに電流が流れていると判定すると、前記ゲート駆動電圧の印加を指令するゲート駆動信号を、当該半導体素子に対するオフ指令信号の入力時点を越えて前記第2時間の経過時点まで延長して出力する第2の制御手段をさらに備えていてもよい。 As an alternative, the drive control device outputs a gate drive signal for instructing application of the gate drive voltage during a period in which an on-command signal for the semiconductor element to be driven is input, and the diode is supplied to the semiconductor element during the period When it is determined that a current is flowing in the forward direction of the structure, a gate drive signal for instructing application of the gate drive voltage is set to a time point at which the second time has passed after an input time point of the off command signal to the semiconductor element. There may be further provided a second control means for extending the output to the output.
 これにより、オン指令信号が入力されている期間のゲート駆動電圧と、その後の第一制御手段の制御に係るゲート駆動電圧とを、一連のゲート駆動電圧として実行でき、導通損失を一層低減できる。 Thereby, the gate drive voltage during the period when the ON command signal is inputted and the gate drive voltage related to the control of the first control means can be executed as a series of gate drive voltages, and the conduction loss can be further reduced.
 本開示の第二の態様において、ゲート駆動電圧が印加される絶縁ゲート型のトランジスタ構造とダイオード構造とが同一の半導体基板に形成され、前記トランジスタ構造の通電電極と前記ダイオード構造の通電電極とが共通とされた半導体素子の駆動制御装置は、前記半導体素子に流れる電流に応じた電流検出信号を出力する電流検出手段と、前記半導体素子に対するオン指令信号が入力されている期間、前記電流検出信号に基づいて、前記ダイオード構造の順方向の向きに流れる前記半導体素子の電流が前記電流しきい値以上であると判定すると、前記ゲート駆動電圧の遮断を指令するゲート駆動信号を出力する第2の制御手段とを備えている。第2の制御手段は、前記半導体素子に対するオン指令信号が入力されている期間、前記電流検出信号に基づいて、前記ダイオード構造の順方向の向きに流れる前記半導体素子の電流が前記電流しきい値未満であると判定すると、前記ゲート駆動電圧の印加を指令するゲート駆動信号を出力する。前記半導体素子に前記ダイオード構造の順方向の向きに電流が流れる場合において、前記ゲート駆動電圧が遮断されている時における導通損失と前記ゲート駆動電圧が印加されている時における導通損失とが等しくなる電流値が予め測定されて、電流しきい値として設定されている。 In a second aspect of the present disclosure, an insulated gate transistor structure to which a gate driving voltage is applied and a diode structure are formed on the same semiconductor substrate, and the current-carrying electrode of the transistor structure and the current-carrying electrode of the diode structure are A common drive control device for a semiconductor element includes: a current detection unit that outputs a current detection signal corresponding to a current flowing through the semiconductor element; and the current detection signal during a period when an ON command signal is input to the semiconductor element. If the current of the semiconductor element flowing in the forward direction of the diode structure is determined to be greater than or equal to the current threshold value based on the second, a gate drive signal for commanding the interruption of the gate drive voltage is output. Control means. The second control means is configured such that the current of the semiconductor element that flows in the forward direction of the diode structure is based on the current detection signal during the period when the ON command signal for the semiconductor element is input. If it is determined that the value is less than the value, a gate drive signal for instructing application of the gate drive voltage is output. When a current flows through the semiconductor element in the forward direction of the diode structure, the conduction loss when the gate drive voltage is cut off is equal to the conduction loss when the gate drive voltage is applied. The current value is measured in advance and set as a current threshold value.
 第2の制御手段は、半導体素子に対するオン指令信号が入力されている期間、電流検出信号に基づいて、半導体素子にダイオード構造の順方向の向きに流れる電流が電流しきい値以上であると判定すると、ゲート駆動電圧の遮断を指令するゲート駆動信号を出力する。電流しきい値未満であると判定すると、ゲート駆動電圧の印加を指令するゲート駆動信号を出力する。この構成によれば、上述した第一の態様と同様の作用および効果を得ることができる。さらに、半導体素子の種類や耐圧にかかわらず、導通損失を適切に低減することができる。また、半導体素子にダイオード構造の逆方向の向きに電流が流れる期間に確実にゲート駆動電圧が印加されるので、トランジスタ構造にオン指令信号に従った電流を流すことができる。 The second control means determines that the current flowing in the forward direction of the diode structure in the semiconductor element is greater than or equal to the current threshold based on the current detection signal during the period when the ON command signal for the semiconductor element is input. Then, a gate drive signal for instructing shutoff of the gate drive voltage is output. If it is determined that it is less than the current threshold value, a gate drive signal for instructing application of the gate drive voltage is output. According to this configuration, it is possible to obtain the same operation and effect as the first aspect described above. Furthermore, the conduction loss can be appropriately reduced regardless of the type and breakdown voltage of the semiconductor element. In addition, since the gate drive voltage is reliably applied to the semiconductor element during the period in which the current flows in the reverse direction of the diode structure, the current according to the ON command signal can be supplied to the transistor structure.
 代案として、前記第2の制御手段は、外部から前記電流しきい値を特定するしきい値特定信号を入力可能に構成されていてもよい。前記第2の制御手段は、前記オン指令信号が入力されている期間において、入力した前記しきい値特定信号に応じた電流しきい値を前記半導体素子に流れる電流の判定に用いる。 As an alternative, the second control means may be configured to be able to input a threshold value specifying signal for specifying the current threshold value from the outside. The second control means uses a current threshold value corresponding to the input threshold value specifying signal for determination of a current flowing through the semiconductor element during a period in which the ON command signal is input.
 これにより、駆動制御装置は、種類、耐圧などが異なる種々の半導体素子を低い導通損失で駆動することができる。 Thereby, the drive control device can drive various semiconductor elements of different types, withstand voltages, etc. with low conduction loss.
 代案として、第1の制御手段または第2の制御手段の少なくとも一方は、通常制御を実行してもよい。通常制御において、第1の制御手段または第2の制御手段の少なくとも一方は、前記半導体素子を通して負荷に流れる電流が規定値よりも小さい場合、駆動制御する前記半導体素子に対するオン指令信号が入力されると前記ゲート駆動電圧の印加を指令するゲート駆動信号を出力する。通常制御において、第1の制御手段または第2の制御手段の少なくとも一方は、前記半導体素子を通して負荷に流れる電流が規定値よりも小さい場合、駆動制御する前記半導体素子に対するオフ指令信号が入力されると前記ゲート駆動電圧の遮断を指令するゲート駆動信号を出力する。 As an alternative, at least one of the first control means or the second control means may perform normal control. In normal control, at least one of the first control means and the second control means receives an ON command signal for the semiconductor element to be driven and controlled when the current flowing to the load through the semiconductor element is smaller than a specified value. And a gate drive signal for instructing application of the gate drive voltage. In normal control, at least one of the first control means and the second control means receives an off command signal for the semiconductor element to be driven and controlled when the current flowing through the semiconductor element to the load is smaller than a specified value. And a gate drive signal for instructing to cut off the gate drive voltage.
 これにより、電流検出精度の低下による誤制御を防止することができる。 This makes it possible to prevent erroneous control due to a decrease in current detection accuracy.
 代案として、駆動制御装置は、前記ゲート駆動信号を入力して前記ゲート駆動電圧を出力するドライブ回路をさらに備えてもよい。ドライブ回路は、前記ゲート駆動電圧に応じた耐圧を持つICで構成されている。 As an alternative, the drive control device may further include a drive circuit that inputs the gate drive signal and outputs the gate drive voltage. The drive circuit is composed of an IC having a withstand voltage corresponding to the gate drive voltage.
 この構成によれば、ハーフブリッジ回路を構成する半導体素子ごとに駆動制御装置が設けられる。既に広く使用されている半導体素子の駆動システムに対し、駆動制御装置(駆動IC)を置き替えればよいので、駆動システムの変更が容易になる。 According to this configuration, a drive control device is provided for each semiconductor element constituting the half bridge circuit. Since it is only necessary to replace the drive control device (drive IC) with a drive system for semiconductor elements that has already been widely used, the drive system can be easily changed.
 代案として、駆動制御装置は、ハーフブリッジ回路を構成する2つの半導体素子を駆動制御してもよい。駆動制御装置は、前記ハーフブリッジ回路に加わる電源電圧に応じた耐圧を持つICで構成されている。当該ICは、前記ゲート駆動信号を入力して前記ゲート駆動電圧を出力するドライブ回路を備える。前記電流検出手段は、前記2つの半導体素子のうち少なくとも一方に流れる電流を検出可能に設けられる。第1の制御手段または第2の制御手段の少なくとも一方は、前記2つの半導体素子のうち一方の半導体素子に前記ゲート駆動電圧を印加している期間、他方の半導体素子への前記ゲート駆動電圧の印加を禁止する。 As an alternative, the drive control device may drive and control two semiconductor elements constituting the half bridge circuit. The drive control device is composed of an IC having a withstand voltage corresponding to the power supply voltage applied to the half bridge circuit. The IC includes a drive circuit that inputs the gate drive signal and outputs the gate drive voltage. The current detection means is provided so as to detect a current flowing in at least one of the two semiconductor elements. At least one of the first control means and the second control means is configured to apply the gate drive voltage to the other semiconductor element during the period in which the gate drive voltage is applied to one of the two semiconductor elements. Prohibit application.
 電流検出手段は、2つの半導体素子のうち少なくとも一方に流れる電流を検出する。一方の電流を検出できれば、他方の半導体素子の電流も間接的に検出可能となる。 The current detection means detects a current flowing through at least one of the two semiconductor elements. If one current can be detected, the current of the other semiconductor element can also be detected indirectly.
 本駆動制御装置は、ハーフブリッジ回路を構成する2つの半導体素子の駆動状態を把握できる。制御手段は、2つの半導体素子のうち一方の半導体素子にゲート駆動電圧を印加している期間、他方の半導体素子へのゲート駆動電圧の印加を禁止する。これにより、アーム短絡を確実に防止できる。 This drive control device can grasp the drive state of the two semiconductor elements constituting the half bridge circuit. The control unit prohibits application of the gate drive voltage to the other semiconductor element during the period in which the gate drive voltage is applied to one of the two semiconductor elements. Thereby, an arm short circuit can be prevented reliably.
 代案として、駆動制御装置は、ハーフブリッジ回路を構成する2つの前記半導体素子を駆動制御してもよい。駆動制御装置は、第1の制御手段または第2の制御手段の少なくとも一方を提供する制御ICと、前記制御ICから入力したゲート駆動信号に基づいて各半導体素子に前記ゲート駆動電圧を印加する駆動ICと、前記制御ICから出力されたゲート駆動信号を電気的に絶縁して前記駆動ICに伝送する絶縁回路と、前記電流検出手段とから構成されている。前記制御ICは、前記2つの半導体素子のうち一方の半導体素子に前記ゲート駆動電圧を印加している期間、他方の半導体素子への前記ゲート駆動電圧の印加を禁止するゲート駆動信号を出力する。 As an alternative, the drive control device may drive and control the two semiconductor elements constituting the half bridge circuit. The drive control device includes a control IC that provides at least one of the first control means and the second control means, and a drive that applies the gate drive voltage to each semiconductor element based on a gate drive signal input from the control IC. It comprises an IC, an insulating circuit that electrically insulates the gate drive signal output from the control IC and transmits the signal to the drive IC, and the current detection means. The control IC outputs a gate drive signal for prohibiting application of the gate drive voltage to the other semiconductor element during a period in which the gate drive voltage is applied to one of the two semiconductor elements.
 本駆動制御装置は、ハーフブリッジ回路を構成する2つの半導体素子の駆動状態を把握できる。制御ICは、2つの半導体素子のうち一方の半導体素子にゲート駆動電圧を印加している期間、他方の半導体素子へのゲート駆動電圧の印加を禁止するゲート駆動信号を出力する。これにより、アーム短絡を確実に防止できる。また、電流検出手段は、2つの半導体素子のうち一方の電流のみを検出できれば、他方の半導体素子の電流も間接的に検出可能となる。 This drive control device can grasp the drive state of the two semiconductor elements constituting the half bridge circuit. The control IC outputs a gate drive signal for prohibiting application of the gate drive voltage to the other semiconductor element during a period in which the gate drive voltage is applied to one of the two semiconductor elements. Thereby, an arm short circuit can be prevented reliably. Moreover, if the current detection means can detect only one of the two semiconductor elements, the current of the other semiconductor element can also be indirectly detected.
 代案として、前記電流検出手段は、前記制御ICにより提供されてもよい。 As an alternative, the current detection means may be provided by the control IC.
 例えば、制御ICは、上述した各制御をソフトウェア処理する。 For example, the control IC performs software processing for each control described above.
 本開示の第三の態様において、各々の半導体素子が、同一の半導体基板に形成された、ゲート駆動電圧が印加される絶縁ゲート型のトランジスタ構造とダイオード構造とを有し、前記トランジスタ構造の通電電極と前記ダイオード構造の通電電極とが共通である、二つの半導体素子の駆動制御装置は、前記2つの半導体素子のうち少なくとも一方に流れる電流に応じた電流検出信号を出力する電流検出手段と、前記一方の半導体素子に対するオフ指令信号が入力されているときに前記電流検出信号に基づいて前記一方の半導体素子に前記ダイオード構造の順方向の向きに電流が流れていると判定した場合、前記電流検出手段により電流検出信号の変動を検出した時点で、二つの半導体素子の間でアーム短絡が生じないようにパルスを出力させる制御手段とを備え、当該時点は、前記一方の半導体素子に対するオン指令信号の入力時点の前である、二つの半導体素子は、ハーフブリッジ回路を構成する。 In a third aspect of the present disclosure, each semiconductor element has an insulated gate transistor structure and a diode structure to which a gate driving voltage is applied, which are formed on the same semiconductor substrate. The drive control device for two semiconductor elements, wherein the electrode and the current-carrying electrode of the diode structure are common, current detection means for outputting a current detection signal corresponding to a current flowing in at least one of the two semiconductor elements; When it is determined that a current flows in the forward direction of the diode structure to the one semiconductor element based on the current detection signal when an off command signal is input to the one semiconductor element, the current When the detection means detects a change in the current detection signal, a pulse is output so that an arm short circuit does not occur between the two semiconductor elements. And a that control means, the time is prior to the point of input of the ON command signal for the one of the semiconductor elements, two semiconductor elements constitute a half-bridge circuit.
 この構成によれば、上述した第一の態様と同様の作用および効果を得ることができる。 According to this configuration, it is possible to obtain the same operation and effect as the first aspect described above.
 本開示の第四の態様において、各々の半導体素子が、同一の半導体基板に形成された、ゲート駆動電圧が印加される絶縁ゲート型のトランジスタ構造とダイオード構造とを有し、前記トランジスタ構造の通電電極と前記ダイオード構造の通電電極とが共通である、二つの半導体素子の駆動制御装置は、一方の前記半導体素子の電極電位に基づく電圧検出信号を出力する電圧検出手段と、前記一方の半導体素子に対するオフ指令信号が入力されているときに前記電圧検出信号に基づいて前記一方の半導体素子に前記ダイオード構造の順方向の向きに電流が流れていると判定した場合、二つの半導体素子の間でアーム短絡が生じないように前記一方の半導体素子に対するオン指令信号の入力時点からパルスを出力させる制御手段と、を備える。二つの半導体素子は、ハーフブリッジ回路を構成する。 In the fourth aspect of the present disclosure, each semiconductor element has an insulated gate transistor structure and a diode structure to which a gate driving voltage is applied, which are formed on the same semiconductor substrate, and the transistor structure is energized. The drive control device for two semiconductor elements, in which the electrode and the current-carrying electrode of the diode structure are common, a voltage detection means for outputting a voltage detection signal based on the electrode potential of one of the semiconductor elements, and the one semiconductor element When it is determined that a current flows in the forward direction of the diode structure in the one semiconductor element based on the voltage detection signal when an off command signal is input to the two semiconductor elements, Control means for outputting a pulse from an input time point of an ON command signal to the one semiconductor element so as not to cause an arm short circuit. The two semiconductor elements constitute a half bridge circuit.
 この構成によれば、上述した第一の態様と同様の作用および効果を得ることができる。 According to this configuration, it is possible to obtain the same operation and effect as the first aspect described above.
 代案として、駆動制御装置は、少なくとも一方の半導体素子に流れる電流に応じた電流検出信号を出力する電流検出手段と、前記一方の半導体素子に対するオフ指令信号が入力されているときに前記電流検出信号に基づいて前記一方の半導体素子に前記ダイオード構造の順方向の向きに電流が流れていると判定した場合、遅延時間分だけ、前記一方の半導体素子に対するオン指令信号の入力時点の前からパルスを出力させる他の制御手段をさらに備えてもよい。遅延時間は、前記一方の半導体素子に電流が流れなくなり始めるタイミングと前記ゲート駆動電圧が上昇するタイミングとの間で定義されている。 As an alternative, the drive control device includes: a current detection unit that outputs a current detection signal corresponding to a current flowing through at least one semiconductor element; and the current detection signal when an off command signal is input to the one semiconductor element. When it is determined that a current flows in the forward direction of the diode structure based on the one semiconductor element, a pulse is applied from the time before the ON command signal is input to the one semiconductor element by a delay time. You may further provide the other control means to output. The delay time is defined between the timing at which no current flows through the one semiconductor element and the timing at which the gate drive voltage rises.
 本開示の第五の態様において、各々の半導体素子が、同一の半導体基板に形成された、ゲート駆動電圧が印加される絶縁ゲート型のトランジスタ構造とダイオード構造とを有し、前記トランジスタ構造の通電電極と前記ダイオード構造の通電電極とが共通である、二つの半導体素子の駆動制御装置は、一方の前記半導体素子に流れる電流に応じた電流検出信号を出力する電流検出手段と、他方の前記半導体素子に対する指令信号を入力する入力手段と、前記一方の半導体素子に対するオフ指令信号が入力されているときに前記電流検出信号及び前記入力手段の入力信号に基づいて前記一方の半導体素子に前記ダイオード構造の順方向の向きに電流が流れていると判定した場合、前記入力手段にオフ指令信号が入力されることに応じてパルスを出力させる手段であって、二つの半導体素子の間でアーム短絡が生じないように前記一方の半導体素子に対するオン指令信号の入力時点より所定時間前にパルスを出力させる制御手段を備える。二つの半導体素子は、ハーフブリッジ回路を構成する。 5th aspect of this indication WHEREIN: Each semiconductor element has the insulated gate type transistor structure and diode structure to which a gate drive voltage is applied formed in the same semiconductor substrate, and electricity supply of the said transistor structure The drive control device for two semiconductor elements, in which the electrode and the current-carrying electrode of the diode structure are common, current detection means for outputting a current detection signal corresponding to the current flowing through one of the semiconductor elements, and the other semiconductor An input means for inputting a command signal for the element, and the diode structure in the one semiconductor element based on the current detection signal and the input signal of the input means when an OFF command signal for the one semiconductor element is input. When it is determined that a current is flowing in the forward direction, a pulse is generated in response to an OFF command signal being input to the input means. And means for outputting comprises a control means for outputting a pulse a predetermined time before the input time of the ON command signal for the one of the semiconductor element so arm short circuit does not occur between the two semiconductor elements. The two semiconductor elements constitute a half bridge circuit.
 この構成によれば、上述した第一の態様と同様の作用および効果を得ることができる。 According to this configuration, it is possible to obtain the same operation and effect as the first aspect described above.
 本開示の第六の態様において、各々の半導体素子が、同一の半導体基板に形成された、ゲート駆動電圧が印加される絶縁ゲート型のトランジスタ構造とダイオード構造とを有し、前記トランジスタ構造の通電電極と前記ダイオード構造の通電電極とが共通である、二つの半導体素子の駆動制御装置は、一方の前記半導体素子の電極電位に基づく電圧検出信号を出力する電圧検出手段と、他方の前記半導体素子に対する指令信号を入力する入力手段と、前記一方の半導体素子に対するオフ指令信号が入力されているときに前記電圧検出信号及び前記入力手段の入力信号に基づいて前記一方の半導体素子に前記ダイオード構造の順方向の向きに電流が流れていると判定した場合、前記入力手段にオフ指令信号が入力されることに応じてパルスを出力させる手段であって、二つの半導体素子の間でアーム短絡が生じないように前記一方の半導体素子に対するオン指令信号の入力時点より所定時間前にパルスを出力させる制御手段を備える。二つの半導体素子は、ハーフブリッジ回路を構成する。 In a sixth aspect of the present disclosure, each semiconductor element has an insulated gate transistor structure and a diode structure to which a gate drive voltage is applied, which are formed on the same semiconductor substrate, and the transistor structure is energized. A drive control device for two semiconductor elements, in which an electrode and a current-carrying electrode of the diode structure are common, a voltage detection means for outputting a voltage detection signal based on an electrode potential of one of the semiconductor elements, and the other semiconductor element Input means for inputting a command signal to the one semiconductor element, and when the off-command signal for the one semiconductor element is input, the one semiconductor element has the diode structure based on the voltage detection signal and the input signal of the input means. When it is determined that a current is flowing in the forward direction, a pulse is generated in response to an OFF command signal being input to the input means. A means for force, a control means for outputting a pulse a predetermined time before the input time of the ON command signal for the one of the semiconductor element so arm short circuit does not occur between the two semiconductor elements. The two semiconductor elements constitute a half bridge circuit.
 この構成によれば、上述した第一の態様と同様の作用および効果を得ることができる。 According to this configuration, it is possible to obtain the same operation and effect as the first aspect described above.
 代案として、駆動制御装置は、他方の前記半導体素子の制御電圧に応じた制御電圧検出信号を出力する制御電圧検出手段をさらに備えてもよい。前記制御手段は、前記制御電圧検出手段の制御電圧検出信号の変動に基づいてパルスを出力させる。 As an alternative, the drive control device may further include control voltage detection means for outputting a control voltage detection signal corresponding to the control voltage of the other semiconductor element. The control means outputs a pulse based on the fluctuation of the control voltage detection signal of the control voltage detection means.
 本開示の第七の態様において、各々の半導体素子が、同一の半導体基板に形成された、ゲート駆動電圧が印加される絶縁ゲート型のトランジスタ構造とダイオード構造とを有し、前記トランジスタ構造の通電電極と前記ダイオード構造の通電電極とが共通である、二つの半導体素子の駆動制御装置は、少なくとも一方の半導体素子の電極電位に応じた電圧検出信号を出力する電圧検出手段と、前記一方の半導体素子に対するオフ指令信号が入力されているときに前記電圧検出信号に基づいて前記一方の半導体素子に前記ダイオード構造の順方向の向きに電流が流れていると判定した場合、その後にオン指令信号の入力を経てオフ指令信号が入力された時点を起点として、第1時間の経過時点から第2時点の経過時点まで、前記ゲート駆動電圧の印加を指令するゲート駆動信号を出力する制御手段と、を備える。第1時間と第2時間は、二つの半導体素子の間でアーム短絡が生じないように予め設定されている。二つの半導体素子は、ハーフブリッジ回路を構成する。 In a seventh aspect of the present disclosure, each semiconductor element has an insulated gate transistor structure and a diode structure to which a gate driving voltage is applied, which are formed on the same semiconductor substrate, and the transistor structure is energized. The drive control device for two semiconductor elements, in which the electrode and the current-carrying electrode of the diode structure are common, a voltage detection means for outputting a voltage detection signal corresponding to the electrode potential of at least one of the semiconductor elements, and the one semiconductor When it is determined that a current flows in the forward direction of the diode structure to the one semiconductor element based on the voltage detection signal when an off command signal is input to the element, the ON command signal Starting from the time when the OFF command signal is input through the input, the gate drive power is supplied from the time when the first time has elapsed to the time when the second time has elapsed. And a control means for outputting a gate drive signal for commanding the application. The first time and the second time are set in advance so as not to cause an arm short circuit between the two semiconductor elements. The two semiconductor elements constitute a half bridge circuit.
 この構成によれば、上述した第一の態様と同様の作用および効果を得ることができる。 According to this configuration, it is possible to obtain the same operation and effect as the first aspect described above.
 代案として、前記制御手段は、前記電圧検出部により電圧が変動したか否かを判定することで負荷に流れる電流を判定してもよい。前記制御手段は、前記負荷の電流が0付近の所定範囲であると判定すると、前記ゲート駆動電圧の遮断を指令するゲート駆動信号を出力する。前記制御手段は、前記負荷の電流が0付近の所定範囲外であると判定すると前記ゲート駆動電圧の印加を指令するゲート駆動信号を出力する。 As an alternative, the control means may determine the current flowing through the load by determining whether or not the voltage has changed by the voltage detector. When the control means determines that the current of the load is within a predetermined range near 0, the control means outputs a gate drive signal for instructing cutoff of the gate drive voltage. When the control means determines that the load current is outside a predetermined range near 0, the control means outputs a gate drive signal for instructing application of the gate drive voltage.
 代案として、前記制御手段は、駆動制御する前記半導体素子に対するオン指令信号が入力されている期間、前記電圧検出信号に基づいて前記ダイオード構造の順方向の向きに流れていると判定すると、前記ゲート駆動電圧の遮断を指定するゲート駆動信号を出力してもよい。前記制御手段は、駆動制御する前記半導体素子に対するオン指令信号が入力されている期間、前記電圧検出信号に基づいて前記ダイオード構造の順方向の向きに流れていないと判定すると、前記ゲート駆動電圧の印加を指令するゲート駆動信号を出力する。 Alternatively, when the control means determines that the current flows in the forward direction of the diode structure based on the voltage detection signal during a period in which an ON command signal is input to the semiconductor element to be driven and controlled, You may output the gate drive signal which designates interruption | blocking of a drive voltage. When the control means determines that the current does not flow in the forward direction of the diode structure based on the voltage detection signal during a period in which an ON command signal is input to the semiconductor element to be driven and controlled, A gate drive signal for commanding application is output.
 代案として、駆動制御装置は、前記ゲート駆動信号を入力して前記ゲート駆動電圧を出力するドライブ回路をさらに備えてもよい。ドライブ回路は、前記ゲート駆動電圧に応じた耐圧を持つICで構成されている。 As an alternative, the drive control device may further include a drive circuit that inputs the gate drive signal and outputs the gate drive voltage. The drive circuit is composed of an IC having a withstand voltage corresponding to the gate drive voltage.
 代案として、駆動制御装置は、ハーフブリッジ回路を構成する2つの前記半導体素子を駆動制御してもよい。駆動制御装置は、は、前記ハーフブリッジ回路に加わる電源電圧に応じた耐圧を持つICで構成されている。当該ICは、前記ゲート駆動信号を入力して前記ゲート駆動電圧を出力するドライブ回路を提供する。前記電圧検出手段は、前記2つの半導体素子のうち少なくとも一方の電圧を検出可能に設けられる。前記制御手段は、前記2つの半導体素子のうち一方の半導体素子に前記ゲート駆動電圧を印加している期間、他方の半導体素子への前記ゲート駆動電圧の印加を禁止する。 As an alternative, the drive control device may drive and control the two semiconductor elements constituting the half bridge circuit. The drive control device is composed of an IC having a withstand voltage corresponding to the power supply voltage applied to the half bridge circuit. The IC provides a drive circuit that inputs the gate drive signal and outputs the gate drive voltage. The voltage detecting means is provided so as to detect at least one voltage of the two semiconductor elements. The control means prohibits application of the gate drive voltage to the other semiconductor element during a period in which the gate drive voltage is applied to one of the two semiconductor elements.
 代案として、駆動制御装置は、ハーフブリッジ回路を構成する2つの前記半導体素子を駆動制御してもよい。駆動制御装置は、前記制御手段を有する制御ICと、前記制御ICから入力したゲート駆動信号に基づいて前記半導体素子に前記ゲート駆動電圧を印加する駆動ICと、前記制御ICから出力されたゲート駆動信号を電気的に絶縁して前記駆動ICに伝送する絶縁回路と、前記電圧検出手段とから構成されている。前記制御ICは、前記2つの半導体素子のうち一方の半導体素子に前記ゲート駆動電圧を印加している期間、他方の半導体素子への前記ゲート駆動電圧の印加を禁止するゲート駆動信号を出力する。 As an alternative, the drive control device may drive and control the two semiconductor elements constituting the half bridge circuit. The drive control device includes a control IC having the control means, a drive IC for applying the gate drive voltage to the semiconductor element based on a gate drive signal input from the control IC, and a gate drive output from the control IC An insulating circuit that electrically insulates the signal and transmits the signal to the drive IC and the voltage detection means are configured. The control IC outputs a gate drive signal for prohibiting application of the gate drive voltage to the other semiconductor element during a period in which the gate drive voltage is applied to one of the two semiconductor elements.
 代案として、前記電圧検出手段は、前記制御ICにより提供されてもよい。 As an alternative, the voltage detection means may be provided by the control IC.
 代案として、前記電圧検出手段は、前記半導体素子の素子形成領域の外周側に離間して半導体基板に形成されてもよい。前記電圧検出手段は、前記半導体基板の導電型とは逆導電型の電界制限リングを用いて中間電位を検出する。 As an alternative, the voltage detection means may be formed on the semiconductor substrate apart from the outer periphery of the element formation region of the semiconductor element. The voltage detecting means detects an intermediate potential using an electric field limiting ring having a conductivity type opposite to the conductivity type of the semiconductor substrate.
 本開示の第八の態様において、ゲート駆動電圧が印加される絶縁ゲート型のトランジスタ構造とダイオード構造とが同一の半導体基板に形成され、前記トランジスタ構造の通電電極と前記ダイオード構造の通電電極とが共通の電極とされた半導体素子の駆動制御装置は、前記半導体素子に流れる電流に応じた電流検出信号を出力する電流検出手段と、前記電流検出信号に基づいて、前記半導体素子に対するオン指令信号が入力されている期間に前記半導体素子に前記ダイオード構造の順方向の向きに電流が流れていると判定した場合、その後のオフ指令信号の入力時点を起点として、予め設定された第1時間の経過時点から第2時間の経過時点まで前記ゲート駆動電圧の印加を指令するゲート駆動信号を出力する制御手段と、前記ゲート駆動信号を入力して前記ゲート駆動電圧を出力するドライブ回路とを備える。前記第1時間と前記第2時間との時間幅は、前記半導体素子に対するオン指令信号が入力されている期間に前記半導体素子に流れていた電流の大きさに応じた値に設定されている。 In an eighth aspect of the present disclosure, an insulated gate transistor structure to which a gate drive voltage is applied and a diode structure are formed on the same semiconductor substrate, and the conduction electrode of the transistor structure and the conduction electrode of the diode structure are The drive control device for a semiconductor element having a common electrode includes a current detection unit that outputs a current detection signal corresponding to a current flowing through the semiconductor element, and an on command signal for the semiconductor element based on the current detection signal. When it is determined that a current is flowing in the semiconductor element in the forward direction of the diode structure during the input period, a preset first time elapses from the input time point of the subsequent off command signal Control means for outputting a gate drive signal for instructing application of the gate drive voltage from a time point until a lapse of a second time; and If the input signal and a drive circuit for outputting the gate drive voltage. The time width between the first time and the second time is set to a value corresponding to the magnitude of the current flowing in the semiconductor element during the period when the ON command signal for the semiconductor element is input.
 駆動対象の半導体素子は、トランジスタ構造とダイオード構造に対し共通のゲート構造を備えている。上下アーム間で通電が切り替わる時、例えば一方の半導体素子のダイオード構造に電流が流れている状態で、制御手段が当該一方の半導体素子にゲート駆動電圧を印加すると、当該ダイオード構造に蓄積されるホールが減少し、逆回復電流を低減する作用が生じる。 The semiconductor element to be driven has a common gate structure for the transistor structure and the diode structure. When energization is switched between the upper and lower arms, for example, when a control means applies a gate drive voltage to the one semiconductor element in a state where current flows in the diode structure of one semiconductor element, holes accumulated in the diode structure Decreases, and the effect of reducing the reverse recovery current occurs.
 しかし、オフ指令信号が入力された半導体素子について、ダイオード構造の順方向の向きに素子電流(例えばダイオード電流)が流れている場合と、逆方向の向きに素子電流(トランジスタ電流)が流れている場合とでは、ゲート駆動パルスを与えたときのゲート駆動電圧の波形が異なる。例えば、前者の場合には急峻な電流変化、電圧変化やミラー期間が生じないので、ゲート駆動電圧の立ち上がり時間および立ち下がり時間は短くなる(或いは短くできる)。これにより、ゲート駆動パルスの遅延やばらつきが小さくなる。一方、後者の場合には急峻な電流変化、電圧変化やミラー期間が生じるので、ゲート駆動パルスの遅延やばらつきが大きくなる。駆動制御装置は、半導体素子にダイオード構造の順方向の向きに電流が流れている場合に限りゲート駆動パルスを印加するので、前者の場合の小さい遅延やばらつきに基づいた制御が可能となり、印加タイミングの精度を高めることができる。 However, for a semiconductor element to which an off command signal is input, a device current (transistor current) flows in the reverse direction when a device current (for example, a diode current) flows in the forward direction of the diode structure. In some cases, the waveform of the gate drive voltage when a gate drive pulse is applied is different. For example, in the former case, since a steep current change, voltage change and mirror period do not occur, the rise time and fall time of the gate drive voltage are shortened (or can be shortened). This reduces the delay and variation of the gate drive pulse. On the other hand, in the latter case, since a steep current change, voltage change, and mirror period occur, the delay and variation of the gate drive pulse increase. The drive control device applies a gate drive pulse only when a current flows through the semiconductor element in the forward direction of the diode structure, so control based on small delays and variations in the former case is possible, and the application timing Can improve the accuracy.
 上記半導体素子は、例えば、出力端子を挟んで高電位側(ハイサイド)と低電位側(ローサイド)に直列に配されてハーフブリッジ回路を構成する。駆動制御装置は、相補的に変化するハイサイドとローサイドの指令信号(例えばPWM信号)のうち少なくとも一方の指令信号を入力し、少なくとも一方のサイドの半導体素子にゲート駆動電圧を印加する。この指令信号は、切り替え時にデッドタイムを有している。デッドタイムは一定時間であるため、一方サイドのオフ指令信号の入力から他方サイドのオン指令信号の入力までの時間が正確に保証されている。 The semiconductor element is, for example, arranged in series on the high potential side (high side) and the low potential side (low side) across the output terminal to constitute a half bridge circuit. The drive control device inputs at least one command signal among high-side and low-side command signals (for example, PWM signals) that change complementarily, and applies a gate drive voltage to at least one side semiconductor element. This command signal has a dead time at the time of switching. Since the dead time is a fixed time, the time from the input of the off command signal on one side to the input of the on command signal on the other side is accurately guaranteed.
 制御手段は、上述した遅延やばらつきを予め測定し、デッドタイムを把握した上で、第1時間と第2時間との時間幅を、半導体素子に対するオン指令信号が入力されている期間に半導体素子に流れていた電流の大きさに応じた値に制御する。これにより、オフ指令信号の入力時点を起点として、ゲート駆動電圧を所望のタイミングで印加するために必要なゲート駆動信号のタイミング、すなわち第1時間と第2時間を正確に設定することが可能となる。 The control means measures the delay and variation described above in advance, grasps the dead time, and sets the time width between the first time and the second time during the period when the ON command signal for the semiconductor element is input. The value is controlled according to the magnitude of the current flowing in the current. As a result, it is possible to accurately set the timing of the gate drive signal necessary for applying the gate drive voltage at a desired timing, that is, the first time and the second time, starting from the input time point of the off command signal. Become.
 その結果、一方の半導体素子に対するゲート駆動パルスの印加終了時点から逆回復電流が流れ始めるまでの時間、例えばゲート駆動パルスの印加終了後に当該ダイオード構造に再びキャリア(ホール)が注入される時間(キャリアの再注入時間)を正確に制御可能となる。従って、本手段によれば、アーム短絡を防止しつつ再注入時間を短く制御することができるので、逆回復電流が減少し、スイッチング損失を低減できる。また、制御手段は、オフ指令信号を基準タイミングとしてゲート駆動信号を印加できるので、別のタイミング信号が不要となり、従来から使用している駆動制御装置からの置き替えが容易になる。 As a result, the time from when the gate drive pulse is applied to one semiconductor element until the reverse recovery current starts to flow, for example, the time when carriers (holes) are injected again into the diode structure after the application of the gate drive pulse (carrier) The reinjection time) can be accurately controlled. Therefore, according to this means, the reinjection time can be controlled to be short while preventing an arm short circuit, so that the reverse recovery current is reduced and the switching loss can be reduced. In addition, since the control means can apply the gate drive signal using the off command signal as a reference timing, a separate timing signal is not required, and replacement from a conventionally used drive control device is facilitated.
 代案として、当該半導体素子は、一方の半導体素子と他方の半導体素子を含んでもよい。一方の半導体素子と他方の半導体素子は、ハーフブリッジ回路を構成する。前記半導体素子に前記ダイオード構造の順方向の向きに電流が流れている状態でオフ指令信号が入力された後、一定のデッドタイムを経て、他方の半導体素子に対してオン指令信号が入力されたときに、前記第2時間が経過して前記ゲート駆動電圧が遮断された時点と、前記他方の半導体素子のトランジスタ構造に当該一方の半導体素子に流れていた電流を超える電流が流れ始める時点との時間幅が、ゼロより大きく且つ所定の注入許容時間以下となるように、前記第1時間と前記第2時間が設定されている。 As an alternative, the semiconductor element may include one semiconductor element and the other semiconductor element. One semiconductor element and the other semiconductor element constitute a half-bridge circuit. After an off command signal is input to the semiconductor element in a state where a current flows in the forward direction of the diode structure, an on command signal is input to the other semiconductor element after a certain dead time. Sometimes, when the gate drive voltage is cut off after the second time has elapsed, and when a current exceeding the current flowing in the one semiconductor element starts flowing in the transistor structure of the other semiconductor element. The first time and the second time are set so that the time width is greater than zero and less than or equal to a predetermined allowable injection time.
 上記の時間幅は、上述したキャリア再注入時間である。この時間をゼロより大きく設定することにより、ハーフブリッジ回路に短絡電流が流れることを防止することができる。また、この時間を所定の注入許容時間以下に設定することにより、逆回復電流を注入許容時間に応じた大きさに制限することができ、スイッチング損失を低減できる。 The above time width is the above-described carrier reinjection time. By setting this time larger than zero, it is possible to prevent a short-circuit current from flowing through the half-bridge circuit. In addition, by setting this time to be equal to or less than the predetermined allowable injection time, the reverse recovery current can be limited to a magnitude corresponding to the allowable injection time, and switching loss can be reduced.
 代案として、前記第1時間と第2時間との時間幅は、前記半導体素子に対するオン指令信号が入力されている期間に当該半導体素子に流れていた電流が大きいほど長い時間となるように設定されてもよい。 As an alternative, the time width between the first time and the second time is set to be longer as the current flowing in the semiconductor element is larger during the period when the ON command signal to the semiconductor element is input. May be.
 上記によれば、第1時間と第2時間との時間幅は、半導体素子に対するオン指令信号が入力されている期間に当該半導体素子に流れていた電流が大きいほど長い時間となるように設定されている。電流が大きいほど、オフ指令信号が入力された時点から逆回復電流が流れ始めるまでの時間が長くなるからである。これにより、電流の大きさにかかわらず再注入時間の増大を抑えることができ、スイッチング損失を低減することができる。 According to the above, the time width between the first time and the second time is set to be longer as the current flowing through the semiconductor element is larger during the period when the ON command signal is input to the semiconductor element. ing. This is because the larger the current, the longer the time from when the OFF command signal is input until the reverse recovery current starts to flow. As a result, an increase in reinjection time can be suppressed regardless of the magnitude of current, and switching loss can be reduced.
 代案として、前記第1時間の経過時点から第2時間の経過時点まで出力されるゲート駆動信号に基づく前記ゲート駆動電圧が、前記ドライブ回路のゲート駆動能力に従って単調に増加または単調に減少するものとして、前記第1時間と前記第2時間が設定されてもよい。 As an alternative, it is assumed that the gate drive voltage based on the gate drive signal output from the time point of the first time to the time point of the second time monotonously increases or decreases monotonously according to the gate drive capability of the drive circuit. The first time and the second time may be set.
 オフ指令信号の入力後に印加する上記ゲート駆動パルスは、ダイオード構造に蓄積されるホールを減少させる作用を持ち、半導体素子を通電または断電させる作用を持たない。このため、トランジスタ素子の通電端子間(CE間、DS間)の電圧が変化せず、ミラー期間が生じない。また、ゲート駆動パルスの印加期間では、半導体素子にダイオード構造の順方向の向きに電流が流れ続けているので、アーム短絡に備えた保護作用を持つ特別なゲート駆動電圧も不要である。従って、ゲート駆動電圧が単調に増減するものとしてゲート駆動信号を設定することにより、キャリア再注入時間を所望の値に制御できる。 The gate drive pulse applied after the input of the off command signal has the effect of reducing the holes accumulated in the diode structure and does not have the effect of energizing or disconnecting the semiconductor element. For this reason, the voltage between the current-carrying terminals of the transistor elements (between CE and DS) does not change and the mirror period does not occur. Further, during the application period of the gate drive pulse, a current continues to flow in the semiconductor element in the forward direction of the diode structure, so that a special gate drive voltage having a protective action in preparation for an arm short circuit is not necessary. Therefore, the carrier reinjection time can be controlled to a desired value by setting the gate drive signal so that the gate drive voltage monotonously increases or decreases.
 代案として、前記第1時間の経過時点から第2時間の経過時点まで出力されるゲート駆動信号に基づく前記ゲート駆動電圧にミラー期間が生じないものとして、前記第1時間と前記第2時間が設定されていてもよい。 As an alternative, the first time and the second time are set on the assumption that a mirror period does not occur in the gate drive voltage based on the gate drive signal output from the elapse of the first time to the elapse of the second time. May be.
 上記によれば、第1時間の経過時点から第2時間の経過時点まで出力されるゲート駆動信号に基づくゲート駆動電圧にミラー期間が生じないものとして、第1時間と第2時間が設定されている。これにより、ミラー期間の発生を想定してゲート駆動信号の設定した場合に対し、キャリア再注入時間の増大を抑えることができる。 According to the above, the first time and the second time are set on the assumption that the mirror period does not occur in the gate drive voltage based on the gate drive signal output from the elapse of the first time to the elapse of the second time. Yes. As a result, an increase in the carrier reinjection time can be suppressed as compared with the case where the gate drive signal is set assuming the occurrence of the mirror period.
 代案として、ドライブ回路は、前記第1時間の経過時点で前記ゲート駆動信号が変化したときに、一定のゲート駆動能力を維持して前記ゲート駆動電圧を出力してもよい。 Alternatively, the drive circuit may output the gate drive voltage while maintaining a constant gate drive capability when the gate drive signal changes at the time when the first time has elapsed.
 上記によれば、ドライブ回路は、第1時間の経過時点でゲート駆動信号が変化したときに、一定のゲート駆動能力を維持してゲート駆動電圧を出力する。半導体素子を通電させる駆動では、ゲート駆動電圧の増加過程でゲート駆動電圧を一時的に中間電圧に留めることで、半導体素子が短絡故障している時の短絡電流を低減する方法が用いられている。しかし、適切なタイミングでゲート駆動パルスを印加すれば、短絡電流が流れることはない。本手段によれば、一定のゲート駆動能力を維持して無用な中間電圧を排除することにより、ゲート駆動電圧の立ち上がり時間のばらつきを低減し、再注入時間を正確に制御できる。 According to the above, the drive circuit outputs a gate drive voltage while maintaining a constant gate drive capability when the gate drive signal changes at the elapse of the first time. In driving to energize a semiconductor element, a method of reducing a short-circuit current when the semiconductor element has a short-circuit fault is used by temporarily holding the gate drive voltage at an intermediate voltage in the process of increasing the gate drive voltage. . However, if a gate drive pulse is applied at an appropriate timing, a short-circuit current will not flow. According to this means, by maintaining a constant gate drive capability and eliminating unnecessary intermediate voltages, variations in the rise time of the gate drive voltage can be reduced and the reinjection time can be accurately controlled.
 代案として、前記ドライブ回路は、前記第1時間の経過時点および前記第2時間の経過時点で前記ゲート駆動信号が変化したとき、前記半導体素子を通断電するときに比べ高い駆動能力で前記ゲート駆動電圧を出力してもよい。 As an alternative, the drive circuit has a high driving capability when the gate driving signal changes at the time when the first time elapses and at the time when the second time elapses. A drive voltage may be output.
 上記によれば、ドライブ回路は、第1時間の経過時点および第2時間の経過時点でゲート駆動信号が変化したときに、半導体素子を通断電するときに比べ高い駆動能力でゲート駆動電圧を出力する。これは、ゲート駆動パルスの印加期間では、半導体素子にダイオード構造の順方向の向きに電流が流れ続けているので、急峻な電流変化、電圧変化によるサージは発生しないからである。これにより、ゲート駆動電圧の立ち上がり時間および立ち下がり時間のばらつきを低減し、再注入時間を正確に制御できる。 According to the above, when the gate drive signal changes at the time when the first time elapses and at the time when the second time elapses, the drive circuit increases the gate drive voltage with a higher driving capability than when the semiconductor element is disconnected. Output. This is because, during the application period of the gate drive pulse, current continues to flow through the semiconductor element in the forward direction of the diode structure, so that a surge due to a steep current change or voltage change does not occur. Thereby, variations in the rise time and fall time of the gate drive voltage can be reduced, and the reinjection time can be accurately controlled.
 ここで、この出願に記載されるフローチャート、あるいは、フローチャートの処理は、複数のセクション(あるいはステップと言及される)から構成され、各セクションは、たとえば、S100と表現される。さらに、各セクションは、複数のサブセクションに分割されることができる、一方、複数のセクションが合わさって一つのセクションにすることも可能である。さらに、このように構成される各セクションは、デバイス、モジュール、ミーンズとして言及されることができる。 Here, the flowchart or the process of the flowchart described in this application is configured by a plurality of sections (or referred to as steps), and each section is expressed as S100, for example. Further, each section can be divided into a plurality of subsections, while a plurality of sections can be combined into one section. Further, each section configured in this manner can be referred to as a device, module, or means.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (39)

  1.  各々の半導体素子が、同一の半導体基板(8)に形成された、ゲート駆動電圧が印加される絶縁ゲート型のトランジスタ構造(5)とダイオード構造(6)とを有し、前記トランジスタ構造の通電電極と前記ダイオード構造の通電電極とが共通(15,18)である、二つの半導体素子(1A,1B)の駆動制御装置(32A,32B,52,54,56,61,62,71,72)であって、
     前記2つの半導体素子のうち少なくとも一方に流れる電流に応じた電流検出信号を出力する電流検出手段(7A,7B,25,59,60,68)と、
     前記電流検出信号に基づいて、前記半導体素子に対するオン指令信号が入力されている期間に前記半導体素子に前記ダイオード構造の順方向の向きに電流が流れていると判定した場合、その後のオフ指令信号の入力時点を起点として、第1時間の経過時点から第2時間の経過時点まで、前記ゲート駆動電圧の印加を指令するゲート駆動信号を出力する第1の制御手段(27)とを備え、
     二つの半導体素子は、ハーフブリッジ回路(4)を構成し、
     第1時間と第2時間は、二つの半導体素子の間でアーム短絡が生じないように予め設定されている、
     駆動制御装置。
    Each semiconductor element has an insulated gate type transistor structure (5) and a diode structure (6) to which a gate drive voltage is applied, which are formed on the same semiconductor substrate (8). The drive control device (32A, 32B, 52, 54, 56, 61, 62, 71, 72) of the two semiconductor elements (1A, 1B), in which the electrode and the conducting electrode of the diode structure are common (15, 18). ) And
    Current detection means (7A, 7B, 25, 59, 60, 68) for outputting a current detection signal corresponding to a current flowing in at least one of the two semiconductor elements;
    On the basis of the current detection signal, when it is determined that a current flows in the forward direction of the diode structure in the semiconductor element during a period in which an ON command signal for the semiconductor element is input, a subsequent OFF command signal First control means (27) for outputting a gate drive signal for instructing application of the gate drive voltage from the time point of the first time to the time point of the second time from the input time point of
    The two semiconductor elements constitute a half-bridge circuit (4),
    The first time and the second time are set in advance so as not to cause an arm short circuit between the two semiconductor elements.
    Drive control device.
  2.  駆動制御する前記半導体素子に対するオン指令信号が入力されている期間、前記電流検出信号に基づいて、前記ダイオード構造の順方向の向きに流れる前記半導体素子の電流が電流しきい値以上であると判定すると、前記ゲート駆動電圧の遮断を指令するゲート駆動信号を出力する第2の制御手段(26)をさらに備えており、
     第2の制御手段は、駆動制御する前記半導体素子に対するオン指令信号が入力されている期間、前記電流検出信号に基づいて、前記ダイオード構造の順方向の向きに流れる前記半導体素子の電流が前記電流しきい値未満であると判定すると、前記ゲート駆動電圧の印加を指令するゲート駆動信号を出力し、
     前記半導体素子に前記ダイオード構造の順方向の向きに電流が流れる場合において、前記ゲート駆動電圧が遮断されている時における導通損失と前記ゲート駆動電圧が印加されている時における導通損失とが等しくなる電流値が予め測定されて、電流しきい値として設定されている、
     請求項1記載の駆動制御装置。
    Based on the current detection signal, the current of the semiconductor element flowing in the forward direction of the diode structure is determined to be equal to or greater than a current threshold during a period in which an ON command signal is input to the semiconductor element to be driven and controlled. Then, it further comprises second control means (26) for outputting a gate drive signal for commanding the interruption of the gate drive voltage,
    The second control means is configured to cause the current of the semiconductor element that flows in the forward direction of the diode structure based on the current detection signal during a period in which an ON command signal is input to the semiconductor element to be driven and controlled, to the current direction. If it is determined that it is less than the threshold value, a gate drive signal for instructing application of the gate drive voltage is output,
    When a current flows through the semiconductor element in the forward direction of the diode structure, the conduction loss when the gate drive voltage is cut off is equal to the conduction loss when the gate drive voltage is applied. The current value is measured in advance and set as the current threshold,
    The drive control apparatus according to claim 1.
  3.  前記第2の制御手段(26)は、駆動制御する前記半導体素子に対するオン指令信号が入力されている期間、前記半導体素子に前記ダイオード構造の順方向の向きに前記電流しきい値未満の電流が流れていると判定すると、前記ゲート駆動電圧の印加を指令するゲート駆動信号を、当該半導体素子に対するオフ指令信号の入力時点を越えて前記第2時間の経過時点まで延長して出力する請求項2記載の駆動制御装置。 The second control means (26) has a current less than the current threshold in the forward direction of the diode structure in the semiconductor element during a period in which an ON command signal for the semiconductor element to be driven is input. 3. When it is determined that the current is flowing, a gate drive signal for instructing application of the gate drive voltage is output after being extended from the input time point of the off command signal to the semiconductor element to the time point of the second time. The drive control apparatus described.
  4.  駆動制御する前記半導体素子に対するオン指令信号が入力されている期間、前記ゲート駆動電圧の印加を指令するゲート駆動信号を出力し、当該期間において前記半導体素子に前記ダイオード構造の順方向の向きに電流が流れていると判定すると、前記ゲート駆動電圧の印加を指令するゲート駆動信号を、当該半導体素子に対するオフ指令信号の入力時点を越えて前記第2時間の経過時点まで延長して出力する第2の制御手段(26)をさらに備えている請求項1記載の駆動制御装置。 A gate drive signal for commanding application of the gate drive voltage is output during a period in which an ON command signal is input to the semiconductor element to be driven and controlled, and current is supplied to the semiconductor element in the forward direction of the diode structure during the period. If it is determined that the current flows, the gate drive signal for instructing the application of the gate drive voltage is output after being extended to the time when the second time elapses after the input time of the off command signal to the semiconductor element. The drive control apparatus according to claim 1, further comprising a control means (26).
  5.  ゲート駆動電圧が印加される絶縁ゲート型のトランジスタ構造(5)とダイオード構造(6)とが同一の半導体基板(8)に形成され、前記トランジスタ構造の通電電極と前記ダイオード構造の通電電極とが共通(15,18)とされた半導体素子(1A,1B)の駆動制御装置(32A,32B,52,54,56,61,62,71,72)であって、
     前記半導体素子に流れる電流に応じた電流検出信号を出力する電流検出手段(7A,7B,25,59,60,68)と、
     前記半導体素子に対するオン指令信号が入力されている期間、前記電流検出信号に基づいて、前記ダイオード構造の順方向の向きに流れる前記半導体素子の電流が前記電流しきい値以上であると判定すると、前記ゲート駆動電圧の遮断を指令するゲート駆動信号を出力する第2の制御手段(26)とを備えており、
     第2の制御手段は、前記半導体素子に対するオン指令信号が入力されている期間、前記電流検出信号に基づいて、前記ダイオード構造の順方向の向きに流れる前記半導体素子の電流が前記電流しきい値未満であると判定すると、前記ゲート駆動電圧の印加を指令するゲート駆動信号を出力し、
     前記半導体素子に前記ダイオード構造の順方向の向きに電流が流れる場合において、前記ゲート駆動電圧が遮断されている時における導通損失と前記ゲート駆動電圧が印加されている時における導通損失とが等しくなる電流値が予め測定されて、電流しきい値として設定されている、
     駆動制御装置。
    An insulated gate transistor structure (5) to which a gate driving voltage is applied and a diode structure (6) are formed on the same semiconductor substrate (8), and the conducting electrode of the transistor structure and the conducting electrode of the diode structure are A drive control device (32A, 32B, 52, 54, 56, 61, 62, 71, 72) of the semiconductor elements (1A, 1B) that are made common (15, 18),
    Current detection means (7A, 7B, 25, 59, 60, 68) for outputting a current detection signal corresponding to the current flowing through the semiconductor element;
    When it is determined that the current of the semiconductor element that flows in the forward direction of the diode structure is greater than or equal to the current threshold value based on the current detection signal during a period in which an ON command signal is input to the semiconductor element, Second control means (26) for outputting a gate drive signal for commanding the interruption of the gate drive voltage,
    The second control means is configured such that the current of the semiconductor element that flows in the forward direction of the diode structure is based on the current detection signal during the period when the ON command signal for the semiconductor element is input. If determined to be less than, outputs a gate drive signal commanding the application of the gate drive voltage,
    When a current flows through the semiconductor element in the forward direction of the diode structure, the conduction loss when the gate drive voltage is cut off is equal to the conduction loss when the gate drive voltage is applied. The current value is measured in advance and set as the current threshold,
    Drive control device.
  6.  前記第2の制御手段(26)は、外部から前記電流しきい値を特定するしきい値特定信号を入力可能に構成されており、
     前記第2の制御手段は、前記オン指令信号が入力されている期間において、入力した前記しきい値特定信号に応じた電流しきい値を前記半導体素子に流れる電流の判定に用いる請求項2、3および5の何れか一項に記載の駆動制御装置。
    The second control means (26) is configured to be capable of inputting a threshold value specifying signal for specifying the current threshold value from the outside.
    The second control means uses a current threshold value corresponding to the input threshold value specifying signal for determination of a current flowing through the semiconductor element during a period in which the ON command signal is input. The drive control device according to any one of 3 and 5.
  7.  第1の制御手段または第2の制御手段(26,27)の少なくとも一方は、通常制御を実行し、
     通常制御において、第1の制御手段または第2の制御手段(26,27)の少なくとも一方は、前記半導体素子を通して負荷に流れる電流が規定値よりも小さい場合、駆動制御する前記半導体素子に対するオン指令信号が入力されると前記ゲート駆動電圧の印加を指令するゲート駆動信号を出力し、
     通常制御において、第1の制御手段または第2の制御手段(26,27)の少なくとも一方は、前記半導体素子を通して負荷に流れる電流が規定値よりも小さい場合、駆動制御する前記半導体素子に対するオフ指令信号が入力されると前記ゲート駆動電圧の遮断を指令するゲート駆動信号を出力する、
     請求項1から6の何れか一項に記載の駆動制御装置。
    At least one of the first control means or the second control means (26, 27) executes normal control,
    In normal control, at least one of the first control means and the second control means (26, 27) is configured to turn on an instruction to the semiconductor element to be driven and controlled when a current flowing through the semiconductor element to a load is smaller than a specified value. When a signal is input, a gate drive signal that instructs application of the gate drive voltage is output,
    In the normal control, at least one of the first control means and the second control means (26, 27) is configured to turn off the semiconductor element to be driven and controlled when the current flowing to the load through the semiconductor element is smaller than a specified value. When a signal is input, a gate drive signal for commanding the interruption of the gate drive voltage is output.
    The drive control apparatus as described in any one of Claim 1 to 6.
  8.  前記ゲート駆動信号を入力して前記ゲート駆動電圧を出力するドライブ回路(28)をさらに備え、
     ドライブ回路は、前記ゲート駆動電圧に応じた耐圧を持つIC(24A,24B)で構成されている請求項1から7の何れか一項に記載の駆動制御装置。
    A drive circuit (28) for inputting the gate drive signal and outputting the gate drive voltage;
    The drive control device according to any one of claims 1 to 7, wherein the drive circuit includes an IC (24A, 24B) having a withstand voltage corresponding to the gate drive voltage.
  9.  駆動制御装置は、ハーフブリッジ回路を構成する2つの半導体素子を駆動制御し、
     駆動制御装置は、前記ハーフブリッジ回路に加わる電源電圧に応じた耐圧を持つIC(51,53,55)で構成されており、
     当該ICは、前記ゲート駆動信号を入力して前記ゲート駆動電圧を出力するドライブ回路(28)を備え、
     前記電流検出手段(7A,7B,25,59,60)は、前記2つの半導体素子のうち少なくとも一方に流れる電流を検出可能に設けられ、
     第1の制御手段または第2の制御手段(26,27)の少なくとも一方は、前記2つの半導体素子のうち一方の半導体素子に前記ゲート駆動電圧を印加している期間、他方の半導体素子への前記ゲート駆動電圧の印加を禁止する請求項1から7の何れか一項に記載の駆動制御装置。
    The drive control device drives and controls two semiconductor elements constituting the half bridge circuit,
    The drive control device is composed of ICs (51, 53, 55) having a withstand voltage corresponding to the power supply voltage applied to the half bridge circuit,
    The IC includes a drive circuit (28) that inputs the gate drive signal and outputs the gate drive voltage,
    The current detection means (7A, 7B, 25, 59, 60) is provided to detect a current flowing in at least one of the two semiconductor elements,
    At least one of the first control means or the second control means (26, 27) applies the gate drive voltage to one of the two semiconductor elements during the period when the gate drive voltage is applied to the other semiconductor element. The drive control apparatus according to claim 1, wherein application of the gate drive voltage is prohibited.
  10.  駆動制御装置は、ハーフブリッジ回路を構成する2つの前記半導体素子を駆動制御し、
     駆動制御装置は、第1の制御手段または第2の制御手段(26,27)の少なくとも一方を提供する制御IC(21,63)と、前記制御ICから入力したゲート駆動信号に基づいて各半導体素子に前記ゲート駆動電圧を印加する駆動IC(65A,65B)と、前記制御ICから出力されたゲート駆動信号を電気的に絶縁して前記駆動ICに伝送する絶縁回路(64A,64B)と、前記電流検出手段(7A,7B,25,59,60,68)とから構成されており、
     前記制御ICは、前記2つの半導体素子のうち一方の半導体素子に前記ゲート駆動電圧を印加している期間、他方の半導体素子への前記ゲート駆動電圧の印加を禁止するゲート駆動信号を出力する請求項1から7の何れか一項に記載の駆動制御装置。
    The drive control device drives and controls the two semiconductor elements constituting the half-bridge circuit,
    The drive control device includes a control IC (21, 63) that provides at least one of the first control means or the second control means (26, 27), and each semiconductor based on a gate drive signal input from the control IC. A driving IC (65A, 65B) for applying the gate driving voltage to the element; an insulating circuit (64A, 64B) for electrically insulating the gate driving signal output from the control IC and transmitting the signal to the driving IC; The current detection means (7A, 7B, 25, 59, 60, 68),
    The control IC outputs a gate drive signal for prohibiting application of the gate drive voltage to the other semiconductor element during a period in which the gate drive voltage is applied to one of the two semiconductor elements. Item 8. The drive control device according to any one of Items 1 to 7.
  11.  前記電流検出手段(25)は、前記制御IC(21)により提供される請求項10記載の駆動制御装置。 The drive control device according to claim 10, wherein the current detection means (25) is provided by the control IC (21).
  12.  各々の半導体素子が、同一の半導体基板(8)に形成された、ゲート駆動電圧が印加される絶縁ゲート型のトランジスタ構造(5)とダイオード構造(6)とを有し、前記トランジスタ構造の通電電極と前記ダイオード構造の通電電極とが共通(15,18)である、二つの半導体素子(101A,101B)の駆動制御装置(32A、32B、52、54、56、61、62、71、72)であって、
     前記2つの半導体素子のうち少なくとも一方に流れる電流に応じた電流検出信号を出力する電流検出手段(7A,7B,25,59,60,68)と、
     前記一方の半導体素子に対するオフ指令信号が入力されているときに前記電流検出信号に基づいて前記一方の半導体素子に前記ダイオード構造の順方向の向きに電流が流れていると判定した場合、前記電流検出手段により電流検出信号の変動を検出した時点で、二つの半導体素子の間でアーム短絡が生じないようにパルスを出力させる制御手段(26,27)とを備え、当該時点は、前記一方の半導体素子に対するオン指令信号の入力時点(t2)の前であり、
     二つの半導体素子は、ハーフブリッジ回路(4)を構成する、
     駆動制御装置。
    Each semiconductor element has an insulated gate type transistor structure (5) and a diode structure (6) to which a gate drive voltage is applied, which are formed on the same semiconductor substrate (8). The drive control device (32A, 32B, 52, 54, 56, 61, 62, 71, 72) of the two semiconductor elements (101A, 101B), in which the electrode and the conducting electrode of the diode structure are common (15, 18). ) And
    Current detection means (7A, 7B, 25, 59, 60, 68) for outputting a current detection signal corresponding to a current flowing in at least one of the two semiconductor elements;
    When it is determined that a current flows in the forward direction of the diode structure to the one semiconductor element based on the current detection signal when an off command signal is input to the one semiconductor element, the current And a control means (26, 27) for outputting a pulse so as not to cause an arm short circuit between the two semiconductor elements when a change in the current detection signal is detected by the detection means. Before the input time point (t2) of the ON command signal to the semiconductor element,
    The two semiconductor elements constitute a half-bridge circuit (4).
    Drive control device.
  13.  各々の半導体素子が、同一の半導体基板(8)に形成された、ゲート駆動電圧が印加される絶縁ゲート型のトランジスタ構造(105)とダイオード構造(106)とを有し、前記トランジスタ構造の通電電極と前記ダイオード構造の通電電極とが共通(15,18)である、二つの半導体素子(101A,101B)の駆動制御装置(132A,132B,152,154,156,162,172)であって、
     一方の前記半導体素子の電極電位に基づく電圧検出信号を出力する電圧検出手段(107A,107B,125,168,180)と、
     前記一方の半導体素子に対するオフ指令信号が入力されているときに前記電圧検出信号に基づいて前記一方の半導体素子に前記ダイオード構造の順方向の向きに電流が流れていると判定した場合、二つの半導体素子の間でアーム短絡が生じないように前記一方の半導体素子に対するオン指令信号の入力時点(t2)からパルスを出力させる制御手段(26,27)と、を備え、
     二つの半導体素子は、ハーフブリッジ回路(4)を構成する、
     駆動制御装置。
    Each semiconductor element has an insulated gate type transistor structure (105) and a diode structure (106) to which a gate driving voltage is applied, which are formed on the same semiconductor substrate (8). The drive control device (132A, 132B, 152, 154, 156, 162, 172) of the two semiconductor elements (101A, 101B), in which the electrode and the conducting electrode of the diode structure are common (15, 18), ,
    Voltage detection means (107A, 107B, 125, 168, 180) for outputting a voltage detection signal based on the electrode potential of one of the semiconductor elements;
    When it is determined that a current flows in the forward direction of the diode structure in the one semiconductor element based on the voltage detection signal when an off command signal is input to the one semiconductor element, two Control means (26, 27) for outputting a pulse from an input time point (t2) of the ON command signal to the one semiconductor element so as not to cause an arm short circuit between the semiconductor elements;
    The two semiconductor elements constitute a half-bridge circuit (4).
    Drive control device.
  14.  少なくとも一方の半導体素子に流れる電流に応じた電流検出信号を出力する電流検出手段(7A,7B,25,59,60,68)と、
     前記一方の半導体素子に対するオフ指令信号が入力されているときに前記電流検出信号に基づいて前記一方の半導体素子に前記ダイオード構造の順方向の向きに電流が流れていると判定した場合、遅延時間分だけ、前記一方の半導体素子に対するオン指令信号の入力時点(t2)の前からパルスを出力させる他の制御手段(26,27)をさらに備え、
     遅延時間は、前記一方の半導体素子(101A)に電流が流れなくなり始めるタイミングと前記ゲート駆動電圧が上昇するタイミングとの間で定義されている、
     請求項13記載の駆動制御装置。
    Current detection means (7A, 7B, 25, 59, 60, 68) for outputting a current detection signal corresponding to the current flowing through at least one semiconductor element;
    When it is determined that a current flows in the forward direction of the diode structure to the one semiconductor element based on the current detection signal when an off command signal is input to the one semiconductor element, the delay time And further includes other control means (26, 27) for outputting a pulse before the input time point (t2) of the ON command signal to the one semiconductor element,
    The delay time is defined between the timing when the current starts to flow through the one semiconductor element (101A) and the timing when the gate drive voltage rises.
    The drive control apparatus according to claim 13.
  15.  各々の半導体素子が、同一の半導体基板(8)に形成された、ゲート駆動電圧が印加される絶縁ゲート型のトランジスタ構造(5)とダイオード構造(6)とを有し、前記トランジスタ構造の通電電極と前記ダイオード構造の通電電極とが共通(15,18)である、二つの半導体素子(1A,1B)の駆動制御装置(32A,32B,52,54,56,62,72)であって、
     一方の前記半導体素子に流れる電流に応じた電流検出信号を出力する電流検出手段(7A,7B,25,59,60,68)と、
     他方の前記半導体素子に対する指令信号を入力する入力手段(26,27)と、
     前記一方の半導体素子に対するオフ指令信号が入力されているときに前記電流検出信号及び前記入力手段の入力信号に基づいて前記一方の半導体素子に前記ダイオード構造の順方向の向きに電流が流れていると判定した場合、前記入力手段にオフ指令信号が入力されることに応じてパルスを出力させる手段であって、二つの半導体素子の間でアーム短絡が生じないように前記一方の半導体素子に対するオン指令信号の入力時点(t2)より所定時間前にパルスを出力させる制御手段(26,27)を備え、
     二つの半導体素子は、ハーフブリッジ回路(4)を構成する、
     駆動制御装置。
    Each semiconductor element has an insulated gate type transistor structure (5) and a diode structure (6) to which a gate drive voltage is applied, which are formed on the same semiconductor substrate (8). The drive control device (32A, 32B, 52, 54, 56, 62, 72) of two semiconductor elements (1A, 1B), in which the electrode and the conducting electrode of the diode structure are common (15, 18), ,
    Current detection means (7A, 7B, 25, 59, 60, 68) for outputting a current detection signal corresponding to the current flowing through one of the semiconductor elements;
    Input means (26, 27) for inputting a command signal to the other semiconductor element;
    When an off command signal for the one semiconductor element is input, a current flows in the forward direction of the diode structure to the one semiconductor element based on the current detection signal and the input signal of the input means. Is determined to be a means for outputting a pulse in response to the input of an off command signal to the input means, and the on-state for the one semiconductor element is prevented so as not to cause an arm short circuit between the two semiconductor elements. Control means (26, 27) for outputting a pulse a predetermined time before the input time (t2) of the command signal;
    The two semiconductor elements constitute a half-bridge circuit (4).
    Drive control device.
  16.  各々の半導体素子が、同一の半導体基板(8)に形成された、ゲート駆動電圧が印加される絶縁ゲート型のトランジスタ構造(105)とダイオード構造(106)とを有し、前記トランジスタ構造の通電電極と前記ダイオード構造の通電電極とが共通(15,18)である、二つの半導体素子(101A,101B)の駆動制御装置(132A,132B,152,154,156,162,172)であって、
     一方の前記半導体素子の電極電位に基づく電圧検出信号を出力する電圧検出手段(107A,107B,125,168,180)と、
     他方の前記半導体素子に対する指令信号を入力する入力手段(26,27)と、
     前記一方の半導体素子に対するオフ指令信号が入力されているときに前記電圧検出信号及び前記入力手段の入力信号に基づいて前記一方の半導体素子に前記ダイオード構造の順方向の向きに電流が流れていると判定した場合、前記入力手段にオフ指令信号が入力されることに応じてパルスを出力させる手段であって、二つの半導体素子の間でアーム短絡が生じないように前記一方の半導体素子に対するオン指令信号の入力時点(t2)より所定時間前にパルスを出力させる制御手段(26,27)を備え、
     二つの半導体素子は、ハーフブリッジ回路(4)を構成する、
     駆動制御装置。
    Each semiconductor element has an insulated gate type transistor structure (105) and a diode structure (106) to which a gate driving voltage is applied, which are formed on the same semiconductor substrate (8). The drive control device (132A, 132B, 152, 154, 156, 162, 172) of the two semiconductor elements (101A, 101B), in which the electrode and the conducting electrode of the diode structure are common (15, 18), ,
    Voltage detection means (107A, 107B, 125, 168, 180) for outputting a voltage detection signal based on the electrode potential of one of the semiconductor elements;
    Input means (26, 27) for inputting a command signal to the other semiconductor element;
    When an off command signal for the one semiconductor element is input, a current flows in the forward direction of the diode structure to the one semiconductor element based on the voltage detection signal and the input signal of the input means. Is determined to be a means for outputting a pulse in response to the input of an off command signal to the input means, and the on-state for the one semiconductor element is prevented so as not to cause an arm short circuit between the two semiconductor elements. Control means (26, 27) for outputting a pulse a predetermined time before the input time (t2) of the command signal;
    The two semiconductor elements constitute a half-bridge circuit (4).
    Drive control device.
  17.  他方の前記半導体素子の制御電圧に応じた制御電圧検出信号を出力する制御電圧検出手段(225)をさらに備え、
     前記制御手段は、前記制御電圧検出手段(225)の制御電圧検出信号の変動に基づいてパルスを出力させる請求項12、14、15の何れか一項に記載の駆動制御装置。
    Control voltage detection means (225) for outputting a control voltage detection signal corresponding to the control voltage of the other semiconductor element,
    The drive control apparatus according to any one of claims 12, 14, and 15, wherein the control means outputs a pulse based on a fluctuation of a control voltage detection signal of the control voltage detection means (225).
  18.  各々の半導体素子が、同一の半導体基板(8)に形成された、ゲート駆動電圧が印加される絶縁ゲート型のトランジスタ構造(5)とダイオード構造(6)とを有し、前記トランジスタ構造の通電電極と前記ダイオード構造の通電電極とが共通(15,18)である、二つの半導体素子(101A,101B)の駆動制御装置(132A,132B,152,154,156,162,172)であって、
     少なくとも一方の半導体素子の電極電位に応じた電圧検出信号を出力する電圧検出手段(107A,107B,125,168,180)と、
     前記一方の半導体素子に対するオフ指令信号が入力されているときに前記電圧検出信号に基づいて前記一方の半導体素子に前記ダイオード構造の順方向の向きに電流が流れていると判定した場合、その後にオン指令信号の入力を経てオフ指令信号が入力された時点を起点として、第1時間の経過時点から第2時点の経過時点まで、前記ゲート駆動電圧の印加を指令するゲート駆動信号を出力する制御手段(26,27)と、を備え、
     第1時間と第2時間は、二つの半導体素子の間でアーム短絡が生じないように予め設定されており、
     二つの半導体素子は、ハーフブリッジ回路(4)を構成する、
     駆動制御装置。
    Each semiconductor element has an insulated gate type transistor structure (5) and a diode structure (6) to which a gate drive voltage is applied, which are formed on the same semiconductor substrate (8). The drive control device (132A, 132B, 152, 154, 156, 162, 172) of the two semiconductor elements (101A, 101B), in which the electrode and the conducting electrode of the diode structure are common (15, 18), ,
    Voltage detection means (107A, 107B, 125, 168, 180) for outputting a voltage detection signal corresponding to the electrode potential of at least one semiconductor element;
    When it is determined that a current flows in the forward direction of the diode structure to the one semiconductor element based on the voltage detection signal when the off command signal for the one semiconductor element is input, Control that outputs a gate drive signal for instructing application of the gate drive voltage from the time point at which the first time has elapsed to the time point at which the second time point has elapsed, starting from the time point when the off command signal is input through the input of the on command signal Means (26, 27),
    The first time and the second time are set in advance so as not to cause an arm short circuit between the two semiconductor elements,
    The two semiconductor elements constitute a half bridge circuit (4).
    Drive control device.
  19.  前記制御手段(26,27)は、前記電圧検出部により電圧が変動したか否かを判定することで負荷に流れる電流を判定し、
     前記制御手段(26,27)は、前記負荷の電流が0付近の所定範囲であると判定すると、前記ゲート駆動電圧の遮断を指令するゲート駆動信号を出力し、
     前記制御手段(26,27)は、前記負荷の電流が0付近の所定範囲外であると判定すると前記ゲート駆動電圧の印加を指令するゲート駆動信号を出力する請求項13、16、18の何れか1項に記載の駆動制御装置。
    The control means (26, 27) determines the current flowing through the load by determining whether or not the voltage has been changed by the voltage detection unit,
    When the control means (26, 27) determines that the load current is within a predetermined range near 0, the control means (26, 27) outputs a gate drive signal for commanding the interruption of the gate drive voltage,
    The control means (26, 27) outputs a gate drive signal for instructing application of the gate drive voltage when the load current is determined to be outside a predetermined range near zero. The drive control apparatus according to claim 1.
  20.  前記制御手段(26,27)は、駆動制御する前記半導体素子に対するオン指令信号が入力されている期間、前記電圧検出信号に基づいて前記ダイオード構造の順方向の向きに流れていると判定すると、前記ゲート駆動電圧の遮断を指定するゲート駆動信号を出力し、
     前記制御手段(26,27)は、駆動制御する前記半導体素子に対するオン指令信号が入力されている期間、前記電圧検出信号に基づいて前記ダイオード構造の順方向の向きに流れていないと判定すると、前記ゲート駆動電圧の印加を指令するゲート駆動信号を出力する請求項18または19記載の駆動制御装置。
    When the control means (26, 27) determines that the current flows in the forward direction of the diode structure based on the voltage detection signal during a period in which an ON command signal is input to the semiconductor element to be driven and controlled, Outputting a gate drive signal designating the interruption of the gate drive voltage;
    When the control means (26, 27) determines that it does not flow in the forward direction of the diode structure based on the voltage detection signal during the period when the ON command signal for the semiconductor element to be driven is input. The drive control device according to claim 18 or 19, wherein a gate drive signal for commanding application of the gate drive voltage is output.
  21.  前記ゲート駆動信号を入力して前記ゲート駆動電圧を出力するドライブ回路(28)をさらに備え、
     ドライブ回路(28)は、前記ゲート駆動電圧に応じた耐圧を持つIC(124A,124B)で構成されている請求項18から20の何れか一項に記載の駆動制御装置。
    A drive circuit (28) for inputting the gate drive signal and outputting the gate drive voltage;
    The drive control device according to any one of claims 18 to 20, wherein the drive circuit (28) includes an IC (124A, 124B) having a withstand voltage corresponding to the gate drive voltage.
  22.  駆動制御装置は、ハーフブリッジ回路を構成する2つの前記半導体素子を駆動制御し、
     駆動制御装置は、は、前記ハーフブリッジ回路に加わる電源電圧に応じた耐圧を持つIC(151,153)で構成されており、
     当該ICは、前記ゲート駆動信号を入力して前記ゲート駆動電圧を出力するドライブ回路(28)を提供し、
     前記電圧検出手段(107A,107B,125,180)は、前記2つの半導体素子のうち少なくとも一方の電圧を検出可能に設けられ、
     前記制御手段(26,27)は、前記2つの半導体素子のうち一方の半導体素子に前記ゲート駆動電圧を印加している期間、他方の半導体素子への前記ゲート駆動電圧の印加を禁止する請求項18から21の何れか一項に記載の駆動制御装置。
    The drive control device drives and controls the two semiconductor elements constituting the half-bridge circuit,
    The drive control device is composed of ICs (151, 153) having a withstand voltage corresponding to the power supply voltage applied to the half-bridge circuit,
    The IC provides a drive circuit (28) that inputs the gate drive signal and outputs the gate drive voltage;
    The voltage detection means (107A, 107B, 125, 180) is provided so as to detect at least one voltage of the two semiconductor elements,
    The control means (26, 27) prohibits application of the gate drive voltage to the other semiconductor element during a period in which the gate drive voltage is applied to one of the two semiconductor elements. The drive control device according to any one of 18 to 21.
  23.  駆動制御装置は、ハーフブリッジ回路を構成する2つの前記半導体素子を駆動制御し、
     駆動制御装置は、前記制御手段(26,27)を有する制御IC(21,121,163)と、前記制御ICから入力したゲート駆動信号に基づいて前記半導体素子に前記ゲート駆動電圧を印加する駆動IC(65A,65B)と、前記制御ICから出力されたゲート駆動信号を電気的に絶縁して前記駆動ICに伝送する絶縁回路(64A,64B)と、前記電圧検出手段(107A,107B,125,168)とから構成されており、
     前記制御ICは、前記2つの半導体素子のうち一方の半導体素子に前記ゲート駆動電圧を印加している期間、他方の半導体素子への前記ゲート駆動電圧の印加を禁止するゲート駆動信号を出力する請求項18から21の何れか一項に記載の駆動制御装置。
    The drive control device drives and controls the two semiconductor elements constituting the half-bridge circuit,
    The drive control device includes a control IC (21, 121, 163) having the control means (26, 27) and a drive for applying the gate drive voltage to the semiconductor element based on a gate drive signal input from the control IC. IC (65A, 65B), an insulating circuit (64A, 64B) for electrically insulating and transmitting the gate drive signal output from the control IC to the drive IC, and the voltage detection means (107A, 107B, 125) , 168), and
    The control IC outputs a gate drive signal for prohibiting application of the gate drive voltage to the other semiconductor element during a period in which the gate drive voltage is applied to one of the two semiconductor elements. Item 22. The drive control device according to any one of Items 18 to 21.
  24.  前記電圧検出手段(125)は、前記制御IC(121)により提供されている請求項23記載の駆動制御装置。 24. The drive control device according to claim 23, wherein the voltage detection means (125) is provided by the control IC (121).
  25.  前記電圧検出手段(180)は、前記半導体素子の素子形成領域(100)の外周側に離間して半導体基板(8)に形成され、
     前記電圧検出手段(180)は、前記半導体基板(8)の導電型とは逆導電型の電界制限リング(8a)を用いて中間電位を検出する請求項18から24の何れか一項に記載の駆動制御装置。
    The voltage detecting means (180) is formed on the semiconductor substrate (8) so as to be separated from the outer peripheral side of the element formation region (100) of the semiconductor element,
    25. The voltage detection means (180) detects an intermediate potential using an electric field limiting ring (8a) having a conductivity type opposite to the conductivity type of the semiconductor substrate (8). Drive control device.
  26.  前記第1時間と前記第2時間との時間幅は、前記半導体素子に対するオン指令信号が入力されている期間に前記半導体素子に流れていた電流の大きさに応じた値に設定されている請求項1から3、6から11、18から25の何れか一項に記載の駆動制御装置。 The time width between the first time and the second time is set to a value corresponding to the magnitude of current flowing in the semiconductor element during a period in which an ON command signal for the semiconductor element is input. Item 26. The drive control device according to any one of Items 1 to 3, 6 to 11, and 18 to 25.
  27.  当該半導体素子は、一方の半導体素子と他方の半導体素子を含み、
     一方の半導体素子と他方の半導体素子は、ハーフブリッジ回路を構成し、
     前記半導体素子に前記ダイオード構造の順方向の向きに電流が流れている状態でオフ指令信号が入力された後、一定のデッドタイムを経て、他方の半導体素子に対してオン指令信号が入力されたときに、前記第2時間が経過して前記ゲート駆動電圧が遮断された時点と、前記他方の半導体素子のトランジスタ構造に当該一方の半導体素子に流れていた電流を超える電流が流れ始める時点との時間幅が、ゼロより大きく且つ所定の注入許容時間以下となるように、前記第1時間と前記第2時間が設定されている請求項1から3、6から11、18から25の何れか一項に記載の駆動制御装置。
    The semiconductor element includes one semiconductor element and the other semiconductor element,
    One semiconductor element and the other semiconductor element constitute a half-bridge circuit,
    After an off command signal is input to the semiconductor element in a state where a current flows in the forward direction of the diode structure, an on command signal is input to the other semiconductor element after a certain dead time. Sometimes, when the gate drive voltage is cut off after the second time has elapsed, and when a current exceeding the current flowing in the one semiconductor element starts flowing in the transistor structure of the other semiconductor element. The first time and the second time are set such that the time width is greater than zero and less than or equal to a predetermined permissible injection time. The drive control device according to item.
  28.  前記第1時間と第2時間との時間幅は、前記半導体素子に対するオン指令信号が入力されている期間に当該半導体素子に流れていた電流が大きいほど長い時間となるように設定されている請求項1から3、6から11、18から25の何れか一項に記載の駆動制御装置。 The time width between the first time and the second time is set so as to become longer as the current flowing through the semiconductor element increases during a period in which the ON command signal for the semiconductor element is input. Item 26. The drive control device according to any one of Items 1 to 3, 6 to 11, and 18 to 25.
  29.  前記ゲート駆動信号に基づく前記ゲート駆動電圧が、前記ドライブ回路のゲート駆動能力に従って単調に増加または単調に減少するものとして、前記第1時間と前記第2時間が設定されている請求項1から28の何れか一項に記載の駆動制御装置。 29. The first time and the second time are set on the assumption that the gate drive voltage based on the gate drive signal monotonously increases or monotonously decreases according to the gate drive capability of the drive circuit. The drive control device according to any one of the above.
  30.  前記ゲート駆動信号に基づく前記ゲート駆動電圧にミラー期間が生じないものとして、前記第1時間と前記第2時間が設定されている請求項1から28の何れか一項に記載の駆動制御装置。 The drive control device according to any one of claims 1 to 28, wherein the first time and the second time are set so that a mirror period does not occur in the gate drive voltage based on the gate drive signal.
  31.  前記ドライブ回路は、前記ゲート駆動信号が変化したときに、一定のゲート駆動能力を維持して前記ゲート駆動電圧を出力する請求項1から28の何れか一項に記載の駆動制御装置。 The drive control device according to any one of claims 1 to 28, wherein the drive circuit outputs the gate drive voltage while maintaining a constant gate drive capability when the gate drive signal changes.
  32.  前記ドライブ回路は、前記ゲート駆動信号が変化したとき、前記半導体素子を通断電するときに比べ高い駆動能力で前記ゲート駆動電圧を出力する請求項1から28の何れか一項に記載の駆動制御装置。 The drive according to any one of claims 1 to 28, wherein when the gate drive signal changes, the drive circuit outputs the gate drive voltage with a higher drive capability than when the semiconductor element is cut off. Control device.
  33.  ゲート駆動電圧が印加される絶縁ゲート型のトランジスタ構造(1005)とダイオード構造(1006)とが同一の半導体基板(1008)に形成され、前記トランジスタ構造の通電電極と前記ダイオード構造の通電電極とが共通の電極(1015,1018)とされた半導体素子(1001A,1001B)の駆動制御装置(1038A,1038B)であって、
     前記半導体素子に流れる電流に応じた電流検出信号を出力する電流検出手段(1007A,1007B,1025)と、
     前記電流検出信号に基づいて、前記半導体素子に対するオン指令信号が入力されている期間に前記半導体素子に前記ダイオード構造の順方向の向きに電流が流れていると判定した場合、その後のオフ指令信号の入力時点を起点として、予め設定された第1時間の経過時点から第2時間の経過時点まで前記ゲート駆動電圧の印加を指令するゲート駆動信号を出力する制御手段(1027)と、
     前記ゲート駆動信号を入力して前記ゲート駆動電圧を出力するドライブ回路(1028)とを備え、
     前記第1時間と前記第2時間との時間幅は、前記半導体素子に対するオン指令信号が入力されている期間に前記半導体素子に流れていた電流の大きさに応じた値に設定されている駆動制御装置。
    An insulated gate transistor structure (1005) to which a gate driving voltage is applied and a diode structure (1006) are formed on the same semiconductor substrate (1008), and the conduction electrode of the transistor structure and the conduction electrode of the diode structure are A drive control device (1038A, 1038B) for semiconductor elements (1001A, 1001B), which are common electrodes (1015, 1018),
    Current detection means (1007A, 1007B, 1025) for outputting a current detection signal corresponding to the current flowing through the semiconductor element;
    On the basis of the current detection signal, when it is determined that a current flows in the forward direction of the diode structure in the semiconductor element during a period in which an ON command signal for the semiconductor element is input, a subsequent OFF command signal A control means (1027) for outputting a gate drive signal for instructing application of the gate drive voltage from the preset time point of the first time to the time point of the second time, starting from the input time point of
    A drive circuit (1028) for inputting the gate drive signal and outputting the gate drive voltage;
    The time width between the first time and the second time is set to a value corresponding to the magnitude of the current flowing in the semiconductor element during the period when the ON command signal for the semiconductor element is input Control device.
  34.  当該半導体素子は、一方の半導体素子と他方の半導体素子を含み、
     一方の半導体素子と他方の半導体素子は、ハーフブリッジ回路を構成し、
     前記半導体素子に前記ダイオード構造の順方向の向きに電流が流れている状態でオフ指令信号が入力された後、一定のデッドタイムを経て、他方の半導体素子に対してオン指令信号が入力されたときに、前記第2時間が経過して前記ゲート駆動電圧が遮断された時点と、前記他方の半導体素子のトランジスタ構造に当該一方の半導体素子に流れていた電流を超える電流が流れ始める時点との時間幅が、ゼロより大きく且つ所定の注入許容時間以下となるように、前記第1時間と前記第2時間が設定されている請求項33記載の駆動制御装置。
    The semiconductor element includes one semiconductor element and the other semiconductor element,
    One semiconductor element and the other semiconductor element constitute a half-bridge circuit,
    After an off command signal is input to the semiconductor element in a state where a current flows in the forward direction of the diode structure, an on command signal is input to the other semiconductor element after a certain dead time. Sometimes, when the gate drive voltage is cut off after the second time has elapsed, and when a current exceeding the current flowing in the one semiconductor element starts flowing in the transistor structure of the other semiconductor element. 34. The drive control device according to claim 33, wherein the first time and the second time are set so that a time width is greater than zero and equal to or less than a predetermined allowable injection time.
  35.  前記第1時間と第2時間との時間幅は、前記半導体素子に対するオン指令信号が入力されている期間に当該半導体素子に流れていた電流が大きいほど長い時間となるように設定されている請求項33または34記載の駆動制御装置。 The time width between the first time and the second time is set so as to become longer as the current flowing through the semiconductor element increases during a period in which the ON command signal for the semiconductor element is input. Item 35. The drive control device according to Item 33 or 34.
  36.  前記第1時間の経過時点から第2時間の経過時点まで出力されるゲート駆動信号に基づく前記ゲート駆動電圧が、前記ドライブ回路のゲート駆動能力に従って単調に増加または単調に減少するものとして、前記第1時間と前記第2時間が設定されている請求項33から35の何れか一項に記載の駆動制御装置。 The gate drive voltage based on the gate drive signal output from the elapse of the first time to the elapse of the second time is assumed to monotonously increase or monotonously decrease according to the gate drive capability of the drive circuit. 36. The drive control apparatus according to any one of claims 33 to 35, wherein one hour and the second time are set.
  37.  前記第1時間の経過時点から第2時間の経過時点まで出力されるゲート駆動信号に基づく前記ゲート駆動電圧にミラー期間が生じないものとして、前記第1時間と前記第2時間が設定されている請求項36記載の駆動制御装置。 The first time and the second time are set so that a mirror period does not occur in the gate drive voltage based on the gate drive signal output from the time point of the first time to the time point of the second time. 37. The drive control device according to claim 36.
  38.  前記ドライブ回路は、前記第1時間の経過時点で前記ゲート駆動信号が変化したときに、一定のゲート駆動能力を維持して前記ゲート駆動電圧を出力する請求項36または37記載の駆動制御装置。 38. The drive control apparatus according to claim 36 or 37, wherein the drive circuit outputs the gate drive voltage while maintaining a constant gate drive capability when the gate drive signal changes at the time point of the first time.
  39.  前記ドライブ回路は、前記第1時間の経過時点および前記第2時間の経過時点で前記ゲート駆動信号が変化したとき、前記半導体素子を通断電するときに比べ高い駆動能力で前記ゲート駆動電圧を出力する請求項33から38の何れか一項に記載の駆動制御装置。 The drive circuit generates the gate drive voltage with a higher drive capability when the gate drive signal changes at the elapse of the first time and the elapse of the second time than when the semiconductor element is disconnected. The drive control apparatus according to any one of claims 33 to 38, which outputs the drive control apparatus.
PCT/JP2014/003639 2013-07-10 2014-07-09 Drive control device WO2015004911A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/901,767 US9590616B2 (en) 2013-07-10 2014-07-09 Drive control device
CN201480039343.7A CN105379086B (en) 2013-07-10 2014-07-09 Drive dynamic control device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-144560 2013-07-10
JP2013-144561 2013-07-10
JP2013144561 2013-07-10
JP2013144560A JP5935768B2 (en) 2013-07-10 2013-07-10 Drive control device
JP2014134227A JP5939281B2 (en) 2013-07-10 2014-06-30 Drive control device
JP2014-134227 2014-06-30

Publications (1)

Publication Number Publication Date
WO2015004911A1 true WO2015004911A1 (en) 2015-01-15

Family

ID=52279616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003639 WO2015004911A1 (en) 2013-07-10 2014-07-09 Drive control device

Country Status (1)

Country Link
WO (1) WO2015004911A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023138161A1 (en) * 2022-01-24 2023-07-27 比亚迪股份有限公司 Low-side driving circuit, electronic device having same, and vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009268336A (en) * 2007-09-05 2009-11-12 Denso Corp Semiconductor device
JP2010154595A (en) * 2008-12-24 2010-07-08 Denso Corp Power conversion device
JP2014117044A (en) * 2012-12-07 2014-06-26 Toyota Motor Corp Over current detection device and semiconductor driving apparatus with the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009268336A (en) * 2007-09-05 2009-11-12 Denso Corp Semiconductor device
JP2010154595A (en) * 2008-12-24 2010-07-08 Denso Corp Power conversion device
JP2014117044A (en) * 2012-12-07 2014-06-26 Toyota Motor Corp Over current detection device and semiconductor driving apparatus with the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023138161A1 (en) * 2022-01-24 2023-07-27 比亚迪股份有限公司 Low-side driving circuit, electronic device having same, and vehicle

Similar Documents

Publication Publication Date Title
CN107888056B (en) Drive control device
JP5812027B2 (en) Drive control device
JP5939281B2 (en) Drive control device
US8890496B2 (en) Drive controller
EP2884664B1 (en) High performance IGBT gate drive
EP3035532B1 (en) Gate drive circuit and method of operating same
KR101782705B1 (en) Driving device and switching circuit control method
JP5915615B2 (en) Semiconductor control device, switching device, inverter and control system
JP5061998B2 (en) Switching circuit
WO2008041685A1 (en) Gate drive circuit
JP2005192394A (en) Driving device of semiconductor element and its control method
KR102178107B1 (en) Rc-igbt with freewheeling sic diode
TWI574018B (en) Semiconductor device and control method of the same
JP6582764B2 (en) Semiconductor device driving apparatus
JP6658021B2 (en) Semiconductor device
JP2019165542A (en) Semiconductor device
JP5935768B2 (en) Drive control device
JP2009194514A (en) Gate drive circuit of power semiconductor
WO2019207977A1 (en) Gate drive circuit and gate drive method
JP2006340579A (en) Gate circuit of insulating gate semiconductor element
WO2015004911A1 (en) Drive control device
Skarolek et al. GaN Based Inverter Current-Collapse Behavior with Switching Frequency and Blocking Voltage
WO2024057598A1 (en) Gate drive circuit for semiconductor switching element, electric motor control system, and semiconductor device
JP2019041514A (en) Driving circuit of semiconductor element
JP2007103721A (en) Dc-dc converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14822716

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14901767

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14822716

Country of ref document: EP

Kind code of ref document: A1