WO2015004291A1 - Sistema y método para producir fibras por electrohilado - Google Patents

Sistema y método para producir fibras por electrohilado Download PDF

Info

Publication number
WO2015004291A1
WO2015004291A1 PCT/ES2014/000115 ES2014000115W WO2015004291A1 WO 2015004291 A1 WO2015004291 A1 WO 2015004291A1 ES 2014000115 W ES2014000115 W ES 2014000115W WO 2015004291 A1 WO2015004291 A1 WO 2015004291A1
Authority
WO
WIPO (PCT)
Prior art keywords
needle
solvent
container
substance
tip
Prior art date
Application number
PCT/ES2014/000115
Other languages
English (en)
French (fr)
Inventor
José Antonio TORNERO GARCÍA
Francisco CANO CASAS
Ángel MONTERO CARCABOSO
Joan Bertran Llavina
Original Assignee
Universitat Politécnica de Catalunya
Hospital Sant Joan De Déu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Politécnica de Catalunya, Hospital Sant Joan De Déu filed Critical Universitat Politécnica de Catalunya
Publication of WO2015004291A1 publication Critical patent/WO2015004291A1/es

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0069Electro-spinning characterised by the electro-spinning apparatus characterised by the spinning section, e.g. capillary tube, protrusion or pin

Definitions

  • the present invention relates in general, in a first aspect, to a system for producing fibers by electro-spinning, and more particularly to a system that includes means for supplying solvent in the gaseous state, by localized evaporation of a solvent in the liquid state, to the exit environment of the tip of a needle through which the substance that will solidify in the form of fibers is dispensed.
  • a second aspect of the invention concerns in general a method for producing fibers by electro-spinning, and more particularly a method comprising the supply of solvent in a gaseous state to the exit environment of the tip of a needle through which the substance that will solidify in the form of fibers, by localized evaporation of a solvent in a liquid state.
  • Electro-spinning is a process that allows, from the application of an electric charge, fibers in the form of very fine continuous filaments to be obtained from a molten polymer or in solution with a solvent. (up to a nanometric scale, generally from 20 nm to approximately 1 ⁇ ).
  • Another less intrusive alternative is to saturate the outlet area of the needle where the Taylor cone is generated with a gaseous solvent, which is carried out in different ways in the state of the art.
  • such global saturation is also carried out by introducing the solvent in a gaseous state into the interior of the chamber from an external reservoir, through corresponding conduits.
  • US7297305B2 does propose to saturate the entire chamber of solvent in a gaseous state by evaporating a solvent in a liquid state disposed inside it, generally at the bottom of the chamber.
  • the objective of US7297305B2 is not to prevent premature solidification of the polymer at the exit of the needle, but to control the gaseous environment of the entire chamber, in order to homogenize the size and distribution of the fibers, affecting throughout the fiber journey. This objective is also carried out, voluntarily or involuntarily, in all proposals that globally saturate the entire chamber with solvent.
  • the present invention concerns, in a first aspect, a system for producing electro-spun fibers, comprising, in a manner known per se:
  • - dispensing means including a capillary tube or needle through the tip from which to dispense, by electro-spinning, a substance in solution,
  • a collector located at a certain distance from the needle outlet, arranged and configured to receive the substance dispensed by the needle once solidified in its path towards said collector forming fibers
  • - solvent supply means configured and arranged to supply solvent in the gaseous state to the outlet environment of the tip of said needle, including the creation zone of the Taylor cone.
  • the solvent delivery means comprise a solvent container in the liquid state disposed in the vicinity of the tip of the needle, the container and the solvent contained therein being configured to perform said solvent supply in the gaseous state by evaporating at least part of the solvent in the liquid state contained in the container.
  • the container is configured and arranged to cool the needle by the thermal exchange produced due to the evaporation of the solvent, thereby achieving further delay in evaporation of the solvent in which the substance is dissolved, and therefore also delay its premature solidification.
  • Another effect caused by the aforementioned cooling of the needle is that less solvent is needed in the gaseous state to saturate its exit environment, whereby the solvent in the liquid state of the container will be spent more slowly.
  • Such cooling constitutes a passive system, which does not need valves or pumps to supply the steam.
  • the system comprises a high voltage generator arranged and configured to apply a high tension between the needle and the collector, which are metallic, which produces the electro-spinning dispensing of the substance in solution from the needle to the collector so that it solidifies in its path forming the fibers, which are deposited in the collector.
  • the container has an annular shape, housing the solvent in a liquid state between an inner annular wall and an outer annular wall, and is arranged around a distal part of the needle that includes its tip, surrounding it with the inner annular cylindrical wall.
  • the solvent container in the liquid state is disposed adjacent to a distal part of the needle that includes its tip, with an outlet opening for the evaporated solvent facing the Taylor cone creation zone.
  • the needle is arranged pointing up.
  • the needle is arranged so that its longitudinal axis runs vertically or substantially vertically.
  • This vertical, or substantially vertical, arrangement has the additional effect that, in the event that the partially solidified polymer reservoir at the tip of the needle becomes formed (for example because the solvent in the liquid state of the container is exhausted) , this would not fall on the fibers already deposited in the collector located above the needle, but downwards, so it would not damage the homogeneity, and ultimately the quality, of the fiber product finally obtained.
  • the cooling of the aforementioned needle will also partially cool the surroundings thereof, so that for the vertical, or substantially vertical, described arrangement, the evaporated solvent in said refrigerated environment can condense and fall back into the container.
  • the annular container is arranged in relation to the needle so that the level of the solvent in the liquid state is below the tip of the needle, the container having an outlet opening for evaporated solvent facing up.
  • the needle is arranged pointing downwards, and the annular container is arranged in relation to the needle so that the level of the solvent in liquid state is above the tip of the needle, the container having an opening outlet for evaporated solvent facing down.
  • the needle is arranged so that its longitudinal axis runs horizontally or substantially horizontally, the solvent container being arranged in a liquid state below the needle with its outlet opening facing the creation zone. of Taylor's cone.
  • control means for the evaporation process of the liquid solvent from the container which, for a variant, comprise a high voltage source connected to the container for application. an independent tension to the container in order to modify the electrostatic field in the vicinity of the needle.
  • the system of the first aspect of the invention comprises a device for controlling the injection pressure of the substance in solution to the needle, which allows to control the regularity of the solution injection (which affects the regularity of the nanofibers produced) and detect obstructions in the capillary outlet tube (such as those generated by the solid deposit that the present invention intends to avoid).
  • the present invention also concerns, according to a second aspect, a method for producing fibers by electro-spinning, which comprises:
  • the method proposed by the second aspect of the invention comprises, unlike known methods, and characteristically, making said solvent supply in the gaseous state of step b) by localized evaporation, in the vicinity of the creation zone of the Taylor cone, of a solvent in a liquid state.
  • the method proposed by the second aspect of the invention comprises carrying out step b) by the arrangement and use of a solvent container in a liquid state in the vicinity of the needle tip, the localized evaporation consisting in the evaporation of at least part of the solvent in the liquid state contained in the container.
  • the method comprises carrying out the cooling of the needle by means of the thermal exchange produced by the evaporation of the solvent from the container, whereby it is possible to further delay the premature solidification thereof, as well as the rest of the Advantages indicated above in relation to the first aspect system.
  • the method proposed by the second aspect of the invention is carried out using the system of the first aspect.
  • Fig. 1 illustrates the system proposed by the first aspect of the invention for an exemplary embodiment for which the electro-spun needle is arranged vertically, pointing upwards, and the container is arranged around it, including a detail enlarged container and needle tip;
  • Fig. 2 shows the same elements of Fig. 1 and an additional element, consisting of a voltage source connected to the container to apply an independent voltage to the container in order to modify the electrostatic field in the vicinity of the needle, for another embodiment example;
  • Fig. 3 illustrates the system proposed by the first aspect of the invention for an exemplary embodiment for which the electro-spun needle is arranged in vertical, pointing down, and the container is arranged around it, also including an enlarged detail of the container and the tip of the needle;
  • Fig. 4 illustrates the system proposed by the first aspect of the invention for an exemplary embodiment for which the electro-spun needle is arranged horizontally and the container is arranged below it, this figure also including an enlarged detail of the container and the tip of the needle.
  • - dispensing means including a dispenser J, which includes a dispenser D, for dispensing a substance in solution P, or polymer solution, a capillary tube or needle 1 through the tip from which to dispense, by electro-spinning, the substance into solution P;
  • collector 3 located at a certain distance from the exit of the needle 1, arranged and configured to receive the substance dispensed by the needle 1 once solidified in its path towards said collector 3 forming Pt fibers, which are deposited in the collector 3;
  • Y a high voltage generator F arranged and configured to apply a high tension between the needle 1 and the manifold 3, which are metallic, which produces the electro-spinning dispensing of the substance in solution P from the needle 1 to the manifold 3 of so that it solidifies in its path forming the Pt fibers;
  • - solvent supply means configured and arranged to deliver solvent in gaseous state Gs to the exit environment of the needle tip 1, especially to the creation zone of the Taylor Ct cone, comprising a solvent container 2 in the state liquid Ls arranged in the vicinity of the needle tip 1.
  • Fig. 1 the system proposed by the first aspect of the invention is illustrated for a preferred embodiment for which the electro-spun needle 1 is arranged vertically, pointing upwards, and the container 2 has a shape annular, housing the solvent in liquid state Ls between an inner annular cylindrical wall 2 ⁇ and an outer annular wall 2e, and is disposed around a distal part of the needle 1 that includes its tip, surrounding it with the inner annular cylindrical wall 2i.
  • the container 2 has a shape annular, housing the solvent in liquid state Ls between an inner annular cylindrical wall 2 ⁇ and an outer annular wall 2e, and is disposed around a distal part of the needle 1 that includes its tip, surrounding it with the inner annular cylindrical wall 2i.
  • the annular container 2 is arranged in relation to the needle 1 so that the level of the solvent in liquid state Ls is below the tip of the needle 1, and includes an opening of Exit A facing upwards for the exit of the evaporated solvent Gs in the direction of the Taylor Ct cone creation zone, improving the direction of Gs towards Ct thanks to the inclined upper walls 2a of the container 2 delimiting the opening A.
  • the inner wall 2 ⁇ of the container 2 When the inner wall 2 ⁇ of the container 2 is in contact with the distal part of the needle 1, or very close to each other, it is cooled when the container 2 is cooled by the thermal exchange produced due to the evaporation of the liquid solvent Ls, which has the benefits already indicated in a previous section to further delay the evaporation of the solvent in which the substance P is dissolved, spend the solvent Ls more slowly, as well as, in this case, re-collect the solvent Gs that is condense by the temperature decrease and fall through the opening A.
  • the system proposed by the present invention comprises a voltage source V connected to the container 2 to apply an independent voltage in order to modify the electrostatic field in the vicinity of the needle 1, as illustrated in Fig. 2 in relation to the arrangement illustrated in Fig. 1, applying equally to any of the arrangements illustrated in Figures 3 and 4.
  • the needle 1 is arranged pointing downwards
  • the container is annular 2
  • the container 2 is arranged in relation to the needle 1 so that the level of the solvent in liquid state Ls is above the tip of the needle 1, ie the needle 1 does not protrude through the opening TO.
  • the upper wall of the container 2 is closed, whereby the solvent in the gaseous state Gs accumulates around the tip of the needle 1, also occupying the space that includes the area of the Taylor Ct cone.
  • the needle 1 is arranged horizontally, and the solvent container 2 in liquid state Ls is disposed below the needle 1, adjacent to a distal wall thereof, has a structure equal to or similar to that of Fig. 1, with its outlet opening A facing the creation zone of the Taylor Ct cone, the solvent in the gaseous state Gs being directed towards the creation zone of the Taylor Ct cone when exiting through the opening A.
  • the attached Figures are schematic, not having included some auxiliary and / or conventional elements, such as suitable supports for containers 2, when these are necessary since for the embodiment example of Fig. 1 the container 2 can be directly embedded in the needle 1 without the need for a support for it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

El sistema comprende: - unos medios de dispensación que incluyen una aguja (1) por la punta de la cual dispensar, por electrohilado, una substancia en solución (P), - un colector (3) para recibir la substancia dispensada por la aguja (1) una vez solidificada formando unas fibras (Pt), y - unos medios de suministro de disolvente que comprenden un contenedor (2) de disolvente en estado líquido (Ls) dispuesto cerca de la punta de la aguja (1), para suministrar disolvente en estado gaseoso (Gs) al entorno de salida de la misma, incluyendo la zona del cono de Taylor (Ct), mediante la evaporación del disolvente en estado líquido (Ls). El método comprende suministrar disolvente en estado gaseoso (Gs) al entorno de salida de la punta de la aguja (1), mediante la evaporación localizada, en las proximidades de la zona de creación del cono de Taylor (Ct), de un disolvente en estado líquido (Ls).

Description

Sistema y método para producir fibras por electrohilado
Sector de la técnica
La presente invención concierne en general, en un primer aspecto, a un sistema para producir fibras por electrohilado, y más en particular a un sistema que incluye unos medios para suministrar disolvente en estado gaseoso, mediante la evaporación localizada de un disolvente en estado líquido, al entorno de salida de la punta de una aguja por la que se dispensa la substancia que solidificará en forma de fibras.
Un segundo aspecto de la invención concierne en general a un método para producir fibras por electrohilado, y más en particular a un método que comprende el suministro de disolvente en estado gaseoso al entorno de salida de la punta de una aguja por la que se dispensa la substancia que solidificará en forma de fibras, mediante la evaporación localizada de un disolvente en estado líquido.
Estado de la técnica anterior
El electrohilado, conocido popularmente por su denominación en inglés "electrospinning", es un proceso que permite obtener, a partir de un polímero fundido o en solución con un disolvente, mediante la aplicación de una carga eléctrica, fibras en forma de filamentos continuos muy finos (hasta una escala nanométríca, en general desde 20 nm hasta 1 μηι aproximadamente).
Uno de los problemas principales de los que adolecen los sistemas de electrohilado convencionales es el de que, justo a la salida del tubo capilar o aguja por el que se extrae la fibra, es decir en la zona conocida como de creación del cono de Taylor (durante o antes de la creación del mismo) se produzca una solidificación prematura de la fibra debida a la evaporación demasiado rápida del disolvente con el cual el polímero se encuentra disuelto, ya que tal disolvente suele tener un punto de ebullición bajo, lo que provoca que se cree un depósito de polímero parcialmente solidificado que puede llegar a caer sobre la membrana de nanofibras que se está formando sobre el colector, bloquea la salida de la aguja haciendo que el proceso sea discontinuo o incluso llegar a bloquear completamente tal salida, necesitando de la intervención de un operario para desbloquearla.
Con el fin de evitar tal solidificación prematura se conocen diferentes soluciones, tales como la de añadir a la mezcla de polímero y disolvente un co-disolvente con el fin de aumentar el punto de ebullición, aunque esta alternativa resulta compleja por lo dificultosa y laboriosa que resulta la elección del co-disolvente y determinar la proporción adecuada a añadir, o la consistente en hacer disminuir la temperatura del entorno.
Otra alternativa menos intrusiva consiste en saturar con disolvente en estado gaseoso la zona de salida de la aguja donde se genera el cono de Taylor, la cual se lleva a cabo de diferentes maneras en el estado de la técnica.
Tanto en el artículo "Use of Coaxial Gas Jackets to stabilize Taylor Cones of Volatile Solutions and to Induce Particle-to-Fiber Transitions", de Gustavo Larsen, Rubén Spretz and Raffet Velarde-Ortiz, Advanced Materials, 16 de Enero 2004, 16, No. 2, como en la solicitud US2010084793A1 se propone realizar la mencionada saturación de la zona de salida de la aguja mediante la disposición de un segundo tubo o canal, en general capilar, dispuesto de manera coaxial a la aguja, portador del disolvente en estado gaseoso, desde un punto remoto, y con una salida dispuesta y configurada para que éste sea suministrado justo a la salida de la aguja.
Si bien los resultados conseguidos con los mecanismos propuestos en tales documentos son buenos (aunque mejorables), en términos de evitación de la solidificación prematura del polímero a la salida de la aguja, los mismos son complejos, laboriosos y no son aplicables a un sistema de electrohilado convencional, ya que es necesario sustituir (o modificar) la aguja de electrohilado por la incluida en tales mecanismos. Tales mecanismos requieren, asimismo, de un suministro activo del disolvente en estado gaseoso a través de las conducciones dispuestas para tal fin.
Otras soluciones menos eficientes y que adolecen de una serie de problemas adicionales, son las que realizan la mencionada saturación con disolvente en estado gaseoso no de manera localizada alrededor de la salida de la aguja, sino de manera global en la cámara que aloja a todo el sistema.
Obviamente, tal solución es mucho menos eficiente que la consistente en saturar de manera localizada, ya que es necesario proporcionar una cantidad de disolvente mucho mayor para conseguir unos resultados comparables. Además, la presencia de tal clase de disolventes en toda la cámara genera un ambiente potencialmente peligroso por su carácter tóxico y/o inflamable.
En general, tal saturación global también se hace introduciendo al disolvente en estado gaseoso en el interior de la cámara desde un depósito exterior, mediante unas correspondientes conducciones.
Con todo, la patente US7297305B2 sí que propone saturar de disolvente en estado gaseoso toda la cámara mediante la evaporación de un disolvente en estado líquido dispuesto en el interior de la misma, en general en el fondo de la cámara. Sin embargo, el objetivo de US7297305B2 no es el de evitar la solidificación prematura del polímero a la salida de la aguja, sino el de controlar el ambiente gaseoso de toda la cámara, con el fin de homogeneizar el tamaño y distribución de las fibras, incidiendo en todo el recorrido de las fibras. Tal objetivo también se lleva a cabo, voluntaria o involuntariamente, en todas las propuestas que saturan de disolvente globalmente toda la cámara.
El hecho de tener saturada de disolvente toda la cámara de electrohilado resulta contraproducente en la necesaria solidificación de la fibra antes de llegar al colector, pudiendo llegar a impedirse ésta en función del tipo y densidad de disolvente utilizado, así como de las condiciones ambientales en el interior de la cámara.
Explicación de la invención
Aparece necesario ofrecer una alternativa al estado de la técnica que cubra las lagunas halladas en el mismo, en particular aquéllas de las que adolecen los mecanismos de saturación localizada conocidos, y que han sido indicadas en el apartado anterior.
Con tal fin, la presente invención concierne, en un primer aspecto, a un sistema para producir fibras por electrohilado, que comprende, de manera en sí conocida:
- unos medios de dispensación que incluyen un tubo capilar o aguja por la punta de la cual dispensar, por electrohilado, una substancia en solución,
- un colector ubicado a una cierta distancia de la salida de la aguja, dispuesto y configurado para recibir la substancia dispensada por la aguja una vez solidificada en su recorrido hacia dicho colector formando unas fibras, y
- unos medios de suministro de disolvente configurados y dispuestos para suministrar disolvente en estado gaseoso al entorno de salida de la punta de dicha aguja, incluyendo la zona de creación del cono de Taylor.
A diferencia de los sistemas conocidos en el estado de la técnica, en el propuesto por el primer aspecto de la invención, de manera característica, los medios de suministro de disolvente comprenden un contenedor de disolvente en estado líquido dispuesto en las proximidades de la punta de la aguja, estando el contenedor y el disolvente contenido en el mismo configurados para realizar dicho suministro del disolvente en estado gaseoso mediante la evaporación de al menos parte del disolvente en estado líquido contenido en el contenedor.
Según un ejemplo de realización, el contenedor está configurado y dispuesto para refrigerar a la aguja por el intercambio térmico producido debido a la evaporación del disolvente, con lo que se consigue así retrasar aún más la evaporación del disolvente en el que se encuentra disuelta la substancia, y por tanto retrasar también la solidificación prematura de la misma.
Otro efecto que provoca la mencionada refrigeración de la aguja es que se necesita menos cantidad de disolvente en estado gaseoso para saturar su entorno de salida, por lo que el disolvente en estado líquido del contenedor se gastará más despacio. Tal refrigeración constituye un sistema pasivo, que no necesita de válvulas ni bombas para suministrar el vapor.
El sistema comprende un generador de alta tensión dispuesto y configurado para aplicar una alta tensión entre la aguja y el colector, los cuales son metálicos, que produzca la dispensación por electrohilado de la substancia en solución desde la aguja hasta el colector de manera que solidifique en su recorrido formando las fibras, que se depositan en el colector.
Para un ejemplo de realización, el contenedor tiene forma anular, alojando al disolvente en estado líquido entre una pared anular interior y una pared anular exterior, y se encuentra dispuesto alrededor de una parte distal de la aguja que incluye a su punta, rodeándola con la pared cilindrica anular interior.
Para otro ejemplo de realización, el contenedor de disolvente en estado líquido se encuentra dispuesto adyacente a una parte distal de la aguja que incluye a su punta, con una abertura de salida para el disolvente evaporado encarada hacia la zona de creación del cono de Taylor.
Según un ejemplo de realización, la aguja está dispuesta apuntando hacia arriba.
Para una variante de dicho ejemplo de realización, la aguja está dispuesta de manera que su eje longitudinal transcurre en vertical o sustancialmente en vertical.
Esta disposición vertical, o sustancialmente vertical, tiene el efecto adicional de que, en el caso de que se llegase a formar el depósito de polímero parcialmente solidificado en la punta de la aguja (por ejemplo porque se agotase el disolvente en estado líquido del contenedor), éste no caería sobre las fibras ya depositadas en el colector ubicado por encima de la aguja, sino hacia abajo, por lo que no perjudicaría la homogeneidad, y en definitiva la calidad, del producto de fibras finalmente obtenido.
Con esta disposición vertical tampoco caerían sobre el colector gotas de disolución (común en fases de inicio y final de electrohilado o debido a un caudal de disolución excesivo).
La refrigeración de la aguja arriba mencionada también refrigerará a parte el entorno de la misma, por lo que para la disposición vertical, o sustancialmente vertical, descrita, el disolvente evaporado que se encuentre en dicho entorno refrigerado puede condensarse y volver a caer dentro del contenedor. Cuando la aguja está dispuesta apuntando hacia arriba, según una realización el contenedor anular está dispuesto en relación a la aguja de manera que el nivel del disolvente en estado líquido queda por debajo de la punta de la aguja, teniendo el contenedor una abertura de salida para el disolvente evaporado encarada hacia arriba.
Para otro ejemplo de realización, la aguja está dispuesta apuntando hacia abajo, y el contenedor anular está dispuesto en relación a la aguja de manera que el nivel del disolvente en estado líquido queda por encima de la punta de la aguja, teniendo el contenedor una abertura de salida para el disolvente evaporado encarada hacia abajo.
Según otro ejemplo de realización más, la aguja está dispuesta de manera que su eje longitudinal transcurre en horizontal o sustancialmente en horizontal, quedando dispuesto el contenedor de disolvente en estado líquido por debajo de la aguja con su abertura de salida encarada hacia la zona de creación del cono de Taylor.
Todos los anteriores ejemplos de realización relativos a las distintas orientaciones de la aguja son, en general, alternativos, aunque éstos son complementarios si se incorporan en un sistema de electrohilado que incluya más de una aguja de electrohilado con diferentes orientaciones, sistema el cual queda cubierto por la presente invención, para un ejemplo de realización.
El sistema propuesto por el primer aspecto de la invención comprende, según un ejemplo de realización, unos medios de control del proceso de evaporación del disolvente líquido del contenedor, los cuales, para una variante, comprenden una fuente de alta tensión conectada al contenedor para aplicarle una tensión independiente al contenedor con el fin de modificar el campo electrostático en las proximidades de la aguja.
De acuerdo a otro ejemplo de realización más, el sistema del primer aspecto de la invención comprende un dispositivo de control de la presión de inyección de la substancia en solución a la aguja, que permite controlar la regularidad de la inyección de disolución (que afecta a la regularidad de las nanofibras producidas) y detectar obstrucciones en el tubo capilar de salida (como las que puede generar el depósito sólido que la presente invención pretende evitar).
La presente invención también concierne, de acuerdo con un segundo aspecto, a un método para producir fibras por electrohilado, que comprende:
a) dispensar, por electrohilado, una substancia en solución, por la punta de un tubo capilar o aguja, hacia un colector, de manera que la substancia solidifique en su recorrido hacia el colector y forme unas fibras; y
b) generar, en la zona de creación del cono de Taylor, una atmósfera saturada de disolvente que retrase la evaporación del disolvente incluido en dicha substancia en solución, con el fin de evitar la solidificación prematura de la substancia en solución, mediante el suministro de disolvente en estado gaseoso al entorno de salida de la punta de dicha aguja, incluyendo la zona de creación del cono de Taylor.
El método propuesto por el segundo aspecto de la invención comprende, a diferencia de los métodos conocidos, y de manera característica, realizar dicho suministro de disolvente en estado gaseoso de la etapa b) mediante la evaporación localizada, en las proximidades de la zona de creación del cono de Taylor, de un disolvente en estado líquido.
Según un ejemplo de realización preferido, el método propuesto por el segundo aspecto de la invención comprende realizar la etapa b) mediante la disposición y utilización de un contenedor de disolvente en estado líquido en las proximidades de la punta de la aguja, consistiendo la evaporación localizada en la evaporación de cómo mínimo parte del disolvente en estado líquido contenido en el contenedor.
Para un ejemplo de realización, el método comprende llevar a cabo la refrigeración de la aguja mediante el intercambio térmico producido por la evaporación del disolvente del contenedor, por lo que se consigue retrasar aún más la solidificación prematura de la misma, así como el resto de ventajas anteriormente indicadas en relación al sistema del primer aspecto.
Según un ejemplo de realización, el método propuesto por el segundo aspecto de la invención se lleva a cabo utilizando el sistema del primer aspecto.
Breve descripción de los dibujos
Las anteriores y otras ventajas y características se comprenderán más plenamente a partir de la siguiente descripción detallada de unos ejemplos de realización con referencia a los dibujos adjuntos, que deben tomarse a título ilustrativo y no limitativo, en los que:
la Fig. 1 ilustra al sistema propuesto por el primer aspecto de la invención para un ejemplo de realización para el que la aguja de electrohilado está dispuesta en vertical, apuntando hacia arriba, y el contenedor se encuentra dispuesto alrededor de la misma, incluyéndose un detalle ampliado del contenedor y de la punta de la aguja;
la Fig. 2 muestra a los mismos elementos de la Fig. 1 y a un elemento adicional, constituido por una fuente de tensión conectada al contenedor para aplicarle una tensión independiente al contenedor con el fin de modificar el campo electrostático en las proximidades de la aguja, para otro ejemplo de realización;
la Fig. 3 ilustra al sistema propuesto por el primer aspecto de la invención para un ejemplo de realización para el que la aguja de electrohilado está dispuesta en vertical, apuntando hacia abajo, y el contenedor se encuentra dispuesto alrededor de la misma, incluyéndose también un detalle ampliado del contenedor y de la punta de la aguja; y
la Fig. 4 ilustra al sistema propuesto por el primer aspecto de la invención para un ejemplo de realización para el que la aguja de electrohilado está dispuesta en horizontal y el contendor se encuentra dispuesto por debajo de la misma, incluyéndose esta figura también un detalle ampliado del contenedor y de la punta de la aguja.
Descripción detallada de unos ejemplos de realización
En las Figuras adjuntas se ¡lustra al sistema propuesto por el primer aspecto de la invención, para diferentes ejemplos de realización, el cual comprende:
- unos medios de dispensación que incluyen un dispensador J, que incluye un dosificador D, para dispensar una substancia en solución P, o disolución de polímero, un tubo capilar o aguja 1 por la punta de la cual dispensar, por electrohilado, la substancia en solución P;
- un colector 3, ubicado a una cierta distancia de la salida de la aguja 1 , dispuesto y configurado para recibir la substancia dispensada por la aguja 1 una vez solidificada en su recorrido hacia dicho colector 3 formando unas fibras Pt, que se depositan en el colector 3;
- un generador de alta tensión F dispuesto y configurado para aplicar una alta tensión entre la aguja 1 y el colector 3, los cuales son metálicos, que produzca la dispensación por electrohilado de la substancia en solución P desde la aguja 1 hasta el colector 3 de manera que solidifique en su recorrido formando las fibras Pt; y
- unos medios de suministro de disolvente configurados y dispuestos para suministrar disolvente en estado gaseoso Gs al entorno de salida de la punta de la aguja 1 , especialmente a la zona de creación del cono de Taylor Ct, que comprenden un contenedor 2 de disolvente en estado líquido Ls dispuesto en las proximidades de la punta de la aguja 1.
En particular, en la Fig. 1 se ilustra al sistema propuesto por el primer aspecto de la invención para un ejemplo de realización preferido para el que la aguja de electrohilado 1 está dispuesta en vertical, apuntando hacia arriba, y el contenedor 2 tiene una forma anular, alojando al disolvente en estado líquido Ls entre una pared cilindrica anular interior 2¡ y una pared anular exterior 2e, y se encuentra dispuesto alrededor de una parte distal de la aguja 1 que incluye a su punta, rodeándola con la pared cilindrica anular interior 2i. Tal y como se aprecia en dicha Fig. 1 , el contenedor anular 2 está dispuesto en relación a la aguja 1 de manera que el nivel del disolvente en estado líquido Ls queda por debajo de la punta de la aguja 1 , e incluye una abertura de salida A encarada hacia arriba para la salida del disolvente evaporado Gs en dirección a la zona de creación del cono de Taylor Ct, mejorándose el direccionamiento de Gs hacia Ct gracias a las paredes superiores inclinadas 2a del contenedor 2 que delimitan la abertura A.
Al estar en contacto la pared interior 2¡ del contenedor 2 con la parte distal de la aguja 1 , o muy próximas entre sí, ésta es refrigerada al enfriarse el contenedor 2 por el intercambio térmico producido debido a la evaporación del disolvente líquido Ls, lo cual tiene los beneficios ya indicados en un apartado anterior de retrasar aún más la evaporación del disolvente en el que se encuentra disuelta la substancia P, gastar más despacio el disolvente Ls, así como, en este caso, volver a recoger el disolvente Gs que se condense por la disminución de la temperatura y caiga a través de la abertura A.
Para los ejemplos de realización de las Figuras 1 , 3 y 4 la evaporación del disolvente Ls se produce de manera pasiva.
Para otros ejemplos de realización, el sistema propuesto por la presente invención comprende una fuente de tensión V conectada al contenedor 2 para aplicarle una tensión independiente con el fin de modificar el campo electrostático en las proximidades de la aguja 1 , tal y como se ilustra en la Fig. 2 con relación a la disposición ilustrada en la Fig. 1 , aplicándose de igual forma a cualquiera de las disposiciones ilustradas en las figuras 3 y 4.
En el ejemplo de realización de la Fig. 3, la aguja 1 está dispuesta apuntando hacia abajo, el contenedor es anular 2, tiene una abertura de salida A para el disolvente evaporado Gs encarada hacia abajo y que en este caso está definida por la propia pared anular interior 2i, y el contenedor 2 está dispuesto en relación a la aguja 1 de manera que el nivel del disolvente en estado líquido Ls queda por encima de la punta de la aguja 1 , es decir que la aguja 1 no sobresale por la abertura A.
En este caso, la pared superior del contenedor 2 está cerrada, por lo que el disolvente en estado gaseoso Gs se acumula alrededor de la punta de la aguja 1 , ocupando también el espacio que incluye la zona del cono de Taylor Ct.
Finalmente, para el ejemplo de realización de la Fig. 4, la aguja 1 está dispuesta en horizontal, y el contenedor 2 de disolvente en estado líquido Ls está dispuesto por debajo de la aguja 1 , adyacente a una pared distal de la misma, tiene una estructura igual o similar al de la Fig. 1 , con su abertura de salida A encarada hacia la zona de creación del cono de Taylor Ct, dirigiéndose el disolvente en estado gaseoso Gs hacia la zona de creación del cono de Taylor Ct al salir por la abertura A. Debe indicarse que las Figuras adjuntas son esquemáticas, no habiéndose incluido en ellas algunos elementos auxiliares y/o de tipo convencional, tales como unos soportes adecuados para los contenedores 2, cuando éstos sean necesarios ya que para el ejemplo de realización de la Fig. 1 el contenedor 2 puede ir directamente encajado en la aguja 1 sin la necesidad de un soporte para el mismo.
Un experto en la materia podría introducir cambios y modificaciones en los ejemplos de realización descritos sin salirse del alcance de la invención según está definido en las reivindicaciones adjuntas.

Claims

Reivindicaciones
1. - Sistema para producir fibras por electrohilado, del tipo que comprende:
- unos medios de dispensación que incluyen un tubo capilar o aguja (1) por la punta de la cual dispensar, por electrohilado, una substancia en solución (P),
- un colector (3) ubicado a una cierta distancia de la salida de la aguja (1), dispuesto y configurado para recibir la substancia dispensada por la aguja (1) una vez solidificada en su recorrido hacia dicho colector (3) formando unas fibras (Pt);
- unos medios de suministro de disolvente configurados y dispuestos para suministrar disolvente en estado gaseoso (Gs) al entorno de salida de la punta de dicha aguja (1), incluyendo la zona de creación del cono de Taylor (Ct);
estando el sistema caracterizado porque dichos medios de suministro de disolvente comprenden un contenedor (2) de disolvente en estado líquido (Ls) dispuesto en las proximidades de la punta de la aguja (1), estando el contenedor (2) y el disolvente (Ls) contenido en el mismo configurados para realizar dicho suministro del disolvente en estado gaseoso (Gs) mediante la evaporación de al menos parte del disolvente en estado líquido (Ls) contenido en el contenedor (2).
2. - Sistema según la reivindicación 1 , caracterizado porque dicho contenedor (2) está configurado y dispuesto para refrigerar a la aguja (1) por el intercambio térmico producido debido a la evaporación del disolvente líquido (Ls).
3. - Sistema según la reivindicación 1 , caracterizado porque dicho contenedor (2) tiene forma anular, alojando al disolvente en estado líquido (Ls) entre una pared cilindrica anular interior (2i) y una pared anular exterior (2e), y se encuentra dispuesto alrededor de una parte distal de la aguja (1) que incluye a su punta, rodeándola con dicha pared cilindrica anular interior (2i) .
4. - Sistema según la reivindicación 1 , caracterizado porque dicho contenedor (2) de disolvente en estado líquido (Ls) se encuentra dispuesto adyacente a una parte distal de la aguja (1 ) que incluye a su punta, con una abertura de salida (A) para el disolvente evaporado (Gs) encarada hacia la zona de creación del cono de Taylor (Ct).
5. - Sistema según una cualquiera de las reivindicaciones anteriores, caracterizado porque comprende un generador de alta tensión (F) dispuesto y configurado para aplicar una alta tensión entre la aguja (1) y el colector (3), los cuales son metálicos, que produzca la dispensación por electrohilado de la substancia en solución (P) desde la aguja (1) hasta el colector (3) de manera que solidifique en su recorrido formando las fibras (Pt).
6. - Sistema según una cualquiera de las reivindicaciones anteriores, caracterizado porque la aguja (1) está dispuesta apuntando hacia arriba.
7. - Sistema según la reivindicación 6, caracterizado porque la aguja (1 ) está dispuesta de manera que su eje longitudinal transcurre en vertical o sustancialmente en vertical.
8. - Sistema según la reivindicación 6 u 7 cuando dependen de la 3, caracterizado porque el contenedor anular (2) está dispuesto en relación a la aguja (1) de manera que el nivel del disolvente en estado líquido (Ls) queda por debajo de la punta de la aguja (1 ), y porque tiene una abertura de salida (A) para el disolvente evaporado (Gs) encarada hacia arriba.
9. - Sistema según una cualquiera de las reivindicaciones anteriores 1 a 5, caracterizado porque la aguja (1 ) está dispuesta apuntando hacia abajo, porque el contenedor anular (2) está dispuesto en relación a la aguja (1) de manera que el nivel del disolvente en estado líquido (Ls) queda por encima de la punta de la aguja (1) y porque tiene una abertura de salida (A) para el disolvente evaporado (Gs) encarada hacia abajo.
10. - Sistema según la reivindicación 4 o la 5 cuando depende de la 4, caracterizado porque la aguja (1) está dispuesta de manera que su eje longitudinal transcurre en horizontal o sustancialmente en horizontal, quedando dispuesto el contenedor (2) de disolvente en estado líquido (Ls) por debajo de la aguja (1) con su abertura de salida (A) encarada hacia la zona de creación del cono de Taylor (Ct).
11. - Sistema según una cualquiera de las reivindicaciones anteriores, caracterizado porque comprende unos medios de control del proceso de evaporación del disolvente líquido (Ls) del contenedor (2).
12. - Sistema según la reivindicación 1 1 , caracterizado porque dichos medios de control comprenden una fuente de alta tensión (V) conectada al contenedor (2) para aplicarle una tensión independiente al contenedor (2) con el fin de modificar el campo electrostático en las proximidades de la aguja (1).
13. - Sistema según una cualquiera de las reivindicaciones anteriores, caracterizado porque comprende un dispositivo de control de la presión de inyección de la substancia en solución (P) a la aguja (1 ), con objeto de controlar la regularidad del proceso de inyección, y en consecuencia también la regularidad de las fibras formadas (Pt), y detectar obstrucciones en la aguja (1 ).
14. - Método para producir fibras por electrohilado, del tipo que comprende: a) dispensar, por electrohilado, una substancia en solución (P), por la punta de un tubo capilar o aguja (1), hacia un colector (3), de manera que la substancia (P) solidifique en su recorrido hacia el colector y forme unas fibras (Pt); y
b) generar, en la zona de creación del cono de Taylor (Ct), una atmósfera saturada de disolvente que retrase la evaporación del disolvente incluido en dicha substancia en solución (P), con el fin de evitar la solidificación prematura de la substancia en solución, mediante el suministro de disolvente en estado gaseoso (Gs) al entorno de salida de la punta de dicha aguja (1), incluyendo la zona de creación del cono de Taylor (Ct);
estando el método caracterizado porque comprende realizar dicho suministro de disolvente en estado gaseoso (Gs) de la etapa b) mediante la evaporación localizada, en las proximidades de la zona de creación del cono de Taylor (Ct), de un disolvente en estado líquido (Ls).
15. - Método según la reivindicación 14, caracterizado porque comprende realizar dicha etapa b) mediante la disposición y utilización de un contenedor (2) de disolvente en estado líquido (Ls) en las proximidades de la punta de la aguja (1), consistiendo dicha evaporación localizada en la evaporación de al menos parte del disolvente en estado líquido (Ls) contenido en el contenedor (2).
16. - Método según la reivindicación 15, caracterizado porque comprende refrigerar a la aguja (1) para disminuir la temperatura de la substancia en solución (P) que discurre por su interior alejándola de la temperatura de ebullición del disolvente contenido en la substancia en solución (P), con el fin de retrasar la evaporación del mismo y colaborar en evitar la solidificación prematura de la substancia en solución (P).
17. - Método según la reivindicación 16, caracterizado porque comprende llevar a cabo dicha refrigeración de la aguja (1) mediante el intercambio térmico producido por la evaporación del disolvente líquido (Ls) del contenedor (2).
18. - Método según la reivindicación 15, 16 ó 17, caracterizado porque se lleva a cabo utilizando el sistema según una cualquiera de las reivindicaciones 1 a 13.
PCT/ES2014/000115 2013-07-11 2014-07-07 Sistema y método para producir fibras por electrohilado WO2015004291A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201300654 2013-07-11
ES201300654A ES2534491B1 (es) 2013-07-11 2013-07-11 Sistema y método para producir fibras por electrohilado

Publications (1)

Publication Number Publication Date
WO2015004291A1 true WO2015004291A1 (es) 2015-01-15

Family

ID=52279379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/000115 WO2015004291A1 (es) 2013-07-11 2014-07-07 Sistema y método para producir fibras por electrohilado

Country Status (2)

Country Link
ES (1) ES2534491B1 (es)
WO (1) WO2015004291A1 (es)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060012084A1 (en) * 2004-07-13 2006-01-19 Armantrout Jack E Electroblowing web formation process
WO2006090150A1 (en) * 2005-02-24 2006-08-31 Smithkline Beecham Corporation Pharmaceutical composition comprising amorphous rosiglitazone
WO2009126870A2 (en) * 2008-04-11 2009-10-15 Virginia Commonwealth Unversity Electrospun dextran fibers and devices formed therefrom
US20100084793A1 (en) * 2008-10-02 2010-04-08 Taiwan Textile Research Institute Electro-spinning apparatus and electro-spinning method
WO2010112820A1 (en) * 2009-03-31 2010-10-07 The Science And Technology Facilites Council Electrospinning nozzle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060012084A1 (en) * 2004-07-13 2006-01-19 Armantrout Jack E Electroblowing web formation process
WO2006090150A1 (en) * 2005-02-24 2006-08-31 Smithkline Beecham Corporation Pharmaceutical composition comprising amorphous rosiglitazone
WO2009126870A2 (en) * 2008-04-11 2009-10-15 Virginia Commonwealth Unversity Electrospun dextran fibers and devices formed therefrom
US20100084793A1 (en) * 2008-10-02 2010-04-08 Taiwan Textile Research Institute Electro-spinning apparatus and electro-spinning method
WO2010112820A1 (en) * 2009-03-31 2010-10-07 The Science And Technology Facilites Council Electrospinning nozzle

Also Published As

Publication number Publication date
ES2534491A1 (es) 2015-04-23
ES2534491B1 (es) 2016-03-08

Similar Documents

Publication Publication Date Title
KR102111020B1 (ko) 증착 장치
KR101373782B1 (ko) 증발원 및 증착 장치
EP2519656B1 (en) Vaporization apparatus
US20200288778A1 (en) Vaporizer and aerosol generating device comprising same
JP4545010B2 (ja) 蒸着装置
JP5891956B2 (ja) 有機半導体装置の製造方法
JP2009174066A (ja) エレクトロスピニング装置用スピナレット
KR20130085642A (ko) 박막 증착 장치 및 방법
KR100666572B1 (ko) 유기물 증발장치
WO2015004291A1 (es) Sistema y método para producir fibras por electrohilado
KR101109690B1 (ko) 하향식 선형 증발원 및 이를 이용한 박막 형성 장치
JP5702139B2 (ja) 液体原料気化装置
JP2011183840A (ja) 液状推進薬タンク及びこの液状推進薬タンクを用いた蒸気噴射装置
BR102013001427B1 (pt) bocal de fiação combinado para a produção de materiais nanofibrosos e microfibrosos
KR20170059318A (ko) 혼합 유기물 기체의 단일 증발원
KR101217517B1 (ko) 증착 원료 분사 장치 및 이를 구비하는 박막 증착 장치
KR101741806B1 (ko) 리니어 분사체 및 이를 포함하는 증착장치
JP2006063447A (ja) 有機物蒸着装置
JP2006193761A (ja) 気化器及び気化器を有するプラズマ処理装置
JP5217027B2 (ja) 薄肉プラスチックボトルの加熱殺菌方法
JP2004324894A (ja) ガス供給装置
KR20140081567A (ko) 증발원용 도가니 및 이를 구비한 증착장치
JP2007000684A (ja) ノズル
CN104611841A (zh) 一种快速制备医用载药无纺布装置及方法
JP2014042874A (ja) 描画装置および描画装置の加湿ユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14822729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14822729

Country of ref document: EP

Kind code of ref document: A1