WO2015002370A1 - 액체연료 기화 시스템 - Google Patents

액체연료 기화 시스템 Download PDF

Info

Publication number
WO2015002370A1
WO2015002370A1 PCT/KR2014/000372 KR2014000372W WO2015002370A1 WO 2015002370 A1 WO2015002370 A1 WO 2015002370A1 KR 2014000372 W KR2014000372 W KR 2014000372W WO 2015002370 A1 WO2015002370 A1 WO 2015002370A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
combustion gas
unit
turbine
turbine unit
Prior art date
Application number
PCT/KR2014/000372
Other languages
English (en)
French (fr)
Inventor
박희호
Original Assignee
삼성테크윈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성테크윈 주식회사 filed Critical 삼성테크윈 주식회사
Publication of WO2015002370A1 publication Critical patent/WO2015002370A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/224Heating fuel before feeding to the burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/34Gas-turbine plants characterised by the use of combustion products as the working fluid with recycling of part of the working fluid, i.e. semi-closed cycles with combustion products in the closed part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/60Application making use of surplus or waste energy
    • F05D2220/62Application making use of surplus or waste energy with energy recovery turbines

Definitions

  • the present invention relates to a system, and more particularly to a liquid fuel vaporization system.
  • the liquid fuel vaporization system may be variously formed.
  • the liquid fuel vaporization system may generate electrical energy by compressing air supplied from the outside and then mixing and combusting the fuel with the fuel.
  • This liquid fuel vaporization system can supply fuel in gaseous form.
  • the liquid fuel vaporization system may be equipped with a device for vaporizing the fuel separately to vaporize the fuel.
  • various methods may be used to vaporize the fuel as described above, but in general, the fuel may be vaporized by supplying heat to the heater by receiving electrical energy from the outside.
  • a large amount of energy may be required to vaporize fuel by receiving electrical energy from the outside, which may reduce the overall efficiency of the liquid fuel vaporization system.
  • a large amount of energy is required to vaporize the fuel itself as described above, it may take a long time to drive the liquid fuel vaporization system by increasing the heating time.
  • Korean Patent Publication No. 0211341 name of the invention: a fuel supply device and a control device of the gas turbine, the patent holder: Toshiba Corp.
  • Embodiments of the present invention seek to provide a liquid fuel vaporization system that generates electricity from combustion gas and electricity supplied from a heat source.
  • a first turbine unit for generating first electric energy generated by mixing and combusting fuel after supplying and compressing external air, and discharging the first combustion gas
  • the first turbine unit and A first waste heat recovery unit connected to generate second electrical energy using the first combustion gas discharged from the first turbine unit, and receiving the second electrical energy generated by the first waste heat recovery unit
  • Liquid fuel vaporization comprising a fuel supply to vaporize the fuel supplied to the first turbine unit, and to mix the vaporized fuel and the first combustion gas passed through the first waste heat recovery unit to supply to the first turbine unit
  • Embodiments of the present invention can increase the efficiency of the liquid fuel vaporization system by vaporizing the fuel through the externally generated electrical energy to supply to the first turbine unit.
  • FIG. 1 is a conceptual diagram illustrating a liquid fuel vaporization system according to a first embodiment of the present invention.
  • FIG. 2 is a conceptual diagram illustrating a liquid fuel vaporization system according to a second embodiment of the present invention.
  • FIG. 3 is a conceptual view illustrating a liquid fuel vaporization system according to a third embodiment of the present invention.
  • FIG. 4 is a conceptual diagram illustrating a liquid fuel vaporization system according to a fourth embodiment of the present invention.
  • FIG. 5 is a conceptual diagram illustrating a liquid fuel vaporization system according to a fifth embodiment of the present invention.
  • a first turbine unit for generating first electric energy generated by mixing and combusting fuel after supplying and compressing external air, and discharging the first combustion gas
  • the first turbine unit and A first waste heat recovery unit connected to generate second electrical energy using the first combustion gas discharged from the first turbine unit, and receiving the second electrical energy generated by the first waste heat recovery unit
  • Liquid fuel vaporization comprising a fuel supply to vaporize the fuel supplied to the first turbine unit, and to mix the vaporized fuel and the first combustion gas passed through the first waste heat recovery unit to supply to the first turbine unit
  • the first waste heat recovery unit may include a second turbine that is operated by receiving the first combustion gas, and a second turbine that is connected to the second turbine to generate the second electrical energy according to the operation of the second turbine.
  • the generator may include a second power transmission unit connecting the second turbine and the second generator.
  • the second waste heat recovery unit may further include a heat exchanger configured to exchange heat between the first combustion gas and the second fluid, and a third fluid configured to receive the second fluid exchanged through the heat exchanger to generate the third electrical energy. And a condenser portion for condensing the second fluid discharged from the third turbine unit.
  • the first waste heat recovery unit may include an evaporator configured to evaporate a first fluid by heat exchange with the first combustion gas, and a second turbine configured to receive the first fluid evaporated from the evaporator to generate the second electric energy.
  • the unit may include a condenser for condensing the first fluid discharged from the second turbine unit, and a pump for supplying the first fluid discharged from the condenser to the evaporator.
  • the first waste heat recovery unit may include a heat exchanger for exchanging a third fluid circulating with the first combustion gas, an evaporator for exchanging a first fluid circulating with the third fluid passing through the heat exchanger, and the evaporator.
  • a second turbine unit configured to receive the first fluid evaporated from the second fluid to generate the second electrical energy, a condenser to condense the first fluid discharged from the second turbine unit, and a first fluid discharged from the condenser It may be provided with a pump for supplying to the evaporator.
  • the fuel after receiving and compressing external air, the fuel is mixed and combusted to generate first electric energy, and supply a first turbine unit for discharging the first combustion gas to the outside, external air and fuel.
  • a second turbine unit that receives the second electrical energy and discharges the second combustion gas, and vaporizes the fuel supplied to the first turbine unit by receiving the second electrical energy, and vaporizing the fuel and the second vaporized fuel. It is possible to provide a liquid fuel vaporization system including a fuel supply for supplying a mixture of combustion gas to the first turbine unit.
  • a first turbine unit for generating first electrical energy by mixing and combusting fuel after supplying and compressing external air, and discharging the first combustion gas to the outside
  • the first turbine unit Receiving a portion of the first combustion gas discharged from the gas, a mixer for mixing the nitrogen gas supplied from the outside and the first combustion gas, and the first combustion gas in which the nitrogen gas is mixed from the mixer;
  • the liquid fuel vaporization system may include a fuel supply unit configured to vaporize the liquid fuel supplied from the outside and mix the nitrogen gas and the first combustion gas to supply the first fuel unit to the first turbine unit.
  • the air supply from the outside may further include a nitrogen supply for separating and supplying the nitrogen gas to the mixer.
  • the water supply from the outside may further include a steam supply for vaporizing the water to supply to the mixer.
  • the fuel supply unit may include a fuel storage unit for storing the liquid fuel and a fuel vaporizer for vaporizing the liquid fuel from the fuel storage unit.
  • the apparatus may further include a waste heat recovery unit that recovers waste heat from the first combustion gas discharged from the first turbine unit to generate second electric energy.
  • the second electrical energy may be supplied to the fuel supply as an energy source for vaporizing the liquid fuel.
  • the gas supply unit may further include a natural gas supply unit connected to a flow path supplied from the fuel supplier to the first turbine unit to supply natural gas to the flow path.
  • the apparatus may further include a combustion gas supply unit installed between the mixer and the first turbine unit to supply the first combustion gas discharged from the first turbine unit to the mixer.
  • some of the first combustion gas discharged from the first turbine unit may supply thermal energy to vaporize at least a portion of the liquid fuel while flowing through the outer surface of the fuel supply.
  • FIG. 1 is a conceptual diagram illustrating a liquid fuel vaporization system 100 according to a first embodiment of the present invention.
  • the liquid fuel vaporization system 100 may include a first turbine unit 110 that generates first electrical energy generated by mixing and burning fuel after receiving external air.
  • the first turbine unit 110 may discharge the first combustion gas generated after burning the fuel.
  • the first turbine unit 110 may include a compressor 111 for receiving and compressing external air.
  • the first turbine unit 110 may be connected to the compressor 111 and may include a first turbine 113 for rotating the compressor 111.
  • the first turbine unit 110 may include a combustor 112 that receives compressed air and mixes and combusts fuel supplied from the fuel supplier 130 to be described later.
  • the combustor 112 may supply the first combustion gas generated after the fuel is combusted to the first turbine 113.
  • the first turbine 113 may operate according to the energy generated when the first combustion gas is generated and the movement of the first combustion gas.
  • the first turbine unit 110 may include a first generator 114 connected to the first turbine 113 to generate first electric energy. In this case, the first generator 114 may drive the external device by supplying the generated electricity to the external device.
  • the compressor 111, the combustor 112, and the first turbine 113 as described above may be separately formed and assembled to form the first turbine unit 110.
  • the compressor 111, the combustor 112, and the first turbine 113 may be integrally formed with each other and connected in a line to form the first turbine unit 110.
  • the compressor 111, the combustor 112, and the first turbine 113 are separately formed for convenience of description and will be described in detail with reference to the case where they are connected to each other.
  • liquid fuel vaporization system 100 is connected to the first turbine unit 110 to generate a first waste heat recovery unit using the first combustion gas discharged from the first turbine unit 110 to generate second electric energy ( 120).
  • the first waste heat recovery unit 120 may include a second turbine 121 operated by receiving the first combustion gas.
  • the first waste heat recovery unit 120 may include a second generator 123 connected to the second turbine 121 to generate second electric energy according to the operation of the second turbine 121.
  • the second turbine 121 and the second generator 123 may be connected to each other by the second power transmission unit 122.
  • the second power transmission unit 122 includes a plurality of connection shafts 122a, a coupling 122b for connecting the plurality of connection shafts 122a to each other, and a rotational force of the second turbine 121 at least one connection shaft ( It may include a gear unit 122c for transmitting to (122a).
  • the second power transmission unit 122 is not limited to the above, and may include all devices and all configurations for transmitting the rotational force of the second turbine 121 to the second generator 123, and a plurality of Since the connection shaft 122a, the coupling 122b and the gear unit 122c are the same as the general configuration, detailed description thereof will be omitted.
  • the liquid fuel vaporization system 100 may include a fuel supplier 130 that receives the second electric energy generated by the first waste heat recovery unit 120 and vaporizes the fuel supplied to the first turbine unit 110.
  • the fuel supplier 130 may mix the vaporized fuel and the first combustion gas passing through the first waste heat recovery unit 120 to supply the mixed fuel to the first turbine unit 110.
  • the fuel supplier 130 may supply fuel to the combustor 112.
  • the fuel supplier 130 may include a fuel reservoir 131 for storing fuel in a liquid state.
  • the fuel supplier 130 may include a fuel vaporizer 132 that receives the liquid fuel from the fuel reservoir 131 and vaporizes it.
  • the fuel vaporizer 132 may have a space formed therein, and the heater 132a may be installed to supply heat to vaporize the fuel.
  • the fuel supplier 130 may include a fuel supply pump 133 installed between the fuel reservoir 131 and the fuel vaporizer 132 to supply fuel from the fuel reservoir 131 to the fuel vaporizer 132. .
  • the fuel supplier 130 may include a fuel control valve 134 for controlling the amount of fuel discharged from the fuel supply pump 133.
  • the fuel supplier 130 is not limited to the above configuration and may include any device for supplying the vaporized fuel to the first turbine unit 110 after storing and vaporizing the liquid fuel.
  • the liquid fuel vaporization system 100 may include a first flow path 191 for guiding the first combustion gas discharged from the first turbine unit 110 to the first waste heat recovery unit 120.
  • the liquid fuel vaporization system 100 includes a first flow path 192 for guiding the first combustion gas from the first waste heat recovery unit 120 to the fuel supply unit 130 and a first turbine unit (from the fuel supply unit 130). It may include a third flow path 193 for guiding the fuel to which the first combustion gas is coupled to 110.
  • the liquid fuel vaporization system 100 is installed in at least one of the first flow passage 191 to the third flow passage 193 to control the amount of the first combustion gas or the amount of fuel mixed with the first combustion gas flow control valve 140 may be included.
  • the flow control valve 140 will be described in detail with reference to the case where the flow control valve 140 is installed on the second flow passage 192 for convenience of description.
  • the operation of the liquid fuel vaporization system 100 is formed as described above, first, when the first turbine unit 110 operates, air is supplied from the outside, and the fuel supply unit 130 burns the vaporized fuel in the combustor. Can be supplied to (112). At this time, during the initial driving, the current may be applied to the fuel vaporizer 132 to vaporize the liquid fuel.
  • the air compressed through the compressor 111 is supplied to the combustor 112, and the fuel vaporized through the third flow path 193 is discharged from the fuel vaporizer 132. May be supplied to the combustor 112.
  • the combustor 112 may generate the first combustion gas by burning the vaporized fuel by igniting the compressed air and the vaporized fuel in a mixed state.
  • the first combustion gas as described above may operate the first turbine 113 while moving from the combustor 112 to the first turbine 113.
  • the first generator 114 may be operated according to the operation of the first turbine 113, and the first generator 114 may generate first electric energy.
  • the first combustion gas may be supplied to the first waste heat recovery unit 120 through the first flow path 191.
  • the first combustion gas may be supplied from the first turbine 113 to the second turbine 121 along the first flow passage 191.
  • the second turbine 121 may operate to operate the second generator 123.
  • the second power transmission unit 122 may supply the rotational force of the second turbine 121 to the second generator 123.
  • the second generator 123 operates, and the second generator 123 may generate second electric energy according to the operation.
  • the second electrical energy formed as described above may be supplied to the fuel vaporizer 132. In particular, it may be supplied to the heater 132a of the fuel vaporizer 132 to operate the heater 132a.
  • the first combustion gas that operates the second turbine 121 may be supplied to the fuel vaporizer 132 through the second flow path 192.
  • the fuel supply pump 133 may operate to supply fuel to the fuel vaporizer 132.
  • the first combustion gas and the vaporized fuel may be supplied to the first turbine unit 110 through the third flow passage 193.
  • the fuel mixed with the first combustion gas may be supplied to the combustor 112.
  • the flow control valve 140 may control the amount of the first combustion gas flowing through the second flow path (192). At this time, the flow control valve 140 is the amount of the first combustion gas flowing through the second flow path 192 according to the operation of the first turbine unit 110, that is, the amount of current generated in the first generator 114. Can be controlled. In addition, the flow control valve 140 may be controlled according to the type of fuel supplied to the first turbine unit 110. Specifically, the flow control valve 140 may control the amount of the first combustion gas according to the content of carbon or hydrogen of the fuel supplied to the first turbine unit 110. For example, when the carbon or hydrogen content of the fuel is large, the amount of the first combustion gas may be controlled to increase.
  • the opening degree of the flow control valve 140 may be set in advance, and the opening degree of the flow control valve 140 may be set according to the type of fuel.
  • the flow control valve 140 may control the amount of the first combustion gas by discharging a part of the first combustion gas that moves the second flow path 192 to the outside or supplying it to another external device.
  • the flow control valve 140 may include a three-way valve installed in the second flow passage 192.
  • the liquid fuel vaporization system 100 may increase the overall efficiency of the liquid fuel vaporization system 100 by utilizing the waste heat generated during operation of the first turbine unit 110 for the heat required for vaporizing the fuel.
  • liquid fuel vaporization system 100 controls the Weber Index through the inert gas included in the first combustion gas by mixing the vaporized fuel and the first combustion gas, thereby causing malfunction of the liquid fuel vaporization system 100. Can be prevented.
  • FIG. 2 is a conceptual diagram illustrating a liquid fuel vaporization system 200 according to a second embodiment of the present invention.
  • the liquid fuel vaporization system 200 includes a first turbine unit 210, a fuel supplier 230, a first flow path 291, a second flow path 292, a third flow path 293, and a flow rate. It may include a control valve 240.
  • the first turbine unit 210 may include a compressor 211, a combustor 212, a first turbine 213, and a first generator 214. Since the compressor 211, the combustor 212, the first turbine 213, and the first generator 214 are the same as or similar to those described with reference to FIG. 1, detailed description thereof will be omitted. However, hereinafter, the compressor 211, the combustor 212, and the first turbine 213 will be described in detail with reference to a case where the compressor is integrally formed.
  • the fuel supplier 230 may include a fuel reservoir 231, a fuel vaporizer 232, a fuel supply pump 233, and a fuel control valve 234.
  • a fuel reservoir 231 a fuel vaporizer 232, a fuel supply pump 233, and a fuel control valve 234.
  • first flow path 291, the second flow path 292, the third flow path 293, and the flow control valve 240 are the same as or similar to those described with reference to FIG. 1, detailed descriptions thereof will be omitted.
  • the flow control valve 240 will be described in detail with respect to the case disposed on the second flow path (292).
  • the liquid fuel vaporization system 200 is at least one of the first waste heat recovery unit 220 and the second waste heat recovery unit 250 to recover the waste heat by heat exchange with the first combustion gas discharged from the first turbine unit 210 It may include one.
  • the first waste heat recovery unit 220 may generate a second electric energy
  • the second waste heat recovery unit 250 may generate a third electric energy.
  • the third electric energy may be supplied to the fuel vaporizer 232 to supply energy required to vaporize the fuel.
  • the liquid fuel vaporization system 200 includes both the first waste heat recovery unit 220 and the second waste heat recovery unit 250, the third electric energy may be used as energy for an external device.
  • the liquid fuel vaporization system 200 will be described in detail with reference to a case in which both the first waste heat recovery unit 220 and the second waste heat recovery unit 250 are included.
  • the first waste heat recovery unit 220 as described above may include an evaporator 221 for evaporating the first fluid by heat exchange with the first combustion gas.
  • the first waste heat recovery unit 220 may include a second turbine unit 222 that receives the first fluid evaporated from the evaporator 221 and generates second electric energy.
  • the second turbine unit 222 is connected to the second turbine 222a that operates according to the movement of the first fluid, and the second turbine 222a to supply the second electric energy when the second turbine 222a is operated. It may include a second generator 222b to generate.
  • the first waste heat recovery unit 220 may include a condenser 223 to condense and liquefy the first fluid discharged from the second turbine unit 222.
  • the first waste heat recovery unit 220 may include a pump 224 for supplying the first fluid discharged from the condenser 223 back to the evaporator 221.
  • the first waste heat recovery unit 220 as described above may include a first circulation passage 225 through which the first fluid moves.
  • the first circulation passage 225 may not be connected to the first passage 291, and the first fluid may not be mixed with the first combustion gas.
  • the first circulation passage 225 may enter the evaporator 221 together with the first passage 291 to perform heat exchange between the first fluid and the first combustion gas.
  • the first waste heat recovery unit 220 may be connected to the condenser 223 and may include a first cooling circulation passage 226 through which the first coolant circulates, and disposed on the first cooling circulation passage 226. It may be provided with a cooling unit 227.
  • the cooling unit 227 may be formed in various forms, for example, it may be provided with a cooling fan, a cooling tower. However, hereinafter, the cooling unit 227 will be described in detail with reference to a case in which the cooling unit includes a cooling fan for convenience of description.
  • the second waste heat recovery unit 250 is vaporized by heat exchange with the first combustion gas on the flow path of the first combustion gas moving from the first turbine unit 210 to the first waste heat recovery unit 220 as described above
  • the third electrical energy may be generated through the second fluid.
  • the second waste heat recovery unit 250 may include a heat exchanger 251 disposed on the first flow path 291 to exchange heat between the first combustion gas and the second fluid.
  • the second waste heat recovery unit 250 may include a third turbine unit 252 that receives the second fluid heat-exchanged in the heat exchanger 251 to generate third electric energy.
  • the third turbine unit 252 is connected to the third turbine 252a and the third turbine 252a which is operated by receiving the second fluid, and generates the third electric energy according to the operation of the third turbine 252a. It may be provided with a third generator 252b to generate.
  • the second waste heat recovery unit 250 may include a condenser unit 253 for condensing the second fluid discharged from the third turbine 252a.
  • the condenser 253 may condense the second fluid by heat-exchanging the external first coolant and the second fluid.
  • the second waste heat recovery unit 250 may include a second circulation passage 254 in which the heat exchange unit 251, the third turbine unit 252, and the condenser unit 253 are installed to circulate the second fluid.
  • the second waste heat recovery unit 250 may be connected to the condenser 253 and may include a second cooling circulation passage 255 through which an external second coolant circulates.
  • the compressor 211 and the fuel vaporizer 232 may operate.
  • the fuel vaporizer 232 may supply the vaporized fuel to the combustor 212 through the third flow path 293, the compressor 211 may compress the outside air to supply the compressed air to the combustor 212. have.
  • the combustor 212 may burn after mixing air and fuel.
  • the combustor 212 may generate a first combustion gas, and the first combustion gas may be supplied from the combustor 212 to the first turbine 213 to operate the first turbine 213.
  • the first generator 214 may operate and the first generator 214 may generate first electric energy and supply it to an external device.
  • the first combustion gas is discharged from the first turbine 213 to move through the first flow path 291.
  • the first combustion gas is supplied to the evaporator 221, and the evaporator 221 may evaporate the first fluid by heat exchange between the first combustion gas and the first fluid.
  • the first fluid evaporated as described above may be supplied to the second turbine 222a along the first circulation passage 225 to operate the second turbine 222a.
  • the second generator 222b may generate second electric energy according to the operation of the second turbine 222a to supply the second electric energy to the fuel vaporizer 232.
  • the second electrical energy supplied as described above may be used as an energy source for vaporizing fuel in the fuel vaporizer 232.
  • the first fluid may be supplied from the second turbine 222a to the condenser 223 along the first circulation passage 225.
  • the condenser 223 may condense the first fluid through heat exchange between the first fluid and the first coolant.
  • the first fluid condensed as described above is supplied to the evaporator 221 again through the pump 224, and the above process may be repeatedly performed.
  • the first cooling circulation passage 226, the first coolant whose temperature rises while passing through the condenser 223 while the first coolant continues to circulate by the first cooling unit 227.
  • the temperature may drop.
  • the first fluid discharged from the second turbine 222a may be condensed by heat exchange with the first coolant in the condenser 223.
  • the first fluid condensed and discharged from the condenser 223 may be repeatedly supplied to the evaporator 221 through the pump 224, such that the above operation may be repeatedly performed.
  • the second waste heat recovery unit 250 may generate third electric energy from the first combustion gas.
  • the first turbine unit 210 when the first turbine unit 210 is operated to discharge the first combustion gas as described above, the first turbine unit 210 may exchange heat between the second fluid and the first combustion gas in the heat exchanger 251 on the first flow path 291. .
  • the heat exchanged second fluid may be supplied to the third turbine 252a.
  • the third turbine 252a may operate by the second fluid, and the third generator 252b may generate third electric energy by the third turbine 252a.
  • the third electrical energy may be used as an energy source of the external device.
  • the second fluid discharged through the third turbine 252a is supplied to the condenser 253 through the second circulation passage 254, and the condenser 253 opens the second cooling circulation passage 255.
  • the second fluid may be condensed through heat exchange between the second coolant and the second fluid introduced therethrough.
  • the second fluid condensed as described above may be supplied to the heat exchanger 251 again to repeat the above process.
  • the first combustion gas may move from the first waste heat recovery unit 220 along the second flow path 292.
  • the liquid fuel vaporization system 200 may include a buffer tank 280 disposed on the second flow path 292 to smoothly flow the first combustion gas.
  • the buffer tank 280 as described above temporarily prevents the first combustion gas from flowing backward or unevenly supplied on the second flow path 292 by temporarily storing the first combustion gas.
  • the first combustion gas may pass through the buffer tank 280 and be supplied to the fuel vaporizer 232 through the second flow path 292.
  • the flow control valve 240 may control the amount of the first combustion gas by adjusting the opening degree of the second flow path 292. Since the control method of the flow control valve 240 is similar to that described above, a detailed description thereof will be omitted.
  • the fuel vaporizer 232 may mix the fuel vaporized with the first combustion gas through the first electrical energy. At this time, the mixing method may be used by mixing by general diffusion. The fuel vaporizer 232 may supply the first combustion gas and the fuel to the combustor 212 when the first combustion gas and the fuel are mixed.
  • the liquid fuel vaporization system 200 may increase the overall efficiency of the liquid fuel vaporization system 200 by utilizing the waste heat generated during operation of the first turbine unit 210 for the heat required for vaporization of the fuel.
  • liquid fuel vaporization system 200 controls the Weber index through the inert gas included in the first combustion gas by mixing the vaporized fuel and the first combustion gas to malfunction of the liquid fuel vaporization system 200. Can be prevented.
  • the liquid fuel vaporization system 200 increases the efficiency of the liquid fuel vaporization system 200 by discharging the energy contained in the first combustion gas through the first waste heat recovery unit 220 and the second waste heat recovery unit 250. You can.
  • FIG. 3 is a conceptual diagram illustrating a liquid fuel vaporization system 300 according to a third embodiment of the present invention.
  • the liquid fuel vaporization system 300 includes a first turbine unit 310, a first waste heat recovery unit 320, a first flow path 391, a second flow path 392, and a third flow path 393. ), A fuel supply 330 and a flow control valve 340 may be included.
  • the first flow passage 391, the second flow passage 392, the third flow passage 393, the fuel supplier 330, and the flow control valve 340 are the same as or similar to those described with reference to FIG. 1, detailed description thereof will be omitted. Let's do it.
  • the first turbine unit 310 may include a compressor 311, a combustor 312, a first turbine 313, and a first generator 314.
  • the compressor 311, the combustor 312, the first turbine 313, and the first generator 314 are the same as or similar to those described with reference to FIG. 1, detailed descriptions thereof will be omitted.
  • the compressor 311, the combustor 312 and the first turbine 313 may be integrally formed or separately formed as described above. However, hereinafter, the compressor 311, the combustor 312, and the first turbine 313 are separately formed for convenience of description and will be described in detail with reference to the case where they are connected to each other.
  • the first waste heat recovery unit 320 may include a heat exchanger 321 for heat-exchanging the third fluid circulated with the first combustion gas.
  • the heat exchanger 321 may be connected to a third circulation passage 399 through which the third fluid circulates, and a fluid pump 398 for moving the third fluid may be installed in the third circulation passage 399.
  • the heat exchanger 321 may be connected to the first flow path 391 and may be connected to the second flow path 392.
  • the second flow path 392 may move the first combustion gas heat exchanged with the third fluid.
  • the heat exchanger 321 may be connected to the evaporator 322 which will be described later through the fourth flow path 394.
  • the first waste heat recovery unit 320 may include an evaporator 322 through which the third fluid passing through the heat exchanger 321 and the first fluid circulating exchange heat. At this time, the evaporator 322 may be responsible for heat exchange between the first fluid and the third fluid that moves the first circulation passage 326.
  • the first waste heat recovery unit 320 may include a second turbine unit 323 installed on the first circulation passage 326.
  • the second turbine unit 323 includes a second turbine 323a that operates according to the supply of the first fluid and a second generator 323b that is connected to the second turbine 323a to generate second electric energy. can do.
  • the first waste heat recovery unit 320 may include a condenser 324 for condensing the first fluid discharged from the second turbine 323a.
  • the condenser 324 may heat-exchange the first fluid and the second coolant that moves the first cooling circulation passage 327 connected to an external cooling unit (not shown).
  • the first waste heat recovery unit 320 may include a pump 325 for supplying the first fluid discharged from the condenser 324 to the evaporator 322. At this time, the pump 325 may adjust the pressure and speed during the movement of the first fluid.
  • the fuel vaporized in the fuel vaporizer 332 may be supplied to the combustor 312.
  • the compressor 311 may compress the outside air and supply the compressed air to the combustor 312.
  • the combustor 312 may mix the compressed air and the vaporized fuel to combust to generate the first combustion gas.
  • the first combustion gas may be supplied to the heat exchanger 321 through the first flow path 391.
  • the heat exchanger 321 may raise the temperature of the third fluid through heat exchange between the third fluid introduced from the outside and the first combustion gas.
  • the third fluid having the elevated temperature may be supplied to the evaporator 322 through the fourth flow path 394.
  • the evaporator 322 may evaporate the first fluid through heat exchange between the first fluid and the third fluid moving through the first circulation passage 326.
  • the first fluid evaporated as described above is supplied to the second turbine 323a to operate the second turbine 323a, and according to the operation of the second turbine 323a, the second generator 323b receives the second electrical energy. It may be generated and supplied to the fuel vaporizer 332.
  • the first fluid as described above moves from the second turbine 323a to the condenser 324, is condensed through heat exchange with the second fluid in the condenser 324, and then fed back to the evaporator 322 through the pump 325. Can be.
  • the first combustion gas may move through the heat exchanger 321 to the fuel vaporizer 332 through the second flow passage 392.
  • the fuel vaporizer 332 may mix the first combustion gas and the vaporized fuel introduced while simultaneously vaporizing the fuel supplied from the fuel supplier 331 using the second electric energy.
  • the flow control valve 340 may control the amount of the first combustion gas that moves the second flow path 392. At this time, since the operation of the flow control valve 340 is the same or similar to that described above, a detailed description thereof will be omitted.
  • the vaporized fuel and the first combustion gas may be supplied to the combustor 312 from the fuel vaporizer 332 along the third flow path 393 in a mixed state.
  • the liquid fuel vaporization system 300 may increase the overall efficiency of the liquid fuel vaporization system 300 by utilizing the waste heat generated during operation of the first turbine unit 310 for the heat required for vaporization of the fuel.
  • liquid fuel vaporization system 300 by controlling the Weber Index (Wobber Index) through the inert gas included in the first combustion gas by mixing the vaporized fuel and the first combustion gas malfunction of the liquid fuel vaporization system 300 Can be prevented.
  • Weber Index Widebber Index
  • FIG. 4 is a conceptual diagram illustrating a liquid fuel vaporization system 400 according to a fourth embodiment of the present invention.
  • the liquid fuel vaporization system 400 receives and compresses external air and mixes and combusts fuel to generate first electric energy, and discharges the first combustion gas to the outside.
  • 410 may be included.
  • the first turbine unit 410 may include a first compressor 411, a first combustor 412, a first turbine 413, and a first generator 414.
  • the first compressor 411, the first combustor 412, the first turbine 413, and the first generator 414 may include the compressor 111, the combustor 112, and the first turbine of FIG. 1. 113) and the first generator 114, respectively, are the same or similar, so a detailed description thereof will be omitted.
  • the liquid fuel vaporization system 400 may include a second turbine unit 420 that receives air and fuel from the outside to generate second electric energy and discharge the second combustion gas.
  • the second turbine unit 420 may be a micro turbine unit.
  • the second turbine unit 420 may be a general turbine unit. However, hereinafter, the second turbine unit 420 will be described in detail with reference to a case where the micro turbine unit is a micro form for convenience of description.
  • the second turbine unit 420 may include a second compressor 421, a second combustor 422, a second turbine 423, and a second generator 424.
  • the second compressor 421, the second combustor 422, the second turbine 423, and the second generator 424 may include the first compressor 411, the first combustor 412, and the first turbine 413. And since the same as or similar to the first generator 414, detailed description thereof will be omitted.
  • the second turbine unit 420 as described above may use liquid fuel as it is.
  • the second turbine unit 420 may use a vaporized fuel similar to the first turbine unit 410.
  • the second turbine unit 420 will be described in detail with reference to the case of using the liquid fuel for convenience of description.
  • the liquid fuel vaporization system 400 receives the second electric energy to vaporize the fuel supplied to the first turbine unit 410, and mixes the vaporized fuel and the second combustion gas to form the first turbine unit 410. It may include a fuel supplier 430 to supply.
  • the fuel supplier 430 includes a fuel reservoir 431 for storing fuel and a fuel vaporizer 432 connected to the fuel reservoir 431 and for vaporizing fuel supplied from the fuel reservoir 431. can do.
  • the fuel supplier 430 may include a fuel supply pump 433 and a fuel control valve 434 installed between the fuel reservoir 431 and the fuel vaporizer 432.
  • the fuel reservoir 431 may store the fuel in the liquid state, and may supply the fuel in the liquid state to the second turbine unit 420.
  • the fuel vaporizer 432 may be supplied with the liquid fuel stored in the fuel reservoir 431 and may be mixed with the vaporized fuel by receiving the second combustion gas.
  • the first turbine unit 410 and the second turbine unit 420 may operate.
  • the fuel reservoir 431 may supply fuel to the second turbine unit 420
  • the fuel vaporizer 432 may supply fuel to the first turbine unit 410.
  • the second combustor 422 may generate a second combustion gas by mixing and combusting the fuel supplied from the fuel reservoir 431 and the compressed air through the second compressor 421.
  • the second combustion gas formed as described above may be supplied to the second turbine 423.
  • the second generator 424 may also operate according to the operation of the second turbine 423, and the second generator 424 may generate second electric energy.
  • the second electric energy generated as described above may be provided to the fuel vaporizer 432 and used as energy for vaporizing fuel.
  • the second combustion gas supplied to the second turbine 423 may be discharged from the second turbine 423 and supplied to the fuel vaporizer 432.
  • the fuel vaporizer 432 may mix the vaporized fuel and the second combustion gas to supply the first combustor 412.
  • the first combustor 412 may operate by receiving the compressed air, the vaporized fuel, and the second combustion gas from the first compressor 411.
  • the first combustor 412 may generate the first combustion gas by igniting and burning the vaporized fuel.
  • the first combustion gas generated as described above may be supplied to the first turbine 413 and operate the first turbine 413.
  • the first generator 414 may operate according to the operation of the first turbine 413 to generate the first electric energy and supply it to an external device.
  • the liquid fuel vaporization system 400 may prevent the malfunction of the first turbine unit 410 by mixing the second combustion gas with the vaporized fuel.
  • the liquid fuel vaporization system 400 may set a web number suitable for combustion in the first combustor 412 by mixing a second combustion gas containing an inert gas with the vaporized fuel as described above.
  • FIG. 5 is a conceptual diagram illustrating a liquid fuel vaporization system 500 according to a fifth embodiment of the present invention.
  • the liquid fuel vaporization system 500 receives external air, compresses and compresses fuel after combustion to generate first electrical energy, and discharges the first combustion gas to the outside.
  • the first turbine unit 510 may include a compressor 511, a combustor 512, a first turbine 513, and a first generator 514 as described above.
  • the compressor 511, the combustor 512, the first turbine 513, and the first generator 514 are the same as or similar to those described with reference to FIGS. 1 to 4, and thus a detailed description thereof will be omitted.
  • the liquid fuel vaporization system 500 may include a mixer 520 that receives a portion of the first combustion gas discharged from the first turbine unit 510 and mixes the nitrogen gas supplied from the outside.
  • the first combustion gas may be discharged from the first turbine 513 and supplied to the mixer 520.
  • the liquid fuel vaporization system 500 may include a combustion gas supply unit 530 installed between the first turbine unit 510 and the mixer 520.
  • the combustion gas supply unit 530 flows from the first pump 531 to the mixer 520 and the first pump 531 to flow the first combustion gas between the mixer 520 and the first turbine unit 510. It may be provided with a first valve 532 for adjusting the amount of the first combustion gas.
  • the liquid fuel vaporization system 500 may include a nitrogen supply unit 540 for supplying air from the outside to separate the nitrogen gas and supply it to the mixer 520.
  • the nitrogen supply unit 540 may include a nitrogen separator 541 for separating nitrogen gas from air and a second valve 542 for adjusting nitrogen gas supplied from the nitrogen separator 541 to the mixer 520. have.
  • the liquid fuel vaporization system 500 may include a steam supply unit 550 that receives water from the outside and vaporizes the water to supply the mixer 520.
  • the steam supply unit 550 may include a second pump 551 for receiving and flowing water from the outside.
  • the steam supply unit 550 may include a first heating unit 552 to vaporize the water supplied from the second pump 551.
  • the steam supply unit 550 is installed between the first heating unit 552 and the mixer 520 to adjust the amount of water vapor flowing from the first heating unit 552 to the mixer 520. It may be provided.
  • the liquid fuel vaporization system 500 may include a fuel supplier 560 that receives a first combustion gas in which nitrogen gas and water vapor are mixed from the mixer 520, and vaporizes the liquid fuel supplied from the outside.
  • the fuel supplier 560 may mix nitrogen gas, water vapor, the first combustion gas, and the vaporized fuel to supply the first turbine unit 510.
  • the fuel supplier 560 as described above may include a fuel reservoir 561 for storing liquid fuel.
  • the fuel supplier 560 may include a fuel vaporizer 562 for vaporizing liquid fuel received from the fuel reservoir 561.
  • the fuel vaporizer 562 may be provided with a heater to vaporize the liquid fuel by supplying electrical energy supplied from the outside to the heater.
  • a fuel supply pump (not shown) and a fuel control valve (not shown) are installed between the fuel reservoir 561 and the fuel vaporizer 562 to store the fuel reservoir 561. It is possible to control the amount of liquid fuel supplied to the fuel vaporizer 562 in the.
  • the liquid fuel vaporization system 500 may include a waste heat recovery unit 570 that recovers waste heat of the first ointment gas discharged from the first turbine unit 510 to generate second electrical energy.
  • the waste heat recovery unit 570 may be formed in the same or similar to the first waste heat recovery unit 120, 220, 320 to the second waste heat recovery unit 250 of FIGS.
  • the waste heat recovery unit 570 may generate the second electric energy by recovering the waste heat of the first combustion gas, and generate heat energy for vaporizing the liquid fuel by supplying the generated second electric energy to a heater.
  • the method of generating the second electric energy in the waste heat recovery unit 570 has been described in detail with reference to FIGS.
  • the liquid fuel vaporization system 500 may vaporize the liquid fuel by circulating a part of the first combustion gas to the fuel supply 560 in addition to the above method.
  • the waste heat recovery unit 570 may include a heat exchange pipe (not shown) for circulating at least one of the fuel reservoir 561 and the fuel vaporizer 562, and the fuel reservoir 561 and the fuel vaporizer 562. It may be provided with a heat exchanger (not shown) installed in at least one of.
  • the first combustion gas may heat at least one of the interior of the fuel reservoir 561 and the interior of the fuel vaporizer 562 by circulating at least one of the fuel reservoir 561 and the fuel vaporizer 562. have.
  • the first combustion gas is supplied as described above, the liquid fuel may be vaporized through the waste heat of the first combustion gas.
  • waste heat recovery unit 570 will be described in detail with reference to a case in which the heat exchange pipe is installed to surround the outer surface of the fuel vaporizer 562.
  • the liquid fuel vaporization system 500 is installed between the fuel supply 560 and the first turbine unit 510 to supply nitrogen gas, water vapor, and vaporized fuel supplied from the fuel supply 560 to the first turbine unit 510.
  • a fourth valve 591 may be provided to control the amount.
  • the liquid fuel vaporization system 500 may include a natural gas supply unit 580 connected to a flow path supplied from the fuel supplier 560 to the first turbine unit 510 to supply natural gas to the flow path.
  • the natural gas supply unit 580 in the natural gas storage unit 581 for storing natural gas the third pump 582 and the third pump 582 for flowing the natural gas stored in the natural gas storage unit 581.
  • a fifth valve 583 may be provided to control the amount of natural gas supplied to the combustor 512.
  • the fifth valve 583 may selectively supply natural gas to the combustor 512.
  • the fifth valve 583 may operate to supply or block natural gas according to the components of the liquid fuel.
  • the fifth valve 583 may be operated automatically or manually.
  • the fifth valve 583 is opened for convenience of description and will be described in detail with reference to a case where natural gas is mixed.
  • the liquid fuel vaporization system 500 adjusts the opening degree of the line in which the nitrogen gas, water vapor and vaporized fuel discharged from the fourth valve 591 and the natural gas discharged from the fifth valve 583 are mixed. It may include a valve 592.
  • the liquid fuel vaporization system 500 may be driven in various forms. Specifically, when the liquid fuel vaporization system 500 starts to drive, the natural gas is supplied to the combustor 512, and when the predetermined time elapses after the start of driving or when a specific condition is satisfied, the natural gas and the vaporized fuel are mixed to combust the burner 512. Can be operated to feed When a predetermined time has elapsed after the operation as described above or when a specific condition is satisfied, the liquid fuel vaporization system 500 may operate to supply and burn only the vaporized fuel to the combustor 512.
  • liquid fuel vaporization system 500 may operate by mixing and supplying natural gas and vaporized fuel to the combustor 512 while starting the drive and combusting the gas.
  • liquid fuel vaporization system 500 supplies only natural gas to the combustor 512 at the start of driving, and then mixes natural gas and vaporized fuel when a certain time elapses after the start of driving or satisfies specific conditions. Can continue to be operated.
  • the liquid fuel vaporization system 500 is not limited to the above, it is also possible to operate in various combinations. However, hereinafter, for convenience of description, the case where the natural gas and the vaporized fuel are mixed and supplied to the combustor 512 from the driving start to the driving end of the liquid fuel vaporization system 500 will be described in detail.
  • the fuel vaporized in the fuel supply unit 560 and the natural gas supplied from the natural gas supply unit 580 may be mixed and supplied to the combustor 512.
  • the combustor 512 may receive the compressed air from the compressor 511 and burn the vaporized fuel and natural gas to supply the first turbine 513.
  • the first combustion gas is generated to operate the first turbine 513
  • the first turbine 513 may operate the first generator 514 to generate the first electrical energy.
  • the first electrical energy generated as described above may be supplied to an external device (not shown) and used as an energy source for operating the external device.
  • the first combustion gas may be discharged from the first turbine 513.
  • the first combustion gas may flow into the mixer 520 after passing through the first valve 532 through the first pump 531.
  • the nitrogen supply unit 540 operates from outside to generate nitrogen gas, and the generated nitrogen gas may be supplied from the nitrogen supply unit 540 to the mixer 520 through the second valve 542.
  • the second pump 551 supplies external water to the first heating unit 552, and the first heating unit 552 generates water vapor to the mixer 520 through the third valve 553. Can be supplied.
  • the mixer 520 may mix the first combustion gas, the nitrogen gas, and the water vapor, and supply the mixture to the fuel vaporizer 562.
  • the fuel reservoir 561 may supply liquid fuel to the fuel vaporizer 562.
  • the fuel reservoir 561 may spray or inject liquid fuel into the fuel vaporizer 562 to supply small particles of liquid fuel.
  • thermal energy may be supplied to the inside of the fuel vaporizer 562 by the first combustion gas flowing through the waste heat recovery unit 570.
  • separate electric energy may be applied to the heater of the fuel vaporizer 562 to supply thermal energy to the fuel vaporizer 562.
  • the liquid fuel may be vaporized by the thermal energy.
  • the vaporized fuel may be mixed with the first combustion gas, nitrogen gas, water vapor.
  • the ratio of the fuel, the first combustion gas, the nitrogen gas, and the water vapor is mixed by the first valve 532 to the third valve 553, the first pump 531, and the second pump 551. Can be adjusted.
  • the fuel in which the first combustion gas, the nitrogen gas, and the water vapor are mixed may be discharged from the fuel vaporizer 562 and supplied to the combustor 512 through the fifth valve 583 and the sixth valve 592.
  • the natural gas supply unit 580 may supply natural gas to a flow path in which the sixth valve 592 is disposed through the fourth valve 591.
  • the fuel in which the first combustion gas, the nitrogen gas, and the water vapor is mixed is mixed with the natural gas to enter the sixth valve 592, and the combustor 512 passes through the sixth valve 592. Can be supplied.
  • the combustor 512 may mix and combust the compressed air, vaporized fuel, and natural gas supplied from the compressor 511 as described above. Thereafter, the above operation may be repeatedly performed to operate the liquid fuel vaporization system 500.
  • the liquid fuel vaporization system 500 can increase the system efficiency by using a mixture of natural gas and vaporized fuel as described above.
  • the liquid fuel vaporization system 500 may minimize environmental pollution by using a kind of fuel mixed with natural gas such as renewable energy or biofuel, methanol, and the like.
  • liquid fuel vaporization system 500 mixes the liquid fuel with the first combustion gas, water vapor, and nitrogen gas and supplies the same to the first turbine unit 510, a high heat quantity of general fuel (for example, diesel, gasoline, etc.) It can be adjusted to ensure the stability of the system.
  • general fuel for example, diesel, gasoline, etc.
  • embodiments of the present invention by providing a liquid fuel vaporization system for vaporizing liquid fuel to increase the efficiency of the entire system, embodiments of the present invention, such as power generation systems, engine systems, turbine systems using natural gas You can apply them.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

본 발명은 액체연료 기화 시스템을 개시한다. 본 발명은, 외부 공기를 공급받아 압축한 후 연료를 혼합하여 연소시켜 발생하는 제 1 전기에너지를 생성하며, 제 1 연소가스를 토출하는 제 1 터빈 유닛과, 상기 제 1 터빈 유닛과 연결되어 상기 제 1 터빈 유닛으로부터 토출되는 상기 제 1 연소가스를 사용하여 제 2 전기에너지를 생성하는 제 1 폐열회수 유닛과, 상기 제 1 폐열회수 유닛에서 생성되는 상기 제 2 전기에너지를 공급받아 상기 제 1 터빈 유닛으로 공급되는 연료를 기화시키고, 기화된 상기 연료와 상기 제 1 폐열회수 유닛을 통과한 상기 제 1 연소가스를 혼합하여 상기 제 1 터빈 유닛으로 공급하는 연료공급기를 포함한다.

Description

액체연료 기화 시스템
본 발명은 시스템에 관한 것으로서, 보다 상세하게는 액체연료 기화 시스템에 관한 것이다.
일반적으로 액체연료 기화 시스템은 다양하게 형성될 수 있다. 이때, 액체연료 기화 시스템은 외부로부터 공급되는 공기를 압축한 후 연료와 혼합하여 연소시켜 터빈에 공급함으로써 전기에너지를 생성할 수 있다. 이러한 액체연료 기화 시스템은 연료를 기체 형태로 공급할 수 있다. 특히 액체연료 기화 시스템은 연료를 기화시키기 위하여 별도로 연료를 기화시키는 장치를 설치할 수 있다. 이때, 상기와 같이 연료를 기화시키기 위하여 다양한 방법이 사용될 수 있으나, 일반적으로 외부로부터 전기에너지를 공급받아 히터에 열을 공급함으로써 연료를 기화시킬 수 있다.
외부로부터 전기에너지를 공급받아 연료를 기화시키기 위하여 많은 양의 에너지가 필요할 수 있으며, 이는 액체연료 기화 시스템의 전체 효율을 저감시킬 수 있다. 또한, 상기와 같이 연료 자체를 기화시키기 위해서는 많은 양의 에너지가 필요하므로 가열 시간이 증가함으로써 액체연료 기화 시스템을 구동시키기 위한 시간이 많이 소요될 수 있다. 이러한 일반적인 액체연료 기화 시스템은 한국등록특허공보 제0211341호(발명의 명칭 : 가스터빈의 연료공급장치 및 그 제어장치, 특허권자 : 가부시키가이샤 도시바)에 구체적으로 개시되어 있다.
본 발명의 실시예들은 열원에서 공급되는 연소가스와 전기로 발전하는 액체연료 기화 시스템을 제공하고자 한다.
본 발명의 일 측면은, 외부 공기를 공급받아 압축한 후 연료를 혼합하여 연소시켜 발생하는 제 1 전기에너지를 생성하며, 제 1 연소가스를 토출하는 제 1 터빈 유닛과, 상기 제 1 터빈 유닛과 연결되어 상기 제 1 터빈 유닛으로부터 토출되는 상기 제 1 연소가스를 사용하여 제 2 전기에너지를 생성하는 제 1 폐열회수 유닛과, 상기 제 1 폐열회수 유닛에서 생성되는 상기 제 2 전기에너지를 공급받아 상기 제 1 터빈 유닛으로 공급되는 연료를 기화시키고, 기화된 상기 연료와 상기 제 1 폐열회수 유닛을 통과한 상기 제 1 연소가스를 혼합하여 상기 제 1 터빈 유닛으로 공급하는 연료공급기를 포함하는 액체연료 기화 시스템을 제공한다.
본 발명의 실시예들은 외부에서 생성되는 전기에너지를 통하여 연료를 기화시켜 제 1 터빈 유닛으로 공급함으로써 액체연료 기화 시스템의 효율을 증대시킬 수 있다.
도 1은 본 발명의 제 1 실시예에 따른 액체연료 기화 시스템을 보여주는 개념도이다.
도 2는 본 발명의 제 2 실시예에 따른 액체연료 기화 시스템을 보여주는 개념도이다.
도 3은 본 발명의 제 3 실시예에 따른 액체연료 기화 시스템을 보여주는 개념도이다.
도 4는 본 발명의 제 4 실시예에 따른 액체연료 기화 시스템을 보여주는 개념도이다.
도 5는 본 발명의 제 5 실시예에 따른 액체연료 기화 시스템을 보여주는 개념도이다.
본 발명의 일 측면은, 외부 공기를 공급받아 압축한 후 연료를 혼합하여 연소시켜 발생하는 제 1 전기에너지를 생성하며, 제 1 연소가스를 토출하는 제 1 터빈 유닛과, 상기 제 1 터빈 유닛과 연결되어 상기 제 1 터빈 유닛으로부터 토출되는 상기 제 1 연소가스를 사용하여 제 2 전기에너지를 생성하는 제 1 폐열회수 유닛과, 상기 제 1 폐열회수 유닛에서 생성되는 상기 제 2 전기에너지를 공급받아 상기 제 1 터빈 유닛으로 공급되는 연료를 기화시키고, 기화된 상기 연료와 상기 제 1 폐열회수 유닛을 통과한 상기 제 1 연소가스를 혼합하여 상기 제 1 터빈 유닛으로 공급하는 연료공급기를 포함하는 액체연료 기화 시스템을 제공할 수 있다.
또한, 상기 제 1 폐열회수 유닛은, 상기 제 1 연소가스를 공급받아 작동하는 제 2 터빈과, 상기 제 2 터빈과 연결되어 상기 제 2 터빈의 작동에 따라 상기 제 2 전기에너지를 생성하는 제 2 발전기와, 상기 제 2 터빈과 상기 제 2 발전기를 연결하는 제 2 동력전달부를 구비할 수 있다.
또한, 상기 제 1 터빈 유닛으로부터 상기 제 1 폐열회수 유닛으로 이동하는 상기 제 1 연소가스의 유로 상에서 상기 제 1 연소가스와 열교환하여 기화된 제 2 유체를 통하여 제 3 전기에너지를 생성하는 제 2 폐열회수 유닛을 더 포함할 수 있다.
또한, 상기 제 2 폐열회수 유닛은, 상기 제 1 연소가스와 상기 제 2 유체가 열교환하는 열교환부와, 상기 열교환부에서 열교환된 상기 제 2 유체를 공급받아 상기 제 3 전기에너지를 생성하는 제 3 터빈 유닛과, 상기 제 3 터빈 유닛으로부터 토출되는 상기 제 2 유체를 응축시키는 응축기부를 구비할 수 있다.
또한, 상기 제 1 폐열회수 유닛은, 상기 제 1 연소가스와 열교환하여 제 1 유체를 증발시키는 증발기와, 상기 증발기로부터 증발된 상기 제 1 유체를 공급받아 상기 제 2 전기에너지를 생성하는 제 2 터빈 유닛과, 상기 제 2 터빈 유닛으로부터 토출되는 제 1 유체를 응축시키는 응축기와, 상기 응축기로부터 토출된 제 1 유체를 상기 증발기로 공급하는 펌프를 구비할 수 있다.
또한, 상기 제 1 폐열회수 유닛은, 상기 제 1 연소가스와 순환하는 제 3 유체를 열교환하는 열교환기와, 상기 열교환기를 통과하는 상기 제 3 유체와 순환하는 제 1 유체가 열교환하는 증발기와, 상기 증발기로부터 증발된 상기 제 1 유체를 공급받아 작동하여 상기 제 2 전기에너지를 생성하는 제 2 터빈 유닛와, 상기 제 2 터빈 유닛으로부터 토출되는 제 1 유체를 응축시키는 응축기와, 상기 응축기로부터 토출된 제 1 유체를 상기 증발기로 공급하는 펌프를 구비할 수 있다.
본 발명의 다른 측면은, 외부 공기를 공급받아 압축한 후 연료를 혼합하여 연소시켜 제 1 전기에너지를 생성하며, 외부로 제 1 연소가스를 토출하는 제 1 터빈 유닛과, 외부 공기 및 연료를 공급받아 제 2 전기에너지를 생성하며 제 2 연소가스를 토출하는 제 2 터빈 유닛과, 상기 제 2 전기에너지를 공급받아 상기 제 1 터빈 유닛으로 공급되는 연료를 기화시키고, 기화된 상기 연료와 상기 제 2 연소가스를 혼합하여 상기 제 1 터빈 유닛으로 공급하는 연료공급기를 포함하는 액체연료 기화 시스템을 제공할 수 있다.
본 발명의 또 다른 측면은, 외부 공기를 공급받아 압축한 후 연료를 혼합하여 연소시켜 제 1 전기에너지를 생성하며, 외부로 제 1 연소가스를 토출하는 제 1 터빈 유닛과, 상기 제 1 터빈 유닛에서 토출되는 상기 제 1 연소가스의 일부를 공급받고, 외부로부 공급되는 질소 가스와 상기 제 1 연소가스를 혼합하는 혼합기와, 상기 혼합기로부터 상기 질소 가스가 혼합된 상기 제 1 연소가스를 공급받고, 외부로부터 공급되는 액체 연료를 기화시켜 상기 질소 가스 및 상기 제 1 연소가스를 혼합하여 상기 제 1 터빈 유닛으로 공급하는 연료공급기를 포함하는 액체연료 기화 시스템을 제공할 수 있다.
또한, 외부로부터 공기를 공급받아 상기 질소 가스를 분리하여 상기 혼합기로 공급하는 질소공급부를 더 포함할 수 있다.
또한, 외부로부터 물을 공급받아 상기 물을 기화시켜 상기 혼합기로 공급하는 증기공급부를 더 포함할 수 있다.
또한, 상기 연료공급기는, 상기 액체연료를 저장하는 연료저장기와, 상기 연료저장기로부터 상기 액체연료를 공급받아 기화시키는 연료기화기를 구비할 수 있다.
또한, 상기 제 1 터빈 유닛에서 토출되는 상기 제 1 연소가스로부터 폐열을 회수하여 제 2 전기에너지를 생성하는 폐열회수 유닛을 더 포함할 수 있다.
또한, 상기 제 2 전기에너지는 상기 액체연료를 기화시키는 에너지원으로써 상기 연료공급기에 공급될 수 있다.
또한, 상기 연료공급기로부터 상기 제 1 터빈 유닛으로 공급되는 유로와 연결되어 상기 유로로 천연가스를 공급하는 천연가스공급부를 더 포함할 수 있다.
또한, 상기 혼합기와 상기 제 1 터빈 유닛 사이에 설치되어 상기 제 1 터빈 유닛에서 토출되는 상기 제 1 연소가스를 상기 혼합기로 공급하는 연소가스공급부를 더 포함할 수 있다.
또한, 상기 제 1 터빈 유닛에서 토출되는 상기 제 1 연소가스 중 일부는 상기 연료공급기의 외면을 유동하면서 상기 액체연료의 적어도 일부분을 기화시키는 열에너지를 공급할 수 있다.
본 발명은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 한편, 본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 구성요소들은 용어들에 의해 한정되어서는 안 된다. 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
도 1은 본 발명의 제 1 실시예에 따른 액체연료 기화 시스템(100)을 보여주는 개념도이다.
도 1을 참고하면, 액체연료 기화 시스템(100)은 외부의 공기를 공급받아 압축한 후 연료를 혼합하여 연소시켜 발생하는 제 1 전기에너지를 생성하는 제 1 터빈 유닛(110)을 포함할 수 있다. 이때, 제 1 터빈 유닛(110)은 상기 연료를 연소한 후 생성되는 제 1 연소가스를 토출할 수 있다.
제 1 터빈 유닛(110)은 외부의 공기를 공급받아 압축하는 압축기(111)를 포함할 수 있다. 또한, 제 1 터빈 유닛(110)은 압축기(111)와 연결되며, 압축기(111)를 회전시키는 제 1 터빈(113)을 포함할 수 있다. 제 1 터빈 유닛(110)은 압축된 공기를 공급받고 후술할 연료공급기(130)로부터 공급되는 연료를 혼합하여 연소시키는 연소기(112)를 포함할 수 있다. 이때, 연소기(112)는 연료가 연소된 후 발생하는 제 1 연소가스를 제 1 터빈(113)으로 공급할 수 있다. 제 1 터빈(113)은 제 1 연소가스가 생성될 때의 발생하는 에너지와 제 1 연소가스의 이동에 따라서 작동할 수 있다. 제 1 터빈 유닛(110)은 상기에서 설명한 구성 이외에도 제 1 터빈(113)에 연결되어 제 1 전기에너지를 생성하는 제 1 발전기(114)를 포함할 수 있다. 이때, 제 1 발전기(114)는 생성된 전기를 외부의 장치에 공급함으로써 외부의 장치를 구동시킬 수 있다.
상기와 같은 압축기(111), 연소기(112) 및 제 1 터빈(113)이 별개로 형성되어 조립됨으로써 제 1 터빈 유닛(110)을 형성할 수 있다. 또한, 압축기(111), 연소기(112) 및 제 1 터빈(113)은 서로 일체로 형성되어 일렬로 연결됨으로써 제 1 터빈 유닛(110)을 형성하는 것도 가능하다. 다만, 이하에서는 설명의 편의를 위하여 압축기(111), 연소기(112) 및 제 1 터빈(113)이 별개로 형성되어 서로 연결되는 경우를 중심으로 상세히 설명하기로 한다.
한편, 액체연료 기화 시스템(100)은 제 1 터빈 유닛(110)과 연결되어 제 1 터빈 유닛(110)으로부터 토출되는 제 1 연소가스를 사용하여 제 2 전기에너지를 생성하는 제 1 폐열회수 유닛(120)을 포함할 수 있다.
이때, 제 1 폐열회수 유닛(120)은 제 1 연소가스를 공급받아 작동하는 제 2 터빈(121)을 포함할 수 있다. 또한, 제 1 폐열회수 유닛(120)은 제 2 터빈(121)과 연결되어 제 2 터빈(121)의 작동에 따라 제 2 전기에너지를 생성하는 제 2 발전기(123)를 포함할 수 있다. 이때, 제 2 터빈(121)과 제 2 발전기(123)는 서로 제 2 동력전달부(122)에 의하여 연결될 수 있다. 특히 제 2 동력전달부(122)는 복수개의 연결샤프트(122a), 복수개의 연결샤프트(122a)를 서로 연결하는 커플링(122b), 제 2 터빈(121)의 회전력을 적어도 하나의 연결샤프트(122a)에 전달하는 기어유닛(122c)을 포함할 수 있다. 이때, 제 2 동력전달부(122)는 상기에 한정되지 않으며, 제 2 터빈(121)의 회전력을 제 2 발전기(123)에 전달하는 모든 장치 및 모든 구성을 포함할 수 있고, 이하에서는 복수개의 연결샤프트(122a), 커플링(122b) 및 기어유닛(122c)은 일반적인 구성과 동일하므로 상세한 설명은 생략하기로 한다.
한편, 액체연료 기화 시스템(100)은 제 1 폐열회수 유닛(120)에서 생성되는 제 2 전기에너지를 공급받아 제 1 터빈 유닛(110)으로 공급되는 연료를 기화시키는 연료공급기(130)를 포함할 수 있다. 이때, 연료공급기(130)는 기화된 연료와 제 1 폐열회수 유닛(120)을 통과한 제 1 연소가스를 혼합하여 제 1 터빈 유닛(110)으로 공급할 수 있다. 특히 연료공급기(130)는 연소기(112)로 연료를 공급할 수 있다.
구체적으로 연료공급기(130)는 액체 상태의 연료를 저장하는 연료저장기(131)를 포함할 수 있다. 또한, 연료공급기(130)는 연료저장기(131)로부터 액체 상태의 연료를 공급받아 기화시키는 연료기화기(132)를 포함할 수 있다. 이때, 연료기화기(132)는 내부에 공간이 형성되며, 히터(132a) 등이 설치되어 열을 공급함으로써 연료를 기화시킬 수 있다.
연료공급기(130)는 연료저장기(131)와 연료기화기(132) 사이에 설치되어 연료저장기(131)로부터 연료기화기(132)로 연료를 공급하는 연료공급펌프(133)를 포함할 수 있다. 또한, 연료공급기(130)는 연료공급펌프(133)로부터 토출되는 연료의 양을 제어하는 연료제어밸브(134)를 포함할 수 있다.
이때, 연료공급기(130)는 상기의 구성에 한정되는 것은 아니며 액체 연료를 저정하였다가 기화시킨 후 제 1 터빈 유닛(110)으로 기화된 연료를 공급하는 모든 장치를 포함할 수 있다.
한편, 액체연료 기화 시스템(100)은 제 1 터빈 유닛(110)으로부터 토출되는 제 1 연소가스를 제 1 폐열회수 유닛(120)으로 안내하는 제 1 유로(191)를 포함할 수 있다. 또한, 액체연료 기화 시스템(100)은 제 1 폐열회수 유닛(120)으로부터 연료공급기(130)로 제 1 연소가스를 안내하는 제 2 유로(192) 및 연료공급기(130)로부터 제 1 터빈 유닛(110)으로 제 1 연소가스가 홉합된 연료를 안내하는 제 3 유로(193)를 포함할 수 있다.
액체연료 기화 시스템(100)은 제 1 유로(191) 내지 제 3 유로(193) 중 적어도 하나에 설치되어 제 1 연소가스의 양 또는 제 1 연소가스가 혼합된 연료의 양을 제어하는 유량제어밸브(140)를 포함할 수 있다. 다만, 이하에서는 설명의 편의를 위하여 유량제어밸브(140)가 제 2 유로(192) 상에 설치되는 경우를 중심으로 상세히 설명하기로 한다.
한편, 상기와 같이 형성되는 액체연료 기화 시스템(100)의 작동에 대해서 살펴보면, 우선 제 1 터빈 유닛(110)이 작동하는 경우 외부로부터 공기가 공급되고, 연료공급기(130)는 기화된 연료를 연소기(112)로 공급할 수 있다. 이때, 초기의 구동 시 연료기화기(132)에는 외부로부터 전류가 인가되어 액체 연료를 기화시킬 수 있다.
상기와 같이 제 1 터빈 유닛(110)이 작동하면, 압축기(111)를 통하여 압축된 공기는 연소기(112)로 공급되며, 제 3 유로(193)를 통하여 기화된 연료가 연료기화기(132)로부터 연소기(112)로 공급될 수 있다.
이때, 연소기(112)에서는 압축된 공기와 기화된 연료가 혼합된 상태에서 점화시킴으로써 기화된 연료를 연소시켜 제 1 연소가스를 생성할 수 있다. 상기와 같은 제 1 연소가스는 연소기(112)로부터 제 1 터빈(113)으로 이동하면서 제 1 터빈(113)을 작동시킬 수 있다. 제 1 터빈(113)의 작동에 따라 제 1 발전기(114)를 작동시키고 제 1 발전기(114)는 제 1 전기에너지를 생성할 수 있다.
상기와 같이 제 1 터빈 유닛(110)이 작동하는 동안, 제 1 연소가스는 제 1 유로(191)를 통하여 제 1 폐열회수 유닛(120)으로 공급될 수 있다. 이때, 제 1 연소가스는 제 1 유로(191)를 따라 제 1 터빈(113)으로부터 제 2 터빈(121)으로 공급될 수 있다.
상기와 같이 제 1 연소가스가 공급되면, 제 2 터빈(121)은 작동하여 제 2 발전기(123)를 작동시킬 수 있다. 이때, 제 2 동력전달부(122)는 제 2 터빈(121)의 회전력을 제 2 발전기(123)로 공급할 수 있다. 특히 상기와 같이 제 2 발전기(123)로 제 2 터빈(121)의 회전력이 제공되는 경우 제 2 발전기(123)가 작동하며, 제 2 발전기(123)는 작동에 따라서 제 2 전기에너지를 생성할 수 있다. 상기와 같이 형성되는 제 2 전기에너지는 연료기화기(132)로 공급될 수 있다. 특히 연료기화기(132)의 히터(132a)에 공급되어 히터(132a)를 작동시킬 수 있다.
상기와 같이 제 2 터빈(121)을 작동시킨 제 1 연소가스는 제 2 유로(192)를 통하여 연료기화기(132)로 공급될 수 있다. 이때, 연료공급펌프(133)가 작동하여 연료를 연료기화기(132)로 공급할 수 있다.
상기와 같이 제 1 연소가스와 기화된 연료가 혼합된 상태에서 제 3 유로(193)를 통하여 제 1 터빈 유닛(110)으로 공급될 수 있다. 이때, 제 1 연소가스와 혼합된 연료는 연소기(112)로 공급될 수 있다.
상기와 같은 과정이 진행되는 동안, 유량제어밸브(140)는 제 2 유로(192)를 유동하는 제 1 연소가스의 양을 제어할 수 있다. 이때, 유량제어밸브(140)는 제 1 터빈 유닛(110)의 작동, 즉 제 1 발전기(114)에서 생성되는 전류의 양에 따라 제 2 유로(192)를 유동하는 제 1 연소가스의 양을 제어할 수 있다. 또한, 유량제어밸브(140)는 제 1 터빈 유닛(110)으로 공급되는 연료의 종류에 따라 제어될 수 있다. 구체적으로 유량제어밸브(140)는 제 1 터빈 유닛(110)으로 공급되는 연료의 탄소 또는 수소의 함량에 따라서 제 1 연소가스의 양을 제어할 수 있다. 예를 들면, 연료의 탄소 또는 수소의 함량이 큰 경우 제 1 연소가스의 양이 많아지도록 제어할 수 있으며, 연료의 탄소 또는 수소의 함량이 작은 경우 제 1 연소가스의 양이 작아지도록 제어할 수 있다. 이때, 유량제어밸브(140)의 개도는 기 설정될 수 있으며 유량제어밸브(140)의 개도는 연료의 종류에 따라 설정될 수 있다.
또한, 유량제어밸브(140)는 제 2 유로(192)를 이동하는 제 1 연소가스의 일부를 외부로 배출하거나 다른 외부 장치로 공급함으로써 제 1 연소가스의 양을 제어하는 것도 가능하다. 이때, 유량제어밸브(140)는 제 2 유로(192)에 설치되는 삼방밸브를 구비할 수 있다.
따라서 액체연료 기화 시스템(100)은 연료의 기화 시 필요한 열을 제 1 터빈 유닛(110)의 작동 시 발생하는 폐열을 활용함으로써 액체연료 기화 시스템(100)의 전체 효율을 증대시킬 수 있다.
또한, 액체연료 기화 시스템(100)은 기화된 연료와 제 1 연소가스를 혼합함으로써 제 1 연소가스에 포함된 불활성 기체를 통하여 웨버지수(Wobber Index)를 조절하여 액체연료 기화 시스템(100)의 오작동을 방지할 수 있다.
도 2는 본 발명의 제 2 실시예에 따른 액체연료 기화 시스템(200)을 보여주는 개념도이다.
도 2를 참고하면, 액체연료 기화 시스템(200)은 제 1 터빈 유닛(210), 연료공급기(230), 제 1 유로(291), 제 2 유로(292), 제 3 유로(293) 및 유량제어밸브(240)를 포함할 수 있다. 이때, 제 1 터빈 유닛(210)은 압축기(211), 연소기(212), 제 1 터빈(213) 및 제 1 발전기(214)을 구비할 수 있다. 압축기(211), 연소기(212), 제 1 터빈(213) 및 제 1 발전기(214)는 상기 도 1에서 설명한 것과 동일 또는 유사하므로 상세한 설명은 생략하기로 한다. 다만, 이하에서는 설명의 편의를 위하여 압축기(211), 연소기(212) 및 제 1 터빈(213)이 일체로 형성되는 경우를 중심으로 상세히 설명하기로 한다.
또한, 연료공급기(230)는 연료저장기(231), 연료기화기(232), 연료공급펌프(233) 및 연료조절밸브(234)를 포함할 수 있다. 이때, 연료공급기(230)는 상기 도 1에서 설명한 바와 동일 또는 유사하므로 상세한 설명은 생략하기로 한다.
제 1 유로(291), 제 2 유로(292), 제 3 유로(293) 및 유량제어밸브(240)도 상기 도 1에서 설명한 바와 동일 또는 유사하므로 상세한 설명은 생략하기로 한다. 특히 유량제어밸브(240)의 경우 제 2 유로(292) 상에 배치되는 경우를 중심으로 상세히 설명하기로 한다.
한편, 액체연료 기화 시스템(200)은 제 1 터빈 유닛(210)에서 토출되는 제 1 연소가스와 열교환하여 폐열을 회수하는 제 1 폐열회수 유닛(220) 및 제 2 폐열회수 유닛(250) 중 적어도 하나를 포함할 수 있다. 이때, 제 1 폐열회수 유닛(220)은 제 2 전기에너지를 생성할 수 있으며, 제 2 폐열회수 유닛(250)은 제 3 전기에너지를 생성할 수 있다. 특히 액체연료 기화 시스템(200)이 제 2 폐열회수 유닛(250)만을 포함하는 경우 상기 제 3 전기에너지는 연료기화기(232)로 공급되어 연료를 기화시킬 때 필요한 에너지를 공급할 수 있다. 반면, 액체연료 기화 시스템(200)이 제 1 폐열회수 유닛(220)과 제 2 폐열회수 유닛(250)을 모두 포함하는 경우 제 3 전기에너지는 외부 장치에 에너지로 사용될 수 있다. 이하에서는 설명의 편의를 위하여 액체연료 기화 시스템(200)이 제 1 폐열회수 유닛(220)과 제 2 폐열회수 유닛(250)을 모두 포함하는 경우를 중심으로 상세히 설명하기로 한다.
상기와 같은 제 1 폐열회수 유닛(220)은 제 1 연소가스와 열교환하여 제 1 유체를 증발시키는 증발기(221)를 구비할 수 있다. 또한, 제 1 폐열회수 유닛(220)은 증발기(221)에서 증발된 제 1 유체를 공급받아 제 2 전기에너지를 생성하는 제 2 터빈 유닛(222)을 포함할 수 있다. 이때, 제 2 터빈 유닛(222)은 제 1 유체의 이동에 따라 작동하는 제 2 터빈(222a)과, 제 2 터빈(222a)과 연결되어 제 2 터빈(222a)의 작동 시 제 2 전기에너지를 생성하는 제 2 발전기(222b)를 포함할 수 있다.
제 1 폐열회수 유닛(220)은 제 2 터빈 유닛(222)으로부터 토출되는 제 1 유체를 응축시켜 액화시키는 응축기(223)를 포함할 수 있다. 또한, 제 1 폐열회수 유닛(220)은 응축기(223)로부터 토출되는 제 1 유체를 다시 증발기(221)로 공급하는 펌프(224)를 포함할 수 있다.
상기와 같은 제 1 폐열회수 유닛(220)은 제 1 유체가 이동하는 제 1 순환유로(225)를 포함할 수 있다. 이때, 제 1 순환유로(225)는 제 1 유로(291)와 연결되지 않으며, 제 1 유체가 제 1 연소가스와 혼합되지 않도록 할 수 있다. 특히, 제 1 순환유로(225)는 제 1 유로(291)와 함께 증발기(221) 내부로 진입하여 제 1 유체와 제 1 연소가스 사이의 열교환을 수행할 수 있다.
또한, 제 1 폐열회수 유닛(220)은 응축기(223)에 연결되며, 제 1 냉각제가 순환하는 제 1 냉각순환유로(226)를 구비할 수 있으며, 제 1 냉각순환유로(226) 상에 배치되는 냉각유닛(227)을 구비할 수 있다. 이때, 냉각유닛(227)은 다양한 형태로 형성될 수 있으며, 예를 들면, 냉각팬, 냉각탑 등을 구비할 수 있다. 다만, 이하에서는 설명의 편의를 위하여 냉각유닛(227)이 냉각팬을 구비하는 경우를 중심으로 상세히 설명하기로 한다.
한편, 제 2 폐열회수 유닛(250)은 상기에서 설명한 바와 같이 제 1 터빈 유닛(210)으로부터 제 1 폐열회수 유닛(220)으로 이동하는 제 1 연소가스의 유로 상에서 제 1 연소가스와 열교환하여 기화된 제 2 유체를 통하여 제 3 전기에너지를 생성할 수 있다.
구체적으로 제 2 폐열회수 유닛(250)은 제 1 유로(291) 상에 배치되어 제 1 연소가스와 제 2 유체가 열교환하는 열교환부(251)를 포함할 수 있다. 또한, 제 2 폐열회수 유닛(250)은 열교환부(251)에서 열교환된 제 2 유체를 공급받아 제 3 전기에너지를 생성하는 제 3 터빈 유닛(252)을 포함할 수 있다. 이때, 제 3 터빈 유닛(252)은 제 2 유체를 공급받아 작동하는 제 3 터빈(252a)과, 제 3 터빈(252a)과 연결되어 제 3 터빈(252a)의 작동에 따라서 제 3 전기에너지를 생성하는 제 3 발전기(252b)를 구비할 수 있다.
또한, 제 2 폐열회수 유닛(250)은 제 3 터빈(252a)으로부터 토출되는 제 2 유체를 응축시키는 응축기부(253)를 포함할 수 있다. 이때, 응축기부(253)는 외부의 제 1 냉각제와 제 2 유체를 열교환함으로써 제 2 유체를 응축시킬 수 있다.
특히 제 2 폐열회수 유닛(250)은 열교환부(251), 제 3 터빈 유닛(252) 및 응축기부(253)가 설치되어 제 2 유체가 순환하는 제 2 순환유로(254)를 포함할 수 있다. 또한, 제 2 폐열회수 유닛(250)은 응축기부(253)와 연결되며, 외부의 제 2 냉각제가 순환하는 제 2 냉각순환유로(255)를 구비할 수 있다.
한편, 상기와 같이 형성되는 액체연료 기화 시스템(200)의 작동을 살펴보면, 압축기(211) 및 연료기화기(232)가 작동할 수 있다. 이때, 연료기화기(232)에서는 제 3 유로(293)를 통하여 연소기(212)로 기화된 연료를 공급하고, 압축기(211)에서는 외부의 공기를 압축하여 연소기(212)로 압축된 공기를 공급할 수 있다.
상기와 같이 공기와 연료가 공급되면, 연소기(212)는 공기와 연료가 혼합된 후 연소할 수 있다. 이때, 연소기(212)는 제 1 연소가스가 생성되며, 제 1 연소가스는 연소기(212)에서 제 1 터빈(213)으로 공급되어 제 1 터빈(213)을 작동시킬 수 있다.
상기와 같이 제 1 터빈(213)이 작동하면, 제 1 발전기(214)가 작동하고 제 1 발전기(214)는 제 1 전기에너지를 생성하여 외부 장치에 공급할 수 있다.
상기의 과정이 진행되는 동안, 제 1 터빈(213)에서는 제 1 연소가스가 토출되어 제 1 유로(291)를 통하여 이동할 수 있다. 이때, 제 1 연소가스는 증발기(221)로 공급되고, 증발기(221)에서는 제 1 연소가스와 제 1 유체 사이에 열교환됨으로써 제 1 유체를 증발시킬 수 있다.
상기와 같이 증발된 제 1 유체는 제 1 순환유로(225)를 따라 제 2 터빈(222a)으로 공급되어 제 2 터빈(222a)을 작동시킬 수 있다. 이때, 제 2 발전기(222b)는 제 2 터빈(222a)의 작동에 따라서 제 2 전기에너지를 생성하여 연료기화기(232)로 제 2 전기에너지를 공급할 수 있다. 상기와 같이 공급되는 제 2 전기에너지는 연료기화기(232)에서 연료를 기화시키기 위한 에너지원으로 사용될 수 있다.
이때, 제 1 유체는 제 1 순환유로(225)를 따라 제 2 터빈(222a)로부터 응축기(223)로 공급될 수 있다. 응축기(223)에서는 제 1 유체와 제 1 냉각제 사이에 열교환을 통하여 제 1 유체를 응축시킬 수 있다. 상기와 같이 응축된 제 1 유체는 펌프(224)를 통하여 다시 증발기(221)로 공급되어 상기의 과정은 반복적으로 수행할 수 있다.
또한, 상기의 과정이 진행되는 동안, 제 1 냉각순환유로(226)에서는 제 1 냉각제가 계속해서 순환하면서 응축기(223)를 통과하면서 온도가 올라간 제 1 냉각제는 제 1 냉각유닛(227)에 의하여 온도가 하강할 수 있다.
한편, 상기와 같은 작동이 지속되는 동안, 제 2 터빈(222a)에서 토출되는 제 1 유체는 응축기(223)에서 제 1 냉각제와 열교환됨으로써 응축될 수 있다. 이때, 응축기(223)에서 응축되어 토출된 제 1 유체는 펌프(224)를 통하여 다시 증발기(221)로 공급됨으로써 상기와 같은 작동이 반복적으로 수행될 수 있다.
또한, 상기의 과정이 진행되는 동안 제 2 폐열회수 유닛(250)에서는 제 1 연소가스로부터 제 3 전기에너지를 생성할 수 있다. 구체적으로 상기와 같이 제 1 터빈 유닛(210)이 작동하여 제 1 연소가스가 토출되는 경우 제 1 유로(291) 상의 열교환부(251)에서 제 2 유체와 제 1 연소가스 사이에 열교환될 수 있다.
이때, 열교환된 제 2 유체는 제 3 터빈(252a)으로 공급될 수 있다. 이때, 제 3 터빈(252a)은 제 2 유체에 의하여 작동할 수 있고, 제 3 터빈(252a)에 의하여 제 3 발전기(252b)는 제 3 전기에너지를 생성할 수 있다. 이때, 제 3 전기에너지는 외부 장치의 에너지원으로 사용될 수 있다.
상기와 같이 제 3 터빈(252a)을 통하여 토출되는 제 2 유체는 제 2 순환유로(254)를 통하여 응축기부(253)로 공급되며, 응축기부(253)는 제 2 냉각순환유로(255)를 통하여 유입되는 제 2 냉각제와 제 2 유체 사이의 열교환을 통하여 제 2 유체를 응축시킬 수 있다. 이때, 상기와 같이 응축된 제 2 유체는 다시 열교환부(251)로 공급되어 상기의 과정이 반복적으로 수행될 수 있다.
한편, 상기와 같이 진행되는 동안, 제 1 연소가스는 제 1 폐열회수 유닛(220)으로부터 제 2 유로(292)를 따라 이동할 수 있다. 이때, 액체연료 기화 시스템(200)은 제 1 연소가스의 원활한 유동을 위하여 제 2 유로(292) 상에 배치되는 버퍼탱크(280)를 구비할 수 있다. 상기와 같은 버퍼탱크(280)는 제 1 연소가스를 일시적으로 저장함으로써 제 1 연소가스가 제 2 유로(292) 상에서 역류하거나 불균일하게 공급되는 것을 방지할 수 있다.
제 1 연소가스는 버퍼탱크(280)를 통과하여 제 2 유로(292)를 통하여 연료기화기(232)로 공급될 수 있다. 이때, 유량제어밸브(240)는 제 2 유로(292)의 개도를 조절하여 제 1 연소가스의 양을 제어할 수 있다. 유량제어밸브(240)의 제어방법은 상기에서 설명한 것과 유사하므로 상세한 설명은 생략하기로 한다.
상기와 같이 연료기화기(232)로 제 1 연소가스가 공급되면, 연료기화기(232)는 제 1 전기에너지를 통하여 기화된 연료와 제 1 연소가스를 혼합할 수 있다. 이때, 혼합하는 방법은 일반적인 확산에 의한 혼합이 사용될 수 있다. 연료기화기(232)는 제 1 연소가스와 연료가 혼합되면 제 1 연소가스와 연료를 연소기(212)로 공급할 수 있다.
따라서 액체연료 기화 시스템(200)은 연료의 기화 시 필요한 열을 제 1 터빈 유닛(210)의 작동 시 발생하는 폐열을 활용함으로써 액체연료 기화 시스템(200)의 전체 효율을 증대시킬 수 있다.
또한, 액체연료 기화 시스템(200)은 기화된 연료와 제 1 연소가스를 혼합함으로써 제 1 연소가스에 포함된 불활성 기체를 통하여 웨버지수(Wobber Index)를 조절하여 액체연료 기화 시스템(200)의 오작동을 방지할 수 있다.
특히 액체연료 기화 시스템(200)은 제 1 폐열회수 유닛(220)과 제 2 폐열회수 유닛(250)을 통하여 제 1 연소가스에 포함된 에너지를 축출함으로써 액체연료 기화 시스템(200)의 효율을 증대시킬 수 있다.
도 3은 본 발명의 제 3 실시예에 따른 액체연료 기화 시스템(300)을 보여주는 개념도이다.
도 3을 참고하면, 액체연료 기화 시스템(300)은 제 1 터빈 유닛(310), 제 1 폐열회수 유닛(320), 제 1 유로(391), 제 2 유로(392), 제 3 유로(393), 연료공급기(330) 및 유량제어밸브(340)를 포함할 수 있다. 이때, 제 1 유로(391), 제 2 유로(392), 제 3 유로(393), 연료공급기(330) 및 유량제어밸브(340)는 상기 도 1에서 설명한 것과 동일 또는 유사하므로 상세한 설명은 생략하기로 한다.
제 1 터빈 유닛(310)은 압축기(311), 연소기(312), 제 1 터빈(313) 및 제 1 발전기(314)를 포함할 수 있다. 이때, 압축기(311), 연소기(312), 제 1 터빈(313) 및 제 1 발전기(314)는 상기 도 1에서 설명한 것과 동일 또는 유사하므로 상세한 설명은 생략하기로 한다. 또한, 압축기(311), 연소기(312) 및 제 1 터빈(313)은 상기에서 설명한 것과 같이 일체로 형성되거나 별도로 형성될 수 있다. 다만, 이하에서는 설명의 편의를 위하여 압축기(311), 연소기(312) 및 제 1 터빈(313)이 별도로 형성되어 서로 연결되는 경우를 중심으로 상세히 설명하기로 한다.
한편, 제 1 폐열회수 유닛(320)은 제 1 연소가스와 순환하는 제 3 유체를 열교환하는 열교환기(321)를 포함할 수 있다. 이때, 열교환기(321)는 제 3 유체가 순환하는 제 3 순환유로(399)와 연결될 수 있으며, 제 3 순환유로(399)에는 제 3 유체를 이동시키는 유체펌프(398)가 설치될 수 있다. 또한, 열교환기(321)는 제 1 유로(391)와 연결되며, 제 2 유로(392)와 연결될 수 있다. 특히 제 2 유로(392)는 제 3 유체와 열교환된 제 1 연소가스가 이동할 수 있다.
열교환기(321)는 제 4 유로(394)를 통하여 후술할 증발기(322)와 연결될 수 있다.
제 1 폐열회수 유닛(320)은 열교환기(321)를 통과하는 제 3 유체와 순환하는 제 1 유체가 열교환하는 증발기(322)를 포함할 수 있다. 이때, 증발기(322)는 제 1 순환유로(326)를 이동하는 제 1 유체와 제 3 유체 사이의 열교환을 담당할 수 있다.
제 1 폐열회수 유닛(320)은 제 1 순환유로(326) 상에 설치되는 제 2 터빈 유닛(323)을 포함할 수 있다. 이때, 제 2 터빈 유닛(323)은 제 1 유체의 공급에 따라 작동하는 제 2 터빈(323a)과 제 2 터빈(323a)과 연결되어 제 2 전기에너지를 생성하는 제 2 발전기(323b)를 포함할 수 있다.
또한, 제 1 폐열회수 유닛(320)은 제 2 터빈(323a)으로부터 토출되는 제 1 유체를 응축시키는 응축기(324)를 포함할 수 있다. 이때, 응축기(324)는 외부의 냉각유닛(미도시)에 연결되는 제 1 냉각순환유로(327)를 이동하는 제 2 냉각제와 제 1 유체를 열교환시킬 수 있다.
제 1 폐열회수 유닛(320)은 응축기(324)로부터 토출되는 제 1 유체를 증발기(322)로 공급하는 펌프(325)를 포함할 수 있다. 이때, 펌프(325)는 제 1 유체의 이동 시 압력 및 속도를 조절할 수 있다.
한편, 상기와 같은 액체연료 기화 시스템(300)의 작동을 살펴보면, 제 1 터빈 유닛(310)이 작동하는 경우 연료기화기(332)에서 기화된 연료는 연소기(312)로 공급될 수 있다. 이때, 압축기(311)는 외부의 공기를 압축하여 연소기(312)로 공급할 수 있다.
연소기(312)는 압축된 공기와 기화된 연료를 혼합하여 연소하여 제 1 연소가스를 생성할 수 있다. 이때, 제 1 연소가스는 제 1 유로(391)를 통하여 열교환기(321)로 공급될 수 있다.
열교환기(321)는 상기에서 설명한 바와 같이 외부로부터 유입되는 제 3 유체와 제 1 연소가스 사이에 열교환을 통하여 제 3 유체의 온도를 상승시킬 수 있다. 온도가 상승한 제 3 유체는 제 4 유로(394)를 통하여 증발기(322)로 공급될 수 있다. 이때, 증발기(322)는 제 1 순환유로(326)를 이동하는 제 1 유체와 제 3 유체 사이에 열교환을 통하여 제 1 유체를 증발시킬 수 있다.
상기와 같이 증발된 제 1 유체는 제 2 터빈(323a)으로 공급되어 제 2 터빈(323a)을 작동시키고, 제 2 터빈(323a)의 작동에 따라서 제 2 발전기(323b)는 제 2 전기에너지를 생성하여 연료기화기(332)로 공급할 수 있다.
상기와 같은 제 1 유체는 제 2 터빈(323a)으로부터 응축기(324)로 이동하고, 응축기(324)에서 제 2 유체와 열교환을 통하여 응축된 후 펌프(325)를 통하여 증발기(322)로 다시 공급될 수 있다.
한편, 상기와 같은 과정이 진행되는 동안, 제 1 연소가스는 열교환기(321)를 통과하여 제 2 유로(392)를 통하여 연료기화기(332)로 이동할 수 있다. 이때, 연료기화기(332)는 상기에서 설명한 바와 같이 제 2 전기에너지를 사용하여 연료공급기(331)에서 공급된 연료를 기화시킴과 동시에 유입되는 제 1 연소가스와 기화된 연료를 혼합할 수 있다.
상기와 같이 진행되는 동안 유량제어밸브(340)는 제 2 유로(392)를 이동하는 제 1 연소가스의 양을 제어할 수 있다. 이때, 유량제어밸브(340)의 작동은 상기에서 설명한 바와 동일 또는 유사하므로 상세한 설명은 생략하기로 한다.
상기와 같이 기화된 연료와 제 1 연소가스는 혼합된 상태에서 제 3 유로(393)를 따라 연료기화기(332)로부터 연소기(312)로 공급될 수 있다.
따라서 액체연료 기화 시스템(300)은 연료의 기화 시 필요한 열을 제 1 터빈 유닛(310)의 작동 시 발생하는 폐열을 활용함으로써 액체연료 기화 시스템(300)의 전체 효율을 증대시킬 수 있다.
또한, 액체연료 기화 시스템(300)은 기화된 연료와 제 1 연소가스를 혼합함으로써 제 1 연소가스에 포함된 불활성 기체를 통하여 웨버지수(Wobber Index)를 조절하여 액체연료 기화 시스템(300)의 오작동을 방지할 수 있다.
도 4는 본 발명의 제 4 실시예에 따른 액체연료 기화 시스템(400)을 보여주는 개념도이다.
도 4를 참고하면, 액체연료 기화 시스템(400)은 외부 공기를 공급받아 압축한 후 연료를 혼합하여 연소시켜 제 1 전기에너지를 생성하며, 외부로 제 1 연소가스를 토출하는 제 1 터빈 유닛(410)을 포함할 수 있다. 이때, 제 1 터빈 유닛(410)은 제 1 압축기(411), 제 1 연소기(412), 제 1 터빈(413) 및 제 1 발전기(414)를 포함할 수 있다.
특히 상기와 같은 제 1 압축기(411), 제 1 연소기(412), 제 1 터빈(413) 및 제 1 발전기(414)는 상기 도 1의 압축기(111), 연소기(112), 제 1 터빈(113) 및 제 1 발전기(114)와 각각 동일 또는 유사하므로 상세한 설명은 생략하기로 한다.
한편, 액체연료 기화 시스템(400)은 외부로부터 공기 및 연료를 공급받아 제 2 전기에너지를 생성하며 제 2 연소가스를 토출하는 제 2 터빈 유닛(420)을 포함할 수 있다. 이때, 제 2 터빈 유닛(420)은 마이크로 형태의 터빈 유닛일 수 있다. 또한, 제 2 터빈 유닛(420)은 일반적인 터빈 유닛일 수 있다. 다만, 이하에서는 설명의 편의를 위하여 제 2 터빈 유닛(420)이 마이크로 형태의 터빈 유닛인 경우를 중심으로 상세히 설명하기로 한다.
제 2 터빈 유닛(420)은 제 2 압축기(421), 제 2 연소기(422), 제 2 터빈(423) 및 제 2 발전기(424)를 구비할 수 있다. 이때, 제 2 압축기(421), 제 2 연소기(422), 제 2 터빈(423) 및 제 2 발전기(424)는 제 1 압축기(411), 제 1 연소기(412), 제 1 터빈(413) 및 제 1 발전기(414)와 동일 또는 유사하게 형성되므로 상세한 설명은 생략하기로 한다.
상기와 같은 제 2 터빈 유닛(420)은 액체 연료를 그대로 사용할 수 있다. 또한, 제 2 터빈 유닛(420)은 제 1 터빈 유닛(410)과 유사하게 기화된 연료를 사용할 수 있다. 다만, 이하에서는 설명의 편의를 위하여 제 2 터빈 유닛(420)이 액체 연료를 사용하는 경우를 중심으로 상세히 설명하기로 한다.
한편, 액체연료 기화 시스템(400)은 제 2 전기에너지를 공급받아 제 1 터빈 유닛(410)으로 공급되는 연료를 기화시키고, 기화된 연료와 제 2 연소가스를 혼합하여 제 1 터빈 유닛(410)으로 공급하는 연료공급기(430)를 포함할 수 있다.
이때, 연료공급기(430)는 연료가 저장되는 연료저장기(431)와, 연료저장기(431)와 연결되며, 연료저장기(431)에서 공급된 연료를 기화시키는 연료기화기(432)를 구비할 수 있다. 또한, 연료공급기(430)는 연료저장기(431)과 연료기화기(432) 사이에 설치되는 연료공급펌프(433) 및 연료조절밸브(434)를 구비할 수 있다.
상기와 같은 연료저장기(431)는 액체 상태의 연료를 저장할 수 있으며, 제 2 터빈 유닛(420)으로 액체 상태의 연료를 공급할 수 있다. 또한, 연료기화기(432)는 연료저장기(431)에 저장된 액체 상태의 연료를 공급받아 기회시키며, 제 2 연소가스를 공급받아 기화된 연료와 혼합할 수 있다.
한편, 상기와 같이 형성되는 액체연료 기화 시스템(400)의 작동을 살펴보면, 제 1 터빈 유닛(410)과 제 2 터빈 유닛(420)이 작동할 수 있다. 이때, 연료저장기(431)는 제 2 터빈 유닛(420)으로 연료를 공급하고, 연료기화기(432)는 제 1 터빈 유닛(410)으로 연료를 공급할 수 있다.
구체적으로 제 2 연소기(422)는 연료저장기(431)로부터 공급되는 연료와 제 2 압축기(421)를 통하여 압축된 공기를 혼합하여 연소시켜 제 2 연소가스를 생성할 수 있다. 상기와 같이 형성된 제 2 연소가스는 제 2 터빈(423)으로 공급될 수 있다. 이때, 제 2 터빈(423)의 작동에 따라 제 2 발전기(424)도 작동하고, 제 2 발전기(424)는 제 2 전기에너지를 생성할 수 있다. 상기와 같이 생성된 제 2 전기에너지는 연료기화기(432)로 제공되어 연료를 기화시키는 에너지로 사용될 수 있다.
상기와 같이 제 2 터빈(423)으로 공급된 제 2 연소가스는 제 2 터빈(423)으로부터 토출되어 연료기화기(432)로 공급될 수 있다.
상기와 같이 제 2 터빈 유닛(420)이 작동하는 동안, 연료기화기(432)는 기화된 연료와 제 2 연소가스를 혼합하여 제 1 연소기(412)로 공급할 수 있다. 이때, 제 1 연소기(412)는 제 1 압축기(411)에서 압축된 공기 및 기화된 연료, 제 2 연소가스를 제공받아 작동할 수 있다. 특히 제 1 연소기(412)는 기화된 연료를 점화하여 연소시킴으로써 제 1 연소가스를 생성할 수 있다.
상기와 같이 생성된 제 1 연소가스는 제 1 터빈(413)으로 공급되며, 제 1 터빈(413)을 작동시킬 수 있다. 이때, 제 1 터빈(413)의 작동에 따라서 제 1 발전기(414)가 작동하여 제 1 전기에너지를 생성하여 외부 장치로 공급할 수 있다.
따라서 액체연료 기화 시스템(400)은 제 2 연소가스를 기화된 연료와 혼합함으로써 제 1 터빈 유닛(410)의 오작동을 방지할 수 있다. 특히 액체연료 기화 시스템(400)은 상기와 같이 기화된 연료에 비활성 기체를 포함하는 제 2 연소가스를 혼합함으로써 제 1 연소기(412)에서의 연소에 적합한 웨버지수를 맞출 수 있다.
도 5는 본 발명의 제 5 실시예에 따른 액체연료 기화 시스템(500)을 보여주는 개념도이다.
도 5를 참고하면, 액체연료 기화 시스템(500)은 외부 공기를 공급받아 압축 후 연료를 혼합하여 연소시켜 제 1 전기에너지를 생성하며, 외부로 제 1 연소가스를 토출하는 제 1 터빈 유닛(510)을 포함할 수 있다. 이때, 제 1 터빈 유닛(510)은 상기에서 설명한 바와 같이 압축기(511), 연소기(512), 제 1 터빈(513) 및 제 1 발전기(514)를 포함할 수 있다. 특히 상기와 같은 압축기(511), 연소기(512), 제 1 터빈(513) 및 제 1 발전기(514)는 상기 도 1 내지 도 4에서 설명한 것과 동일 또는 유사하므로 상세한 설명은 생략하기로 한다.
한편, 액체연료 기화 시스템(500)은 제 1 터빈 유닛(510)에서 토출되는 제 1 연소가스의 일부를 공급받아 외부로부터 공급되는 질소 가스와 혼합하는 혼합기(520)를 포함할 수 있다. 특히 제 1 연소가스는 제 1 터빈(513)으로부터 토출되어 혼합기(520)로 공급될 수 있다. 이때, 액체연료 기화 시스템(500)은 제 1 터빈 유닛(510)과 혼합기(520) 사이에 설치되는 연소가스공급부(530)를 포함할 수 있다. 특히 연소가스공급부(530)는 혼합기(520)와 제 1 터빈 유닛(510) 사이에는 제 1 연소가스를 유동시키는 제 1 펌프(531)와, 제 1 펌프(531)에서 혼합기(520)로 유동하는 제 1 연소가스의 양을 조절하는 제 1 밸브(532)를 구비할 수 있다.
또한, 액체연료 기화 시스템(500)은 외부로부터 공기를 공급받아 질소 가스를 분리하여 혼합기(520)로 공급하는 질소공급부(540)를 포함할 수 있다. 이때, 질소공급부(540)는 공기로부터 질소 가스를 분리하는 질소분리기(541)와, 질소분리기(541)로부터 혼합기(520)로 공급되는 질소 가스를 조절하는 제 2 밸브(542)를 구비할 수 있다.
한편, 액체연료 기화 시스템(500)은 외부로부터 물을 공급받아 상기 물을 기화시켜 혼합기(520)로 공급하는 증기공급부(550)를 포함할 수 있다. 이때, 증기공급부(550)는 외부로부터 물을 공급받아 유동시키는 제 2 펌프(551)를 포함할 수 있다. 또한, 증기공급부(550)는 제 2 펌프(551)로부터 물을 공급받아 기화시키는 제 1 가열부(552)를 구비할 수 있다. 특히 증기공급부(550)는 제 1 가열부(552)와 혼합기(520) 사이에 설치되어 제 1 가열부(552)에서 혼합기(520)로 유동하는 수증기의 양을 조절하는 제 3 밸브(553)를 구비할 수 있다.
액체연료 기화 시스템(500)은 혼합기(520)로부터 질소 가스, 수증기가 혼합된 제 1 연소가스를 공급받고, 외부로부터 공급되는 액체 연료를 기화시키는 연료공급기(560)를 포함할 수 있다. 이때, 연료공급기(560)는 질소 가스, 수증기, 제 1 연소가스 및 기화된 연료를 혼합하여 제 1 터빈 유닛(510)으로 공급할 수 있다.
상기와 같은 연료공급기(560)는 액체 연료를 저장하는 연료저장기(561)를 구비할 수 있다. 또한, 연료공급기(560)는 연료저장기(561)로부터 액체 연료를 공급받아 기화시키는 연료기화기(562)를 구비할 수 있다. 이때, 연료기화기(562)는 히터를 구비함으로써 외부에서 공급되는 전기에너지를 상기 히터에 공급하여 액체 연료를 기화시킬 수 있다. 이때, 연료저장기(561)와 연료기화기(562) 사이에는 상기 도 1 내지 도 4에서 설명한 바와 같이 연료공급펌프(미도시) 및 연료제어밸브(미도시)가 설치되어 연료저장기(561)에서 연료기화기(562)로 공급되는 액체 연료의 양을 제어할 수 있다.
특히 상기와 같은 경우 액체연료 기화 시스템(500)은 제 1 터빈 유닛(510)에서 토출되는 제 1 연고가스의 폐열을 회수하여 제 2 전기에너지를 생성하는 폐열회수 유닛(570)을 포함할 수 있다. 이때, 폐열회수 유닛(570)은 상기 도 1 내지 도 3의 제 1 폐열회수 유닛(120,220,320) 내지 제 2 폐열회수 유닛(250)과 동일 또는 유사하게 형성될 수 있다. 이때, 폐열회수 유닛(570)은 제 1 연소가스의 폐열을 회수하여 상기 제 2 전기에너지를 생성하고, 생성된 상기 제 2 전기에너지를 히터에 공급함으로써 액체 연료를 기화시키는 열에너지를 생성할 수 있다. 특히 폐열회수 유닛(570)에서 제 2 전기에너지를 생성하는 방법은 상기 도 1 내지 도 3에서 상세히 설명하였으므로 상세한 설명은 생략하기로 한다.
한편, 액체연료 기화 시스템(500)은 상기의 방법 이외에도 제 1 연소가스의 일부를 연료공급기(560)로 순환시킴으로써 액체 연료를 기화시키는 것도 가능하다. 이때, 폐열회수 유닛(570)은 연료저장기(561) 및 연료기화기(562) 중 적어도 하나를 순환하는 열교환배관(미표기)을 구비할 수 있으며, 연료저장기(561) 및 연료기화기(562) 중 적어도 하나에 설치되는 열교환기(미도시)를 구비할 수 있다.
상기와 같은 경우 제 1 연소가스는 연료저장기(561) 및 연료기화기(562) 중 적어도 하나를 순환함으로써 연료저장기(561)의 내부 및 연료기화기(562)의 내부 중 적어도 하나를 가열할 수 있다. 상기와 같이 제 1 연소가스가 공급되는 경우 제 1 연소가스의 폐열을 통하여 액체 연료를 기화시킬 수 있다.
이하에서는 설명의 편의를 위하여 폐열회수 유닛(570)이 연료기화기(562)의 외면을 감싸도록 설치되는 상기 열교환배관을 구비하는 경우를 중심으로 상세히 설명하기로 한다.
액체연료 기화 시스템(500)은 연료공급기(560)와 제 1 터빈 유닛(510) 사이에 설치되어 연료공급기(560)에서 제 1 터빈 유닛(510)으로 공급되는 질소 가스, 수증기 및 기화된 연료의 양을 제어하는 제 4 밸브(591)를 구비할 수 있다.
한편, 액체연료 기화 시스템(500)은 연료공급기(560)로부터 제 1 터빈 유닛(510)으로 공급되는 유로와 연결되어 상기 유로로 천연가스를 공급하는 천연가스공급부(580)를 포함할 수 있다. 이때, 천연가스공급부(580)는 천연가스를 저장하는 천연가스저장부(581), 천연가스저장부(581)에 저장된 천연가스를 유동시키는 제 3 펌프(582) 및 제 3 펌프(582)에서 연소기(512)로 공급되는 천연가스의 양을 제어하는 제 5 밸브(583)를 구비할 수 있다. 이때, 제 5 밸브(583)는 천연가스를 선택적으로 연소기(512)로 공급할 수 있다. 구체적으로 제 5 밸브(583)은 액체연료의 성분에 따라서 천연가스를 공급하거나 차단하도록 작동할 수 있다. 이때, 제 5 밸브(583)은 자동 또는 수동으로 조작될 수 있다. 다만, 이하에서는 설명의 편의를 위하여 제 5 밸브(583)이 개방되어 천연가스가 혼합되는 경우를 중심으로 상세히 설명하기로 한다.
또한, 액체연료 기화 시스템(500)은 제 4 밸브(591)에서 토출되는 질소 가스, 수증기 및 기화된 연료와 제 5 밸브(583)에서 토출되는 천연가스가 혼합되는 라인의 개도를 조절하는 제 6 밸브(592)를 포함할 수 있다.
상기와 같은 액체연료 기화 시스템(500)의 작동 방법을 살펴보면, 액체연료 기화 시스템(500)은 다양한 형태로 구동될 수 있다. 구체적으로 액체연료 기화 시스템(500)이 구동을 시작 시 천연가스를 연소기(512)로 공급하고, 구동 시작 후 일정 시간이 경과하거나 특정 조건을 만족할 때 천연가스와 기화된 연료를 혼합하여 연소기(512)로 공급하도록 작동할 수 있다. 상기와 같이 작동한 후 다시 일정 시간이 경과하거나 특정 조건을 만족할 때 액체연료 기화 시스템(500)은 연소기(512)로 기화된 연료만을 공급하여 연소시키도록 작동할 수 있다.
또한, 액체연료 기화 시스템(500)은 구동을 시작하면서 구동이 끝날때까지 천연가스와 기화된 연료를 혼합하여 연소기(512)로 공급하여 연소시킴으로써 작동할 수 있다.
뿐만 아니라 액체연료 기화 시스템(500)은 구동을 시작 시 천연가스만을 연소기(512)로 공급한 후 구동 시작 후 일정 시간이 경과하거나 특정 조건을 만족할 때 천연가스와 기화된 연료를 혼합하여 연소기(512)로 공급하는 작동을 지속적으로 수행할 수 있다.
이때, 액체연료 기화 시스템(500)은 상기에 한정되는 것은 아니며, 다양한 조합으로 운전하는 것도 가능하다. 다만, 이하에서는 설명의 편의를 위하여 액체연료 기화 시스템(500)의 구동 시작부터 구동 끝까지 천연가스와 기화된 연료를 혼합하여 연소기(512)로 공급되는 경우를 중심으로 상세히 설명하기로 한다.
작동이 시작되는 경우 연료공급기(560)에서 기화된 연료 및 천연가스공급부(580)에서 공급되는 천연가스를 혼합하여 연소기(512)로 공급할 수 있다. 이때, 연소기(512)는 압축기(511)로부터 압축된 공기를 공급받아 기화된 연료, 천연가스를 연소시켜 제 1 터빈(513)으로 공급할 수 있다. 이때, 제 1 연소가스가 생성되어 제 1 터빈(513)을 작동시키고, 제 1 터빈(513)은 제 1 발전기(514)를 작동시켜 제 1 전기에너지를 생성할 수 있다. 상기와 같이 생성된 제 1 전기에너지는 외부장치(미도시)에 공급되어 상기 외부장치를 작동시키는 에너지원으로 활용될 수 있다.
상기와 같이 제 1 터빈 유닛(510)이 작동하면, 제 1 터빈(513)으로부터 제 1 연소가스가 토출될 수 있다. 제 1 연소가스는 제 1 펌프(531)를 통하여 제 1 밸브(532)를 거친 후 혼합기(520)로 유입될 수 있다.
이때, 외부로부터 질소공급부(540)가 작동하여 질소 가스를 생성하고, 생성된 질소 가스는 질소공급부(540)로부터 제 2 밸브(542)를 통하여 혼합기(520)로 공급될 수 있다. 또한, 제 2 펌프(551)는 외부의 물을 제 1 가열부(552)로 공급하고, 제 1 가열부(552)는 수증기를 생성하여 제 3 밸브(553)를 통하여 혼합기(520)로 수증기를 공급할 수 있다.
상기와 같이 제 1 연소가스, 질소 가스 및 수증기가 공급되면, 혼합기(520)는 제 1 연소가스, 질소 가스 및 수증기를 혼합하여 연료기화기(562)로 공급할 수 있다. 이때, 연료저장기(561)는 액체 연료를 연료기화기(562)로 공급할 수 있다. 특히 연료저장기(561)는 액체 연료를 연료기화기(562)에 분무하거나 분사하여 작은 입자의 액체 연료를 공급할 수 있다.
상기와 같이 제 1 연소가스, 질소 가스, 수증기 및 액체 연료가 공급된 경우 폐열회수 유닛(570)을 유동하는 제 1 연소가스에 의하여 연료기화기(562)의 내부에 열에너지가 공급될 수 있다. 이때, 경우에 따라서 연료기화기(562)의 히터에 별도의 전기에너지가 인가되어 연료기화기(562)의 내부에 열에너지를 공급하는 것도 가능하다.
상기와 같이 연료기화기(562) 내부에 열에너지가 공급되면, 열에너지에 의하여 액체 연료가 기화될 수 있다. 이때, 기화된 연료는 제 1 연소가스, 질소 가스, 수증기와 혼합될 수 있다. 특히 상기와 같이 연료, 제 1 연소가스, 질소 가스, 수증기 등이 혼합되는 비율은 제 1 밸브(532) 내지 제 3 밸브(553), 제 1 펌프(531) 및 제 2 펌프(551)에 의하여 조절될 수 있다.
상기와 같이 제 1 연소가스, 질소 가스, 수증기가 혼합된 연료는 연료기화기(562)로부터 배출되어 제 5 밸브(583) 및 제 6 밸브(592)를 거쳐 연소기(512)로 공급될 수 있다. 이때, 천연가스공급부(580)는 제 4 밸브(591)를 거쳐 제 6 밸브(592)가 배치되는 유로로 천연가스를 공급할 수 있다.
상기와 같이 천연가스가 공급되면, 제 1 연소가스, 질소 가스, 수증기가 혼합된 연료는 천연가스와 혼합되어 제 6 밸브(592)로 진입하고, 제 6 밸브(592)를 거쳐 연소기(512)로 공급될 수 있다.
이때, 연소기(512)는 상기와 같이 압축기(511)에서 공급되는 압축된 공기와 기화된 연료, 천연가스를 혼합하여 연소시킬 수 있다. 이후 상기와 같은 작업이 반복적으로 수행되어 액체연료 기화 시스템(500)이 작동할 수 있다.
따라서 액체연료 기화 시스템(500)은 상기와 같이 천연가스와 기화된 연료를 혼합하여 사용함으로써 시스템 효율을 증대시킬 수 있다. 특히 액체연료 기화 시스템(500)은 연료의 종류가 재생에너지 또는 바이오 연료, 메탄올 등과 같이 친환경적인 연료를 천연가스와 혼합하여 사용함으로써 환경오염을 최소화할 수 있다.
특히 액체연료 기화 시스템(500)은 액체 연료와 제 1 연소가스, 수증기, 질소 가스를 혼합하여 제 1 터빈 유닛(510)에 공급하므로 일반적인 연료(예를 들면, 디젤, 휘발유 등)의 높은 열량을 조절할 수 있어 시스템의 안정성을 확보할 수 있다.
비록 본 발명이 상기 언급된 바람직한 실시예와 관련하여 설명되었지만, 발명의 요지와 범위로부터 벗어남이 없이 다양한 수정이나 변형을 하는 것이 가능하다. 따라서 첨부된 특허청구의 범위에는 본 발명의 요지에 속하는 한 이러한 수정이나 변형을 포함할 것이다.
본 발명의 일 실시예에 의하면, 액체연료를 기화시키는 액체연료 기화 시스템을 제공하여 전체 시스템의 효율을 증대시킬 수 있으며, 천연가스를 사용하는 발전시스템, 엔진시스템, 터빈시스템 등에 본 발명의 실시예들을 적용할 수 있다.

Claims (16)

  1. 외부 공기를 공급받아 압축한 후 연료를 혼합하여 연소시켜 발생하는 제 1 전기에너지를 생성하며, 제 1 연소가스를 토출하는 제 1 터빈 유닛;
    상기 제 1 터빈 유닛과 연결되어 상기 제 1 터빈 유닛으로부터 토출되는 상기 제 1 연소가스를 사용하여 제 2 전기에너지를 생성하는 제 1 폐열회수 유닛; 및
    상기 제 1 폐열회수 유닛에서 생성되는 상기 제 2 전기에너지를 공급받아 상기 제 1 터빈 유닛으로 공급되는 연료를 기화시키고, 기화된 상기 연료와 상기 제 1 폐열회수 유닛을 통과한 상기 제 1 연소가스를 혼합하여 상기 제 1 터빈 유닛으로 공급하는 연료공급기;를 포함하는 액체연료 기화 시스템.
  2. 제 1 항에 있어서
    상기 제 1 폐열회수 유닛은,
    상기 제 1 연소가스를 공급받아 작동하는 제 2 터빈;
    상기 제 2 터빈과 연결되어 상기 제 2 터빈의 작동에 따라 상기 제 2 전기에너지를 생성하는 제 2 발전기; 및
    상기 제 2 터빈과 상기 제 2 발전기를 연결하는 제 2 동력전달부;를 구비하는 액체연료 기화 시스템.
  3. 제 1 항에 있어서,
    상기 제 1 터빈 유닛으로부터 상기 제 1 폐열회수 유닛으로 이동하는 상기 제 1 연소가스의 유로 상에서 상기 제 1 연소가스와 열교환하여 기화된 제 2 유체를 통하여 제 3 전기에너지를 생성하는 제 2 폐열회수 유닛;을 더 포함하는 액체연료 기화 시스템.
  4. 제 3 항에 있어서,
    상기 제 2 폐열회수 유닛은,
    상기 제 1 연소가스와 상기 제 2 유체가 열교환하는 열교환부;
    상기 열교환부에서 열교환된 상기 제 2 유체를 공급받아 상기 제 3 전기에너지를 생성하는 제 3 터빈 유닛; 및
    상기 제 3 터빈 유닛으로부터 토출되는 상기 제 2 유체를 응축시키는 응축기부;를 구비하는 액체연료 기화 시스템.
  5. 제 1 항에 있어서,
    상기 제 1 폐열회수 유닛은,
    상기 제 1 연소가스와 열교환하여 제 1 유체를 증발시키는 증발기;
    상기 증발기로부터 증발된 상기 제 1 유체를 공급받아 상기 제 2 전기에너지를 생성하는 제 2 터빈 유닛;
    상기 제 2 터빈 유닛으로부터 토출되는 제 1 유체를 응축시키는 응축기; 및
    상기 응축기로부터 토출된 제 1 유체를 상기 증발기로 공급하는 펌프;를 구비하는 액체연료 기화 시스템.
  6. 제 1 항에 있어서,
    상기 제 1 폐열회수 유닛은,
    상기 제 1 연소가스와 순환하는 제 3 유체를 열교환하는 열교환기;
    상기 열교환기를 통과하는 상기 제 3 유체와 순환하는 제 1 유체가 열교환하는 증발기;
    상기 증발기로부터 증발된 상기 제 1 유체를 공급받아 작동하여 상기 제 2 전기에너지를 생성하는 제 2 터빈 유닛;
    상기 제 2 터빈 유닛으로부터 토출되는 제 1 유체를 응축시키는 응축기; 및
    상기 응축기로부터 토출된 제 1 유체를 상기 증발기로 공급하는 펌프;를 구비하는 액체연료 기화 시스템.
  7. 외부 공기를 공급받아 압축한 후 연료를 혼합하여 연소시켜 제 1 전기에너지를 생성하며, 외부로 제 1 연소가스를 토출하는 제 1 터빈 유닛;
    외부 공기 및 연료를 공급받아 제 2 전기에너지를 생성하며 제 2 연소가스를 토출하는 제 2 터빈 유닛; 및
    상기 제 2 전기에너지를 공급받아 상기 제 1 터빈 유닛으로 공급되는 연료를 기화시키고, 기화된 상기 연료와 상기 제 2 연소가스를 혼합하여 상기 제 1 터빈 유닛으로 공급하는 연료공급기;를 포함하는 액체연료 기화 시스템.
  8. 외부 공기를 공급받아 압축한 후 연료를 혼합하여 연소시켜 제 1 전기에너지를 생성하며, 외부로 제 1 연소가스를 토출하는 제 1 터빈 유닛;
    상기 제 1 터빈 유닛에서 토출되는 상기 제 1 연소가스의 일부를 공급받고, 외부로부 공급되는 질소 가스와 상기 제 1 연소가스를 혼합하는 혼합기;
    상기 혼합기로부터 상기 질소 가스가 혼합된 상기 제 1 연소가스를 공급받고, 외부로부터 공급되는 액체 연료를 기화시켜 상기 질소 가스 및 상기 제 1 연소가스를 혼합하여 상기 제 1 터빈 유닛으로 공급하는 연료공급기;를 포함하는 액체연료 기화 시스템.
  9. 제 8 항에 있어서,
    외부로부터 공기를 공급받아 상기 질소 가스를 분리하여 상기 혼합기로 공급하는 질소공급부;를 더 포함하는 액체연료 기화 시스템.
  10. 제 8 항에 있어서,
    외부로부터 물을 공급받아 상기 물을 기화시켜 상기 혼합기로 공급하는 증기공급부;를 더 포함하는 액체연료 기화 시스템.
  11. 제 8 항에 있어서,
    상기 연료공급기는,
    상기 액체연료를 저장하는 연료저장기; 및
    상기 연료저장기로부터 상기 액체연료를 공급받아 기화시키는 연료기화기;를 구비하는 액체연료 기화 시스템.
  12. 제 8 항에 있어서,
    상기 제 1 터빈 유닛에서 토출되는 상기 제 1 연소가스로부터 폐열을 회수하여 제 2 전기에너지를 생성하는 폐열회수 유닛;을 더 포함하는 액체연료 기화 시스템.
  13. 제 12 항에 있어서,
    상기 제 2 전기에너지는 상기 액체연료를 기화시키는 에너지원으로써 상기 연료공급기에 공급되는 액체연료 기화 시스템.
  14. 제 8 항에 있어서,
    상기 연료공급기로부터 상기 제 1 터빈 유닛으로 공급되는 유로와 연결되어 상기 유로로 천연가스를 공급하는 천연가스공급부;를 더 포함하는 액체연료 기화 시스템.
  15. 제 8 항에 있어서,
    상기 혼합기와 상기 제 1 터빈 유닛 사이에 설치되어 상기 제 1 터빈 유닛에서 토출되는 상기 제 1 연소가스를 상기 혼합기로 공급하는 연소가스공급부;를 더 포함하는 액체연료 기화 시스템.
  16. 제 8 항에 있어서,
    상기 제 1 터빈 유닛에서 토출되는 상기 제 1 연소가스 중 일부는 상기 연료공급기의 외면을 유동하면서 상기 액체연료의 적어도 일부분을 기화시키는 열에너지를 공급하는 액체연료 기화 시스템.
PCT/KR2014/000372 2013-07-02 2014-01-14 액체연료 기화 시스템 WO2015002370A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0077290 2013-07-02
KR1020130077290A KR101945407B1 (ko) 2013-07-02 2013-07-02 액체연료 기화 시스템

Publications (1)

Publication Number Publication Date
WO2015002370A1 true WO2015002370A1 (ko) 2015-01-08

Family

ID=52143925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000372 WO2015002370A1 (ko) 2013-07-02 2014-01-14 액체연료 기화 시스템

Country Status (2)

Country Link
KR (1) KR101945407B1 (ko)
WO (1) WO2015002370A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117780504A (zh) * 2024-02-26 2024-03-29 上海浦帮机电制造有限公司 一种辅助发动机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207528A (ja) * 1993-01-13 1994-07-26 Ishikawajima Harima Heavy Ind Co Ltd Lpg混合水用蒸発器を備えたガスタービン装置
US5934062A (en) * 1997-08-08 1999-08-10 J.O. Bernt & Associates Limited Link shape and chain link assembly method
KR100626463B1 (ko) * 1998-10-07 2006-09-20 지멘스 악티엔게젤샤프트 가스 및 증기 터빈 장치
KR100785955B1 (ko) * 2002-10-10 2007-12-14 엘피피 컴버션, 엘엘씨 연소용 액체 연료의 기화 기구 및 사용 방법
KR20130033537A (ko) * 2011-09-27 2013-04-04 삼성중공업 주식회사 순산소 디젤기관

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207528A (ja) * 1993-01-13 1994-07-26 Ishikawajima Harima Heavy Ind Co Ltd Lpg混合水用蒸発器を備えたガスタービン装置
US5934062A (en) * 1997-08-08 1999-08-10 J.O. Bernt & Associates Limited Link shape and chain link assembly method
KR100626463B1 (ko) * 1998-10-07 2006-09-20 지멘스 악티엔게젤샤프트 가스 및 증기 터빈 장치
KR100785955B1 (ko) * 2002-10-10 2007-12-14 엘피피 컴버션, 엘엘씨 연소용 액체 연료의 기화 기구 및 사용 방법
KR20130033537A (ko) * 2011-09-27 2013-04-04 삼성중공업 주식회사 순산소 디젤기관

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117780504A (zh) * 2024-02-26 2024-03-29 上海浦帮机电制造有限公司 一种辅助发动机
CN117780504B (zh) * 2024-02-26 2024-04-26 上海浦帮机电制造有限公司 一种辅助发动机

Also Published As

Publication number Publication date
KR20150004165A (ko) 2015-01-12
KR101945407B1 (ko) 2019-02-07

Similar Documents

Publication Publication Date Title
ES2637267T3 (es) Un sistema de celdas de combustible de óxido sólido
KR101682870B1 (ko) 발전 시스템 및 발전 시스템의 구동 방법 및 연소기
KR20000010648A (ko) 증기 냉각 연소기 및 트랜지션과 관련하여 사용되는 연료 가열시스테뮤
WO2016178470A1 (ko) 초임계 이산화탄소 발전 시스템
WO2020180082A1 (ko) 양방향 수전해 시스템 및 이의 동작방법
WO2017048039A1 (ko) 전기모터로 구동되는 펌프를 사용하는 액체로켓엔진
CN102953817A (zh) 动力设备及操作方法
US20110239650A1 (en) Power plant comprising a turbine unit and a generator
CN102953814A (zh) 功率装置和使用方法
KR20090127083A (ko) 터빈 시스템 및 터빈 시스템 작동 방법
WO2020197120A1 (ko) 양방향 수전해 시스템 및 이의 동작방법
JP2010510642A (ja) 高温燃料電池を具備するシステム
WO2011149191A2 (ko) 소형 열병합 발전 시스템 및 그 제어방법
NO330544B1 (no) Fremgangsmate for drift av et kraftverksanlegg med en hovedsakelig lukket CO2-prosess samt kraftverksanlegg med en slik prosess
WO2021033930A1 (ko) 자가 가동형 소각로 시스템
WO2015002370A1 (ko) 액체연료 기화 시스템
WO2020085668A1 (ko) 직화식 초임계 이산화탄소 발전 시스템 및 방법
WO2018062696A1 (ko) 하이브리드형 발전 시스템
WO2016182150A1 (ko) 이젝터 냉동 사이클을 이용한 발전 시스템
WO2017222267A1 (ko) 연소 배가스를 이용한 열교환기를 포함하는 연료전지 시스템
WO2016148329A1 (ko) 누설 유체를 재생하는 터보 팽창기
JP4508660B2 (ja) 高温型燃料電池を用いたコンバインド発電システム
KR20150066553A (ko) 발전 시스템
US7647762B2 (en) Combined apparatus for fluid heating and electrical power generation
JP2003097293A (ja) 原動所および関連した始動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14820552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14820552

Country of ref document: EP

Kind code of ref document: A1