WO2015000423A1 - 一种预编码方法及设备 - Google Patents
一种预编码方法及设备 Download PDFInfo
- Publication number
- WO2015000423A1 WO2015000423A1 PCT/CN2014/081573 CN2014081573W WO2015000423A1 WO 2015000423 A1 WO2015000423 A1 WO 2015000423A1 CN 2014081573 W CN2014081573 W CN 2014081573W WO 2015000423 A1 WO2015000423 A1 WO 2015000423A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- user
- scheduled
- users
- resource block
- interference suppression
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 230000001629 suppression Effects 0.000 claims abstract description 165
- 239000011159 matrix material Substances 0.000 claims abstract description 100
- 238000012545 processing Methods 0.000 claims description 41
- 238000004891 communication Methods 0.000 claims description 23
- 238000007781 pre-processing Methods 0.000 claims description 5
- 230000009467 reduction Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 15
- 238000004422 calculation algorithm Methods 0.000 description 14
- 238000004364 calculation method Methods 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000005265 energy consumption Methods 0.000 description 5
- 238000004590 computer program Methods 0.000 description 4
- 230000004807 localization Effects 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000017105 transposition Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000005562 fading Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0452—Multi-user MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0023—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
- H04L1/0028—Formatting
- H04L1/0031—Multiple signaling transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/022—Site diversity; Macro-diversity
- H04B7/024—Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
Definitions
- the present invention relates to the field of wireless communication technologies, and in particular, to a precoding method and device. Background technique
- next generation of cellular wireless communication technology 5G
- increasing the number of antennas on the transmitting side is widely recognized by the industry.
- many characteristics can be utilized, for example, the correlation between channels formed by different users and the transmitting end is small, and small-scale fading and thermal noise can be averaged off.
- the transmitting end can serve multiple users with single antennas to form spatial multiplexing, that is, MU-MIMO (Multi-User Multi-Input Multi-Output). System throughput and energy efficiency can be improved.
- MU-MIMO Multi-User Multi-Input Multi-Output
- System throughput and energy efficiency can be improved.
- beamforming can be utilized so that information transmitted to a given user does not cause interference at other users in the cell.
- the current precoding technologies mainly include ZF (Zero-Forcing) technology and MF (Matching-Filtering) technology.
- the MF precoding technique is less complex, but does not eliminate interference between users.
- ZF precoding technology can suppress interference to all other users for a given user.
- ZF precoding technology can eliminate inter-user interference, the complexity is high, especially when the number of service users is large, the complexity of matrix inversion will be greatly improved.
- the complexity is closely related to the energy consumption at the transmitting end. Reducing energy consumption is one of the priorities of the future 5G. Taking a power model (power model) proposed by Green Touch (a coalition that aims to transform communication and data networks and significantly reduce the carbon emissions of communication devices, platforms and networks), the energy consumption of ZF precoding can be used. Up to 80% of total energy consumption. Reducing the 50% complexity of precoding can increase the overall energy efficiency by more than 66.7%.
- the linear precoding method has a low requirement for system design when the number of days is small and the number of users is small.
- the current precoding technology has high performance and high computational complexity. The computational complexity not only brings system delay, but also has a great impact on the energy consumption of the transmitting end.
- the embodiment of the invention provides a precoding method and device for reducing the complexity of precoding calculation.
- a precoding method including:
- the coding vector performs precoding processing on the data of the scheduling user.
- the scheduling user is configured to select a user set for performing local interference suppression in a range of all scheduling users of the resource block. Specifically include:
- the scheduling user performs multi-cell cooperative communication
- the users in some of the cells are used as the scheduling users on the time-frequency resource block for localization.
- the set of users for interference suppression is
- each scheduling on the resource block is performed according to a distance between each scheduling and a transmitting end device on the resource block.
- the user selects a user set for performing local interference suppression in the range of all the scheduling users of the resource block, which specifically includes:
- the selected set number of scheduled users are determined as the set of users for local interference suppression corresponding to each scheduled user on the resource block.
- the resource block is determined according to a distance between each scheduled user and the transmitting end device on the resource block.
- the precoding vector calculated by each scheduling user is:
- the precoding vector of the currently scheduled user is:
- the precoding vector of the currently scheduled user is:
- a precoding vector representing a user k in the user set indicating a precoding vector of the user n outside the user set; etefe indicating all users in the user set for performing local interference suppression
- each scheduling on the resource block is performed according to channel coherence between scheduling users on the resource block.
- the user selects a user set for performing local interference suppression in the range of all the scheduling users of the resource block, which specifically includes:
- a set number of scheduled users are selected from the largest to the smallest, as the current scheduled user.
- each scheduling on the resource block is performed according to channel coherence between scheduling users on the resource block.
- the precoding vector calculated by the user is:
- precoding vector representing user n indicates the number of users in the user for local interference suppression
- H cl indicates the user set corresponding to user n for local interference suppression.
- ⁇ indicates the order of the channel coherence of other users and user h ⁇ from small to large, ⁇ (1) indicates the user with the smallest channel coherence with user ⁇ ; indicates the channel estimation of the user and the transmitting device outside the user set for local interference suppression, H ster represents the conjugate transpose of H duster , ⁇ represents the kth column of the matrix, [*f represents the matrix Conjugate transposition.
- the precoding vector calculated for the current scheduling user includes:
- the precoding vector of the currently scheduled user is:
- the channel of the current scheduled user estimates the first column vector of the pseudo inverse matrix of the channel estimation matrix of the user in the user set.
- a precoding apparatus including:
- a local interference suppression selection module configured to acquire all scheduling users on the resource block, and select, for each scheduling user on the resource block, a user set for performing local interference suppression in all scheduling user ranges of the resource block;
- a precoding module configured, for each scheduling user on the resource block, a matrix composed of channel estimations of all users in the user set corresponding to the current scheduling user selected by the local interference suppression module And calculating a precoding vector for the current scheduling user, and performing precoding processing on the data of the scheduling user according to the calculated precoding vector.
- the local interference suppression selecting module is specifically configured to: according to a distance between each scheduling user and a transmitting end device on the resource block, on the resource block Each scheduled user selects a set of users for local interference suppression within the scope of all scheduled users of the resource block; or
- the local interference suppression selection module is specifically configured to determine, for each scheduling user and the transmitting device on the resource block. Distance, according to the distance between each scheduling user and the transmitting device on the resource block, selecting a set number of scheduling users according to the order from near to far, and determining the selected number of scheduled users as
- the first or second possible implementation manner of the second aspect is applicable to the user corresponding to each scheduling user on the resource block, and in the third possible implementation manner, the precoding The module is specifically configured to: calculate, according to a distance between each scheduled user and the transmitting device on the resource block, a precoding vector calculated for each scheduling user on the resource block:
- the precoding vector of the currently scheduled user is:
- the precoding vector of the currently scheduled user is:
- a precoding vector representing a user k in the user set indicating a precoding vector of the user n outside the user set
- etefe indicating a matrix composed of channel estimates of all users in the user set for performing local interference suppression
- H ster denotes the conjugate transpose of c te ⁇
- [c denotes the kth column of the matrix
- [*f denotes the conjugate transpose of the matrix.
- the local interference suppression selection module is specifically configured to determine channel coherence between the scheduling users on the resource block, and according to each scheduling user on the resource block, according to a channel between the currently scheduled user and other scheduling users. Coherence, select the set number of scheduled users from the largest to the smallest, as the current set of user users for local interference suppression.
- the pre-coding module is specifically configured to: according to channel coherence between scheduling users on the resource block, The precoding vector calculated by each scheduling user on the resource block is:
- the precoding vector representing the user n indicates the number of users concentrated in the user for performing local interference suppression; ctefe indicates the user set corresponding to the user n for performing local interference suppression.
- ⁇ (1) indicates the user with the smallest channel coherence of the user ⁇ ; Measured, indicating the conjugate transpose of H dus ⁇ , [ ⁇ ] represents the kth column of the matrix, [*f represents the conjugate transpose of the matrix.
- the pre-coding module is specifically configured to: if the scheduled user performs multi-cell cooperative communication, if the currently scheduled user is in use In the user set for performing local interference suppression, the precoding vector of the currently scheduled user is: a corresponding column vector of the pseudo inverse matrix of the channel estimation matrix of the user in the cell in which the user is located; if the current scheduling user is used for local interference Outside the suppressed user set, the precoding vector of the currently scheduled user is: The channel of the current scheduled user estimates the first column vector of the pseudo inverse matrix of the channel estimation matrix of the user in the user set.
- a signal transmitting apparatus including a precoding apparatus, a scheduling module, a channel information acquiring module, a data preprocessing module, and a frequency domain processing module connected to the precoding apparatus, and a frequency domain processing module Launch module, where:
- the scheduling module is configured to provide information of all scheduling users on the resource block to the precoding device;
- the channel information acquiring module is configured to acquire channel estimation information of the user and provide the channel estimation information to the precoding device, where the local interference suppression selection module is configured to use, according to all the scheduling users on the resource block provided by the scheduling module, Selecting, for each scheduling user on the resource block, a set of users for performing local interference suppression within all scheduling users of the resource block;
- the precoding apparatus is configured to, according to each scheduling user on the resource block, a channel estimation component of all users in a user set that performs local interference suppression corresponding to a current scheduling user selected by the local interference suppression module. a matrix, calculating a precoding vector for the current scheduling user, and performing precoding processing on the data of the scheduling user processed by the data processing module according to the calculated precoding vector;
- the frequency domain processing module is configured to convert the frequency domain data precoded by the precoding processing device into a time domain signal
- the transmitting module is configured to transmit a time domain signal obtained by processing by the frequency domain processing module.
- a signal transmitting device including: a processor, a memory, and a radio frequency module, where:
- the processor includes a local interference suppression selection module and a pre-coding module, where the local interference suppression selection module is configured to acquire all scheduling users on the resource block, where each scheduling user on the resource block is in the resource block. Selecting a set of users for local interference suppression within all scheduling users;
- the precoding module is configured to calculate a precoding for the current scheduling user according to a matrix composed of channel estimations of all users in the user set corresponding to the current scheduling user for each scheduling user on the resource block. a vector, performing precoding processing on the data of the scheduling user according to the calculated precoding vector;
- the memory is configured to store program data on which the processor performs the above operations, and the intermediate parameters used by the processor to perform or perform the foregoing operations;
- the radio frequency module is configured to send data processed by the processor.
- the local interference suppression selecting module is specifically configured to: according to a distance between each scheduling user and a transmitting end device on the resource block, on the resource block Each scheduled user selects a set of users for local interference suppression within the scope of all scheduled users of the resource block; or
- the scheduling user performs multi-cell cooperative communication
- the users in some of the cells are used as the scheduling users on the time-frequency resource block for localization.
- the set of users for interference suppression is
- the local interference suppression selection module is specifically configured to determine, for each scheduling user and the transmitting device on the resource block Distance, according to the distance between each scheduling user and the transmitting device on the resource block, selecting a set number of scheduling users according to the order from near to far, and determining the selected number of scheduled users as
- the first or second possible implementation manner of the fourth aspect is applicable to the user corresponding to each scheduling user on the resource block
- the precoding The module is specifically configured to: calculate, according to a distance between each scheduled user and the transmitting device on the resource block, a precoding vector calculated for each scheduling user on the resource block: If the currently scheduled user is a user in the user set for performing local interference suppression, the precoding vector of the currently scheduled user is:
- the precoding vector of the currently scheduled user is: “ ⁇ ⁇ ( ⁇ " ⁇ r - ⁇ ⁇ V 1
- the local interference suppression selection module is specifically configured to determine channel coherence between scheduling users on the resource block. For each scheduled user on the resource block, according to the channel coherence between the currently scheduled user and other scheduled users, select a set number of scheduled users according to the order from large to small, as the current scheduling user. A set of users for local interference suppression.
- the pre-coding module is specifically configured to: according to channel coherence between scheduling users on the resource block, The precoding vector calculated by each scheduling user on the resource block is:
- precoding vector representing user n indicates the number of users in the user for local interference suppression
- H cl indicates the user set corresponding to user n for local interference suppression.
- ⁇ (1) indicates the user with the smallest channel coherence of the user ⁇ ; Measured, indicating the conjugate transpose of H dus ⁇ , [ ⁇ ] represents the kth column of the matrix, [*f represents the conjugate transpose of the matrix.
- the pre-coding module is specifically configured to: if the scheduled user performs multi-cell cooperative communication, if the currently scheduled user is in use In the user set for performing local interference suppression, the precoding vector of the currently scheduled user is: a corresponding column vector of the pseudo inverse matrix of the channel estimation matrix of the user in the cell in which the user is located; if the current scheduling user is used for local interference Outside the suppressed user set, the precoding vector of the currently scheduled user is:
- the channel of the current scheduled user estimates the first column vector of the pseudo inverse matrix of the channel estimation matrix of the user in the user set.
- each scheduling user on the resource block selects a user set for performing local interference suppression in all scheduling users of the resource block, and performs local interference according to the current scheduling user.
- the suppressed user set calculates the precoding vector for the current scheduling user, thereby suppressing the interference to other users within a certain range for a given user, and reducing the complexity of the precoding calculation under the premise of implementing interference suppression.
- FIG. 1 is a schematic diagram of a ZF precoding scenario in the prior art
- FIG. 2 is a schematic diagram of an internal structure of a signal sending device according to an embodiment of the present invention.
- FIG. 3 is a schematic diagram of local suppression precoding according to an embodiment of the present invention
- FIG. 4 is a flowchart of selecting a user set based on a distance from a transmitting device according to Embodiment 1 of the present invention
- FIG. 5 is a flowchart of selecting a user set based on channel coherence between users according to Embodiment 2 of the present invention
- FIG. 7 is a second schematic diagram of CDF comparison of a system SIR according to an embodiment of the present invention.
- FIG. 8 is a schematic structural diagram of a precoding apparatus according to an embodiment of the present disclosure.
- FIG. 9 is a second schematic structural diagram of a signal sending device according to an embodiment of the present invention. detailed description
- the embodiment of the present invention provides a precoding scheme.
- the user is differentiated according to the user feedback information or the sender measurement, for each user.
- the user to be scheduled selects a user set for local interference suppression, and calculates a precoding vector corresponding to each user to be scheduled according to the channel estimation of the user set of local interference suppression.
- the embodiment of the present invention can significantly reduce the complexity of precoding calculation.
- OFDM Orthogonal Frequency Division Multiplexing
- FDMA Frequency Division Multiple Access
- TDMA Time Division Multiple Access
- CDMA Code Division Multiple Access
- the channel is UE (User
- Equipment user equipment, ie, the terminal transmits uplink pilots to estimate that the transmitting device (such as the base station) is known to estimate the channel with the user.
- the embodiment of the present invention can be implemented by introducing a local interference suppression selection function on the transmitting end device side and performing related improvement on the precoding function.
- the structure of the transmitting device shown in FIG. 2 will be described below as an example.
- FIG. 2 it is a schematic diagram of an internal structure of a transmitting end device according to an embodiment of the present invention.
- the main functional modules related to the precoding scheme provided by the embodiment of the present invention in FIG. 1 include a local suppression interference suppression selection module and a precoding module.
- the local interference suppression selecting module is a newly added functional module in the embodiment of the present invention, and the precoding vector computing method used by the precoding module is also improved accordingly.
- the input of the local interference suppression selection module includes user feedback information and an ID of the user scheduled on each time-frequency resource provided by the scheduling module, and the output is corresponding to each scheduled user on each time-frequency resource for local interference suppression.
- User set (for convenience of description, hereinafter referred to as user set).
- the local interference suppression selection module is mainly used for each scheduling user on each time-frequency resource block, and according to the user feedback information, select a user set for the scheduling user within the range of all scheduling users on the current time-frequency resource block.
- the transmitter device measurement information may be substituted for the user feedback information as an input of the local interference suppression selection module.
- the user set information output by the local interference suppression selection module is used as an input of the precoding module, and the other input of the precoding module is derived from the channel estimation matrix information output by the channel information acquiring module, and the output of the precoding module is for each scheduling user.
- the precoding module is mainly configured to calculate, for each scheduling user, a precoding vector for the scheduling user according to channel estimation matrix information of all users in the user set of the scheduling user.
- the data preprocessing module provides the preprocessed user data to the precoding module, and the precoding module performs precoding processing on the preprocessed data according to the calculated precoding vector corresponding to the corresponding user, and the frequency domain processing module will precode the data.
- the data is transformed into a frequency domain signal and provided to the transmitting module for transmission.
- the processing of the data preprocessing module usually includes data generation, FEC (Forward Error Correction), data modulation, layer mapping, etc.; the frequency domain processing module usually uses IFFT (Fourier)
- IFFT Fast Fourier
- FIG. 3 is a schematic diagram of local suppression precoding provided by an embodiment of the present invention.
- the precoding algorithm used by the precoding module can pass the existing ZF precoding algorithm.
- the main difference between the existing and the existing ZF precoding algorithm is that the ZF precoding algorithm improved by the embodiment of the present invention calculates a precoding vector for each scheduling user for each user set corresponding to the scheduling user.
- the number of users included in the user set can be set in advance.
- the number of users in the user set can be determined according to the compromise of the complexity and performance loss of the precoding calculation. The larger the number of users, the higher the complexity of the precoding calculation, but the performance loss is less. On the contrary, the smaller the number of users, the precoding. The lower the computational complexity, the greater the performance penalty.
- the user can perform interference suppression in a plurality of manners, for example, according to the distance between the scheduling user and the transmitting device, or according to the channel coherence between the scheduling users, in the multi-cell cooperative communication scenario,
- the coding vector calculation method selected by the scheduling user in the small area to perform interference suppression is also different. The following is a detailed description using three preferred embodiments.
- the embodiment of the present invention describes selecting a user set for each scheduling user on the resource block according to the distance between each scheduling user and the transmitting end device on the resource block, and calculating precoding for each scheduling user according to the selected user set.
- the process of vector is a process of vector.
- This embodiment describes an example of a QPSK (Quadature Phase Shift Keying) modulation scheme in an LTE system.
- QPSK Quadadature Phase Shift Keying
- a typical interference suppression method is: Select the user closest to the transmitting device, that is, according to each scheduling user on the resource block. The distance of the transmitting device is selected from the near to far order, and a set number of scheduling users are selected to form a user set.
- the set of users can be the set of users corresponding to each scheduled user in the set of users, i.e., for each of the scheduled users within the set of users, the corresponding set of users is the same.
- FIG. 4 shows a preferred process for selecting a user set based on the distance from the transmitting device, which is performed by the local interference suppression selecting module, and may include the following steps: Step 1: The interference suppression selection algorithm begins.
- the interference suppression selection algorithm is usually started when the scheduling period arrives, for example, when performing MU-MIMO scheduling, the interference suppression selection algorithm is started;
- Step 2 Determine whether the current system available time-frequency resources are allocated, and if yes, go to step 10, otherwise go to step 3;
- Step 3 Select the time-frequency resource block that has not been allocated as the current processed time-frequency resource block.
- a time-frequency resource block may be sequentially selected from time-frequency resource blocks that have not been allocated;
- Step 4 Extract the information of the scheduled user on the current time-frequency resource block, such as the ID of the scheduling user.
- Step 5 Determine whether the scheduled users on the current time-frequency resource block have been processed (ie, calculate the scheduled user and the transmitting end) The distance between the devices), if yes, go to step 8, otherwise go to step 6;
- Step 6 Select the schedule on the current time-frequency resource block that has not been processed (that is, the distance between the scheduled user and the transmitting device has not been calculated) user.
- a scheduling user may be sequentially selected from scheduled users that have not been processed on the current time-frequency resource block;
- Step 7 Calculate the distance between the scheduled user and the transmitting device for the scheduled user selected in step 6.
- the distance between the scheduled user and the transmitting device may be determined according to the geographical location information fed back by the scheduling user. Usually, when the user performs network attachment or location update, the current location is reported to the network side.
- the distance between the dispatching user and the transmitting device can also be determined by other means, such as obtaining location information of the user from a location server or other device capable of providing user location information.
- Step 8 Arrange the distances between the scheduled users on the current time-frequency resource block and the transmitting device in order.
- the sorting method such as merge sorting or quick sorting may be used for sorting;
- Step 9 Select n c users that are closest to the transmitting device to form a user set, where the value of n c can be preset. It can have different values according to needs. The larger the n e is, the higher the complexity is, but the performance loss is less. On the contrary, the smaller the n e is, the lower the complexity is, but the performance loss is larger;
- Step 10 The local interference suppression user selection algorithm ends.
- the user closer to the transmitting device is given, that is, for all the scheduled users on a time-frequency resource block, the users who are closer to the transmitting device are the same.
- the obtained user set is applicable to all scheduling users on the time-frequency resource block.
- the precoding vector for a scheduled user within the user set, the precoding vector is given by equation (1): cluster cluster cluster ( 1 )
- the precoding vector is given by equation (2):
- a precoding vector representing user k (user k is a scheduling user in the user set), a precoding vector indicating user n (user n is a scheduling user outside the user set), n c indicating the number of users in the user set; c /! « ⁇ denotes a matrix consisting of the channel estimates of all users in the user set (here a matrix consisting of the channel estimates of the users closest to the transmitting device); channel estimation indicating the user n and the transmitting device ; indicates the conjugate transpose of H du , [ ⁇ ] 3 ⁇ 4 represents the kth column of the matrix, [ ⁇ represents the conjugate transpose of the matrix.
- the embodiment of the present invention describes selecting a user set for each scheduling user on the resource block according to channel coherence between the scheduling users on the resource block, and calculating a precoding vector for each scheduling user according to the selected user set. the process of.
- the local interference suppression selection module selects a user set for each scheduling user
- the n c (n c is the number of user groups in the set user) whose channel is most relevant to the channel of the currently scheduled user is selected.
- FIG. 5 shows a preferred process for selecting a user set based on inter-user channel coherence, which is performed by a local interference suppression selection module, and may include the following steps: Step 1: The interference suppression selection algorithm starts;
- Step 2 Determine whether the current system available time-frequency resources are allocated, and if yes, go to step 10, otherwise go to step 3;
- Step 3 Select the time-frequency resource block that has not been allocated as the current processed time-frequency resource block.
- a time-frequency resource block may be sequentially selected from time-frequency resource blocks that have not been allocated;
- Step 4 Extract the information of the scheduled user on the current time-frequency resource block, such as the ID of the scheduling user.
- Step 5 Determine whether the scheduled users on the current time-frequency resource block have been processed (that is, calculate the scheduled user and current time) Channel coherence between other users on the frequency resource block), if yes, go to step 8, otherwise go to step 6;
- Step 6 Select the scheduling user on the current time-frequency resource block that has not been processed (that is, the channel coherence has not been calculated).
- a scheduling user may be sequentially selected from scheduled users that have not been processed on the current time-frequency resource block;
- Step 7 Calculate the channel coherence between the scheduled user and other scheduled users on the current time-frequency resource block for the scheduled user selected in step 6.
- the user n indicates the current scheduled user (ie, the scheduled user selected in step 6), and calculates the channel coherence between the user n and other scheduled users on the current time-frequency resource block, which means: calculating the other scheduled users separately.
- the channel is mapped to the amplitude on the channel of user n, ie the magnitude of the calculation, ' ⁇ ', where ⁇ denotes the common transposition of the channel estimate of user n, the channel estimate representing user j, the user n and User j is a scheduled user on the same time-frequency resource block.
- Step 8 Sorting the channel coherence between the current scheduling user and other scheduling users on the current time-frequency resource block for each scheduling user on the current time-frequency resource block;
- Step 9 For each scheduled user on the current time-frequency resource block, according to the sorting result of step 8, select a user with a high channel coherence to form a user set, and the user set is represented as ⁇ (1), ⁇ (2 ), ... , ⁇ (3 ⁇ 4) ⁇ , ⁇ represents a small to large arrangement order of channel coherence of other users and user ⁇ , where ⁇ (1) represents a user having the smallest channel coherence with user ⁇ , And so on;
- Step 10 The local interference suppression user selection algorithm ends.
- the transmitting device needs to select a user set for each scheduling user.
- the precoding vector for each scheduled user, the precoding vector is given by equation (3):
- ⁇ is the precoding vector of user n
- n c is the number of users in the user set
- H duster is a matrix consisting of the channel estimates of all users in the user set of user n (here, with the user n letter h
- This embodiment describes a method for selecting a user set in a multi-cell cooperative communication scenario, and a method for calculating a precoding vector for each scheduled user according to the selected user set.
- the local interference suppression selecting module uses a user in a part of the cells as a user of the scheduling user on the time-frequency resource block according to a cell to which all scheduling users on the time-frequency resource block belong. set.
- a user in a partial cell (which may be one cell or multiple cells) serves as a user set member of user ⁇ .
- the precoding vector is: a corresponding column vector of the pseudo inverse matrix of the channel estimation matrix of the user in the cell in which the user is located, which can be specifically See formula (1);
- the precoding vector is: the first column vector of the pseudo-inverse matrix of the channel estimation matrix of the user of the scheduling user and the channel estimation matrix of the user in the user set, Therefore, the interference to the users in the user set is suppressed.
- formula (2) For details, refer to formula (2).
- Embodiments of the present invention can significantly reduce the computational complexity of precoding vector acquisition.
- the computational complexity of the precoding vector is:
- the computational complexity of the precoding vector is:
- the computational complexity of the existing ZF precoding algorithm is 3MK 2 /2+K 3 .
- Table 1 shows the reduction in complexity at different n c compared to the existing ZF precoding algorithm.
- the embodiment of the present invention compares a CDF (Cumulative Distribution Dunction) of a SIR (Signal to Interference Ratio) under a large-scale antenna system.
- An example of a precoding method As can be seen from FIG. 5, the performance difference between the precoding method proposed by the embodiment of the present invention is less than 3 dB, that is, the spectral efficiency loss of the maximum lbps/Hz, and the performance loss is small.
- Figure 7 shows the system performance when the number of users is close to the number of antennas.
- the precoding method proposed by the embodiment of the present invention can achieve better performance than the MF precoding method and the ZF precoding method.
- the precoding scheme proposed by the embodiment of the present invention has a significantly lower complexity than the ZF precoding method, and the performance obtained by the embodiment of the present invention is less than the ZF loss, and the complexity and performance of the precoding vector can be calculated.
- the solution proposed by the embodiment of the present invention is better than the ZF precoding method and the MF precoding method.
- an embodiment of the present invention further provides a precoding apparatus and a signal transmitting apparatus.
- FIG. 8 is a schematic structural diagram of a precoding apparatus according to an embodiment of the present invention.
- the precoding apparatus may include: a local interference suppression selecting module 81 and a precoding module 82, where:
- the local interference suppression selection module 81 is configured to acquire all scheduling users on the resource block, and select, for each scheduling user on the resource block, a user set for local interference suppression in all scheduling user ranges of the resource block. ;
- the precoding module 82 is configured to: for each scheduling user on the resource block, according to the channel estimation of all users in the user set corresponding to the current scheduling user selected by the local interference suppression module The matrix calculates a precoding vector for the current scheduling user, and performs precoding processing on the data of the scheduling user according to the calculated precoding vector.
- the local interference suppression selection module 81 may be configured according to the distance between each scheduling user and the transmitting device on the resource block, and each scheduling user on the resource block is within the range of all scheduling users of the resource block. Selecting a user set for performing local interference suppression; or, according to channel coherence between each scheduled user on the resource block, for all scheduled users of the resource block for each scheduled user on the resource block Selecting a user set for performing local interference suppression in a range; or, in the case of scheduling a user to perform multi-cell cooperative communication, according to a cell to which all scheduling users on the time-frequency resource block belong, the users in some of the cells are regarded as A set of users of the scheduled user on the time-frequency resource block for performing local interference suppression.
- the local interference suppression selection module 81 may determine the distance between each scheduling user and the transmitting device on the resource block, according to the distance between each scheduling user and the transmitting device on the resource block, according to the distance from near to far. a sequence in which a set number of scheduled users are selected, and the selected set number of scheduled users are determined as specific, precoding modules corresponding to each scheduled user on the resource block for performing local interference suppression.
- the precoding vector calculated for each scheduling user on the resource block is: according to the distance between each scheduling user and the transmitting device on the resource block:
- the current scheduled user is a user in a user set for performing local interference suppression
- the precoding vector of the currently scheduled user is:
- a precoding vector representing a user k in the user set indicating a precoding vector of the user n outside the user set
- etefe indicating a matrix composed of channel estimates of all users in the user set for performing local interference suppression
- H ster denotes the conjugate transpose of c te ⁇
- [c denotes the kth column of the matrix
- [*f denotes the conjugate transpose of the matrix.
- the local interference suppression selection module 81 is specifically configured to: determine channel coherence between the scheduling users on the resource block, for each scheduled user on the resource block, according to the current scheduling user and other scheduling users
- the inter-channel coherence in descending order, selects a set number of scheduled users as the current set of users for local interference suppression.
- the precoding vector calculated for each scheduling user on the resource block is: One_ )
- the precoding vector representing the user ⁇ indicates the number of users in the user for performing local interference suppression; ctefe indicates the user set corresponding to the user n for performing local interference suppression.
- ⁇ (1) indicates the user with the smallest channel coherence of the user ⁇ ; Measured, indicating the conjugate transpose of H dus ⁇ , [ ⁇ ] represents the kth column of the matrix, [*f represents the conjugate transpose of the matrix.
- the precoding module 82 may be configured to perform scheduling, when the user is scheduled to perform multi-cell cooperative communication, if the currently scheduled user is in the user set for performing local interference suppression, the precoding vector of the currently scheduled user is: Corresponding column vector of the pseudo inverse matrix of the channel estimation matrix of the inner user; if the currently scheduled user is outside the user set for local interference suppression, the precoding vector of the currently scheduled user is: channel estimation of the current scheduling user The first column vector of the pseudo inverse matrix of the channel estimation matrix of the user in the user set.
- the signal sending device may include the foregoing precoding apparatus, and a scheduling module, a channel information acquiring module, a data preprocessing module, and a frequency domain processing module connected to the precoding apparatus, and a frequency domain processing module.
- the structure of the connected transmitting module is as shown in FIG. 2, where: the scheduling module is configured to provide information of all scheduling users on the resource block to the precoding device; and the channel information acquiring module is configured to obtain a channel estimation of the user. Information is provided to the precoding device;
- Data processing module Such as the realization of the data generation, FEC, modulation, layer mapping and other functions as shown in Figure 2;
- the local interference suppression selection module is configured to select, for each scheduling user on the resource block provided by the scheduling module, for each scheduling user on the resource block to select local interference in all scheduling user ranges of the resource block. Suppressed user set;
- the precoding apparatus is configured to, according to each scheduling user on the resource block, a channel estimation component of all users in a user set that performs local interference suppression corresponding to a current scheduling user selected by the local interference suppression module. a matrix, calculating a precoding vector for the current scheduling user, and performing precoding processing on the data of the scheduling user processed by the data processing module according to the calculated precoding vector;
- the frequency domain processing module is configured to convert the frequency domain data precoded by the precoding processing device into a time domain signal
- the transmitting module is configured to transmit a time domain signal obtained by processing by the frequency domain processing module.
- FIG. 9 is a schematic structural diagram of hardware of the above signaling device provided by the present invention. As shown, the device may include: a processor 91, a memory 92, and a radio frequency module 93, wherein the processor 91 includes a local interference suppression selection module 911 and a precoding module 912. among them:
- the local interference suppression selection module 911 is configured to acquire all scheduling users on the resource block, and select, for each scheduling user on the resource block, a user set for performing local interference suppression in all scheduling user ranges of the resource block;
- the precoding module 912 is configured to calculate a precoding vector for the current scheduling user according to a matrix of channel estimation components of all users in the user set corresponding to the current scheduling user for each scheduling user on the resource block. And performing precoding processing on the data of the scheduling user according to the calculated precoding vector;
- the memory 92 is configured to store program data on which the processor 91 performs the above operations, and intermediate parameters used or generated by the processor 91 during the foregoing operations;
- the radio frequency module 93 is configured to send data processed by the processor.
- the local interference suppression selection module 911 may perform all the adjustments of the resource block for each scheduling user on the resource block according to the distance between each scheduling user and the transmitting device on the resource block. Selecting a user set for performing local interference suppression within a user range; or, according to channel coherence between the scheduling users on the resource block, for each scheduling user on the resource block in the resource block Selecting a user set for local interference suppression in all scheduling users; or, in the case of scheduling users to perform multi-cell cooperative communication, according to the cells to which all scheduling users on the time-frequency resource block belong, some of the cells are The user within the user acts as a set of users for performing local interference suppression on the scheduled users on the time-frequency resource block.
- the local interference suppression selection module 911 is specifically configured to: determine a distance between each scheduling user and the transmitting device on the resource block, according to the distance between each scheduling user and the transmitting device on the resource block, according to the distance In a near-to-far order, a set number of scheduled users are selected therefrom, and the selected set number of scheduled users are determined as the set of users for local interference suppression corresponding to each scheduled user on the resource block.
- the precoding module 912 can calculate, according to the distance between each scheduling user and the transmitting device on the resource block, a precoding vector calculated for each scheduling user on the resource block:
- the precoding vector of the currently scheduled user is:
- the precoding vector of the currently scheduled user is:
- a precoding vector representing a user k in the user set indicating a precoding vector of the user n outside the user set
- etefe indicating a matrix composed of channel estimates of all users in the user set for performing local interference suppression
- H ster denotes the conjugate transpose of c te ⁇
- [c denotes the kth column of the matrix
- [*f denotes the conjugate transpose of the matrix.
- the local interference suppression selection module 911 is specifically configured to: determine channel coherence between the scheduling users on the resource block, for each scheduled user on the resource block, according to the current scheduling user and other scheduling users The inter-channel coherence, in descending order, selects a set number of scheduled users as the current set of users for local interference suppression.
- the precoding module 912 can calculate, according to channel coherence between the scheduling users on the resource block, a precoding vector calculated for each scheduling user on the resource block:
- the precoding vector representing the user n indicates the number of users in the user for performing local interference suppression; H cl indicates the user set corresponding to the user n for performing local interference suppression i 1)
- ⁇ represents a small to large order of channel coherence of other users and user h ⁇ , ⁇ (1) represents a user with the smallest channel coherence with user ⁇ ;
- the precoding module 912 when scheduling the user to perform multi-cell cooperative communication, if the currently scheduled user is in the user set for performing local interference suppression, the precoding vector of the currently scheduled user is: Corresponding column vector of the pseudo inverse matrix of the user's channel estimation matrix; if the current scheduling user is outside the user set for local interference suppression, the precoding vector of the currently scheduled user is: channel estimation and location of the current scheduling user The first column vector of the pseudo inverse matrix of the channel estimation matrix of the user in the user set.
- the present invention is directed to a method, apparatus (system), and computer program product according to an embodiment of the present invention.
- These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
- the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
- the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
- These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
- the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明公开了一种预编码方法及设备。本发明中,与编码装置获取资源块上的所有调度用户,为所述资源块上的每个调度用户在所述资源块的所有调度用户范围内选取用于进行局部干扰抑制的用户集;针对所述资源块上的每个调度用户,根据当前调度用户对应的进行局部干扰抑制的用户集内所有用户的信道估测组成的矩阵,为当前调度用户计算预编码向量,根据计算出的预编码向量对调度用户的数据进行预编码处理。采用本发明降低预编码计算的复杂度。
Description
一种预编码方法及设备 技术领域
本发明涉及无线通信技术领域, 尤其涉及一种预编码方法及设备。 背景技术
下一代蜂窝无线通信技术(5G ) 中, 增大发射端侧天线数目广泛被业界认 可。 特别是在天线数目很大时, 有很多特性可以被利用, 比如不同用户与发射 端形成的信道间的相关性较小, 小尺度衰落及热噪声可以被平均掉等。 在大规 模天线系统下, 发射端可以服务多个装备单天线的用户形成空间上的复用, 亦 即 MU-MIMO ( Multi-User Multi-Input Multi-Output, 多用户多输入多输出), 这 样系统的吞吐量以及能量效率等性能均可得到提升。 在下行传输时, 由于天线 数目很大, 可以利用波束成型从而使得传输给给定用户的信息不会在小区内其 他用户处造成干扰。
目 前的预编码技术主要有 ZF ( Zero-Forcing, 迫零) 技术、 MF ( Matched-Filtering, 匹配滤波)技术等。 MF预编码技术的复杂度较小, 但是 不能消除用户间的干扰。 如图 1所示, ZF预编码技术对于给定用户, 可抑制其 对所有其他用户的干扰。 ZF预编码技术虽然可以消除用户间干扰, 但复杂度较 高, 特别是服务用户数很多时, 矩阵求逆的复杂度将大大提升。
复杂度与发射端侧能耗密切相关,降低能耗是未来 5G的重点之一。以 Green Touch (—个旨在转变通信与数据网络, 显著减少通信设备、 平台及网络的碳排 量的联盟)上提出的一个 power model (功率模型 )为例, ZF预编码占用的能耗 可达总能耗的 80%。 降低预编码的复杂度的 50%可以提高总的能效 66.7%以上。
另外, 复杂度与延时密切相关。 有文献指出一个 15x15 的矩阵求逆所消耗 的时间将长达 150 s, 相当于 LTE ( Long Term Evolution, 长期演进) 系统里给
出 500 s的相干时间的 30%。而且,矩阵求逆的操作需要在每个相干带宽上操作, 这会带来很大的延迟, 而延迟对以 LTE为例的即时通信系统来说, 是不可承受 的时间消耗。
目前已有的线性预编码方法在天数数目较小及用户数较少时, 对系统设计 的要求不是很高。 但在天线数目很大时, 目前的预编码技术得到高性能的同时 计算复杂度很高, 计算复杂度不仅会带来系统延迟, 还会对发射端的能耗影响 很大。
由此可见, 目前亟需一种预编码方案, 以降低预编码计算的复杂度。 发明内容
本发明实施例提供了一种预编码方法及设备, 用以降低预编码计算的复杂 度。
第一方面, 提供了一种预编码方法, 包括:
获取资源块上的所有调度用户, 为所述资源块上的每个调度用户在所述资 源块的所有调度用户范围内选取用于进行局部干扰抑制的用户集;
针对所述资源块上的每个调度用户, 根据当前调度用户对应的进行局部干 扰抑制的用户集内所有用户的信道估测组成的矩阵, 为当前调度用户计算预编 码向量, 根据计算出的预编码向量对调度用户的数据进行预编码处理。
结合第一方面, 在第一种可能的实现方式中, 所述为所述资源块上的每个 调度用户在所述资源块的所有调度用户范围内选取用于进行局部干扰抑制的用 户集, 具体包括:
根据所述资源块上的各调度用户与发射端设备间的距离, 为所述资源块上 的每个调度用户在所述资源块的所有调度用户范围内选取用于进行局部干扰抑 制的用户集; 或者
根据所述资源块上的各调度用户之间的信道相干性, 为所述资源块上的每 个调度用户在所述资源块的所有调度用户范围内选取用于进行局部干扰抑制的
用户集; 或者
在调度用户进行多小区协作通信的情况下, 根据时频资源块上的所有调度 用户各自归属的小区, 将其中部分小区内的用户作为所述时频资源块上的调度 用户的用于进行局部干扰抑制的用户集。
结合第一方面的第一种可能的实现方式, 在第二种可能的实现方式中, 根 据所述资源块上的各调度与发射端设备间的距离, 为所述资源块上的每个调度 用户在所述资源块的所有调度用户范围内选取用于进行局部干扰抑制的用户 集, 具体包括:
确定所述资源块上的每个调度用户与发射端设备的距离;
根据所述资源块上的每个调度用户与发射端设备的距离, 按照从近到远的 顺序, 从中选取设定数量的调度用户;
将选取出的设定数量的调度用户确定为所述资源块上的每个调度用户对应 的用于进行局部干扰抑制的用户集。
结合第一方面的第一种或第二种可能的实现方式, 在第三种可能的实现方 式中, 根据所述资源块上的各调度用户与发射端设备间的距离, 为所述资源块 上的每个调度用户计算出的预编码向量为:
若当前调度用户为用于进行局部干扰抑制的用户集内的用户, 则当前调度 用户的预编码向量为:
7 _ τ τΗ τ τ τ τΗ \ -l
k― L cluster cluster cluster
」1
其中, 表示用户集内的用户 k的预编码向量, 表示用户集外的用户 n 的预编码向量; etefe表示由用于进行局部干扰抑制的用户集内的所有用户的
信道估测组成的矩阵; 表示用户 n 与发射端设备的信道估测, H ter表示 cte^的共轭转置, [ c表示矩阵的第 k列, [·Γ表示矩阵的共轭转置。
结合第一方面的第一种可能的实现方式, 在第四种可能的实现方式中, 根 据所述资源块上的各调度用户之间的信道相干性, 为所述资源块上的每个调度 用户在所述资源块的所有调度用户范围内选取用于进行局部干扰抑制的用户 集, 具体包括:
确定所述资源块上的各调度用户之间的信道相干性;
针对所述资源块上的每个调度用户, 根据当前调度用户与其他调度用户间 的信道相干性, 按照从大到小的顺序, 从中选取设定数量的调度用户, 作为当 前调度用户的用于进行局部干扰抑制的用户集。
」1 其中, 表示用户 n的预编码向量, 表示用于进行局部干扰抑制的用户 :中的用户数量; Hcl 表示用户 n对应的用于进行局部干扰抑制的用户集内
i 1) 的所有用户的信道估测组成的矩阵, π表示其他用户与用户 h η的信道相干性的由小到大的排列顺序, π(1)表示与用户 η的信道相干性最小的 用户; 表示用于进行局部干扰抑制的用户集外的用户与发射端设备的信道估 测, H ster表示 Hduster的共轭转置, ^表示矩阵的第 k列, [*f表示矩阵的
共轭转置。
结合第一方面的第一种可能的实现方式, 在第六种可能的实现方式中, 在 调度用户进行多小区协作通信的情况下, 为当前调度用户计算的预编码向量, 具体包括:
若当前调度用户在用于进行局部干扰抑制的用户集内, 则当前调度用户的 预编码向量为:
调度用户所在小区内用户的信道估测矩阵的伪逆矩阵的对应列向量; 若当前调度用户在用于进行局部干扰抑制的用户集外, 则当前调度用户的 预编码向量为:
当前调度用户的信道估测与所述用户集中的用户的信道估测矩阵的伪逆矩 阵的第一个列向量。
第二方面, 提供了一种预编码装置, 包括:
局部干扰抑制选取模块, 用于获取资源块上的所有调度用户, 为所述资源 块上的每个调度用户在所述资源块的所有调度用户范围内选取用于进行局部干 扰抑制的用户集;
预编码模块, 用于针对所述资源块上的每个调度用户, 根据所述局部干扰 抑制模块所选取的当前调度用户对应的进行局部干扰抑制的用户集内所有用户 的信道估测组成的矩阵, 为当前调度用户计算预编码向量, 根据计算出的预编 码向量对调度用户的数据进行预编码处理。
结合第二方面, 在第一种可能的实现方式中, 所述局部干扰抑制选取模块 具体用于, 根据所述资源块上的各调度用户与发射端设备间的距离, 为所述资 源块上的每个调度用户在所述资源块的所有调度用户范围内选取用于进行局部 干扰抑制的用户集; 或者
根据所述资源块上的各调度用户之间的信道相干性, 为所述资源块上的每 个调度用户在所述资源块的所有调度用户范围内选取用于进行局部干扰抑制的 用户集; 或者
在调度用户进行多小区协作通信的情况下, 根据时频资源块上的所有调度 用户各自归属的小区, 将其中部分小区内的用户作为所述时频资源块上的调度 用户的用于进行局部干扰抑制的用户集。
结合第二方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所 述局部干扰抑制选取模块具体用于, 确定所述资源块上的每个调度用户与发射 端设备的距离, 根据所述资源块上的每个调度用户与发射端设备的距离, 按照 从近到远的顺序, 从中选取设定数量的调度用户, 将选取出的设定数量的调度 用户确定为所述资源块上的每个调度用户对应的用于进行局部干扰抑制的用户 结合第二方面的第一种或第二种可能的实现方式, 在第三种可能的实现方 式中, 所述预编码模块具体用于, 根据所述资源块上的各调度用户与发射端设 备间的距离, 为所述资源块上的每个调度用户计算出的预编码向量为:
若当前调度用户为用于进行局部干扰抑制的用户集内的用户, 则当前调度 用户的预编码向量为:
7 _ τ τΗ τ τ τ τΗ \ -l
k― L cluster cluster cluster
」1
其中, 表示用户集内的用户 k的预编码向量, 表示用户集外的用户 n 的预编码向量; etefe表示由用于进行局部干扰抑制的用户集内的所有用户的 信道估测组成的矩阵; 表示用户 n 与发射端设备的信道估测, H ster表示 cte^的共轭转置, [ c表示矩阵的第 k列, [*f表示矩阵的共轭转置。
结合第二方面的第一种可能的实现方式, 在第四种可能的实现方式中, 所
述局部干扰抑制选取模块具体用于, 确定所述资源块上的各调度用户之间的信 道相干性, 针对所述资源块上的每个调度用户, 根据当前调度用户与其他调度 用户间的信道相干性, 按照从大到小的顺序, 从中选取设定数量的调度用户, 作为当前调度用户的用于进行局部干扰抑制的用户集。
结合第二方面的第四种可能的实现方式, 在第五种可能的实现方式中, 所 述预编码模块具体用于, 根据所述资源块上的各调度用户之间的信道相干性, 为所述资源块上的每个调度用户计算出的预编码向量为:
其中, 表示用户 n的预编码向量, 表示用于进行局部干扰抑制的用户 集中的用户数量; ctefe表示用户 n对应的用于进行局部干扰抑制的用户集内
η的信道相干性的由小到大的排列顺序, π(1)表示与用户 η的信道相干性最小的 用户; 表示用于进行局部干扰抑制的用户集外的用户与发射端设备的信道估 测, 表示 Hdus ^的共轭转置, [·] 表示矩阵的第 k列, [*f表示矩阵的 共轭转置。
结合第二方面的第一种可能的实现方式, 在第六种可能的实现方式中, 所 述预编码模块具体用于, 在调度用户进行多小区协作通信的情况下, 若当前调 度用户在用于进行局部干扰抑制的用户集内, 则当前调度用户的预编码向量为: 调度用户所在小区内用户的信道估测矩阵的伪逆矩阵的对应列向量; 若当前调度用户在用于进行局部干扰抑制的用户集外, 则当前调度用户的 预编码向量为:
当前调度用户的信道估测与所述用户集中的用户的信道估测矩阵的伪逆矩 阵的第一个列向量。
第三方面, 提供了一种信号发送设备, 包括预编码装置, 与所述预编码装 置连接的调度模块、 信道信息获取模块、 数据预处理模块和频域处理模块, 以 及与频域处理模块连接的发射模块, 其中:
所述调度模块, 用于将资源块上的所有调度用户的信息提供给所述预编码 装置;
所述信道信息获取模块, 用于获取用户的信道估测信息并提供给所述预编 码装置; 所述局部干扰抑制选取模块, 用于根据所述调度模块提供的资源块上的所 有调度用户, 为所述资源块上的每个调度用户在所述资源块的所有调度用户范 围内选取用于进行局部干扰抑制的用户集;
所述预编码装置, 用于针对所述资源块上的每个调度用户, 根据所述局部 干扰抑制模块所选取的当前调度用户对应的进行局部干扰抑制的用户集内所有 用户的信道估测组成的矩阵, 为当前调度用户计算预编码向量, 并根据计算出 的预编码向量对所述数据处理模块处理得到的调度用户的数据进行预编码处 理;
所述频域处理模块, 用于将所述预编码处理装置预编码后的频域数据转换 为时域信号;
所述发射模块, 用于将所述频域处理模块处理后得到的时域信号进行发射。 第四方面, 提供了一种信号发送设备, 包括: 处理器、 存储器和射频模块, 其中:
所述处理器中包括局部干扰抑制选取模块和预编码模块, 所述局部干扰抑 制选取模块用于获取资源块上的所有调度用户, 为所述资源块上的每个调度用 户在所述资源块的所有调度用户范围内选取用于进行局部干扰抑制的用户集;
所述预编码模块用于针对所述资源块上的每个调度用户, 根据当前调度用户对 应的进行局部干扰抑制的用户集内所有用户的信道估测组成的矩阵, 为当前调 度用户计算预编码向量, 根据计算出的预编码向量对调度用户的数据进行预编 码处理;
所述存储器, 用于存储所述处理器执行上述操作所依据的程序数据, 以及 所述处理器执行上述操作过程中所用到的或产生的中间参数;
所述射频模块, 用于对所述处理器处理后的数据进行发送。
结合第四方面, 在第一种可能的实现方式中, 所述局部干扰抑制选取模块 具体用于, 根据所述资源块上的各调度用户与发射端设备间的距离, 为所述资 源块上的每个调度用户在所述资源块的所有调度用户范围内选取用于进行局部 干扰抑制的用户集; 或者
根据所述资源块上的各调度用户之间的信道相干性, 为所述资源块上的每 个调度用户在所述资源块的所有调度用户范围内选取用于进行局部干扰抑制的 用户集; 或者
在调度用户进行多小区协作通信的情况下, 根据时频资源块上的所有调度 用户各自归属的小区, 将其中部分小区内的用户作为所述时频资源块上的调度 用户的用于进行局部干扰抑制的用户集。
结合第四方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所 述局部干扰抑制选取模块具体用于, 确定所述资源块上的每个调度用户与发射 端设备的距离, 根据所述资源块上的每个调度用户与发射端设备的距离, 按照 从近到远的顺序, 从中选取设定数量的调度用户, 将选取出的设定数量的调度 用户确定为所述资源块上的每个调度用户对应的用于进行局部干扰抑制的用户 结合第四方面的第一种或第二种可能的实现方式, 在第三种可能的实现方 式中, 所述预编码模块具体用于, 根据所述资源块上的各调度用户与发射端设 备间的距离, 为所述资源块上的每个调度用户计算出的预编码向量为:
若当前调度用户为用于进行局部干扰抑制的用户集内的用户, 则当前调度 用户的预编码向量为:
7 _ τ τΗ τ τ τ τΗ \ -l
k― L cluster cluster cluster
若当前调度用户为用于进行局部干扰抑制的用户集外的用户, 则当前调度 用户的预编码向量为: 一「 ΊΗ (Υ " η r - ΊΗ V1
τ 一 — hη — hη — hη
η
τ τ τ τ τ τ
L cluster」 |_ cluster」 |_ cluster」
L 、 y Ji 其中, 表示用户集内的用户 k的预编码向量, 表示用户集外的用户 n 的预编码向量; etefe表示由用于进行局部干扰抑制的用户集内的所有用户的 信道估测组成的矩阵; 表示用户 n 与发射端设备的信道估测, H ster表示 cte^的共轭转置, [ c表示矩阵的第 k列, [*f表示矩阵的共轭转置。 结合第四方面的第一种可能的实现方式, 在第四种可能的实现方式中, 所 述局部干扰抑制选取模块具体用于, 确定所述资源块上的各调度用户之间的信 道相干性, 针对所述资源块上的每个调度用户, 根据当前调度用户与其他调度 用户间的信道相干性, 按照从大到小的顺序, 从中选取设定数量的调度用户, 作为当前调度用户的用于进行局部干扰抑制的用户集。
结合第四方面的第一种可能的实现方式, 在第五种可能的实现方式中, 所 述预编码模块具体用于, 根据所述资源块上的各调度用户之间的信道相干性, 为所述资源块上的每个调度用户计算出的预编码向量为:
」1 其中, 表示用户 n的预编码向量, 表示用于进行局部干扰抑制的用户 :中的用户数量; Hcl 表示用户 n对应的用于进行局部干扰抑制的用户集内
的所有用户的信道估测组成的矩阵, π表示其他用户与用户
η的信道相干性的由小到大的排列顺序, π(1)表示与用户 η的信道相干性最小的 用户; 表示用于进行局部干扰抑制的用户集外的用户与发射端设备的信道估 测, 表示 Hdus ^的共轭转置, [·] 表示矩阵的第 k列, [*f表示矩阵的 共轭转置。
结合第四方面的第一种可能的实现方式, 在第六种可能的实现方式中, 所 述预编码模块具体用于, 在调度用户进行多小区协作通信的情况下, 若当前调 度用户在用于进行局部干扰抑制的用户集内, 则当前调度用户的预编码向量为: 调度用户所在小区内用户的信道估测矩阵的伪逆矩阵的对应列向量; 若当前调度用户在用于进行局部干扰抑制的用户集外, 则当前调度用户的 预编码向量为:
当前调度用户的信道估测与所述用户集中的用户的信道估测矩阵的伪逆矩 阵的第一个列向量。
本发明的上述实施例中, 由于为资源块上的每个调度用户在所述资源块的 所有调度用户范围内选取用于进行局部干扰抑制的用户集, 并根据当前调度用 户对应的进行局部干扰抑制的用户集为当前调度用户计算预编码向量, 从而对 于给定用户, 抑制其对一定范围内的其它用户的干扰, 在实现干扰抑制的前提 下, 降低了预编码计算的复杂度。 附图说明
图 1为现有技术中的 ZF预编码场景示意图;
图 2为本发明实施例提供的信号发送设备的内部结构示意图;
图 3为本发明实施例提供的局部抑制预编码的示意图;
图 4为本发明实施例一中基于与发射端设备的距离选取用户集的流程; 图 5为本发明实施例二中基于用户间信道相干性选取用户集的流程; 图 6为本发明实施例中的系统 SIR的 CDF对比示意图之一;
图 7为本发明实施例中的系统 SIR的 CDF对比示意图之二;
图 8为本发明实施例提供的预编码装置的结构示意图;
图 9为本发明实施例提供的信号发送设备的结构示意图之二。 具体实施方式
为了降低预编码计算复杂度, 本发明实施例提供了一种预编码方案, 在发 射端进行 MU-MIMO调度时, 基于用户反馈信息或发送端测量对每次调度的用 户进行区分, 为每个待调度用户选取进行局部干扰抑制的用户集, 根据局部干 扰抑制的用户集的信道估测, 计算对应每个待调度用户的预编码向量。
本发明实施例在应用于大规模天线蜂窝通信系统时, 可显著降低预编码计 算的复杂度。
下面以 OFDM ( Orthogonal Frequency Division Multiplexing,正交频分复用 ) 系统为例, 对本发明实施例的具体实现过程进行详细描述。 需要说明的是, 本 发明实施例虽然以 OFDM系统为例,但不局限于 OFDM系统, 适用于所有的大 规模天线系统, 比如可以是 FDMA ( Frequency Division Multiple Access, 频分多 址接入) 系统、 TDMA ( Time Division Multiple Access, 时分多址接入) 系统或 CDMA ( Code Division Multiple Access , 码分多址接入) 系统等。
在 TDD ( Time Division Duplexing, 时分双工) 系统中, 信道由 UE ( User
Equipment, 用户设备, 即终端)发送上行导频来估测, 发射端设备(如基站) 已知与用户的信道估测。
本发明实施例可通过在发射端设备侧引入局部干扰抑制选取功能, 并对预 编码功能进行相关改进来实现。 下面以图 2 所示的发射端设备的结构为例进行 说明。
参见图 2, 为本发明实施例提供的发射端设备的内部结构示意图。 图 1中与 本发明实施例提供的预编码方案相关的主要功能模块包括局部抑制干扰抑制选 取模块和预编码模块。 与现有发射端设备相比, 局部干扰抑制选取模块是本发 明实施例新增加的功能模块, 并且预编码模块所釆用预编码向量计算方法也进 行了相应改进。
局部干扰抑制选取模块的输入包括用户反馈信息以及调度模块所提供的每 块时频资源上调度的用户的 ID, 输出为每块时频资源上的每个调度用户对应的 用于进行局部干扰抑制的用户集(为描述方便, 以下简称用户集)。 局部干扰抑 制选取模块主要用于针对每个时频资源块上的每个调度用户, 根据用户反馈信 息, 在当前时频资源块上的所有调度用户范围内, 为调度用户选取用户集。 可 选的, 可将发射端设备测量信息替代上述用户反馈信息, 作为局部干扰抑制选 取模块的输入。
局部干扰抑制选取模块输出的用户集信息作为预编码模块的输入, 预编码 模块的另一输入来自于信道信息获取模块所输出的信道估测矩阵信息, 预编码 模块的输出为每个调度用户的预编码向量。 预编码模块主要用于针对每个调度 用户, 根据该调度用户的用户集内所有用户的信道估测矩阵信息, 为该调度用 户计算预编码向量。
数据预处理模块将预处理后的用户数据提供给预编码模块, 预编码模块根 据计算出的相应用户对应的预编码向量对预处理后的数据进行预编码处理, 频 域处理模块将预编码后的数据变换为频域信号并提供给发射模块进行发射。 其 中, 数据预处理模块的处理过程通常包括数据的产生、 FEC ( Forward Error Correction, 前向纠错)、 数据调制、 Layer Mapping (层映射)等; 频域处理模 块通常釆用 IFFT (傅里叶逆变换) 算法进行处理, 并可进一步对傅里叶逆变换 处理后的数据插入 CP (循环前缀)。
图 3示出了本发明实施例提供的局部抑制预编码的示意图。
优选的 ,预编码模块所釆用的预编码算法可以通过对现有 ZF预编码算法进
行改进得到, 与现有 ZF预编码算法的主要区别在于: 本发明实施例改进的 ZF 预编码算法针对每个调度用户对应的用户集, 分别对每个调度用户计算预编码 向量。 通过对现有 ZF算法进行改进, 可一方面消除调度用户对该调度用户的用 户集内的用户的干扰, 从而保证一定的系统性能, 另一方面降低了预编码计算 的复杂度。
用户集所包含的用户数可预先设定。 可根据预编码计算的复杂度和性能损 失的折中来确定用户集中的用户数, 用户数越大则预编码计算复杂度越高, 但 性能损失较少, 反之, 用户数越小则预编码计算复杂度越低, 但性能损失较大。
用户进行干扰抑制的用户的选取可以有多种方式, 比如, 根据调度用户与 发射端设备间的距离, 或者根据调度用户之间的信道相干性, 在多小区协作通 信场景下, 还可以将部分小区内的调度用户选取为进行干扰抑制的用户集中的 编码向量计算方法也有所区别。 下面用三个优选实施例进行详细说明。
实施例一
本发明实施例描述了根据资源块上的各调度用户与发射端设备间的距离, 为该资源块上的每个调度用户选取用户集, 并根据选取的用户集分别为各调度 用户计算预编码向量的过程。
本实施例以在 LTE系统中釆用 QPSK ( Quadrature Phase Shift Keying, 正交 相移键控)调制方式实例进行描述。 在考虑到天线数目很大时, 小尺度衰落及 热噪声可以被平均掉, 一个典型的干扰抑制选取方式是: 选择距离发射端设备 最近的用户, 即, 根据资源块上的每个调度用户与发射端设备的距离, 按照从 近到远的顺序, 从中选取设定数量的调度用户, 从而形成用户集。 该用户集可 作为该用户集内的每个调度用户对应的用户集, 即, 对于该用户集内的每个调 度用户来说, 对应的用户集是相同的。
图 4 示出了一种优选的基于与发射端设备的距离选取用户集的流程, 该流 程由局部干扰抑制选取模块执行, 可包括如下步骤:
步骤 1 : 干扰抑制选取算法开始。通常在调度周期到达时启动干扰抑制选取 算法, 比如在进行 MU-MIMO调度时, 启动干扰抑制选取算法;
步骤 2: 判断当前系统可用时频资源是否分配完毕, 若是, 则转入步骤 10, 否则转入步骤 3;
步骤 3: 选取尚未分配完成的时频资源块作为当前处理的时频资源块。 具体 实施时, 可从尚未分配完毕的时频资源块中顺序选取一个时频资源块;
步骤 4: 提取当前时频资源块上的调度用户的信息, 如调度用户的 ID; 步骤 5: 判断当前时频资源块上的调度用户是否均已处理完毕(即计算出该 调度用户与发射端设备间的距离), 若是, 则转入步骤 8, 否则转入步骤 6; 步骤 6: 选取当前时频资源块上尚未处理(即尚未计算出该调度用户与发射 端设备间的距离) 的调度用户。 具体实施时, 可从当前时频资源块上尚未处理 的调度用户中顺序选择一个调度用户;
步骤 7: 针对步骤 6中选取的调度用户, 计算该调度用户与发射端设备的距 离。 具体实施时, 可根据该调度用户反馈的地理位置信息来确定该调度用户与 发射端设备间的距离。 通常, 当用户进行网络附着或者位置更新时, 都会向网 络侧上报当前所在的位置。 也可以通过其它方式来确定该调度用户与发射端设 备间的距离, 比如从位置服务器或其它能够提供用户位置信息的设备获取用户 的位置信息。
步骤 8: 将当前时频资源块上的各调度用户与发射端设备的距离按序排列。 具体实施时, 可釆用归并排序或快速排序等排序方法进行排序;
步骤 9: 选取与发射端设备距离最近的 nc个用户组成用户集, 其中 nc的取 值可预先设定。 可以根据需要有不同的取值, ne越大则复杂度越高, 但性能损 失较少, 反之, ne越小则复杂度越低, 但性能损失较大;
步骤 10: 局部干扰抑制用户选取算法结束。
由于在某时刻, 离发射端设备较近的用户是给定的, 即, 对于一个时频资 源块上的所有调度用户来说, 这些用户中距离发射端设备较近的用户是相同的,
设备在获得当前时频资源块上的所有调度用户与发射端设备间的距离并进行排 序后, 所得到的用户集适用于该时频资源块上的所有调度用户。
在预编码模块中, 对于用户集内的调度用户, 预编码向量由公式(1 )给出: cluster cluster cluster ( 1 ) 对于用户集以外的调度用户, 预编码向量由公式(2 )给出:
其中, 表示用户 k (用户 k是用户集内的调度用户)的预编码向量, 表 示用户 n (用户 n是用户集外的调度用户 )的预编码向量, nc表示用户集中的用 户数量; c/!«^表示由用户集内的所有用户的信道估测组成的矩阵(这里为距 离发射端设备最近的 个用户的信道估测组成的矩阵); 表示用户 n与发射 端设备的信道估测; 表示 Hdu 的共轭转置, [·]¾表示矩阵的第 k列, [·Υ 表示矩阵的共轭转置。
实施例二
本发明实施例描述了根据资源块上的各调度用户之间的信道相干性, 为该 资源块上的每个调度用户选取用户集, 并根据选取的用户集分别为各调度用户 计算预编码向量的过程。
本发明实施例中, 在局部干扰抑制选取模块对每个调度用户选取用户集时, 选取信道与当前调度用户的信道最相关的 nc ( nc为设定的用户集中用户的数量) 个用户。
图 5 示出了一种优选的基于用户间信道相干性选取用户集的流程, 该流程 由局部干扰抑制选取模块执行, 可包括如下步骤:
步骤 1 : 干扰抑制选取算法开始;
步骤 2: 判断当前系统可用时频资源是否分配完毕, 若是, 则转入步骤 10, 否则转入步骤 3;
步骤 3: 选取尚未分配完成的时频资源块作为当前处理的时频资源块。 具体 实施时, 可从尚未分配完毕的时频资源块中顺序选取一个时频资源块;
步骤 4: 提取当前时频资源块上的调度用户的信息, 如调度用户的 ID; 步骤 5: 判断当前时频资源块上的调度用户是否均已处理完毕(即计算出该 调度用户与当前时频资源块上的其他用户间的信道相干性), 若是, 则转入步骤 8, 否则转入步骤 6;
步骤 6: 选取当前时频资源块上尚未处理 (即尚未计算出信道相干性)的调 度用户。 具体实施时, 可从当前时频资源块上尚未处理的调度用户中顺序选择 一个调度用户;
步骤 7: 针对步骤 6中选取的调度用户, 计算该调度用户与当前时频资源块 上的其他调度用户间的信道相干性。 以用户 n表示当前调度用户 (即步骤 6中 选取的调度用户)为例, 计算用户 n与当前时频资源块上的其他调度用户间的 信道相干性, 是指: 分别计算所述其他调度用户的信道映射到用户 n的信道上 的幅值, 即计算 , '≠ "的幅值, 其中, ^ 表示用户 n的信道估测的共辄 转置, 表示用户 j的信道估测,用户 n和用户 j为同一时频资源块上的调度用 户。
步骤 8: 针对当前时频资源块上的每个调度用户, 将当前调度用户与当前时 频资源块上的其他各调度用户间的信道相干性进行排序;
步骤 9: 针对当前时频资源块上的每个调度用户, 根据步骤 8的排序结果, 选取信道相干性高的 个用户组成用户 集, 该用户 集内表示为 {π(1),π(2),... ,π(¾)} , π表示其他用户与用户 η的信道相干性的由小到大的排列 顺序, 其中, π(1)表示与用户 η的信道相干性最小的用户, 以此类推;
步骤 10: 局部干扰抑制用户选取算法结束。
上述流程中, 由于对每个调度用户, 与该调度用户的信道相关性最大的 n, 个用户可能会不同, 因此发射端设备需要对每个调度用户选取用户集。
在预编码模块中, 对于每个调度用户, 预编码向量由公式(3 )给出:
道映射幅度最大的 ne个用户组成的信道估测矩阵),
h 'π{η0 ) 示用户 n与发射端设备的信道估测; [·]Λ表示矩阵的第 k列, [·Γ表示矩阵的共 轭转置。
实施例三
本实施例描述了在多小区协作通信场景下的用户集选取方法, 以及根据选 取的用户集分别为各调度用户计算预编码向量的方法。 表 在多个小区协作通信的场景下, 局部干扰抑制选取模块根据时频资源块上 的所有调度用户各自归属的小区, 将其中部分小区内的用户作为该时频资源块 上的调度用户的用户集。 具体的, 对于参与多小区协作通信的用户, 在调度该 用户 (为描述方便, 以用户 η表示) 时, 根据用户 η所对应的时频资源块上的 所有调度用户各自归属的小区, 将其中部分小区 (可以是 1 个小区, 也可以是 多个小区) 内的用户作为用户 η的用户集成员。
在预编码模块中, 对于所选取的用户集中的调度用户, 预编码向量为: 该 调度用户所在小区内用户的信道估测矩阵的伪逆矩阵的对应列向量, 具体可参
见公式 ( 1 );
对于其他小区的调度用户 (即用户集之外的调度用户), 预编码向量为: 该 调度用户的信道估测与用户集中的用户的信道估测矩阵的伪逆矩阵的第一个列 向量, 从而均抑制对用户集内用户的干扰, 具体可参见公式(2 )。
本发明实施例可显著降低预编码向量获取的计算复杂度。 在发射端设备的 天线数为 M, 用户数为 K, 局部干扰抑制用户集内用户数为 的情况下, 若釆 用上述实施例一, 则预编码向量的计算复杂度为:
Klog2K+3Mnc 2/2+nc 3+(K-nc)(M(nc+ 1 )2/2+M(nc+ 1 )+(nc+ 1 )3);
若釆用上述实施例二, 则预编码向量的计算复杂度为:
MK2/2+K((K- 1 )log2(K- 1 )+M(nc+ 1 )2/2+M(nc+ 1 )+(nc+ 1 )3);
现有的 ZF预编码算法的计算复杂度为 3MK2/2+K3。
表 1给出了不同的 nc下的复杂度相比现有 ZF预编码算法降低的比例。
表 1 : 预编码复杂度比较
另外,本发明实施例对大尺度天线系统下的 SIR( Signal to Interference Ratio, 信号干扰比)的 CDF ( Cumulative Distribution Dunction, 累积分布函数 )进行了 比较。 图 6给出了 K=48, M=1000, nc = 6时的系统性能图, 其中, 实线代表 MF预编码方法, 虚线代表 ZF预编码方法, 点虚线代表本发明实施例二提供的 预编码方法的一个示例。 由图 5可见, 本发明实施例提出的预编码方法相比 ZF 预编码方法的性能差距在 3 dB以内, 也就是最大 lbps/Hz的频谱效率损失, 性 能损失较小。
另夕卜,图 7给出了用户数与天线数相近时的系统性能。图中 M=K=500 , nc=6。 如图可见, 本发明实施例提出的预编码方法可以达到比 MF预编码方法和 ZF预 编码方法都要好的性能。
综上所述, 本发明实施例提出的预编码方案, 复杂度相对 ZF预编码方法有 显著降低, 同时本发明实施例得到的性能相对 ZF损失较小, 其预编码向量计算 复杂度和性能可介于 ZF预编码方法与 MF预编码方法之间, 在某些场景下, 本 发明实施例提出的方案比 ZF预编码方法和 MF预编码方法都要好。
基于相同的技术构思, 本发明实施例还提供了一种预编码装置、 信号发送 设备。
参见图 8, 为本发明实施例提供的预编码装置的结构示意图, 该预编码装置 可包括: 局部干扰抑制选取模块 81和预编码模块 82, 其中:
局部干扰抑制选取模块 81 , 用于获取资源块上的所有调度用户, 为所述资 源块上的每个调度用户在所述资源块的所有调度用户范围内选取用于进行局部 干扰抑制的用户集;
预编码模块 82, 用于针对所述资源块上的每个调度用户, 根据所述局部干 扰抑制模块所选取的当前调度用户对应的进行局部干扰抑制的用户集内所有用 户的信道估测组成的矩阵, 为当前调度用户计算预编码向量, 根据计算出的预 编码向量对调度用户的数据进行预编码处理。
具体的, 局部干扰抑制选取模块 81可根据所述资源块上的各调度用户与发 射端设备间的距离, 为所述资源块上的每个调度用户在所述资源块的所有调度 用户范围内选取用于进行局部干扰抑制的用户集; 或者, 根据所述资源块上的 各调度用户之间的信道相干性, 为所述资源块上的每个调度用户在所述资源块 的所有调度用户范围内选取用于进行局部干扰抑制的用户集; 或者, 在调度用 户进行多小区协作通信的情况下, 根据时频资源块上的所有调度用户各自归属 的小区, 将其中部分小区内的用户作为所述时频资源块上的调度用户的用于进 行局部干扰抑制的用户集。
其中, 局部干扰抑制选取模块 81可确定所述资源块上的每个调度用户与发 射端设备的距离, 根据所述资源块上的每个调度用户与发射端设备的距离, 按 照从近到远的顺序, 从中选取设定数量的调度用户, 将选取出的设定数量的调 度用户确定为所述资源块上的每个调度用户对应的用于进行局部干扰抑制的用 具体的, 预编码模块 82可根据所述资源块上的各调度用户与发射端设备间 的距离, 为所述资源块上的每个调度用户计算出的预编码向量为:
若当前调度用户为用于进行局部干扰抑制的用户集外的用户, 则当前调度 用户的预编码向量为: l
=
其中, 表示用户集内的用户 k的预编码向量, 表示用户集外的用户 n 的预编码向量; etefe表示由用于进行局部干扰抑制的用户集内的所有用户的 信道估测组成的矩阵; 表示用户 n 与发射端设备的信道估测, H ster表示 cte^的共轭转置, [ c表示矩阵的第 k列, [*f表示矩阵的共轭转置。
具体的, 局部干扰抑制选取模块 81具体用于: 确定所述资源块上的各调度 用户之间的信道相干性, 针对所述资源块上的每个调度用户, 根据当前调度用 户与其他调度用户间的信道相干性, 按照从大到小的顺序, 从中选取设定数量 的调度用户, 作为当前调度用户的用于进行局部干扰抑制的用户集。 为所述资源块上的每个调度用户计算出的预编码向量为:
一 _ )
η的信道相干性的由小到大的排列顺序, π(1)表示与用户 η的信道相干性最小的 用户; 表示用于进行局部干扰抑制的用户集外的用户与发射端设备的信道估 测, 表示 Hdus ^的共轭转置, [·] 表示矩阵的第 k列, [*f表示矩阵的 共轭转置。
具体的, 预编码模块 82可在调度用户进行多小区协作通信的情况下, 若当 前调度用户在用于进行局部干扰抑制的用户集内, 则当前调度用户的预编码向 量为: 调度用户所在小区内用户的信道估测矩阵的伪逆矩阵的对应列向量; 若当前调度用户在用于进行局部干扰抑制的用户集外, 则当前调度用户的 预编码向量为: 当前调度用户的信道估测与所述用户集中的用户的信道估测矩 阵的伪逆矩阵的第一个列向量。
本发明实施例提供的信号发送设备, 可包括上述预编码装置, 以及与所述 预编码装置连接的调度模块、 信道信息获取模块、 数据预处理模块和频域处理 模块, 以及与频域处理模块连接的发射模块, 其结构可参照图 2所示, 其中: 调度模块用于将资源块上的所有调度用户的信息提供给所述预编码装置; 信道信息获取模块用于获取用户的信道估测信息并提供给所述预编码装 置;
数据处理模块,
如实现如图 2所示的数据产生、 FEC、 调制、 层映射等功能;
局部干扰抑制选取模块用于根据所述调度模块提供的资源块上的所有调度 用户, 为所述资源块上的每个调度用户在所述资源块的所有调度用户范围内选 取用于进行局部干扰抑制的用户集;
所述预编码装置, 用于针对所述资源块上的每个调度用户, 根据所述局部 干扰抑制模块所选取的当前调度用户对应的进行局部干扰抑制的用户集内所有 用户的信道估测组成的矩阵, 为当前调度用户计算预编码向量, 并根据计算出 的预编码向量对所述数据处理模块处理得到的调度用户的数据进行预编码处 理;
所述频域处理模块, 用于将所述预编码处理装置预编码后的频域数据转换 为时域信号;
所述发射模块, 用于将所述频域处理模块处理后得到的时域信号进行发射。 参见图 9,为本发明提供的上述信号发送设备的硬件结构示意图。如图所示, 该设备可包括: 处理器 91、 存储器 92和射频模块 93 , 其中, 处理器 91中包括 局部干扰抑制选取模块 911和预编码模块 912。 其中:
局部干扰抑制选取模块 911 用于获取资源块上的所有调度用户, 为所述资 源块上的每个调度用户在所述资源块的所有调度用户范围内选取用于进行局部 干扰抑制的用户集; 预编码模块 912用于针对所述资源块上的每个调度用户, 根据当前调度用户对应的进行局部干扰抑制的用户集内所有用户的信道估测组 成的矩阵, 为当前调度用户计算预编码向量, 根据计算出的预编码向量对调度 用户的数据进行预编码处理;
存储器 92 , 用于存储处理器 91执行上述操作所依据的程序数据, 以及处理 器 91执行上述操作过程中所用到的或产生的中间参数;
射频模块 93 , 用于对所述处理器处理后的数据进行发送。
具体的, 局部干扰抑制选取模块 911 可根据所述资源块上的各调度用户与 发射端设备间的距离, 为所述资源块上的每个调度用户在所述资源块的所有调
度用户范围内选取用于进行局部干扰抑制的用户集; 或者, 根据所述资源块上 的各调度用户之间的信道相干性, 为所述资源块上的每个调度用户在所述资源 块的所有调度用户范围内选取用于进行局部干扰抑制的用户集; 或者, 在调度 用户进行多小区协作通信的情况下, 根据时频资源块上的所有调度用户各自归 属的小区, 将其中部分小区内的用户作为所述时频资源块上的调度用户的用于 进行局部干扰抑制的用户集。
其中, 局部干扰抑制选取模块 911 具体用于: 确定所述资源块上的每个调 度用户与发射端设备的距离, 根据所述资源块上的每个调度用户与发射端设备 的距离, 按照从近到远的顺序, 从中选取设定数量的调度用户, 将选取出的设 定数量的调度用户确定为所述资源块上的每个调度用户对应的用于进行局部干 扰抑制的用户集。
具体的, 预编码模块 912可根据所述资源块上的各调度用户与发射端设备 间的距离, 为所述资源块上的每个调度用户计算出的预编码向量为:
若当前调度用户为用于进行局部干扰抑制的用户集内的用户, 则当前调度 用户的预编码向量为:
7 _ τ τΗ τ τ τ τΗ \ -l
k― L cluster cluster cluster
若当前调度用户为用于进行局部干扰抑制的用户集外的用户, 则当前调度 用户的预编码向量为: l
=
其中, 表示用户集内的用户 k的预编码向量, 表示用户集外的用户 n 的预编码向量; etefe表示由用于进行局部干扰抑制的用户集内的所有用户的 信道估测组成的矩阵; 表示用户 n 与发射端设备的信道估测, H ster表示 cte^的共轭转置, [ c表示矩阵的第 k列, [*f表示矩阵的共轭转置。
具体的, 局部干扰抑制选取模块 911 具体用于: 确定所述资源块上的各调 度用户之间的信道相干性, 针对所述资源块上的每个调度用户, 根据当前调度 用户与其他调度用户间的信道相干性, 按照从大到小的顺序, 从中选取设定数 量的调度用户, 作为当前调度用户的用于进行局部干扰抑制的用户集。
其中, 表示用户 n的预编码向量, 表示用于进行局部干扰抑制的用户 :中的用户数量; Hcl 表示用户 n对应的用于进行局部干扰抑制的用户集内 i 1)
的所有用户的信道估测组成的矩阵, π表示其他用户与用户 h η的信道相干性的由小到大的排列顺序, π(1)表示与用户 η的信道相干性最小的 用户; 表示用于进行局部干扰抑制的用户集外的用户与发射端设备的信道估 测, 表示 Hdus ^的共轭转置, [·] 表示矩阵的第 k列, [*f表示矩阵的 共轭转置。
具体的, 预编码模块 912在调度用户进行多小区协作通信的情况下, 若当 前调度用户在用于进行局部干扰抑制的用户集内, 则当前调度用户的预编码向 量为: 调度用户所在小区内用户的信道估测矩阵的伪逆矩阵的对应列向量; 若当前调度用户在用于进行局部干扰抑制的用户集外, 则当前调度用户的 预编码向量为: 当前调度用户的信道估测与所述用户集中的用户的信道估测矩 阵的伪逆矩阵的第一个列向量。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序产品
的流程图和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图和 / 或方框图中的每一流程和 /或方框、 以及流程图和 /或方框图中的流程和 /或 方框的结合。 可提供这些计算机程序指令到通用计算机、 专用计算机、 嵌入式 处理机或其他可编程数据处理设备的处理器以产生一个机器, 使得通过计算机 或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流 程或多个流程和 /或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备 以特定方式工作的计算机可读存储器中, 使得存储在该计算机可读存储器中的 指令产生包括指令装置的制造品, 该指令装置实现在流程图一个流程或多个流 程和 /或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使 得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处 理, 从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个 流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了基 本创造性概念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权利要 求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。 明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要求及 其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。
Claims
1、 一种预编码方法, 其特征在于, 包括:
获取资源块上的所有调度用户, 为所述资源块上的每个调度用户在所述资 源块的所有调度用户范围内选取用于进行局部干扰抑制的用户集;
针对所述资源块上的每个调度用户, 根据当前调度用户对应的进行局部干 扰抑制的用户集内所有用户的信道估测组成的矩阵, 为当前调度用户计算预编 码向量, 根据计算出的预编码向量对调度用户的数据进行预编码处理。
2、 如权利要求 1所述的方法, 其特征在于, 所述为所述资源块上的每个调 度用户在所述资源块的所有调度用户范围内选取用于进行局部干扰抑制的用户 集, 具体包括:
根据所述资源块上的各调度用户与发射端设备间的距离, 为所述资源块上 的每个调度用户在所述资源块的所有调度用户范围内选取用于进行局部干扰抑 制的用户集; 或者
根据所述资源块上的各调度用户之间的信道相干性, 为所述资源块上的每 个调度用户在所述资源块的所有调度用户范围内选取用于进行局部干扰抑制的 用户集; 或者
在调度用户进行多小区协作通信的情况下, 根据时频资源块上的所有调度 用户各自归属的小区, 将其中部分小区内的用户作为所述时频资源块上的调度 用户的用于进行局部干扰抑制的用户集。
3、 如权利要求 2所述的方法, 其特征在于, 根据所述资源块上的各调度与 发射端设备间的距离, 为所述资源块上的每个调度用户在所述资源块的所有调 度用户范围内选取用于进行局部干扰抑制的用户集, 具体包括:
确定所述资源块上的每个调度用户与发射端设备的距离;
根据所述资源块上的每个调度用户与发射端设备的距离, 按照从近到远的 顺序, 从中选取设定数量的调度用户;
将选取出的设定数量的调度用户确定为所述资源块上的每个调度用户对应
的用于进行局部干扰抑制的用户集。
4、 如权利要求 2或 3所述的方法, 其特征在于, 根据所述资源块上的各调 度用户与发射端设备间的距离, 为所述资源块上的每个调度用户计算出的预编 码向量为:
若当前调度用户为用于进行局部干扰抑制的用户集内的用户, 则当前调度 用户的预编码向量为:
H τ τ τ τΗ 、
cluster cluster cluster )
若当前调度用户为用于进行局部干扰抑制的用户集外的用户, 则当前调度 用户的预编码向量为:
其中, 表示用户集内的用户 k的预编码向量, 表示用户集外的用户 n 的预编码向量; etefe表示由用于进行局部干扰抑制的用户集内的所有用户的 信道估测组成的矩阵; 表示用户 n 与发射端设备的信道估测, H ster表示 cte^的共轭转置, [ c表示矩阵的第 k列, [·Γ表示矩阵的共轭转置。
5、 如权利要求 2所述的方法, 其特征在于, 根据所述资源块上的各调度用 户之间的信道相干性, 为所述资源块上的每个调度用户在所述资源块的所有调 度用户范围内选取用于进行局部干扰抑制的用户集, 具体包括:
确定所述资源块上的各调度用户之间的信道相干性;
针对所述资源块上的每个调度用户, 根据当前调度用户与其他调度用户间 的信道相干性, 按照从大到小的顺序, 从中选取设定数量的调度用户, 作为当 前调度用户的用于进行局部干扰抑制的用户集。
其中, 表示用户 n的预编码向量, 表示用于进行局部干扰抑制的用户 :中的用户数量; ctefe表示用户 n对应的用于进行局部干扰抑制的用户集内
η的信道相干性的由小到大的排列顺序, π(1)表示与用户 η的信道相干性最小的 用户; 表示用于进行局部干扰抑制的用户集外的用户与发射端设备的信道估 测, 表示 Hdus ^的共轭转置, [·] 表示矩阵的第 k列, [*f表示矩阵的 共轭转置。
7、 如权利要求 2所述的方法, 其特征在于, 在调度用户进行多小区协作通 信的情况下, 为当前调度用户计算的预编码向量, 具体包括:
若当前调度用户在用于进行局部干扰抑制的用户集内, 则当前调度用户的 预编码向量为:
调度用户所在小区内用户的信道估测矩阵的伪逆矩阵的对应列向量; 若当前调度用户在用于进行局部干扰抑制的用户集外, 则当前调度用户的 预编码向量为:
当前调度用户的信道估测与所述用户集中的用户的信道估测矩阵的伪逆矩 阵的第一个列向量。
8、 一种预编码装置, 其特征在于, 包括:
局部干扰抑制选取模块, 用于获取资源块上的所有调度用户, 为所述资源 块上的每个调度用户在所述资源块的所有调度用户范围内选取用于进行局部干 扰抑制的用户集;
预编码模块, 用于针对所述资源块上的每个调度用户, 根据所述局部干扰 抑制模块所选取的当前调度用户对应的进行局部干扰抑制的用户集内所有用户 的信道估测组成的矩阵, 为当前调度用户计算预编码向量, 根据计算出的预编 码向量对调度用户的数据进行预编码处理。
9、 如权利要求 8所述的装置, 其特征在于, 所述局部干扰抑制选取模块具 体用于, 根据所述资源块上的各调度用户与发射端设备间的距离, 为所述资源 块上的每个调度用户在所述资源块的所有调度用户范围内选取用于进行局部干 扰抑制的用户集; 或者
根据所述资源块上的各调度用户之间的信道相干性, 为所述资源块上的每 个调度用户在所述资源块的所有调度用户范围内选取用于进行局部干扰抑制的 用户集; 或者
在调度用户进行多小区协作通信的情况下, 根据时频资源块上的所有调度 用户各自归属的小区, 将其中部分小区内的用户作为所述时频资源块上的调度 用户的用于进行局部干扰抑制的用户集。
10、 如权利要求 9 所述的装置, 其特征在于, 所述局部干扰抑制选取模块 具体用于, 确定所述资源块上的每个调度用户与发射端设备的距离, 根据所述 资源块上的每个调度用户与发射端设备的距离, 按照从近到远的顺序, 从中选 取设定数量的调度用户, 将选取出的设定数量的调度用户确定为所述资源块上 的每个调度用户对应的用于进行局部干扰抑制的用户集。
11、 如权利要求 9或 10所述的装置, 其特征在于, 所述预编码模块具体用 于, 根据所述资源块上的各调度用户与发射端设备间的距离, 为所述资源块上 的每个调度用户计算出的预编码向量为:
若当前调度用户为用于进行局部干扰抑制的用户集内的用户, 则当前调度 用户
_ cluster cluster cluster k
12、 如权利要求 9 所述的装置, 其特征在于, 所述局部干扰抑制选取模块 具体用于, 确定所述资源块上的各调度用户之间的信道相干性, 针对所述资源 块上的每个调度用户, 根据当前调度用户与其他调度用户间的信道相干性, 按 照从大到小的顺序, 从中选取设定数量的调度用户, 作为当前调度用户的用于 进行局部干扰抑制的用户集。
13、 如权利要求 12所述的装置, 其特征在于, 所述预编码模块具体用于, 根据所述资源块上的各调度用户之间的信道相干性, 为所述资源块上的每个调 度用户计算出的预编码向量为:
的所有用户的信道估测组成的矩阵, , π表示其他用户与用户
h η的信道相干性的由小到大的排列顺序, π(1)表示与用户 η的信道相干性最小的
用户; 表示用于进行局部干扰抑制的用户集外的用户与发射端设备的信道估 测, 表示 Hdus ^的共轭转置, [·] 表示矩阵的第 k列, [*f表示矩阵的 共轭转置。
14、 如权利要求 9 所述的装置, 其特征在于, 所述预编码模块具体用于, 在调度用户进行多小区协作通信的情况下, 若当前调度用户在用于进行局部干 扰抑制的用户集内, 则当前调度用户的预编码向量为:
调度用户所在小区内用户的信道估测矩阵的伪逆矩阵的对应列向量; 若当前调度用户在用于进行局部干扰抑制的用户集外, 则当前调度用户的 预编码向量为:
当前调度用户的信道估测与所述用户集中的用户的信道估测矩阵的伪逆矩 阵的第一个列向量。
15、 一种信号发送设备, 其特征在于, 包括如权利要求 8-14任一项所述的 预编码装置, 与所述预编码装置连接的调度模块、 信道信息获取模块、 数据预 处理模块和频域处理模块, 以及与频域处理模块连接的发射模块, 其中:
所述调度模块, 用于将资源块上的所有调度用户的信息提供给所述预编码 装置;
所述信道信息获取模块, 用于获取用户的信道估测信息并提供给所述预编 码装置; 所述局部干扰抑制选取模块, 用于根据所述调度模块提供的资源块上的所 有调度用户, 为所述资源块上的每个调度用户在所述资源块的所有调度用户范 围内选取用于进行局部干扰抑制的用户集;
所述预编码装置, 用于针对所述资源块上的每个调度用户, 根据所述局部 干扰抑制模块所选取的当前调度用户对应的进行局部干扰抑制的用户集内所有 用户的信道估测组成的矩阵, 为当前调度用户计算预编码向量, 并根据计算出 的预编码向量对所述数据处理模块处理得到的调度用户的数据进行预编码处
理;
所述频域处理模块, 用于将所述预编码处理装置预编码后的频域数据转换 为时域信号;
所述发射模块, 用于将所述频域处理模块处理后得到的时域信号进行发射。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14820594.1A EP2999155B1 (en) | 2013-07-03 | 2014-07-03 | Precoding method and device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310277308.6A CN104283594B (zh) | 2013-07-03 | 2013-07-03 | 一种预编码方法及设备 |
CN201310277308.6 | 2013-07-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015000423A1 true WO2015000423A1 (zh) | 2015-01-08 |
Family
ID=52143119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/081573 WO2015000423A1 (zh) | 2013-07-03 | 2014-07-03 | 一种预编码方法及设备 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2999155B1 (zh) |
CN (1) | CN104283594B (zh) |
WO (1) | WO2015000423A1 (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3552318B1 (en) | 2016-12-09 | 2020-09-30 | Telefonaktiebolaget LM Ericsson (publ) | Improved antenna arrangement for distributed massive mimo |
CN108736940B (zh) * | 2017-04-13 | 2022-06-07 | 中兴通讯股份有限公司 | 一种空分复用的方法及装置 |
US11564188B2 (en) | 2017-10-17 | 2023-01-24 | Telefonaktiebolaget Lm Ericsson (Publ) | Distributed MIMO synchronization |
US11616540B2 (en) | 2017-11-21 | 2023-03-28 | Telefonaktiebolaget Lm Ericsson (Publ) | Antenna arrangement for distributed massive MIMO |
WO2019222907A1 (zh) * | 2018-05-22 | 2019-11-28 | 株式会社Ntt都科摩 | 预编码方法、解码方法、发送设备和接收设备 |
WO2020078537A1 (en) * | 2018-10-16 | 2020-04-23 | Telefonaktiebolaget Lm Ericsson (Publ) | Disturbance mitigation in a wireless communication system |
EP4104321B1 (en) | 2020-02-10 | 2024-09-18 | Telefonaktiebolaget Lm Ericsson (Publ) | Dielectric waveguide signal transfer function compensation |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101695008A (zh) * | 2009-10-22 | 2010-04-14 | 上海交通大学 | 多用户多天线两阶段有限反馈方法 |
CN101938837A (zh) * | 2009-06-30 | 2011-01-05 | 华为技术有限公司 | 小区间干扰抑制方法、装置 |
CN102291834A (zh) * | 2010-06-21 | 2011-12-21 | 中兴通讯股份有限公司 | 多输入多输出的资源调度方法和基站 |
CN102647216A (zh) * | 2012-04-12 | 2012-08-22 | 清华大学 | 同构网络系统中基于有限反馈的多点协作传输方法 |
CN102710390A (zh) * | 2012-05-03 | 2012-10-03 | 新邮通信设备有限公司 | 一种多用户mimo系统中预编码的方法和装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5396306B2 (ja) * | 2010-02-24 | 2014-01-22 | 株式会社Nttドコモ | プリコーディングウェイト生成方法及び制御装置 |
CN102316597B (zh) * | 2010-06-30 | 2015-04-22 | 中兴通讯股份有限公司 | Mimo系统中的资源调度方法和装置 |
-
2013
- 2013-07-03 CN CN201310277308.6A patent/CN104283594B/zh active Active
-
2014
- 2014-07-03 WO PCT/CN2014/081573 patent/WO2015000423A1/zh active Application Filing
- 2014-07-03 EP EP14820594.1A patent/EP2999155B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101938837A (zh) * | 2009-06-30 | 2011-01-05 | 华为技术有限公司 | 小区间干扰抑制方法、装置 |
CN101695008A (zh) * | 2009-10-22 | 2010-04-14 | 上海交通大学 | 多用户多天线两阶段有限反馈方法 |
CN102291834A (zh) * | 2010-06-21 | 2011-12-21 | 中兴通讯股份有限公司 | 多输入多输出的资源调度方法和基站 |
CN102647216A (zh) * | 2012-04-12 | 2012-08-22 | 清华大学 | 同构网络系统中基于有限反馈的多点协作传输方法 |
CN102710390A (zh) * | 2012-05-03 | 2012-10-03 | 新邮通信设备有限公司 | 一种多用户mimo系统中预编码的方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
CN104283594B (zh) | 2017-11-28 |
EP2999155A1 (en) | 2016-03-23 |
EP2999155B1 (en) | 2018-06-13 |
CN104283594A (zh) | 2015-01-14 |
EP2999155A4 (en) | 2016-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015000423A1 (zh) | 一种预编码方法及设备 | |
JP6151280B2 (ja) | 移動通信端末 | |
WO2009030102A1 (fr) | Procédé de codage à l'avance et de planification pour utilisateurs multiples et station de base pour mettre en œuvre le procédé | |
JP6154830B2 (ja) | 移動通信端末 | |
TWI639314B (zh) | 多天線系統及預編碼方法 | |
JP2011130438A (ja) | 無線通信システムにおけるマルチユーザmimoの伝送方法、基地局及びユーザ端末 | |
WO2013185732A2 (zh) | 一种协作多点数据传输方法及基站 | |
US20150171941A1 (en) | Communication system, communication method, base station device, and mobile station device | |
WO2014042684A1 (en) | Method and apparatus for efficient channel state information dissemination for mu-mimo transmission schemes based on outdated channel state information | |
US20140010080A1 (en) | Method for operating a wireless network, a wireless network and a device | |
WO2017008731A1 (zh) | 一种下行预编码方法及基站 | |
JP2012186631A (ja) | 移動端末装置、無線基地局装置及び無線通信方法 | |
KR102105063B1 (ko) | 채널 특성의 계산 및 보고 | |
US20170223636A1 (en) | Communications system and communications method | |
JP5551810B1 (ja) | 無線通信装置及び無線伝送システム | |
Ni et al. | Analysis of channel estimation in large-scale MIMO aided OFDM systems with pilot design | |
Bai et al. | A precoding compensation scheme for heterogeneous communication networks with CSI feedback delay | |
CN103580738A (zh) | 预编码矩阵确定方法及相关设备和通信系统 | |
WO2017037861A1 (ja) | 基地局、端末、無線通信システムおよび無線通信方法 | |
WO2009094797A9 (zh) | 利用部分csi反馈的正交投影预编码和解码方法及其设备 | |
TWI680653B (zh) | 多基地台協調系統及其通道校正方法 | |
CN111742499B (zh) | 用于信道相似性获取的终端设备和基站设备 | |
Chen et al. | Low complexity channel estimation in TDD coordinated multi-point transmission systems | |
Sano et al. | Link performance modeling of interference rejection combining receiver in system level evaluation for LTE-Advanced downlink | |
Sun et al. | An enhanced coherent joint transmission algorithm for multi-cell downlink transmission |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14820594 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014820594 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |