WO2009094797A9 - 利用部分csi反馈的正交投影预编码和解码方法及其设备 - Google Patents

利用部分csi反馈的正交投影预编码和解码方法及其设备 Download PDF

Info

Publication number
WO2009094797A9
WO2009094797A9 PCT/CN2008/000157 CN2008000157W WO2009094797A9 WO 2009094797 A9 WO2009094797 A9 WO 2009094797A9 CN 2008000157 W CN2008000157 W CN 2008000157W WO 2009094797 A9 WO2009094797 A9 WO 2009094797A9
Authority
WO
WIPO (PCT)
Prior art keywords
mobile station
csi
mobile
prsv
precoding
Prior art date
Application number
PCT/CN2008/000157
Other languages
English (en)
French (fr)
Other versions
WO2009094797A1 (en
Inventor
王磊
吴克颖
Original Assignee
上海贝尔股份有限公司
阿尔卡特朗讯
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海贝尔股份有限公司, 阿尔卡特朗讯 filed Critical 上海贝尔股份有限公司
Priority to PCT/CN2008/000157 priority Critical patent/WO2009094797A1/zh
Priority to CN200880125050.5A priority patent/CN101953088B/zh
Publication of WO2009094797A1 publication Critical patent/WO2009094797A1/zh
Publication of WO2009094797A9 publication Critical patent/WO2009094797A9/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present invention relates to a precoding method and a decoding method, and in particular to using partial csi feedback for
  • MU-MIMO multi-user MIMO
  • Multi-user precoders are one of the key technologies of MU-MIMO. Multi-user precoders can greatly reduce co-channel interference (CCI) by properly designing each user's transmission signal.
  • CCI co-channel interference
  • the block diagonalization (BD) precoding algorithm is a typical algorithm.
  • the BD precoding algorithm decomposes the MU-MIMO downlink channel into multiple parallel independent SU-MIMO channels, and for each user, CCI is completely eliminated.
  • the BD algorithm strictly limits the number of base station (BS) antennas to be greater than the sum of mobile station (MS) antennas.
  • CSI channel state information
  • FDD frequency division multiplexing
  • EB eigenvalue-based quasi-singular
  • MET Multi-User Intrinsic Transmission
  • MET is a good solution to solve the problem of reducing the CSI feedback burden and eliminating the CCI of the MU-MIMO downlink.
  • the MET algorithm needs to perform SVD operations three times for each user.
  • the complexity of MET is high when there are a large number of users in the cell and a multi-user scheme is used.
  • an orthogonal projection (OP) precoding method that only needs to feed back part of the CSI to the base station and completely eliminate the CCI of each user is proposed.
  • the OP algorithm proposed by the present invention only needs to perform singular value decomposition (SVD) once for each user, and thus greatly reduces the complexity compared with MET. Summary of the invention
  • MU-MIMO multi-user MIMO
  • the CCI of other users is eliminated in the case of partial channel state information (CSI) of the station (MS).
  • the basic idea of the proposed scheme is to completely eliminate the CCI of user n by projecting a partial CSI of user n onto the orthogonal complement of the partial CSI of all other users.
  • a precoding apparatus for use in a system including a base station (BS) and a plurality of mobile stations (MSs), the precoding apparatus comprising: an information receiving unit that receives all mobiles Partial channel state information (CSI) fed back by the station; calculating unit, calculating an orthogonal projection matrix of a partial CSI of all other mobile stations except one mobile station as a precoding matrix of the one mobile station; and a data generating unit And using the precoding matrix to precode the data stream for the one mobile station.
  • CSI Partial channel state information
  • the partial CSI includes the PRSV of the channel matrix of the corresponding MS, and the PRSV of the channel matrix of the corresponding MS is obtained by performing SVD on the channel matrix of the corresponding MS.
  • the precoding device is for a MU-MIMO downlink.
  • a decoder for use in a system including a base station (BS) and a plurality of mobile stations (MSs), the decoder comprising: a receiving unit, receiving a mobile station for a mobile Data of the station, wherein the received data is a product of data transmitted by the base station to all users and a channel matrix of the one mobile station, and the received data may be divided into two parts, one part being for the one mobile station Signal of the body, including information related to part of the CSI of the one mobile station, and another part of co-channel interference (CCI) from all other mobile stations except the one mobile station, including Information relating to orthogonal complement space of a portion of CSI of all other mobile stations outside the station; filtering unit, filtering received data to obtain partial CSI of said one mobile station; and projection unit, said one mobile station The partial csi is projected onto the orthogonal complement space of the partial CSI of all other mobile stations defined by the information relating to the orthogonal complement space of the partial CSI
  • the information related to the partial CSI of the one mobile station includes the PRSV of the channel matrix of the one mobile station, and the information related to the orthogonal complement space of the partial CSI of all other mobile stations is the information of all other mobile stations.
  • the orthogonal projection matrix of PRSV is the orthogonal projection matrix of PRSV.
  • the filtering unit filters out the PRSV of the channel matrix of the one mobile station by using the PLSV of the channel matrix of the one mobile station.
  • the projection unit projects the PRSV of the channel matrix of the one mobile station to the orthogonal complement space of the PRSV of all other mobile stations by multiplying the PRSV by the orthogonal projection matrix of all of the other mobile stations of your PRSV.
  • a precoding method for use in a system including a base station (BS) and a plurality of mobile stations (MSs), the precoding method comprising the steps of: receiving from all mobile stations Partial channel state information (CSI) of feedback; calculating an orthogonal projection matrix of a partial CSI of all other mobile stations except one mobile station as a precoding matrix of the one mobile station; and using the precoding matrix to Precoding the data stream of the one mobile station.
  • CSI channel state information
  • the partial CSI includes the PRSV of the channel matrix of the corresponding MS, and the PRSV of the channel matrix of the corresponding MS is obtained by performing SVD on the channel matrix of the corresponding MS.
  • the precoding method is for a MU-MIMO downlink.
  • a decoding method for use in a system comprising a base station (BS) and a plurality of mobile stations (MS), the decoding method comprising the steps of: receiving from a base station for a mobile station Data, wherein the received data is a product of data transmitted by the base station to all users and a channel matrix of the one mobile station, and the received data may be divided into two parts, one part being a signal for the one mobile station itself, including The information relating to the partial CSI of the one mobile station, the other part belonging to the co-channel interference (CCI) from all other mobile stations except the one mobile station, including with the exception of the one mobile station Information about the orthogonal complement space of part csi of all other mobile stations; Receiving data for filtering to obtain a partial CSI of the one mobile station; and projecting a partial CSI of the one mobile station to an orthogonal complement space of a partial CSI with all other mobile stations except the one mobile station The orthogonal complement space of the partial CSI
  • the information related to the partial CSI of the one mobile station includes the PRSV of the channel matrix of the one mobile station, and the information related to the orthogonal complement space of the partial CSI of all other mobile stations is the information of all other mobile stations.
  • the orthogonal projection matrix of PRSV is the orthogonal projection matrix of PRSV.
  • the step of filtering the received data to obtain a partial CSI of the one mobile station comprises: filtering out the PRSV of the channel matrix of the one mobile station by using the PLSV of the channel matrix of the one mobile station.
  • the PRSV of the channel matrix of the one mobile station is projected to all other mobile stations
  • the step of orthogonal complementing the space of the PRSV includes multiplying the channel matrix PRSV of the one mobile station with the orthogonal projection matrix of the PRSV of all other mobile stations. Effect of the invention
  • the proposed OP algorithm only needs to feed back CSI from the mobile station to the base station part, thus reducing the overhead of CSI feedback compared to the BD algorithm.
  • the OP algorithm of the present invention can completely eliminate CCI for each user, and has a significant improvement in performance over the EB algorithm.
  • the OP algorithm has the same performance as MET, but its implementation complexity is lower than MET.
  • a partial CSI refers to a primary right singular vector (PRSV) of a channel matrix of each user.
  • PRSV primary right singular vector
  • FIG. 1 is a block diagram of a precoding apparatus in accordance with the present invention.
  • Figure 2 is a block diagram of a decoder in accordance with the present invention.
  • Figure 3 is a flow chart of a precoding method in accordance with the present invention.
  • FIG. 4 is a flow chart of a decoding method in accordance with the present invention.
  • FIGS 5-7 are a comparison of the method of the present invention with other existing precoding methods. detailed description
  • the MU-MIMO system is considered to be an effective way to improve the spectral efficiency of wireless communication systems.
  • the multi-user precoding algorithm can greatly reduce co-channel interference (CCI) by correctly designing the transmission signal of each user.
  • CCI co-channel interference
  • BD, EB and MET algorithms which are used for the MU-MIMO downlink.
  • the orthogonal projection method of the present invention is also used in the MU-MIMO downlink.
  • the orthogonal projection method of the present invention is also used in the MU-MIMO downlink.
  • the MET precoding methods, their feedback mechanisms, the calculation and decoder of the precoding matrix are different from the OP precoding method of the present invention.
  • FIG. 1 is a block diagram of an OP precoding apparatus 100 for implementing an OP precoding method in accordance with the present invention.
  • the OP precoding apparatus 100 includes an information receiving unit 10, a precoding matrix calculating unit 12, and a data generating unit 14.
  • 2 is a block diagram of a decoder 200 for implementing an OP decoding method in accordance with the present invention.
  • the decoder 200 includes a receiving unit 20, a filtering unit 22, and a projection unit 24. It should be noted that portions unrelated to the inventive aspects of the present invention are omitted from the drawings.
  • FIG. 3 is a flow chart of an OP precoding method in accordance with the present invention
  • FIG. 4 is a flow chart of a decoding method in accordance with the present invention.
  • the proposed method is described in detail below with reference to Figures 1-4.
  • the method is implemented in a system comprising a base station and a plurality of mobile stations (active users).
  • the information receiving unit 10 in the pre-encoding apparatus 100 receives the partial CSIs fed back by all the users. Specifically, in the present embodiment, each mobile station estimates its channel matrix and performs SVD on its channel matrix to obtain a PRSV, and then transmits the PRSV to the base station. The information receiving unit 10 receives the PRSVs of all the mobile stations. Then, at step S102, for one mobile station, the precoding matrix calculation unit 12 of the precoding apparatus 100 calculates an orthogonal projection (OP) matrix of a partial CSI of all other mobile stations except the mobile station as the mobile station Precoding matrix.
  • OP orthogonal projection
  • the data generating unit 14 multiplies the precoding matrix with the data stream for one mobile station to generate data to be transmitted, and then transmits the generated data to the mobile station.
  • the mobile station receives a signal from the base station at step S201.
  • the filtering unit 22 filters the received signal to obtain a partial CSI of the mobile station.
  • the projection unit 24 may project the PRSV of the mobile station to the orthogonal complement space of the PRSV of all other users, thereby obtaining no other mobile station. CCI data.
  • the signal received by the mobile station is a product of transmission data (including data transmitted to other users) and a channel matrix
  • the transmission data is obtained by the base station transmitting the data stream for the mobile station with the corresponding
  • the OP matrix is obtained by multiplication, and thus the received signal contains information related to the OP matrix.
  • the main left singular vector (PLSV) of the channel matrix of the mobile station is used as a filter vector, and the PLSV is multiplied by the channel matrix to separate the PRSV of the mobile station, and then the PRSV can be projected by multiplying the PRSV of the mobile station by the OP matrix.
  • the OP precoding algorithm of the present invention can be divided into two steps:
  • Step 1 Assuming that each user can accurately estimate its channel H n , then execute SVD for H...
  • ⁇ ⁇ ⁇ command ⁇ .
  • the ⁇ and ⁇ are represented as the first column of sum and ⁇ , and ⁇ and ⁇ 1 represent H Heavy main left and main right singular vectors, respectively. Then, all N active users feed back their primary right singular vectors as partial CSI feedback to the base station.
  • Definition ⁇ [ ... ⁇ . ⁇ .,... )];
  • Calculate the orthogonal projection matrix of ⁇ as ⁇ /"-2> driving( ⁇ /) impart)— 1 , where N ⁇ M ; set ⁇ - ⁇
  • is the user " Mx; dimension transmission vector, used here as the beamforming vector' and ⁇ is the data symbol of the user"
  • ⁇ / ⁇ is the Nn-dimensional additive white Gaussian noise with a mean of zero and a variance of ⁇ 2 ( AWGN) vector. Then, the conjugate transpose of the main left singular vector is multiplied as a receive vector. The received signal becomes
  • the OP algorithm supports one data stream for each user, and the number N of active users cannot be greater than the number M of base station antennas; the MET algorithm supports the data stream for the user, but the sum of the number of data streams of all N active users cannot be greater than M , ie 5 regularly ⁇ M. Therefore, it can be seen that these two algorithms support the same total number of data streams.
  • the CSI feedback overhead is the same for the OP and MET algorithms.
  • the OP algorithm performs SVD-times for each user.
  • the MET algorithm needs to perform SVD three times for each user. Therefore, when there are a large number of users in a cell and a multi-user scheme is used, the complexity of the OP is greatly reduced compared to MET.
  • each user's channel is an independently quasi-static, frequency-flattened Rayleigh fading channel, and each element in the channel matrix is a complex Gaussian random variable distributed as CN(0,1).
  • the distribution of AWGN is C, ⁇ ISNK).
  • Figure 5 compares the OP algorithm with the EB algorithm, in which all users feed back the PRSV of their channel matrix as part of the CSI to the base station.
  • the total number of users is set to 6, 10, and 20, respectively.
  • Greedy search scheduling and using the minimum CCI user search schedule for the EB algorithm, because EB cannot eliminate CCL from other users.
  • the OP algorithm is superior to the EB algorithm because OP can be completely complete for each user. Eliminate CCI.
  • Figure 6 shows the capacity map of the OP algorithm and the BD algorithm in the case where there are multiple receiving antennas at each user.
  • the total number of users is 20, and a greedy search schedule is used for both algorithms.
  • Figure 6 shows that the performance of the proposed chirp algorithm is superior to the BD algorithm for the case where there are multiple receive antennas at each user. The reason is that the BD algorithm has strict limits on the number of antennas for base stations and mobile stations.
  • the OP algorithm can select N-4 active users for each schedule.
  • Figure 7 provides a comparison of the capacity of the OP with the existing best MET algorithm.
  • the simulated antenna configuration is the same as in Figure 6, and greedy search scheduling is used for both algorithms. It can be observed from the figure that the OP algorithm has the same performance as MET because the two algorithms can support the same total number of data streams and completely eliminate the CCI of each user.
  • the proposed method has three salient features: CSI feedback is less expensive, performance is good, and implementation complexity is low. All of these features make the OP algorithm of the present invention a practical solution for broadband wireless communication standards such as IEEE 802.16 and 3GPP LTE.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Description

利用部分 CSI反馈的正交投影预编码和解码方法及其设各
技术领域
本发明涉及一种预编码方法和解码方法, 具体涉及利用部分 csi反馈的用于
MU-MIMO下行链路的一种正交投影(OP )预编码方法及其设备以及正交投影解 码方法和设备。 背景技术
近年来, 多用户 MIMO ( MU-MIMO ) 系统由于其系统容量比单用户 MIMO
( SU-MIMO )提升更快而受到更多的关注。 人们认识到, MU-MIMO系统是提高 无线通信系统的频谱效率的一种有效方式。 多用户预编码器是 MU-MIMO的关键 技术之一。 多用户预编码器可以通过正确地设计每个用户的传输信号, 极大地减 小同信道干扰 (CCI)。
现在, 对于 MU-MIMO系统, 存在多种预编码算法, 在这些预编码算法中, 块对角化 (BD ) 预编码算法是一种典型的算法。 BD预编码算法可将 MU-MIMO 下行信道分解为多个并行独立的 SU-MIMO信道, 并且对于每个用户而言, 完全 消除了 CCI。然而, BD算法严格限制基站(BS )天线的数目必须大于移动站(MS ) 天线之和。
此外, 在基站处, 为了进行 BD预编码算法, 需要所有活跃用户的全部信道 状态信息 (CSI)。 将全部 CSI反馈给基站对于频分复用 (FDD ) 系统而言负担很 重。 因此, 提出了一种仅反馈部分 CSI的基于特征值的准奇异子(EB )预编码算 法。 然而, EB算法不能够消除不同用户的 CCI, 而这将削弱系统性能。
在减小 CSI反馈开销和消除 CCI方面,最佳的已有下行链路预编码算法是多 用户本征型传输 (MET) 算法, 该算法放宽了 BD在基站和移动站天线数目方面 的限制。假定在基站处有 M个天线,在每个移动站处有 Nr个天线,并且 、 、 ...、 分别是 N个活跃用户的数据流数目。 MET的原理是:在每个移动站处计算 ^xNr 维的接收处理矩阵 „, 首先将用户 η 的 NrxM维的信道矩阵 转换为等效的 snxM维信道矩阵 Γ„= Βη Η„。 然后, 对所有活跃用户的这些等效信道矩阵应用 BD算法, 并且对于每个用户而言, 可以完全消除 CCI。从上面可见, 对于 MET算法需要在基站处知道部分信道信息 Γ„。 因此, MET是解决减小 CSI反馈 负担和消除 MU-MIMO下行链路的 CCI的问题的一种良好解决方案。
然而, 为了获得等效信道、 消除来自其它用户的 CCI、 并分解一个用户的不 同数据流, 对于每个用户而言, MET算法需要执行 SVD操作三次。 当在小区中 有大量用户并且使用多用户方案时, MET 的复杂度很高。
为了解决减小 CSI反馈开销和消除 CCI的问题, 在本发明中, 提出一种仅需 要向基站反馈部分 CSI并且可完全消除每个用户的 CCI的正交投影 (OP) 预编 码方法。
与 MET相比, 本发明所提出的 OP算法对于每个用户仅需要执行奇异值分 解 (SVD) —次, 因此与 MET相比极大地降低了复杂度。 发明内容
本发明的目的是提供一种新的用于多用户 MIMO (MU-MIMO )下行链路的 预编码方法, 该方法基于正交投影, 在仅向基站反馈每个活跃用户 (下面也称为 移动站 (MS ) ) 的部分信道状态信息 (CSI) 的情况下消除其它用户的 CCI。
所提出方案的基本思想是通过将用户 n的部分 CSI投影到所有其它用户的部 分 CSI的正交补空间, 可完全消除用户 n的 CCI。
在本发明的一个方面中, 提供了一种预编码设备, 用在包括基站 (BS ) 和 多个移动站 (MS ) 的系统中, 所述预编码设备包括: 信息接收单元, 接收从所 有移动站反馈的部分信道状态信息(CSI) ; 计算单元, 将除了一个移动站之外的 所有其它移动站的部分 CSI 的正交投影矩阵计算为所述一个移动站的预编码矩 阵; 以及数据产生单元, 使用该预编码矩阵来对针对所述一个移动站的数据流进 行预编码。
优选地, 部分 CSI包括相应 MS的信道矩阵的 PRSV, 并且相应 MS的信道 矩阵的 PRSV是通过对相应 MS的信道矩阵执行 SVD而获得的。
优选地, 该预编码设备用于 MU-MIMO下行链路。
在本发明的另一方面中, 提供了一种解码器, 用在包括基站 (BS ) 和多个 移动站 (MS ) 的系统中, 所述解码器包括: 接收单元, 从基站接收针对一个移 动站的数据, 其中接收数据是基站发送给所有用户的数据与所述一个移动站的信 道矩阵的乘积, 所述接收数据可分为两个部分, 一部分是针对所述一个移动站自 身的信号, 包括与所述一个移动站的部分 CSI有关的信息, 另一部分属于来自除 了所述一个移动站之外的所有其它移动站的同信道干扰(CCI), 包括与除了所述 一个移动站之外的所有其它移动站的部分 CSI的正交补空间有关的信息; 滤波单 元, 对接收数据进行滤波以获得所述一个移动站的部分 CSI; 以及投影单元, 将 所述一个移动站的部分 csi投影到由与除了所述一个移动站之外的所有其它移动 站的部分 CSI的正交补空间有关的所述信息限定的所有其它移动站的部分 CSI的 正交补空间。
优选地, 与所述一个移动站的部分 CSI 有关的信息包括所述一个移动站的 信道矩阵的 PRSV, 并且与所有其它移动站的部分 CSI的正交补空间有关的信息 是所有其它移动站的 PRSV的正交投影矩阵。
优选地,滤波单元通过使用所述一个移动站的信道矩阵的 PLSV来滤出所述 一个移动站的信道矩阵的 PRSV。
优选地,投影单元通过将 PRSV与所有其它移动站你的 PRSV的正交投影矩 阵相乘, 来将所述一个移动站的信道矩阵的 PRSV 投影到所有其它移动站的 PRSV的正交补空间。
在本发明的另一方面中, 提供了一种预编码方法, 用在包括基站 (BS ) 和 多个移动站 (MS ) 的系统中, 所述预编码方法包括以下步骤: 接收从所有移动 站反馈的部分信道状态信息(CSI); 将除了一个移动站之外的所有其它移动站的 部分 CSI的正交投影矩阵计算为所述一个移动站的预编码矩阵; 以及使用该预编 码矩阵来对针对所述一个移动站的数据流进行预编码。
优选地, 部分 CSI包括相应 MS的信道矩阵的 PRSV, 并且相应 MS的信道 矩阵的 PRSV是通过对相应 MS的信道矩阵执行 SVD而获得的。
优选地, 该预编码方法用于 MU-MIMO下行链路。
在本发明的另一方面中, 提供了一种解码方法, 用在包括基站 (BS ) 和多 个移动站 (MS ) 的系统中, 所述解码方法包括以下步骤: 从基站接收针对一个 移动站的数据, 其中接收数据是基站发送给所有用户的数据与所述一个移动站的 信道矩阵的乘积, 所述接收数据可分为两个部分, 一部分是针对所述一个移动站 自身的信号, 包括与所述一个移动站的部分 CSI有关的信息, 另一部分属于来自 除了所述一个移动站之外的所有其它移动站的同信道千扰(CCI) , 包括与除了所 述一个移动站之外的所有其它移动站的部分 csi的正交补空间有关的信息; 对接 收数据进行滤波以获得所述一个移动站的部分 CSI; 以及将所述一个移动站的部 分 CSI投影到由与除了所述一个移动站之外的所有其它移动站的部分 CSI的正交 补空间有关的所述信息限定的所有其它移动站的部分 CSI的正交补空间。
优选地, 与所述一个移动站的部分 CSI有关的信息包括所述一个移动站的 信道矩阵的 PRSV, 并且与所有其它移动站的部分 CSI的正交补空间有关的信息 是所有其它移动站的 PRSV的正交投影矩阵。
优选地, 对接收数据进行滤波以获得所述一个移动站的部分 CSI 的步骤包 括: 通过使用所述一个移动站的信道矩阵的 PLSV来滤出所述一个移动站的信道 矩阵的 PRSV。
优选地, 将所述一个移动站的信道矩阵的 PRSV 投影到所有其它移动站的
PRSV的正交补空间的步骤包括将所述一个移动站的信道矩阵 PRSV与所有其它 移动站的 PRSV的正交投影矩阵相乘。 本发明的效果
本发明具有以下三个优点:
1 . 所提出的 OP算法仅需要从移动站向基站部分反馈 CSI, 因此与 BD算法 相比, 减小了 CSI反馈的开销。
2. 与现有的部分 CSI反馈方案的 EB算法相比, 本发明的 OP算法对于每个 用户可完全地消除 CCI, 并且在性能上比 EB算法有显著的提高。
3. 与现有的最佳的 MET算法相比, OP算法具有与 MET相同的性能, 但是 其实现复杂度比 MET低。
在本发明中, 部分 CSI是指每个用户的信道矩阵的主右奇异矢量 (PRSV)。 具体地, 所提出的方案如下。 附图说明
图 1是根据本发明的预编码设备的框图;
图 2是根据本发明的解码器的框图;
图 3是根据本发明的预编码方法的流程图;
图 4是根据本发明的解码方法的流程图; 以及
图 5-7是本发明的方法与其它现有预编码方法的比较图。 具体实施方式
如上所述, MU-MIMO系统被认为是提高无线通信系统的频谱效率的一种有 效方式。 作为 MU-MIMO的关键技术之一, 多用户预编码算法可通过正确地设计 每个用户的传输信号, 极大地减小同信道干扰(CCI)。 在现有的多用户预编码算 法中, 存在 BD、 EB和 MET算法, 这些算法用于 MU-MIMO下行链路。
关于本发明提出的正交投影预编码算法, 与 BD、 EB和 MET相同的是, 本发 明的正交投影方法也用于 MU-MIMO下行链路中。 然而, 对于现有的 BD、 EB和
MET预编码方法, 它们的反馈机制、 预编码矩阵的计算和解码器与本发明的 OP 预编码方法不同。
所提出方案的基本思想是通过将用户 n的部分 CSI投影到所有其它用户的部 分 CSI的正交补空间, 可完全消除用户 n的 CCI。 下面, 参考附图来描述本发明的优选实施例。
图 1是根据本发明的用于实现 OP预编码方法的 OP预编码设备 100的框图。 如 图 1所示, OP预编码设备 100包括信息接收单元 10、预编码矩阵计算单元 12和数据 产生单元 14。图 2是根据本发明的用于实现 OP解码方法的解码器 200的框图。如图 2所示, 解码器 200包括接收单元 20、 滤波单元 22和投影单元 24。 应该注意到, 附 图中省略了与本发明的发明点无关的部分。
图 3是根据本发明的 OP预编码方法的流程图, 图 4是根据本发明的解码方法 的流程图。
下面参考图 1-4来详细描述所提出的方法。 该方法实现在包括基站和多个移 动站 (活跃用户) 的系统中。
如图 3所示, 在步骤 S 101处, 预编码设备 100中的信息接收单元 10接收所有 用户反馈的部分 CSI。 具体地, 在本实施例中, 每个移动站估计其信道矩阵, 并 对其信道矩阵执行 SVD以获得 PRSV, 然后将 PRSV发送到基站。 信息接收单元 10 接收所有移动站的 PRSV。 然后在步骤 S102处, 针对一个移动站, 预编码设备 100 的预编码矩阵计算单元 12计算除了该移动站之外的所有其它移动站的部分 CSI的 正交投影 (OP )矩阵, 作为该移动站的预编码矩阵。 其后, 在步骤 S103处, 数据 产生单元 14将该预编码矩阵与针对一个移动站的数据流相乘以产生要发送的数 据, 然后向该移动站发送所产生的数据。 如图 4所示,该移动站在步骤 S201处接收来自基站的信号。然后,在步骤 S202 处, 滤波单元 22对接收信号进行滤波以获得该移动站的部分 CSI。 之后, 在步骤 S203处, 通过将该移动站的部分 CSI与 OP矩阵相乘, 投影单元 24可将该移动站的 PRSV投影到所有其它用户的 PRSV的正交补空间, 从而获得没有其它移动站的 CCI的数据。 在本实施例中, 该移动站所接收的信号是发送数据 (其中包括发送 给其他用户的数据) 与信道矩阵的乘积, 而发送数据是通过在基站将针对该移动 站的数据流与相应的 OP矩阵相乘而获得的, 因此接收信号中包含与 OP矩阵有关 的信息。 将移动站信道矩阵的主左奇异矢量 (PLSV) 用作滤波矢量, 将 PLSV与 信道矩阵相乘可分离移动站的 PRSV, 而后通过将移动站的 PRSV与 OP矩阵相乘, 可将 PRSV投影到所有其它移动站的 PRSV的正交补空间。
具体地, 所提出的方法可解释如下。
考虑在基站处具有 M个天线、 在每个移动站处有 N/"个天线、 并且有 N个活 跃用户的一个 MU-MIMO下行链路系统。 基站和用户 n之间的平坦衰落 MIMO 信道表示为 NrxM的矩阵 H„。 本发明的 OP预编码算法可分为两步:
步骤 1 : 假定每个用户可准确地估计其信道 Hn, 则针对 H„ 执行 SVD ,
Ηπ=υΛν„Η。 将 ^^和^,表示为 和^ 的第一列, ^和^ 1分别代表 H„ 主左和 主右奇异矢量。 然后, 所有 N个活跃用户都将其主右奇异矢量 ,作为部分 CSI 反馈反馈给基站。
步骤 2: 针对用户 " =1~N, 计算 MxM维预编码矩阵 Γ„。 定义 Α =[ … ^.Ί.,… )]; 将^ 的正交投影矩阵计算为^ = /" -2>„(^/)„)— 1 , 其 N≤M ; 设定 ι - ^ . 在预编码之后, 在用户 "处接收到的信号可表示为 rn = HnTnbn + Hn X Τ^ + ηη
其中^ 是用户 " Mx;维发送矢量, 在这里被用作波束形成矢量' 而 ^是用户 " 的数据符号, ί/Λ是均值为零、 方差为 σ2的 Nn 维加性高斯白噪声 (AWGN) 矢量。 然后, 将主左奇异矢量的共轭转置 作为接收矢量与 相乘, 所接收信号变为
Λ = +^H„ £ T,b, +¾ „ 由于 7 = /» , 所以很容易验证对于 w≠", 、H„Tm = 0。 因此, 对于用户 "而 可完全地消除 中的 CCI项, 并且 Λ可写为 其中 1„,是^的第一奇异值, „仍然是均值为零、 方差为 σ2的 AWGN。 将所有 N 个活跃用户的总发射功率归一化, 可以得到用户 " 的信噪比 ^, 即
Figure imgf000009_0001
与 MET算法的比较
1 . OP算法对于每个用户支持一个数据流, 并且活跃用户数目 N不能大于基 站天线数目 M; MET算法对于用户《支持 个数据流, 但是所有 N个活跃用户 的数据流数目的总和不能大于 M, 即 5 „≤M。 因此, 可见, 这两个算法支持相 同总数的数据流。
2. 根据上面的分析, CSI反馈开销对于 OP和 MET算法而言是相同的。 根据算法的说明, 可见, OP算法对于每个用户执行 SVD—次。 然而, 为了 实现获得等效信道、消除来自其它用户的 CCI并分解一个用户的不同数据流这三 个任务, MET算法对于每个用户需要执行 SVD三次。 因此, 当小区中有大量用 户并且使用多用户方案时, OP的复杂度与 MET相比极大地减小。
与其它现有算法的比较
这部分比较了所提出的 OP算法与现有典型的 BD、 EB和 MET预编码算法 的性能。 在所有的仿真中, 每个用户的信道都是独立准静态、 频率平坦的瑞利衰 落信道, 并且信道矩阵中的每个元素是分布为 CN(0,1)的复高斯随机变量。 对于 归一化的总发射功率, AWGN的分布为 C , \ISNK)。
图 5将 OP算法与 EB算法相比较, 其中所有用户都将其信道矩阵的 PRSV 作为部分 CSI反馈给基站。 在该仿真中, 在基站使用 M=4个发射天线, 并且每 个用户有
Figure imgf000009_0002
个接收天线。 总用户数目 分别设置为 6、 10和 20。 通过使用多 用户调度算法, 从 个用户中选择 N=4个用户作为活跃用户。对于 OP算法使用 贪婪搜索调度, 而对于 EB算法使用最小 CCI用户搜索调度, 因为 EB不能够消 除来自其它用户的 CCL 从图 5可清楚地看出, OP算法优于 EB算法, 因为 OP 对于每个用户可完全地消除 CCI。
图 6给出了在每个用户处有多个接收天线的情况下 OP算法与 BD算法的容 量图。 在该仿真中, 在基站处使用 Λ =4 个发送天线, 并且每个用户的接收天线 数目被分别设置为 Nr =2和 4。 总用户数目是 20, 并且对于两种算法均使用贪 婪搜索调度。 图 6 示出了对于每个用户处具有多个接收天线的情况, 所提出的 ΟΡ算法的性能优于 BD算法。原因是 BD算法对于基站和移动站的天线数目有严 格的限制。对于 Μ=4个基站天线, 并且每个用户有 Nr =2和 4个天线的情况, 采 用 BD算法时的活跃用户的数目仅分别为 N=2和 1, 这极大地限制了系统容量。 而利用该天线配置, OP算法对于每次调度可选择 N-4个活跃用户。
图 7提供了 OP与现有的最佳的 MET算法的容量比较。 该仿真的天线配置 与图 6中的相同, 并且对于两个算法均使用贪婪搜索调度。从图中可观察到, OP 算法的性能与 MET相同, 这是因为这两个算法可支持相同总数的数据流, 并且 完全消除每个用户的 CCI。
从上面的说明可见, 本发明所提出的方法具有三个突出的特点: CSI反馈开 销更小、 性能好以及实现复杂度低。 所有这些特点使得本发明的 OP算法可成为 诸如 IEEE 802.16和 3GPP LTE的宽带无线通信标准的实际方案。
尽管参考特定实施例描述了本发明, 但是本领域技术人员可以认识到, 在不 背离由所附权利要求所限定的本发明的精神和范围的情况下, 可在形式和细节上 做出改变。

Claims

权 利 要 求
1 - 一种预编码设备, 用在包括基站 BS和多个移动站 MS的系统中, 所述 预编码设备包括:
信息接收单元, 接收从所有移动站反馈的部分信道状态信息 CSI;
计算单元, 将除了一个移动站之外的所有其它移动站的部分 CSI 的正交投 影矩阵计算为所述一个移动站的预编码矩阵; 以及
数据产生单元,使用该预编码矩阵来对针对所述一个移动站的数据流进行预 编码。
2. 根据权利要求 1所述的预编码设备, 其中部分 CSI包括相应移动站的信 道矩阵的主右奇异矢量 PRSV, 并且相应移动站的信道矩阵的 PRSV是通过对相 应移动站的信道矩阵执行奇异值分解 SVD而获得的。
3 . 根据权利要求 1 或 2 所述的预编码设备, 其中该预编码设备用于 MU-MIMO下行链路。
4. 一种解码器, 用在包括基站 BS和多个移动站 MS的系统中, 所述解码 器包括:
接收单元,从基站接收针对一个移动站的数据,其中接收数据是基站发送给 所有用户的数据与所述一个移动站的信道矩阵的乘积, 所述接收数据可分为两个 部分, 一部分是针对所述一个移动站自身的信号, 包括与所述一个移动站的部分 信道状态信息 CSI有关的信息, 另一部分属于来自除了所述一个移动站之外的所 有其它移动站的同信道干扰 CCI, 包括与除了所述一个移动站之外的所有其它移 动站的部分 CSI的正交补空间有关的信息;
滤波单元, 对接收数据进行滤波以获得所述一个移动站的部分 CSI; 以及 投影单元, 将所述一个移动站的部分 CSI 投影到由与除了所述一个移动站 之外的所有其它移动站的部分 CSI的正交补空间有关的所述信息限定的所有其它 移动站的部分 CSI的正交补空间。
5. 根据权利要求 4所述的解码器, 其中与所述一个移动站的部分 CSI有关 的信息包括所述一个移动站的信道矩阵的主右奇异矢量 PRSV, 并且与所有其它 移动站的部分 CSI的正交补空间有关的信息是所有其它移动站的 PRSV的正交投 影矩阵。
6. 根据权利要求 5所述的解码器, 其中滤波单元通过使用所述一个移动站 的信道矩阵的主左奇异矢量 PLSV来滤出所述一个移动站的信道矩阵的 PRSV。
7. 根据权利要求 5所述的解码器, 其中投影单元通过将 PRSV与所有其它 移动站你的 PRSV 的正交投影矩阵相乘, 来将所述一个移动站的信道矩阵的
PRSV投影到所有其它移动站的 PRSV的正交补空间。
8. —种预编码方法, 用在包括基站 BS和多个移动站 MS的系统中, 所述 预编码方法包括以下步骤:
接收从所有移动站反馈的部分信道状态信息 CSI;
将除了一个移动站之外的所有其它移动站的部分 CSI 的正交投影矩阵计算 为所述一个移动站的预编码矩阵; 以及
使用该预编码矩阵来对针对所述一个移动站的数据流进行预编码。
9. 根据权利要求 8所述的预编码方法, 其中部分 CSI包括相应 MS的信道 矩阵的主右奇异矢量 PRSV,并且相应 MS的信道矩阵的 PRSV是通过对相应 MS 的信道矩阵执行奇异值分解而获得的。
10. 根据权利要求 8 或 9 所述的预编码方法, 其中该预编码方法用于 MU-MIMO下行链路。
11. 一种解码方法, 用在包括基站 BS和多个移动站 MS的系统中, 所述解 码方法包括以下步骤:
从基站接收针对一个移动站的数据,其中接收数据是基站发送给所有用户的 数据与所述一个移动站的信道矩阵的乘积, 所述接收数据可分为两个部分, 一部 分是针对所述一个移动站自身的信号, 包括与所述一个移动站的部分 CSI有关的 信息, 另一部分属于来自除了所述一个移动站之外的所有其它移动站的同信道干 扰 CCI, 包括与除了所述一个移动站之外的所有其它移动站的部分 CSI的正交补 空间有关的信息;
对接收数据进行滤波以获得所述一个移动站的部分 CSI; 以及
将所述一个移动站的部分 CSI 投影到由与除了所述一个移动站之外的所有 其它移动站的部分 CSI的正交补空间有关的所述信息限定的所有其它移动站的部 分 CSI的正交补空间。
12. 根据权利要求 11所述的解码方法, 其中与所述一个移动站的部分 CSI 有关的信息包括所述一个移动站的信道矩阵的主右奇异矢量 PRSV, 并且与所有 其它移动站的部分 CSI的正交补空间有关的信息是所有其它移动站的 PRSV的正 交投影矩阵。
13. 根据权利要求 12所述的解码方法, 其中对接收数据进行滤波以获得所 述一个移动站的部分 CSI的步骤包括: 通过使用所述一个移动站的信道矩阵的主 左奇异矢量 PLSV来滤出所述一个移动站的信道矩阵的 PRSV。
14. 根据权利要求 12所述的解码方法, 其中将所述一个移动站的信道矩阵 的 PRSV投影到所有其它移动站的 PRSV的正交补空间的步骤包括将所述一个移 动站的信道矩阵 PRSV与所有其它移动站的 PRSV的正交投影矩阵相乘。
PCT/CN2008/000157 2008-01-22 2008-01-22 Orthogonal projection precoding and decoding method and equipment by using part csi feedback WO2009094797A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2008/000157 WO2009094797A1 (en) 2008-01-22 2008-01-22 Orthogonal projection precoding and decoding method and equipment by using part csi feedback
CN200880125050.5A CN101953088B (zh) 2008-01-22 2008-01-22 利用部分csi反馈的正交投影预编码和解码方法及其设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2008/000157 WO2009094797A1 (en) 2008-01-22 2008-01-22 Orthogonal projection precoding and decoding method and equipment by using part csi feedback

Publications (2)

Publication Number Publication Date
WO2009094797A1 WO2009094797A1 (en) 2009-08-06
WO2009094797A9 true WO2009094797A9 (zh) 2010-08-26

Family

ID=40912221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/000157 WO2009094797A1 (en) 2008-01-22 2008-01-22 Orthogonal projection precoding and decoding method and equipment by using part csi feedback

Country Status (2)

Country Link
CN (1) CN101953088B (zh)
WO (1) WO2009094797A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108605021A (zh) * 2016-01-18 2018-09-28 华为技术有限公司 接收装置及其方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106160808B (zh) * 2015-04-10 2019-10-29 上海无线通信研究中心 一种多用户mimo系统及方法
EP4128557A1 (en) * 2020-03-25 2023-02-08 Telefonaktiebolaget LM Ericsson (publ) Projection matrix based mu-mimo precoding

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100510549B1 (ko) * 2003-09-26 2005-08-26 삼성전자주식회사 코채널 간섭을 검출하고 경감시키는 디지털 비디오 방송수신기의 채널 상태 평가 장치 및 그 방법
US7194042B2 (en) * 2004-01-13 2007-03-20 Qualcomm Incorporated Data transmission with spatial spreading in a mimo communication system
CN100502255C (zh) * 2005-03-12 2009-06-17 中兴通讯股份有限公司 用于多入多出通信系统的发射方法、装置和系统
CN100525275C (zh) * 2005-10-27 2009-08-05 财团法人工业技术研究院 Mimo-ofdm系统及其中之预编码与反馈的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108605021A (zh) * 2016-01-18 2018-09-28 华为技术有限公司 接收装置及其方法

Also Published As

Publication number Publication date
CN101953088B (zh) 2013-03-13
WO2009094797A1 (en) 2009-08-06
CN101953088A (zh) 2011-01-19

Similar Documents

Publication Publication Date Title
González-Coma et al. Channel estimation and hybrid precoding for frequency selective multiuser mmWave MIMO systems
CN107483088B (zh) 大规模mimo鲁棒预编码传输方法
JP5406987B2 (ja) マルチユーザーマルチ入力マルチ出力無線送信システムにおける付加的受信機処理によるトムリンソン−原島プリコーディング
Masouros et al. Vector perturbation based on symbol scaling for limited feedback MISO downlinks
US9537549B2 (en) Method, terminal and base station for multi-user interference suppression
JP5738581B2 (ja) 無線通信システムにおけるマルチユーザmimoの伝送方法および基地局
JP5220859B2 (ja) マルチユーザプリコーディング及びスケジューリングの方法並びにそれを実施するための基地局
US9160432B2 (en) Cognitive radio base station and communication method thereof in multi-user multiple-input multiple output cognitive radio network system
CN101964695B (zh) 多用户多输入多输出下行链路预编码方法及系统
Mishra et al. Mitigating intra-cell pilot contamination in massive MIMO: A rate splitting approach
WO2015112883A1 (en) System and method for early termination in iterative null-space directed singular value decomposition for mimo
JP2009049604A (ja) 送信装置、及びビームフォーミング行列生成方法
Saatlou et al. Spectral efficiency maximization of a single cell massive MU-MIMO down-link TDD system by appropriate resource allocation
Salh et al. A study on the achievable data rate in massive MIMO system
JP5859913B2 (ja) 無線受信装置、無線送信装置、無線通信システム、プログラムおよび集積回路
JP2007214993A (ja) 無線通信システムおよび空間多重用無線通信方法
CN105991219B (zh) 发送信号的处理方法及装置
WO2009094797A9 (zh) 利用部分csi反馈的正交投影预编码和解码方法及其设备
WO2013078743A1 (zh) 协作多点多用户mimo系统的预编码方法及矩阵生成装置
WO2011032421A1 (zh) 一种基于联合收发端信息的多路波束形成方法及系统
JP5444353B2 (ja) 無線通信システム、基地局及び無線通信方法
Zhao et al. Performance of a concurrent link sdma mac under practical phy operating conditions
Yue et al. RIS-aided multiuser MIMO-OFDM with linear precoding and iterative detection: Analysis and optimization
CN106452676B (zh) 一种多点协同传输的方法及相关设备
Wan et al. Optimality of beamforming for MIMO multiple access channels via virtual representation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880125050.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08700706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08700706

Country of ref document: EP

Kind code of ref document: A1