WO2015000243A1 - 基于微流体芯片的微生物检测仪器及其spr检测方法 - Google Patents

基于微流体芯片的微生物检测仪器及其spr检测方法 Download PDF

Info

Publication number
WO2015000243A1
WO2015000243A1 PCT/CN2013/086227 CN2013086227W WO2015000243A1 WO 2015000243 A1 WO2015000243 A1 WO 2015000243A1 CN 2013086227 W CN2013086227 W CN 2013086227W WO 2015000243 A1 WO2015000243 A1 WO 2015000243A1
Authority
WO
WIPO (PCT)
Prior art keywords
microfluidic chip
metal film
array layer
lens
film array
Prior art date
Application number
PCT/CN2013/086227
Other languages
English (en)
French (fr)
Inventor
黄伟
李丰
Original Assignee
丹阳聚辰光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丹阳聚辰光电科技有限公司 filed Critical 丹阳聚辰光电科技有限公司
Publication of WO2015000243A1 publication Critical patent/WO2015000243A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/168Specific optical properties, e.g. reflective coatings

Definitions

  • the invention relates to a microfluidic chip-based microbial detection instrument and a SPR detection method thereof, and belongs to the field of industrial testing and environmental monitoring.
  • the traditional microbial detection methods mainly include a plate counting method, an immunoassay method, and a PCR method.
  • the plate counting method mixes the diluted microorganisms with the medium, grows and multiplies into a plurality of colonies, and determines the microbial concentration by counting the colonies; the immunoassay method passes Detecting the specific binding reaction between the microbial antibody and the antigen to achieve detection; PCR method cleaves the microorganism to extract and purify the DNA, design primers to act on the specific coding region of the parasite egg and amplify it, thereby realizing microbial identification and Number detection.
  • the common shortcomings of these methods are the long time-consuming, cumbersome biochemical reaction processes, the need for multiple chemical reagents and the involvement of professionals, and the inability to meet fast and accurate microbiological testing needs.
  • the technical problem to be solved by the present invention is to overcome the defects of the prior art and provide a microfluidic chip-based microbial detection instrument, which integrates a microfluidic chip and a lens highly, and can detect a large number of microbial species and a large amount of samples at a time. With different concentration of components, the sample does not need to be marked, the detection speed is fast, and the detection precision is high.
  • a microfluidic chip-based microbial detection instrument including an incident light source, a fiber collimating mirror, a multi-channel collimating mirror, and a multi-channel spectrometer, including a lens and a surface plasma a microfluidic chip having a resonance response characteristic, a microfluidic chip having a fluid microchannel having a fluid inlet and a fluid outlet, wherein the microfluidic chip is provided with a metal film array layer, and the metal film array layer is located on a lower surface of the fluid microchannel
  • a plurality of microbial antibody layers are fixed on the metal film array layer, and the lens is closely attached to one side of the metal film array layer on the microfluidic chip, and the light emitted by the incident light source is sequentially irradiated to the metal film through the fiber collimating mirror and the lens.
  • the array layer is then reflected by the lens to a multi-channel collimator and injected into the multi-channel spectr
  • the substrate and the lens of the microfluidic chip are both made of a polydimethylsiloxane material.
  • a self-assembled monolayer and a protein G layer are sequentially disposed from the inside to the outside of the metal film array layer and the microbial antibody layer.
  • the lens is a triangular prism.
  • the metal film array layer is a gold film array layer.
  • the invention also provides an SPR detection method for a microfluidic chip based microbial detection instrument, the steps of the method are as follows:
  • the incident light source is collimated by the collimating lens of the optical fiber, and then projected through the lens to the metal film array layer in parallel and totally internal reflection occurs at the interface between the lens and the metal film array layer, and the reflected light passes through
  • the lens enters the multi-channel collimator and enters the multi-channel spectrometer;
  • microfluidic chip is manufactured as follows -
  • the first microfluidic chip substrate and the second microfluidic chip substrate are both made of a PDMS material.
  • the incident light will be totally internally reflected at the interface between the lens and the metal film array layer, and when the generated loss wave and the surface plasmon wave in the metal have the same wave vector, surface plasma is formed. Resonance, at resonance, the total reflection condition at the interface is destroyed, the reflectivity appears to be the minimum, and the point at which the minimum position occurs is the resonance angle or the resonance wavelength.
  • the resonance wavelength position of the microfluidic chip is on the other side of the metal film array layer.
  • the refractive index is very sensitive. When measuring, an antibody having specific binding and recognition properties is immobilized on the surface of the metal film array layer.
  • the microorganism When a certain microorganism flows through the surface of the metal film array layer, if the microorganism has a corresponding antibody to the antibody The combination of the antigen, the antigen and the antibody will change the refractive index of the liquid sample on the surface of the metal film array layer, thereby causing a change in the resonance wavelength, and the antigen on the different kinds of microorganisms and the corresponding antibody are combined to cause a different amount of refractive index change, thereby generating different The resonant wavelength changes. Even if the same microorganism has different concentrations, different resonance wavelength changes will occur, and the type and concentration of the microorganism can be obtained by this change.
  • the invention integrates the microfluidic chip and the lens with high height, and can detect the microbial species of a large number of samples and the concentration of different components thereof at one time, the sample does not need to be marked, the detection speed is fast, and the detection precision is high.
  • FIG. 1 is a schematic structural view of a microfluidic chip-based microorganism detecting instrument of the present invention
  • FIG. 3 is a graph showing the resonance wavelength shift of the microfluidic chip according to the concentration of Escherichia coli in the present invention
  • FIG. 4 is a schematic diagram of the binding of the surface antigen antibody to the metal membrane array layer
  • Figure 5 is a flow chart of the processing of the microfluidic chip.
  • a microfluidic chip-based microbial detection instrument includes an incident light source 6, a fiber collimating mirror 7, a multi-channel collimating mirror 4, and a multi-channel spectrometer 5, and further includes a lens 3 and a surface plasma.
  • the microfluidic chip 2 having a body resonance response characteristic
  • the microfluidic chip 2 is provided with a fluid microchannel 2-4 having a fluid inlet and a fluid outlet
  • the microfluidic chip 2 is provided with a metal film array layer 2-1, and the metal film array
  • the layer 2-1 is located on the lower surface of the fluid microchannel 2-4, and the plurality of microbial antibody layers 9 are fixed on the metal film array layer 2-1, and the lens 3 is closely attached to the microfluidic chip 2 at the metal film array layer 2
  • the light from the incident light source 6 is sequentially irradiated to the metal film array layer 2-1 through the fiber collimating mirror 7 and the lens 3, and then reflected by the lens 3 to the multi-channel collimating mirror 4, and then injected into the multi-channel spectrometer. 5.
  • the substrate of the microfluidic chip 2 and the lens 3 are both made of PDMS material.
  • the present invention uses a microfluidic chip 2 and a lens 3 of the same material to be highly integrated, using PDMS material, eliminating the need for refractive index matching oil, and the lens is easy to integrate seamlessly with the microfluidic chip, and the cost is lower.
  • a matrix layer material is required to couple the microbial antibody layer 9 to the metal film array layer 2-1.
  • a self-assembled monolayer 11 and a protein G layer 10 are sequentially disposed from the inside to the outside between the metal film array layer 2-1 and the microbial antibody layer 9.
  • the surface of the metal film array layer 2-1 is washed with isopropyl alcohol to remove the above impurities, and then the metal film array layer 2-1 is immersed in a mixture of glycerol and ethanol containing 11-decylundecanoic acid, and placed 12 More than an hour, the sulfhydryl group in 11-mercaptodecanoic acid combines with a metal atom to form a strong covalent bond, thereby forming a layer 2-1 in the metal film array layer.
  • a self-assembled monolayer 11 was formed on the surface, and then the metal film array layer 2-1 was placed in a mixed solution of water and ethanol containing dichloroethane for 2 hours or more to activate the carboxyl group of 11-decylundecanoic acid.
  • the PBS phosphate containing 10 mg/L protein G, 0.14 M/1 sodium chloride and 0.02% mercuric acid PBS was buffered on the surface of the metal film array layer 2-1, and reacted for 2 hours or more in the self-assembled monolayer Protein G layer 10 is formed on 11, and PBS containing the microbial antibody is then buffered onto protein G layer 10.
  • the surface of the membrane was washed with PBS buffer and incubated in a PBS buffer containing 0.1% paraformaldehyde-Tween 20 solution for 20 minutes to make the antigen of the microorganism easy to be on the metal membrane array layer 2-1. Antibody binding.
  • the lens 3 is a triangular lens.
  • the metal film array layer 2-1 is a gold film array layer.
  • the curve is obtained by calibration, and then the large intestine can be inverted by measuring the amount of resonance wavelength conversion.
  • concentration of bacilli and the derivation of the concentration of other microorganisms are similar.
  • a surface plasmon resonance microbial detection method of a microfluidic chip-based microbial detection instrument the method steps are as follows:
  • the incident light source 6 Starting the incident light source 6, the incident light source emits incident light and collimated by the fiber collimating mirror 7, and then projects through the lens 3 to the metal film array layer 2-1 in parallel and in the lens 3 and the metal film array layer 2-1. Total internal reflection occurs at the interface, and the reflected light enters the multi-channel collimator 4 through the lens 3 and enters the multi-channel spectrometer 5;
  • the microfluidic chip 2 is manufactured as follows:
  • a metal film is plated on the AZ photoresist 13 by an electron beam evaporation process, and then the AZ photoresist 13 and the metal film thereon are removed by a lift-off process, thereby being on the first microfluidic chip substrate 2-2.
  • the first microfluidic chip substrate 2-2 and the second microfluidic chip substrate 2-3 are each made of a PDMS material.
  • SPR refers to surface plasmon resonance
  • the incident light source After the incident light source is activated, the incident light is totally internally reflected at the interface between the lens 3 and the metal film array layer 2-1.
  • the generated loss wave and the surface plasmon wave in the metal have the same wave vector, a surface is formed.
  • the total reflection condition at the interface is destroyed, the reflectance appears to be the minimum, and the point at which the minimum position occurs is the resonance angle or the resonance wavelength.
  • the resonance wavelength position of the microfluidic chip is on the metal film array layer 2-1.
  • the refractive index of the other side of the electrolyte is very sensitive. When measuring, an antibody having specific binding and recognition properties is immobilized on the surface of the metal film array layer 2-1.
  • the refractive index of the liquid sample on the surface of the metal film array layer 2-1 is changed, thereby causing a change in the resonance wavelength, and antigens on different kinds of microorganisms.
  • the amount of change in refractive index is different, thus producing different resonance wavelength changes. Even if the same microorganism has different concentrations, different resonance wavelength changes will occur, and the type and concentration of the microorganism can be obtained by this change.
  • the invention integrates the microfluidic chip 2 and the lens 3 highly, and can detect the microbial species of a large number of samples and the concentration of different components thereof at one time, the sample does not need to be marked, the detection speed is fast, and the detection precision is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

一种基于微流体芯片的微生物检测仪器及其SPR检测方法。该检测仪包括入射光源(6)、光纤准直镜(7)、多通道准直镜(4)、多通道光谱仪(5)、透镜(3)和具有表面等离子体共振响应特性的微流体芯片(2)。微流体芯片(2)上开有带流体进口和流体出口的流体微通道(2-4),微流体芯片(2)内设置有金属膜阵列层(2-1),并且金属膜阵列层(2-1)位于流体微通道(2-4)的下表面上,金属膜阵列层(2-1)上固定有多种微生物抗体层(9),透镜(3)紧贴在微流体芯片(2)上位于金属膜阵列层(2-1)的一侧,所述入射光源(6)发出的光依次通过光纤准直镜(7)和透镜(3)后照射至金属膜阵列层(2-1),然后再通过透镜(3)反射至多通道准直镜(4)后射入多通道光谱仪(5)。该仪器将微流体芯片(2)和透镜(3)高度集成在一起,可一次检测大量样品的微生物种类及其所含不同成分的浓度,样品无需标记,检测速度快,检测精度高。

Description

说 明 书 基于微流体芯片的微生物检测仪器及其 SPR检测方法 技术领域
本发明涉及一种基于微流体芯片的微生物检测仪器及其 SPR检测方法,属于工业测 试和环境监测领域。
背景技术
目前, 我们日常的饮用水及食物如被微生物所污染, 这些被污染的水和食物经过口 腔进入肠道,会在肠道内繁殖且散发毒素,破坏肠粘膜组织, 引起肠道功能紊乱和损害, 严重影响身体健康。 人体一旦被感染, 微生物虫卵由患者粪便排出将再次感染他人, 从 而导致更大规模传染疾病的爆发。 传统的微生物检测方法主要包括平板计数方法、 免疫 分析方法和 PCR方法等, 平板计数方法将稀释的微生物与培养基混合后生长繁殖为多个 菌落, 通过对菌落计数确定微生物浓度; 免疫分析方法通过探测微生物抗体和抗原之间 的特异性结合反应来实现检测; PCR方法对微生物进行裂解从而提取纯化 DNA, 设计 引物作用于寄生虫卵特定编码区域并对其进行扩增, 从而实现微生物的鉴别和数目检 测。 这几种方法的共同缺点是耗时长、 涉及繁琐的生物化学反应过程、 需要多种化学试 剂和专业人员参与, 无法满足快速准确的微生物检测需求。
发明内容
本发明所要解决的技术问题是克服现有技术的缺陷,提供一种基于微流体芯片的微 生物检测仪器, 它将微流体芯片和透镜高度集成在一起, 可一次检测大量样品的微生物 种类及其所含不同成分的浓度, 样品无需标记, 检测速度快, 检测精度高。
本发明解决上述技术问题采取的技术方案是: 一种基于微流体芯片的微生物检测仪器, 包括入射光源、 光纤准直镜、 多通道准直镜和多通道光谱仪, 还包括透镜和具有表面等 离子体共振响应特性的微流体芯片,微流体芯片上开有带流体进口和流体出口的流体微 通道, 微流体芯片内设置有金属膜阵列层, 并且金属膜阵列层位于流体微通道的下表面 上, 金属膜阵列层上固定有多种微生物抗体层, 透镜紧贴在微流体芯片上位于金属膜阵 列层的一侧, 所述入射光源发出的光依次通过光纤准直镜和透镜后照射至金属膜阵列 层, 然后再通过透镜反射至多通道准直镜后射入多通道光谱仪。
进一步, 所述微流体芯片的基体和透镜均采用聚二甲基硅氧烷材料制成。
进一歩,所述的金属膜阵列层和微生物抗体层之间由里向外还依次设置有自组装单 分子层和蛋白 G层。 进一步, 所述的透镜为三棱透镜。
更进一步, 所述的金属膜阵列层为金膜阵列层。
本发明还提供了一种基于微流体芯片的微生物检测仪器的 SPR检测方法,该方法的 步骤如下:
1 ) 将带有微生物的待检测液样通过过滤器过滤后, 从流体进口进入流体微通道, 当待检测液样中的某种微生物流经金属膜阵列层时, 金属膜阵列层上的该种微生物抗体 层与待检测液样中的该种微生物的抗原结合, 其余液样则从流体出口流出;
2) 启动入射光源, 入射光源发出入射光经过光纤准直镜准直后, 通过透镜平行地 投射至金属膜阵列层上并在透镜和金属膜阵列层的交界面发生全内反射, 反射光通过透 镜射入多通道准直镜后进入多通道光谱仪;
3 ) 通过分析多通道光谱仪测量得到的某种微生物的抗原和抗体结合前后的反射光 强 /波长曲线上共振峰位置的变化, 即可得知待检测液样中微生物的类型和浓度。
进一步, 所述微流体芯片的制作方法如下-
1 ) 在固化后的第一微流体芯片基体上涂上 AZ光刻胶, 经过光刻和显影工序后, 将掩膜板上的图形转移到 A 光刻胶上;
2)采用电子束蒸镀工艺在 AZ光刻胶上镀上金属膜,然后采用剥离工艺除掉 AZ光 刻胶及其上的金属层, 从而在第一微流体芯片基体上获得金属膜阵列层;
3 )在硅衬底上涂 SU-8光刻胶, 通过光刻和显影工序, 在硅衬底上获得流体微通道 模板;
4)将聚二甲基硅氧垸(PDMS )材料倒在流体微通道模板上, 经过固化后将流体微 通道转移到第二微流体芯片基体上;
5) 采用氧等离子体处理含有金属膜阵列层的第一微流体芯片基体和含有流体微通 道的第二微流体芯片基体表面, 并粘合绑定在一起, 即得到需要的微流体芯片。
更进一步, 第一微流体芯片基体和第二微流体芯片基体均采用 PDMS材料制成。 采用了上述技术方案后, 入射光会在透镜和金属膜阵列层交界面发生全内反射, 当 产生的倏失波和金属内的表面等离子体波具有相同的波矢时, 会形成表面等离子体共 振, 共振时, 界面处的全反射条件被破坏, 反射率出现最小值, 出现最小位置的点即为 共振角或者共振波长,微流体芯片的共振波长位置对金属膜阵列层另一侧电解质的折射 率非常敏感, 测量时, 将具有特异结合和识别属性的抗体固定于金属膜阵列层表面, 当 流样中某种微生物流经金属膜阵列层表面, 若该微生物上具有与此抗体对应的抗原, 抗 原和抗体结合,将改变金属膜阵列层表面的液样的折射率,从而会引起共振波长的变化, 不同种类微生物上的抗原和对应抗体结合, 引起的折射率变化量不同, 因而产生不同的 共振波长变化。 即使同一种微生物, 其浓度不同, 也会产生不同的共振波长变化, 通过 这种变化就可以得到微生物的种类和浓度。 本发明将微流体芯片和透镜高度集成在一 起, 可一次检测大量样品的微生物种类及其所含不同成分的浓度, 样品无需标记, 检测 速度快, 检测精度高。
附图说明
图 1为本发明的基于微流体芯片的微生物检测仪器的结构示意图;
图 2为本发明中不同折射率下微流体芯片的共振曲线;
图 3为本发明中微流体芯片的共振波长偏移量随大肠杆菌浓度变化曲线; 图 4为金属膜阵列层表面抗原抗体结合原理图;
图 5为微流体芯片的加工流程图。
具体实施方式
为了使本发明的内容更容易被清楚地理解, 下面根据具体实施例并结合附图, 对本 发明作进一步详细的说明。
如图 1~5所示, 一种基于微流体芯片的微生物检测仪器, 包括入射光源 6、 光纤准 直镜 7、 多通道准直镜 4和多通道光谱仪 5, 还包括透镜 3和具有表面等离子体共振响 应特性的微流体芯片 2, 微流体芯片 2上开有带流体进口和流体出口的流体微通道 2-4, 微流体芯片 2 内设置有金属膜阵列层 2-1, 并且金属膜阵列层 2-1位于流体微通道 2-4 的下表面上, 金属膜阵列层 2-1上固定有多种微生物抗体层 9, 透镜 3紧贴在微流体芯 片 2上位于金属膜阵列层 2-1的一侧, 入射光源 6发出的光依次通过光纤准直镜 7和透 镜 3后照射至金属膜阵列层 2-1, 然后再通过透镜 3反射至多通道准直镜 4后射入多通 道光谱仪 5。
微流体芯片 2的基体和透镜 3均采用 PDMS材料制成。本发明采用同样材质的微流 体芯片 2和透镜 3高度集成在一起, 采用 PDMS材料, 无需使用折射率匹配油, 透镜易 于和微流体芯片无缝集成, 且成本更低。
为了提高表面等离子体共振仪的检测灵敏度, 需要对固定在金属膜阵列层 2-1上的 微生物抗体层 9的方向进行控制。
为了使得某些微生物抗体层 9 (例如: 大肠杆菌抗体) 与金属膜阵列层 2-1紧密连 接, 需要基质层物质将微生物抗体层 9与金属膜阵列层 2-1偶联起来。 如图 4所示, 金 属膜阵列层 2-1和微生物抗体层 9之间由里向外还依次设置有自组装单分子层 11和蛋 白 G层 10。 首先用异丙醇清洗金属膜阵列层 2-1表面, 以除掉上面杂质, 然后将金属 膜阵列层 2-1浸入含有 11-巯基十一烷酸的丙三醇和乙醇混合液中, 放置 12小时以上, 11-巯基十一垸酸中的巯基与金属原子结合形成牢固的共价键, 从而在金属膜阵列层 2-1 表面形成自组装单分子层 11,紧接着将金属膜阵列层 2-1置于含有二氯乙烷的水和乙醇 混合溶液 2个小时以上,以活化 11-巯基十一烷酸的羧基。将含有 10mg/L蛋白 G、0.14M/1 氯化钠和 0.02%硫汞撒 PBS的 PBS磷酸盐缓冲液滴在金属膜阵列层 2-1表面, 反应 2 小时以上, 在自组装单分子层 11上形成蛋白 G层 10, 然后将含有微生物抗体的 PBS 缓冲液滴在蛋白 G层 10上。 2小时后, 用 PBS缓冲液清洗膜层表面, 并在含有 0.1 %多 聚甲醛 -吐温 20溶液的 PBS缓冲液中培育 20分钟, 使得微生物的抗原易于和金属膜阵列 层 2-1上的抗体结合。
如图 1所示, 透镜 3为三棱透镜。
金属膜阵列层 2-1为金膜阵列层。
图 3可以看出, 大肠杆菌浓度越高, 共振波长变换量越大, 两者基本上成线性关系 实际测量时, 实现通过标定得到变化曲线, 然后通过测量共振波长变换量即可反演得到 大肠杆菌的浓度, 其他微生物的浓度的推演方法也与其类似。
基于微流体芯片的微生物检测仪器的表面等离子体共振微生物检测方法, 该方法的 步骤如下:
1 ) 将带有微生物的待检测液样通过过滤器 1 过滤后, 从流体进口进入流体微通道 2-4, 当待检测液样中的某种微生物流经金属膜阵列层 2-1时, 金属膜阵列层 2-1上的该 种微生物抗体层 9与待检测液样中的该种微生物的抗原结合, 其余液样则从流体出口流 出;
2) 启动入射光源 6, 入射光源发出入射光经过光纤准直镜 7准直后, 通过透镜 3 平行地投射至金属膜阵列层 2-1上并在透镜 3和金属膜阵列层 2-1的交界面发生全内反 射, 反射光通过透镜 3射入多通道准直镜 4后进入多通道光谱仪 5 ;
3 ) 通过分析多通道光谱仪 5测量得到的某种微生物的抗原和抗体结合前后的反射 光强 /波长曲线上共振峰位置的变化, 即可得知待检测液样中微生物的类型和浓度。
微流体芯片 2的制作方法如下:
1 ) 在固化后的第一微流体芯片基体 2-2上涂上 AZ光刻胶 13, 经过光刻和显影工 序后, 将掩膜板 12上的图形转移到 AZ光刻胶 13上;
2) 采用电子束蒸镀工艺在 AZ 光刻胶 13 上镀上金属膜, 然后采用剥离工艺除掉 AZ光刻胶 13及其上的金属膜,从而在第一微流体芯片基体 2-2上获得金属膜阵列层 2-1;
3 ) 在硅衬底 15上涂 SU-8光刻胶 14, 通过光刻和显影工序, 在硅衬底 15上获得 流体微通道模板 14;
4)将 PDMS材料倒在流体微通道模板 14上, 经过固化后将流体微通道 2-4转移到 第二微流体芯片基体 2-3上; 5 )采用氧等离子体处理含有金属膜阵列层 2-1的第一微流体芯片基体 2-2和含有流 体微通道 2-4的第二微流体芯片基体 2-3表面, 从而粘合在一起, 即得到需要的微流体 芯片 2。
第一微流体芯片基体 2-2和第二微流体芯片基体 2-3均采用 PDMS材料制成。
SPR指的是表面等离子体共振。
本发明的工作原理如下:
启动入射光源后, 入射光会在透镜 3和金属膜阵列层 2-1交界面发生全内反射, 当 产生的倏失波和金属内的表面等离子体波具有相同的波矢时, 会形成表面等离子体共 振, 共振时, 界面处的全反射条件被破坏, 反射率出现最小值, 出现最小位置的点即为 共振角或者共振波长, 微流体芯片的共振波长位置对金属膜阵列层 2-1另一侧电解质的 折射率非常敏感, 测量时, 将具有特异结合和识别属性的抗体固定于金属膜阵列层 2-1 表面, 当流样中某种微生物流经金属膜阵列层 2-1表面, 若该微生物上具有与此抗体对 应的抗原, 抗原和抗体结合, 将改变金属膜阵列层 2-1表面的液样的折射率, 从而会引 起共振波长的变化, 不同种类微生物上的抗原和对应抗体结合, 引起的折射率变化量不 同, 因而产生不同的共振波长变化。 即使同一种微生物, 其浓度不同, 也会产生不同的 共振波长变化, 通过这种变化就可以得到微生物的种类和浓度。 本发明将微流体芯片 2 和透镜 3高度集成在一起,可一次检测大量样品的微生物种类及其所含不同成分的浓度, 样品无需标记, 检测速度快, 检测精度高。
以上所述的具体实施例, 对本发明解决的技术问题、 技术方案和有益效果进行了进 一步详细说明, 所应理解的是, 以上所述仅为本发明的具体实施例而已, 并不用于限制 本发明, 凡在本发明的精神和原则之内, 所做的任何修改、 等同替换、 改进等, 均应包 含在本发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种基于微流体芯片的微生物检测仪器, 包括入射光源 (6)、 光纤准直镜 (7)、 多通道准直镜 (4) 和多通道光谱仪 (5), 其特征在于: 还包括透镜 (3) 和具有表面等 离子体共振响应特性的微流体芯片 (2), 微流体芯片 (2) 上开有带流体进口和流体出 口的流体微通道 (2-4), 微流体芯片 (2) 内设置有金属膜阵列层 (2-1), 并且金属膜阵 列层 (2-1) 位于流体微通道 (2-4) 的下表面上, 金属膜阵列层 (2-1) 上固定有多种微 生物抗体层 (9), 透镜 (3) 紧贴在微流体芯片 (2) 上位于金属膜阵列层 (2-1) 的一 侧, 所述入射光源 (6) 发出的光依次通过光纤准直镜 (7) 和透镜 (3) 后照射至金属 膜阵列层 (2-1), 然后再通过透镜 (3) 反射至多通道准直镜 (4) 后射入多通道光谱仪
(5)。
2、 根据权利要求 1 所述的基于微流体芯片的微生物检测仪器, 其特征在于: 所述 的微流体芯片 (2) 的基体和透镜 (3) 均采用聚二甲基硅氧烷材料制成。
3、 根据权利要求 1 所述的基于微流体芯片的微生物检测仪器, 其特征在于: 所述 的金属膜阵列层 (2-1) 和微生物抗体层 (9)之间由里向外还依次设置有自组装单分子 层 (11) 和蛋白 G层 (10)。
4、 根据权利要求 1 所述的基于微流体芯片的微生物检测仪器, 其特征在于: 所述 的透镜 (3) 为三棱透镜。
5、 根据权利要求 1 所述的基于微流体芯片的微生物检测仪器, 其特征在于: 所述 的金属膜阵列层 (2-1) 为金膜阵列层。
6、 如权利要求 1至 5中任一所述的基于微流体芯片的微生物检测仪器的 SPR检测 方法, 其特征在于该方法的步骤如下:
1)将带有微生物的待检测液样通过过滤器(1)过滤后, 从流体进口进入流体微通 道(2-4),当待检测液样中的某种微生物流经金属膜阵列层(2-1)时,金属膜阵列层(2-1) 上的该种微生物抗体层 (9) 与待检测液样中的该种微生物的抗原 (8) 结合, 其余液样 则从流体出口流出;
2) 启动入射光源 (6), 入射光源发出入射光经过光纤准直镜 (7)准直后, 通过透 镜 (3) 平行地投射至金属膜阵列层 (2-1) 上并在透镜 (3) 和金属膜阵列层 (2-1) 的 交界面发生全内反射, 反射光通过透镜 (3)射入多通道准直镜 (4)后进入多通道光谱 仪 (5);
3)通过分析多通道光谱仪(5)测量得到的某种微生物的抗原和抗体结合前后的反 射光强 /波长曲线上共振峰位置的变化, 即可得知待检测液样中微生物的类型和浓度。
7、根据权利要求 6所述的 SPR检测方法, 其特征在于: 所述微流体芯片 (2) 的制 作方法如下:
1)在固化后的第一微流体芯片基体(2-2)上涂上 AZ光刻胶(13), 经过光刻和显 影工序后, 将掩膜板 (12) 上的图形转移到 AZ光刻胶 (13) 上;
2) 采用电子束蒸镀工艺在 AZ光刻胶 (13) 上镀上金属膜, 然后釆用剥离工艺除 掉 AZ光刻胶(13)及其上的金属膜, 从而在第一微流体芯片基体(2-2)上获得金属膜 阵列层 (2-1);
3)在硅衬底 (15) 上涂 SU-8光刻胶 (14), 通过光刻和显影工序, 在硅衬底 (15) 上获得流体微通道模板 (14);
4) 将第二微流体芯片基体 (2-3) 倒在流体微通道模板 (14) 上, 经过固化后将流 体微通道 (2-4) 转移到第二微流体芯片基体 (2-3) 上;
5)釆用氧等离子体处理含有金属膜阵列层 (2-1) 的第一微流体芯片基体(2-2)和 含有流体微通道 (2-4) 的第二微流体芯片基体 (2-3) 表面, 并粘合绑定在一起, 即得 到需要的微流体芯片 (2)。
8、 根据权利要求 7所述的 SPR检测方法, 其特征在于: 所述的第一微流体芯片基 体 (2-2) 和第二微流体芯片基体 (2-3) 均采用聚二甲基硅氧烷材料制成。
PCT/CN2013/086227 2013-07-04 2013-10-30 基于微流体芯片的微生物检测仪器及其spr检测方法 WO2015000243A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310278147.2A CN103604775B (zh) 2013-07-04 2013-07-04 基于微流体芯片的微生物检测仪器及其spr检测方法
CN201310278147.2 2013-07-04

Publications (1)

Publication Number Publication Date
WO2015000243A1 true WO2015000243A1 (zh) 2015-01-08

Family

ID=50123020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/086227 WO2015000243A1 (zh) 2013-07-04 2013-10-30 基于微流体芯片的微生物检测仪器及其spr检测方法

Country Status (2)

Country Link
CN (1) CN103604775B (zh)
WO (1) WO2015000243A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111175289A (zh) * 2018-11-09 2020-05-19 广州中国科学院先进技术研究所 一种基于多光谱成像和微流控技术的多功能快速水质检测系统
CN112543678A (zh) * 2018-08-06 2021-03-23 康宁股份有限公司 图案化微流体装置及其制造方法
WO2023159532A1 (zh) * 2022-02-24 2023-08-31 江苏大学 一种基于荧光传感薄膜的微流体芯片检测有机磷农药的方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104677862B (zh) * 2015-02-06 2017-06-23 深圳市贝沃德克生物技术研究院有限公司 获取特征光谱位置的系统和方法
CN104634747B (zh) * 2015-02-06 2017-05-10 深圳市贝沃德克生物技术研究院有限公司 基于螺旋电阻器的生物标志物浓度测量装置和方法
EP3394596B1 (en) * 2015-12-23 2024-05-29 Siemens Healthineers Nederland B.V. Optical detection of particles in a fluid
CN105717090B (zh) * 2016-05-08 2018-07-31 重庆科技学院 一种集成化全内反射微流控芯片检测一体机
CN112083159B (zh) * 2019-06-13 2022-03-25 首都师范大学 一种倏逝波核酸适配体传感器及应用其进行小分子检测的方法
CN111621415B (zh) * 2020-05-14 2021-06-15 天津市第三中心医院 一种微生物检测系统
CN111678892B (zh) * 2020-06-19 2021-07-27 清华大学 折射率传感装置及测量方法
CN112033932B (zh) * 2020-09-07 2021-09-07 科竟达生物科技有限公司 一种局域表面等离子体激元共振生物芯片、其制造方法、包含其的生物传感系统及其应用
CN112524715A (zh) * 2020-12-21 2021-03-19 大连理工大学 一种集中式空调低温等离子体灭菌装置
CN113367734B (zh) * 2021-06-09 2022-11-15 江南大学 一种肠道微生物原位检测机器人及方法
CN113358606A (zh) * 2021-06-09 2021-09-07 北京英柏生物科技有限公司 用于样本输送的集成阀微流板及表面等离子体共振检测仪

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022246A1 (en) * 2007-08-10 2009-02-19 Koninklijke Philips Electronics N.V. Sensor array for spr-based detection.
CN102519914A (zh) * 2011-12-22 2012-06-27 中国科学院理化技术研究所 基于激光共聚焦成像的波长调制表面等离子共振检测装置
CN203465191U (zh) * 2013-07-04 2014-03-05 丹阳聚辰光电科技有限公司 基于微流体芯片的微生物检测仪器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2197068B (en) * 1986-11-03 1990-08-08 Stc Plc Optical sensor device
CN1365003A (zh) * 2002-01-18 2002-08-21 中国科学院上海微系统与信息技术研究所 电泳微芯片的制作方法
WO2005078415A1 (ja) * 2004-02-13 2005-08-25 Omron Corporation 表面プラズモン共鳴センサー
CN1767153A (zh) * 2004-10-25 2006-05-03 厦门三安电子有限公司 一种用于半导体芯片制作中的图形电极金属膜剥离方法
CN1307486C (zh) * 2004-12-20 2007-03-28 西安交通大学 聚二甲基硅氧烷微流控芯片复型光固化树脂模具制作方法
CN1776523A (zh) * 2005-12-05 2006-05-24 武汉大学 一种低成本简易制作光刻掩膜的方法
CN101271066A (zh) * 2007-03-19 2008-09-24 吉林大学 用表面等离子体子共振传感器研究药物与生物分子相互作用的方法
CN101349643B (zh) * 2008-08-18 2011-07-06 中国人民解放军第三军医大学第一附属医院 一种多通道表面等离子波传感检测系统
CN101419167B (zh) * 2008-12-04 2010-12-29 浙江大学 高俘获率高灵敏度的微流控spr生物传感方法和装置
WO2010114519A1 (en) * 2009-03-31 2010-10-07 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Evanescent field plasmon resonance detector
CN102190283A (zh) * 2010-03-12 2011-09-21 国家纳米技术与工程研究院 一种实现微球离散化的微流控芯片制备方法
CN101929956A (zh) * 2010-07-29 2010-12-29 浙江大学 一种基于表面等离子体共振与生物传感的水芯片
CN102168011B (zh) * 2010-12-31 2013-11-13 浙江大学 一种液滴阵列pcr芯片及其应用
CN103389284B (zh) * 2012-05-09 2016-03-02 深圳大学 表面等离子体共振系统和其检测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022246A1 (en) * 2007-08-10 2009-02-19 Koninklijke Philips Electronics N.V. Sensor array for spr-based detection.
CN102519914A (zh) * 2011-12-22 2012-06-27 中国科学院理化技术研究所 基于激光共聚焦成像的波长调制表面等离子共振检测装置
CN203465191U (zh) * 2013-07-04 2014-03-05 丹阳聚辰光电科技有限公司 基于微流体芯片的微生物检测仪器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Z. X. GENG ET AL.: "A surface Plasmon resonance (SPR) sensor chip integrating prism array based on polymer microfabrication", IEEE, 31 October 2008 (2008-10-31), pages 2561 - 2564 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112543678A (zh) * 2018-08-06 2021-03-23 康宁股份有限公司 图案化微流体装置及其制造方法
CN111175289A (zh) * 2018-11-09 2020-05-19 广州中国科学院先进技术研究所 一种基于多光谱成像和微流控技术的多功能快速水质检测系统
WO2023159532A1 (zh) * 2022-02-24 2023-08-31 江苏大学 一种基于荧光传感薄膜的微流体芯片检测有机磷农药的方法

Also Published As

Publication number Publication date
CN103604775A (zh) 2014-02-26
CN103604775B (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
WO2015000243A1 (zh) 基于微流体芯片的微生物检测仪器及其spr检测方法
US7429492B2 (en) Multiwell plates with integrated biosensors and membranes
Inan et al. Photonic crystals: emerging biosensors and their promise for point-of-care applications
Zhang et al. Immunosensor-based label-free and multiplex detection of influenza viruses: State of the art
Darwish et al. Point-of-care tests: a review of advances in the emerging diagnostic tools for dengue virus infection
Myers et al. Innovations in optical microfluidic technologies for point-of-care diagnostics
US8355136B2 (en) Sub-micron surface plasmon resonance sensor systems
Chen et al. A Localized surface plasmon resonance (LSPR) sensor integrated automated microfluidic system for multiplex inflammatory biomarker detection
US7961329B2 (en) Sub-micron surface plasmon resonance sensor systems
US8703505B2 (en) Optical fiber probe
US20130065777A1 (en) Nanostructure biosensors and systems and methods of use thereof
CN104330553B (zh) 一种无标记化学发光免疫传感器及其免疫分析方法
Huo et al. Recent advances in surface plasmon resonance imaging and biological applications
Sadique et al. Advanced high-throughput biosensor-based diagnostic approaches for detection of severe acute respiratory syndrome-coronavirus-2
Mathesz et al. Integrated optical biosensor for rapid detection of bacteria
JP2009092405A (ja) 標的物質検出用素子、それを用いた標的物質検出装置、キット及び検出方法
JP2007101308A (ja) 標的物質検出素子、標的物質検出装置及び標的物質検出方法
JP2007057378A (ja) マイクロチップ、及びマイクロチップを用いた分析方法
Soler et al. Towards a point-of-care nanoplasmonic biosensor for rapid and multiplexed detection of pathogenic infections
Salina et al. Multi-spot, label-free detection of viral infection in complex media by a non-reflecting surface
CN203465191U (zh) 基于微流体芯片的微生物检测仪器
US20230366882A1 (en) In vitro method for the detection of sars-cov-2 in an oral sample using a colorimetric immunosensor and related colorimetric immunosensor
US20230358747A1 (en) In vitro method for the detection of sars-cov-2 in a sample from the upper respiratory tract using a colorimetric immunosensor and related colorimetric immunosensor
WO2022190027A1 (en) In vitro method for the detection of sars-cov-2 in an oral sample using a colorimetric immunosensor and related colorimetric immunosensor
Zhang et al. 3D-printed nanoplasmonic device with super-hydrophobic sample concentrator for biosensing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13888765

Country of ref document: EP

Kind code of ref document: A1