CN203465191U - 基于微流体芯片的微生物检测仪器 - Google Patents

基于微流体芯片的微生物检测仪器 Download PDF

Info

Publication number
CN203465191U
CN203465191U CN201320395021.9U CN201320395021U CN203465191U CN 203465191 U CN203465191 U CN 203465191U CN 201320395021 U CN201320395021 U CN 201320395021U CN 203465191 U CN203465191 U CN 203465191U
Authority
CN
China
Prior art keywords
micro
metal film
array layer
lens
film array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201320395021.9U
Other languages
English (en)
Inventor
黄伟
李丰
雷磊
张大伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DANYANG JUCHEN PHOTOELECTRICITY TECHNOLOGY Co Ltd
Original Assignee
DANYANG JUCHEN PHOTOELECTRICITY TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DANYANG JUCHEN PHOTOELECTRICITY TECHNOLOGY Co Ltd filed Critical DANYANG JUCHEN PHOTOELECTRICITY TECHNOLOGY Co Ltd
Priority to CN201320395021.9U priority Critical patent/CN203465191U/zh
Application granted granted Critical
Publication of CN203465191U publication Critical patent/CN203465191U/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本实用新型公开了一种基于微流体芯片的微生物检测仪器,其中,基于微流体芯片的微生物检测仪器包括入射光源、光纤准直镜、多通道准直镜、多通道光谱仪、透镜和具有表面等离子体共振响应特性的微流体芯片,微流体芯片上开有流体微通道,微流体芯片内设置有金属膜阵列层,金属膜阵列层上固定有多种微生物抗体层,透镜紧贴在微流体芯片上位于金属膜阵列层的一侧,所述入射光源发出的光依次通过光纤准直镜和透镜后照射至金属膜阵列层,然后再通过透镜反射至多通道准直镜后射入多通道光谱仪。本实用新型将微流体芯片和透镜高度集成在一起,可一次检测大量样品的微生物种类及其所含不同成分的浓度,样品无需标记,检测速度快,检测精度高。

Description

基于微流体芯片的微生物检测仪器
技术领域
本实用新型涉及一种基于微流体芯片的微生物检测仪器,属于工业测试和环境监测领域。
背景技术
目前,我们日常的饮用水及食物如被微生物所污染,这些被污染的水和食物经过口腔进入肠道,会在肠道内繁殖且散发毒素,破坏肠粘膜组织,引起肠道功能紊乱和损害,严重影响身体健康。人体一旦被感染,微生物虫卵由患者粪便排出将再次感染他人,从而导致更大规模传染疾病的爆发。传统的微生物检测方法主要包括平板计数方法、免疫分析方法和PCR方法等,平板计数方法将稀释的微生物与培养基混合后生长繁殖为多个菌落,通过对菌落计数确定微生物浓度;免疫分析方法通过探测微生物抗体和抗原之间的特异性结合反应来实现检测;PCR方法对微生物进行裂解从而提取纯化DNA,设计引物作用于寄生虫卵特定编码区域并对其进行扩增,从而实现微生物的鉴别和数目检测。这几种方法的共同缺点是耗时长、涉及繁琐的生物化学反应过程、需要多种化学试剂和专业人员参与,无法满足快速准确的微生物检测需求。
实用新型内容
本实用新型所要解决的技术问题是克服现有技术的缺陷,提供一种基于微流体芯片的微生物检测仪器,它将微流体芯片和透镜高度集成在一起,可一次检测大量样品的微生物种类及其所含不同成分的浓度,样品无需标记,检测速度快,检测精度高。
本实用新型解决上述技术问题采取的技术方案是:一种基于微流体芯片的微生物检测仪器,包括入射光源、光纤准直镜、多通道准直镜和多通道光谱仪,还包括透镜和具有表面等离子体共振响应特性的微流体芯片,微流体芯片上开有带流体进口和流体出口的流体微通道,微流体芯片内设置有金属膜阵列层,并且金属膜阵列层位于流体微通道的下表面上,金属膜阵列层上固定有多种微生物抗体层,透镜紧贴在微流体芯片上位于金属膜阵列层的一侧,所述入射光源发出的光依次通过光纤准直镜和透镜后照射至金属膜阵列层,然后再通过透镜反射至多通道准直镜后射入多通道光谱仪。
进一步,所述微流体芯片的基体和透镜均采用聚二甲基硅氧烷材料制成。
进一步,所述的金属膜阵列层和微生物抗体层之间由里向外还依次设置有自组装单分子层和蛋白G层。
进一步,所述的透镜为三棱透镜。
更进一步,所述的金属膜阵列层为金膜阵列层。
采用了上述技术方案后,入射光会在透镜和金属膜阵列层交界面发生全内反射,当产生的倏失波和金属内的表面等离子体波具有相同的波矢时,会形成表面等离子体共振,共振时,界面处的全反射条件被破坏,反射率出现最小值,出现最小位置的点即为共振角或者共振波长,微流体芯片的共振波长位置对金属膜阵列层另一侧电解质的折射率非常敏感,测量时,将具有特异结合和识别属性的抗体固定于金属膜阵列层表面,当流样中某种微生物流经金属膜阵列层表面,若该微生物上具有与此抗体对应的抗原,抗原和抗体结合,将改变金属膜阵列层表面的液样的折射率,从而会引起共振波长的变化,不同种类微生物上的抗原和对应抗体结合,引起的折射率变化量不同,因而产生不同的共振波长变化。即使同一种微生物,其浓度不同,也会产生不同的共振波长变化,通过这种变化就可以得到微生物的种类和浓度。本实用新型将微流体芯片和透镜高度集成在一起,可一次检测大量样品的微生物种类及其所含不同成分的浓度,样品无需标记,检测速度快,检测精度高。
附图说明
图1为本实用新型的基于微流体芯片的微生物检测仪器的结构示意图;
图2为本实用新型中不同折射率下微流体芯片的共振曲线;
图3为本实用新型中微流体芯片的共振波长偏移量随大肠杆菌浓度变化曲线;
图4为金属膜阵列层表面抗原抗体结合原理图;
图5为微流体芯片的加工流程图。
具体实施方式
为了使本实用新型的内容更容易被清楚地理解,下面根据具体实施例并结合附图,对本实用新型作进一步详细的说明。
如图1~5所示,一种基于微流体芯片的微生物检测仪器,包括入射光源6、光纤准直镜7、多通道准直镜4和多通道光谱仪5,还包括透镜3和具有表面等离子体共振响应特性的微流体芯片2,微流体芯片2上开有带流体进口和流体出口的流体微通道2-4,微流体芯片2内设置有金属膜阵列层2-1,并且金属膜阵列层2-1位于流体微通道2-4的下表面上,金属膜阵列层2-1上固定有多种微生物抗体层9,透镜3紧贴在微流体芯片2上位于金属膜阵列层2-1的一侧,入射光源6发出的光依次通过光纤准直镜7和透镜3后照射至金属膜阵列层2-1,然后再通过透镜3反射至多通道准直镜4后射入多通道光谱仪5。
微流体芯片2的基体和透镜3均采用PDMS材料制成。本实用新型采用同样材质的微流体芯片2和透镜3高度集成在一起,采用PDMS材料,无需使用折射率匹配油,透镜易于和微流体芯片无缝集成,且成本更低。
为了提高表面等离子体共振仪的检测灵敏度,需要对固定在金属膜阵列层2-1上的微生物抗体层9的方向进行控制。
为了使得某些微生物抗体层9(例如:大肠杆菌抗体)与金属膜阵列层2-1紧密连接,需要基质层物质将微生物抗体层9与金属膜阵列层2-1偶联起来。如图4所示,金属膜阵列层2-1和微生物抗体层9之间由里向外还依次设置有自组装单分子层11和蛋白G层10。首先用异丙醇清洗金属膜阵列层2-1表面,以除掉上面杂质,然后将金属膜阵列层2-1浸入含有11-巯基十一烷酸的丙三醇和乙醇混合液中,放置12小时以上,11-巯基十一烷酸中的巯基与金属原子结合形成牢固的共价键,从而在金属膜阵列层2-1表面形成自组装单分子层11,紧接着将金属膜阵列层2-1置于含有二氯乙烷的水和乙醇混合溶液2个小时以上,以活化11-巯基十一烷酸的羧基。将含有10mg/L蛋白G、0.14M/l氯化钠和0.02%硫汞撒PBS的PBS磷酸盐缓冲液滴在金属膜阵列层2-1表面,反应2小时以上,在自组装单分子层11上形成蛋白G层10,然后将含有微生物抗体的PBS缓冲液滴在蛋白G层10上。2小时后,用PBS缓冲液清洗膜层表面,并在含有0.1%多聚甲醛-吐温20溶液的PBS缓冲液中培育20分钟,使得微生物的抗原易于和金属膜阵列层2-1上的抗体结合。
如图1所示,透镜3为三棱透镜。
金属膜阵列层2-1为金膜阵列层。
图3可以看出,大肠杆菌浓度越高,共振波长变换量越大,两者基本上成线性关系实际测量时,实现通过标定得到变化曲线,然后通过测量共振波长变换量即可反演得到大肠杆菌的浓度,其他微生物的浓度的推演方法也与其类似。
基于微流体芯片的微生物检测仪器的表面等离子体共振微生物检测方法,该方法的步骤如下:
1)将带有微生物的待检测液样通过过滤器1过滤后,从流体进口进入流体微通道2-4,当待检测液样中的某种微生物流经金属膜阵列层2-1时,金属膜阵列层2-1上的该种微生物抗体层9与待检测液样中的该种微生物的抗原结合,其余液样则从流体出口流出;
2)启动入射光源6,入射光源发出入射光经过光纤准直镜7准直后,通过透镜3平行地投射至金属膜阵列层2-1上并在透镜3和金属膜阵列层2-1的交界面发生全内反射,反射光通过透镜3射入多通道准直镜4后进入多通道光谱仪5;
3)通过分析多通道光谱仪5测量得到的某种微生物的抗原和抗体结合前后的反射光强/波长曲线上共振峰位置的变化,即可得知待检测液样中微生物的类型和浓度。
微流体芯片2的制作方法如下:
1)在固化后的第一微流体芯片基体2-2上涂上AZ光刻胶13,经过光刻和显影工序后,将掩膜板12上的图形转移到AZ光刻胶13上;
2)采用电子束蒸镀工艺在AZ光刻胶13上镀上金属膜,然后采用剥离工艺除掉AZ光刻胶13及其上的金属膜,从而在第一微流体芯片基体2-2上获得金属膜阵列层2-1;
3)在硅衬底15上涂SU-8光刻胶14,通过光刻和显影工序,在硅衬底15上获得流体微通道模板14;
4)将PDMS材料倒在流体微通道模板14上,经过固化后将流体微通道2-4转移到第二微流体芯片基体2-3上;
5)采用氧等离子体处理含有金属膜阵列层2-1的第一微流体芯片基体2-2和含有流体微通道2-4的第二微流体芯片基体2-3表面,从而粘合在一起,即得到需要的微流体芯片2。
第一微流体芯片基体2-2和第二微流体芯片基体2-3均采用PDMS材料制成。
SPR指的是表面等离子体共振。
本实用新型的工作原理如下:
启动入射光源后,入射光会在透镜3和金属膜阵列层2-1交界面发生全内反射,当产生的倏失波和金属内的表面等离子体波具有相同的波矢时,会形成表面等离子体共振,共振时,界面处的全反射条件被破坏,反射率出现最小值,出现最小位置的点即为共振角或者共振波长,微流体芯片的共振波长位置对金属膜阵列层2-1另一侧电解质的折射率非常敏感,测量时,将具有特异结合和识别属性的抗体固定于金属膜阵列层2-1表面,当流样中某种微生物流经金属膜阵列层2-1表面,若该微生物上具有与此抗体对应的抗原,抗原和抗体结合,将改变金属膜阵列层2-1表面的液样的折射率,从而会引起共振波长的变化,不同种类微生物上的抗原和对应抗体结合,引起的折射率变化量不同,因而产生不同的共振波长变化。即使同一种微生物,其浓度不同,也会产生不同的共振波长变化,通过这种变化就可以得到微生物的种类和浓度。本实用新型将微流体芯片2和透镜3高度集成在一起,可一次检测大量样品的微生物种类及其所含不同成分的浓度,样品无需标记,检测速度快,检测精度高。
以上所述的具体实施例,对本实用新型解决的技术问题、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本实用新型的具体实施例而已,并不用于限制本实用新型,凡在本实用新型的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。

Claims (5)

1.一种基于微流体芯片的微生物检测仪器,包括入射光源(6)、光纤准直镜(7)、多通道准直镜(4)和多通道光谱仪(5),其特征在于:还包括透镜(3)和具有表面等离子体共振响应特性的微流体芯片(2),微流体芯片(2)上开有带流体进口和流体出口的流体微通道(2-4),微流体芯片(2)内设置有金属膜阵列层(2-1),并且金属膜阵列层(2-1)位于流体微通道(2-4)的下表面上,金属膜阵列层(2-1)上固定有多种微生物抗体层(9),透镜(3)紧贴在微流体芯片(2)上位于金属膜阵列层(2-1)的一侧,所述入射光源(6)发出的光依次通过光纤准直镜(7)和透镜(3)后照射至金属膜阵列层(2-1),然后再通过透镜(3)反射至多通道准直镜(4)后射入多通道光谱仪(5)。
2.根据权利要求1所述的基于微流体芯片的微生物检测仪器,其特征在于:所述的微流体芯片(2)的基体和透镜(3)均采用聚二甲基硅氧烷材料制成。
3.根据权利要求1所述的基于微流体芯片的微生物检测仪器,其特征在于:所述的金属膜阵列层(2-1)和微生物抗体层(9)之间由里向外还依次设置有自组装单分子层(11)和蛋白G层(10)。
4.根据权利要求1所述的基于微流体芯片的微生物检测仪器,其特征在于:所述的透镜(3)为三棱透镜。
5.根据权利要求1所述的基于微流体芯片的微生物检测仪器,其特征在于:所述的金属膜阵列层(2-1)为金膜阵列层。
CN201320395021.9U 2013-07-04 2013-07-04 基于微流体芯片的微生物检测仪器 Expired - Fee Related CN203465191U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201320395021.9U CN203465191U (zh) 2013-07-04 2013-07-04 基于微流体芯片的微生物检测仪器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201320395021.9U CN203465191U (zh) 2013-07-04 2013-07-04 基于微流体芯片的微生物检测仪器

Publications (1)

Publication Number Publication Date
CN203465191U true CN203465191U (zh) 2014-03-05

Family

ID=50177544

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201320395021.9U Expired - Fee Related CN203465191U (zh) 2013-07-04 2013-07-04 基于微流体芯片的微生物检测仪器

Country Status (1)

Country Link
CN (1) CN203465191U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103604775A (zh) * 2013-07-04 2014-02-26 丹阳聚辰光电科技有限公司 基于微流体芯片的微生物检测仪器及其spr检测方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103604775A (zh) * 2013-07-04 2014-02-26 丹阳聚辰光电科技有限公司 基于微流体芯片的微生物检测仪器及其spr检测方法
WO2015000243A1 (zh) * 2013-07-04 2015-01-08 丹阳聚辰光电科技有限公司 基于微流体芯片的微生物检测仪器及其spr检测方法
CN103604775B (zh) * 2013-07-04 2016-08-10 中国科学院苏州纳米技术与纳米仿生研究所 基于微流体芯片的微生物检测仪器及其spr检测方法

Similar Documents

Publication Publication Date Title
CN103604775A (zh) 基于微流体芯片的微生物检测仪器及其spr检测方法
Gao et al. Application of microfluidic chip technology in food safety sensing
KR101909764B1 (ko) 샘플 사용 최대화를 위한 시스템 및 방법
CA2349548C (en) A method for the assessment of particles and a system and a device for use in the method
US20040058407A1 (en) Reactor systems having a light-interacting component
Wang et al. A label-free microfluidic biosensor for activity detection of single microalgae cells based on chlorophyll fluorescence
CN106290279B (zh) 一种单细胞蛋白检测系统及其应用
Heinze et al. Microfluidic immunosensor with integrated liquid core waveguides for sensitive Mie scattering detection of avian influenza antigens in a real biological matrix
Nath et al. Detection of bacterial and viral pathogens using photonic point-of-care devices
EP1509593B1 (en) Method comprising reactor systems having a light-interacting component
Zhou et al. A review of optical imaging technologies for microfluidics
Zhong et al. Monitoring microalgal biofilm growth and phenol degradation with fiber-optic sensors
US20150177118A1 (en) Fluidic optical cartridge
Tang et al. Recent development of optofluidics for imaging and sensing applications
CN104569330A (zh) 一种基于秀丽隐杆线虫的微量水样毒理学检测方法
Wang et al. A new microfluidic device for classification of microalgae cells based on simultaneous analysis of chlorophyll fluorescence, side light scattering, resistance pulse sensing
Zheng et al. The fusion of microfluidics and optics for on-chip detection and characterization of microalgae
Cama et al. Microfluidic single-cell phenotyping of the activity of peptide-based antimicrobials
Fu et al. Single cell capture, isolation, and long‐term in‐situ imaging using quantitative self‐interference spectroscopy
Mahoney et al. Optofluidic dissolved oxygen sensing with sensitivity enhancement through multiple reflections
Wang et al. A phosphorescence quenching-based intelligent dissolved oxygen sensor on an optofluidic platform
Huang et al. Bioenergetic health assessment of a single Caenorhabditis elegans from postembryonic development to aging stages via monitoring changes in the oxygen consumption rate within a microfluidic device
CN203465191U (zh) 基于微流体芯片的微生物检测仪器
Gauri et al. Detection of Aeromonas hydrophila using fiber optic microchannel sensor
Catini et al. A lab-on-a-chip based automatic platform for continuous nitrites sensing in aquaculture

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140305

Termination date: 20160704

CF01 Termination of patent right due to non-payment of annual fee