WO2015000240A1 - 喜树碱及其衍生物作为防污剂的应用 - Google Patents
喜树碱及其衍生物作为防污剂的应用 Download PDFInfo
- Publication number
- WO2015000240A1 WO2015000240A1 PCT/CN2013/085307 CN2013085307W WO2015000240A1 WO 2015000240 A1 WO2015000240 A1 WO 2015000240A1 CN 2013085307 W CN2013085307 W CN 2013085307W WO 2015000240 A1 WO2015000240 A1 WO 2015000240A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- camptothecin
- antifouling
- group
- agent
- alkyl
- Prior art date
Links
- 0 CC[C@](C(C=C1N2Cc3c(*)c(c(*)c(*)c(*)c4)c4nc13)=C(CO1)C2=O)(C1=O)O Chemical compound CC[C@](C(C=C1N2Cc3c(*)c(c(*)c(*)c(*)c4)c4nc13)=C(CO1)C2=O)(C1=O)O 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/16—Antifouling paints; Underwater paints
- C09D5/1606—Antifouling paints; Underwater paints characterised by the anti-fouling agent
- C09D5/1612—Non-macromolecular compounds
- C09D5/1625—Non-macromolecular compounds organic
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/90—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/16—Antifouling paints; Underwater paints
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3412—Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
- C08K5/3432—Six-membered rings
- C08K5/3437—Six-membered rings condensed with carbocyclic rings
Definitions
- camptothecin and its derivatives as antifouling agents
- This invention relates to camptothecin, and more particularly to the use of camptothecin and its derivatives as antifouling agents.
- Marine fouling organisms refer to marine organisms that adhere to and grow on the surface of marine and marine artificial facilities in the marine environment and adversely affect human economic activities.
- a micro-soil In the marine environment, when an object is immersed in seawater, a micro-soil first occurs on its surface.
- the most economical, effective and common method for solving marine biofouling is to apply a coating containing marine antifouling agents on the surface of equipment in the sea. Its main function is to gradually pass through the key component of the coating, marine antifouling agent. Release, kill or repel marine fouling organisms to prevent marine fouling organisms from adhering to the surface of artificial facilities in the sea.
- Organotin compounds have been widely used as marine antifouling agents, but they are highly toxic to marine organisms, easily accumulate in living organisms, and are slowly degraded, have a serious impact on the marine ecological environment, and enter the human body through the food chain. And lymphocytes have an adverse effect and are considered to be one of the most toxic substances introduced into the marine environment to date.
- Camptothecin (CPT), a quinoline alkaloid, was first isolated and extracted in 1966 by American scientist Monroe E. Wall from the unique Chinese paulownia plant Cipto theca acumina ta. Camptothecin, root bark, roots, bark, young leaves and seeds all contain camptothecin, which has significant anticancer activity against gastric cancer, colon cancer, liver cancer, and chronic granulocyte hemophilia. A variety of malignant tumors such as diseases have a certain effect, which has attracted widespread attention. Many camptothecin derivatives have been prepared by semi-synthesis, total synthesis and structural modification.
- camptothecin and its derivatives inhibit DNA topoisomerase I (Topo I ) and interferes with tumor cell DNA replication, thereby inhibiting tumor cell growth.
- Chinese Patent Publication No. CN102895229A discloses the medical use of camptothecin and its derivatives in the prevention of Alzheimer's disease. Camptothecin compounds have also been used to prepare plant-derived biopesticides.
- U.S. Patent No. 005,614,529 A also discloses that camptothecin compounds have an inhibitory effect on the growth of Plasmodium and can be used for the treatment of Plasmodium infection in humans and animals. To date, no reports have been made regarding camptothecin and its derivatives as antifouling agents. Summary of the invention
- camptothecin The structural formula of the camptothecin or its derivative is as follows:
- R 4 is independently selected from H, amino, cyano, halogen, aldehyde, carboxyl, silyl, ( ⁇ ⁇ (: 8 alkyl, ( ⁇ - C 8 alkyl group, ( ⁇ ⁇ (: 8 alkoxy Oxy or di(( ⁇ (: 8 alkyl)amino; or
- R 4 may also form -0CH 2 0- or -0CH 2 CH 2 0- ;
- the ( ⁇ (: 8 alkyl group is unsubstituted or selected from halogen, cyano, nitro, hydroxy, ( ⁇ (: 8 alkoxy, ( ⁇ (: 8 alkylamino, two (( Substitution of a ⁇ (: 8 alkyl)amino group or a tris(C Cs alkyl)silyl group.
- camptothecin and its derivatives may be selected from the compounds listed in Table 1, and these compounds have been disclosed (see literature: Li Ying et al., Progress in structural modification and structure-activity relationship of camptothecin and its analogs, chemical studies) And Applications, 2003, 15 (6): 744-748), all of which can be obtained according to methods known in the art.
- the present invention provides the use of camptothecin or a derivative thereof as an antifouling agent in water facilities, wherein the antifouling agent
- the agent contains camptothecin and/or at least one of the camptothecin derivatives.
- the underwater facilities are selected from ships, docks, breeding nets and cages, offshore oil and gas platforms, buoys, docks, piers, pipes, stakes, and equipment immersed in water.
- the invention provides the application of camptothecin or a derivative thereof as an antifouling agent in a water facility, which can be used for preventing the adhesion of micro-fouling organisms and/or large fouling organisms in marine or fresh water to the surface of facilities in the ocean, lake, river or pond. .
- the antifouling agent of the present invention may also be used in combination with other antifouling materials selected from copper-containing compounds (e.g., cuprous oxide, copper thiocyanate, copper pyrithione), zinc-containing compounds (e.g., oxidation).
- copper-containing compounds e.g., cuprous oxide, copper thiocyanate, copper pyrithione
- zinc-containing compounds e.g., oxidation
- isothiazolinone compounds eg 4, 5-dichloro-2-n-octyl-4-isothiazolin-3-one
- triazine compounds eg N-ring
- the present invention also provides an antifouling method for an artificial facility in water, comprising camptothecin or at least one camptothecin derivative antifouling agent:
- Direct dissolution is released into the surrounding water environment of artificial facilities in the water.
- camptothecin or a derivative thereof has the same meaning as described above.
- the present invention also provides an antifouling coating for use in an underwater facility, including:
- camptothecin or at least one camptothecin derivative (1) camptothecin or at least one camptothecin derivative
- camptothecin or a derivative thereof has the same meaning as defined above, and the weight percentage of the camptothecin or its derivative in the coating is from 0.1% to 60%, preferably from 10% to 30%.
- the binder also referred to as a film former or binder
- the binder may be selected from the group consisting of acrylic resins, perchloroethylene resins, natural resins (such as rosin), phenolic resins, asphalts, alkyds, amino resins, chlorination.
- the solvent may be selected from the group consisting of toluene, xylene, methanol, ethanol, propanol, and isopropanol , n-butanol, isobutanol, benzyl alcohol, acetone, butanone, methyl isobutyl ketone, At least one of methyl isoamyl ketone, cyclohexanone, 200 # coal coke solvent, butyl acetate, ethylene glycol butyl ether, and the like.
- the antifouling coating of the present invention for use in an aqueous installation may further comprise a pigment and at least one auxiliary selected from the group consisting of a thixotropic agent, a dispersing agent, an antifoaming agent, and a leveling agent.
- the pigment may be selected from at least one of zinc oxide, iron red, talc, barium sulfate, calcium carbonate, diatomaceous earth, zinc powder, titanium white powder, etc.;
- the thixotropic agent may be selected from bentonite, hydrogenated castor oil At least one of polyvinyl alcohol, fumed silica, metal soap, etc.;
- the dispersant may be selected from the group consisting of bentonite, metal soap, hydrogenated castor oil, polyethylene oxide, low viscosity methyl silicone oil, and the like.
- the antifoaming agent may be selected from the group consisting of tributyl phosphate, polydimethylsiloxane or polyether modified silicone; the leveling agent may be selected from polyacrylates, modified polyacrylates, At least one of polyfluorinated polyene, polyvinyl butyral, and the like.
- the antifouling coating may further comprise other antifouling materials selected from the group consisting of copper-containing compounds (such as cuprous oxide, copper thiocyanate, copper pyrithione), zinc-containing compounds (such as zinc oxide, pyridine).
- Zinc thione isothiazolinone compounds (eg 4, 5-dichloro-2-n-octyl-4-isothiazolin-3-one), triazine compounds (eg N-cyclopropyl- N'-(l, 1-dimethylethyl)-6-(methylthio)-1,3,5-triazine-2,4-diamine), N-2, 4, 6_three Chlorophenylmaleimide, pyridyltriphenylborane, 2-(p-chlorophenyl)-3-cyano-4-bromo-5-trifluoromethyl-pyrrole, N-(fluoro Methyl chlorochloride) - phthalimide.
- copper-containing compounds such as
- the antifouling coating can be prepared by a conventional method of preparing a coating.
- the antifouling paint of the present invention can be applied to an artificial facility in water by conventional means such as dipping, spraying or coating.
- camptothecin and its derivatives have significant inhibitory activity against fouling organisms, that is, have antifouling activity, and can be used to prevent the adhesion of fouling organisms on the surface of artificial facilities in water.
- the extraction process of camptothecin is mature, and various derivatives can be obtained by structural modification of camptothecin, and many methods for preparing camptothecin derivatives have been reported.
- camptothecin and its derivatives have high antifouling activity, good antifouling performance, and broad spectrum antifouling. According to the laboratory biological model, the camptothecin and the derivative thereof have obvious inhibitory adhesion to fouling organisms in water, and have antifouling activity to marine micro-fouling organisms and large fouling organisms.
- the marine antifouling coating is prepared by the conventional method using the compound of the present invention as an antifouling agent, and the natural sea area hanging board test shows that it has a good antifouling effect, and the antifouling effect is more than one year, effectively preventing
- the attachment of various marine fouling organisms such as barnacles, mussels, oysters, sea squirts, sponges and mosses shows a broad-spectrum antifouling effect, which verifies indoor test results.
- the antifouling agent of the present invention is applied to artificial facilities such as marine aquaculture nets and floating rafts, and also exhibits an efficient and broad-spectrum antifouling performance, and obtains a good antifouling application effect, further clarifying camptothecin. Its derivatives have potential applications as new antifouling agents.
- the antifouling agent prepared by using camptothecin and its derivatives has the advantages of not containing toxic heavy metal compounds, not polluting the environment, protecting the marine ecological environment, and having good antifouling effect and broad application prospect.
- Figure 1 is a graph showing the inhibitory effect of camptothecin on the attachment of venus larvae in the white ridge barnacle.
- Figure 2 is a graph showing the inhibitory effect of 10-hydroxycamptothecin on the attachment of venous larvae of the white ridge barnacle.
- Figure 3 is a graph showing the inhibitory effect of camptothecin on the attachment of the total larvae of the genus Brassica.
- Figure 4 is a graph showing the inhibitory effect of 10-hydroxycamptothecin on the attachment of the total larvae of the genus Brassica.
- Fig. 5 is a graph showing the inhibitory effect of camptothecin on the production of the foot silk of the jade mussel. detailed description
- the barnacle is a fixed vine, has a calcium shell, is widely distributed, and is firmly attached to the surface of various artificial facilities on ships and at sea. It is one of the most important marine fouling organisms and the main target organism in antifouling technology research. one.
- White ridge barnacle
- camptothecin and 10-hydroxycamptothecin could significantly inhibit the adhesion of the larvae of the golden stalk venus at low concentration, showing high antifouling activity.
- the semi-inhibitory attachment concentration of camptothecin and 10-hydroxycamptothecin EC 50 is 1.73 ⁇ g ml- 1 and 1.78 ⁇ g ml-
- the grass worm is a marine moss animal widely distributed in various sea areas of the world. It is often attached to the surface of marine artificial facilities such as marine aquaculture nets, cages, ships, buoys, etc. It is also an important marine fouling organism.
- Bugida neritina also known as the multi-chambered bryozoa, is collected from the cage of fish culture in the West Sea of Xiamen, brought back to the laboratory and placed in a glass jar containing fresh seawater to induce it. The floating larvae are released. It is the attachment of its planktonic larvae that causes the grass worms to move from floating life to attached life. Therefore, inhibition of the attachment of the planktonic larvae can prove that the compound has antifouling activity.
- camptothecin and 10-hydroxycamptothecin were separately dissolved in ethyl acetate. According to the preliminary experiment results, a series of concentration gradients were set, and 1 ml of each solution was added to the culture dish, and another 1 ml of ethyl acetate was added to the blank. In the culture dish, set to the corresponding control group. After the solvent was completely evaporated and the compound was evenly distributed on the bottom and side of the culture dish, 10 ml of membrane-filtered seawater was added to each dish. There were 3 parallel cups in each experimental group and control group, and the number of larvae of grass worms was about 30 per cup.
- Mussels are bivalves commonly found in marine fouling biomes and are widely distributed. They are one of the main target organisms in marine antifouling technology research. Mussels explore the surface through their feet and look for attachment to the substrate. If a surface suitable for its attachment is found, the mussel will produce a foot silk for attachment. It can be seen that if the compound inhibits the production of the foot silk by the mussel, the compound can be proved to have antifouling activity.
- Pema viridis is extracted from the fish rafts in the offshore waters of Zhangzhou. The jade mussels with a shell length of 1.4 to 2.4 cm are selected, washed with sea water, and all the foot silks are gently cut, and then washed with membrane filtration seawater.
- the camptothecin is first dissolved in a trace amount of dimethyl sulfoxide, then mixed with membrane-filtered seawater, and arranged into a series of concentration gradients. Each 4 ml solution is added to a 12-well plate, and one hole is placed in each well. Emerald mussels.
- 4 ml of membrane-filtered seawater containing a trace amount of dimethyl sulfoxide and one emerald mussel were added. There were 8 parallel groups in the experimental group and the control group. After incubation for 24 h at room temperature, the amount of each mussel foot silk was observed, and the semi-inhibitory concentration EC 5 o of camptothecin on the silkworm was obtained.
- camptothecin derivatives listed in Table 1 were tested by the same method as above, and the EC 5Q value was lower than 200 ⁇ ⁇ ⁇ 1 as a whole , and the adhesion to fouling organisms was also significantly inhibited, showing resistance. Stain activity.
- a marine antifouling coating containing camptothecin in combination with other antifouling agents was prepared in the same manner as in the above Example 2.
- the types and weight ratios of camptothecin and other antifouling agents are: camptothecin: Cu 2 0 ( 4: 1 ), camptothecin: Cu 2 0 ( 2: 1 ), Camptothecin: Cu 2 0 (1 : 1), camptothecin: TCPM (1 : 1), camptothecin: ZnPt (1 : 1), to prepare five marine antifouling coatings.
- TCPM refers to N-2,4,6-trichlorophenylmaleimide
- ZnPt refers to zinc pyrithione.
- Example 4 Antifouling coating containing camptothecin and sea area antifouling effect test containing antifouling coating compounded with camptothecin and other antifouling agents
- the tested antifouling agents were set to 3 groups: 1) camptothecin; 2) compounding of camptothecin with other antifouling agents; 3) existing common antifouling agents (as a positive control) ).
- the weight ratio of the tested antifouling agent in the marine antifouling paint was set to 20%.
- Camptothecin Cu 2 0 (4 : 1) 0 5.87 ⁇ 4.75 18.06 ⁇ 7.87 61.05 ⁇ 13.07 Camptothecin: Cu 2 0 (2 : 1) 0.84 ⁇ 0.68 28.56 ⁇ 14.79 62.77 ⁇ 11.68 67.63 ⁇ 13.07 Camptothecin: Cu 2 0 (1 : 1) 1.65 ⁇ 0.90 54.24 ⁇ 16.94 70.16 ⁇ 16.43 90.85 ⁇ 4.96 Camptothecin: TCPM (1 : 1) 0.85 ⁇ 0.14 30.12 ⁇ 5.37 61.32 ⁇ 23.09 86.93 ⁇ 8.47 Camptothecin: ZnPt (1 : 1) 0.44 ⁇ 0.16 10.01 ⁇ 4.32 35.10 ⁇ 2.71 94.07 ⁇ 3.71
- TCPM means N-2, 4, 6-trichlorophenyl Maleimide
- ZnPt refers to zinc pyrithione
- CuPt refers to copper pyrithione.
- the sea area antifouling performance test results of each prepared antifouling paint are shown in Table 2.
- the large fouling organisms attached to the test panels mainly include barnacles, mussels, oysters, sea squirts, sponges and mosses. From Table 2 It can be seen that the fouling biological coverage in the sample area of the coating prepared with camptothecin as the antifouling agent is much lower than the fouling biological coverage in the sample area of the coating control without adding any antifouling agent, indicating that The coating prepared by the saponin as an antifouling agent has an effective antifouling performance, and the antifouling effect can reach 12 months.
- the coating material is also prepared as an antifouling agent at a content of 20% by weight.
- the antifouling performance of camptothecin is better than that of the conventional antifouling agent cuprous oxide (C 0 ) and pyridine.
- Example 5 Application of Antifouling Coating Containing Camptothecin in Seawater Culture Net Clothing (A Water Artificial Plant) Test Method for preparing antifouling paint containing camptothecin is the same as in Example 2, camptothecin in antifouling The weight ratio in the paint was also set to 20%. Using the dip coating method, each net coat was separately immersed in each of the prepared paints, and then taken out to dry, and the net pieces were fixed on the plastic frame with a tie, and moved to the Hainan Lingshui Pearl Mother in November 2010. Shell culture area. The paint prepared by the same method without adding any antifouling agent was used as a negative control.
- the wooden ship antifouling paint (based on chlorinated rubber and copper oxide as the main antifouling agent) purchased on the market was used as a positive control. Immersed in any paint, the clean mesh is blank, and each test group has 3 parallel groups. After each test mesh is immersed in seawater for 3, 6, 9 and 12 months, take photos, analyze, The fouling biological coverage on each mesh was counted.
- the coating group which did not add any antifouling agent did not exhibit any antifouling performance, indicating that the outstanding antifouling performance of the camptothecin marine antifouling coating was derived from the antifouling activity of camptothecin.
- Table 3 it can be seen from Table 3 that the antifouling performance of the camptothecin marine antifouling coating on the net coat is higher than that of the antifouling paint with Cu 2 0 as the main antifouling agent.
- the results of this test indicate that marine antifouling coatings containing camptothecin have good antifouling application effects on marine aquaculture nets.
- Test group fouling biological coverage (%, Meani SE)
- Marine antifouling coating group containing camptothecin after 6 months, 6 months after 9 months, 2.45 ⁇ 0.42 2.19 ⁇ 0.60 3.89 ⁇ 1.07 9.64 ⁇ 2.66 Antifouling with Cu 2 0 as main antifouling agent Paint 5.23 ⁇ 1.78 79.61 ⁇ 4.27 64.60 ⁇ 11.62 95.98 ⁇ 2.55 Paint group without any antifouling agent 85.00 ⁇ 6.30 99.82 ⁇ 0.05 69.08 8.00 99.52 ⁇ 0.24 Blank control group without any coating 71.16 ⁇ 10.13 99.92 ⁇ 0.03 54.83 ⁇ 5.24 99.70 ⁇ 0.21
- Example 6 Application of camptothecin-containing antifouling paint on floating bed (a water artificial facility) The preparation method of campothecin-containing marine antifouling paint was the same as in Example 2, camptothecin in marine antifouling paint The weight ratio in the middle is also set to 20%.
- Each of the prepared coatings was uniformly coated on a floating bed assembly of the same specification (a plastic foam board of 30 x 30 cm in a floating bed assembly, a plastic woven bag of a jacket). After the paint is dried, the floating bed assembly is fixed on the bamboo basket frame. In August 2010, it was moved to the scenic lake in Xiamen (formerly the natural harbor. After the construction of the dam became a basic closed artificial lagoon, the daily exchange with the Xiamen West Sea area. In the water body). The paint prepared by the same method without adding any antifouling agent was used as a negative control.
- the wooden ship antifouling paint (based on chlorinated rubber and copper oxide as the main antifouling agent) purchased on the market was used as a positive control.
- the coatings in any coating were cleaned and the clean floating bed components were blank.
- Each test group was set up in 3 parallel groups. After each floating bed assembly was immersed in seawater for 3, 6, 9 and 12 months, photographing, analysis and statistics were carried out. Defaced biological coverage on each floating bed assembly.
- the results of the application tests conducted on the floating bed are shown in Table 4.
- the large fouling organisms attached to the floating bed assembly mainly included barnacles, grass worms, oysters, sand sieve shells, sea squirts and seaweeds.
- the fouling biological coverage of the floating bed assembly coated with camptothecin-containing antifouling coating is much lower than that of the floating bed assembly without coating any coating, indicating that the antifouling coating containing camptothecin is antifouling on the floating bed.
- the effect is excellent, and its anti-fouling effect can reach 12 months.
- the coating group which did not add any antifouling agent showed substantially no outstanding antifouling performance, indicating that the excellent antifouling performance of the camptothecin-containing antifouling coating was derived from the antifouling activity of camptothecin.
- the antifouling paint containing camptothecin has higher antifouling performance on the floating bed assembly than the antifouling paint with Cu 2 0 as the main antifouling agent.
- the results of this test indicate that the antifouling coating containing camptothecin also has a good antifouling application effect on the floating bed.
- Test group fouling biological coverage (%, Mean i SE)
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Dentistry (AREA)
- General Health & Medical Sciences (AREA)
- Plant Pathology (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Pest Control & Pesticides (AREA)
- Agronomy & Crop Science (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Paints Or Removers (AREA)
Abstract
喜树碱及其衍生物作为防污剂的应用,涉及喜树碱。提供喜树碱或其衍生物作为水中设施防污剂的应用,其中所述防污剂含有喜树碱和/或至少一种所述喜树碱衍生物。提供喜树碱或其衍生物作为水中设施防污剂的应用,可用于防除海洋或淡水中微型污损生物和/或大型污损生物在海洋、湖泊、江河或池塘中设施表面的附着。也可与其他防污物质混配使用。提供一种水中人工设施的防污方法。提供一种用于水中设施的防污涂料。喜树碱及其衍生物对污损生物附着具有显著的抑制活性,即具有防污活性,可用以防除污损生物在水中人工设施表面的附着。喜树碱及其衍生物的防污活性高、防污效能好、且广谱防污。
Description
喜树碱及其衍生物作为防污剂的应用
技术领域
本发明涉及喜树碱, 尤其是涉及喜树碱及其衍生物作为防污剂的应用。
背景技术 说
在利用海洋、 开发海洋资源的历史进程中, 人类一直面临着防除海洋污损生物的问题。 海洋污损生物是指海洋环境中附着、 生长在船舶和海中人工设施表面, 对人类经济活动产生 不利影响的海洋生物。 在海洋环境中, 当一个物体浸入海水中之后, 其表面首先发生微型污 书
损, 即细菌等微型生物附着到物体表面上, 并在其上进行生长、 繁殖; 随后, 草苔虫、 藤壶、 贻贝等海洋生物附着到物体表面上, 形成海洋污损生物群落。 海洋污损生物附着在船舶和海 中人工设施的表面, 会导致船舶航行阻力增加, 航速降低, 燃料消耗增加, 堵塞水产养殖网 箱、 网笼、 养殖围网及定置捕捞的网衣等网孔, 堵塞海水输送管道, 造成海中的仪表及转动 机构失灵, 影响海中声学仪器、 浮标、 网具、 阀门等设施的正常使用, 增加开采石油和天然 气平台的累赘, 加速船舶和海中设施的金属腐蚀, 对海洋工程、 海洋运输、 海水养殖及海军 装备等都具有严重危害, 造成巨大的经济损失。
迄今为止, 解决海洋生物污损最经济、 有效和常用的方法是在海中设备表面涂刷含海洋 防污剂的涂料, 其主要作用是通过涂料中的关键组分——海洋防污剂的逐步释放, 杀死或驱 避海洋污损生物, 达到防止海洋污损生物附着在海中人工设施表面的目的。 有机锡化合物曾 被作为海洋防污剂广泛使用, 但对海洋生物有很强的毒性, 易在生物体内累积, 而且降解缓 慢, 对海洋生态环境有严重影响, 并通过食物链进入人体, 对人体性激素及淋巴细胞产生不 利影响, 被认为是迄今为止引入海洋环境中毒性最大的有害物质之一。 为此, 国际海事组织 于 2001年通过了有机锡防污剂使用最终期限的决议, 要求从 2003年 1 月 1 日起在全球范 围内禁止在船舶上喷涂含有机锡类化合物的涂料; 从 2008 年 1 月 1 日起, 所有运营船舶均 不得再含有有机锡防污涂料。 目前, 氧化亚铜作为主要的海洋防污剂使用, 但其大量使用也 会严重破坏海洋生态平衡, 已有一些欧洲国家开始禁止或限制涂刷氧化亚铜防污涂料的船只 进港。 因此, 随着环境保护意识的提高以及海洋经济的迅速发展, 有毒重金属防污剂相继被 禁用或限用, 开发新型环保海洋防污剂成为迫切需要解决的问题。
喜树碱(Camptothecin, CPT ), 是一种喹啉类生物碱, 1966年首次由美国科学家 Monroe E. Wal l从我国特有的珙桐科植物喜树 C ipto theca acumina ta中提取分离得到。 喜树的果 实、 根皮、 树根、 树皮、 嫩叶和种子等组织中均含有喜树碱, 该化合物具显著的抗癌活性, 对胃癌、 结肠癌、 肝癌、 慢性粒细胞性血友病等多种恶性肿瘤均有一定疗效, 引起了人们的 广泛关注, 通过半合成、 全合成与结构修饰的方法制备了许多喜树碱衍生物。 研究发现, 喜 树碱及其衍生物的抗癌机理是抑制 DNA拓扑异构酶 I ( Topo I ) , 干预肿瘤细胞 DNA复制, 从而抑制肿瘤细胞生长。另外, 公开号为 CN102895229A的中国发明专利还公开了喜树碱及其 衍生物在抗阿尔茨海默病中的医疗用途。 喜树碱类化合物也被应用于制备植物源生物农药。 美国专利 US005614529A还公开了喜树碱类化合物对疟原虫生长有抑制作用,可用于治疗人畜 的疟原虫感染。 迄今为止, 未见关于喜树碱及其衍生物作为防污剂的报道。 发明内容
本发明的目的在于提供喜树碱及其衍生物作为防污剂的应用。
所述喜树碱或其衍生物的结构式如下:
其中, 和 各自独立地选自 11、 氨基、 氰基、 卤素、 醛基、 羧基、 硅烷基、 (^〜(:8烷基、 (^〜(:8烷基酰基、 (^〜(:8烷氧基或二((^〜(:8烷基)氨基;
和 R4各自独立地选自 H、 氨基、 氰基、 卤素、 醛基、 羧基、 硅烷基、 (^〜(:8烷基、 (^〜 C8烷基酰基、 (^〜(:8烷氧基或二 ((^〜(:8烷基)氨基; 或者
其中 和 R4也可一起形成 -0CH20-或 -0CH2CH20-;
所述(^〜(:8烷基未被取代或被选自卤素、 氰基、 硝基、 羟基、 (^〜(:8烷氧基、 (^〜(:8烷基 氨基、 二 ((^〜(:8烷基)氨基或三 (C Cs烷基)硅烷基的基团取代。
所述喜树碱及其衍生物可选自表 1中所列的化合物, 这些化合物已经公开 (参见文献: 李颖等, 喜树碱及其类似物结构修饰与构效关系研究进展, 化学研究与应用, 2003, 15 ( 6):
744-748 ), 它们都可以根据本领域已知的方法获得。
表 1
编号 化合物名称 Ri R2 R3 R4
1 喜树碱 H H H H
2 10-羟基喜树碱 H H -OH H
3 10-氯喜树碱 H H -CI H
4 10-溴喜树碱 H H -Br H
5 10-氰基喜树碱 H H -CN H
6 10-硝基喜树碱 H H -NO2 H
7 10-羧基喜树碱 H H -C00H H
8 10-氨基喜树碱 H H -NH2 H
9 10-甲基喜树碱 H H -CH3 H
10 10-氨基甲基喜树碱 H H -CH2NH2 H
11 7-甲基喜树碱 -CH3 H H H
12 7-乙基喜树碱 -CH2CH3 H H H
13 7-羟甲基喜树碱 -CH20H H H H
14 7- (2-羟基)乙基喜树碱 -CH2CH20H H H H
15 7-氯甲基喜树碱 -CH2C1 H H H
16 7- (2- (甲基氨基)乙基)喜树碱 -CH2CH2NHCH3 H H H
17 7-醛基喜树碱 -CH0 H H H
18 7- (2- (三甲基硅垸基)乙基) -喜树碱 -CH2CH2S i (CH3) 3 H H H
19 7-乙基 -10-羟基-喜树碱 -CH2CH3 H OH H
20 9-甲基喜树碱 H -CH3 H H
21 9-羟基喜树碱 H -OH H H
22 9-硝基喜树碱 H -N02 H H
23 9-氨基喜树碱 H -NH2 H H
24 9-乙酰氨基喜树碱 H -NHCOCHa H H
25 9-二甲氨基甲基 -10-羟基喜树碱 H -CH2N (CH3) 2 OH H
26 9-氨基乙基 -10-羟基喜树碱 H -CH2CH2NH2 OH H
27 10, 11-亚甲二氧基喜树碱 H H -0CH20-
28 10, 11-亚乙二氧基喜树碱 H H -0CH2CH20-
29 7-氯甲基 -10, 11-亚甲二氧基喜树碱 -CH2C1 H -0CH20-
30 7-氯甲基 -10, 11-亚乙二氧基喜树碱 -CH2C1 H -0CH2CH20-
31 9-氨基 -10, 11-亚甲二氧基喜树碱 H -NH2 -0CH20- 本发明提供喜树碱或其衍生物作为水中设施防污剂的应用, 其中所述防污剂含有喜树碱 和 /或至少一种所述喜树碱衍生物。
其中, 水中设施选自舰船、 船坞、 养殖网衣和笼具、 海上油气平台、 浮标、 码头、 桥墩、 管道、 木桩、 和浸入水中的仪器设备。
本发明提供喜树碱或其衍生物作为水中设施防污剂的应用, 可用于防除海洋或淡水中微 型污损生物和 /或大型污损生物在海洋、 湖泊、 江河或池塘中设施表面的附着。
本发明防污剂也可与其他防污物质混配使用, 所述其他防污物质选自含铜化合物 (例如 氧化亚铜、 硫氰酸铜、 吡啶硫酮铜)、 含锌化合物 (例如氧化锌、 吡啶硫酮锌)、 异噻唑啉酮 类化合物 (例如 4, 5-二氯代 -2-正辛基 -4-异噻唑啉 -3-酮)、 三嗪类化合物 (例如 N-环丙基 -N' - (l, 1-二甲基乙基) -6- (甲基硫代) -1, 3, 5-三嗪 -2, 4-二胺)、 N-2, 4, 6_三氯苯基马来酰亚 胺、 吡啶三苯基硼烷、 2- (对-氯苯基 ) -3-氰基 -4-溴基 -5-三氟甲基-吡咯、 N- (氟代二氯化甲 基硫) -苯邻二甲酰亚胺。
本发明也提供一种水中人工设施的防污方法, 包括将喜树碱或至少一种喜树碱衍生物防 污剂:
加入到涂料中, 再将涂料混合物施用于水中人工设施; 或者
直接涂覆于水中人工设施表面; 或者
加入到水中人工设施组成成分中; 或者
直接溶解释放于水中人工设施的周围水环境中。
其中, 喜树碱或其衍生物具有前述相同的含义。
本发明还提供一种用于水中设施的防污涂料, 其中包括:
( 1 ) 喜树碱或至少一种喜树碱衍生物;
( 2 ) 至少一种粘结剂;
( 3 ) 至少一种溶剂。
其中喜树碱或其衍生物具有前述相同的含义, 并且所述喜树碱或其衍生物在涂料中的重 量百分含量为 0. 1%〜60%, 优选为 10%〜30%。
其中, 所述粘结剂 (也称为成膜物或基料) 可选自丙烯酸树脂、 过氯乙烯树脂、 天然树 脂 (例如松香)、 酚醛树脂、 沥青、 醇酸树脂、 氨基树脂、 氯化橡胶、 乙烯树脂、 聚酯树脂、 环氧树脂、 聚氨酯、 有机硅树脂和有机氟树脂等中的至少一种; 所述溶剂可选自甲苯、 二甲 苯、 甲醇、 乙醇、 丙醇、 异丙醇、 正丁醇、 异丁醇、 苯甲醇、 丙酮、 丁酮、 甲基异丁基酮、
甲基异戊酮、 环己酮、 200#煤焦溶剂、 乙酸丁酯和乙二醇丁醚等中的至少一种。 另一方面, 本发明用于水中设施的防污涂料还可包含颜料和至少一种选自以下的助剂: 触变剂、 分散剂、 消泡剂、 流平剂。 所述颜料可选自氧化锌、 铁红、 滑石粉、 硫酸钡、 碳酸 钙、 硅藻土、 锌粉、 钛白粉等中的至少一种; 所述触变剂可选自膨润土、 氢化蓖麻油、 聚乙 烯醇、 气相二氧化硅、 金属皂等中的至少一种; 所述分散剂可选自膨润土、 金属皂、 加氢蓖 麻油、 聚环氧乙烷、 低粘度甲基硅油等中的至少一种; 所述消泡剂可选自磷酸三丁酯、 聚二 甲基硅氧烷或聚醚改性有机硅; 所述流平剂可选自聚丙烯酸酯、 改性聚丙烯酸酯、 多氟化多 烯烃、 聚乙烯醇缩丁醛等中的至少一种。
所述防污涂料可进一步包括其他防污物质, 所述其他防污物质选自含铜化合物 (例如氧 化亚铜、 硫氰酸铜、 吡啶硫酮铜)、 含锌化合物 (例如氧化锌、 吡啶硫酮锌)、 异噻唑啉酮类 化合物 (例如 4, 5-二氯代 -2-正辛基 -4-异噻唑啉 -3-酮)、 三嗪类化合物 (例如 N-环丙基 -N' - (l, 1-二甲基乙基) -6- (甲基硫代) -1, 3, 5-三嗪 -2, 4-二胺)、 N-2, 4, 6_三氯苯基马来酰亚 胺、 吡啶三苯基硼烷、 2- (对-氯苯基 ) -3-氰基 -4-溴基 -5-三氟甲基-吡咯、 N- (氟代二氯化甲 基硫) -苯邻二甲酰亚胺。
可用涂料制备常用方法, 制备所述防污涂料。 可通过浸渍、 喷涂或涂布等常规方式施用 本发明防污涂料至水中人工设施上。
实验表明, 喜树碱及其衍生物对污损生物附着具有显著的抑制活性, 即具有防污活性, 可用以防除污损生物在水中人工设施表面的附着。 喜树碱的提取工艺成熟, 对喜树碱进行结 构改造可获得多种衍生物, 且许多喜树碱衍生物的制备方法已有公开报道。
实验表明, 喜树碱及其衍生物的防污活性高、 防污效能好、 且广谱防污。 经实验室生物 模型检测, 本发明所述喜树碱及其衍生物对水中污损生物显示出显著的抑制附着作用, 且对 海洋微型污损生物和大型污损生物均具防污活性。 另一方面, 以本发明所述化合物为防污剂 以常规方法制备海洋防污涂料, 经天然海区挂板试验表明其具良好的防污效果, 防污期效达 1 年以上, 有效防除了藤壶、 贻贝、 牡蛎、 海鞘、 海绵和苔藓动物等多种海洋污损生物的附 着, 显示出广谱防污效果, 验证了室内检测结果。 此外, 将本发明防污剂应用于海水养殖网 衣和浮筏等水中人工设施, 也表现出了高效、广谱的防污效能, 获得了良好的防污应用效果, 进一步明确了喜树碱及其衍生物作为新型防污剂的应用潜力。
如何在防止海中人工设施遭受海洋生物污损的同时又不污染海洋环境是目前人们开发利 用海洋资源中的一大难题。 采用喜树碱及其衍生物所制备的防污剂的优点是不含毒性重金属 化合物, 不污染环境, 有利于保护海洋生态环境, 且防污效果好, 应用前景广阔。
附图说明
图 1是表示喜树碱对白脊藤壶金星幼体附着的抑制作用。
图 2是表示 10-羟基喜树碱对白脊藤壶金星幼体附着的抑制作用。
图 3是喜树碱对总合草苔虫幼体附着的抑制作用。
图 4是表示 10-羟基喜树碱对总合草苔虫幼体附着的抑制作用。
图 5是表示喜树碱对翡翠贻贝产生足丝的抑制作用。 具体实施方式
实施例 1 喜树碱及其衍生物对污损生物附着的抑制作用检测
( 1 ) 对藤壶附着的抑制作用检测
藤壶为固着蔓足类, 具钙质外壳, 分布广泛, 在船舶和海上各种人工设施表面上牢固附 着, 是最主要的海洋污损生物之一, 也是防污技术研究中的主要目标生物之一。 白脊藤壶
(Bala画 albicostatus )成体于厦门市白城海岸的礁石和桥墩上采集获得, 其金星幼体在实验 室内培养获得。 正是金星幼体的附着导致藤壶由浮游生活转向附着生活, 因此抑制金星幼体 的附着即可证明化合物具有防污活性。将喜树碱和 10-羟基喜树碱分别以乙酸乙酯溶解,根据 预实验结果设置一系列浓度梯度,分别取 1 ml各溶液加入到培养皿中, 另取 1 ml乙酸乙酯加 到空白的培养皿中, 设为相应的对照组, 待溶剂完全蒸发、 化合物均匀分布在培养皿底面及 侧面后, 加入 10 ml的膜滤海水 (经孔径为 0.22 μηι的滤膜过滤, 下同) 到每个培养皿中。 各实验组和对照组均设 3个平行杯, 每杯加入白脊藤壶金星幼体数 30只左右。投入金星幼体 48 h后,用体视显微镜观察金星幼体的附着情况,并求出喜树碱和 10-羟基喜树碱对白脊藤壶 金星幼体的半抑制附着浓度 EC5Q值(指抑制 50%所检测生物附着的有效浓度, 此值越低, 表 明防污活性越高, 下同)。
检测结果如图 1和图 2所示。结果表明,喜树碱和 10-羟基喜树碱在低浓度下均可显著抑 制白脊藤壶金星幼体的附着,显示出高效防污活性。喜树碱和 10-羟基喜树碱的半抑制附着浓 度 EC50分另 IJ为 1.73 μg ml—1禾口 1.78 μg ml—
( 2 ) 对草苔虫附着的抑制作用检测
草苔虫为海洋苔藓动物, 广泛分布于世界各海域, 常附着于海水养殖网衣、 笼具、 舰船、 浮标等海中人工设施表面, 也是重要的海洋污损生物。 总合草苔虫 (Bugida neritina) , 也称 多室草苔虫, 其成体采自厦门西海域鱼排养殖网箱上, 带回实验室后放入盛有新鲜海水的玻 璃缸内, 诱导其浮游幼体释放。正是其浮游幼体的附着导致草苔虫由浮游生活转向附着生活,
因此抑制其浮游幼体的附着即可证明化合物具有防污活性。将喜树碱和 10-羟基喜树碱分别以 乙酸乙酯溶解, 根据预实验结果设置一系列浓度梯度, 分别取 l ml各溶液加入到培养皿中, 另取 l ml乙酸乙酯加到空白的培养皿中, 设为相应的对照组, 待溶剂完全蒸发、 化合物均匀 分布在培养皿底面及侧面后, 加入 10 ml的膜滤海水到每个培养皿中。 各实验组和对照组均 设 3个平行杯, 每杯加入草苔虫幼体数 30 只左右。 投入总合草苔虫幼体 24 h后, 用体视显 微镜观察总合草苔虫幼体的附着情况,并求出喜树碱和 10-羟基喜树碱对总合草苔虫幼体的半 抑制附着浓度 EC5o。
检测结果如图 3和图 4所示。结果表明,喜树碱和 10-羟基喜树碱对总合草苔虫幼体的附 着具显著的抑制作用, 其 EC5Q分别为 15.02 μ§ ml—1和 5.93 μg ml—1。
( 3 ) 对贻贝产生足丝进行附着的抑制作用检测
贻贝是海洋污损生物群落中常见的双壳类动物, 分布广泛, 是海洋防污技术研究中的主 要目标生物之一。 贻贝通过其足部探索表面, 寻找附着基底。 若发现适合其附着的表面, 贻 贝则会产生足丝进行附着。可见若化合物抑制贻贝产生足丝, 则可证明该化合物具防污活性。 翡翠贻贝 Pema viridis 采自漳州近海海域鱼排, 选取壳长为 1.4〜2.4 cm的翡翠贻贝, 用 海水清洗, 将其足丝全部轻柔剪去后, 再用膜滤海水清洗。 将喜树碱先溶解于微量的二甲基 亚砜中, 然后与膜滤海水混合, 配置成一系列浓度梯度, 各取 4ml溶液加入到 12孔板中, 并 在每个孔中放入一只翡翠贻贝。 对照组中加 4ml含微量二甲基亚砜的膜滤海水和一只翡翠贻 贝。实验组和对照组均设 8个平行组。在室温下培养 24 h后,观察每只贻贝足丝产生的数量, 并求出喜树碱对翡翠贻贝产生足丝的半抑制浓度 EC5o。
检测结果如图 5所示。 结果表明, 喜树碱对翡翠贻贝产生足丝进行附着具较强的抑制作 用, 其 EC5。为 10.78 μ§ ηιΓ1 0
表 1中所列的其它代表性喜树碱衍生物经上述相同的方法检测, 总体上 EC5Q值低于 200 μ§ ηιΓ1 , 对污损生物的附着也具显著的抑制作用, 表现出防污活性。
实施例 2 含喜树碱的防污涂料的制备
将喜树碱与丙烯酸树脂、 松香、 铁红、 触变剂及有机溶剂混匀, 并加入玻璃珠, 于高速 分散机中进行搅拌混匀, 搅拌至涂料细度为 80 μηι左右, 以 100目筛绢网过滤除去玻璃珠, 出料, 获得防污涂料。
实施例 3含喜树碱与其他防污剂复配的防污涂料的制备
含喜树碱与其他防污剂复配的海洋防污涂料根据上述实施例 2相同的方法制备。 喜树碱 与其他防污剂复配的类型和重量比分别为: 喜树碱: Cu20 ( 4: 1 )、 喜树碱: Cu20 ( 2: 1 )、
喜树碱: Cu20 (1 : 1)、 喜树碱: TCPM (1 : 1)、 喜树碱: ZnPt (1 : 1), 以此制备获得 5种 海洋防污涂料。 其中, TCPM指 N-2, 4, 6-三氯苯基马来酰亚胺, ZnPt指吡啶硫酮锌。
实施例 4 含喜树碱的防污涂料以及含喜树碱与其他防污剂复配的防污涂料的海区防污效 能检验
如表 2所示, 所检验的防污剂设为 3大组: 1)喜树碱; 2)喜树碱与其他防污剂的复配; 3)现有常用防污剂(作为阳性对照)。所检验的防污剂在海洋防污涂料中的重量比均设为 20%。
表 2海区挂板试验结果
涂料中所含的防污剂 污损生物覆盖率 (%, MeaniSE)
3个月后 6个月后 9个月后 12个月后
1) 喜树碱 0.15 ±0.12 11.60 ±6.68 9.03士 2.64 39.67士 10.43
2) 喜树碱与其它防污剂的复配
喜树碱: Cu20 (4 : 1) 0 5.87 ±4.75 18.06士 7.87 61.05士 13.07 喜树碱: Cu20 (2 : 1) 0.84 ±0.68 28.56士 14.79 62.77士 11.68 67.63士 13.07 喜树碱: Cu20 (1 : 1) 1.65 ±0.90 54.24士 16.94 70.16士 16.43 90.85 ±4.96 喜树碱: TCPM (1 : 1) 0.85 ±0.14 30.12士 5.37 61.32 ±23.09 86.93士 8.47 喜树碱: ZnPt (1 : 1) 0.44 ±0.16 10.01 ±4.32 35.10 ±2.71 94.07 ±3.71
3) 现有常用防污剂
Cu20 7.23士 2.02 91.75 ±2.90 70.91士 13.40 98.88 ±0.48
CuPt 13.09 ±2.71 37.20士 11.69 43.11士 15.25 94.69士 1.01 不添加任何防污剂的涂料组 82.88 ±7.48 90.16 ±4.15 72.13士 10.16 95.41士 1.49 注: TCPM指 N-2, 4, 6-三氯苯基马来酰亚胺, ZnPt指吡啶硫酮锌, CuPt指吡啶硫酮铜。
参考国标 GB /T 5370— 2007 《防污漆样板浅海浸泡试验方法》 进行天然海区挂板试验。 将所制备的各防污涂料均匀涂布于环氧树脂板上, 设不添加任何防污剂、 以相同方法制备的 涂料为阴性对照, 每个涂料样品均设 6个平行组, 涂料干后将试验板固定于铁框中, 于 2010 年 6月移挂在厦门大漓浦屿附近海域的试验浮筏上。 各试验板浸没于海水中达 3、 6、 9和 12 个月后, 进行拍照, 分析、 统计各涂料样品区内的污损生物覆盖率。 在此, 污损生物覆盖率 指样品区内海洋大型污损生物所覆盖的表面积除以整个样品区表面积的比值(下同), 此值越 低, 表明防污效能越高。
所制备的各防污涂料的海区防污效能检验结果如表 2所示。 在此海区挂板试验期间, 试 验板上所附着的大型污损生物主要有藤壶、 贻贝、 牡蛎、 海鞘、 海绵和苔藓动物等。 从表 2
可看出, 以喜树碱为防污剂制备的涂料样品区内其污损生物覆盖率远低于不添加任何防污剂 的涂料对照组样品区内的污损生物覆盖率, 表明以喜树碱为防污剂制备的涂料具高效的防污 效能, 其防污期效可达到 12个月。 从表 2还可看出, 同样以 20% (重量) 的含量作为防污剂 制备涂料, 喜树碱的海区防污效能要优于现有常用防污剂氧化亚铜 (C 0) 和吡啶硫酮铜 (CuPt)0 另一方面, 喜树碱与其他防污剂 Cu20、 TCPM和 ZnPt的复配也都表现出了一定的 海区防污效能, 其中以喜树碱: C 0 (4 : 1 ) 组的防污效能最好, 但基本上复配试验组的防 污效果和防污期效均不如纯的喜树碱试验组, 这进一步验证了喜树碱具有高效的防污活性。
实施例 5含喜树碱的防污涂料在海水养殖网衣 (一种水中人工设施) 上的应用试验 含喜树碱的防污涂料的制备方法与实施例 2相同, 喜树碱在防污涂料中的重量比也设为 20%。 采用浸涂方法, 将各网衣分别浸没在所制备的各涂料中, 然后取出晾干, 以扎带将各 网片固定于塑料框架上, 于 2010年 11月移挂于海南陵水珠母贝养殖海区。 以不添加任何防 污剂、 以相同方法制备的涂料为阴性对照, 于市场上购置的木船防污漆(以氯化橡胶为基料、 氧化亚铜为主防污剂) 为阳性对照, 未浸没于任何涂料中、 干净的网衣为空白对照, 每个试 验组均设 3个平行组, 各试验网片浸没于海水中达 3、 6、 9和 12个月后, 进行拍照, 分析、 统计各网片上的污损生物覆盖率。
在海水养殖网衣上进行的应用试验结果如表 3所示。 在此试验期间, 网衣上所附着的大 型污损生物主要有草苔虫、 盘管虫、 海绵、 海鞘、 牡蛎和海藻等。 从表 3可看出, 涂含喜树 碱的防污涂料的网衣上其污损生物覆盖率远低于未涂任何涂料的网衣, 表明含喜树碱的防污 涂料在海水养殖网衣上的防污效果优异, 且其防污期效可达到 12个月。 另一方面, 不添加任 何防污剂的涂料组没有表现出任何防污效能, 表明含喜树碱海洋防污涂料的突出防污效能是 来源于喜树碱的防污活性。 此外, 从表 3还可看出, 含喜树碱海洋防污涂料在网衣上的防污 效能要高于以 Cu20 为主防污剂的防污漆。 总的来说, 本试验结果表明含喜树碱的海洋防污 涂料在海水养殖网衣上具有良好的防污应用效果。
表 3 在海水养殖网衣上进行的应用试验结果
试验组 污损生物覆盖率(%, Meani SE)
3个月后 6个月后 9个月后 12个月后 含喜树碱的海洋防污涂料组 2.45 ± 0.42 2.19 ± 0.60 3.89 ± 1.07 9.64士 2.66 以 Cu20为主防污剂的防污漆 5.23 ± 1.78 79.61 ± 4.27 64.60 ± 11.62 95.98 ± 2.55 不添加任何防污剂的涂料组 85.00 ± 6.30 99.82 ± 0.05 69.08士 8.00 99.52士 0.24 未涂任何涂料的空白对照组 71.16士 10.13 99.92士 0.03 54.83士 5.24 99.70士 0.21
实施例 6 含喜树碱的防污涂料在浮床 (一种水中人工设施) 上的应用试验 含喜树碱的海洋防污涂料的制备方法与实施例 2相同, 喜树碱在海洋防污涂料中的重量 比也设为 20%。将所制备的各涂料均匀涂布在各相同规格的浮床组件(浮床组件为 30 X 30 cm 的塑料泡沫板, 外套塑料编织袋) 上。 涂料干后将浮床组件固定于竹竿框架上, 于 2010年 8 月移挂于厦门市赏笞湖 (原为天然港湾, 后因修建堤坝成为基本封闭的人工泻湖, 每日与厦 门西海域交换部分水体) 中。 以不添加任何防污剂、 以相同方法制备的涂料为阴性对照, 于 市场上购置的木船防污漆 (以氯化橡胶为基料、 氧化亚铜为主防污剂) 为阳性对照, 未涂布 任何涂料中、 干净的浮床组件为空白对照, 每个试验组均设 3个平行组, 各浮床组件浸没于 海水中达 3、 6、 9和 12个月后, 进行拍照, 分析、 统计各浮床组件上的污损生物覆盖率。
在浮床上进行的应用试验结果如表 4所示。 在此试验期间, 浮床组件上所附着的大型污 损生物主要有藤壶、 草苔虫、 牡蛎、 沙筛贝、 海鞘和海藻等。 从表 4可看出, 涂含喜树碱的 防污涂料的浮床组件上其污损生物覆盖率远低于未涂任何涂料的浮床组件, 表明含喜树碱的 防污涂料在浮床上的防污效果优异, 且其防污期效可达到 12个月。 另一方面, 不添加任何防 污剂的涂料组基本上没有表现出突出的防污效能, 表明含喜树碱的防污涂料的优异防污效能 是来源于喜树碱的防污活性。 此外, 从表 4还可看出, 含喜树碱的防污涂料在浮床组件上的 防污效能要高于以 Cu20 为主防污剂的防污漆。 总的来说, 本试验结果表明含喜树碱的防污 涂料在浮床上也具有良好的防污应用效果。
在浮床上进行的应用试验结果
试验组 污损生物覆盖率 (%, Mean i SE)
3个月后 6个月后 9个月后 12个月后 含喜树碱的海洋防污涂料组 0.02 ± 0.01 0 29.32士 5.85 50.85士 15.11 以 Cu20为主防污剂的防污漆 0.20 ± 0.10 31.78士 11.38 49.26士 8.32 98.27士 1.73 不添加任何防污剂的涂料组 0.63士 0.29 50.87士 1.16 38.69 ± 3.64 99.97 ± 0.03 未涂任何涂料的空白对照组 -- 52.82士 5.56 50.89 ± 2.16 100士 0 注: "-- "表示当月漏拍此组照片, 未统计此组的污损生物覆盖率。
Claims
1. 喜树碱或其衍生物作为防污剂的应用, 所述喜树碱或其衍生物的结构式如下:
其中, 和 各自独立地选自 11、 氨基、 氰基、 卤素、 醛基、 羧基、 硅烷基、 (^〜(:8烷基、
( 〜(:8烷基酰基、 ( 〜(:8烷氧基或二(( 〜(:8烷基)氨基;
和 R4各自独立地选自 H、 氨基、 氰基、 卤素、 醛基、 羧基、 硅烷基、 (^〜(:8烷基、 (^〜 C8烷基酰基、 (^〜(:8烷氧基或二((^〜(:8烷基)氨基; 或
和 R4—起形成 -0CH20-或 -0CH2CH20-。
2. 如权利要求 1所述的应用, 其中所述 (^〜(:8烷基未被取代或被选自卤素、氰基、硝基、 羟基、(^〜(:8烷氧基、(^〜(:8烷基氨基、 二 ((^〜(:8烷基)氨基或三 ((^〜(:8烷基)硅烷基的基团取 代。
3. 如权利要求 1所述的应用, 其中所述喜树碱或其衍生物选自如下化合物:
编号 化合物名称 Ri R2 R3 R4
1 喜树碱 H H H H
2 10-羟基喜树碱 H H -OH H
3 10-氯喜树碱 H H -CI H
4 10-溴喜树碱 H H -Br H
5 10-氰基喜树碱 H H -CN H
6 10-硝基喜树碱 H H -N02 H
7 10-羧基喜树碱 H H -C00H H
8 10-氨基喜树碱 H H -NH2 H
9 10-甲基喜树碱 H H -CH3 H
10 10-氨基甲基喜树碱 H H -CH2NH2 H
11 7-甲基喜树碱 -CH3 H H H
12 7-乙基喜树碱 -CH2CH3 H H H
13 7-羟甲基喜树碱 -CH20H H H H
14 7- (2-羟基)乙基喜树碱 -CH2CH20H H H H
15 7-氯甲基喜树碱 -CH2C1 H H H
16 7- (2- (甲基氨基)乙基)喜树碱 -CH2CH2NHCH3 H H H
17 7-醛基喜树碱 -CH0 H H H
18 7- (2- (三甲基硅垸基)乙基) -喜树碱 -CH2CH2S i (CH3) 3 H H H
19 7-乙基 -10-羟基-喜树碱 -CH2CH3 H OH H
20 9-甲基喜树碱 H -CH3 H H
21 9-羟基喜树碱 H -OH H H
22 9-硝基喜树碱 H -N02 H H
23 9-氨基喜树碱 H -NH2 H H
24 9-乙酰氨基喜树碱 H -NHCOCHa H H
25 9-二甲氨基甲基 -10-羟基喜树碱 H -CH2N (CH3) 2 OH H
26 9-氨基乙基 -10-羟基喜树碱 H -CH2CH2NH2 OH H
27 10, 11-亚甲二氧基喜树碱 H H -0CH20-
28 10, 11-亚乙二氧基喜树碱 H H -0CH2CH20-
29 7-氯甲基 -10, 11-亚甲二氧基喜树碱 -CH2C1 H -0CH20-
30 7-氯甲基 -10, 11-亚乙二氧基喜树碱 -CH2C1 H -0CH2CH20-
31 9-氨基 -10, 11-亚甲二氧基喜树碱 H -NH2 -0CH20-
4. 如权利要求 1所述的应用, 其中所述防污剂是用于水中设施的防污剂; 所述水中设施 选自舰船、 船坞、 养殖网衣、 笼具、 海上油气平台、 浮标、 码头、 桥墩、 管道、 木桩和浸入 水中的仪器设备。
5. 如权利要求 1所述的应用, 其中所述防污剂用于防除海洋或淡水中微型污损生物和 / 或大型污损生物在海洋、 湖泊、 江河或池塘中设施表面的附着。
6. 如权利要求 1所述的应用, 其中所述防污剂与其他防污物质混配使用, 所述其他防污 物质选自含铜化合物、 含锌化合物、 异噻唑啉酮类化合物、 三嗪类化合物、 N-2, 4, 6-三氯苯 基马来酰亚胺、 吡啶三苯基硼烷、 2- (对-氯苯基 ) -3-氰基 -4-溴基 -5-三氟甲基-吡咯、 N- (氟 代二氯化甲基硫) -苯邻二甲酰亚胺中的一种;
所述含铜化合物选自氧化亚铜、 硫氰酸铜、 吡啶硫酮铜中的一种; 所述含锌化合物选自 氧化锌、 吡啶硫酮锌中的一种; 所述异噻唑啉酮类化合物选自 4, 5-二氯代 -2-正辛基 -4-异噻 唑啉 -3-酮; 所述三嗪类化合物选自 N-环丙基 -Ν' - (1, 1-二甲基乙基) -6- (甲基硫代) -1, 3, 5-
三嗪 -2, 4-二胺。
7. 如权利要求 1所述的应用, 其中应用方法如下:
将喜树碱或其衍生物加入到涂料中, 再将涂料混合物施用于水中设施; 或者
直接涂覆于水中设施表面; 或者
加入到水中设施组成成分中; 或者
直接溶解释放于水中设施的周围水环境中。
8. 一种用于水中设施的防污涂料, 包含喜树碱或至少一种喜树碱衍生物, 所述喜树碱或 其衍生物的结构式如下:
其中, 和 各自独立地选自 11、 氨基、 氰基、 卤素、 醛基、 羧基、 硅烷基、 (^〜(:8烷基、
( 〜(:8烷基酰基、 ( 〜(:8烷氧基或二(( 〜(:8烷基)氨基;
和 R4各自独立地选自 H、 氨基、 氰基、 卤素、 醛基、 羧基、 硅烷基、 (^〜(:8烷基、 (^〜 C8烷基酰基、 (^〜(:8烷氧基或二((^〜(:8烷基)氨基; 或
和 R4—起形成 -0CH20-或 -0CH2CH20-。
9. 如权利要求 8所述的防污涂料, 其中, 所述防污涂料还包含至少一种粘结剂以及至少 一种溶剂。
10. 如权利要求 9所述的防污涂料, 其中, 所述喜树碱或其衍生物在防污涂料中的质量 百分含量为 0. 1%〜60%, 优选为 10%〜30%;
所述粘结剂选自丙烯酸树脂、 过氯乙烯树脂、 天然树脂、 酚醛树脂、 沥青、 醇酸树脂、 氨基树脂、 氯化橡胶、 乙烯树脂、 聚酯树脂、 环氧树脂、 聚氨酯、 有机硅树脂和有机氟树脂 中的至少一种; 所述溶剂选自甲苯、 二甲苯、 甲醇、 乙醇、 丙醇、 异丙醇、 正丁醇、 异丁醇、 苯甲醇、 丙酮、 丁酮、 甲基异丁基酮、 甲基异戊酮、 环己酮、 200#煤焦溶剂、 乙酸丁酯和乙 二醇丁醚中的至少一种。
11. 如权利要求 9所述的防污涂料, 其中所述防污涂料还包含颜料和助剂, 所述颜料选 自氧化锌、 铁红、 滑石粉、 硫酸钡、 碳酸钙、 硅藻土、 锌粉、 钛白粉中的至少一种; 所述助
剂选自触变剂、 分散剂、 消泡剂、 流平剂中的至少一种; 所述触变剂选自膨润土、 氢化蓖麻 油、 聚乙烯醇、 气相二氧化硅、 金属皂中的至少一种; 所述分散剂选自膨润土、 金属皂、 加 氢蓖麻油、 聚环氧乙烷、 低粘度甲基硅油中的至少一种; 所述消泡剂选自磷酸三丁酯、 聚二 甲基硅氧烷或聚醚改性有机硅中的至少一种; 所述流平剂选自聚丙烯酸酯、改性聚丙烯酸酯、 多氟化多烯烃、 聚乙烯醇缩丁醛中的至少一种。
12. 如权利要求 9所述的防污涂料, 其中所述防污涂料还包括其他防污物质, 所述其他 防污物质选自含铜化合物、 含锌化合物、 异噻唑啉酮类化合物、 三嗪类化合物、 N-2, 4, 6-三 氯苯基马来酰亚胺、 吡啶三苯基硼烷、 2- (对-氯苯基 ) -3-氰基 -4-溴基 -5-三氟甲基-吡咯、 N- (氟代二氯化甲基硫) -苯邻二甲酰亚胺;
所述含铜化合物选自氧化亚铜、 硫氰酸铜、 吡啶硫酮铜中的一种; 所述含锌化合物选自 氧化锌、 吡啶硫酮锌中的一种; 所述异噻唑啉酮类化合物选自 4, 5-二氯代 -2-正辛基 -4-异噻 唑啉 -3-酮; 所述三嗪类化合物选自 N-环丙基 -Ν' - (1, 1-二甲基乙基) -6- (甲基硫代) -1, 3, 5- 三嗪 -2, 4-二胺。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/902,293 US9840627B2 (en) | 2013-07-01 | 2013-10-16 | Application of camptothecin and derivatives thereof as antifouling agent |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310270946.5A CN103289461B (zh) | 2013-07-01 | 2013-07-01 | 喜树碱及其衍生物作为防污剂的应用 |
CN201310270946.5 | 2013-07-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015000240A1 true WO2015000240A1 (zh) | 2015-01-08 |
Family
ID=49091020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/085307 WO2015000240A1 (zh) | 2013-07-01 | 2013-10-16 | 喜树碱及其衍生物作为防污剂的应用 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9840627B2 (zh) |
CN (1) | CN103289461B (zh) |
WO (1) | WO2015000240A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12029736B2 (en) | 2020-02-25 | 2024-07-09 | Mediboston Limited | Camptothecin derivatives and conjugates thereof |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103289461B (zh) * | 2013-07-01 | 2016-05-04 | 厦门大学 | 喜树碱及其衍生物作为防污剂的应用 |
WO2016176797A1 (zh) * | 2015-05-03 | 2016-11-10 | 南通长航船舶配件有限公司 | 船舶涂料 |
CN106811111A (zh) * | 2016-12-24 | 2017-06-09 | 安徽雷萨重工机械有限公司 | 一种提高汽车排气管耐热耐腐蚀性的涂料及其使用方法 |
CN114072475B (zh) * | 2019-07-05 | 2022-06-17 | 大金工业株式会社 | 表面处理剂 |
CN111268959B (zh) * | 2019-12-02 | 2021-06-18 | 哈尔滨工程大学 | 一种诱导海洋固着生物附着及促进生长的混凝土及制备方法 |
CN111808460B (zh) * | 2020-06-12 | 2021-10-01 | 厦门大学 | 紫草素或其衍生物作为防止大型污损生物附着的防污剂的用途 |
US20240206465A1 (en) | 2021-04-21 | 2024-06-27 | Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. | Active polymeric films and polymeric compositions |
CN115627629A (zh) * | 2022-09-08 | 2023-01-20 | 浙江英玛特生物科技有限公司 | 利用羟基酸酯低聚物复配防污剂对渔网绳缆的防污加工方法及其产品 |
CN116120750B (zh) * | 2023-04-04 | 2023-10-27 | 中国海洋大学 | 抗杀一体的复合弹性体、制备方法及防污应用 |
WO2024208359A1 (en) * | 2023-04-07 | 2024-10-10 | Innovent Biologics (Suzhou) Co., Ltd. | Antibody-drug conjugates of camptothecin derivatives and uses thereof |
CN118085433A (zh) * | 2024-02-27 | 2024-05-28 | 国家海洋技术中心 | 一种环境友好型防污缓释材料及其制备方法和应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996009049A1 (en) * | 1994-09-22 | 1996-03-28 | Research Triangle Institute | Inhibition of plasmodia parasites by camptothecin compounds |
CN1802913A (zh) * | 2006-01-05 | 2006-07-19 | 厦门大学 | 鱼藤酮防污剂 |
CN103289461A (zh) * | 2013-07-01 | 2013-09-11 | 厦门大学 | 喜树碱及其衍生物作为防污剂的应用 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1072697C (zh) * | 1997-11-28 | 2001-10-10 | 化学工业部海洋化工研究院 | 无毒海洋防污涂料 |
EP2346516B1 (en) * | 2008-10-28 | 2015-12-23 | Nofima AS | Antimicrobial composition from copepods |
WO2011071892A2 (en) * | 2009-12-07 | 2011-06-16 | University Of Florida Research Foundation, Inc. | Surfaces for controlled bioadhesion, methods of manufacture thereof and articles comprising the same |
CN102895229A (zh) | 2012-10-10 | 2013-01-30 | 中国药科大学 | 喜树碱及其衍生物抗阿尔茨海默病的医疗用途 |
-
2013
- 2013-07-01 CN CN201310270946.5A patent/CN103289461B/zh active Active
- 2013-10-16 WO PCT/CN2013/085307 patent/WO2015000240A1/zh active Application Filing
- 2013-10-16 US US14/902,293 patent/US9840627B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996009049A1 (en) * | 1994-09-22 | 1996-03-28 | Research Triangle Institute | Inhibition of plasmodia parasites by camptothecin compounds |
CN1802913A (zh) * | 2006-01-05 | 2006-07-19 | 厦门大学 | 鱼藤酮防污剂 |
CN103289461A (zh) * | 2013-07-01 | 2013-09-11 | 厦门大学 | 喜树碱及其衍生物作为防污剂的应用 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12029736B2 (en) | 2020-02-25 | 2024-07-09 | Mediboston Limited | Camptothecin derivatives and conjugates thereof |
Also Published As
Publication number | Publication date |
---|---|
US20160264789A1 (en) | 2016-09-15 |
CN103289461A (zh) | 2013-09-11 |
US9840627B2 (en) | 2017-12-12 |
CN103289461B (zh) | 2016-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015000240A1 (zh) | 喜树碱及其衍生物作为防污剂的应用 | |
ES2392142T3 (es) | Composiciones antiincrustantes de espinosina, procedimientos de uso de las mismas y artículos protegidos de la adhesión de organismos bioincrustantes | |
EP2197960A2 (en) | Antifouling coating | |
US5248221A (en) | Antifouling coating composition comprising lactone compounds, method for protecting aquatic structures, and articles protected against fouling organisms | |
US5259701A (en) | Antifouling coating composition comprising furan compounds, method for protecting aquatic structures, and articles protected against fouling organisms | |
US5470586A (en) | Antifouling coating and method for using same | |
KR100314105B1 (ko) | 오염방지성코팅조성물및이를이용한구조물의보호방법 | |
US5252630A (en) | Antifouling coating and method for using same | |
CN105331168A (zh) | 强心苷类化合物在防止海洋生物污损中的应用 | |
CN106810926B (zh) | 一种阿朴菲类生物碱的应用 | |
EP2587918A2 (en) | Antifouling benzoate combinations | |
US20060217456A1 (en) | Non-toxic coating composition, methods of use thereof and articles protected from attachment of biofouling organisms | |
Kawamata et al. | 5, 6-Dichloro-1-methylgramine, a non-toxic antifoulant derived from a marine natural product | |
US20080071005A1 (en) | Environment-Friendly Pollution-Proof Agent | |
KR20020003549A (ko) | 로진 아민 부착방지제 | |
JP2009132733A (ja) | 水中有害付着生物に対する防汚剤 | |
JPH03287507A (ja) | 汚損生物防除剤及び汚損防止塗料組成物 | |
JP7551081B2 (ja) | 水中付着生物防汚剤 | |
KR19990081985A (ko) | 트리페닐보란-로진 아민 부가 화합물 및 이의 용도 | |
CN102702894B (zh) | 一种神经鞘氨醇衍生防污剂及其制备方法 | |
Sidharthan et al. | A new antifouling hybrid CDP formulation with ethyl heptanoate: Evaluation of AF performance at Ayajin harbor, east coast of Korea. | |
Guenther | Natural antifouling defences of tropical sea stars | |
WO1998046683A1 (en) | Coating compositions comprising busoxinone | |
CN106749170A (zh) | 沙蚕毒素类化合物在防止海洋生物污损中的应用 | |
Topçam | Seasonal Changes of the Zosteric Acid Content in Zostera Noltii Detritus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13888526 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14902293 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13888526 Country of ref document: EP Kind code of ref document: A1 |