WO2015000097A1 - 步进扫描投影光刻机的照明系统 - Google Patents

步进扫描投影光刻机的照明系统 Download PDF

Info

Publication number
WO2015000097A1
WO2015000097A1 PCT/CN2013/001005 CN2013001005W WO2015000097A1 WO 2015000097 A1 WO2015000097 A1 WO 2015000097A1 CN 2013001005 W CN2013001005 W CN 2013001005W WO 2015000097 A1 WO2015000097 A1 WO 2015000097A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
lens array
slit
lens
field
Prior art date
Application number
PCT/CN2013/001005
Other languages
English (en)
French (fr)
Inventor
曾爱军
陈立群
方瑞芳
黄惠杰
Original Assignee
中国科学院上海光学精密机械研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海光学精密机械研究所 filed Critical 中国科学院上海光学精密机械研究所
Priority to EP13888527.2A priority Critical patent/EP3018533B1/en
Publication of WO2015000097A1 publication Critical patent/WO2015000097A1/zh
Priority to US14/984,891 priority patent/US9709896B2/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70066Size and form of the illuminated area in the mask plane, e.g. reticle masking blades or blinds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70075Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection

Definitions

  • the present invention relates to a projection lithography machine, and more particularly to an illumination system for a step-and-scan projection lithography machine.
  • Optical lithography is an optical exposure process that transfers a pattern on a reticle onto a silicon wafer.
  • Optical lithography is divided into contact lithography, proximity lithography, step-and-repeat projection lithography, step-and-scan projection lithography, etc., depending on the exposure method.
  • Step-scan projection lithography can effectively improve the productivity of the chip and has become the mainstream lithography technology.
  • the lighting system is one of the core components of a step-and-scan projection lithography machine.
  • the illumination system In order to accurately copy the fine patterns of different structures that may exist on the mask onto the silicon wafer, the illumination system needs to form an illumination field with a variable coherence factor and a uniform light intensity distribution on the mask, and at the same time realize the illumination field size by scanning. Continuously adjustable.
  • the prior art [1] provides an illumination system for a step-and-scan projection lithography machine.
  • the system mainly includes: a light source, a pupil shaping unit, two sets of microlens arrays, a concentrating mirror group, a scanning slit, and an illumination mirror group.
  • the light emitted by the light source is converted into a beam distribution of a specific illumination mode and a coherence factor by the pupil shaping unit, and then a uniform light field is formed at the slit through the hook of the microlens array and the condenser lens group, and finally the image is formed by the illumination mirror.
  • the slit is conjugated to the mask image, and the scanning slit scans the illumination field on the mask.
  • the structure of the illumination system is complicated, and the lens of the concentrating mirror group has a diameter of 300 mm.
  • the scanning slit is required to have a high scanning speed, up to several hundred millimeters per second, or even several meters per second.
  • the prior art [2] (see Miguel Boutonne, Renaud Mercier Ythier et al. Illuminator for a photolithography device, US patent 2009257041 A1, 2009) teaches another illumination system for a step-and-scan projection lithography machine, the illumination system comprising : Light source, at least one set of microlens arrays, microslit arrays, drive units, concentrating mirrors. The light emitted by the light source is focused by the microlens array to the microslit array, and then superimposed and superimposed on the mask by the condensing mirror.
  • the driving unit drives the microslit array motion to implement scanning projection lithography.
  • the system requires a lower scanning speed of the slit, but there are still deficiencies, because the micro slit size is small, and scanning requires an accuracy of the order of micrometers or even submicrometers. Summary of the invention It is an object of the present invention to overcome the deficiencies of the prior art and to provide an illumination system for step-and-scan projection lithography. The system reduces the need for lens processing, slit scanning speed and slit scanning accuracy, making it easier to implement.
  • the technical solution of the present invention is as follows - an illumination system for a step-and-scan projection lithography machine, comprising a light source, a pupil shaping unit, a field of view defining unit, and a condensing mirror, characterized in that the composition further comprises a first lens array, a first narrow Array, second lens array, third lens array, second slit array, fourth lens array and scan driving unit, said first lens array, second lens array, third lens array, fourth lens array and scan driving unit, said first lens array, second lens array, third lens array, fourth lens array
  • Each of the lenses of the same parameter is arranged along a one-dimensional or two-dimensional spatial period, and the first lens array, the second lens array, the third lens array, and the fourth lens array have the same number of lenses and Arrangement, spatially one-to-one correspondence, the apertures of the single lens in the first lens array, the second lens array, the third lens array, and the fourth lens array are larger than the micro-column mirror in the field-defining defining unit Two
  • a first slit array, a second lens array, a third lens array, a second slit array, a fourth lens array, a condensing mirror and a mask, an output end of the scan driving unit and the first slit array, the second The control terminals of the slot array are connected, the image focal plane of the first lens array, the plane of the first slot array and the object focal plane of the second lens array are coincident, and the second lens array
  • the square focal plane coincides with the object focal plane of the third lens array, the image focal plane of the third lens array, the plane of the second slit array and the object focal plane of the fourth lens array coincide, the fourth lens
  • the image focal plane of the array coincides with the object focal plane of the concentrating mirror, and the light beam emitted by the light source passes through the pupil shaping unit to become a conventional, ring, two-pole or four-pole illumination mode, and the field of view defines the unit pair of beams.
  • the light beams emerging from the field of view defining unit are concentrated to the first slit array through the first lens array; the second lens array and the third lens array Forming a focusless system, imaging the first slot array to the second slot array; the fourth lens array and the concentrating mirror magnifying and imaging the second slot array onto the mask; the scan driving unit Controlling a moving speed and a stroke of the flat plate in the first slit array and the flat plate in the second slit array, respectively, scanning a corresponding light field, wherein the scan driving unit synchronously drives the flat plate and the second in the first slit array When the plates in the slot array are moved in the +X and +Y directions, respectively, the illumination field on the mask 7 is simultaneously scanned in the +X and -Y directions.
  • the first slit array and the second slit array each include a plurality of transparent slits and an opaque portion, and the number of the transparent slits in the first slit array and the second slit array is equal to The number of lenses in the first lens array, the second lens array, the third lens array, and the fourth lens array (44); the first slit The array (51), the center of the light-transmissive slit in the second slit array (52), the first lens array (41), the second lens array (42), the third lens array (43), and the fourth The optical axes of the lenses in the lens array (44) are in one-to-one correspondence.
  • the single lens of the illumination system has a diameter of about several hundred millimeters
  • the lens array of the group costing illumination system has a single lens size of several millimeters to several centimeters, and is processed by several millimeters to several centimeters.
  • the aspherical mirror is simpler, and the illumination system of the present invention reduces processing difficulty and is easier to implement.
  • the moving distance of the board is reduced by at least 4 times compared with the prior art [1], and the scanning speed of the slit array is also reduced by 4 times or more. Compared with the prior art [1], the moving distance of the board is at least doubled, and the required scanning accuracy is better than the prior art.
  • FIG. 1 is a schematic structural view of an illumination system of a step-and-scan projection lithography machine of the present invention
  • FIG. 2 is a schematic view of light passing through a first lens array, a second lens array, a third lens array, and a fourth lens array
  • FIG. 3 is a schematic diagram of a field of view defining unit to a second lens array structure
  • Figure 4 is a schematic view of the first slit array structure
  • Figure 5 is a schematic diagram of the second field of view field defining unit to the second lens array structure
  • Figure 6 is a schematic view of the second slit array structure
  • FIG. 7 is a schematic diagram of the third field of view field defining unit to the second lens array structure.
  • FIG. 8 is a schematic diagram of a third slit array structure.
  • FIG. 1 is a schematic structural diagram of an illumination system of a step-and-scan projection lithography machine according to the present invention.
  • the illumination system of the step-and-scan projection lithography apparatus of the present invention comprises a light source 1, a pupil shaping unit 2, a field of view defining unit 3, a first lens array 41, a first slit array 51, and a second lens array 42.
  • the third lens array 43, the second slit array 52, the fourth lens array 44, the condensing mirror 6, and the scan driving unit 8 have a positional relationship: the light emitted from the light source 1 passes through the pupil shaping unit 2 and the field of view defining unit in sequence.
  • the first lens array 41, a first slit array 51, second lens array 42, the third lens array 43, the second slit array 52, fourth lens array 6 and the condenser lens 44 is irradiated onto the mask 7
  • the output end of the scan driving unit 8 is connected to the control ends of the first slit array 51 and the second slit array 52.
  • the image focal plane of the first lens array 41, the plane of the first slit array 51, and the object focal plane of the second lens array 42 coincide, and the image focal plane of the second lens array 42 and the third lens
  • the object focal planes of the array 43 coincide, the image focal plane of the third lens array 43, the plane of the second slit array 52, and the object focal plane of the fourth lens array 44 coincide, and the image of the fourth lens array 44
  • the focal plane coincides with the object focal plane of the concentrating mirror 6.
  • the function of each unit will be explained in detail below:
  • the light emitted from the light source 1 passes through the pupil shaping unit 2 to become a specific illumination mode.
  • the field of view defining unit 3 homogenizes the beam and produces a specific angular distribution.
  • Light emitted from the field of view defining unit 3 passes through the first lens array 41 and converges to the first slit array 51; the second lens array 42 and the third lens array 43 constitute an afocal system, and the first slit array 51 is imaged To the second slit array 52; the fourth lens array 44 and the condensing mirror 6 can magnify the second slit array 52 to the mask 7;
  • the first slit array 51 is composed of two identical flat plates 511 and 512 Each plate contains a light-transmissive slit and an opaque portion.
  • the second slit array 52 is composed of two identical flat plates 521 and 522, each of which includes a light-transmissive slit and an opaque portion.
  • the output end of the driving unit 8 is connected to the control end of the flat plate 512 and the flat plate 522, and controls the moving speed and stroke of the flat plate 512 and the flat plate 522, and changes the light passing size of the first slit array 51 and the second slit array 52, and scans correspondingly.
  • Light field As shown in Fig. 1, when the scanning drive unit 8 synchronously drives the flat plate 512 and the flat plate 522 to move in the +X and +Y directions, respectively, the illumination field on the mask 7 is simultaneously scanned in the +X and -Y directions.
  • FIG 2 is a light through the first lens array 41, 42, the third lens array 43 and fourth lens array 44 a schematic view of the second lens array.
  • the light ray R is refracted after passing through the first lens array 41 and the second lens array 42 and is divided into a light ray R1, a light ray R2 and a light ray R3.
  • the light ray R1, the light ray R2 and the light ray R3 are merged through the third lens array 43 and the fourth lens array 44.
  • the light R4 is the same as the light R.
  • the illumination mode and the preset are set.
  • the illumination mode is the same as that set in advance.
  • the first lens array 41, the first slit array 51, the second lens array 42, the third lens array 43, the second slit array 52, and the fourth lens array 44 may be simultaneously formed in two dimensions. It can also be composed of one dimension at the same time.
  • the field of view defining unit is composed of a first microlens array 31 and a second microlens array 32.
  • the front surface of the first microlens array 31 is formed by arranging the micro-column mirror 311 of the bus bar in the Y direction in the X direction with a period dl, and the micro-cylindrical mirror 312 of the rear surface bus bar in the X direction is arranged in the Y direction by the period d2.
  • the front surface of the second microlens array 32 is the same as the rear surface of the microlens array 31, and the rear surface of the second microlens array 32 is the same as the front surface of the first microlens array 31.
  • the first lens array 41 is composed of a two-dimensional periodic arrangement of the single lens 411, the period in the X direction is d3, and the period in the Y direction is d4.
  • 3b is a schematic structural view of the first slit array 51.
  • the first slit array 51 is composed of a flat plate 511 and a flat plate 512.
  • the flat plate 511 includes a transparent slit T1 and an opaque portion 01.
  • the flat plate 512 is identical to the flat plate 511.
  • the control end of the flat panel 512 is connected to the output end of the driving unit 8, and the specific structure is shown in Fig. 3b.
  • the second lens array 42 is composed of a single lens 421 arranged in two dimensions.
  • the distance between the front surface of the first lens array 41 and the rear surface of the microlens array 32 is d5 ⁇ 5 mm, so as to better collect light and improve the utilization of light energy.
  • the aperture of the single lens 411 in the first lens array 41 is more than twice the diameter of the aperture of the microcolumn mirror in the field of view defining unit 3, i.e., d3 2dl, d4 2d2.
  • the second lens array 42 has the same number and arrangement of lenses as the first lens array 41, the optical axis A of the corresponding lens being parallel to the Z axis, and passing through the center of the corresponding light transmissive slit T1 in the first slit array.
  • the first lens array 41, the second lens array 42, the third lens array 43, and the fourth lens array 44 have the same number of lenses and arrangement, except that the optical axis of the corresponding lens is parallel to the Z axis. And simultaneously passing through the centers of the respective light-transmissive slits in the first slit array and the second slit array.
  • the first slot array 51 is composed of a flat plate 511 and a flat plate 512.
  • the flat plate 511 includes a plurality of transparent slits T1 and an opaque portion 01.
  • the structure of the flat plate 512 is identical to that of the flat plate 511.
  • the control end of the flat plate 511 is The output of the drive unit 8 is connected.
  • the flat plate 511 is kept stationary, the driving unit 8 drives the flat plate 512 to move in the X or y direction, and the size of the flat plate 511 through the slit T1 is reduced, thereby realizing scanning of the illumination field on the mask 7.
  • al and bl are the dimensions of the flat plate 511 through the X direction and the Y direction, respectively, and d3 and d4 are the period of the X direction of the flat plate 511 and the period of the Y direction, respectively. They need to satisfy the relationship: d3>2al, d4>2bl, to ensure that the opaque portion 02 of 512 can completely block the light-transmissive slit T1 of 511 during scanning.
  • the second slit array 52 is the same as the first slit array 51, and the first slit array 51 and the second slit array 52 are matched as follows:
  • the flat plate 512 in the slit array 51 is scanned in the Y direction under the driving of the driving unit 8, and the second slit array 52 is stationary, and the illumination field on the mask 7 is scanned in the x direction; in the first slit array 51
  • the flat plate 512 is scanned in the x direction under the driving of the driving unit 8, and the flat plate 522 in the second slit array 52 is scanned in the X direction under the driving of the driving unit 8, and the illumination field on the mask 7 is simultaneously along the X and x direction. scanning.
  • the first slit array 51 and the second slit array 52 are combined in various combinations, and are not limited to the two combinations listed above.
  • the first lens array 41, the first slit array 51, the second lens array 42, the third lens array 43, the second slit array 52, and the fourth lens array 44 may also be one-dimensionally constructed at the same time. .
  • FIG. 5 is a schematic diagram of the second field of view field defining unit to the second lens array structure.
  • the field of view defining unit is composed of a microlens array 31 and a microlens array 32.
  • the front surface of the microlens array 31 is formed by arranging the microcolumn mirror 311 of the bus bar in the x direction with the period dl in the X direction, and the micro cylindrical mirror 312 of the rear surface bus bar in the X direction is arranged in the Y direction by the period d2. to make.
  • the front surface of the microlens array 32 is the same as the rear surface of the microlens array 31, and the rear surface of the microlens array 32 is the same as the front surface of the microlens array 31.
  • the first lens array 41 is formed by the single lens 411 in the Y direction at a period d4.
  • the light passing diameter of the single lens 411 in the first lens array 41 is the curvature direction of the micro cylindrical mirror in the field of view defining unit 3. 2 times or more of the aperture of the light, that is, d4 2d2.
  • the first slot array 51 is composed of a flat plate 511 and a flat plate 512.
  • the flat plate 511 includes a plurality of one-dimensionally arranged transparent slits T1 and opaque portions 01.
  • the flat plate 512 is identical to the flat plate 511, and the control end and the driving of the flat plate 512
  • the output of unit 8 is connected.
  • the second lens array 42 has the same number and arrangement of lenses as the first lens array 41, and the optical axis A of the corresponding lens is parallel to the Z axis, and passes through the center of the corresponding light transmissive slit T1 in the first slit array.
  • the first lens array 41, the second lens array 42, the third lens array 43, and the fourth lens array 44 all have the same number of lenses and arrangement, and correspond to the optical axis and the Z-axis of the lens. Parallel, and simultaneously through the centers of the respective slits in the first slit array and the second slit array.
  • the first slit array 51 is composed of a flat plate 511 and a flat plate 512.
  • the flat plate 511 includes a plurality of X-direction transparent slits T1 and opaque portions 01 arranged in one dimension in the y direction.
  • the transparent slit T1 and the opaque portion 01 have the same structure as the flat plate 511, and the control end of the flat plate 512 is connected to the output end of the driving unit 8.
  • the driving unit 8 drives the flat plate 512 to move in the y direction, and the first slit array 51 reduces the size of the light transmitting slit, thereby realizing scanning of the illumination field on the mask 7 in the Y direction.
  • al and bl are the dimensions of the light-transmissive slit in the X and Y directions, respectively, and d4 is the period of the light-transmitting slit in the Y direction.
  • d4>2bl that is, the width of the opaque portion 02 of the flat plate 512 in the scanning direction is larger than the width of the transparent slit T1 of the flat plate 511, so as to ensure that the opaque portion 02 of the 512 can transmit 511 light during scanning.
  • the slit T1 is completely covered.
  • the second slit array 52 is identical to the first slit array 51.
  • the second slit array 52 is matched with the first slit array 51 during scanning as follows: When the flat plate 512 in the first slit array 51 is scanned in the Y direction under the driving of the driving unit 8, the second slit array 52 is not stationary.
  • the illumination field on the mask 7 is scanned in the Y direction, and the second slit array 52 can control the clear aperture by changing the slit size in the X direction to limit the field of view in the X direction; when the first slit array 51 is stationary Without moving, the flat plate 522 in the second slit array 52 is scanned in the Y direction under the driving of the driving unit 8, and the illumination field on the mask 7 is scanned in the Y direction, and the first slit array 51 can be changed by changing the X direction.
  • the slit size controls the clear aperture and limits the field of view in the X direction.
  • FIG. 7 is a third schematic diagram of the field of view defining unit to the second lens array structure.
  • the field of view defining unit is composed of a microlens array 31 and a microlens array 32.
  • the front surface of the microlens array 31 is formed by arranging the microcolumn mirrors 311 of the bus bar in the Y direction in the X direction at a period dl, and the microcylinder mirrors 312 of the rear surface bus bars in the X direction are arranged in the Y direction by the period d2. to make.
  • the front surface of the microlens array 32 is the same as the rear surface of the microlens array 31, and the rear surface of the microlens array 32 is the same as the front surface of the microlens array 31.
  • the first lens array 41 is formed by the single lens 411 in the X direction at a period d3.
  • the light passing diameter of the single lens 411 in the first lens array 41 is the microcolumn mirror light aperture in the field of view defining unit 3. 2 times or more, that is, d3 2dl.
  • the second lens array 42 has the same number and arrangement of lenses as the first lens array 41, the optical axis A of the corresponding lens being parallel to the Z axis, and passing through the center of the corresponding light transmissive slit T1 in the first slit array.
  • the first lens array 41, the second lens array 42, the third lens array 43, and the fourth lens array 44 have the same number of lenses and arrangement, except that the optical axis of the corresponding lens is parallel to the Z axis. And simultaneously passing through the centers of the respective light-transmissive slits in the first slit array and the second slit array.
  • FIG 8 is a third schematic view of the first slit array structure.
  • the first slit array 51 is composed of a flat plate 511 and a flat plate 512, wherein the flat plate 511 includes a plurality of y-direction transparent slits T1 and opaque portions 01 arranged one-dimensionally in the X direction, and the structure and the flat plate of the flat plate 512
  • the 511 is identical, and the control terminal of the tablet 512 is connected to the output of the drive unit 8.
  • the driving unit 8 drives the flat plate 512 to move in the X direction, and the flat plate 511 has a reduced size of the light transmitting slit T1, thereby realizing scanning of the illumination field on the mask 7 in the X direction.
  • the size of the transparent slit T1 along the X and Y directions is al, bl, and the period along the X direction is d3, and the relationship between al and cl is satisfied: d3>2al, that is, the opaque portion 02 in the scanning direction 512
  • the width is greater than the width of the 511 light-transmissive slit T1 to ensure that the opaque portion 02 of the 512 can completely block the 511 light-transmissive slit T1 during scanning.
  • the second slit array 52 is identical to the first slit array 51.
  • Second slit array during scanning 52 is matched with the first slit array 51 as follows: when the flat plate 512 in the first slit array 51 is scanned in the X direction by the driving unit 8, and the second slit array 52 is stationary, the mask 7 is The illumination field is scanned in the X direction, and the second slit array 52 can control the clear aperture by changing the slit size in the Y direction to limit the field of view in the Y direction; when the first slit array 51 is stationary, the second slit array The flat plate 522 of 52 is scanned in the X direction under the driving of the driving unit 8, and the illumination field on the mask 7 is scanned in the X direction. The first slit array 51 can control the clear aperture by changing the slit size in the Y direction, and restricts Y. The size of the field of view.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

一种步进扫描投影光刻机的照明系统,沿光束传播方向,其包括光源(1)、光瞳整形单元(2)、视场定义单元(3)、第一透镜阵列(41)、第一狭缝阵列(51)、第二透镜阵列(42)、第三透镜阵列(43)、第二狭缝阵列(52)、第四透镜阵列(44)、聚光镜(6)和扫描驱动单元(8)。这种照明系统降低了透镜加工、狭缝扫描速度和狭缝扫描精度的要求,更容易实现。

Description

步进扫描投影光刻机的照明系统 技术领域
本发明涉及投影光刻机, 特别是一种步进扫描投影光刻机的照明系统。 技术背景
光学光刻是将掩模板上的图形转移到硅片上的光学曝光过程。 光学光刻按照曝 光方式的不同, 分为接触式光刻、 接近式光刻、 步进重复投影光刻、 步进扫描投影 光刻等。 步进扫描投影光刻能有效地提高芯片的生产率, 已成为主流光刻技术。 照明系统是步进扫描投影光刻机的核心部件之一。 为了将掩模上可能具有的不 同结构的精细图形精确地复制到硅片上,照明系统需要在掩模上形成相干因子可变、 光强分布均匀的照明场, 同时通过扫描实现照明场大小的连续可调。
先技术 [1](参见 Damian Fiolka,Manfred Maul等. Illumination system for a microlithography projection exposure apparatus, US patent 8004656 B2,2011)给出了一种 用于步进扫描投影光刻机的照明系统, 该照明系统主要包括: 光源、 光瞳整形单元、 两组微透镜阵列、 聚光镜组、 扫描狭缝、 照明镜组。 光源出射的光经过光瞳整形单 元变成特定照明模式和相干因子的光束分布, 接着通过微透镜阵列和聚光镜组的勾 光, 在狭缝处形成均匀光场, 最后经照明镜组成像到掩模上。 狭缝与掩模物像共轭, 扫描狭缝可以对掩模上的照明场进行扫描。 该照明系统的结构复杂, 聚光镜组的镜 片口径达到 300mm。 同时要求扫描狭缝具有高的扫描速度, 高达到几百毫米每秒, 甚至几米每秒。
先技术 [2] (参见 Miguel Boutonne, Renaud Mercier Ythier等. Illuminator for a photolithography device, US patent 2009257041A1, 2009)给出了另一种用于步进扫描 投影光刻机的照明系统, 该照明系统包括: 光源、 至少一组微透镜阵列、 微狭缝阵 列、 驱动单元、 聚光镜。 光源出射的光经过微透镜阵列聚焦到微狭缝阵列处, 再经 聚光镜放大叠加到掩模上。 驱动单元驱动微狭缝阵列运动来实现扫描投影光刻。 与 先技术 [1]相比, 该系统对狭缝的扫描速度要求较低, 但仍然存在不足, 因为微狭缝 尺寸小, 扫描时需要高达微米量级甚至亚微米量级的精度。 发明内容 本发明的目的在于克服在先技术的不足, 提出一种步进扫描投影光刻的照明系 统。 该系统降低了对透镜加工难度、 狭缝扫描速度和狭缝扫描精度的要求, 更容易 实现。
本发明的技术解决方案如下- 一种步进扫描投影光刻机的照明系统, 包括光源、 光瞳整形单元、 视场定义单 元、 聚光镜, 特征在于其构成还包括第一透镜阵列、 第一狭缝阵列、 第二透镜阵列、 第三透镜阵列、 第二狭缝阵列、 第四透镜阵列和扫描驱动单元, 所述的第一透镜阵 列、 第二透镜阵列、 第三透镜阵列、 第四透镜阵列均是由多个相同参数的透镜沿一 维或二维空间周期排布而成, 所述的第一透镜阵列、第二透镜阵列、 第三透镜阵列、 第四透镜阵列具有相同的透镜数目和排布方式, 在空间上一一对应, 第一透镜阵列、 第二透镜阵列、 第三透镜阵列、 第四透镜阵列中单个透镜的通光口径大于所述的视 场定义单元中微柱面镜有曲率方向的通光口径的两倍, 沿该光源出射的光方向依次 是光瞳整形单元、 视场定义单元、 第一透镜阵列、 第一狭缝阵列、 第二透镜阵列、 第三透镜阵列、 第二狭缝阵列、 第四透镜阵列、 聚光镜和掩模, 扫描驱动单元的输 出端与所述的第一狭缝阵列、 第二狭缝阵列的控制端相连, 所述的第一透镜阵列的 像方焦平面、 第一狭缝阵列所处的平面和第二透镜阵列的物方焦平面重合, 所述的 第二透镜阵列的像方焦平面与第三透镜阵列的物方焦平面重合, 第三透镜阵列的像 方焦平面、 第二狭缝阵列所处的平面和第四透镜阵列的物方焦平面重合, 第四透镜 阵列的像方焦平面与所述的聚光镜的物方焦平面重合, 所述的光源发出的光束经过 光瞳整形单元变成传统、 环形、 二极或四极照明模式, 视场定义单元对光束进行均 匀化并形成均匀的角度分布, 从视场定义单元出射的光束经过第一透镜阵列汇聚到 第一狭缝阵列处; 第二透镜阵列和第三透镜阵列构成了无焦系统, 将第一狭缝阵列 成像到第二狭缝阵列处; 第四透镜阵列和聚光镜将第二狭缝阵列放大并成像到所述 的掩模上; 所述的扫描驱动单元分别控制第一狭缝阵列中的平板和第二狭缝阵列中 的平板的移动速度与行程, 扫描相应的光场, 所述的扫描驱动单元同步驱动第一狭 缝阵列中的平板和第二狭缝阵列中的平板分别沿 +X和 +Y方向运动时, 掩模 7上照 明场同时沿 +X和 -Y方向扫描。
所述的第一狭缝阵列、 第二狭缝阵列均包含多个透光狭缝和不透光部分, 所述 的第一狭缝阵列、 第二狭缝阵列中透光狭缝的数目等于所述的第一透镜阵列、 第二 透镜阵列、 第三透镜阵列、 第四透镜阵列 (44) 中的透镜的数目; 所述的第一狭缝 阵列 (51 )、 第二狭缝阵列 (52 ) 中透光狭缝的中心与所述的第一透镜阵列 (41 )、 第二透镜阵列 (42)、 第三透镜阵列 (43 )、 第四透镜阵列 (44) 中的透镜光轴一一 对应。
3、根据权利要求 1所述的步进扫描投影光刻机的照明系统, 其特征在于所述的 第一狭缝阵列 (51 ) 和第二狭缝阵列 (52) 为一维狭缝阵列或二维狭缝阵列。 与在先技术相比, 本发明的技术效果如下:
1. 为提高光刻照明的均匀性, 校正各种像差, 在光刻照明系统中经常使用非球 面透镜。 在先技术 [1]中照明系统的单片透镜口径约几百毫米, 组成本照明系统的透 镜阵列的单片透镜尺寸在几个毫米到几个厘米之间, 加工几个毫米到几个厘米的非 球面镜更简单, 本发明的照明系统降低了加工难度, 更易实现。
2. 比在先技术 [1]中板的移动路程至少减小 4倍, 狭缝阵列的扫描速度也减小 4 倍及以上。 比在先技术 [1]中板的移动路程至少增大 1倍, 所需扫描精度比在先技术
[2]中的扫描精度减小一倍以上。 附图说明
图 1为本发明步进扫描投影光刻机的照明系统的结构示意图
图 2为光通过第一透镜阵列、 第二透镜阵列、 第三透镜阵列、 第四透镜阵列的 示意图
图 3为视场定义单元至第二透镜阵列结构之一示意图
图 4为第一狭缝阵列结构之一示意图
图 5为视场定义单元至第二透镜阵列结构之二示意图
图 6为第一狭缝阵列结构之二示意图
图 7为视场定义单元至第二透镜阵列结构之三示意图
图 8为第一狭缝阵列结构之三示意图 具体实施方式
下面结合实施例和附图对本发明作进一步说明, 但不应以此限制本发明的保护 范围。
先请参阅图 1, 图 1 为本发明步进扫描投影光刻机的照明系统的结构示意图。 由图可见, 本发明步进扫描投影光刻机的照明系统包括光源 1、 光瞳整形单元 2、 视 场定义单元 3、 第一透镜阵列 41、 第一狭缝阵列 51、 第二透镜阵列 42、 第三透镜阵 列 43、 第二狭缝阵列 52、 第四透镜阵列 44、 聚光镜 6和扫描驱动单元 8, 其位置关 系是: 光源 1出射的光依次经光瞳整形单元 2、 视场定义单元 3、 第一透镜阵列 41、 第一狭缝阵列 51、 第二透镜阵列 42、 第三透镜阵列 43、 第二狭缝阵列 52、 第四透 镜阵列 44和聚光镜 6后照射到掩模 7上,扫描驱动单元 8的输出端与第一狭缝阵列 51、 第二狭缝阵列 52的控制端连接。 所述的第一透镜阵列 41的像方焦平面、 第一 狭缝阵列 51所处平面以及第二透镜阵列 42的物方焦平面重合,第二透镜阵列 42的 像方焦平面与第三透镜阵列 43的物方焦平面重合,第三透镜阵列 43的像方焦平面、 第二狭缝阵列 52所处平面以及第四透镜阵列 44的物方焦平面重合, 第四透镜阵列 44的像方焦平面与聚光镜 6的物方焦平面重合。
下面将详细阐述各个单元的作用: 光源 1出射的光经过光瞳整形单元 2变成特 定的照明模式。 视场定义单元 3对光束进行均匀化, 并产生特定的角度分布。 从视 场定义单元 3出射的光经过第一透镜阵列 41, 汇聚到第一狭缝阵列 51处; 第二透 镜阵列 42和第三透镜阵列 43构成无焦系统,将第一狭缝阵列 51成像到第二狭缝阵 列 52处; 第四透镜阵列 44和聚光镜 6能将第二狭缝阵列 52放大成像到掩模 7 ±; 第一狭缝阵列 51由两块相同的平板 511和 512重合组成,每块平板都包含透光狭缝 和不透光部分。第二狭缝阵列 52由两块相同的平板 521和 522重合组成, 每块平板 都包含透光狭缝和不透光部分。 驱动单元 8的输出端与平板 512以及平板 522的控 制端连接, 控制平板 512和平板 522的移动速度与行程, 改变第一狭缝阵列 51和第 二狭缝阵列 52的通光尺寸, 扫描相应的光场。 如图 1所示, 扫描驱动单元 8同步驱 动平板 512和平板 522分别沿 +X和 +Y方向运动时,掩模 7上照明场同时沿 +X和 -Y 方向扫描。
图 2为光通过第一透镜阵列 41、 第二透镜阵列 42、 第三透镜阵列 43和第四透 镜阵列 44的示意图。 光线 R经过第一透镜阵列 41和第二透镜阵列 42后发生折射, 分成光线 Rl、 光线 R2和光线 R3 , 光线 Rl、 光线 R2和光线 R3通过第三透镜阵列 43、 第四透镜阵列 44后合并成光线 R4。 两边光线 R1和光线 R2与中间的光线 R3 之间存在空隙 G1和空隙 G2, 光线 R4与光线 R相同, 可见, 如果没有第三透镜阵 列 43和第四透镜阵列 44, 则照明模式与预先设定的不同, 加入第三透镜阵列 43和 第四透镜阵列 44后, 照明模式与预先设定的相同。 根据本发明的原理, 第一透镜阵列 41、 第一狭缝阵列 51、 第二透镜阵列 42、 第三透镜阵列 43、 第二狭缝阵列 52、 第四透镜阵列 44可以同时为二维构成, 也可 以同时为一维构成。
图 3为视场定义单元至第二透镜阵列结构之一示意图。 视场定义单元由第一微 透镜阵列 31和第二微透镜阵列 32组成。 第一微透镜阵列 31的前表面为母线沿 Y 方向的微柱面镜 311沿 X方向以周期 dl排布而成, 后表面母线沿 X方向的微柱面 镜 312沿 Y方向以周期 d2排布而成。第二微透镜阵列 32的前表面与微透镜阵列 31 的后表面相同, 第二微透镜阵列 32的后表面与第一微透镜阵列 31的前表面相同。 第一透镜阵列 41由单片透镜 411二维周期排布构成, X方向周期为 d3, Y方向周期 为 d4。 图 3b是第一狭缝阵列 51的结构示意图, 第一狭缝阵列 51由平板 511、 平板 512构成, 平板 511包含透光狭缝 T1和不透光部分 01, 平板 512与平板 511完全 相同, 平板 512的控制端与驱动单元 8的输出端连接, 具体结构见图 3b。 第二透镜 阵列 42由单片透镜 421二维周期排布构成。 其中, 第一透镜阵列 41的前表面与微 透镜阵列 32后表面的间距 d5<5mm, 以较好的收集光线, 提高光能利用率。 第一透 镜阵列 41 中单片透镜 411的通光口径为视场定义单元 3中微柱面镜有曲率方向的通 光口径的 2倍以上, 即 d3 2dl, d4 2d2。 第二透镜阵列 42与第一透镜阵列 41具 有相同的透镜数目和排布方式, 对应透镜的光轴 A与 Z轴平行, 且通过第一狭缝阵 列中相应的透光狭缝 T1的中心。 除图中所示外, 第一透镜阵列 41、 第二透镜阵列 42、 第三透镜阵列 43、 第四透镜阵列 44都具有相同的透镜数目和排布方式, 对应 透镜的光轴与 Z轴平行, 且同时通过第一狭缝阵列和第二狭缝阵列中相应的透光狭 缝的中心。
图 4为本发明第一狭缝阵列结构之一示意图。第一狭缝阵列 51由平板 511和平 板 512重合组成,其中,平板 511包含多个透光狭缝 T1和不透光部分 01,平板 512 的结构与平板 511完全相同, 平板 511的控制端与驱动单元 8的输出端连接。 扫描 时, 平板 511保持静止, 驱动单元 8驱动平板 512沿 X或 y方向运动, 平板 511透 光狭缝 T1的尺寸减小, 从而实现对掩模 7上的照明场的扫描。 其中 al、 bl分别为 平板 511透光狭缝沿 X方向的尺寸和 Y方向的尺寸, d3、 d4分别为平板 511的 X 方向的周期和 Y方向的周期。 它们需满足关系: d3>2al , d4>2bl , 以保证在扫描 过程中 512的不透光部分 02能将 511的透光狭缝 T1完全遮住。 第二狭缝阵列 52 与第一狭缝阵列 51相同, 第一狭缝阵列 51和第二狭缝阵列 52的配合如下: 第一狭 缝阵列 51中的平板 512在驱动单元 8的驱动下沿 Y方向扫描, 第二狭缝阵列 52静 止不动, 则掩模 7上的照明场沿 Υ方向扫描; 第一狭缝阵列 51中的平板 512在驱 动单元 8的驱动下沿 Υ方向扫描, 第二狭缝阵列 52中的平板 522在驱动单元 8的 驱动下沿 X方向扫描,则掩模 7上的照明场同时沿 X和 Υ方向扫描。第一狭缝阵列 51和第二狭缝阵列 52有多种组合方式, 不限于上面列出的两种组合。 第一狭缝阵 列 51、 第二狭缝阵列 52中透光狭缝的中心与第一透镜阵列 41、 第二透镜阵列 42、 第三透镜阵列 43、 第四透镜阵列 44中的透镜光轴一一对应。
根据本发明的原理, 第一透镜阵列 41、 第一狭缝阵列 51、 第二透镜阵列 42、 第三透镜阵列 43、 第二狭缝阵列 52、 第四透镜阵列 44也可以同时为一维构成。
图 5为视场定义单元至第二透镜阵列结构之二示意图。 视场定义单元由微透镜 阵列 31和微透镜阵列 32组成。 微透镜阵列 31的前表面为母线沿 Υ方向的微柱面 镜 311沿 X方向以周期 dl排布而成, 后表面母线沿 X方向的微柱面镜 312沿 Y方 向以周期 d2排布而成。微透镜阵列 32的前表面与微透镜阵列 31的后表面相同, 微 透镜阵列 32的后表面与微透镜阵列 31的前表面相同。第一透镜阵列 41是由单片透 镜 411沿 Y方向以周期 d4排布而成,第一透镜阵列 41 中单片透镜 411的通光口径 为视场定义单元 3中微柱面镜有曲率方向的通光口径的 2倍及以上, 即 d4 2d2。 第一狭缝阵列 51由平板 511、 平板 512构成, 平板 511包含多个一维排列的透光狭 缝 T1和不透光部分 01, 平板 512与平板 511完全相同, 平板 512的控制端与驱动 单元 8的输出端连接。 第二透镜阵列 42与第一透镜阵列 41具有相同的透镜数目和 排布方式, 且对应透镜的光轴 A与 Z轴平行, 且通过第一狭缝阵列中相应的透光狭 缝 T1的中心。 除图中所示外, 第一透镜阵列 41、 第二透镜阵列 42、 第三透镜阵列 43、第四透镜阵列 44都具有相同的透镜数目和排布方式,且对应透镜的光轴与 Z轴 平行, 且同时通过第一狭缝阵列和第二狭缝阵列中相应的透光狭缝的中心。
图 6为第一狭缝阵列结构之二示意图。 第一狭缝阵列 51由平板 511和平板 512 重合组成,其中,平板 511包含沿 y方向一维排列的多个 X方向的透光狭缝 T1和不 透光部分 01含多个一维排列的透光狭缝 T1和不透光部分 01 , 平板 512的结构与 平板 511完全相同, 平板 512的控制端与驱动单元 8的输出端连接。 扫描时, 平板 511保持静止, 驱动单元 8驱动平板 512沿 y方向运动, 第一狭缝阵列 51透光狭缝 尺寸减小, 从而实现对掩模 7上的照明场沿 Y方向的扫描。 图中, al、 bl分别为透 光狭缝沿 X和 Y方向的尺寸, d4为透光狭缝沿 Y方向的周期。 d4和 bl之间需满足 关系式: d4>2bl, 即沿扫描方向平板 512不透光部分 02的宽度大于平板 511透光 狭缝 T1的宽度, 以保证在扫描过程中 512的不透光部分 02可以将 511的透光狭缝 T1完全遮住。 第二狭缝阵列 52与第一狭缝阵列 51完全相同。 扫描时第二狭缝阵列 52与第一狭缝阵列 51的配合如下: 当第一狭缝阵列 51中的平板 512在驱动单元 8 的驱动下沿 Y方向扫描, 第二狭缝阵列 52静止不动, 则掩模 7上的照明场沿 Y方 向扫描, 第二狭缝阵列 52可以通过改变 X方向狭缝大小控制通光孔径, 限制 X方 向的视场大小; 当第一狭缝阵列 51静止不动, 第二狭缝阵列 52中的平板 522在驱 动单元 8的驱动下沿 Y方向扫描, 则掩模 7上的照明场沿 Y方向扫描, 第一狭缝阵 列 51可以通过改变 X方向狭缝大小控制通光孔径, 限制 X方向的视场大小。
图 7为视场定义单元至第二透镜阵列结构之三示意图。 视场定义单元由微透镜 阵列 31和微透镜阵列 32组成。 微透镜阵列 31的前表面为母线沿 Y方向的微柱面 镜 311沿 X方向以周期 dl排布而成, 后表面母线沿 X方向的微柱面镜 312沿 Y方 向以周期 d2排布而成。微透镜阵列 32的前表面与微透镜阵列 31的后表面相同, 微 透镜阵列 32的后表面与微透镜阵列 31的前表面相同。第一透镜阵列 41是由单片透 镜 411沿 X方向以周期 d3排布而成, 第一透镜阵列 41 中单片透镜 411的通光口径 为视场定义单元 3中微柱面镜通光口径的 2倍及以上, 即 d3 2dl。 第二透镜阵列 42与第一透镜阵列 41具有相同的透镜数目和排布方式, 对应透镜的光轴 A与 Z轴 平行, 且通过第一狭缝阵列中相应的透光狭缝 T1的中心。 除图中所示外, 第一透镜 阵列 41、 第二透镜阵列 42、 第三透镜阵列 43、 第四透镜阵列 44都具有相同的透镜 数目和排布方式, 对应透镜的光轴与 Z轴平行, 且同时通过第一狭缝阵列和第二狭 缝阵列中相应的透光狭缝的中心。
图 8为第一狭缝阵列结构之三示意图。 第一狭缝阵列 51由平板 511和平板 512 重合组成, 其中,平板 511包含沿 X方向一维排列的多个 y方向的透光狭缝 T1和不 透光部分 01, 平板 512的结构与平板 511完全相同, 平板 512的控制端与驱动单元 8的输出端连接。 扫描时, 平板 511保持静止, 驱动单元 8驱动平板 512沿 X方向 运动, 平板 511透光狭缝 T1尺寸减小, 从而实现对掩模 7上的照明场沿 X方向的 扫描。 透光狭缝 T1沿 X和 Y方向的尺寸为 al、 bl, 沿 X方向的周期为 d3, al和 cl之间需满足关系式: d3>2al , 即沿扫描方向 512不透光部分 02的宽度大于 511 透光狭缝 T1的宽度, 以保证在扫描过程中 512的不透光部分 02能将 511透光狭缝 T1完全遮住。 第二狭缝阵列 52与第一狭缝阵列 51完全相同。 扫描时第二狭缝阵列 52与第一狭缝阵列 51的配合如下: 当第一狭缝阵列 51中的平板 512在驱动单元 8 驱动下沿 X方向扫描, 第二狭缝阵列 52静止不动, 则掩模 7上的照明场沿 X方向 扫描, 第二狭缝阵列 52可以通过改变 Y方向狭缝大小控制通光孔径, 限制 Y方向 的视场大小; 当第一狭缝阵列 51静止不动, 第二狭缝阵列 52中的平板 522在驱动 单元 8驱动下沿 X方向扫描,则掩模 7上的照明场沿 X方向扫描,第一狭缝阵列 51 可以通过改变 Y方向狭缝大小控制通光孔径, 限制 Y方向的视场大小。

Claims

权 利 要 求 书
1、 一种步进扫描投影光刻机的照明系统, 包括光源 (1)、 光瞳整形单元 (2)、 视场定义单元(3)、 聚光镜(6), 特征在于其构成还包括第一透镜阵列 (41)、 第一 狭缝阵列 (51)、 第二透镜阵列 (42)、 第三透镜阵列 (43)、 第二狭缝阵列 (52)、 第四透镜阵列 (44) 和扫描驱动单元 (8), 所述的视场定义单元由第一微透镜阵列
(31) 和第二微透镜阵列 (32) 组成, 第一微透镜阵列 (31) 的前表面为母线沿 Y 方向的微柱面镜(311)沿 X方向以周期 dl排布而成, 后表面母线沿 X方向的微柱 面镜 (312) 沿 Y方向以周期 d2排布而成, 第二微透镜阵列 (32) 的前表面与第一 微透镜阵列 (31) 的后表面相同, 第二微透镜阵列 (32) 的后表面与第一微透镜阵 列 (31) 的前表面相同; 所述的第一透镜阵列 (41)、 第二透镜阵列 (42)、 第三透 镜阵列 (43)、 第四透镜阵列 (44)均是由多个相同参数的透镜沿一维或二维空间周 期排布而成, 所述的第一透镜阵列(41)、第二透镜阵列(42)、第三透镜阵列(43)、 第四透镜阵列 (44) 具有相同的透镜数目和排布方式, 在空间上一一对应, 第一透 镜阵列 (41)、 第二透镜阵列 (42)、 第三透镜阵列 (43)、 第四透镜阵列 (44) 中单 个透镜的通光口径大于所述的视场定义单元(3)中微柱面镜有曲率方向的通光口径 的两倍, 沿该光源(1)出射的光方向依次是光瞳整形单元(2)、视场定义单元(3)、 第一透镜阵列(41)、第一狭缝阵列(51)、第二透镜阵列(42)、第三透镜阵列(43)、 第二狭缝阵列 (52)、 第四透镜阵列 (44)、 聚光镜 (6)和掩模 (7), 扫描驱动单元
(8) 的输出端与所述的第一狭缝阵列 (51)、 第二狭缝阵列 (52) 的控制端相连, 所述的第一透镜阵列 (41) 的像方焦平面、 第一狭缝阵列 (51) 所处的平面和第二 透镜阵列 (42) 的物方焦平面重合, 所述的第二透镜阵列 (42) 的像方焦平面与第 三透镜阵列 (43) 的物方焦平面重合, 第三透镜阵列 (43) 的像方焦平面、 第二狭 缝阵列 (52) 所处的平面和第四透镜阵列 (44) 的物方焦平面重合, 第四透镜阵列
(44) 的像方焦平面与所述的聚光镜 (6) 的物方焦平面重合, 所述的光源 (1) 发 出的光束经过光瞳整形单元(2)变成传统、 环形、 二极或四极照明模式, 视场定义 单元 (3) 对光束进行均匀化并形成均匀的角度分布, 从视场定义单元 (3) 出射的 光束经过第一透镜阵列 (41)汇聚到第一狭缝阵列 (51) 处; 第二透镜阵列 (42) 和第三透镜阵列 (43) 构成了无焦系统, 将第一狭缝阵列 (51) 成像到第二狭缝阵 列 (52) 处; 第四透镜阵列 (44)和聚光镜 (6)将第二狭缝阵列 (52) 放大并成像 到所述的掩模 (7) 上; 所述的扫描驱动单元 (8) 分别控制第一狭缝阵列 (51 ) 中 的平板 (512) 和第二狭缝阵列 (52) 中的平板 (522) 的移动速度与行程, 扫描相 应的光场, 所述的扫描驱动单元(8) 同步驱动第一狭缝阵列 (51 ) 中的平板(512) 和第二狭缝阵列(52) 中的平板(522)分别沿 +X和 +Y方向运动时, 掩模 7上照明 场同时沿 +X和 -Y方向扫描。
2、根据权利要求 1所述的步进扫描投影光刻机的照明系统, 其特征在于所述的 第一狭缝阵列 (51 )、 第二狭缝阵列 (52)均包含多个透光狭缝和不透光部分, 所述 的第一狭缝阵列(51 )、 第二狭缝阵列(52) 中透光狭缝的数目等于所述的第一透镜 阵列 (41 )、 第二透镜阵列 (42)、 第三透镜阵列 (43 )、 第四透镜阵列 (44) 中的透 镜的数目; 所述的第一狭缝阵列(51 )、 第二狭缝阵列 (52) 中透光狭缝的中心与所 述的第一透镜阵列 (41 )、 第二透镜阵列 (42)、 第三透镜阵列 (43 )、 第四透镜阵列
(44) 中的透镜光轴一一对应。
3、根据权利要求 1所述的步进扫描投影光刻机的照明系统, 其特征在于所述的 第一狭缝阵列 (51 ) 和第二狭缝阵列 (52) 为一维狭缝阵列或二维狭缝阵列。
PCT/CN2013/001005 2013-07-01 2013-08-26 步进扫描投影光刻机的照明系统 WO2015000097A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13888527.2A EP3018533B1 (en) 2013-07-01 2013-08-26 Lighting system of step-and-scan projection mask aligner
US14/984,891 US9709896B2 (en) 2013-07-01 2015-12-30 Illumination system for lithographic projection exposure step-and-scan apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310270245.1 2013-07-01
CN201310270245.1A CN103412465B (zh) 2013-07-01 2013-07-01 步进扫描投影光刻机的照明系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/984,891 Continuation US9709896B2 (en) 2013-07-01 2015-12-30 Illumination system for lithographic projection exposure step-and-scan apparatus

Publications (1)

Publication Number Publication Date
WO2015000097A1 true WO2015000097A1 (zh) 2015-01-08

Family

ID=49605491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/001005 WO2015000097A1 (zh) 2013-07-01 2013-08-26 步进扫描投影光刻机的照明系统

Country Status (4)

Country Link
US (1) US9709896B2 (zh)
EP (1) EP3018533B1 (zh)
CN (1) CN103412465B (zh)
WO (1) WO2015000097A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103092006B (zh) * 2013-01-25 2015-02-18 中国科学院上海光学精密机械研究所 光刻照明系统
CN103309175B (zh) * 2013-06-07 2015-06-17 中国科学院上海光学精密机械研究所 光刻机照明系统的级联微透镜阵列的对准装置和对准方法
CN104865801B (zh) * 2015-06-01 2017-03-01 京东方科技集团股份有限公司 曝光装置
CN105589300A (zh) * 2016-01-07 2016-05-18 中国科学院上海光学精密机械研究所 一种光刻照明系统
DE102016119880A1 (de) * 2016-10-19 2018-04-19 HELLA GmbH & Co. KGaA Beleuchtungsvorrichtung für Fahrzeuge
KR20200080838A (ko) * 2018-12-27 2020-07-07 에스엘 주식회사 차량용 램프
CN109975258A (zh) * 2019-03-25 2019-07-05 武汉理工大学 一种信号增强的微流控检测系统
CN111939485B (zh) * 2020-07-31 2022-06-07 西安炬光科技股份有限公司 一种激光点阵系统、激光点阵治疗仪

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002217085A (ja) * 2001-01-15 2002-08-02 Canon Inc 照明装置及びこれを用いる投影露光装置
US20070146853A1 (en) * 2005-11-10 2007-06-28 Carl Zeiss Smt Ag Optical device with raster elements, and illumination system with the optical device
CN101165594A (zh) * 2006-10-18 2008-04-23 上海微电子装备有限公司 一种用于微光刻的照明光学系统
CN101174093A (zh) * 2006-11-03 2008-05-07 上海微电子装备有限公司 一种光刻照明系统
US20090257041A1 (en) 2005-09-05 2009-10-15 Sagem Defense Securite Illuminator for a Photolithography Device
US8004656B2 (en) 2004-02-17 2011-08-23 Carl Zeiss Smt Gmbh Illumination system for a microlithographic projection exposure apparatus
CN103092006A (zh) * 2013-01-25 2013-05-08 中国科学院上海光学精密机械研究所 光刻照明系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5857042A (en) * 1997-04-29 1999-01-05 Mcgill University Optical interconnection arrangements
DE10344010A1 (de) * 2003-09-15 2005-04-07 Carl Zeiss Smt Ag Wabenkondensor und Beleuchtungssystem damit
WO2005103826A1 (en) * 2004-04-23 2005-11-03 Carl Zeiss Smt Ag Illumination system for a microlithographic projection exposure apparatus
US20080013182A1 (en) * 2006-07-17 2008-01-17 Joerg Ferber Two-stage laser-beam homogenizer
JP2008083576A (ja) * 2006-09-28 2008-04-10 Oki Data Corp レンズアレイ、露光装置、画像形成装置及び読取装置
JP2008124149A (ja) * 2006-11-09 2008-05-29 Advanced Lcd Technologies Development Center Co Ltd 光学装置および結晶化装置
EP2238513B1 (en) * 2007-12-21 2011-11-02 Carl Zeiss SMT GmbH Illumination method
EP2073061A3 (de) * 2007-12-22 2011-02-23 LIMO Patentverwaltung GmbH & Co. KG Vorrichtung zur Ausleuchtung einer Fläche sowie Vorrichtung zur Beaufschlagung eines Arbeitsbereichs mit Licht
JP5567911B2 (ja) * 2009-06-25 2014-08-06 オリンパス株式会社 照明光学系及びそれを用いた蛍光顕微鏡
JP2011216863A (ja) * 2010-03-17 2011-10-27 Hitachi Via Mechanics Ltd ビームサイズ可変照明光学装置及びビームサイズ変更方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002217085A (ja) * 2001-01-15 2002-08-02 Canon Inc 照明装置及びこれを用いる投影露光装置
US8004656B2 (en) 2004-02-17 2011-08-23 Carl Zeiss Smt Gmbh Illumination system for a microlithographic projection exposure apparatus
US20090257041A1 (en) 2005-09-05 2009-10-15 Sagem Defense Securite Illuminator for a Photolithography Device
US20070146853A1 (en) * 2005-11-10 2007-06-28 Carl Zeiss Smt Ag Optical device with raster elements, and illumination system with the optical device
CN101165594A (zh) * 2006-10-18 2008-04-23 上海微电子装备有限公司 一种用于微光刻的照明光学系统
CN101174093A (zh) * 2006-11-03 2008-05-07 上海微电子装备有限公司 一种光刻照明系统
CN103092006A (zh) * 2013-01-25 2013-05-08 中国科学院上海光学精密机械研究所 光刻照明系统

Also Published As

Publication number Publication date
EP3018533B1 (en) 2018-03-07
US9709896B2 (en) 2017-07-18
US20160109808A1 (en) 2016-04-21
CN103412465B (zh) 2015-04-15
EP3018533A1 (en) 2016-05-11
CN103412465A (zh) 2013-11-27
EP3018533A4 (en) 2017-06-21

Similar Documents

Publication Publication Date Title
WO2015000097A1 (zh) 步进扫描投影光刻机的照明系统
US8508717B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
US7471456B2 (en) Optical integrator, illumination optical device, exposure device, and exposure method
US7706072B2 (en) Optical integrator, illumination optical device, photolithograph, photolithography, and method for fabricating device
US9195069B2 (en) Illumination optical apparatus, exposure apparatus, and device manufacturing method
EP2950145B1 (en) Illumination system for lithography
JP5459571B2 (ja) オプティカルインテグレータ系、照明光学装置、露光装置、およびデバイス製造方法
CN108803244B (zh) 照明装置及照明方法和一种光刻机
CN104460242B (zh) 一种基于自由曲面式光阑复眼的极紫外光刻照明系统
CN102903413A (zh) 一种在小尺寸背光下工作的四通道kb显微成像系统
CN102368138A (zh) 一种大面积tft光刻装置及其光刻方法
CN202306140U (zh) 一种大面积tft光刻装置
US8520188B2 (en) Illumination apparatus for efficiently gathering illumination light
TWI611273B (zh) 曝光裝置
US10459343B2 (en) Illumination device
CN103092000A (zh) 极紫外光刻复眼匀光离轴照明系统及实现离轴照明的方法
JP2003015314A (ja) 照明光学装置および該照明光学装置を備えた露光装置
JPH11231549A (ja) 走査型露光装置および露光方法
WO2024038533A1 (ja) 光源ユニット、照明ユニット、露光装置、及び露光方法
JP2010283101A (ja) 偏光子ユニット、照明光学系、露光装置、およびデバイス製造方法
KR20140108149A (ko) 조명 광학계, 노광 장치 및 디바이스의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013888527

Country of ref document: EP