JP2010283101A - 偏光子ユニット、照明光学系、露光装置、およびデバイス製造方法 - Google Patents

偏光子ユニット、照明光学系、露光装置、およびデバイス製造方法 Download PDF

Info

Publication number
JP2010283101A
JP2010283101A JP2009134649A JP2009134649A JP2010283101A JP 2010283101 A JP2010283101 A JP 2010283101A JP 2009134649 A JP2009134649 A JP 2009134649A JP 2009134649 A JP2009134649 A JP 2009134649A JP 2010283101 A JP2010283101 A JP 2010283101A
Authority
JP
Japan
Prior art keywords
optical system
illumination
polarizer
light
polarization state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009134649A
Other languages
English (en)
Inventor
Osamu Tanitsu
修 谷津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2009134649A priority Critical patent/JP2010283101A/ja
Publication of JP2010283101A publication Critical patent/JP2010283101A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 照明光学系の瞳強度分布の形状または偏光状態を切り換えても、所望の偏光状態から変化した偏光状態で入射した光を所望の偏光状態に近づけて射出する偏光子ユニット。
【解決手段】 偏光子ユニット(13)は、光源からの光により被照射面を照明する照明光学系に用いられて、入射光束の偏光状態を所要の偏光状態に変えて射出する。偏光子ユニットは、照明光学系の照明瞳面またはその近傍に並列配置された複数の偏光子(13a〜13d)を備えている。複数の偏光子のそれぞれは、位置および姿勢のうちの少なくとも一方が可変に構成されている。
【選択図】 図5

Description

本発明は、偏光子ユニット、照明光学系、露光装置、およびデバイス製造方法に関する。さらに詳細には、本発明は、例えば半導体素子、撮像素子、液晶表示素子、薄膜磁気ヘッド等のデバイスをリソグラフィー工程で製造するための露光装置に好適な照明光学系に関するものである。
この種の典型的な露光装置においては、光源から射出された光が、オプティカルインテグレータとしてのフライアイレンズを介して、多数の光源からなる実質的な面光源としての二次光源を形成する。二次光源(一般には、照明光学系の照明瞳またはその近傍に形成される光強度分布、すなわち瞳強度分布)からの光は、コンデンサー光学系により集光された後、所定のパターンが形成されたマスクを重畳的に照明する。マスクを透過した光は投影光学系を介してウェハ(感光性基板)上に結像し、ウェハ上にはマスクパターンが投影露光(転写)される。マスクに形成されたパターンは高集積化されており、この微細パターンをウェハ上に正確に転写するにはウェハ上において均一な照度分布を得ることが不可欠である。
近年、任意方向の微細パターンを忠実に転写するのに適した照明条件を実現するために、フライアイレンズの後側焦点面またはその近傍の照明瞳に、例えば輪帯状や複数極状(2極状、4極状など)の二次光源(輪帯状や複数極状の瞳強度分布)を形成し、この二次光源を通過する光束がその周方向を偏光方向とする直線偏光状態(以下、略して「周方向偏光状態」という)になるように設定する技術が提案されている(例えば、特許文献1を参照)。この技術では、波長板を用いて直線偏光状態を生成した後に、複数の旋光部材を含む偏光変換素子を用いて周方向偏光状態を生成している。
国際公開第2005/076045号パンフレット
特許文献1に記載された従来技術では、照明光学系の比較的上流側に配置された波長板と偏光変換素子との協働作用により、偏光変換素子の直後において所望の周方向偏光状態が生成される。しかしながら、偏光変換素子よりも下流側の光路中に配置されて光の偏光状態を変化させる光学素子の影響により、感光性基板上では所望の周方向偏光状態で光が結像しなくなり、ひいてはマスクのパターン像を所要のコントラストで感光性基板上に形成することが困難である。
本発明は、前述の課題に鑑みてなされたものであり、照明光学系の瞳強度分布の形状または偏光状態を切り換えても、所望の偏光状態から変化した偏光状態で入射した光を所望の偏光状態に近づけて射出することのできる偏光子ユニットを提供することを目的とする。また、本発明は、照明光学系の瞳強度分布の形状または偏光状態を切り換えても、所望の偏光状態から変化した偏光状態で入射した光を所望の偏光状態に近づけて射出する偏光子ユニットを用いて、所要の偏光状態の光で被照射面を照明することのできる照明光学系を提供することを目的とする。また、本発明は、所要の偏光状態の光で被照射面のパターンを照明する照明光学系を用いて、所要の偏光状態でパターンを感光性基板上に結像させることのできる露光装置を提供することを目的とする。
前記課題を解決するために、本発明の第1形態では、光源からの光により被照射面を照明する照明光学系に用いられて、入射光束の偏光状態を所要の偏光状態に変えて射出する偏光子ユニットであって、
前記照明光学系の照明瞳面またはその近傍に並列配置された複数の偏光子を備え、
前記複数の偏光子のそれぞれは、位置および姿勢のうちの少なくとも一方が可変に構成されていることを特徴とする偏光子ユニットを提供する。
本発明の第2形態では、光源からの光により被照射面を照明する照明光学系において、
前記照明光学系の照明瞳面またはその近傍に配置された第1形態の偏光子ユニットを備えていることを特徴とする照明光学系を提供する。
本発明の第3形態では、光源からの光により被照射面を照明する照明光学系において、前記光源からの光の進行方向を偏向させる少なくとも1つの光路折り曲げミラーと、前記少なくとも1つの光路折り曲げミラーのうち最も前記被照射面側に配置される光路折り曲げミラーと前記被照射面との間の光路中に配置される偏光子と、を備えていることを特徴とする照明光学系を提供する。本発明の第4形態では、所定のパターンを照明するための第2形態または第3形態の照明光学系を備え、前記所定のパターンを感光性基板に露光することを特徴とする露光装置を提供する。
本発明の第5形態では、第4形態の露光装置を用いて、前記所定のパターンを前記感光性基板に露光する露光工程と、
前記所定のパターンが転写された前記感光性基板を現像し、前記所定のパターンに対応する形状のマスク層を前記感光性基板の表面に形成する現像工程と、
前記マスク層を介して前記感光性基板の表面を加工する加工工程とを含むことを特徴とするデバイス製造方法を提供する。
本発明の偏光子ユニットは、照明光学系の照明瞳面またはその近傍に並列配置されて位置または姿勢が可変に構成された複数の偏光子を備えている。したがって、前側に配置された光学素子などに起因して所望の偏光状態から変化した偏光状態の光が入射しても、所要の位置に所要の姿勢で配置された複数の偏光子の作用により、入射光を所望の偏光状態に近づけて射出することができる。また、照明光学系の瞳強度分布の形状または偏光状態を切り換えても、複数の偏光子の位置または姿勢を変更することにより、入射光を所望の偏光状態に近づけて射出することができる。
すなわち、本発明の偏光子ユニットでは、照明光学系の瞳強度分布の形状または偏光状態を切り換えても、所望の偏光状態から変化した偏光状態で入射した光を所望の偏光状態に近づけて射出することができる。また、本発明の第2形態にかかる照明光学系では、照明光学系の瞳強度分布の形状または偏光状態を切り換えても、所望の偏光状態から変化した偏光状態で入射した光を所望の偏光状態に近づけて射出する偏光子ユニットを用いて、所要の偏光状態の光で被照射面を照明することができる。
また、本発明の第3形態にかかる照明光学系では、光の偏光状態に影響を及ぼす光学部材の被照射面側に偏光子を配置することによって、所要の偏光状態の光で被照射面を照明することができる。
また、本発明の露光装置では、所要の偏光状態の光で被照射面のパターンを照明する照明光学系を用いて、所要の偏光状態でパターンを感光性基板上に結像させることができ、ひいては良好なデバイスを製造することができる。
本発明の実施形態にかかる露光装置の構成を概略的に示す図である。 図1の偏光変換素子の構成を概略的に示す図である。 周方向偏光状態に設定された十字型4極状の二次光源を概略的に示す図である。 水晶の旋光性について説明する図である。 本実施形態の偏光子ユニットの構成を概略的に示す図であって、複数の偏光子が第1状態に設定された偏光子ユニットを示している。 径方向偏光状態に設定された十字型4極状の二次光源を概略的に示す図である。 図6の二次光源に対応して第2状態に設定された偏光子ユニットを示す図である。 径方向偏光状態に設定されたX字型4極状の二次光源を概略的に示す図である。 図8の二次光源に対応して第3状態に設定された偏光子ユニットを示す図である。 偏光子ユニットを第1状態から第4状態へ変更させる変形例を示す図である。 偏光子ユニットを第1状態から第3状態へ変更させる変形例を示す図である。 ブリュースター角を利用した偏光子の構成を概略的に示す図である。 半導体デバイスの製造工程を示すフローチャートである。 液晶表示素子等の液晶デバイスの製造工程を示すフローチャートである。
本発明の実施形態を、添付図面に基づいて説明する。図1は、本発明の実施形態にかかる露光装置の構成を概略的に示す図である。図1において、感光性基板であるウェハWの転写面の法線方向に沿ってZ軸を、ウェハWの転写面内において図1の紙面に平行な方向にY軸を、ウェハWの転写面内において図1の紙面に垂直な方向にX軸をそれぞれ設定している。図1を参照すると、本実施形態の露光装置では、光源1から露光光(照明光)が供給される。
光源1として、例えば193nmの波長の光を供給するArFエキシマレーザ光源や248nmの波長の光を供給するKrFエキシマレーザ光源などを用いることができる。光源1から射出された光束は、整形光学系2、光路折り曲げミラーPM1、偏光状態切換系3、および回折光学素子4を介して、アフォーカルレンズ5に入射する。整形光学系2は、光源1からのほぼ平行な光束を所定の矩形状の断面を有する光束に変換して偏光状態切換系3へ導く機能を有する。
偏光状態切換系3は、光源側から順に、光軸AXを中心として結晶光学軸が回転自在に構成されて入射する楕円偏光の光を直線偏光の光に変換する1/4波長板3aと、光軸AXを中心として結晶光学軸が回転自在に構成されて入射する直線偏光の偏光方向を変化させる1/2波長板3bと、照明光路に対して挿脱自在なデポラライザ(非偏光化素子)3cとを備えている。偏光状態切換系3は、デポラライザ3cを照明光路から退避させた状態で、光源1からの光を所望の偏光方向を有する直線偏光の光に変換して回折光学素子4へ入射させる機能を有する。
また、偏光状態切換系3は、デポラライザ3cを照明光路中に設定した状態で、光源1からの光を実質的に非偏光の光に変換して回折光学素子4へ入射させる機能を有する。アフォーカルレンズ5は前側レンズ群5aと後側レンズ群5bとからなり、前側レンズ群5aの前側焦点位置と回折光学素子4の位置とがほぼ一致し且つ後側レンズ群5bの後側焦点位置と図中破線で示す所定面IPの位置とがほぼ一致するように設定されたアフォーカル系(無焦点光学系)である。
一般に、回折光学素子は、基板に露光光(照明光)の波長程度のピッチを有する段差を形成することによって構成され、入射ビームを所望の角度に回折する作用を有する。回折光学素子4は、照明光路に対して挿脱自在であり、特性の異なる他の回折光学素子と切り換え可能に構成されている。以下、説明の理解を容易にするために、照明光路中には4極照明用の回折光学素子が配置されているものとする。
4極照明用の回折光学素子4は、矩形状の断面を有する平行光束が入射した場合に、そのファーフィールド(またはフラウンホーファー回折領域)に4極状の光強度分布を形成する機能を有する。したがって、回折光学素子4に入射したほぼ平行光束は、アフォーカルレンズ5の瞳面に4極状の光強度分布を形成した後、ほぼ平行光束となってアフォーカルレンズ5から射出される。アフォーカルレンズ5の瞳面またはその近傍には、偏光変換素子6および円錐アキシコン系7が配置されている。偏光変換素子6および円錐アキシコン系7の構成および作用については後述する。
アフォーカルレンズ5を介した光は、σ値(σ値=照明光学系のマスク側開口数/投影光学系のマスク側開口数)可変用のズームレンズ8を介して、オプティカルインテグレータとしてのマイクロフライアイレンズ(またはフライアイレンズ)9に入射する。マイクロフライアイレンズ9は、縦横に且つ稠密に配列された多数の正屈折力を有する微小レンズからなる光学素子である。一般に、マイクロフライアイレンズは、たとえば平行平面板にエッチング処理を施して微小レンズ群を形成することによって構成される。ここで、マイクロフライアイレンズを構成する各微小レンズは、フライアイレンズを構成する各レンズエレメントよりも微小である。
また、マイクロフライアイレンズは、互いに隔絶されたレンズエレメントからなるフライアイレンズとは異なり、多数の微小レンズ(微小屈折面)が互いに隔絶されることなく一体的に形成されている。しかしながら、正屈折力を有するレンズ要素が縦横に配置されている点でマイクロフライアイレンズはフライアイレンズと同じ波面分割型のオプティカルインテグレータである。なお、マイクロフライアイレンズ9として、例えばシリンドリカルマイクロフライアイレンズを用いることもできる。シリンドリカルマイクロフライアイレンズの構成および作用は、例えば米国特許第6913373号公報に開示されている。
所定面IPの位置はズームレンズ8の前側焦点位置の近傍に配置され、マイクロフライアイレンズ9の入射面はズームレンズ8の後側焦点位置の近傍に配置されている。換言すると、ズームレンズ8は、所定面IPとマイクロフライアイレンズ9の入射面とを実質的にフーリエ変換の関係に配置し、ひいてはアフォーカルレンズ5の瞳面とマイクロフライアイレンズ9の入射面とを光学的にほぼ共役に配置している。
したがって、マイクロフライアイレンズ9の入射面上には、アフォーカルレンズ5の瞳面と同様に、たとえば光軸AXを中心とした4極状の照野が形成される。この4極状の照野の全体形状は、ズームレンズ8の焦点距離に依存して相似的に変化する。マイクロフライアイレンズ9に入射した光束は多数の微小レンズにより二次元的に分割され、その後側焦点面またはその近傍の照明瞳には、入射光束によって形成される照野とほぼ同じ光強度分布を有する二次光源、例えば光軸AXを中心とした4つの円形状の実質的な面光源からなる4極状の二次光源(瞳強度分布)が形成される。
マイクロフライアイレンズ9の後側焦点面またはその近傍には、必要に応じて、4極状の二次光源に対応した4極状の開口部(光透過部)を有する照明開口絞りが配置されている。照明開口絞りは、照明光路に対して挿脱自在に構成され、且つ大きさおよび形状の異なる開口部を有する複数の開口絞りと切り換え可能に構成されている。開口絞りの切り換え方式として、たとえば周知のターレット方式やスライド方式などを用いることができる。照明開口絞りは、投影光学系PLの入射瞳面と光学的にほぼ共役な位置に配置され、二次光源の照明に寄与する範囲を規定する。
マイクロフライアイレンズ9を経た光は、コンデンサー光学系10を介して、マスクブラインド11を重畳的に照明する。こうして、照明視野絞りとしてのマスクブラインド11には、マイクロフライアイレンズ8の微小レンズの形状と焦点距離とに応じた矩形状の照野が形成される。マスクブラインド11の矩形状の開口部(光透過部)を経た光は、前側レンズ群12aと後側レンズ群12bとからなる結像光学系12により集光され、所定のパターンが形成されたマスクMを重畳的に照明する。
すなわち、結像光学系12は、マスクブラインド11の矩形状開口部の像をマスクM上に形成することになる。結像光学系12の瞳面またはその近傍には偏光子ユニット13が配置され、結像光学系12の前側レンズ群12aと偏光子ユニット13との間の光路中には光路折り曲げミラーPM2が配置されている。結像光学系12の瞳面はマイクロフライアイレンズ9の後側焦点面またはその近傍の照明瞳面と光学的に共役な位置にある別の照明瞳面であり、結像光学系12の瞳面またはその近傍の照明瞳面にも4極状の瞳強度分布が形成される。偏光子ユニット13の構成および作用については後述する。
マスクステージMS上に保持されたマスクMには、転写すべきパターンが形成されている。マスクMのパターンを透過した光は、投影光学系PLを介して、ウェハステージWS上に保持されたウェハ(感光性基板)W上にマスクパターンの像を形成する。こうして、投影光学系PLの光軸AXと直交する平面(XY平面)内においてウェハWを二次元的に駆動制御しながら一括露光またはスキャン露光を行うことにより、ウェハWの各露光領域にはマスクMのパターンが逐次露光される。
本実施形態の照明光学系(2〜13)は、偏光状態切換系3、回折光学素子4、偏光変換素子6、および偏光子ユニット13の動作を制御する制御部CRを備えている。制御部CRは、露光装置の主制御系(不図示)からの指令に基づいて、偏光状態切換系3における1/4波長板3aおよび1/2波長板3bの光軸AX廻りの回転動作、およびデポラライザ3cの照明光路に対する挿脱動作を制御する。また、制御部CRは、交換可能な回折光学素子4の照明光路に対する挿脱動作を制御する。偏光変換素子6および偏光子ユニット13に関する制御部CRの制御については後述する。
円錐アキシコン系7は、光源側から順に、光源側に平面を向け且つマスク側に凹円錐状の屈折面を向けた第1プリズム部材7aと、マスク側に平面を向け且つ光源側に凸円錐状の屈折面を向けた第2プリズム部材7bとから構成されている。そして、第1プリズム部材7aの凹円錐状の屈折面と第2プリズム部材7bの凸円錐状の屈折面とは、互いに当接可能なように相補的に形成されている。また、第1プリズム部材7aおよび第2プリズム部材7bのうち少なくとも一方の部材が光軸AXに沿って移動可能に構成され、第1プリズム部材7aと第2プリズム部材7bとの間隔が可変に構成されている。以下、理解を容易にするために、輪帯状または4極状の二次光源に着目して、円錐アキシコン系7の作用およびズームレンズ8の作用を説明する。
ここで、第1プリズム部材7aの凹円錐状屈折面と第2プリズム部材7bの凸円錐状屈折面とが互いに当接している状態では、円錐アキシコン系7は平行平面板として機能し、形成される輪帯状または4極状の二次光源に及ぼす影響はない。しかしながら、第1プリズム部材7aの凹円錐状屈折面と第2プリズム部材7bの凸円錐状屈折面とを離間させると、輪帯状または4極状の二次光源の幅(輪帯状の二次光源の外径と内径との差の1/2;4極状の二次光源に外接する円の直径(外径)と内接する円の直径(内径)との差の1/2)を一定に保ちつつ、輪帯状または4極状の二次光源の外径(内径)が変化する。すなわち、輪帯状または4極状の二次光源の輪帯比(内径/外径)および大きさ(外径)が変化する。
ズームレンズ8は、輪帯状または4極状の二次光源の全体形状を相似的に拡大または縮小する機能を有する。たとえば、ズームレンズ8の焦点距離を最小値から所定の値へ拡大させることにより、輪帯状または4極状の二次光源の全体形状が相似的に拡大される。換言すると、ズームレンズ8の作用により、輪帯状または4極状の二次光源の輪帯比が変化することなく、その幅および大きさ(外径)がともに変化する。このように、円錐アキシコン系7およびズームレンズ8の作用により、輪帯状または4極状の二次光源の輪帯比と大きさ(外径)とを制御することができる。
本実施形態では、上述したように、マイクロフライアイレンズ9により形成される二次光源を光源として、照明光学系(2〜13)の被照射面に配置されるマスクMをケーラー照明する。このため、二次光源が形成される位置は投影光学系PLの開口絞りASの位置と光学的に共役であり、二次光源の形成面を照明光学系(2〜13)の照明瞳面と呼ぶことができる。典型的には、照明瞳面に対して被照射面(マスクMが配置される面、または投影光学系PLを含めて照明光学系と考える場合にはウェハWが配置される面)が光学的なフーリエ変換面となる。
なお、瞳強度分布とは、照明光学系(2〜13)の照明瞳面または当該照明瞳面と光学的に共役な面における光強度分布(輝度分布)である。マイクロフライアイレンズ9による波面分割数が比較的大きい場合、マイクロフライアイレンズ9の入射面に形成される大局的な光強度分布と、二次光源全体の大局的な光強度分布(瞳強度分布)とが高い相関を示す。このため、マイクロフライアイレンズ9の入射面および当該入射面と光学的に共役な面における光強度分布についても瞳強度分布と称することができる。
4極照明用の回折光学素子に代えて、他の複数極照明(2極照明、8極照明など)用の回折光学素子を照明光路中に設定することによって、4極照明以外の複数極照明を行うことができる。一般に、複数極照明用の回折光学素子は、矩形状の断面を有する平行光束が入射した場合に、ファーフィールドに複数極状(2極状、4極状、8極状など)の光強度分布を形成する機能を有する。したがって、複数極照明用の回折光学素子を介した光束は、マイクロフライアイレンズ9の入射面に、たとえば光軸AXを中心とした複数の所定形状(円弧状、円形状など)の照野からなる複数極状の照野を形成する。その結果、マイクロフライアイレンズ9の後側焦点面またはその近傍にも、その入射面に形成された照野と同じ複数極状の二次光源が形成される。
また、4極照明用の回折光学素子に代えて、輪帯照明用の回折光学素子を照明光路中に設定することによって、輪帯照明を行うことができる。輪帯照明用の回折光学素子は、矩形状の断面を有する平行光束が入射した場合に、ファーフィールドに輪帯状の光強度分布を形成する機能を有する。したがって、輪帯照明用の回折光学素子を介した光束は、マイクロフライアイレンズ9の入射面に、たとえば光軸AXを中心とした輪帯状の照野を形成する。その結果、マイクロフライアイレンズ9の後側焦点面またはその近傍にも、その入射面に形成された照野と同じ輪帯状の二次光源が形成される。
また、4極照明用の回折光学素子に代えて、円形照明用の回折光学素子を照明光路中に設定することによって、通常の円形照明を行うことができる。円形照明用の回折光学素子は、矩形状の断面を有する平行光束が入射した場合に、ファーフィールドに円形状の光強度分布を形成する機能を有する。したがって、円形照明用の回折光学素子を介した光束は、マイクロフライアイレンズ9の入射面に、たとえば光軸AXを中心とした円形状の照野を形成する。その結果、マイクロフライアイレンズ9の後側焦点面またはその近傍にも、その入射面に形成された照野と同じ円形状の二次光源が形成される。また、4極照明用の回折光学素子に代えて、適当な特性を有する回折光学素子を照明光路中に設定することによって、様々な形態の変形照明を行うことができる。回折光学素子の切り換え方式として、たとえば周知のターレット方式やスライド方式などを用いることができる。
図2は、図1の偏光変換素子の構成を概略的に示す図である。上述したように、偏光変換素子6は、アフォーカルレンズ5の瞳面またはその近傍に配置されている。したがって、4極照明用の回折光学素子4が照明光路中に配置されている場合、偏光変換素子6には4極状の断面を有する光束が入射する。以下、マイクロフライアイレンズ9の後側焦点面またはその近傍の照明瞳には、図3に示すように、光軸AXを中心とした4つの円形状の実質的な面光源31A,31Bからなる4極状の二次光源31が形成されるものとする。
4極状の二次光源31において、一対の面光源31Aは光軸AXを挟んでZ方向に対向しており、一対の面光源31Bは光軸AXを挟んでX方向に対向している。すなわち、図3には、いわゆる十字型4極状の二次光源31が示されている。図2を参照すると、偏光変換素子6は、十字型4極状の入射光束に対応するように、光軸AXを中心とした円の周方向に等分割された4つの扇形形状の旋光部材を備えている。各旋光部材は光軸AXと直交する平面(XZ平面)に沿って延びる平行平面板の形態を有し、光軸AXを挟んで対向する一対の旋光部材は互いに同じ特性を有する。
すなわち、4つの旋光部材は、光の透過方向(Y方向)に沿った厚さ(光軸方向の長さ)が互いに異なる2種類の旋光部材6Aおよび6Bを2個づつ含んでいる。一例として、光軸AXを挟んでX方向に対向する一対の旋光部材6Bの厚さDBが、光軸AXを挟んでZ方向に対向する一対の旋光部材6Aの厚さDAよりも大きく設定されている。その結果、偏光変換素子6の一方の面(たとえば入射面)は平面状であるが、他方の面(たとえば射出面)は各旋光部材の厚さの違いにより凹凸状になっている。なお、偏光変換素子6の双方の面(入射面および射出面)をともに凹凸状に形成することもできる。
旋光部材6A,6Bは、旋光性を有する光学材料である結晶材料としての水晶により構成され、その結晶光学軸が光軸AXとほぼ一致(すなわち入射光の進行方向とほぼ一致)するように設定されている。以下、図4を参照して、水晶の旋光性について簡単に説明する。図4を参照すると、厚さdの水晶からなる平行平面板状の光学部材100が、その結晶光学軸と光軸AXとが一致するように配置されている。この場合、光学部材100の旋光性により、入射した直線偏光の偏光方向が光軸AX廻りにθだけ回転した状態で射出される。
このとき、光学部材100の旋光性による偏光方向の回転角(旋光角度)θは、光学部材100の厚さdと水晶の旋光能ρとにより、次の式(a)で表わされる。一般に、水晶の旋光能ρは、波長依存性(使用光の波長に依存して旋光能の値が異なる性質:旋光分散)があり、具体的には使用光の波長が短くなると大きくなる傾向がある。「応用光学II」の第167頁の記述によれば、250.3nmの波長を有する光に対する水晶の旋光能ρは、153.9度/mmである。
θ=d・ρ (a)
旋光部材6Aは、Z方向に偏光方向を有するZ方向直線偏光の光が入射した場合、Z方向をY軸廻りに90度回転させた方向すなわちX方向に偏光方向を有するX方向直線偏光の光を射出するように厚さDAが設定されている。したがって、偏光変換素子6にZ方向直線偏光の光が入射する場合、図3に示すように、4極状の二次光源31のうち、一対の旋光部材6Aの旋光作用を受けた光束が形成する一対の円形状領域31Aを通過する光束の偏光方向はX方向になる。
一方、旋光部材6Bは、Z方向直線偏光の光が入射した場合、Z方向をY軸廻りに180度回転させた方向すなわちZ方向に偏光方向を有するZ方向直線偏光の光を射出するように厚さDBが設定されている。したがって、偏光変換素子6にZ方向直線偏光の光が入射する場合、図3に示すように、一対の旋光部材6Bの旋光作用を受けた光束が形成する一対の円形状領域31Bを通過する光束の偏光方向はZ方向になる。
制御部CRは、図3に示すような周方向偏光4極照明(4極状の二次光源を通過する光束が周方向偏光状態に設定された変形照明)に際して、十字型4極照明用の回折光学素子4を照明光路中に設置するとともに、Z方向直線偏光の光が偏光変換素子6に入射するように偏光状態切換系3の動作を制御する。その結果、マイクロフライアイレンズ9の後側焦点面またはその近傍の照明瞳には、十字型4極状の二次光源(瞳強度分布)31が形成され、4極状の二次光源31を通過する光束が周方向偏光状態に設定される。周方向偏光状態では、4極状の二次光源31を構成する円形状領域31A,31Bをそれぞれ通過する光束は、光軸AXを中心として各円形状領域31A,31Bの中心点を通る円の当該中心点における接線方向とほぼ一致する偏光方向を有する直線偏光状態になる。
本実施形態では、照明光学系の比較的上流側に配置された偏光状態切換系3中の波長板3a,3bと偏光変換素子6との協働作用により、偏光変換素子6の直後において所望の周方向偏光状態が生成される。しかしながら、偏光変換素子6よりも下流側の光路中に配置されて光の偏光状態を変化させる光学素子の影響により、ウェハW上では所望の周方向偏光状態で光が結像しなくなり、ひいてはマスクMのパターン像を所要のコントラストでウェハW上に形成することが困難である。
特に、偏光変換素子6よりも下流側に配置された平面反射鏡(例えば、光路折り曲げミラーPM2)では、入射光の角度範囲が広く、反射面に対するS偏光とP偏光とで反射率が比較的大きく異なり且つ反射率の差が変動し易い。このため、偏光状態切換系3と偏光変換素子6とを用いて所望の偏光状態の光を生成しても、光路折り曲げミラーPM2などの光学素子を介してウェハWに達する光は、所望の偏光状態から変化した偏光状態になってしまう。そこで、本実施形態では、結像光学系12の瞳面またはその近傍の位置、すなわち光路折り曲げミラーPM2と結像光学系12の後側レンズ群12bとの間の光路中に偏光子ユニット13を付設している。
図5は、本実施形態の偏光子ユニットの構成を概略的に示す図である。図5を参照すると、本実施形態の偏光子ユニット13は、結像光学系12の瞳面またはその近傍の位置(ひいては照明瞳面またはその近傍の位置)において光軸AXと直交する平面に沿って並列配置された4つの偏光子13a,13b,13c,13dと、各偏光子13a〜13dの位置および姿勢を変化させる駆動部13eとを備えている。
図5に示す第1状態では、図3に示す瞳強度分布31の形状(十字型4極状の外形形状)に対応するように、4つの偏光子13a〜13dのうちの一対の偏光子13a,13cは光軸AXを挟んでY方向(図3におけるZ方向に対応)に対向して配置されており、一対の偏光子13b,13dは光軸AXを挟んでX方向(図3におけるX方向に対応)に対向して配置されている。ただし、各偏光子13a〜13dは、光軸AXと平行な中心軸線廻りに回転可能(自転可能)に構成され、且つ光軸AXを中心として回転可能(公転可能)に構成されている。また、各偏光子13a〜13dは、照明光路から選択的に退避可能に構成されている。
すなわち、駆動部13eは、制御部CRからの指令にしたがって、光軸AXと直交する平面内での偏光子13a〜13dの位置および姿勢を個別に変化させる。図5に示す第1状態では、図3に示す瞳強度分布31の偏光状態(周方向偏光状態)に対応するように、一対の偏光子13a,13cは入射光からX方向直線偏光の光を選択して射出するような姿勢で配置され、一対の偏光子13b,13dは入射光からY方向直線偏光の光を選択して射出するような姿勢で配置されている。
したがって、図3に示す周方向偏光4極照明に際して、偏光子ユニット13が図5に示す第1状態に設定されている場合、一対の面光源31Aを形成した光束は一対の偏光子13a,13cに入射し、一対の面光源31Bを形成した光束は一対の偏光子13b,13dに入射する。このとき、偏光変換素子6と偏光子ユニット13との間の光路中に配置された光学素子の影響(とりわけ光路折り曲げミラーPM2のような平面反射鏡の影響)により、一対の偏光子13a,13cに入射する光の偏光状態は所望のX方向直線偏光状態から変化(例えばX方向直線偏光成分以外の直線偏光成分が混在)し、一対の偏光子13b,13dに入射する光の偏光状態は所望のY方向直線偏光状態から変化している可能性がある。
図5に示す第1状態に設定された偏光子ユニット13は、一対の偏光子13a,13cの作用により所望のX方向直線偏光状態から変化した偏光状態で入射した光を所望のX方向直線偏光状態に近づけて射出するとともに、一対の偏光子13b,13dの作用により所望のY方向直線偏光状態から変化した偏光状態で入射した光を所望のY方向直線偏光状態に近づけて射出する。すなわち、偏光子ユニット13は、所望の周方向偏光状態から変化した偏光状態の光が入射しても、図3に示す周方向偏光4極照明に対応して図5に示す第1状態に設定された4つの偏光子13a〜13dの作用により、入射光を所望の周方向偏光状態に近づけて射出する。
本実施形態では、制御部CRが偏光状態切換系3を制御して偏光変換素子6に入射する光の偏光状態をZ方向直線偏光からX方向直線偏光へ切り換えることにより、図6に示すように十字型4極状の二次光源32を通過する光束が径方向偏光状態に設定された変形照明、すなわち径方向偏光4極照明を実現することができる。径方向偏光状態では、4極状の二次光源32を構成する円形状領域32A,32Bをそれぞれ通過する光束は、光軸AXを中心として各円形状領域32A,32Bの中心点を通る円の当該中心点における接線方向とほぼ直交する径方向に偏光方向を有する直線偏光状態になる。あるいは、制御部CRが偏光変換素子6を光軸AX廻りに90度だけ回転させることにより、図6に示す径方向偏光4極照明を実現することができる。
具体的に、径方向偏光状態に設定された十字型4極状の二次光源32では、光軸AXを挟んでZ方向に対向する一対の円形状領域32Aを通過する光束の偏光方向はZ方向になり、光軸AXを挟んでX方向に対向する一対の円形状領域32Bを通過する光束の偏光方向はX方向になる。この場合、制御部CRは、偏光子ユニット13の駆動部13eを介して、光軸AXと直交する平面内での偏光子13a〜13dの姿勢を図5に示す第1状態から図7に示す第2状態へ変化させる。
図7に示す第2状態では、図6に示す瞳強度分布32の偏光状態(径方向偏光状態)に対応するように、一対の偏光子13a,13cは入射光からY方向直線偏光の光を選択して射出するような姿勢で配置され、一対の偏光子13b,13dは入射光からX方向直線偏光の光を選択して射出するような姿勢で配置されている。図7に示す第2状態は、図5に示す第1状態から、偏光子13a〜13dをそれぞれ中心軸線廻りに90度だけ回転(自転)させることにより得られる。換言すれば、図7に示す第2状態は、図5に示す第1状態から偏光子13a〜13dの位置を変化させることなく、偏光子13a〜13dの姿勢だけを変化させることにより得られる。
図6に示す径方向偏光4極照明に際して、偏光子ユニット13が図7に示す第2状態に設定されている場合、一対の面光源32Aを形成した光束は一対の偏光子13a,13cに入射し、一対の面光源32Bを形成した光束は一対の偏光子13b,13dに入射する。このとき、偏光変換素子6と偏光子ユニット13との間の光路中に配置された光学素子の影響により、一対の偏光子13a,13cに入射する光の偏光状態は所望のY方向直線偏光状態から変化し、一対の偏光子13b,13dに入射する光の偏光状態は所望のX方向直線偏光状態から変化している可能性がある。
図7に示す第2状態に設定された偏光子ユニット13は、一対の偏光子13a,13cの作用により所望のY方向直線偏光状態から変化した偏光状態で入射した光を所望のY方向直線偏光状態に近づけて射出するとともに、一対の偏光子13b,13dの作用により所望のX方向直線偏光状態から変化した偏光状態で入射した光を所望のX方向直線偏光状態に近づけて射出する。すなわち、偏光子ユニット13は、所望の径方向偏光状態から変化した偏光状態の光が入射しても、図6に示す径方向偏光4極照明に対応して図7に示す第2状態に設定された4つの偏光子13a〜13dの作用により、入射光を所望の径方向偏光状態に近づけて射出する。
また、本実施形態では、制御部CRが十字型4極照明用の回折光学素子からX字型4極照明用の回折光学素子へ切り換えることにより、図8に示すようなX字型4極状の二次光源33を形成することができる。そして、制御部CRが偏光変換素子6を光軸AX廻りに45度だけ回転させ、且つ偏光状態切換系3を制御して偏光変換素子6に入射する光の偏光状態をZ方向およびX方向と45度をなす斜め方向に偏光方向を有する斜め方向直線偏光へ切り換えることにより、図8に示す径方向偏光4極照明を実現することができる。
径方向偏光状態に設定されたX字型4極状の二次光源33では、光軸AXを挟んで対向する一対の円形状領域33Aおよび一対の円形状領域33Bを通過する光束の偏光方向はともに、Z方向およびX方向と45度をなす径方向になる。この場合、制御部CRは、駆動部13eを介して、光軸AXと直交する平面内での偏光子13a〜13dの位置および姿勢を図7に示す第2状態から図9に示す第3状態へ変化させる。
図9に示す第3状態では、図8に示す瞳強度分布33の形状(X字型4極状の外形形状)に対応するように、4つの偏光子13a〜13dがZ方向およびX方向と45度をなす斜め方向に配置されている。また、図9に示す第3状態では、図8に示す瞳強度分布33の偏光状態(径方向直線偏光)に対応するように、一対の偏光子13a,13cおよび一対の偏光子13b,13dはともに入射光から径方向直線偏光の光を選択して射出するような姿勢で配置されている。
図9に示す第3状態は、図7に示す第2状態から、偏光子13a〜13dを光軸AX廻りに45度だけ回転(公転)させることにより得られる。換言すれば、図9に示す第3状態は、図7に示す第2状態から、偏光子13a〜13dの位置および姿勢を変化させることにより得られる。図8に示す径方向偏光4極照明に際して、偏光子ユニット13が図9に示す第3状態に設定されている場合、一対の面光源33Aを形成した光束は一対の偏光子13a,13cに入射し、一対の面光源33Bを形成した光束は一対の偏光子13b,13dに入射する。
このとき、偏光変換素子6と偏光子ユニット13との間の光路中に配置された光学素子の影響により、一対の偏光子13a,13cに入射する光の偏光状態および一対の偏光子13b,13dに入射する光の偏光状態は所望の径方向直線偏光状態から変化している可能性がある。図9に示す第3状態に設定された偏光子ユニット13は、偏光子13a〜13dの作用により所望の径方向直線偏光状態から変化した偏光状態で入射した光を所望の径方向直線偏光状態に近づけて射出する。すなわち、偏光子ユニット13は、所望の径方向偏光状態から変化した偏光状態の光が入射しても、図8に示す径方向偏光4極照明に対応して図9に示す第3状態に設定された4つの偏光子13a〜13dの作用により、入射光を所望の径方向偏光状態に近づけて射出する。
一般に、周方向偏光状態の複数極状や輪帯状の瞳強度分布に基づく周方向偏光照明では、最終的な被照射面としてのウェハWに照射される光がS偏光を主成分とする偏光状態になる。ここで、S偏光とは、入射面に対して垂直な方向に偏光方向を有する直線偏光(入射面に垂直な方向に電気ベクトルが振動している偏光)のことである。ただし、入射面とは、光が媒質の境界面(被照射面:ウェハWの表面)に達したときに、その点での境界面の法線と光の入射方向とを含む面として定義される。その結果、周方向偏光照明では、投影光学系の光学性能(焦点深度など)の向上を図ることができ、ウェハ(感光性基板)上において高いコントラストのマスクパターン像を得ることができる。
また、径方向偏光状態の複数極状や輪帯状の瞳強度分布に基づく径方向偏光照明では、最終的な被照射面としてのウェハWに照射される光がP偏光を主成分とする偏光状態になる。ここで、P偏光とは、上述のように定義される入射面に対して平行な方向に偏光方向を有する直線偏光(入射面に平行な方向に電気ベクトルが振動している偏光)のことである。その結果、径方向偏光照明では、ウェハWに塗布されたレジストにおける光の反射率を小さく抑えて、ウェハ(感光性基板)上において良好なマスクパターン像を得ることができる。
以上のように、本実施形態の偏光子ユニット13では、瞳強度分布の形状を十字型4極状とX字型4極状との間で切り換えても、瞳強度分布の偏光状態を周方向偏光状態と径方向偏光状態との間で切り換えても、4つの偏光子13a〜13dの位置または姿勢を変更することにより、入射光を所望の偏光状態に近づけて射出することができる。換言すれば、偏光子ユニット13は、瞳強度分布の形状または偏光状態を切り換えても、所望の偏光状態から変化した偏光状態で入射した光を所望の偏光状態に近づけて射出することができる。その結果、偏光子ユニット13の直後、すなわち照明光学系(2〜13)の光路中の最も下流側の照明瞳またはその近傍に、ほぼ所望の偏光状態を有する光強度分布が生成される。
したがって、本実施形態の照明光学系(2〜13)では、瞳強度分布の形状または偏光状態を切り換えても、所望の偏光状態から変化した偏光状態で入射した光を所望の偏光状態に近づけて射出する偏光子ユニット13を用いて、所要の偏光状態の光でマスクMのパターン面(被照射面)を照明することができる。また、本実施形態の露光装置(2〜WS)では、所要の偏光状態の光でマスクMのパターンを照明する照明光学系(2〜13)を用いて、所要の偏光状態でパターンをウェハW上に結像させることができ、ひいてはマスクMのパターン像を所要のコントラストでウェハW上に形成することができる。
なお、図1の構成において、偏光状態切換系3および偏光変換素子6は、偏光子ユニット13への入射光束の偏光状態を切り換える偏光切換部を構成している。また、偏光状態切換系3、回折光学素子4、アフォーカルレンズ5、偏光変換素子6、ズームレンズ8、およびマイクロフライアイレンズ9は、照明瞳面に形成される光強度分布(瞳強度分布)の形状および偏光状態を変化させる瞳分布光学系を構成している。
制御部CRは、偏光子ユニット13および偏光切換部(3,6)を制御し、偏光切換部(3,6)による瞳強度分布の偏光状態の変更に応じて、4つの偏光子13a〜13dのそれぞれの姿勢を変更する。また、制御部CRは、偏光子ユニット13および瞳分布光学系(3〜9)を制御し、瞳分布光学系(3〜9)による瞳強度分布の形状および偏光状態の変更に応じて、4つの偏光子13a〜13dのそれぞれの位置および姿勢のうちの少なくとも一方を変更する。
なお、上述の実施形態では、図3の十字型4極状で周方向偏光状態の瞳強度分布31から、図6の十字型4極状で径方向偏光状態の瞳強度分布32を経て、図8のX字型4極状で径方向偏光状態の瞳強度分布33へ順次切り換える際に、偏光子ユニット13の偏光子13a〜13dの位置および姿勢を図5の第1状態から図7の第2状態を経て図9の第3状態へ順次変更させている。しかしながら、これに限定されることなく、図3の十字型4極状で周方向偏光状態の瞳強度分布31からX字型4極状で周方向偏光状態の瞳強度分布(不図示)への切り換えに際して、図10に示すように、偏光子ユニット13の偏光子13a〜13dの位置および姿勢を第1状態から所要の第4状態へ変更させる変形例も可能である。
図10の左側の図に示す第1状態では、4つの円形状の偏光子13a〜13dが図5と同じ位置に同じ姿勢で配置され、光軸AXを中心とする円環状の外枠部材13fが偏光子13a〜13dに外接している。偏光子13a〜13dは外枠部材13fの内周面との接点位置において外枠部材13fに固定され、外枠部材13fは光軸AX廻りに回転可能に構成されている。したがって、図10の変形例では、外枠部材13fが光軸AX廻りに45度だけ回転すると、偏光子13a〜13dは光軸AX廻りに45度だけ回転しつつ各中心軸線廻りに45度だけ回転する。その結果、図10の変形例では、図示を省略した駆動部13eにより外枠部材13fを光軸AX廻りに45度だけ回転させることにより、図10の右側の図に示すように、X字型4極状で周方向偏光状態の瞳強度分布に対応する偏光子ユニット13の第4状態を実現することができる。
また、図3の十字型4極状で周方向偏光状態の瞳強度分布31から図8のX字型4極状で径方向偏光状態の瞳強度分布33への切り換えに際して、図11に示すように、偏光子ユニット13の偏光子13a〜13dの位置および姿勢を第1状態から第3状態へ変更させる変形例も可能である。図11の左側の図に示す第1状態では、4つの円形状の偏光子13a〜13dが図5と同じ位置に同じ姿勢で配置され、光軸AXを中心とする円環状の外枠部材13gが偏光子13a〜13dに外接している。偏光子13a〜13dの外周面および円環状の外枠部材13gの内周面には相補的な凹凸状の係合部が形成され、偏光子13a〜13dは外枠部材13gの内周面との接点位置において外枠部材13gと係合している。
外枠部材13gは光軸AX廻りに回転可能に構成され、外枠部材13gを光軸AX廻りに45度だけ回転させたときに偏光子13a〜13dが各中心軸線廻りに135度だけ回転するように構成されている。その結果、図11の変形例では、図示を省略した駆動部13eにより外枠部材13gを光軸AX廻りに45度だけ回転させることにより、図11の右側の図に示すように、X字型4極状で径方向偏光状態の瞳強度分布に対応する偏光子ユニット13の第3状態を実現することができる。
図8のX字型4極状で径方向偏光状態の瞳強度分布33および図示を省略したX字型4極状で周方向偏光状態の瞳強度分布は、円形状領域を通過する光束の偏光方向がX方向およびZ方向と45度をなす斜め方向になるため、偏光変換素子6と偏光子ユニット13との間の光路中に配置された光学素子(とりわけ平面反射鏡)の影響を受け易く、従来技術では正確に生成することが困難であった。
また、上述の実施形態では、瞳強度分布の形状について十字型4極状とX字型4極状との間の切り換え、および瞳強度分布の偏光状態について周方向偏光状態と径方向偏光状態との間の切り換えを例にとって本発明を説明している。しかしながら、これに限定されることなく、4極照明以外の複数極照明や輪帯照明などに対しても、周方向偏光照明や径方向偏光照明以外の偏光照明に対しても同様に本発明を適用することができる。
また、上述の実施形態では、図5に示す特定の構成を有する偏光子ユニット13を例にとって本発明を説明している。しかしながら、これに限定されることなく、偏光子ユニットの構成および配置については、様々な形態が可能である。すなわち、偏光子ユニットを構成する偏光子の構造、外形形状、数、位置関係などについて、様々な形態が可能である。たとえば、偏光子として、ワイヤ・グリッド型の偏光子、入射光束の進行方向に対してほぼブリュースター角となる角度で配置される屈折面を備える偏光子などを用いることができる。
ワイヤ・グリッド型の偏光子は、細い金属線を平行に並べたものであり、金属線に垂直に振動する電気ベクトルを持つ偏光を透過し、金属に平行に振動する電気ベクトルを持つ偏光を反射することにより、直線偏光を得るものである。このようなワイヤ・グリッド型の偏光子としては、たとえば米国特許第6,785,050号明細書、米国特許第7,268,946号明細書、特開2004−144884号公報、米国特許公開第2004/0174596号公報などに開示されている。ブリュースター角を利用した偏光子は、図12に示すように、例えば互いに同じ形態を有する一対のプリズムアレイ部材41と42とにより構成されている。プリズムアレイ部材41,42は、MEMS技術を用いて平行平面板の両面にプリズムアレイを形成することにより製造される。
ブリュースター角を利用した偏光子13hでは、図示を省略した光軸AXと平行な方向(図12の紙面において水平方向)に沿って第1プリズムアレイ部材41の入射側屈折面41aにブリュースター角(約56度)にほぼ等しい入射角で入射した光が、入射側屈折面41aにより屈折され、第1プリズムアレイ部材41の内部を伝播し、入射側屈折面41aと平行な射出側屈折面41bにより屈折された後、光軸AXと平行な方向に沿って第1プリズムアレイ部材41から射出される。光軸AXと平行な方向に沿って第2プリズムアレイ部材42の入射側屈折面42aにブリュースター角にほぼ等しい入射角で入射した光は、入射側屈折面42aにより屈折され、第2プリズムアレイ部材42の内部を伝播し、入射側屈折面42aと平行な射出側屈折面42bにより屈折された後、光軸AXと平行な方向であって第1プリズムアレイ部材41への入射光の進行方向と一致する方向に沿って第2プリズムアレイ部材42から射出される。
ブリュースター角を利用した偏光子13hでは、パイルオブプレーツの原理にしたがって、1つの屈折面の通過に際して、図12の紙面において鉛直方向に偏光するP偏光の透過率が約100%であり、図12の紙面に垂直な方向に偏光するS偏光の透過率が約85%である。ブリュースター角を利用した偏光子は、米国特許第5,934,780号明細書、米国特許第6,190,016号明細書、米国特許第6,292,296号明細書、米国特許第6,307,609号明細書などに開示されている。
また、上述の実施形態では、偏光子ユニット13の偏光子13a〜13dが結像光学系12の瞳面またはその近傍の位置において光軸AXと直交する平面に沿って並列配置され、偏光子13a〜13dの位置および姿勢を光軸AXと直交する平面内で変化させている。しかしながら、これに限定されることなく、前側レンズ群12aと光路折り曲げミラーPM2との間の結像光学系12の瞳面またはその近傍に偏光子ユニットを配置したり、マイクロフライアイレンズ9の入射面の近傍などに偏光子ユニットを配置したりすることもできる。また、少なくとも1つの偏光子を光軸と直交する平面に対して傾けて配置したり、複数の偏光子を光軸方向に互いに位置ずれさせて配置したりすることもできる。本発明では、複数の偏光子が照明光学系の照明瞳面またはその近傍に並列配置され、複数の偏光子のそれぞれは位置および姿勢のうちの少なくとも一方が可変に構成されていることが重要である。
また、上述の実施形態では、入射光を空間的に変調して射出する空間光変調素子として回折光学素子4を用いている。しかしながら、回折光学素子4に代えて、或いは回折光学素子4に加えて、二次元的に配列されて個別に制御される複数の光学要素を有する空間光変調器を用いることもできる。この種の空間光変調器は、たとえばアレイ状に配列され且つ傾斜角および傾斜方向が個別に駆動制御される多数の微小な要素ミラーにより構成されて、入射光束を反射面毎の微小単位に分割して偏向させることにより、光束の断面を所望の形状または所望の大きさに変換する。このような空間光変調器を用いた照明光学系は、例えば特開2002−353105号公報に開示されている。
また、上述の実施形態では、マスクの代わりに、所定の電子データに基づいて所定パターンを形成する可変パターン形成装置を用いることができる。このような可変パターン形成装置を用いれば、パターン面が縦置きでも同期精度に及ぼす影響を最低限にできる。なお、可変パターン形成装置としては、たとえば所定の電子データに基づいて駆動される複数の反射素子を含むDMD(デジタル・マイクロミラー・デバイス)を用いることができる。DMDを用いた露光装置は、例えば特開2004−304135号公報、国際特許公開第2006/080285号パンフレットおよびこれに対応する米国特許公開第2007/0296936号公報に開示されている。また、DMDのような非発光型の反射型空間光変調器以外に、透過型空間光変調器を用いても良く、自発光型の画像表示素子を用いても良い。なお、パターン面が横置きの場合であっても可変パターン形成装置を用いても良い。ここでは、米国特許公開第2007/0296936号公報の教示を参照として援用する。
また、上述の実施形態では、オプティカルインテグレータとして、マイクロフライアイレンズ9を用いているが、その代わりに、内面反射型のオプティカルインテグレータ(典型的にはロッド型インテグレータ)を用いても良い。この場合、ズームレンズ8の後側にその前側焦点位置がズームレンズ8の後側焦点位置と一致するように集光レンズを配置し、この集光レンズの後側焦点位置またはその近傍に入射端が位置決めされるようにロッド型インテグレータを配置する。このとき、ロッド型インテグレータの射出端が照明視野絞り11の位置になる。ロッド型インテグレータを用いる場合、このロッド型インテグレータの下流の視野絞り結像光学系12内の、投影光学系PLの開口絞りの位置と光学的に共役な位置を照明瞳面と呼ぶことができる。また、ロッド型インテグレータの入射面の位置には、照明瞳面の二次光源の虚像が形成されることになるため、この位置およびこの位置と光学的に共役な位置も照明瞳面と呼ぶことができる。
上述の実施形態の露光装置は、本願特許請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行っても良い。
次に、上述の実施形態にかかる露光装置を用いたデバイス製造方法について説明する。図13は、半導体デバイスの製造工程を示すフローチャートである。図13に示すように、半導体デバイスの製造工程では、半導体デバイスの基板となるウェハWに金属膜を蒸着し(ステップS40)、この蒸着した金属膜上に感光性材料であるフォトレジストを塗布する(ステップS42)。つづいて、上述の実施形態の露光装置を用い、マスク(レチクル)Mに形成されたパターンをウェハW上の各ショット領域に転写し(ステップS44:露光工程)、この転写が終了したウェハWの現像、つまりパターンが転写されたフォトレジストの現像を行う(ステップS46:現像工程)。その後、ステップS46によってウェハWの表面に生成されたレジストパターンをマスクとし、ウェハWの表面に対してエッチング等の加工を行う(ステップS48:加工工程)。
ここで、レジストパターンとは、上述の実施形態の露光装置によって転写されたパターンに対応する形状の凹凸が生成されたフォトレジスト層であって、その凹部がフォトレジスト層を貫通しているものである。ステップS48では、このレジストパターンを介してウェハWの表面の加工を行う。ステップS48で行われる加工には、例えばウェハWの表面のエッチングまたは金属膜等の成膜の少なくとも一方が含まれる。なお、ステップS44では、上述の実施形態の露光装置は、フォトレジストが塗布されたウェハWを、感光性基板つまりプレートPとしてパターンの転写を行う。
図14は、液晶表示素子等の液晶デバイスの製造工程を示すフローチャートである。図14に示すように、液晶デバイスの製造工程では、パターン形成工程(ステップS50)、カラーフィルター形成工程(ステップS52)、セル組立工程(ステップS54)およびモジュール組立工程(ステップS56)を順次行う。
ステップS50のパターン形成工程では、プレートPとしてフォトレジストが塗布されたガラス基板上に、上述の実施形態の露光装置を用いて回路パターンおよび電極パターン等の所定のパターンを形成する。このパターン形成工程には、上述の実施形態の露光装置を用いてフォトレジスト層にパターンを転写する露光工程と、パターンが転写されたプレートPの現像、つまりガラス基板上のフォトレジスト層の現像を行い、パターンに対応する形状のフォトレジスト層を生成する現像工程と、この現像されたフォトレジスト層を介してガラス基板の表面を加工する加工工程とが含まれている。
ステップS52のカラーフィルター形成工程では、R(Red)、G(Green)、B(Blue)に対応する3つのドットの組をマトリックス状に多数配列するか、またはR、G、Bの3本のストライプのフィルターの組を水平走査方向に複数配列したカラーフィルターを形成する。
ステップS54のセル組立工程では、ステップS50によって所定パターンが形成されたガラス基板と、ステップS52によって形成されたカラーフィルターとを用いて液晶パネル(液晶セル)を組み立てる。具体的には、例えばガラス基板とカラーフィルターとの間に液晶を注入することで液晶パネルを形成する。ステップS56のモジュール組立工程では、ステップS54によって組み立てられた液晶パネルに対し、この液晶パネルの表示動作を行わせる電気回路およびバックライト等の各種部品を取り付ける。
また、本発明は、半導体デバイス製造用の露光装置への適用に限定されることなく、例えば、角型のガラスプレートに形成される液晶表示素子、若しくはプラズマディスプレイ等のディスプレイ装置用の露光装置や、撮像素子(CCD等)、マイクロマシーン、薄膜磁気ヘッド、及びDNAチップ等の各種デバイスを製造するための露光装置にも広く適用できる。更に、本発明は、各種デバイスのマスクパターンが形成されたマスク(フォトマスク、レチクル等)をフォトリソグラフィ工程を用いて製造する際の、露光工程(露光装置)にも適用することができる。
なお、上述の実施形態では、露光光としてArFエキシマレーザ光(波長:193nm)やKrFエキシマレーザ光(波長:248nm)を用いているが、これに限定されることなく、他の適当なレーザ光源、たとえば波長157nmのレーザ光を供給するF2レーザ光源などに対して本発明を適用することもできる。
また、上述の実施形態において、投影光学系と感光性基板との間の光路中を1.1よりも大きな屈折率を有する媒体(典型的には液体)で満たす手法、所謂液浸法を適用しても良い。この場合、投影光学系と感光性基板との間の光路中に液体を満たす手法としては、国際公開第WO99/49504号パンフレットに開示されているような局所的に液体を満たす手法や、特開平6−124873号公報に開示されているような露光対象の基板を保持したステージを液槽の中で移動させる手法や、特開平10−303114号公報に開示されているようなステージ上に所定深さの液体槽を形成し、その中に基板を保持する手法などを採用することができる。ここでは、国際公開第WO99/49504号パンフレット、特開平6−124873号公報および特開平10−303114号公報の教示を参照として援用する。
また、上述の実施形態では、露光装置においてマスク(またはウェハ)を照明する照明光学系に対して本発明を適用しているが、これに限定されることなく、マスク(またはウェハ)以外の被照射面を照明する一般的な照明光学系に対して本発明を適用することもできる。
1 光源
3 偏光状態切換系
4 回折光学素子
5 アフォーカルレンズ
6 偏光変換素子
7 円錐アキシコン系
8 ズームレンズ
9 マイクロフライアイレンズ
10 コンデンサー光学系
11 マスクブラインド
12 結像光学系
13 偏光子ユニット
M マスク
PL 投影光学系
W ウェハ
CR 制御部

Claims (24)

  1. 光源からの光により被照射面を照明する照明光学系に用いられて、入射光束の偏光状態を所要の偏光状態に変えて射出する偏光子ユニットであって、
    前記照明光学系の照明瞳面またはその近傍に並列配置された複数の偏光子を備え、
    前記複数の偏光子のそれぞれは、位置および姿勢のうちの少なくとも一方が可変に構成されていることを特徴とする偏光子ユニット。
  2. 前記複数の偏光子は、前記照明光学系の光軸と直交する平面内での位置および前記平面内での姿勢のうちの少なくとも一方が可変に構成されていることを特徴とする請求項1に記載の偏光子ユニット。
  3. 前記複数の偏光子は、前記照明光学系の光軸を挟んで対向して配置された第1偏光子と第2偏光子とを有することを特徴とする請求項1または2に記載の偏光子ユニット。
  4. 前記第1偏光子は、前記光軸と平行な中心軸線廻りに回転可能に構成され、
    前記第2偏光子は、前記光軸と平行な中心軸線廻りに回転可能に構成されていることを特徴とする請求項3に記載の偏光子ユニット。
  5. 前記第1偏光子および前記第2偏光子は、前記光軸を中心として回転可能に構成されていることを特徴とする請求項3または4に記載の偏光子ユニット。
  6. 前記複数の偏光子は、ワイヤ・グリッド型の偏光子を有することを特徴とする請求項1乃至5のいずれか1項に記載の偏光子ユニット。
  7. 前記複数の偏光子は、前記入射光束の進行方向に対してほぼブリュースター角となる角度で配置される屈折面を備える偏光子を有することを特徴とする請求項1乃至6のいずれか1項に記載の偏光子ユニット。
  8. 前記複数の偏光子は、光路から選択的に退避可能に構成されていることを特徴とする請求項1乃至7のいずれか1項に記載の偏光子ユニット。
  9. 光源からの光により被照射面を照明する照明光学系において、
    前記照明光学系の照明瞳面またはその近傍に配置された請求項1乃至8のいずれか1項に記載の偏光子ユニットを備えていることを特徴とする照明光学系。
  10. 前記照明瞳面に形成される光強度分布の形状および偏光状態を変化させる瞳分布光学系を備えていることを特徴とする請求項9に記載の照明光学系。
  11. 前記偏光子ユニットおよび前記瞳分布光学系を制御する制御部を備え、
    該制御部は、前記瞳分布光学系による前記光強度分布の形状および前記偏光状態の変更に応じて、前記複数の偏光子のそれぞれの前記位置および前記姿勢のうちの少なくとも一方を変更することを特徴とする請求項10に記載の照明光学系。
  12. 前記瞳分布光学系は、前記偏光子ユニットへの入射光束の偏光状態を切り換える偏光切換部を有することを特徴とする請求項10または11に記載の照明光学系。
  13. 前記偏光子ユニットおよび前記偏光切換部を制御する制御部を備え、
    該制御部は、前記偏光切換部による前記偏光状態の変更に応じて、前記複数の偏光子のそれぞれの前記姿勢を変更することを特徴とする請求項12に記載の照明光学系。
  14. 前記瞳分布光学系は、入射光を空間的に変調して射出する空間光変調素子と、オプティカルインテグレータと、該オプティカルインテグレータと前記空間光変調素子との間の光路中に配置された集光光学系とを有することを特徴とする請求項10乃至13のいずれか1項に記載の照明光学系。
  15. 前記空間光変調素子は、回折光学素子を有することを特徴とする請求項14に記載の照明光学系。
  16. 前記空間光変調素子は、二次元的に配列されて個別に制御される複数の光学要素を有する空間光変調器を備えていることを特徴とする請求項14または15に記載の照明光学系。
  17. 前記被照射面と光学的に共役な面を形成する投影光学系と組み合わせて用いられ、前記照明瞳面は前記投影光学系の開口絞りと光学的に共役な位置であることを特徴とする請求項9乃至16のいずれか1項に記載の照明光学系。
  18. 光源からの光により被照射面を照明する照明光学系において、
    前記光源からの光の進行方向を偏向させる少なくとも1つの光路折り曲げミラーと、
    前記少なくとも1つの光路折り曲げミラーのうち最も前記被照射面側に配置される光路折り曲げミラーと前記被照射面との間の光路中に配置される偏光子と、を備えていることを特徴とする照明光学系。
  19. 前記偏光子は、前記照明光学系の照明瞳面またはその近傍に配置されることを特徴とする請求項18に記載の照明光学系。
  20. 前記被照射面と光学的に共役な面を形成する投影光学系と組み合わせて用いられ、前記照明瞳面は前記投影光学系の開口絞りと光学的に共役な位置であることを特徴とする請求項19に記載の照明光学系。
  21. 前記偏光子は、請求項1乃至8のいずれか1項に記載の偏光子ユニットが有する複数の偏光子であることを特徴とする請求項18乃至20のいずれか1項に記載の照明光学系。
  22. 所定のパターンを照明するための請求項9乃至21のいずれか1項に記載の照明光学系を備え、前記所定のパターンを感光性基板に露光することを特徴とする露光装置。
  23. 前記所定のパターンの像を前記感光性基板上に形成する投影光学系を備えていることを特徴とする請求項22に記載の露光装置。
  24. 請求項22または23に記載の露光装置を用いて、前記所定のパターンを前記感光性基板に露光する露光工程と、
    前記所定のパターンが転写された前記感光性基板を現像し、前記所定のパターンに対応する形状のマスク層を前記感光性基板の表面に形成する現像工程と、
    前記マスク層を介して前記感光性基板の表面を加工する加工工程とを含むことを特徴とするデバイス製造方法。
JP2009134649A 2009-06-04 2009-06-04 偏光子ユニット、照明光学系、露光装置、およびデバイス製造方法 Pending JP2010283101A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009134649A JP2010283101A (ja) 2009-06-04 2009-06-04 偏光子ユニット、照明光学系、露光装置、およびデバイス製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009134649A JP2010283101A (ja) 2009-06-04 2009-06-04 偏光子ユニット、照明光学系、露光装置、およびデバイス製造方法

Publications (1)

Publication Number Publication Date
JP2010283101A true JP2010283101A (ja) 2010-12-16

Family

ID=43539603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009134649A Pending JP2010283101A (ja) 2009-06-04 2009-06-04 偏光子ユニット、照明光学系、露光装置、およびデバイス製造方法

Country Status (1)

Country Link
JP (1) JP2010283101A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018523849A (ja) * 2015-08-21 2018-08-23 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ方法及び装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018523849A (ja) * 2015-08-21 2018-08-23 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ方法及び装置
US10401734B2 (en) 2015-08-21 2019-09-03 Asml Netherlands B.V. Lithographic method and apparatus

Similar Documents

Publication Publication Date Title
JP6493325B2 (ja) 光束変換素子、照明光学装置、露光装置、および露光方法
JP5935852B2 (ja) 光学ユニット、照明光学装置、露光装置、およびデバイス製造方法
JP2006196715A (ja) 光束変換素子、照明光学装置、露光装置、および露光方法
JP4976094B2 (ja) 照明光学装置、露光装置、露光方法、およびマイクロデバイスの製造方法
WO2011158912A1 (ja) 照明光学系、露光装置、およびデバイス製造方法
JP4952801B2 (ja) 照明光学系、露光装置および露光方法
JP4952800B2 (ja) 照明光学系、露光装置および露光方法
JPWO2008004654A1 (ja) 照明光学装置、露光装置、およびデバイス製造方法
JP5761329B2 (ja) 照明光学装置、露光装置および露光方法
JP5928632B2 (ja) 照明光学装置、露光装置および露光方法
JP5644921B2 (ja) 照明光学装置
JP5533917B2 (ja) 照明光学系、露光装置およびデバイス製造方法
JP5531518B2 (ja) 偏光変換ユニット、照明光学系、露光装置、およびデバイス製造方法
JP5338863B2 (ja) 照明光学系、露光装置、露光方法およびデバイス製造方法
JP6330830B2 (ja) 照明光学装置、露光装置および露光方法
JP2010283101A (ja) 偏光子ユニット、照明光学系、露光装置、およびデバイス製造方法
JP2019023732A (ja) 照明光学系、露光装置およびデバイス製造方法
JP2010141091A (ja) 偏光制御ユニット、照明光学系、露光装置、およびデバイス製造方法
JP6493445B2 (ja) 照明光学装置、露光装置および露光方法
JP5534276B2 (ja) 照明光学系、露光装置、およびデバイス製造方法
JP5839076B2 (ja) 照明光学系、露光装置、およびデバイス製造方法
JP2013008788A (ja) 偏光変換ユニット、照明光学系、露光装置、およびデバイス製造方法
JP2008021767A (ja) 照明光学装置、露光装置、およびデバイス製造方法
JP2010283100A (ja) 偏光変換ユニット、照明光学系、露光装置、およびデバイス製造方法
JP2012156536A (ja) 照明光学装置、露光装置および露光方法