WO2014209056A1 - Polyester film and method for manufacturing same - Google Patents

Polyester film and method for manufacturing same Download PDF

Info

Publication number
WO2014209056A1
WO2014209056A1 PCT/KR2014/005737 KR2014005737W WO2014209056A1 WO 2014209056 A1 WO2014209056 A1 WO 2014209056A1 KR 2014005737 W KR2014005737 W KR 2014005737W WO 2014209056 A1 WO2014209056 A1 WO 2014209056A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polyester
equation
length
polyester film
Prior art date
Application number
PCT/KR2014/005737
Other languages
French (fr)
Korean (ko)
Inventor
정두환
백상현
최성란
조현
송기상
김시민
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130074235A external-priority patent/KR101985469B1/en
Priority claimed from KR1020130075754A external-priority patent/KR101998344B1/en
Priority claimed from KR1020140078719A external-priority patent/KR102186530B1/en
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to CN201480046297.3A priority Critical patent/CN105473649B/en
Priority to JP2016523651A priority patent/JP2016525465A/en
Priority to CN201811653488.2A priority patent/CN110028687B/en
Publication of WO2014209056A1 publication Critical patent/WO2014209056A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • B32B2307/736Shrinkable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a polyester film and a method for producing the same. More particularly, the present invention relates to a polyester film having excellent optical properties, controlling heat shrinkage, preventing migration of oligomers upon heating, and having low haze change rate after heating, and being applicable to optical applications, and a method of manufacturing the same.
  • An optical film is a film used as an optical member for display, and is used as an optical material for LCD BLU, or as an optical member for protecting a surface of various displays such as LCD, PDP, and touch panel.
  • Such optical films require excellent transparency and visibility, and use biaxially stretched polyester films having excellent mechanical and electrical properties as base films.
  • the biaxially stretched polyester film has low surface hardness and lacks abrasion resistance or scratch resistance, surface damage may be easily caused by friction or contact with an object when used as an optical member of various displays.
  • a hard coating layer is laminated on the surface of the film, and a primer layer may be formed as an intermediate layer in order to improve adhesion between the polyester film as a substrate and the hard coating layer.
  • Polyester films applied to such displays are experiencing quality problems associated with oligomer spills. This is because the oligomer is migrated inside the polyester film as it is exposed to high temperatures in post-processing processes such as curing and aging after adhesive coating to the polyester film, causing curling due to whitening or thermal deformation. can do.
  • a diamond mark phenomenon in which a diamond pattern is formed may occur due to the pressure of the diamond pattern roll used in the slitting process after the polyester film is manufactured. When such whitening and diamond mark phenomena occur, the film roll is contaminated in the process and the optical properties of the final product are degraded.
  • Japanese Patent Laid-Open Publication No. 2007-253511 (2007.10.04) is a polyester film having a laminated film on at least one surface, and forming the laminated film on the polyester film to control the outflow of the oligomer.
  • the laminated polyester film whose average size of the oligomer particle which precipitates in a laminated film at the time of heating for 10 minutes is 10 micrometer ⁇ 2> or less, and the number is 100 or less in the 100 micrometer * 100 micrometer visual field is described.
  • This invention seeks to control the outflow of oligomers but does not completely block them.
  • polyester film In addition, high temperature aging of the polyester film is used, or high heat-resistant polymer such as polyethylene naphthalate (PEN) or polyimide (PI).
  • PEN polyethylene naphthalate
  • PI polyimide
  • the polyester film is used at high temperature aging, the production yield of the film is not sufficient and deformation occurs due to moisture, and oligomer migration does not occur when the high heat resistant polymer is used, but manufacturing cost is considerably higher than that of polyester. There was a problem that was difficult to finish.
  • touch screen panel products are required to ensure fairness in the post-processing process.
  • the touch screen panel product is used by laminating three or more films such as a heat-resistant film for ITO protection and a polyester film for hard coating coated with a double-sided rainbow reduced primer. If the heat shrinkage of the three or more films do not match, the quality of the product may be degraded as problems such as curl and wrinkles occur due to the heat shrinkage mismatch in the post-processing at high temperature.
  • the present invention has an object to provide a polyester film is completely blocked out of the oligomer.
  • an object of the present invention is to provide an optical film including the polyester film.
  • the present invention is to provide a method for producing a polyester film that can block the migration of the oligomer after heating, while controlling the heat shrinkage rate.
  • an object of the present invention is to provide a polyester multilayer film suitable for ITO process, ITO base film and base film for hard coating for touch panel.
  • Smd means the shrinkage rate (%) in the machine direction (MD) of the film
  • Std means the shrinkage rate (%) in the width direction (TD) of the film.
  • Polyester film according to an embodiment of the present invention may satisfy the following formulas 3 and 4.
  • Vmd means the deviation (%) of thermal shrinkage in the machine direction of 10 samples selected at 50 cm intervals based on the full width of the film
  • Vtd is the deviation of thermal shrinkage in the width direction of 10 samples selected at 50 cm intervals based on the full width of the film ( %).
  • Polyester film according to an embodiment of the present invention can satisfy the following formula 5 to formula 7.
  • S (45) and S (135) is a thermal shrinkage (%) of the film measured in accordance with JIS C-2318 standard after maintaining a polyester film of 10cm in width, 10cm in length for 30 minutes at 150 °C
  • the thermal contraction rate (%) (the length of the film before heat treatment-the length of the film after holding for 30 minutes at 150 °C) / the length of the film before heat treatment ⁇ 100.
  • S (45) refers to the diagonal shrinkage (%) at a 45 ° angle clockwise relative to the film width direction (TD)
  • S (135) is a clock based on the film width direction (TD)
  • Polyester film according to an embodiment of the present invention can satisfy the following formula 8 and formula 9.
  • ns ⁇ (length-direction refractive index + width-direction refractive index) / 2 ⁇ - ⁇ (length-direction thickness refractive index + width-direction thickness refractive index) / 2 ⁇ means a plane orientation coefficient
  • Hf is the haze of the film after holding at 150 ° C. for 30 minutes, and Hi represents the haze of the film before heating.
  • the polyester base film includes a base layer and a skin layer in which at least two or more layers are laminated on both sides of the base layer,
  • the oligomer content of the polyester resin constituting the skin layer may be 0.3 to 0.6% by weight, and the content of diethylene glycol may be 0.1 to 1.2% by weight.
  • the polyester base film is a co-extruded base material layer and the skin layer, the intrinsic viscosity may satisfy the following formula (10).
  • Ns is the intrinsic viscosity of the polyester resin constituting the skin layer
  • Nc is the intrinsic viscosity of the polyester resin constituting the base layer.
  • the polyester base film has an inherent viscosity of 0.5 to 1.0 of the polyester resin constituting the base layer, 0.6 to 1.0 days intrinsic viscosity of the polyester resin constituting the skin layer Can be.
  • the primer layer has a Tg of 60 ° C. or more, a swelling ratio of 30% or less, a gel fraction of 95% or more, and a density of 1.3 to 1.4. Can be.
  • Polyester film according to an embodiment of the present invention may have a haze change rate ( ⁇ H) according to the following formula 11 is 0.1% or less.
  • the water dispersible resin composition is a binder resin composed of an acrylic resin (A) copolymerized with a glycidyl group-containing radically polymerizable unsaturated monomer and a water dispersible polyester resin (B). Including;
  • the water dispersible resin composition may have a solid content of 0.5 to 10% by weight of the binder resin.
  • the water dispersible resin composition may further include a silicone-based wetting agent.
  • the water-dispersible polyester-based resin may be a copolymer of a dicarboxylic acid component containing a sulfonic acid alkali metal salt compound and a glycol component containing diethylene glycol.
  • the water-dispersible polyester-based resin may contain 20 to 80 mol% of diethylene glycol in the total glycol component.
  • the water-dispersible polyester-based resin may contain 6 to 20 mol% of the sulfonic acid alkali metal salt compound in the total acid component.
  • the acrylic resin may contain 20 to 80 mol% of the glycidyl group-containing radical polymerizable unsaturated monomer as a copolymerization monomer in all monomer components.
  • the polyester base film may be a polyethylene terephthalate film.
  • the polyester base film may have a thickness of 25 ⁇ 250 ⁇ m.
  • the primer layer may have a dry coating thickness of 20 ⁇ 150nm.
  • the polyester base film may be 70 to 90% by weight of the base layer, 10 to 30% by weight of the skin layer.
  • Polyester film according to an embodiment of the present invention may have a surface roughness (Ra) of less than 10nm.
  • the skin layer may include less than 100ppm inorganic particles.
  • the inorganic particles may have an average particle diameter of less than 3 ⁇ m.
  • the inorganic particles may be any one or a mixture of two or more selected from silica, zeolite and kaolin.
  • the present invention can provide an optical film having at least one functional coating layer selected from a hard coating layer, an adhesive layer, a light diffusion layer, an ITO layer and a printing layer on the polyester film described above.
  • the present invention comprises the steps of a) preparing a polyester base film uniaxially stretched in the machine direction;
  • a primer layer by applying a water-dispersible resin composition having oligomer barrier properties to one or both surfaces of the uniaxially stretched polyester base film;
  • the relaxation ratio (%) (travel speed of the film in the relaxation section-travel speed of the film before the relaxation section) / running speed of the film before the relaxation section ⁇ 100.)
  • step d) the relaxation of the machine direction (MD) can be carried out in a temperature range satisfying the following equation (13).
  • the polyester film may have a thermal contraction rate (%) satisfying the following Formulas 1 to 4.
  • Smd, Std, Vmd and Vtd means the thermal shrinkage (%) of the film measured according to JIS C-2318 standard after maintaining the polyester film of 10cm in width, 10cm in length for 30 minutes at 150 °C ,
  • the heat shrinkage percentage (%) (length of the film before heat treatment-the length of the film after holding for 30 minutes at 150 °C) / length of the film before heat treatment ⁇ 100,
  • Smd means the shrinkage rate (%) in the machine direction (MD) of the film
  • Std means the shrinkage rate (%) in the width direction (TD) of the film
  • Vmd is 10 samples selected at 50cm intervals based on the full width of the film
  • the deviation of thermal shrinkage in the machine direction (%), Vtd refers to the deviation (%) of thermal shrinkage in the width direction of 10 samples selected at 50cm intervals based on the full width of the film.
  • the polyester film may satisfy the following formulas 5 to 7.
  • S (45) and S (135) is a thermal shrinkage (%) of the film measured in accordance with JIS C-2318 standard after maintaining a polyester film of 10cm in width, 10cm in length for 30 minutes at 150 °C
  • the thermal contraction rate (%) (the length of the film before heat treatment-the length of the film after holding for 30 minutes at 150 °C) / the length of the film before heat treatment ⁇ 100.
  • S (45) refers to the diagonal shrinkage (%) at a 45 ° angle clockwise relative to the film width direction (TD)
  • S (135) is a clock based on the film width direction (TD)
  • the primer layer has a T g of 60 ° C. or more, a swelling ratio of 30% or less, a gel fraction of 95% or more, and a density. May be 1.3 to 1.4.
  • the polyester film may have a haze change rate ( ⁇ H) according to Equation 11 below 0.1%.
  • the present invention is a skin layer composition
  • a first polyester resin having an oligomer content of 0.3 ⁇ 0.6% by weight of polyester resin, 0.1 ⁇ 1.2% by weight of diethylene glycol, and intrinsic viscosity Melt extruding the second polyester resin for the substrate layer satisfying the following;
  • Ns is the intrinsic viscosity of the polyester resin constituting the skin layer
  • Nc is the intrinsic viscosity of the polyester resin constituting the base layer.
  • TDr means the relaxation ratio in the width direction (TD)
  • the relaxation ratio (%) ⁇ (maximum width of the width direction of the film before the relaxation section-minimum width of the width direction of the film in the relaxation section ) / The maximum width of the film before the relaxation section ⁇ ⁇ 100.
  • the skin layer composition in step a) may include less than 100ppm inorganic particles.
  • the inorganic particles may have an average particle diameter of less than 3 ⁇ m.
  • the heat shrinkage satisfies the following formula 1 to formula 2
  • the surface orientation coefficient (ns) satisfies the following formula 8
  • the haze of a film can satisfy following formula 9.
  • the plane orientation coefficient (ns) ⁇ (length direction refractive index + width direction refractive index) / 2 ⁇ - ⁇ (length direction thickness refractive index + width direction thickness refractive index) / 2 ⁇ ,
  • Hf is the haze of the film after holding at 150 ° C. for 30 minutes
  • Hi is the haze of the film before heating.
  • MDr means the relaxation ratio in the machine direction
  • the relaxation ratio (%) (travel speed of the film in the relaxation section-running speed of the film before the relaxation section) / running speed of the film before the relaxation section ⁇ 100.
  • Polyester film according to the present invention has the effect that the outflow of the oligomer is completely blocked at high temperature conditions.
  • the polyester film according to the present invention has an optical property suitable for use in heat-resistant film for ITO protection, etc. of the touch panel film, the heat shrinkage of the film width is controlled so that the post-processability, in particular ITO film, ITO heat-resistant protective film, Securing processability in the lamination process of three or more films, such as an interference pattern polyester film, is easy.
  • the oligomer means a dimer, trimer, tetramer, etc. having a weight average molecular weight of about 500 to 10,000.
  • polyester film according to the present invention includes a polyester base film made of a polyester resin, and a primer layer formed by applying a water-dispersible resin composition having an oligomer barrier property on one or both sides thereof, %) May satisfy the following Formulas 1 to 4.
  • Smd, Std, Vmd and Vtd means the heat shrinkage (%) of the film measured in accordance with JIS C-2318 standard after maintaining the polyester film of 10cm in width, 10cm in length for 30 minutes at 150 °C,
  • the heat shrinkage percentage (%) (length of film before heat treatment-length of film after holding at 150 ° C. for 30 minutes) / length of film before heat treatment ⁇ 100,
  • Smd means the shrinkage rate (%) in the machine direction (MD) of the film
  • Std means the shrinkage rate (%) in the width direction (TD) of the film
  • Vmd is 10 samples selected at 50cm intervals based on the full width of the film It means the deviation (%) of the heat shrinkage in the machine direction
  • Vtd means the deviation (%) of the heat shrinkage in the width direction of 10 samples selected at 50cm intervals based on the film full width.
  • the polyester film according to an embodiment of the present invention may satisfy Equations 1 and 2, satisfy Equations 3 and 4, or satisfy Equations 1 to 4 in Equations 1 to 4 above. These physical conditions can be combined with other conditions.
  • the heat shrinkage percentage (%) in the machine direction (MD) of the film is 0 to 1.5%, preferably 0.2 to 1.5%, more preferably 0 to 1.0%. If the thermal shrinkage percentage (%) of the machine direction (MD) of the film is less than 0%, the film expands, which increases the likelihood of curling in the post process, and in the case of more than 1.5%, the shrinkage of the machine direction in the post process increases. This can increase the likelihood of occurrence. More preferably, it may be 0 to 0.9%.
  • the thermal contraction rate (%) in the width direction (TD) may be 0 to 1.0%, preferably 0 to 0.5%.
  • the thermal contraction percentage (%) of the width direction (TD) is less than 0%, expansion of the film occurs in the width direction, and when it exceeds 1.0%, the width direction shrinkage may be increased in a later process, and thus curl control may be difficult. More preferably, it is 0 to 0.4%.
  • polyester film may include those that satisfy the following formula 5 to formula 7.
  • S (45) refers to the diagonal shrinkage (%) at a 45 ° angle clockwise relative to the film width direction (TD)
  • S (135) is a clock based on the film width direction (TD) Refers to the diagonal shrinkage in% at an angle of 135 °.
  • the polyester film can maximize the heat shrinkage of the oligomer under high temperature conditions by adjusting the heat shrinkage in the diagonal direction.
  • the synergistic effect of the physical properties including the optical properties of the polyester film can be implemented.
  • the thermal contraction rate at an angle of 45 ° clockwise relative to the width direction TD of the film, which is the diagonal direction of the polyester film, and 135 ° clockwise relative to the width direction TD of the film is preferably 0. ⁇ 1.0%.
  • the absolute value of the difference in thermal shrinkage in the two diagonal directions may be preferably 0.2% or less. If the absolute value of the difference in the diagonal heat shrinkage exceeds 0.2%, a curl that curls in a diagonal direction may be generated as the balance that shrinks in the diagonal direction is broken.
  • the uniformity of the heat shrinkage rate can be ensured in the range where the deviation of the heat shrinkage rate is ⁇ 0.2% with respect to the film full width, and the curl control can be easily performed.
  • Polyester film according to an embodiment of the present invention can satisfy the following formula 8 and formula 9.
  • ns ⁇ (length-direction refractive index + width-direction refractive index) / 2 ⁇ - ⁇ (length-direction thickness refractive index + width-direction thickness refractive index) / 2 ⁇ , and means a plane orientation coefficient.
  • the Hf is the haze of the film after maintaining for 30 minutes at 150 °C
  • Hi represents the haze of the film before heating.
  • the plane orientation coefficient of the polyester film according to an embodiment of the present invention may be preferably 0.1590, more preferably 0.1590 ⁇ 0.1610. If the plane orientation coefficient is less than 0.1590, the surface structure of the film may not be dense, and thus surface migration of the oligomer may easily occur.
  • the haze is used to determine the outflow of the oligomer under high temperature conditions.
  • the haze is out of the range of Equation 9
  • the haze is severe and the haze is reduced.
  • the range that satisfies the haze range since it does not significantly affect post-processability, it has physical properties suitable for use as an optical film.
  • the polyester film according to an embodiment of the present invention may include a polyester base film including a base layer and a skin layer in which at least two layers are laminated on both surfaces of the base layer.
  • the oligomer content of the polyester resin constituting the skin layer may be 0.3 to 0.6% by weight
  • the content of diethylene glycol may be 0.1 to 1.2% by weight.
  • the polyester base film may be formed of three or more layers including a base layer, a skin layer in which at least two or more layers are laminated on both sides of the base layer, and may be formed by coextrusion.
  • Equation 10 In order to improve workability when the base layer and the skin layer are coextruded, it is preferable that the following Equation 10 is satisfied.
  • Ns is the intrinsic viscosity of the polyester resin constituting the skin layer
  • Nc is the intrinsic viscosity of the polyester resin constituting the base layer.
  • the intrinsic viscosity ratio of the skin layer and the base layer is more than 1.2, the problem of interfacial instability may occur due to coextrusion, so that the multilayer structure may not be formed, and it is preferable to satisfy the above range, more preferably 1.0 to 1.05. It is effective to improve workability.
  • the polyester base film preferably has a total thickness of 25 to 250 ⁇ m, more preferably 50 to 188 ⁇ m. If the thickness is less than 25 ⁇ m does not implement the mechanical properties suitable for the optical film, if the thickness is greater than 250 ⁇ m may cause a problem that the thickness of the film is not suitable for thinning of the display device.
  • the content of the base layer is 70 to 90% by weight of the entire film
  • the content of the skin layer is preferably 10 to 30% by weight, more preferably the content of the base layer is 70 to 80% by weight
  • the skin layer The content of 20 to 30% by weight is effective because of excellent interfacial stability during coextrusion and excellent barrier property of the oligomer.
  • the base material layer which consists of said polyester resin consists of polyethylene terephthalate (PET) resin alone.
  • PET polyethylene terephthalate
  • the polyethylene terephthalate resin used is preferably used having an intrinsic viscosity of 0.5 to 1.0, more preferably 0.60 to 0.80.
  • the intrinsic viscosity of the substrate layer polyethylene terephthalate resin is less than 0.5, the heat resistance may be reduced. If the base layer is more than 1.0, it may not be easy to process the raw material, thereby reducing workability.
  • Skin layer formed by co-extrusion of at least two or more layers on both sides of the polyester base layer has an oligomer content of 0.3 to 0.6% by weight, more preferably 0.4 to 0.6% by weight based on the total film weight, diethylene glycol (DEG ) Is preferably 0.1 to 1.1% by weight, more preferably 0.7 to 1.1% by weight.
  • DEG diethylene glycol
  • the polyester resin of the skin layer may be prepared by a synthetic method known in the art in order to have a content of the oligomer and diethylene glycol in the above range, in particular, that is prepared by the solid-phase polymerization of the oligomer and diethylene glycol Effective in reducing the content.
  • the intrinsic viscosity of the polyester resin of the skin layer is preferably 0.6 to 1.0, more preferably 0.65 to 0.85.
  • the heat resistance may be reduced, and if it is more than 1.0, it may not be easy to process the raw material, thereby reducing workability.
  • the polyester film according to an embodiment of the present invention includes a primer layer having a Tg of 60 ° C. or more, a swelling ratio of 30% or less, a gel fraction of 95% or more, and a density of 1.3 to 1.4. can do. This may lower the heat shrinkage rate while controlling the migration of the oligomer during polyester film production.
  • the haze (Haze) change before and after 60 minutes at 150 °C satisfies the physical properties of 0.1% or less, and satisfies the thermal shrinkage of the film to be achieved in the present invention Can be.
  • the haze change rate according to the following formula 11 in a range in which the physical properties of the primer layer satisfy the properties of T g of 60 ° C. or more, swelling ratio of 30% or less, gel fraction of 95% or more, and density of 1.3 or more. ( ⁇ H) can satisfy the physical properties of 0.1% or less.
  • Hf is the haze of the film after holding at 150 ° C. for 60 minutes
  • Hi is the haze of the film before heating.
  • the physical property of the primer layer is T g is 60 °C or more, more specifically 60 °C or more and the upper limit is not limited, the swelling ratio is 30% or less, more specifically 0% ⁇ 30%, Gel fraction 95 % Or more, more specifically 95 to 100%, density is 1.3 or more, and more specifically, in the range of satisfying the physical properties of 1.3 to 1.4, the structural density of the coating film and the mobility of the primer layer are lowered. And even if the pressure was applied it was confirmed that the oligomer in the polyester film does not migrate to the surface.
  • the primer layer may be formed by applying a water-dispersible resin composition having oligomer barrier properties.
  • a water dispersible resin composition comprising an acrylic resin copolymerized with a glycidyl group-containing radical polymerizable unsaturated monomer and a water dispersible polyester resin may be used.
  • the solids content of the water-dispersible polyester resin (B) is less than 20% by weight and the solids content of the acrylic resin (A) copolymerized with the glycidyl group-containing radically polymerizable unsaturated monomer is greater than 80% by weight, As particle size increases, staining occurs during inline coating, adhesion and transparency with polyester base film decreases, and the solid content of water-dispersible polyester resin (B) is over 80% by weight, and glycy When the solid content of the acrylic resin (A) copolymerized with a dill-containing radically polymerizable unsaturated monomer is less than 20% by weight, sufficient oligomer blocking effect cannot be expressed.
  • the water-dispersible resin composition of the present invention may be prepared by mixing a water-dispersible polyester resin (B) and a binder resin mixed with an acrylic resin (A) copolymerized with a glycidyl group-containing radically polymerizable unsaturated monomer, It is also possible to polymerize and produce the glycidyl group-containing radically polymerizable unsaturated monomer alone or the radically polymerizable unsaturated monomer copolymerizable with the glycidyl group-containing radical polymerizable unsaturated monomer in an aqueous dispersion of the water-dispersible polyester resin (B). At this time, surfactant and a polymerization initiator can be used.
  • the surfactant and the polymerization initiator may be used without limitation as long as it is conventionally used in emulsion polymerization.
  • anionic surfactants, nonionic surfactants or non-reactive surfactants can be used, and these can also be used in combination.
  • the polymerization initiator is a radically polymerizable initiator, and nitrogen compounds such as a peroxide initiator or azobis isobutyronitrile can be used.
  • the water dispersion composition of the present invention may further include an antifoaming agent, a wetting agent, a surfactant, a thickener, a plasticizer, an antioxidant, a UV absorber, a preservative, a crosslinking agent and the like as necessary.
  • the water-dispersible polyester-based resin (B) may be a copolymer of a dicarboxylic acid component containing a sulfonic acid alkali metal salt compound and a glycol component containing diethylene glycol.
  • the dicarboxylic acid component an aromatic dicarboxylic acid and a sulfonic acid alkali metal salt compound may be used, and the sulfonic acid alkali metal salt compound may contain 6 to 20 mol% of the total acid component.
  • the dicarboxylic acid component is an aromatic dicarboxylic acid such as phthalic acid, terephthalic acid, dimethyl terephthalate, isophthalic acid, dimethyl isophthalic acid, 2,5-dimethyl terephthalic acid, 2,6-naphthalene dicarboxylic acid and biphenyldicarboxylic acid.
  • aromatic dicarboxylic acids such as an acid, adipic acid, a sebacic acid, alicyclic dicarboxylic acids, such as cyclohexane dicarboxylic acid, etc. can be used.
  • the sulfonic acid alkali metal salt compound include alkali metal salts such as sulfoterephthalic acid, 5-sulfo isophthalic acid, 4-sulfo isophthalic acid, 4-sulfo naphthalic acid-2,7-dicarboxylic acid, and the like. It is preferable to use 6-20 mol%. When using less than 6 mol%, the dispersion time of resin to water becomes long, dispersibility is low, and when it uses more than 20 mol%, water resistance may fall.
  • glycol component diethylene glycol and aliphatic glycols having 2 to 8 carbon atoms or alicyclic glycols having 6 to 12 carbon atoms may be used.
  • ethylene glycol, 1,3-propanediol, 1,2-propylene glycol, neopentyl glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol , 1,2-cyclohexanedimethanol, 1,6-hexanediol, P-xylene glycol, triethylene glycol and the like can be used.
  • the number average molecular weights of the said water-dispersible polyester resin (B) are 1000-50000, More preferably, the number average molecular weights are 2000-30000. When the number average molecular weight is less than 1000, the oligomer blocking effect is insignificant, and when the number average molecular weight is more than 50000, water dispersibility may be difficult.
  • the water-dispersible polyester-based resin (B) is used by uniformly dispersing by heating and stirring the water or water containing an aqueous solvent at 50 ⁇ 90 °C.
  • the aqueous dispersion thus prepared has a solid content of 30 wt% or less, more preferably 10 to 30 wt%, for uniform dispersion.
  • the aqueous solvent may be alcohols such as methanol, ethanol, propanol, polyhydric alcohols such as ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, glycerin, and the like.
  • Acrylic resin (A) copolymerized with a glycidyl group-containing radically polymerizable unsaturated monomer is a homopolymer of a glycidyl group-containing radically polymerizable unsaturated monomer or another radically polymerizable unsaturated monomer copolymerizable with a glycidyl group-containing radically polymerizable unsaturated monomer. It is resin copolymerized.
  • the acrylic resin may be a copolymer monomer containing 20 to 80 mol% of the glycidyl group-containing radical polymerizable unsaturated monomer in all monomer components. Since the glycidyl group-containing radically polymerizable unsaturated monomer improves the strength of the coating film of the primer layer by the crosslinking reaction and increases the crosslinking density, it is possible to block the outflow of the oligomer.
  • glycidyl ethers such as glycidyl acrylate, glycidyl methacrylate, and arylglycidyl ether can be used.
  • Radical polymerizable unsaturated monomers copolymerizable with glycidyl group-containing radical polymerizable unsaturated monomers include vinyl esters, unsaturated carboxylic acid esters, unsaturated carboxylic acid amides, unsaturated nitriles, unsaturated carboxylic acids, allyl compounds, nitrogen-containing vinyl monomers and hydrocarbon vinyl monomers. Or a vinyl silane compound. Vinyl propionate, vinyl stearate, vinyl chloride, etc. can be used as vinyl ester.
  • Unsaturated carboxylic acid esters include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, ethyl methacrylate, butyl methacrylate, butyl maleate, octyl maleate, butyl fumarate, octyl fumarate, hydroxyethyl methacrylate, Hydroxyethyl acrylate, methacrylate hydroxypropyl, hydroxypropyl acrylate and the like can be used.
  • unsaturated carboxylic acid amide acrylamide, methacrylamide, metyrolacrylamide, butoxy methirol acrylamide, and the like can be used. Acrylonitrile etc.
  • unsaturated nitrile can be used as unsaturated nitrile.
  • unsaturated carboxylic acid acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, maleic acid acid ester, fumaric acid acid ester, itaconic acid acid ester and the like can be used.
  • allyl compound allyl acetate, allyl methacrylate, allyl acrylate, allyl itaconic acid, diallyl itaconic acid and the like can be used.
  • Vinylpyridine, vinyl imidazole, etc. can be used as a nitrogen-containing vinyl monomer.
  • hydrocarbon vinyl monomer ethylene, propylene, hexene, octene, styrene, vinyltoluene, butadiene and the like can be used.
  • vinyl silane compound dimethyl vinyl methoxy silane, dimethyl vinyl ethoxy silane, methyl vinyl dimethoxy silane, methyl vinyl diethoxy silane, gamma-methacryloxy propyl trimethoxy silane, gamma-methacryloxy propyl dimethoxy silane, etc. Can be used.
  • Water-dispersible resin composition is a water content of 0.5 to 10% by weight of the solid content of the acrylic resin (A) and the water-dispersible polyester resin (B) copolymerized with a glycidyl group-containing radically polymerizable unsaturated monomer It is preferably an acidic or water soluble composition. More specifically, the solid content of the acrylic resin (A) and the water-dispersible polyester resin (B) copolymerized with the glycidyl group-containing radically polymerizable unsaturated monomer is 0.5 to 10% by weight, and the remainder includes water. It may further include additives such as a wetting agent, a dispersing agent. The wetting agent is used to improve the coating property.
  • a modified silicone wetting agent such as Dow Corning's Q2-5212, ENBODIC's TEGO WET 250, BYK CHEMIE's BYK 348, etc. may be used. It doesn't happen.
  • Wetting agent is preferably used in 0.1 to 0.5% by weight, it is possible to achieve the desired coating properties in the above range.
  • the primer layer may be a dry coating thickness of 20 ⁇ 150nm. If the dry coating thickness is less than 20nm, the oligomer blocking properties may not be sufficiently exhibited. If the dry coating thickness is greater than 150nm, coating stains may appear, and a blocking phenomenon of sticking primer layers after the winding of the film may increase.
  • the water-dispersible resin composition may be applied by an in-line coating method of the polyester film manufacturing process.
  • the polyester base film may be prepared by applying an in-line coating method before stretching or before the second stretching after the primary stretching, or by stretching. Water is evaporated by heating during the secondary stretching and heat setting. Layers can be formed.
  • the coating method is not limited as long as it is a known coating method.
  • a primer layer by applying a water-dispersible resin composition having oligomer barrier properties to one or both surfaces of the uniaxially stretched polyester base film;
  • the relaxation ratio (%) (travel speed of the film in the relaxation section-travel speed of the film before the relaxation section) / running speed of the film before the relaxation section ⁇ 100.)
  • the relaxation of the machine direction (MD) may be performed in a temperature range satisfying the following equation (13).
  • the oligomer after stretching as described above, by performing heat setting and relaxation in the machine direction, and performing the conditions in the conditions satisfying the above formulas 9 and 10 during relaxation, the oligomer does not migrate under high temperature conditions, the shrinkage of the film Since this does not occur, it is possible to produce a film advantageous for the post-process.
  • the step a) is a polyester chip into an extruder and melt extrusion and then quenched and solidified in a casting drum to produce a polyester sheet, which is then machined at 80 ⁇ 100 °C It is a step of performing uniaxial stretching in the direction MD. At this time, the stretching ratio is preferably 2 to 4 times.
  • Step b) is a process of coating the water-dispersible resin composition on the uniaxially stretched polyester base film, it can be coated using a method known to those skilled in the art.
  • Step c) is a process of performing biaxial stretching in the width direction (TD) of the polyester base film on which the primer coating layer is formed, preferably stretching 2 to 4 times at 110 to 150 ° C.
  • Step d) is a process of performing heat setting and relaxation
  • step d) may be performed in a tenter.
  • the heat setting temperature may be carried out at 200 ⁇ 240 °C, the temperature at the time of relaxation is preferably performed in the range satisfying the following equation (13).
  • the relaxation may be performed by using the MD Relax facility in the machine direction (MD direction), and may be performed by changing a passing path to the Clip in the width direction (TD direction).
  • MD Relax facility can control the shrinkage performance in the MD direction in the future by providing a speed difference of about 1.1% to 2.5% between nine rails after the heat treatment period. Preferably a speed difference of 1.2 to 2.0%, more preferably 1.25 to 2.0% is good.
  • the heat shrinkage rate in the MD direction at 150 ° C. and 30min standing conditions is in the range of 0 to 1.0%, more preferably in the range of 0.3 to 0.9%.
  • the heat shrinkage in the TD direction under the above conditions is in the range of 0 to 0.5%, more preferably in the range of 0.0 to 0.4%.
  • the deviation of the thermal contraction rate is within ⁇ 0.2% of the MD / TD direction based on the master roll full width reference.
  • the skin layer may include inorganic particles, it is preferable to use so that the initial haze of the film satisfies the range of less than 1.5% haze. Moreover, it is preferable that the surface roughness of a film is 10 nm or less. If the surface roughness exceeds 10nm may result in smoothness of the final product after hard coating.
  • the inorganic particles may be any particles used in the film, such as silica, zeolite and kaolin. These inorganic particles come out to the surface of the film through the stretching process to improve the slip properties and winding properties of the film.
  • the particle size is 3 ⁇ m or more, even if the particle content is 100 ppm or less, the transparency of the film is much lowered, and the roughness (Ra) is lowered to 10 nm or more, so that it is difficult to use for optical, especially for the touch panel.
  • the particle content is 100ppm or more
  • the transparency of the film is lowered, which is not suitable for the touch panel.
  • the haze is 1.5% or more, the transparency and the light transmittance drop sharply when used for the optical and the touch panel, and it is difficult to use the optical for the BLU evaluation with the naked eye.
  • the production of the polyester multilayer film including the base layer and the skin layer of the present invention is not limited, but may be obtained by extrusion fusion and casting by biaxial stretching in at least two melt extruders.
  • one extruder is used to extrude polyester, and another extruder is melt extruded simultaneously with additives such as polyester, inorganic particles such as silica, kaolin, and zeolite, and each melt is coextruded in the feed block. After casting, casting, cooling and then biaxial stretching in sequence.
  • the polyester film is formed of:
  • a skin layer composition comprising a first polyester resin having an oligomer content of 0.3 to 0.6% by weight and a diethylene glycol content of 0.1 to 1.2% by weight, and an intrinsic viscosity satisfying Melting and extruding the second polyester resin for the base layer;
  • Ns is the intrinsic viscosity of the polyester resin constituting the skin layer
  • Nc is the intrinsic viscosity of the polyester resin constituting the base layer.
  • TDr means the relaxation ratio in the width direction (TD)
  • the relaxation ratio (%) ⁇ (maximum width of the width direction of the film before the relaxation section-minimum width of the width direction of the film in the relaxation section ) / The maximum width of the film before the relaxation section ⁇ ⁇ 100.
  • the oligomer after stretching as described above, by performing heat setting and longitudinal relaxation, and performing the conditions in the condition that satisfies Equation 6 at the time of relaxation, the oligomer does not migrate under high temperature conditions, the shrinkage of the film occurs Since it is not possible to produce a film advantageous for the post-process.
  • step a) is a step of preparing a polyester sheet by co-extrusion of a polyester resin constituting the base layer and the skin layer, followed by quenching and solidifying with a casting drum. It is preferable that the intrinsic viscosity of the polyester resin used for a layer and a base material layer is a range which satisfy
  • Ns is the intrinsic viscosity of the polyester resin constituting the skin layer
  • Nc is the intrinsic viscosity of the polyester resin constituting the base layer.
  • step b) is a step of stretching the coextruded sheet into a film, which may be uniaxially or biaxially stretched, and preferably biaxially stretched.
  • uniaxial stretching is performed in the longitudinal direction (MD) at 80 to 100 ° C, and the stretching ratio is preferably 2 to 4 times.
  • TD width direction
  • Step c) is a process of performing heat setting and relaxation
  • step d) may be performed in a tenter.
  • the heat setting temperature may be performed at 200 to 240 ° C.
  • the thermal contraction rate may be controlled by performing the relaxation rate in the width direction during relaxation to satisfy Equation 14 below.
  • TDr means the relaxation ratio in the width direction (TD)
  • the relaxation ratio (%) ⁇ (maximum width of the width direction of the film before the relaxation section-minimum width of the width direction of the film in the relaxation section ) / The maximum width of the film before the relaxation section ⁇ ⁇ 100.
  • MDr means the relaxation ratio in the machine direction
  • the relaxation ratio (%) (travel speed of the film in the relaxation section-travel speed of the film before the relaxation section) / travel speed of the film before the relaxation section ⁇ 100.)
  • the shrinkage ratio of the film after maintaining for 30 minutes at 150 ° C can satisfy the equations (1) and (2).
  • Hard coating layer, pressure-sensitive adhesive layer, light diffusing layer, ITO layer, printing layer, etc. may be formed on the polyester film of the present invention, and even after heating the functional coating layer, the outflow of the oligomer is blocked to provide optical properties. Since it can be maintained, the polyester film of this invention is suitable for use as an optical film.
  • the physical properties were measured by the following measurement method.
  • the dimension change after leaving for 30 minutes in the hot air oven in which the conditions of 150 degreeC conditions are maintained is measured according to JIS C-2318 standard.
  • the film is measured at 50cm intervals with respect to the full width roll, and the dimensional change is measured in the clockwise 45 degree direction and 135 degree direction in the MD direction, the TD direction, and the TD direction, respectively.
  • Thermal shrinkage (%) (length of film before heat treatment-length of film after holding at 150 ° C. for 30 minutes) / length of film before heat treatment ⁇ 100
  • C represents the concentration of the sample.
  • oligomer By quantitative method, chloroform is added to HFIP (1,1,1,3,3,3-hexafluoro-2-propanol) as a sample solvent to dissolve at room temperature, and then acetonitrile is precipitated as a polymer. Then, the calibration curve of the standard material (cyclic oligomer) is prepared by using LC analysis equipment, and the cyclic oligomer purity is determined through sample analysis. As analytical equipment, LC (liquid chromatography) and Agilent's 1100 series were used.
  • Diethylene Glycol (DEG) content is 1 g of a sample in a 50 mL container, 3 mL of monoethanolamine is added and heated using a hot plate to completely dissolve the sample, then cooled to 100 °C 1
  • a solution of 0.005 g of 6-hexanediol dissolved in 20 mL of methanol was added, followed by neutralization by addition of 10 g of terephthalic acid.
  • the obtained neutralized liquid was filtered using a funnel and filter paper, and the filtrate was subjected to gas chromatography (Gas Chromatography) to measure the DEG content (% by weight).
  • GC analysis was measured using a Shimadzu GC analyzer and in accordance with the Shimazu GC manual.
  • Specimens of the film formed were measured according to JIS K 715 using a HAZE METER (model name: Nipon denshoku, Model NDH 5000).
  • the film was placed in a box having a height of 3 cm, a width of 21 cm, and a height of 27 cm, and heat-treated at 150 ° C. for 60 min to migrate the oligomer to the film surface, and to leave for 5 min.
  • the value was measured using HAZE METER (Nipon denshoku, Model NDH 5000) according to JIS K 715 standard.
  • the haze change amount was calculated according to the following formula (11).
  • Hf is the haze of the film after holding at 150 ° C. for 60 minutes
  • Hi is the haze of the film before heating.
  • the cross section of the film was measured by SEM (Hitachi S-4300) by designating 5 points at 1m intervals in the vertical direction (TD) of the machine direction to which the coating composition was coated. The average value was calculated after 30 point measurement.
  • Ra center line roughness
  • the refractive index in the longitudinal direction, width direction and thickness direction is measured and calculated as follows.
  • Plane orientation coefficient (ns) ⁇ (lengthwise refractive index + widthwise refractive index) / 2 ⁇ - ⁇ (lengthwise thickness refractive index + widthwise refractive index / 2 ⁇
  • 2nd Run. -40 degreeC-200 degreeC, and it measures on 20 degree-C / min conditions.
  • the film is cut to a size of A4 size (width 29.7 cm, length 21.0 cm) in the width direction. Then, the dimensional change after standing for 12 hours in a hot air oven in which the condition of 80 ° C is maintained is measured. Dimensional changes are measured for the height of the four corners of the A4 film off the floor.
  • Curl occurrence was determined as no curl when the height from the bottom to the edge of the film is 3mm or less.
  • binder resins used in the following Examples and Comparative Examples are as follows.
  • the acrylic resin contains 50 mol% of the glycidyl group-containing radical polymerizable unsaturated monomer as a copolymerization monomer in all monomer components,
  • the water-dispersible polyester resin contains 50 mol% of diethylene glycol in the total glycol component and 10 mol% of the sulfonic acid alkali metal salt compound in the total acid component.
  • Rohm & Haas Co., Ltd. a binder containing 40% by weight of methyl methacrylate, 40% by weight of ethyl acrylate and 20% by weight of melamine.
  • the acrylic resin (A) was a copolymer of 60 mol% glycidyl acrylate and 40 mol% vinyl propionate, and a weight average molecular weight of 35000 was used.
  • the water-dispersible polyester-based resin (B) is 50 mol% of sulfoterephthalic acid and 85 mol% of terephthalic acid with respect to 50 mol% of diethylene glycol and 50 mol% of ethylene glycol 50 mol%.
  • As the resin polymerized using a weight average molecular weight of 14000 was used.
  • a water-dispersible resin composition (1) having a total solid content of 0.8 wt%.
  • polyethylene terephthalate having an intrinsic viscosity of 0.65, a diethylene glycol content of 1.2% by weight, and an oligomer content of 1.4% by weight was added to an extruder, and melted and extruded. Is 0.67, the diethylene glycol content of 0.8% by weight, the oligomer content of the polyethylene terephthalate chip prepared by the solid phase polymerization of 0.5% by weight, the silica particles with a particle size of 0.7 ⁇ m 50ppm relative to the total weight of polyethylene terephthalate Using to prepare a sheet co-extruded to three layers of A / B / A.
  • the prepared water-dispersible resin composition (1) was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., preheated and dried, and then 3.5 times in the transverse direction (TD). Stretched. Thereafter, heat treatment was performed at 230 ° C. in a 5-stage tenter, followed by heat setting at 10 ° C. in the longitudinal and transverse directions at 200 ° C. to prepare a biaxially stretched film of 188 ⁇ m coated on both sides.
  • the prepared polyester multilayer film was 80 wt% of the total film weight, the skin layer was 20 wt% of the total film weight, and the dry coating thickness of the primer layer of the composition was 20 nm.
  • the physical properties of the polyester film thus obtained are shown in Table 2 below.
  • a binder having a solid content weight ratio of acrylic resin (A) copolymerized with a glycidyl group-containing radical polymerizable unsaturated monomer and a water-dispersible polyester resin (B) (A) / (B) 70/30 was used.
  • the acrylic resin (A) was a copolymer of 60 mol% glycidyl acrylate and 40 mol% vinyl propionate, and a weight average molecular weight of 30000 was used.
  • the water-dispersible polyester-based resin (B) is 50 mol% of sulfoterephthalic acid and 85 mol% of terephthalic acid with respect to 50 mol% of diethylene glycol and 50 mol% of ethylene glycol 50 mol%.
  • As the resin polymerized using a weight average molecular weight of 12000 was used.
  • polyethylene terephthalate having an intrinsic viscosity of 0.65, a diethylene glycol content of 1.2% by weight, and an oligomer content of 1.4% by weight was added to an extruder, and melted and extruded.
  • the prepared water-dispersible resin composition (1) was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., preheated and dried, and then 3.5 times in the transverse direction (TD). Stretched. Thereafter, heat treatment was performed at 230 ° C. in a 5-stage tenter, followed by heat setting at 10 ° C. in the longitudinal and transverse directions at 200 ° C. to prepare a biaxially stretched film of 188 ⁇ m coated on both sides.
  • the prepared polyester multilayer film was 80 wt% of the total film weight, the skin layer was 20 wt% of the total film weight, and the dry coating thickness of the primer layer of the composition was 20 nm.
  • the physical properties of the polyester film thus obtained are shown in Table 2 below.
  • polyethylene terephthalate having an intrinsic viscosity of 0.65, a diethylene glycol content of 1.2% by weight, and an oligomer content of 1.4% by weight was added to an extruder, and melted and extruded.
  • the prepared water-dispersible resin composition (2) was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., preheated and dried, and then 3.5 times in the transverse direction (TD). Stretched. Thereafter, heat treatment was performed at 230 ° C. in a 5-stage tenter, followed by heat setting at 10 ° C. in the longitudinal and transverse directions at 200 ° C. to prepare a biaxially stretched film of 188 ⁇ m coated on both sides.
  • the prepared polyester multilayer film was 80% by weight of the total film weight, the skin layer was 20% by weight of the total film weight, the dry coating thickness of the primer layer of the composition was 110nm.
  • the physical properties of the polyester film thus obtained are shown in Table 2 below.
  • polyethylene terephthalate having an intrinsic viscosity of 0.65, a diethylene glycol content of 1.2% by weight, and an oligomer content of 1.4% by weight was added to an extruder, and melted and extruded. Is 0.67, the diethylene glycol content of 0.8% by weight, the oligomer content of 0.4% by weight of polyethylene terephthalate chip prepared by solid phase polymerization, the silica particles with a particle size of 0.7 ⁇ m 50ppm relative to the total weight of polyethylene terephthalate Using to prepare a sheet co-extruded to three layers of A / B / A.
  • the prepared water-dispersible resin composition (1) was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., preheated and dried, and then 3.5 times in the transverse direction (TD). Stretched. Thereafter, heat treatment was performed at 230 ° C. in a 5-stage tenter, followed by heat setting at 10 ° C. in the longitudinal and transverse directions at 200 ° C. to prepare a biaxially stretched film of 188 ⁇ m coated on both sides.
  • the prepared polyester multilayer film was 80 wt% of the total film weight, the skin layer was 20 wt% of the total film weight, and the dry coating thickness of the primer layer of the composition was 20 nm.
  • the physical properties of the polyester film thus obtained are shown in Table 2 below.
  • polyethylene terephthalate having an intrinsic viscosity of 0.65, a diethylene glycol content of 1.2% by weight, and an oligomer content of 1.4% by weight was added to an extruder, and melted and extruded. Is 0.67, the diethylene glycol content of 0.8% by weight, the oligomer content of 0.4% by weight of polyethylene terephthalate chip prepared by solid phase polymerization, the silica particles with a particle size of 0.7 ⁇ m 50ppm relative to the total weight of polyethylene terephthalate Using to prepare a sheet co-extruded to three layers of A / B / A.
  • the prepared water-dispersible resin composition (2) was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., preheated and dried, and then 3.5 times in the transverse direction (TD). Stretched. Thereafter, heat treatment was performed at 230 ° C. in a 5-stage tenter, followed by heat setting at 10 ° C. in the longitudinal and transverse directions at 200 ° C. to prepare a biaxially stretched film of 188 ⁇ m coated on both sides.
  • the prepared polyester multilayer film was 80% by weight of the total film weight, the skin layer was 20% by weight of the total film weight, the dry coating thickness of the primer layer of the composition was 110nm.
  • the physical properties of the polyester film thus obtained are shown in Table 2 below.
  • polyethylene terephthalate having an intrinsic viscosity of 0.65, a diethylene glycol content of 1.2% by weight, and an oligomer content of 1.4% by weight was added to an extruder, and melted and extruded. Is 0.67, the diethylene glycol content of 0.8% by weight, the oligomer content of the polyethylene terephthalate chip prepared by the solid phase polymerization of 0.5% by weight, the silica particles with a particle size of 0.7 ⁇ m 50ppm relative to the total weight of polyethylene terephthalate Using to prepare a sheet co-extruded to three layers of A / B / A.
  • the prepared water-dispersible resin composition (1) was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., preheated and dried, and then 3.5 times in the transverse direction (TD). Stretched. Thereafter, heat treatment was performed at 230 ° C. in a 5-stage tenter, followed by heat setting at 10 ° C. in the longitudinal and transverse directions at 200 ° C. to prepare a biaxially stretched film of 188 ⁇ m coated on both sides.
  • the prepared polyester multilayer film was 70% by weight of the total film weight, the skin layer was 30% by weight of the total film weight, and the dry coating thickness of the primer layer of the composition was 20 nm.
  • the physical properties of the polyester film thus obtained are shown in Table 2 below.
  • polyethylene terephthalate having an intrinsic viscosity of 0.65, a diethylene glycol content of 1.2% by weight, and an oligomer content of 1.4% by weight was added to an extruder, and melted and extruded. Is 0.67, the diethylene glycol content of 0.8% by weight, the oligomer content of the polyethylene terephthalate chip prepared by the solid phase polymerization of 0.5% by weight, the silica particles with a particle size of 0.7 ⁇ m 50ppm relative to the total weight of polyethylene terephthalate Using to prepare a sheet co-extruded to three layers of A / B / A.
  • the prepared water-dispersible resin composition (2) was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., preheated and dried, and then 3.5 times in the transverse direction (TD). Stretched. Thereafter, heat treatment was performed at 230 ° C. in a 5-stage tenter, followed by heat setting at 10 ° C. in the longitudinal and transverse directions at 200 ° C. to prepare a biaxially stretched film of 188 ⁇ m coated on both sides.
  • the prepared polyester multilayer film was 70% by weight of the total film weight, the skin layer was 30% by weight of the total film weight, and the dry coating thickness of the primer layer of the composition was 110nm.
  • the physical properties of the polyester film thus obtained are shown in Table 2 below.
  • polyethylene terephthalate having an intrinsic viscosity of 0.65, a diethylene glycol content of 1.2% by weight, and an oligomer content of 1.4% by weight was added to an extruder, and melted and extruded. Is 0.67, the diethylene glycol content of 0.8% by weight, the oligomer content of the polyethylene terephthalate chip prepared by the solid phase polymerization of 0.5% by weight, the silica particles with a particle size of 0.7 ⁇ m 50ppm relative to the total weight of polyethylene terephthalate Using to prepare a sheet co-extruded to three layers of A / B / A. Thereafter, the temperature was increased by 1 ° C.
  • the prepared polyester multilayer film was 80% by weight of the total film weight, the skin layer was 20% by weight of the total film weight.
  • the physical properties of the polyester film thus obtained are shown in Table 2 below.
  • polyethylene terephthalate having an intrinsic viscosity of 0.65, a diethylene glycol content of 1.2% by weight, and an oligomer content of 1.4% by weight was added to an extruder, and melted and extruded.
  • a polyethylene terephthalate chip of 0.67, diethylene glycol content of 0.8% by weight, oligomer content of 1.4% by weight of the solid phase polymerization, and silica particles having a particle diameter of 0.7 ⁇ m 50ppm relative to the total weight of polyethylene terephthalate Using to prepare a sheet co-extruded to three layers of A / B / A.
  • the prepared water-dispersible resin composition (1) was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., preheated and dried, and then 3.5 times in the transverse direction (TD). Stretched. Thereafter, heat treatment was performed at 230 ° C. in a 5-stage tenter, followed by heat setting at 10 ° C. in the longitudinal and transverse directions at 200 ° C. to prepare a biaxially stretched film of 188 ⁇ m coated on both sides.
  • the prepared polyester multilayer film was 80 wt% of the total film weight, the skin layer was 20 wt% of the total film weight, and the dry coating thickness of the primer layer of the composition was 20 nm.
  • the physical properties of the polyester film thus obtained are shown in Table 2 below.
  • polyester-based polyol polyethylene adipate diol having a weight average molecular weight of 1000
  • reactive emulsifier having an ionic group Asahi Denka, polyoxy ethylene allyl glycidyl nonyl phenyl ether
  • An aqueous polyurethane binder having a solid content of 20% by weight was prepared by reacting 1% by weight of adecaria shop SETM), which is a sulfonic acid ester, and 80% by weight of water.
  • Example 1 Table 1 division Layer composition Chip raw material composition Water dispersion resin composition Skin layer composition Core layer composition Base layer (% by weight) Skin layer (wt%) Intrinsic viscosity DEG (% by weight) Oligomer (% by weight) Intrinsic viscosity DEG (% by weight) Oligomer (% by weight) Tg (°C) Gel fraction Swell ratio density
  • Example 1 80 20 0.67 0.8 0.5 0.65 1.2 1.4 67 96 7 1.311
  • Example 2 80 20 0.67 0.8 0.5 0.65 1.2 1.4 67 96 7 1.311
  • Example 3 80 20 0.67 0.8 0.5 0.65 1.2 1.4 67 96 7 1.311
  • Example 4 80 20 0.67 0.8 0.5 0.65 1.2 1.4 67 96 27 1.368
  • Example 5 80 20 0.67 0.8 0.5 0.65 1.2 1.4 67 96 7 1.311
  • Example 6 80 20 0.67 0.8 0.4 0.65 1.2 1.4 67 96 7 1.368
  • Example 7
  • the polyester multilayer film according to the present invention exhibits characteristics suitable for use as an optical film due to a low haze change rate before and after heat treatment.
  • Comparative Example 1 was found that the haze change rate is high only by improving the polymerized chip of the base film without the primer coating treatment, a large amount of oligomers in the process of laminating with other films in the subsequent process does not satisfy the properties of the present invention As can be seen, in the case of Comparative Example 2, as the oligomer content of the skin layer is 1.4%, it can be confirmed that the haze is out of the required physical property range. In Comparative Examples 3, 4, and 5, it was confirmed that the haze change rate was affected by the composition of the primer layer.
  • a silicone wetting agent Dow Corning, polyester siloxane copolymer, Q2-5212
  • 16 wt% of KLX-007 binder solid content 25% water dispersion composition
  • colloidal silica particles having an average particle diameter of 140 nm It was added to water and stirred for 2 hours to prepare a water dispersible resin composition (6) having a total solid content of 4.6% by weight.
  • the polyethylene terephthalate chip was removed from the moisture in the extruder and melt-extruded, and then quenched and solidified in a casting drum having a surface temperature of 20 °C to prepare a polyethylene terephthalate sheet having a thickness of 1500 ⁇ m.
  • the prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature. Thereafter, the prepared water-dispersible resin composition 6 was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., preheated and dried, and 3.5 times in the width direction (TD). Stretched. Thereafter, heat treatment was performed at 235 ° C.
  • the dry coating thickness of the primer coating layer of the composition was 80 nm.
  • the physical properties of the thus obtained polyester film are shown in Tables 3 and 4 below.
  • the polyethylene terephthalate chip was removed from the moisture in the extruder and melt-extruded, and then quenched and solidified in a casting drum having a surface temperature of 20 °C to prepare a polyethylene terephthalate sheet having a thickness of 1500 ⁇ m.
  • the prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature. Thereafter, the prepared water-dispersible resin composition 7 was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., preheated and dried, and 3.5 times in the width direction (TD). Stretched. Thereafter, heat treatment was performed at 235 ° C.
  • the dry coating thickness of the primer coating layer of the composition was 40 nm.
  • the physical properties of the thus obtained polyester film are shown in Tables 3 and 4 below.
  • the polyethylene terephthalate chip was removed from the moisture in the extruder and melt-extruded, and then quenched and solidified in a casting drum having a surface temperature of 20 °C to prepare a polyethylene terephthalate sheet having a thickness of 1500 ⁇ m.
  • the prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature. Thereafter, the prepared water-dispersible resin composition (8) was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., preheated and dried, and 3.5 times in the width direction (TD). Stretched. Thereafter, heat treatment was performed at 235 ° C.
  • the dry coating thickness of the primer coating layer of the composition was 160 nm.
  • the physical properties of the thus obtained polyester film are shown in Tables 3 and 4 below.
  • the polyethylene terephthalate chip was removed from the moisture in the extruder and melt-extruded, and then quenched and solidified in a casting drum having a surface temperature of 20 °C to prepare a polyethylene terephthalate sheet having a thickness of 1500 ⁇ m.
  • the prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature. Thereafter, the prepared water-dispersible resin composition 6 was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., preheated and dried, and 3.5 times in the width direction (TD). Stretched. Thereafter, heat treatment was performed at 245 ° C. in a 5-stage tenter, followed by heat setting to 10% in the width direction at 200 ° C., followed by adjustment of the relaxation rate of the MD Relax facility to 1.25% to form a 125 ⁇ m biaxially stretched film coated on both sides. Prepared.
  • the dry coating thickness of the primer coating layer of the composition was 80 nm.
  • the physical properties of the thus obtained polyester film are shown in Tables 3 and 4 below.
  • the polyethylene terephthalate chip was removed from the moisture in the extruder and melt-extruded, and then quenched and solidified in a casting drum having a surface temperature of 20 °C to prepare a polyethylene terephthalate sheet having a thickness of 1500 ⁇ m.
  • the prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature. Thereafter, the prepared water-dispersible resin composition 6 was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., preheated and dried, and 3.5 times in the width direction (TD). Stretched. Thereafter, heat treatment was performed at 237 ° C. in a 5-stage tenter, followed by heat setting to relax 10% in the width direction at 200 ° C., followed by adjusting the relaxation ratio of the MD Relax facility to 2.0% to form a 125 ⁇ m biaxially stretched film coated on both sides. Prepared.
  • the dry coating thickness of the primer coating layer of the composition was 80 nm.
  • the physical properties of the thus obtained polyester film are shown in Tables 3 and 4 below.
  • the polyethylene terephthalate chip was removed from the moisture in the extruder and melt-extruded, and then quenched and solidified in a casting drum having a surface temperature of 20 °C to prepare a polyethylene terephthalate sheet having a thickness of 1500 ⁇ m.
  • the prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature. Thereafter, the prepared water-dispersible resin composition 6 was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., preheated and dried, and 3.5 times in the width direction (TD). Stretched. Thereafter, heat treatment is performed at 244 ° C.
  • the dry coating thickness of the primer coating layer of the composition was 80 nm.
  • the physical properties of the thus obtained polyester film are shown in Tables 3 and 4 below.
  • the polyethylene terephthalate chip was removed from the moisture in the extruder and melt-extruded, and then quenched and solidified in a casting drum having a surface temperature of 20 °C to prepare a polyethylene terephthalate sheet having a thickness of 1500 ⁇ m.
  • the prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature. Thereafter, the prepared water-dispersible resin composition 9 was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., preheated and dried, and 3.5 times in the width direction (TD). Stretched. Thereafter, heat treatment was performed at 235 ° C.
  • the dry coating thickness of the primer coating layer of the composition was 80 nm.
  • the physical properties of the thus obtained polyester film are shown in Tables 3 and 4 below.
  • the polyethylene terephthalate chip was removed from the moisture in the extruder and melt-extruded, and then quenched and solidified in a casting drum having a surface temperature of 20 °C to prepare a polyethylene terephthalate sheet having a thickness of 1500 ⁇ m.
  • the prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature. Thereafter, the prepared water-dispersible resin composition 6 was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., preheated and dried, and 3.5 times in the width direction (TD). Stretched. Thereafter, heat treatment was performed at 235 ° C.
  • the dry coating thickness of the primer coating layer of the composition was 80 nm.
  • the physical properties of the thus obtained polyester film are shown in Tables 3 and 4 below.
  • the polyethylene terephthalate chip was removed from the moisture in the extruder and melt-extruded, and then quenched and solidified in a casting drum having a surface temperature of 20 °C to prepare a polyethylene terephthalate sheet having a thickness of 1500 ⁇ m.
  • the prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature. Thereafter, the prepared water-dispersible resin composition 6 was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., preheated and dried, and 3.5 times in the width direction (TD). Stretched. Thereafter, heat treatment was performed at 235 ° C.
  • the dry coating thickness of the primer coating layer of the composition was 80 nm.
  • the physical properties of the thus obtained polyester film are shown in Tables 3 and 4 below.
  • the polyethylene terephthalate chip was removed from the moisture in the extruder and melt-extruded, and then quenched and solidified in a casting drum having a surface temperature of 20 °C to prepare a polyethylene terephthalate sheet having a thickness of 1500 ⁇ m.
  • the prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature. Thereafter, the prepared water-dispersible resin composition 6 was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., preheated and dried, and 3.5 times in the width direction (TD). Stretched. Thereafter, heat treatment was performed at 235 ° C.
  • the dry coating thickness of the primer coating layer of the composition was 80 nm.
  • the physical properties of the thus obtained polyester film are shown in Tables 3 and 4 below.
  • Example 9 45 0.7 0.7 0.8 0.7 0.6 0.6 0.7 0.8 0.7 0.7 135 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.6 0.6 Difference 0.1 0.1 0.2 0.1 0 0 0.1 0.1 0.1 Twist Curl occurrence Nil Nil Nil Nil Nil Nil Nil Nil Nil Nil Comparative Example 9 45 0.4 0.7 0.8 0.7 0.6 0.7 0.7 0.7 0.8 0.8 135 0.8 1.0 0.7 0.6 0.7 0.5 0.5 0.5 0.5 Difference 0.4 0.3 0.1 0 0 0 0.2 0.2 0.3 0.3 Twist Curl occurrence Occur Occur Nil Nil Nil Nil Nil Nil Occur Occur
  • the polyester film according to the present invention exhibits excellent characteristics as an optical film due to the low haze change rate before and after heat treatment.
  • Comparative Example 6 it can be seen that affect the haze change rate according to the composition of the primer coating layer. That is, it can be seen that a difference in the degree of oligomer blocking performance may occur through the selection of the composition of the coating layer.
  • the base layer uses a PET chip having an intrinsic viscosity of 0.65, a diethylene glycol (DEG) content of 1.2% by weight, and an oligomer content of 1.4% by weight, and the skin layer has a specific viscosity of 0.67, a DEG content of 0.8% by weight, and an oligomer content.
  • the 0.5% solid-phase polymerized PET chip was used, and the particles having a particle diameter of 0.7 ⁇ m were co-extruded using 30 ppm. Thereafter, the film was sequentially stretched 3.2 times and 3.2 times in the longitudinal and transverse directions, and heat-treated at 230 ° C., thereby giving a 3% widthwise relaxation to prepare a 125 ⁇ m multilayer film. At this time, in the width direction, the three sections of the heat treatment zone inside the tenter were sequentially relaxed at the maximum width after stretching, but the width length was reduced by 3% of the maximum width direction.
  • Particle composition and content of the skin layer are shown in Table 6.
  • the base layer of the multilayer film was 80% by weight of the total film weight
  • the skin layer was 20% by weight of the total film weight was measured oligomer surface migration, surface roughness, haze, surface orientation coefficient, shrinkage of the film after production.
  • the oligomer surface migration, surface roughness, haze, surface orientation coefficient, and shrinkage rate of the film were measured.
  • Example 15 It was carried out in the same manner as in Example 15 by changing only the oligomer content of the raw material of the skin layer as shown in Table 6.
  • the oligomer surface migration, surface roughness, haze, surface orientation coefficient, and shrinkage rate of the film were measured.
  • Example 15 The same procedure as in Example 15 was performed except that only the weight of the skin layer was changed as in Table 6 below.
  • Example 15 was carried out in the same manner as in Example 15 except that only the particle content of the skin layer was changed as shown in Table 6.
  • Example 15 was carried out in the same manner as in Example 15, but at the same time as the relaxation in the width direction to give 1.5% in the longitudinal direction.
  • Example 15 The same procedure as in Example 15 was carried out, except that the skin layer was made of PET having an intrinsic viscosity of 0.65 and an oligomer content of 1.4%, and only particles were used in the skin layer as in Example 16. , Surface orientation coefficient, and shrinkage were measured.
  • Example 15 The same procedure as in Example 15 was performed except that the DEG content of the skin layer was changed as shown in Table 6.
  • the oligomer surface migration, surface roughness, haze, surface orientation coefficient, and shrinkage rate of the film were measured.
  • Example 15 The same procedure as in Example 15 was carried out, except that the oligomer content of the skin layer was changed as shown in Table 6. The oligomer surface migration, surface roughness, haze, plane orientation coefficient, and shrinkage of the film were measured.
  • Example 15 The same process as in Example 15 was performed except that the weight of the skin layer was changed as in Table 6 below.
  • Example 15 was carried out in the same manner as in Example 15 except that only the particle content of the skin layer was changed as shown in Table 6 below.
  • the composition was carried out in the same manner as in Example 16 except that the heat treatment temperature was 200, 210 ° C., and the widthwise relaxation was 1% and 1.5%.
  • the embodiment of the present invention after maintaining for 30 minutes at 150 °C low thermal shrinkage of the film to satisfy the formula 1 and 2, the surface orientation coefficient is 0.1590 or more, the surface roughness It was confirmed that it was 10 nm or less, and the haze (Hi) of the film before heating was less than 1.5%, and it maintained for 150 minutes at 150 degreeC, and the haze of the film satisfy

Abstract

The present invention relates to a polyester film and a method for manufacturing the same. More specifically, the present invention relates to a polyester film which has excellent optical characteristics and controlled thermal contraction, can prevent the migration of oligomers when heated, and can be used for an optical purpose due to a small change in haze after heating, and to a method for manufacturing the same.

Description

폴리에스테르 필름 및 이의 제조방법Polyester film and preparation method thereof
본 발명은 폴리에스테르 필름 및 이의 제조방법에 관한 것이다. 보다 상세하게는 광특성이 우수하며, 열수축율이 제어되고, 가열 시 올리고머가 마이그레이션되는 것을 차단할 수 있으며, 가열 후 헤이즈 변화율이 적어 광학용도에 적용 가능한 폴리에스테르 필름 및 이의 제조방법에 관한 것이다.The present invention relates to a polyester film and a method for producing the same. More particularly, the present invention relates to a polyester film having excellent optical properties, controlling heat shrinkage, preventing migration of oligomers upon heating, and having low haze change rate after heating, and being applicable to optical applications, and a method of manufacturing the same.
광학필름은 디스플레이용 광학부재로 사용되는 필름으로, LCD BLU의 광학 소재로 사용되거나 LCD, PDP, 터치 패널(Touch Panel) 등 각종 디스플레이의 표면 보호용 광학 부재로 사용되고 있다. An optical film is a film used as an optical member for display, and is used as an optical material for LCD BLU, or as an optical member for protecting a surface of various displays such as LCD, PDP, and touch panel.
이러한 광학필름은 우수한 투명성과 시인성이 요구되며, 기계적 특성 및 전기적 특성이 우수한 2축 연신 폴리에스테르 필름을 기재 필름으로 사용한다. Such optical films require excellent transparency and visibility, and use biaxially stretched polyester films having excellent mechanical and electrical properties as base films.
하지만 2축 연신 폴리에스테르 필름은 표면경도가 낮고, 내마모성 혹은 내스크래치성이 부족하기 때문에 각종 디스플레이의 광학부재로 사용 시 물체와의 마찰 혹은 접촉에 의해 표면 손상이 쉽게 일어날 수 있다. 이를 막기 위해 필름 표면에 하드코팅층을 적층하여 사용하게 되며, 기재인 폴리에스테르 필름과 하드 코팅층과의 밀착성을 향상시키기 위해 중간층으로서 프라이머층을 형성할 수 있다. However, since the biaxially stretched polyester film has low surface hardness and lacks abrasion resistance or scratch resistance, surface damage may be easily caused by friction or contact with an object when used as an optical member of various displays. In order to prevent this, a hard coating layer is laminated on the surface of the film, and a primer layer may be formed as an intermediate layer in order to improve adhesion between the polyester film as a substrate and the hard coating layer.
이러한 디스플레이에 적용되는 폴리에스테르 필름은 올리고머 유출과 관련된 품질 문제가 발생되고 있다. 이는 폴리에스테르 필름에의 점착 코팅 후 경화 공정, 에이징 공정 등의 후가공 공정에서 고온에 노출됨에 따라 폴리에스테르 필름의 내부에서 올리고머가 마이그레이션(migration)되어 백화 현상 또는 열변형으로 컬이 발생하여 결함을 야기할 수 있다. 또한, 폴리에스테르 필름 제조 후 슬리팅(slitting)공정에 사용되는 다이아몬드 패턴 롤의 압력에 의해 다이아몬드 형태의 패턴이 형성되는 다이아몬드 마크(diamond mark)현상이 발생하는 경우도 있다. 이와 같은 백화현상 및 다이아몬드 마크 현상이 발생하는 경우, 공정상 필름 롤이 오염이 되고, 최종 제품의 광학특성이 저하된다.Polyester films applied to such displays are experiencing quality problems associated with oligomer spills. This is because the oligomer is migrated inside the polyester film as it is exposed to high temperatures in post-processing processes such as curing and aging after adhesive coating to the polyester film, causing curling due to whitening or thermal deformation. can do. In addition, a diamond mark phenomenon in which a diamond pattern is formed may occur due to the pressure of the diamond pattern roll used in the slitting process after the polyester film is manufactured. When such whitening and diamond mark phenomena occur, the film roll is contaminated in the process and the optical properties of the final product are degraded.
이러한 폴리에스테르 필름의 올리고머가 마이그레이션 되는 것을 방지하기 위한 시도가 계속되고 있다. 폴리에스테르 필름상에 적층막을 형성하여 올리고머의 유출을 제어하고자 하는 특허로 일본공개특허 제2007-253511호(2007.10.04)에는 적어도 일면에 적층막을 가지는 폴리에스테르 필름으로, 이 필름을 150℃로 60분간 가열한 때에 적층막에 석출하는 올리고머 입자의 평균 사이즈가 면적 환산으로 10㎛2이하, 개수가 100㎛×100㎛ 시야 내에서 100개 이하인 적층 폴리에스테르 필름이 기재되어 있다. 이 발명은 올리고머의 유출을 제어하고자 하는 것이나 완전히 차단을 하지는 못하였다. 또한, 폴리에스테르 필름을 고온 숙성시켜 사용하거나, 폴리에틸렌나프탈레이트(PEN) 또는 폴리이미드(PI)와 같은 고내열성고분자를 사용하기도 하였다. 그러나 폴리에스테르 필름을 고온숙성시켜서 사용할 경우 필름의 제작 수율이 충분하지 않고, 수분 등에 의한 변형이 일어나는 문제가 발생하였으며, 고내열성 고분자를 사용할 경우 올리고머 마이그레이션은 발생하지 않았으나, 폴리에스테르 대비 제조원가가 상당히 비싸고, 후가공하기 어려운 문제가 있었다.Attempts have been made to prevent the oligomers of such polyester films from being migrated. Japanese Patent Laid-Open Publication No. 2007-253511 (2007.10.04) is a polyester film having a laminated film on at least one surface, and forming the laminated film on the polyester film to control the outflow of the oligomer. The laminated polyester film whose average size of the oligomer particle which precipitates in a laminated film at the time of heating for 10 minutes is 10 micrometer <2> or less, and the number is 100 or less in the 100 micrometer * 100 micrometer visual field is described. This invention seeks to control the outflow of oligomers but does not completely block them. In addition, high temperature aging of the polyester film is used, or high heat-resistant polymer such as polyethylene naphthalate (PEN) or polyimide (PI). However, when the polyester film is used at high temperature aging, the production yield of the film is not sufficient and deformation occurs due to moisture, and oligomer migration does not occur when the high heat resistant polymer is used, but manufacturing cost is considerably higher than that of polyester. There was a problem that was difficult to finish.
또한, 터치 스크린 패널 제품은 올리고머 마이그레이션을 차단하는 문제 이외에도 추가적으로 후가공 공정에서의 공정성 확보가 필수적으로 요구된다. 터치 스크린 패널 제품은 ITO 필름 이외에도 ITO 보호용 내열필름, 양면 레인보우 저감된 프라이머가 코팅된 하드코팅용 폴리에스테르 필름 등 3장 이상의 필름이 적층되어 사용된다. 이에 3장 이상의 필름들 사이의 열수축율이 일치되지 않으면 고온에서 진행되는 후가공 공정에서 열수축율 불일치로 인해 컬, 주름 등의 문제가 발생함에 따라 제품의 품질이 격하되는 문제가 발생할 수 있다. In addition, in addition to the problem of blocking oligomer migration, touch screen panel products are required to ensure fairness in the post-processing process. In addition to the ITO film, the touch screen panel product is used by laminating three or more films such as a heat-resistant film for ITO protection and a polyester film for hard coating coated with a double-sided rainbow reduced primer. If the heat shrinkage of the three or more films do not match, the quality of the product may be degraded as problems such as curl and wrinkles occur due to the heat shrinkage mismatch in the post-processing at high temperature.
따라서, 고객사 공정 조건에 맞는 다양한 열수축율(고열수축, 저열수축)을 확보할 수 있는 공정 조건의 개선도 필수적이다.Therefore, it is also essential to improve the process conditions that can secure a variety of heat shrinkage (high heat shrinkage, low heat shrinkage) to meet the customer's process conditions.
상기와 같은 문제를 해결하기 위해서 본 발명은 올리고머의 유출이 완전히 차단되는 폴리에스테르 필름을 제공하는데 그 목적이 있다. In order to solve the above problems, the present invention has an object to provide a polyester film is completely blocked out of the oligomer.
또한, 높은 내열특성, 우수한 후가공특성 및 후가공에서 열수축이 현저히 줄일 수 있는 폴리에스테르 필름을 제공하는데 그 목적이 있다.It is also an object of the present invention to provide a polyester film which can significantly reduce heat shrinkage in high heat resistance, excellent post processing properties and post processing.
또한, 상기 폴리에스테르 필름을 포함하는 광학필름을 제공하는데 목적이 있다.In addition, an object of the present invention is to provide an optical film including the polyester film.
또한, 본 발명은 열수축율을 제어하면서, 가열 후 올리고머의 마이그레이션을 차단할 수 있는 폴리에스테르 필름의 제조방법을 제공하고자 한다.In addition, the present invention is to provide a method for producing a polyester film that can block the migration of the oligomer after heating, while controlling the heat shrinkage rate.
또한, 본 발명은 ITO공정용, ITO용 베이스 필름 및 터치판넬용 하드코팅용 베이스필름에 적합한 폴리에스테르 다층필름을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a polyester multilayer film suitable for ITO process, ITO base film and base film for hard coating for touch panel.
상기 목적을 달성하기 위한 본 발명은 폴리에스테르 수지로 이루어진 폴리에스테르 베이스필름과, 이의 일면 또는 양면에 수분산성 수지조성물을 도포하여 형성한 프라이머층을 포함하며, 하기 식 1 및 2를 만족하는 폴리에스테르 필름을 제공할 수 있다. The present invention for achieving the above object comprises a polyester base film made of a polyester resin, and a primer layer formed by applying a water dispersible resin composition on one or both sides thereof, polyester satisfying the following formula 1 and 2 Films may be provided.
0 ≤ Smd ≤ 1.5 [식 1]0 ≤ Smd ≤ 1.5 [Equation 1]
0 ≤ Std ≤ 1.0 [식 2]0 ≤ Std ≤ 1.0 [Equation 2]
[상기 식에서, Smd 및 Std는 가로 10cm, 세로 10cm 크기의 폴리에스테르 필름을 150℃에서 30분간 유지시킨 후 JIS C-2318 규격에 따라 측정한 필름의 열수축율(%)을 의미하며, 상기 열수축율(%) = (열처리 전 필름의 길이 - 150℃에서 30분간 유지시킨 후 필름의 길이)/열처리 전 필름의 길이 × 100 이고,[In the above formula, Smd and Std means the heat shrinkage (%) of the film measured according to JIS C-2318 standard after maintaining the polyester film of 10cm in width, 10cm in length for 30 minutes at 150 ℃, the heat shrinkage (%) = (Length of film before heat treatment—length of film after holding at 150 ° C. for 30 minutes) / length of film before heat treatment × 100,
Smd는 필름의 기계방향(MD)의 수축율(%)을 의미하고, Std는 필름의 폭방향(TD)의 수축율(%)을 의미한다.]Smd means the shrinkage rate (%) in the machine direction (MD) of the film, Std means the shrinkage rate (%) in the width direction (TD) of the film.]
본 발명의 일 실시예에 따른 폴리에스테르 필름은 하기 식 3 및 4를 만족할 수 있다.Polyester film according to an embodiment of the present invention may satisfy the following formulas 3 and 4.
- 0.2 ≤ Vmd ≤ 0.2 [식 3]0.2 ≦ Vmd ≦ 0.2 [Equation 3]
- 0.2 ≤ Vtd ≤ 0.2 [식 4]0.2 ≦ Vtd ≦ 0.2 [Equation 4]
[상기 식에서, Vmd 및 Vtd는 가로 10cm, 세로 10cm 크기의 폴리에스테르 필름을 150℃에서 30분간 유지시킨 후 JIS C-2318 규격에 따라 측정한 필름의 열수축율(%)을 의미하며, 상기 열수축율(%) = (열처리 전 필름의 길이 - 150℃에서 30분간 유지시킨 후 필름의 길이)/열처리 전 필름의 길이 × 100 이고,In the above formula, Vmd and Vtd means the heat shrinkage (%) of the film measured according to JIS C-2318 standard after maintaining the polyester film of 10cm in width, 10cm in length for 30 minutes at 150 ℃, the heat shrinkage (%) = (Length of film before heat treatment—length of film after holding at 150 ° C. for 30 minutes) / length of film before heat treatment × 100,
Vmd는 필름 전폭을 기준으로 50cm간격으로 선택된 시료 10개의 기계방향의 열수축율의 편차(%)를 의미하고, Vtd는 필름 전폭을 기준으로 50cm간격으로 선택된 시료 10개의 폭방향의 열수축율의 편차(%)를 의미한다.]Vmd means the deviation (%) of thermal shrinkage in the machine direction of 10 samples selected at 50 cm intervals based on the full width of the film, and Vtd is the deviation of thermal shrinkage in the width direction of 10 samples selected at 50 cm intervals based on the full width of the film ( %).]
본 발명의 일 실시예에 따른 폴리에스테르 필름 하기 식 5 내지 식 7을 만족할 수 있다. Polyester film according to an embodiment of the present invention can satisfy the following formula 5 to formula 7.
0 ≤ S(45) ≤ 1.0 [식 5]0 ≤ S (45) ≤ 1.0 [Equation 5]
0 ≤ S(135) ≤ 1.0 [식 6]0 ≤ S (135) ≤ 1.0 [Equation 6]
│S(135)-S(45)│ ≤ 0.2 [식 7]S (135) -S (45) │ ≤ 0.2 [Equation 7]
[상기 식에서, S(45) 및 S(135)는 가로 10cm, 세로 10cm 크기의 폴리에스테르 필름을 150℃에서 30분간 유지시킨 후 JIS C-2318 규격에 따라 측정한 필름의 열수축율(%)을 의미하며, 상기 열수축율(%) = (열처리 전 필름의 길이 - 150℃에서 30분간 유지시킨 후 필름의 길이)/열처리 전 필름의 길이 × 100 이다. 또한, S(45)는 필름의 폭방향 (TD)을 기준으로 시계 방향으로 45° 각도의 대각방향 수축율(%)을 의미하며, S(135)는 필름의 폭방향 (TD)을 기준으로 시계 방향으로 135° 각도의 대각방향 수축율(%)을 의미한다.][In the above formula, S (45) and S (135) is a thermal shrinkage (%) of the film measured in accordance with JIS C-2318 standard after maintaining a polyester film of 10cm in width, 10cm in length for 30 minutes at 150 ℃ The thermal contraction rate (%) = (the length of the film before heat treatment-the length of the film after holding for 30 minutes at 150 ℃) / the length of the film before heat treatment × 100. In addition, S (45) refers to the diagonal shrinkage (%) at a 45 ° angle clockwise relative to the film width direction (TD), S (135) is a clock based on the film width direction (TD) Refers to the diagonal shrinkage (%) at an angle of 135 ° in the direction.]
본 발명의 일 실시예에 따른 폴리에스테르 필름 하기 식 8 및 식 9를 만족할 수 있다. Polyester film according to an embodiment of the present invention can satisfy the following formula 8 and formula 9.
0.1590 ≤ ns [식 8]0.1590 ≤ ns [Equation 8]
Hf ≤ Hi × 2.5 [식 9]Hf ≤ Hi × 2.5 [Equation 9]
[상기 식에서, ns = {(길이방향 굴절률 + 폭방향 굴절률)/2}-{(길이방향 두께의 굴절률 + 폭방향두께의 굴절률)/2}인 면배향계수를 의미하고,[Wherein, ns = {(length-direction refractive index + width-direction refractive index) / 2}-{(length-direction thickness refractive index + width-direction thickness refractive index) / 2} means a plane orientation coefficient,
상기 Hf는 150℃에서 30분간 유지시킨 후 필름의 헤이즈이며, Hi는 가열 전 필름의 헤이즈를 나타낸 것이다.]Hf is the haze of the film after holding at 150 ° C. for 30 minutes, and Hi represents the haze of the film before heating.]
본 발명의 일 실시예에 따른 폴리에스테르 필름에 있어서, 폴리에스테르 베이스필름은 기재층 및 상기 기재층의 양면에 적어도 2층 이상이 적층된 스킨층을 포함하며,In the polyester film according to an embodiment of the present invention, the polyester base film includes a base layer and a skin layer in which at least two or more layers are laminated on both sides of the base layer,
상기 스킨층을 이루는 폴리에스테르 수지의 올리고머 함량이 0.3 ~ 0.6 중량%이고, 디에틸렌글리콜의 함량이 0.1 ~ 1.2 중량%일 수 있다. The oligomer content of the polyester resin constituting the skin layer may be 0.3 to 0.6% by weight, and the content of diethylene glycol may be 0.1 to 1.2% by weight.
본 발명의 일 실시예에 따른 폴리에스테르 필름에 있어서, 폴리에스테르 베이스필름은 기재층과 스킨층을 공압출한 것으로, 고유점도가 하기 식 10을 만족할 수 있다. In the polyester film according to an embodiment of the present invention, the polyester base film is a co-extruded base material layer and the skin layer, the intrinsic viscosity may satisfy the following formula (10).
[식 10][Equation 10]
1 < Ns/Nc ≤ 1.2 [식 10]1 <Ns / Nc ≤ 1.2 [Equation 10]
(상기 식에서, Ns는 스킨층을 이루는 폴리에스테르수지의 고유점도이고, Nc는 기재층을 이루는 폴리에스테르수지의 고유점도이다.)(In the above formula, Ns is the intrinsic viscosity of the polyester resin constituting the skin layer, Nc is the intrinsic viscosity of the polyester resin constituting the base layer.)
본 발명의 일 실시예에 따른 폴리에스테르 필름에 있어서, 폴리에스테르 베이스필름은 기재층을 이루는 폴리에스테르 수지의 고유 점도가 0.5 내지 1.0이며, 스킨층을 이루는 폴리에스테르 수지의 고유 점도가 0.6 내지 1.0일 수 있다. In the polyester film according to an embodiment of the present invention, the polyester base film has an inherent viscosity of 0.5 to 1.0 of the polyester resin constituting the base layer, 0.6 to 1.0 days intrinsic viscosity of the polyester resin constituting the skin layer Can be.
본 발명의 일 실시예에 따른 폴리에스테르 필름에 있어서, 프라이머층은 Tg가 60℃이상, 팽윤비(Swelling ratio)가 30%이하, 겔분율(Gel fraction)이 95%이상, 밀도가 1.3 ~ 1.4일 수 있다. In the polyester film according to an embodiment of the present invention, the primer layer has a Tg of 60 ° C. or more, a swelling ratio of 30% or less, a gel fraction of 95% or more, and a density of 1.3 to 1.4. Can be.
본 발명의 일 실시예에 따른 폴리에스테르 필름은 하기 식 11에 따른 헤이즈 변화율(△H)이 0.1% 이하일 수 있다. Polyester film according to an embodiment of the present invention may have a haze change rate (ΔH) according to the following formula 11 is 0.1% or less.
△H(%) = Hf - Hi [식 11]ΔH (%) = Hf − Hi [Equation 11]
(상기 식에서, Hf는 150℃에서 60분 동안 유지시킨 후 필름의 헤이즈이고, Hi는 가열 전 필름의 헤이즈이다.) (Hf is the haze of the film after holding at 150 ° C. for 60 minutes, and Hi is the haze of the film before heating.)
본 발명의 일 실시예에 따른 폴리에스테르 필름에 있어서, 수분산성 수지조성물은 글리시딜기 함유 라디칼 중합성 불포화 모노머가 공중합된 아크릴계 수지(A)와 수분산성 폴리에스테르계 수지(B)로 이루어진 바인더 수지를 포함하며, In the polyester film according to an embodiment of the present invention, the water dispersible resin composition is a binder resin composed of an acrylic resin (A) copolymerized with a glycidyl group-containing radically polymerizable unsaturated monomer and a water dispersible polyester resin (B). Including;
상기 글리시딜기 함유 라디칼 중합성 불포화 모노머가 공중합된 아크릴계 수지(A)와 수분산성 폴리에스테르계 수지(B)의 고형분 중량비가 (A)/(B) = 20 ~ 80 / 80 ~ 20일 수 있다.Solid content weight ratio of the acrylic resin (A) copolymerized with the glycidyl group-containing radically polymerizable unsaturated monomer and the water dispersible polyester resin (B) may be (A) / (B) = 20 to 80/80 to 20 .
본 발명의 일 실시예에 따른 폴리에스테르 필름에 있어서, 수분산성 수지조성물은 바인더 수지의 고형분 함량이 0.5 ~ 10 중량%일 수 있다.In the polyester film according to an embodiment of the present invention, the water dispersible resin composition may have a solid content of 0.5 to 10% by weight of the binder resin.
본 발명의 일 실시예에 따른 폴리에스테르 필름에 있어서, 수분산성 수지조성물은 실리콘계 웨팅제를 더 포함할 수 있다.In the polyester film according to an embodiment of the present invention, the water dispersible resin composition may further include a silicone-based wetting agent.
본 발명의 일 실시예에 따른 폴리에스테르 필름에 있어서, 수분산성 폴리에스테르계 수지는 술폰산 알칼리 금속염 화합물을 포함하는 디카르복실산 성분과, 디에틸렌글리콜을 포함하는 글리콜성분이 공중합된 것일 수 있다. In the polyester film according to an embodiment of the present invention, the water-dispersible polyester-based resin may be a copolymer of a dicarboxylic acid component containing a sulfonic acid alkali metal salt compound and a glycol component containing diethylene glycol.
본 발명의 일 실시예에 따른 폴리에스테르 필름에 있어서, 수분산성 폴리에스테르계 수지는 디에틸렌글리콜을 전체 글리콜 성분 중 20 ~ 80 몰% 함유할 수 있다. In the polyester film according to an embodiment of the present invention, the water-dispersible polyester-based resin may contain 20 to 80 mol% of diethylene glycol in the total glycol component.
본 발명의 일 실시예에 따른 폴리에스테르 필름에 있어서, 수분산성 폴리에스테르계 수지는 술폰산 알칼리 금속염 화합물을 전체 산 성분 중 6 ~ 20 몰% 함유할 수 있다.In the polyester film according to an embodiment of the present invention, the water-dispersible polyester-based resin may contain 6 to 20 mol% of the sulfonic acid alkali metal salt compound in the total acid component.
본 발명의 일 실시예에 따른 폴리에스테르 필름에 있어서, 아크릴계 수지는 공중합 모노머로 글리시딜기 함유 라디칼 중합성 불포화 모노머를 전체 모노머 성분 중 20 ~ 80 몰% 함유할 수 있다. In the polyester film according to an embodiment of the present invention, the acrylic resin may contain 20 to 80 mol% of the glycidyl group-containing radical polymerizable unsaturated monomer as a copolymerization monomer in all monomer components.
본 발명의 일 실시예에 따른 폴리에스테르 필름에 있어서, 폴리에스테르 베이스필름은 폴리에틸렌테레프탈레이트 필름일 수 있다.In the polyester film according to an embodiment of the present invention, the polyester base film may be a polyethylene terephthalate film.
본 발명의 일 실시예에 따른 폴리에스테르 필름에 있어서, 폴리에스테르 베이스필름은 두께가 25 ~ 250㎛일 수 있다. In the polyester film according to an embodiment of the present invention, the polyester base film may have a thickness of 25 ~ 250㎛.
본 발명의 일 실시예에 따른 폴리에스테르 필름에 있어서, 프라이머층은 건조도포두께가 20 ~ 150nm일 수 있다.In the polyester film according to an embodiment of the present invention, the primer layer may have a dry coating thickness of 20 ~ 150nm.
본 발명의 일 실시예에 따른 폴리에스테르 필름에 있어서, 폴리에스테르 베이스필름은 기재층이 70 ~ 90 중량%이고, 스킨층이 10 ~ 30 중량%일 수 있다.In the polyester film according to an embodiment of the present invention, the polyester base film may be 70 to 90% by weight of the base layer, 10 to 30% by weight of the skin layer.
본 발명의 일 실시예에 따른 폴리에스테르 필름은 표면조도(Ra)가 10nm이하일 수 있다. Polyester film according to an embodiment of the present invention may have a surface roughness (Ra) of less than 10nm.
본 발명의 일 실시예에 따른 폴리에스테르 필름에 있어서, 스킨층은 무기입자를 100ppm이하로 포함할 수 있다.In the polyester film according to an embodiment of the present invention, the skin layer may include less than 100ppm inorganic particles.
본 발명의 일 실시예에 따른 폴리에스테르 필름에 있어서, 무기입자는 평균입경이 3㎛미만일 수 있다. In the polyester film according to an embodiment of the present invention, the inorganic particles may have an average particle diameter of less than 3㎛.
본 발명의 일 실시예에 따른 폴리에스테르 필름에 있어서, 무기입자는 실리카, 제올라이트, 카올린에서 선택되는 어느 하나 또는 둘 이상의 혼합물일 수 있다. In the polyester film according to an embodiment of the present invention, the inorganic particles may be any one or a mixture of two or more selected from silica, zeolite and kaolin.
본 발명은 상술한 폴리에스테르 필름의 상부에 하드코팅층, 점착제층, 광확산층, ITO층 및 인쇄층에서 선택되는 어느 하나 이상의 기능성 코팅층을 형성한 광학필름을 제공할 수 있다.The present invention can provide an optical film having at least one functional coating layer selected from a hard coating layer, an adhesive layer, a light diffusion layer, an ITO layer and a printing layer on the polyester film described above.
또한, 본 발명은 a) 기계방향으로 1축 연신된 폴리에스테르 베이스필름을 제조하는 단계;In addition, the present invention comprises the steps of a) preparing a polyester base film uniaxially stretched in the machine direction;
b) 상기 1축 연신된 폴리에스테르 베이스필름의 일면 또는 양면에 올리고머 차단특성을 갖는 수분산성 수지조성물을 도포하여 프라이머층을 형성하는 단계;b) forming a primer layer by applying a water-dispersible resin composition having oligomer barrier properties to one or both surfaces of the uniaxially stretched polyester base film;
c) 상기 프라이머층이 형성된 1축 연신된 폴리에스테르 베이스필름을 폭방향(TD)으로 2축 연신하는 단계; 및c) biaxially stretching the uniaxially stretched polyester base film on which the primer layer is formed in the width direction (TD); And
d) 상기 2축 연신된 필름을 열고정 및 하기 식 12를 만족하는 범위로 기계방향(MD)의 이완을 수행하는 단계;d) heat setting the biaxially stretched film and performing relaxation in the machine direction (MD) in a range satisfying Equation 12 below;
1.1 ≤ 이완비율(%) ≤ 2.5 [식 12]1.1 ≤ relaxation ratio (%) ≤ 2.5 [Equation 12]
(상기 식에서, 이완비율(%) = (이완처리 구간 내 필름의 주행 속도 - 이완처리 구간 전 필름의 주행 속도)/이완처리 구간 전 필름의 주행 속도 × 100이다.)(In the above formula, the relaxation ratio (%) = (travel speed of the film in the relaxation section-travel speed of the film before the relaxation section) / running speed of the film before the relaxation section × 100.)
를 포함하는 폴리에스테르 필름의 제조방법을 제공할 수 있다. .It can provide a method for producing a polyester film comprising a. .
본 발명의 일 실시예에 따른 폴리에스테르 필름의 제조방법에 있어서, d)단계에서, 기계방향(MD)의 이완은 하기 식 13을 만족하는 온도 범위에서 실시할 수 있다. In the manufacturing method of the polyester film according to an embodiment of the present invention, in step d), the relaxation of the machine direction (MD) can be carried out in a temperature range satisfying the following equation (13).
연신 온도(℃) ≤ 이완 온도(℃) < 열고정 온도(℃) [식 13]Drawing temperature (℃) ≤ Relaxation temperature (℃) <heat setting temperature (℃) [Equation 13]
본 발명의 일 실시예에 따른 폴리에스테르 필름의 제조방법에 있어서, 수분산성 수지조성물은 글리시딜기 함유 라디칼 중합성 불포화 모노머가 공중합된 아크릴계 수지(A)와 수분산성 폴리에스테르계 수지(B)로 이루어진 바인더 수지를 포함하며, 상기 글리시딜기 함유 라디칼 중합성 불포화 모노머가 공중합된 아크릴계 수지(A)와 수분산성 폴리에스테르계 수지(B)의 고형분 중량비가 (A)/(B) = 20 ~ 80 / 80 ~ 20일 수 있다.In the method for producing a polyester film according to an embodiment of the present invention, the water dispersible resin composition is composed of an acrylic resin (A) and a water dispersible polyester resin (B) copolymerized with a glycidyl group-containing radically polymerizable unsaturated monomer. And a binder resin, wherein the solid content weight ratio of the acrylic resin (A) to which the glycidyl group-containing radical polymerizable unsaturated monomer is copolymerized and the water-dispersible polyester resin (B) is (A) / (B) = 20 to 80 / 80 to 20 can be.
본 발명의 일 실시예에 따른 폴리에스테르 필름의 제조방법에 있어서, 폴리에스테르 필름은 열수축율(%)이 하기 식 1 내지 식 4를 만족할 수 있다. In the method of manufacturing a polyester film according to an embodiment of the present invention, the polyester film may have a thermal contraction rate (%) satisfying the following Formulas 1 to 4.
0 ≤ Smd ≤ 1.0 [식 1]0 ≤ Smd ≤ 1.0 [Equation 1]
0 ≤ Std ≤ 0.5 [식 2]0 ≤ Std ≤ 0.5 [Equation 2]
- 0.2 ≤ Vmd ≤ 0.2 [식 3]0.2 ≦ Vmd ≦ 0.2 [Equation 3]
- 0.2 ≤ Vtd ≤ 0.2 [식 4]0.2 ≦ Vtd ≦ 0.2 [Equation 4]
[상기 식에서, Smd, Std, Vmd 및 Vtd는 가로 10cm, 세로 10cm 크기의 폴리에스테르 필름을 150℃에서 30분간 유지시킨 후 JIS C-2318 규격에 따라 측정한 필름의 열수축율(%)을 의미하며, 상기 열수축율(%) = (열처리 전 필름의 길이 - 150℃에서 30분간 유지시킨 후 필름의 길이)/열처리 전 필름의 길이 × 100 이고,[In the above formula, Smd, Std, Vmd and Vtd means the thermal shrinkage (%) of the film measured according to JIS C-2318 standard after maintaining the polyester film of 10cm in width, 10cm in length for 30 minutes at 150 ℃ , The heat shrinkage percentage (%) = (length of the film before heat treatment-the length of the film after holding for 30 minutes at 150 ℃) / length of the film before heat treatment × 100,
Smd는 필름의 기계방향(MD)의 수축율(%)을 의미하고, Std는 필름의 폭방향(TD)의 수축율(%)을 의미하며, Vmd는 필름 전폭을 기준으로 50cm간격으로 선택된 시료 10개의 기계방향의 열수축율의 편차(%)를 의미하고, Vtd는 필름 전폭을 기준으로 50cm간격으로 선택된 시료 10개의 폭방향의 열수축율의 편차(%)를 의미한다.]Smd means the shrinkage rate (%) in the machine direction (MD) of the film, Std means the shrinkage rate (%) in the width direction (TD) of the film, Vmd is 10 samples selected at 50cm intervals based on the full width of the film The deviation of thermal shrinkage in the machine direction (%), Vtd refers to the deviation (%) of thermal shrinkage in the width direction of 10 samples selected at 50cm intervals based on the full width of the film.]
본 발명의 일 실시예에 따른 폴리에스테르 필름의 제조방법에 있어서, 폴리에스테르 필름은 하기 식 5 내지 식 7을 만족할 수 있다. In the method for producing a polyester film according to an embodiment of the present invention, the polyester film may satisfy the following formulas 5 to 7.
0 ≤ S(45) ≤ 1.0 [식 5]0 ≤ S (45) ≤ 1.0 [Equation 5]
0 ≤ S(135) ≤ 1.0 [식 6]0 ≤ S (135) ≤ 1.0 [Equation 6]
│S(135)-S(45)│ ≤ 0.2 [식 7]S (135) -S (45) │ ≤ 0.2 [Equation 7]
[상기 식에서, S(45) 및 S(135)는 가로 10cm, 세로 10cm 크기의 폴리에스테르 필름을 150℃에서 30분간 유지시킨 후 JIS C-2318 규격에 따라 측정한 필름의 열수축율(%)을 의미하며, 상기 열수축율(%) = (열처리 전 필름의 길이 - 150℃에서 30분간 유지시킨 후 필름의 길이)/열처리 전 필름의 길이 × 100 이다. 또한, S(45)는 필름의 폭방향 (TD)을 기준으로 시계 방향으로 45° 각도의 대각방향 수축율(%)을 의미하며, S(135)는 필름의 폭방향 (TD)을 기준으로 시계 방향으로 135° 각도의 대각방향 수축율(%)을 의미한다.][In the above formula, S (45) and S (135) is a thermal shrinkage (%) of the film measured in accordance with JIS C-2318 standard after maintaining a polyester film of 10cm in width, 10cm in length for 30 minutes at 150 ℃ The thermal contraction rate (%) = (the length of the film before heat treatment-the length of the film after holding for 30 minutes at 150 ℃) / the length of the film before heat treatment × 100. In addition, S (45) refers to the diagonal shrinkage (%) at a 45 ° angle clockwise relative to the film width direction (TD), S (135) is a clock based on the film width direction (TD) Refers to the diagonal shrinkage (%) at an angle of 135 ° in the direction.]
본 발명의 일 실시예에 따른 폴리에스테르 필름의 제조방법에 있어서, 프라이머층은 Tg가 60℃이상, 팽윤비(Swelling ratio)가 30%이하, 겔 분율(Gel fraction)이 95%이상, 밀도가 1.3 ~ 1.4일 수 있다.In the method of manufacturing a polyester film according to an embodiment of the present invention, the primer layer has a T g of 60 ° C. or more, a swelling ratio of 30% or less, a gel fraction of 95% or more, and a density. May be 1.3 to 1.4.
본 발명의 일 실시예에 따른 폴리에스테르 필름의 제조방법에 있어서, 폴리에스테르 필름은 하기 식 11에 따른 헤이즈 변화율(△H)이 0.1% 이하일 수 있다. In the method of manufacturing a polyester film according to an embodiment of the present invention, the polyester film may have a haze change rate (ΔH) according to Equation 11 below 0.1%.
△H(%) = Hf - Hi [식 11]ΔH (%) = Hf − Hi [Equation 11]
(상기 식에서, Hf는 150℃에서 60분 동안 유지시킨 후 필름의 헤이즈이고, Hi는 가열 전 필름의 헤이즈이다.) (Hf is the haze of the film after holding at 150 ° C. for 60 minutes, and Hi is the haze of the film before heating.)
또한, 본 발명은 폴리에스테르수지의 올리고머 함량이 0.3 ~ 0.6 중량%이고, 디에틸렌글리콜의 함량이 0.1 ~ 1.2 중량%인 제 1 폴리에스테르 수지를 포함하는 스킨층 조성물과, 고유점도가 하기 식 10을 만족하는 기재층용 제 2 폴리에스테르 수지를 용융압출하여 공압출하는 단계;In addition, the present invention is a skin layer composition comprising a first polyester resin having an oligomer content of 0.3 ~ 0.6% by weight of polyester resin, 0.1 ~ 1.2% by weight of diethylene glycol, and intrinsic viscosity Melt extruding the second polyester resin for the substrate layer satisfying the following;
1 < Ns/Nc ≤ 1.2 [식 10] 1 <Ns / Nc ≤ 1.2 [Equation 10]
(상기 식에서, Ns는 스킨층을 이루는 폴리에스테르수지의 고유점도이고, Nc는 기재층을 이루는 폴리에스테르수지의 고유점도이다.)(In the above formula, Ns is the intrinsic viscosity of the polyester resin constituting the skin layer, Nc is the intrinsic viscosity of the polyester resin constituting the base layer.)
b) 공압출된 시트를 일축 또는 이축 연신하여 필름을 제조하는 단계;b) uniaxially or biaxially stretching the coextruded sheet to produce a film;
c) 연신된 필름을 열고정 및 하기 식 14를 만족하는 범위로 폭방향(TD)의 이완을 수행하는 단계;c) heat-setting the stretched film and performing relaxation in the width direction (TD) in a range satisfying Equation 14 below;
2 ≤ TDr(%) ≤ 11.5 [식 14]2 ≤ TDr (%) ≤ 11.5 [Equation 14]
[상기 식에서, TDr은 폭방향(TD)의 이완비율을 의미하고, 이완비율(%) = {(이완처리 구간 전 필름의 폭방향의 최대폭길이 - 이완처리 구간 내 필름의 폭방향의 최소폭길이)/이완처리 구간 전 필름의 최대폭길이} × 100이다.][In the above formula, TDr means the relaxation ratio in the width direction (TD), the relaxation ratio (%) = {(maximum width of the width direction of the film before the relaxation section-minimum width of the width direction of the film in the relaxation section ) / The maximum width of the film before the relaxation section} × 100.]
를 포함하는 폴리에스테르 필름의 제조방법을 제공할 수 있다. It can provide a method for producing a polyester film comprising a.
상기 a)단계에서 스킨층 조성물은 무기입자를 100ppm이하로 포함할 수 있다.The skin layer composition in step a) may include less than 100ppm inorganic particles.
또한, 상기 무기입자는 평균입경이 3㎛미만일 수 있다. In addition, the inorganic particles may have an average particle diameter of less than 3㎛.
상기 폴리에스테르 필름의 표면조도(Ra)가 10nm이하이고, 열수축율이 하기 식 1 내지 식 2를 만족하고, 면배향계수(ns)가 하기 식 8을 만족하며, 150℃에서 30분간 유지시킨 후 필름의 헤이즈가 하기 식 9를 만족할 수 있다. After the surface roughness (Ra) of the polyester film is 10nm or less, the heat shrinkage satisfies the following formula 1 to formula 2, the surface orientation coefficient (ns) satisfies the following formula 8, and maintained for 30 minutes at 150 ℃ The haze of a film can satisfy following formula 9.
0 ≤ Smd ≤ 1.5 [식 1]0 ≤ Smd ≤ 1.5 [Equation 1]
0 ≤ Std ≤ 1.0 [식 2]0 ≤ Std ≤ 1.0 [Equation 2]
0.1590 ≤ ns [식 8]0.1590 ≤ ns [Equation 8]
Hf ≤ Hi × 2.5 [식 9]Hf ≤ Hi × 2.5 [Equation 9]
(상기 식에서, Smd, Std는 가로 10cm, 세로 10cm 크기의 폴리에스테르 필름을 150℃에서 30분간 유지시킨 후 JIS C-2318 규격에 따라 측정한 필름의 열수축율(%)을 의미하며, 상기 열수축율(%) = (열처리 전 필름의 길이 - 150℃에서 30분간 유지시킨 후 필름의 길이)/열처리 전 필름의 길이 × 100 이고, Smd는 필름의 길이방향(MD)의 수축율(%)을 의미하고, Std는 필름의 폭방향(TD)의 수축율(%)을 의미하며,(In the above formula, Smd, Std means the heat shrinkage (%) of the film measured in accordance with JIS C-2318 standard after maintaining the polyester film of 10cm in width, 10cm in length for 30 minutes at 150 ℃, the heat shrinkage rate (%) = (Length of film before heat treatment-length of film after holding at 150 ° C. for 30 minutes) / length of film before heat treatment × 100, Smd means shrinkage percentage (MD) in longitudinal direction (MD) of film and , Std means the shrinkage (%) of the film width direction (TD),
상기 면배향계수(ns) = {(길이방향 굴절률 + 폭방향 굴절률)/2}-{(길이방향 두께의 굴절률 + 폭방향두께의 굴절률)/2}이고,The plane orientation coefficient (ns) = {(length direction refractive index + width direction refractive index) / 2}-{(length direction thickness refractive index + width direction thickness refractive index) / 2},
상기 Hf는 150℃에서 30분간 유지시킨 후 필름의 헤이즈이고, Hi는 가열 전 필름의 헤이즈이다.]Hf is the haze of the film after holding at 150 ° C. for 30 minutes, and Hi is the haze of the film before heating.]
또한, 상기 c)단계에서 이완 시, 폭방향의 이완과 동시에 하기 식 15를 만족하는 범위로 길이방향의 이완을 실시할 수 있다. In addition, when relaxing in the step c), it is possible to relax in the longitudinal direction in the range satisfying the following equation 15 at the same time as the relaxation in the width direction.
0.3 ≤ MDr(%) ≤ 2.5 [식 15]0.3 ≤ MDr (%) ≤ 2.5 [Equation 15]
[상기 식에서, MDr은 기계방향의 이완비율을 의미하고, 이완비율(%) = (이완처리 구간 내 필름의 주행 속도 - 이완처리 구간 전 필름의 주행 속도)/이완처리 구간 전 필름의 주행 속도 × 100이다.][In the above formula, MDr means the relaxation ratio in the machine direction, the relaxation ratio (%) = (travel speed of the film in the relaxation section-running speed of the film before the relaxation section) / running speed of the film before the relaxation section × 100.]
본 발명에 따른 폴리에스테르 필름은 고온 조건에서 올리고머의 유출이 완벽히 차단되는 효과가 있다.Polyester film according to the present invention has the effect that the outflow of the oligomer is completely blocked at high temperature conditions.
또한, 본 발명에 따른 폴리에스테르 필름은 터치패널 필름 중 ITO 보호용 내열 필름 등에 사용하기에 적합한 광학물성을 가지며, 필름 전폭에 대한 열수축율이 제어되어 후공정성 특히, ITO필름, ITO내열보호필름, 저간섭무늬 폴리에스테르 필름 등 3장 이상의 필름의 라미네이션 공정에의 공정성 확보가 용이하다.In addition, the polyester film according to the present invention has an optical property suitable for use in heat-resistant film for ITO protection, etc. of the touch panel film, the heat shrinkage of the film width is controlled so that the post-processability, in particular ITO film, ITO heat-resistant protective film, Securing processability in the lamination process of three or more films, such as an interference pattern polyester film, is easy.
이하는 본 발명의 구성에 대하여 보다 구체적으로 설명한다.Hereinafter, the configuration of the present invention will be described in more detail.
본 발명에서, 올리고머는 중량평균분자량이 500 ~ 10000 정도인 다이머(dimer), 트라이머(trimer), 테트라머(tetramer)등을 의미한다.In the present invention, the oligomer means a dimer, trimer, tetramer, etc. having a weight average molecular weight of about 500 to 10,000.
본 발명에 따른 폴리에스테르 필름의 일 양태는 폴리에스테르 수지로 이루어진 폴리에스테르 베이스필름과, 이의 일면 또는 양면에 올리고머 차단특성을 갖는 수분산성 수지조성물을 도포하여 형성한 프라이머층을 포함하며, 열수축율(%)이 하기 하기 식 1 내지 식 4를 만족할 수 있다. One aspect of the polyester film according to the present invention includes a polyester base film made of a polyester resin, and a primer layer formed by applying a water-dispersible resin composition having an oligomer barrier property on one or both sides thereof, %) May satisfy the following Formulas 1 to 4.
0 ≤ Smd ≤ 1.0 [식 1]0 ≤ Smd ≤ 1.0 [Equation 1]
0 ≤ Std ≤ 0.5 [식 2]0 ≤ Std ≤ 0.5 [Equation 2]
- 0.2 ≤ Vmd ≤ 0.2 [식 3]0.2 ≦ Vmd ≦ 0.2 [Equation 3]
- 0.2 ≤ Vtd ≤ 0.2 [식 4]0.2 ≦ Vtd ≦ 0.2 [Equation 4]
상기 식에서, Smd, Std, Vmd 및 Vtd는 가로 10cm, 세로 10cm 크기의 폴리에스테르 필름을 150℃에서 30분간 유지시킨 후 JIS C-2318 규격에 따라 측정한 필름의 열수축율(%)을 의미하며, 상기 열수축율(%) = (열처리 전 필름의 길이 - 150℃에서 30분간 유지시킨 후 필름의 길이)/열처리 전 필름의 길이 × 100 이고,In the above formula, Smd, Std, Vmd and Vtd means the heat shrinkage (%) of the film measured in accordance with JIS C-2318 standard after maintaining the polyester film of 10cm in width, 10cm in length for 30 minutes at 150 ℃, The heat shrinkage percentage (%) = (length of film before heat treatment-length of film after holding at 150 ° C. for 30 minutes) / length of film before heat treatment × 100,
Smd는 필름의 기계방향(MD)의 수축율(%)을 의미하고, Std는 필름의 폭방향(TD)의 수축율(%)을 의미하며, Vmd는 필름 전폭을 기준으로 50cm간격으로 선택된 시료 10개의 기계방향의 열수축율의 편차(%)를 의미하고, Vtd는 필름 전폭을 기준으로 50cm간격으로 선택된 시료 10개의 폭방향의 열수축율의 편차(%)를 의미한다.Smd means the shrinkage rate (%) in the machine direction (MD) of the film, Std means the shrinkage rate (%) in the width direction (TD) of the film, Vmd is 10 samples selected at 50cm intervals based on the full width of the film It means the deviation (%) of the heat shrinkage in the machine direction, Vtd means the deviation (%) of the heat shrinkage in the width direction of 10 samples selected at 50cm intervals based on the film full width.
본 발명의 일 실시예에 따른 폴리에스테르 필름은 상기 식 1 내지 식 4 중에서 식 1 및 2를 만족하거나 식 3 및 4를 만족하거나, 식 1 내지 식 4 모두를 만족할 수 있다. 이러한 물성 조건은 다른 조건들과 조합할 수 있다. The polyester film according to an embodiment of the present invention may satisfy Equations 1 and 2, satisfy Equations 3 and 4, or satisfy Equations 1 to 4 in Equations 1 to 4 above. These physical conditions can be combined with other conditions.
필름의 기계방향(MD)의 열수축율(%)은 0 ~ 1.5%이며, 바람직하게는 0.2 ~ 1.5%, 보다 바람직하게는 0 ~ 1.0%일 수 있다. 상기 필름의 기계방향(MD)의 열수축율(%)이 0% 미만에서는 필름이 팽창하게 되어 후공정에서 컬이 발생할 가능성이 커지며, 1.5%초과인 경우는 후공정에서 기계 방향 수축성이 커져 역시나 컬이 발생할 가능성이 커질 수 있다. 더욱 바람직하게는 0 ~ 0.9%일 수 있다. The heat shrinkage percentage (%) in the machine direction (MD) of the film is 0 to 1.5%, preferably 0.2 to 1.5%, more preferably 0 to 1.0%. If the thermal shrinkage percentage (%) of the machine direction (MD) of the film is less than 0%, the film expands, which increases the likelihood of curling in the post process, and in the case of more than 1.5%, the shrinkage of the machine direction in the post process increases. This can increase the likelihood of occurrence. More preferably, it may be 0 to 0.9%.
또한, 폭방향(TD)의 열수축율(%)은 0 ~ 1.0%일 수 있으며, 바람직하게는 0 ~ 0.5%일 수 있다. 상기 폭방향(TD)의 열수축율(%)이 0%미만에서는 폭방향으로 필름의 팽창이 발생하고, 1.0% 초과인 경우는 후공정에서 폭방향 수축성이 커져 컬 제어가 힘들어질 수 있다. 더욱 바람직하게는 0 ~ 0.4%인 것이 좋다.In addition, the thermal contraction rate (%) in the width direction (TD) may be 0 to 1.0%, preferably 0 to 0.5%. When the thermal contraction percentage (%) of the width direction (TD) is less than 0%, expansion of the film occurs in the width direction, and when it exceeds 1.0%, the width direction shrinkage may be increased in a later process, and thus curl control may be difficult. More preferably, it is 0 to 0.4%.
또한, 상기 폴리에스테르 필름은 하기 식 5 내지 식 7을 만족하는 것을 포함할 수 있다. In addition, the polyester film may include those that satisfy the following formula 5 to formula 7.
0 ≤ S(45) ≤ 1.0 [식 5]0 ≤ S (45) ≤ 1.0 [Equation 5]
0 ≤ S(135) ≤ 1.0 [식 6]0 ≤ S (135) ≤ 1.0 [Equation 6]
│S(135)-S(45)│ ≤ 0.2 [식 7]S (135) -S (45) │ ≤ 0.2 [Equation 7]
상기 식에서, S(45) 및 S(135)는 가로 10cm, 세로 10cm 크기의 폴리에스테르 필름을 150℃에서 30분간 유지시킨 후 JIS C-2318 규격에 따라 측정한 필름의 열수축율(%)을 의미하며, 상기 열수축율(%) = (열처리 전 필름의 길이 - 150℃에서 30분간 유지시킨 후 필름의 길이)/열처리 전 필름의 길이 × 100 이다. 또한, S(45)는 필름의 폭방향 (TD)을 기준으로 시계 방향으로 45° 각도의 대각방향 수축율(%)을 의미하며, S(135)는 필름의 폭방향 (TD)을 기준으로 시계 방향으로 135° 각도의 대각방향 수축율(%)을 의미한다.In the above formula, S (45) and S (135) means the heat shrinkage (%) of the film measured in accordance with JIS C-2318 standard after maintaining a polyester film of 10cm in width, 10cm in length for 30 minutes at 150 ℃ And the heat shrinkage percentage (%) = (length of film before heat treatment-length of film after holding at 150 ° C. for 30 minutes) / length of film before heat treatment × 100. In addition, S (45) refers to the diagonal shrinkage (%) at a 45 ° angle clockwise relative to the film width direction (TD), S (135) is a clock based on the film width direction (TD) Refers to the diagonal shrinkage in% at an angle of 135 °.
본 발명에서 상기 폴리에스테르 필름은 대각 방향의 열수축율을 상기 범위로조절하여 고온 조건에서 올리고머의 마이그레이션 차단 특성을 극대화할 수 있다. 또한, 상기 폴리에스테르 필름의 광학 특성을 포함한 제반 물성의 상승효과를 구현할 수 있다. 상기 폴리에스테르 필름의 대각 방향인 필름의 폭방향 (TD)을 기준으로 시계 방향으로 45° 각도 및 필름의 폭방향 (TD)을 기준으로 시계 방향으로 135° 각도에서의 열수축율은 바람직하게는 0 ~ 1.0%일 수 있다. 이와 동시에, 상기 두 대각 방향의 열수축율 차이의 절대값은 바람직하게는 0.2% 이하일 수 있다. 대각 열수축율의 차이의 절대값이 0.2%를 초과하는 경우에는 대각 방향으로의 수축되는 밸런스(Balance)가 깨짐에 따라 트위스트 형태의 컬(Curl)이 발생될 수 있다. In the present invention, the polyester film can maximize the heat shrinkage of the oligomer under high temperature conditions by adjusting the heat shrinkage in the diagonal direction. In addition, the synergistic effect of the physical properties including the optical properties of the polyester film can be implemented. The thermal contraction rate at an angle of 45 ° clockwise relative to the width direction TD of the film, which is the diagonal direction of the polyester film, and 135 ° clockwise relative to the width direction TD of the film, is preferably 0. ˜1.0%. At the same time, the absolute value of the difference in thermal shrinkage in the two diagonal directions may be preferably 0.2% or less. If the absolute value of the difference in the diagonal heat shrinkage exceeds 0.2%, a curl that curls in a diagonal direction may be generated as the balance that shrinks in the diagonal direction is broken.
또한, 필름 전폭에 대해서 열수축율의 편차가 ±0.2%인 범위에서 열수축율의 균일성을 확보할 수 있고, 또한 컬 제어가 용이할 수 있다.In addition, the uniformity of the heat shrinkage rate can be ensured in the range where the deviation of the heat shrinkage rate is ± 0.2% with respect to the film full width, and the curl control can be easily performed.
본 발명의 일 실시예에 따른 폴리에스테르 필름 하기 식 8 및 식 9를 만족할 수 있다. Polyester film according to an embodiment of the present invention can satisfy the following formula 8 and formula 9.
0.1590 ≤ ns [식 8]0.1590 ≤ ns [Equation 8]
Hf ≤ Hi × 2.5 [식 9]Hf ≤ Hi × 2.5 [Equation 9]
상기 식에서, ns = {(길이방향 굴절률 + 폭방향 굴절률)/2}-{(길이방향 두께의 굴절률 + 폭방향두께의 굴절률)/2}인 면배향계수를 의미하고,Wherein ns = {(length-direction refractive index + width-direction refractive index) / 2}-{(length-direction thickness refractive index + width-direction thickness refractive index) / 2}, and means a plane orientation coefficient.
상기 Hf는 150℃에서 30분간 유지시킨 후 필름의 헤이즈이며, Hi는 가열 전 필름의 헤이즈를 나타낸 것이다.The Hf is the haze of the film after maintaining for 30 minutes at 150 ℃, Hi represents the haze of the film before heating.
본 발명의 일 실시예에 따른 폴리에스테르 필름의 면배향계수는 바람직하게는 0.1590일 수 있으며, 보다 바람직하게는 0.1590 ~ 0.1610일 수 있다. 상기 면배향계수가 0.1590미만인 경우에는 필름의 표면구조가 치밀하지 못하여 올리고머의 표면 마이그레이션이 쉽게 발생할 수 있다.The plane orientation coefficient of the polyester film according to an embodiment of the present invention may be preferably 0.1590, more preferably 0.1590 ~ 0.1610. If the plane orientation coefficient is less than 0.1590, the surface structure of the film may not be dense, and thus surface migration of the oligomer may easily occur.
상기 헤이즈는 고온 조건에서 올리고머의 유출을 판단하기 위한 것으로, 상기 식 9의 범위를 벗어나는 경우는 올리고머의 유출이 심해 헤이즈가 감소됨을 의미한다. 상기 헤이즈 범위를 만족하는 범위에서는 후공정성에 크게 영향을 미치지 않으므로 광학필름으로 사용하기에 적합한 물성을 갖는다.The haze is used to determine the outflow of the oligomer under high temperature conditions. When the haze is out of the range of Equation 9, the haze is severe and the haze is reduced. In the range that satisfies the haze range, since it does not significantly affect post-processability, it has physical properties suitable for use as an optical film.
본 발명의 일 실시예에 따른 폴리에스테르 필름은 기재층 및 상기 기재층의 양면에 적어도 2층 이상이 적층된 스킨층을 포함하는 폴리에스테르 베이스필름을 포함할 수 있다. 이때, 상기 스킨층을 이루는 폴리에스테르 수지의 올리고머 함량이 0.3 ~ 0.6 중량%이고, 디에틸렌글리콜의 함량이 0.1 ~ 1.2 중량%일 수 있다. The polyester film according to an embodiment of the present invention may include a polyester base film including a base layer and a skin layer in which at least two layers are laminated on both surfaces of the base layer. At this time, the oligomer content of the polyester resin constituting the skin layer may be 0.3 to 0.6% by weight, the content of diethylene glycol may be 0.1 to 1.2% by weight.
상기 폴리에스테르 베이스필름은 기재층, 상기 기재층의 양면에 적어도 2층 이상이 적층된 스킨층을 포함하는 3층 이상으로 이루어진 것일 수 있으며, 공압출에 의해 형성된 것일 수 있다.The polyester base film may be formed of three or more layers including a base layer, a skin layer in which at least two or more layers are laminated on both sides of the base layer, and may be formed by coextrusion.
상기 기재층과 스킨층을 공압출 할 때 작업성을 향상시키기 위하여 하기 식 10을 만족하는 것이 바람직하다. In order to improve workability when the base layer and the skin layer are coextruded, it is preferable that the following Equation 10 is satisfied.
1 < Ns/Nc ≤ 1.2 [식 10] 1 <Ns / Nc ≤ 1.2 [Equation 10]
상기 식에서, Ns는 스킨층을 이루는 폴리에스테르수지의 고유점도이고, Nc는 기재층을 이루는 폴리에스테르수지의 고유점도이다.In the above formula, Ns is the intrinsic viscosity of the polyester resin constituting the skin layer, Nc is the intrinsic viscosity of the polyester resin constituting the base layer.
스킨층과 기재층의 고유점도 비율이 1.2 초과일 경우에는 공압출 시 계면불안정의 문제가 발생하여 다층구조를 형성하지 못할 수 있으므로, 상기 범위를 만족하는 것이 바람직하고, 보다 바람직하게는 1.0 내지 1.05인 것이 작업성 향상에 효과적이다.When the intrinsic viscosity ratio of the skin layer and the base layer is more than 1.2, the problem of interfacial instability may occur due to coextrusion, so that the multilayer structure may not be formed, and it is preferable to satisfy the above range, more preferably 1.0 to 1.05. It is effective to improve workability.
상기 폴리에스테르 베이스필름은 총 두께는 25 내지 250㎛인 것이 바람직하고, 보다 바람직하게는 50 내지 188㎛인 것이 효과적이다. 두께가 25㎛ 미만일 경우에는 광학필름에 적합한 기계적 물성이 구현되지 않으며, 250㎛ 초과일 경우에는 필름의 두께가 너무 두꺼워져서 디스플레이 장치의 박형화에 적합하지 않은 문제가 발생할 수 있다. The polyester base film preferably has a total thickness of 25 to 250 μm, more preferably 50 to 188 μm. If the thickness is less than 25㎛ does not implement the mechanical properties suitable for the optical film, if the thickness is greater than 250㎛ may cause a problem that the thickness of the film is not suitable for thinning of the display device.
또한, 기재층의 함량이 전체필름의 70 내지 90중량%이고, 스킨층의 함량이 10 내지 30중량%인 것이 바람직하고, 보다 바람직하게는 기재층의 함량이 70 내지 80 중량%이며, 스킨층의 함량이 20 내지 30중량%인 것이 공압출 시 계면안정화가 우수하고 올리고머의 차단성이 우수하므로 효과적이다.In addition, the content of the base layer is 70 to 90% by weight of the entire film, the content of the skin layer is preferably 10 to 30% by weight, more preferably the content of the base layer is 70 to 80% by weight, the skin layer The content of 20 to 30% by weight is effective because of excellent interfacial stability during coextrusion and excellent barrier property of the oligomer.
상기 폴리에스테르 수지로 이루어진 기재층은 폴리에틸렌테레프탈레이트(PET) 수지 단독으로 이루어지는 것이 바람직하다. 이때 사용되는 폴리에틸렌테레프탈레이트 수지는 고유점도가 0.5 내지 1.0인 것을 사용하는 것이 바람직하며, 보다 바람직하게는 0.60 내지 0.80인 것이 효과적이다. 기재층 폴리에틸렌테레프탈레이트 수지의 고유점도가 0.5 미만일 경우에는 내열성이 감소될 수 있으며, 1.0초과일 경우에는 원료 가공이 용이하지 않아 작업성이 감소할 수 있다. It is preferable that the base material layer which consists of said polyester resin consists of polyethylene terephthalate (PET) resin alone. In this case, the polyethylene terephthalate resin used is preferably used having an intrinsic viscosity of 0.5 to 1.0, more preferably 0.60 to 0.80. When the intrinsic viscosity of the substrate layer polyethylene terephthalate resin is less than 0.5, the heat resistance may be reduced. If the base layer is more than 1.0, it may not be easy to process the raw material, thereby reducing workability.
상기 폴리에스테르 기재층의 양면에 적어도 2층 이상 공압출되어 형성되는 스킨층은 전체 필름 중량에 대하여 올리고머 함량이 0.3 내지 0.6중량%, 더욱 바람직하게는 0.4 ~ 0.6 중량%이고, 디에틸렌글리콜(DEG)의 함량은 0.1 내지 1.1중량%, 더욱 바람직하게는 0.7 ~ 1.1 중량%인 것이 좋다. 스킨층의 폴리에스테르 수지의 올리고머 및 디에틸렌글리콜의 함량이 상기 범위 초과일 경우에는 초기 필름의 헤이즈값이 상승하고, 열처리 가공했을 때 헤이즈 변화율이 급격이 높아짐으로써, 광학필름으로 적용 가능한 광학특성을 달성할 수 없는 문제가 발생한다. Skin layer formed by co-extrusion of at least two or more layers on both sides of the polyester base layer has an oligomer content of 0.3 to 0.6% by weight, more preferably 0.4 to 0.6% by weight based on the total film weight, diethylene glycol (DEG ) Is preferably 0.1 to 1.1% by weight, more preferably 0.7 to 1.1% by weight. When the content of the oligomer and diethylene glycol of the polyester resin of the skin layer exceeds the above range, the haze value of the initial film is increased, and the rate of change of the haze is sharply increased during heat treatment, thereby improving the optical properties applicable to the optical film. Problems arise that cannot be achieved.
또한, 스킨층의 폴리에스테르 수지가 상기 범위의 올리고머 및 디에틸렌글리콜의 함량을 갖기 위해서 당해 기술분야에서 자명한 합성방법으로 제조할 수 있으나, 특히, 고상중합으로 제조되는 것이 올리고머 및 디에틸렌글리콜의 함량을 줄이는데 효과적이다. In addition, the polyester resin of the skin layer may be prepared by a synthetic method known in the art in order to have a content of the oligomer and diethylene glycol in the above range, in particular, that is prepared by the solid-phase polymerization of the oligomer and diethylene glycol Effective in reducing the content.
또한 스킨층의 폴리에스테르 수지의 고유점도는 0.6 내지 1.0인 것이 바람직하고, 보다 바람직하게는 0.65 내지 0.85인 것이 효과적이다. 스킨층 폴리에틸렌테레프탈레이트 수지의 고유점도가 0.6 미만일 경우에는 내열성이 감소될 수 있으며, 1.0초과일 경우에는 원료 가공이 용이하지 않아 작업성이 감소할 수 있다. The intrinsic viscosity of the polyester resin of the skin layer is preferably 0.6 to 1.0, more preferably 0.65 to 0.85. When the intrinsic viscosity of the skin layer polyethylene terephthalate resin is less than 0.6, the heat resistance may be reduced, and if it is more than 1.0, it may not be easy to process the raw material, thereby reducing workability.
본 발명의 일 실시예에 따른 폴리에스테르 필름은 Tg가 60℃이상, 팽윤비(Swelling ratio)가 30%이하, 겔분율(Gel fraction)이 95%이상, 밀도가 1.3 ~ 1.4인 프라이머층을 포함할 수 있다. 이는 폴리에스테르 필름 제조 시 올리고머의 마이그레이션을 조절하면서 동시에 열수축율을 낮출 수 있다. The polyester film according to an embodiment of the present invention includes a primer layer having a Tg of 60 ° C. or more, a swelling ratio of 30% or less, a gel fraction of 95% or more, and a density of 1.3 to 1.4. can do. This may lower the heat shrinkage rate while controlling the migration of the oligomer during polyester film production.
또한, 필름 제조 시 열고정 단계에서 특정한 조건으로 이완을 함으로써, 150℃에서 60분간 가열 전후의 헤이즈(Haze) 변화가 0.1% 이하인 물성을 만족하며, 본 발명에서 달성하고자 하는 필름의 열수축율을 만족할 수 있다.In addition, by relaxing to a specific condition in the heat setting step during the film production, the haze (Haze) change before and after 60 minutes at 150 ℃ satisfies the physical properties of 0.1% or less, and satisfies the thermal shrinkage of the film to be achieved in the present invention Can be.
또한, 올리고머 마이그레이션 정도가 상기 범위를 만족하는 필름의 경우 다이아몬드 마크(diamond mark) 및 백화 현상이 나타나지 않는 것을 확인할 수 있었다. In addition, it was confirmed that the diamond mark and the whitening phenomenon did not appear in the case where the degree of oligomer migration satisfies the above range.
즉, 프라이머층의 물성이 Tg가 60℃이상, Swelling ratio가 30%이하, 겔 분율(Gel fraction)이 95%이상, 밀도가 1.3 이상의 물성을 만족하는 범위에서, 하기 식 11에 따른 헤이즈 변화율(△H)이 0.1% 이하인 물성을 만족할 수 있다.In other words, the haze change rate according to the following formula 11 in a range in which the physical properties of the primer layer satisfy the properties of T g of 60 ° C. or more, swelling ratio of 30% or less, gel fraction of 95% or more, and density of 1.3 or more. (△ H) can satisfy the physical properties of 0.1% or less.
△H(%) = Hf - Hi [식 11]ΔH (%) = Hf − Hi [Equation 11]
상기 식에서, Hf는 150℃에서 60분간 유지시킨 후 필름의 헤이즈이고, Hi는 가열 전 필름의 헤이즈이다. In the above formula, Hf is the haze of the film after holding at 150 ° C. for 60 minutes, and Hi is the haze of the film before heating.
구체적으로, 프라이머층의 물성이 Tg가 60℃이상, 보다 구체적으로는 60℃이상이고 상한은 제한되지 않으며, Swelling ratio가 30%이하, 보다 구체적으로는 0% ~ 30%, Gel fraction이 95%이상, 보다 구체적으로는 95 ~ 100%인 , 밀도가 1.3 이상이며, 보다 구체적으로 1.3 ~ 1.4인 물성을 만족하는 범위에서, 도막의 구조 치밀도 및 프라이머층의 모빌러티(Mobility)가 떨어져서 온도 및 압력을 가하여도 폴리에스테르 필름 내부에 있는 올리고머가 표면으로 마이그레이션 되지 못하는 것을 확인할 수 있었다. Specifically, the physical property of the primer layer is T g is 60 ℃ or more, more specifically 60 ℃ or more and the upper limit is not limited, the swelling ratio is 30% or less, more specifically 0% ~ 30%, Gel fraction 95 % Or more, more specifically 95 to 100%, density is 1.3 or more, and more specifically, in the range of satisfying the physical properties of 1.3 to 1.4, the structural density of the coating film and the mobility of the primer layer are lowered. And even if the pressure was applied it was confirmed that the oligomer in the polyester film does not migrate to the surface.
본 발명의 일 실시예에 따른 폴리에스테르 필름에서 프라이머층은 올리고머 차단특성을 갖는 수분산성 수지조성물을 도포하여 형성된 것일 수 있다. In the polyester film according to an embodiment of the present invention, the primer layer may be formed by applying a water-dispersible resin composition having oligomer barrier properties.
상기 프라이머층을 형성하기 위한 수분산성 수지조성물로, 글리시딜기 함유 라디칼 중합성 불포화 모노머가 공중합된 아크릴계 수지와 수분산성 폴리에스테르계 수지를 포함하는 수분산성 수지조성물을 사용할 수 있다.As the water dispersible resin composition for forming the primer layer, a water dispersible resin composition comprising an acrylic resin copolymerized with a glycidyl group-containing radical polymerizable unsaturated monomer and a water dispersible polyester resin may be used.
일 양태로서, 상기 수분산성 수지조성물은 글리시딜기 함유 라디칼 중합성 불포화 모노머가 공중합된 아크릴계 수지(A)와 수분산성 폴리에스테르계 수지(B)의 고형분 중량비가 (A)/(B) = 20 ~ 80 / 80 ~ 20일 수 있다. 보다 바람직하게는 40 ~ 60 / 60 ~ 40 중량비로 사용될 수 있다. 수분산성 폴리에스테르계 수지(B)의 고형분 함량이 20 중량% 미만이고, 글리시딜기 함유 라디칼 중합성 불포화 모노머가 공중합된 아크릴계 수지(A)의 고형분 함량이 80 중량%를 초과하는 경우는 에멀젼의 입자크기(Particle Size)가 커짐에 따라 인라인 코팅 시 얼룩이 발생하고 폴리에스테르 베이스필름과의 밀착성과 투명성이 저하되고, 수분산성 폴리에스테르계 수지(B)의 고형분 함량이 80 중량%초과이고, 글리시딜기 함유 라디칼 중합성 불포화 모노머가 공중합된 아크릴계 수지(A)의 고형분 함량이 20 중량% 미만인 경우는 충분한 올리고머 차단 효과를 발현할 수 없다.In one embodiment, the water-dispersible resin composition has a solid content weight ratio of acrylic resin (A) copolymerized with a glycidyl group-containing radically polymerizable unsaturated monomer and a water-dispersible polyester resin (B) (A) / (B) = 20 It can be from 80 to 80 to 20. More preferably, it may be used in a weight ratio of 40 to 60/60 to 40. If the solids content of the water-dispersible polyester resin (B) is less than 20% by weight and the solids content of the acrylic resin (A) copolymerized with the glycidyl group-containing radically polymerizable unsaturated monomer is greater than 80% by weight, As particle size increases, staining occurs during inline coating, adhesion and transparency with polyester base film decreases, and the solid content of water-dispersible polyester resin (B) is over 80% by weight, and glycy When the solid content of the acrylic resin (A) copolymerized with a dill-containing radically polymerizable unsaturated monomer is less than 20% by weight, sufficient oligomer blocking effect cannot be expressed.
본 발명의 수분산성 수지 조성물은 수분산성 폴리에스테르계 수지(B)와 글리시딜기 함유 라디칼 중합성 불포화 모노머가 공중합된 아크릴계 수지(A)를 혼합한 바인더 수지와 물을 혼합하여 제조할 수 있으며, 수분산성 폴리에스테르계 수지(B)의 수성 분산액 중에서 글리시딜기 함유 라디칼 중합성 불포화 모노머 단독 또는 글리시딜기 함유 라디칼 중합성 불포화 모노머와 공중합 가능한 라디칼 중합성 불포화 모노머를 중합하여 제조하는 것도 가능하다. 이때는 계면활성제, 중합개시제를 사용할 수 있다. 상기 계면활성제 및 중합개시제는 유화중합에 통상적으로 사용되는 것이라면 제한되지 않고 사용될 수 있다. 구체적으로 예를 들면, 계면활성제로는 음이온성 계면활성제, 비이온성 계면활성제 또는 비반응성 계면활성제를 사용할 수 있으며, 이들을 병용해서 사용하는 것도 가능하다. 중합개시제는 라디칼 중합성 개시제로, 퍼옥사이드계 개시제 또는 아조비스 이소부티로니트릴 등의 질소화합물을 사용할 수 있다.The water-dispersible resin composition of the present invention may be prepared by mixing a water-dispersible polyester resin (B) and a binder resin mixed with an acrylic resin (A) copolymerized with a glycidyl group-containing radically polymerizable unsaturated monomer, It is also possible to polymerize and produce the glycidyl group-containing radically polymerizable unsaturated monomer alone or the radically polymerizable unsaturated monomer copolymerizable with the glycidyl group-containing radical polymerizable unsaturated monomer in an aqueous dispersion of the water-dispersible polyester resin (B). At this time, surfactant and a polymerization initiator can be used. The surfactant and the polymerization initiator may be used without limitation as long as it is conventionally used in emulsion polymerization. Specifically, for example, as the surfactant, anionic surfactants, nonionic surfactants or non-reactive surfactants can be used, and these can also be used in combination. The polymerization initiator is a radically polymerizable initiator, and nitrogen compounds such as a peroxide initiator or azobis isobutyronitrile can be used.
본 발명의 수분산 조성물은 필요에 따라 소포제, 습윤제, 계면활성제, 증점제, 가소제, 산화방지제, 자외선 흡수제, 방부제, 가교제 등을 더 포함할 수 있다.The water dispersion composition of the present invention may further include an antifoaming agent, a wetting agent, a surfactant, a thickener, a plasticizer, an antioxidant, a UV absorber, a preservative, a crosslinking agent and the like as necessary.
본 발명의 수분산 조성물에서, 상기 수분산성 폴리에스테르계 수지(B)는 술폰산 알칼리 금속염 화합물을 포함하는 디카르복실산 성분과, 디에틸렌글리콜을 포함하는 글리콜성분이 공중합된 것일 수 있다. In the water dispersion composition of the present invention, the water-dispersible polyester-based resin (B) may be a copolymer of a dicarboxylic acid component containing a sulfonic acid alkali metal salt compound and a glycol component containing diethylene glycol.
보다 구체적으로 디카르복실산 성분으로, 방향족 디카르복실산과 술폰산 알칼리 금속 염 화합물을 사용할 수 있으며, 상기 술폰산 알칼리 금속 염 화합물을 전체 산 성분 중 6 ~ 20몰% 함유하는 것일 수 있다. More specifically, as the dicarboxylic acid component, an aromatic dicarboxylic acid and a sulfonic acid alkali metal salt compound may be used, and the sulfonic acid alkali metal salt compound may contain 6 to 20 mol% of the total acid component.
상기 디카르복실산 성분은 프탈산, 테레프탈산, 테레프탈산디메틸, 이소프탈산, 이소프탈산 디메틸, 2,5-디메틸테레프탈산, 2,6-나프탈렌 디카르복실산, 비페닐디카르복실산 등의 방향족 디카르복실산, 아디핀산, 세바신산 등의 지방족 디카르복실산, 시클로헥산 디카르복실산 등의 지환족 디카르복실산 등을 사용할 수 있다.The dicarboxylic acid component is an aromatic dicarboxylic acid such as phthalic acid, terephthalic acid, dimethyl terephthalate, isophthalic acid, dimethyl isophthalic acid, 2,5-dimethyl terephthalic acid, 2,6-naphthalene dicarboxylic acid and biphenyldicarboxylic acid. Aliphatic dicarboxylic acids, such as an acid, adipic acid, a sebacic acid, alicyclic dicarboxylic acids, such as cyclohexane dicarboxylic acid, etc. can be used.
상기 술폰산 알칼리 금속염 화합물은 구체적으로 예를 들면, 술포테레프탈산, 5-술포 이소프탈산, 4-술포 이소프탈산, 4-술포 나프탈렌산-2,7-디카르복실산 등의 알칼리 금속염 등을 사용할 수 있으며, 6 ~ 20몰% 사용하는 것이 바람직하다. 6 몰% 미만으로 사용하는 경우는 물에 대한 수지의 분산 시간이 길어지고, 분산성이 낮으며, 20몰%를 초과하여 사용하는 경우는 내수성이 저하될 수 있다.Specific examples of the sulfonic acid alkali metal salt compound include alkali metal salts such as sulfoterephthalic acid, 5-sulfo isophthalic acid, 4-sulfo isophthalic acid, 4-sulfo naphthalic acid-2,7-dicarboxylic acid, and the like. It is preferable to use 6-20 mol%. When using less than 6 mol%, the dispersion time of resin to water becomes long, dispersibility is low, and when it uses more than 20 mol%, water resistance may fall.
상기 글리콜 성분은 디에틸렌글리콜과 탄소수 2~8의 지방족 또는 탄소수 6~12의 지환족 글리콜 등을 사용할 수 있다. 구체적으로 예를 들면, 에틸렌글리콜, 1,3-프로판디올, 1,2-프로필렌글리콜, 네오펜틸글리콜, 1,4-부탄디올, 1,4-시클로헥산디메탄올, 1,3-시클로헥산디메탄올, 1,2-시클로헥산디메탄올, 1,6-헥산디올, P-자일렌글리콜, 트리에틸렌글리콜 등을 사용할 수 있다. 이때 디에틸렌글리콜을 전체 글리콜 성분 중 20 ~ 80 몰% 함유하는 것이 바람직하다. As the glycol component, diethylene glycol and aliphatic glycols having 2 to 8 carbon atoms or alicyclic glycols having 6 to 12 carbon atoms may be used. Specifically, for example, ethylene glycol, 1,3-propanediol, 1,2-propylene glycol, neopentyl glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol , 1,2-cyclohexanedimethanol, 1,6-hexanediol, P-xylene glycol, triethylene glycol and the like can be used. At this time, it is preferable to contain 20-80 mol% of diethylene glycol among all the glycol components.
상기 수분산성 폴리에스테르계 수지(B)는 수평균 분자량이 1000 ~ 50000인 것이 바람직하고, 보다 바람직하게는 수평균 분자량이 2000 ~ 30000이다. 수평균 분자량이 1000 미만인 경우는 올리고머 차단 효과가 미미하고, 50000 초과인 경우는 수분산성이 곤란할 수 있다.It is preferable that the number average molecular weights of the said water-dispersible polyester resin (B) are 1000-50000, More preferably, the number average molecular weights are 2000-30000. When the number average molecular weight is less than 1000, the oligomer blocking effect is insignificant, and when the number average molecular weight is more than 50000, water dispersibility may be difficult.
상기 수분산성 폴리에스테르계 수지(B)는 물 또는 수성 용제를 포함하는 물에 50 ~ 90℃로 가열 교반하여 균일하게 수분산시킨 것을 사용한다. 이렇게 제조된 수분산체는 균일한 분산을 위해 고형분 농도가 30 중량% 이하, 보다 바람직하게는 10 ~ 30 중량%인 것이 바람직하다. 상기 수성용제는 메탄올, 에탄올, 프로판올 등의 알콜류, 에틸렌글리콜, 프로필렌글리콜, 디에틸렌글리콜, 디프로필렌글리콜, 글리세린 등의 다가 알코올 등을 사용할 수 있다. The water-dispersible polyester-based resin (B) is used by uniformly dispersing by heating and stirring the water or water containing an aqueous solvent at 50 ~ 90 ℃. The aqueous dispersion thus prepared has a solid content of 30 wt% or less, more preferably 10 to 30 wt%, for uniform dispersion. The aqueous solvent may be alcohols such as methanol, ethanol, propanol, polyhydric alcohols such as ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, glycerin, and the like.
다음으로, 글리시딜기 함유 라디칼 중합성 불포화 모노머가 공중합된 아크릴계 수지(A)에 대하여 설명한다.Next, the acrylic resin (A) to which the glycidyl group containing radically polymerizable unsaturated monomer was copolymerized is demonstrated.
글리시딜기 함유 라디칼 중합성 불포화 모노머가 공중합된 아크릴계 수지(A)는 글리시딜기 함유 라디칼 중합성 불포화 모노머의 단독중합물 또는 글리시딜기 함유 라디칼 중합성 불포화 모노머와 공중합 가능한 다른 라디칼 중합성 불포화 모노머를 공중합한 수지이다.Acrylic resin (A) copolymerized with a glycidyl group-containing radically polymerizable unsaturated monomer is a homopolymer of a glycidyl group-containing radically polymerizable unsaturated monomer or another radically polymerizable unsaturated monomer copolymerizable with a glycidyl group-containing radically polymerizable unsaturated monomer. It is resin copolymerized.
상기 아크릴계 수지는 공중합 모노머로 글리시딜기 함유 라디칼 중합성 불포화 모노머를 전체 모노머 성분 중 20 ~ 80 몰% 함유하는 것일 수 있다. 상기 글리시딜기 함유 라디칼 중합성 불포화 모노머는 가교반응에 의해 프라이머층의 도막의 강도를 향상시키고 가교밀도를 높이게 되므로, 올리고머의 유출을 차단할 수 있다. 구체적으로 예를 들면, 아크릴산 글리시딜, 메타크릴산 글리시딜, 아릴글리시딜에테르 등의 글리시딜 에테르 등을 사용할 수 있다. The acrylic resin may be a copolymer monomer containing 20 to 80 mol% of the glycidyl group-containing radical polymerizable unsaturated monomer in all monomer components. Since the glycidyl group-containing radically polymerizable unsaturated monomer improves the strength of the coating film of the primer layer by the crosslinking reaction and increases the crosslinking density, it is possible to block the outflow of the oligomer. Specifically, for example, glycidyl ethers such as glycidyl acrylate, glycidyl methacrylate, and arylglycidyl ether can be used.
글리시딜기 함유 라디칼 중합성 불포화 모노머와 공중합 가능한 라디칼 중합성 불포화 모노머는 비닐에스테르, 불포화카르본산에스테르, 불포화 카르본산 아미드, 불포화 니트릴, 불포화 카르본산, 알릴화합물, 함질소계 비닐 모노머, 탄화수소 비닐 모노머 또는 비닐 실란화합물 등을 들 수 있다. 비닐에스테르로는 프로피온산비닐, 스테아린산비닐, 염화비닐등을 사용할 수 있다. 불포화카르본산에스테르로는 아크릴산메틸, 아크릴산에틸, 아크릴산부틸, 아크릴산 2-에틸헥실, 메타크릴산 에틸, 메타크릴산 부틸, 말레인산 부틸, 말레인산 옥틸, 푸마르산 부틸, 푸마르산 옥틸, 메타크릴산 히드록시 에틸, 아크릴산 히드록시에틸, 메타크릴산 히드록시 프로필, 아크릴산 히드록시 프로필 등을 사용할 수 있다. 불포화 카르본산 아미드로는 아크릴아미드, 메타크릴아미드, 메티롤아크릴아미드, 부톡시 메티롤 아크릴아미드 등을 사용할 수 있다. 불포화 니트릴로는 아크릴로니트릴 등을 사용할 수 있다. 불포화 카르본산으로는 아크릴산, 메타크릴산, 말레인산, 푸마르산, 이타콘산, 말레인산 산성 에스테르, 푸마르산 산성 에스테르, 이타콘산 산성 에스테르 등을 사용할 수 있다. 알릴화합물로는 초산알릴, 메타크릴산 알릴, 아크릴산 알릴, 이타콘산 알릴, 이타콘산 디알릴 등을 사용할 수 있다. 함질소계 비닐 모노머로는 비닐피리딘, 비닐 이미다졸 등을 사용할 수 있다. 탄화수소 비닐 모노머로는 에틸렌, 프로필렌, 헥센, 옥텐, 스티렌, 비닐톨루엔, 부타디엔 등을 사용할 수 있다. 비닐 실란화합물로는 디메틸 비닐 메톡시 실란, 디메틸 비닐 에톡시 실란, 메틸 비닐 디메톡시 실란, 메틸 비닐 디에톡시 실란, 감마-메타크릴옥시 프로필 트리 메톡시 실란, 감마-메타크릴록시 프로필 디메톡시 실란 등을 사용할 수 있다. Radical polymerizable unsaturated monomers copolymerizable with glycidyl group-containing radical polymerizable unsaturated monomers include vinyl esters, unsaturated carboxylic acid esters, unsaturated carboxylic acid amides, unsaturated nitriles, unsaturated carboxylic acids, allyl compounds, nitrogen-containing vinyl monomers and hydrocarbon vinyl monomers. Or a vinyl silane compound. Vinyl propionate, vinyl stearate, vinyl chloride, etc. can be used as vinyl ester. Unsaturated carboxylic acid esters include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, ethyl methacrylate, butyl methacrylate, butyl maleate, octyl maleate, butyl fumarate, octyl fumarate, hydroxyethyl methacrylate, Hydroxyethyl acrylate, methacrylate hydroxypropyl, hydroxypropyl acrylate and the like can be used. As the unsaturated carboxylic acid amide, acrylamide, methacrylamide, metyrolacrylamide, butoxy methirol acrylamide, and the like can be used. Acrylonitrile etc. can be used as unsaturated nitrile. As the unsaturated carboxylic acid, acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, maleic acid acid ester, fumaric acid acid ester, itaconic acid acid ester and the like can be used. As the allyl compound, allyl acetate, allyl methacrylate, allyl acrylate, allyl itaconic acid, diallyl itaconic acid and the like can be used. Vinylpyridine, vinyl imidazole, etc. can be used as a nitrogen-containing vinyl monomer. As the hydrocarbon vinyl monomer, ethylene, propylene, hexene, octene, styrene, vinyltoluene, butadiene and the like can be used. As the vinyl silane compound, dimethyl vinyl methoxy silane, dimethyl vinyl ethoxy silane, methyl vinyl dimethoxy silane, methyl vinyl diethoxy silane, gamma-methacryloxy propyl trimethoxy silane, gamma-methacryloxy propyl dimethoxy silane, etc. Can be used.
본 발명의 일 양태에 따른 수분산성 수지조성물은 글리시딜기 함유 라디칼 중합성 불포화 모노머가 공중합된 아크릴계 수지(A)와 수분산성 폴리에스테르계 수지(B)의 고형분 함량이 0.5 ~ 10 중량%인 수분산성 또는 수용성의 조성물인 것이 바람직하다. 보다 구체적으로 글리시딜기 함유 라디칼 중합성 불포화 모노머가 공중합된 아크릴계 수지(A)와 수분산성 폴리에스테르계 수지(B)의 고형분 함량이 0.5 ~ 10 중량%와 나머지는 물을 포함하며, 필요에 따라 웨팅제, 분산제 등의 첨가제를 더 포함할 수 있다. 웨팅제는 코팅성을 향상시키기 위하여 사용되는 것으로 구체적으로 예를 들면,Dow Corning 사의 Q2-5212, ENBODIC사의 TEGO WET 250, BYK CHEMIE사의 BYK 348 등의 변성 실리콘계 웨팅제 등을 사용할 수 있으나, 이로 한정되는 것은 아니다. 웨팅제는 0.1 ~ 0.5 중량%로 사용하는 것이 바람직하며, 상기 범위에서 목적으로 하는 코팅성 향상을 달성할 수 있다. Water-dispersible resin composition according to an aspect of the present invention is a water content of 0.5 to 10% by weight of the solid content of the acrylic resin (A) and the water-dispersible polyester resin (B) copolymerized with a glycidyl group-containing radically polymerizable unsaturated monomer It is preferably an acidic or water soluble composition. More specifically, the solid content of the acrylic resin (A) and the water-dispersible polyester resin (B) copolymerized with the glycidyl group-containing radically polymerizable unsaturated monomer is 0.5 to 10% by weight, and the remainder includes water. It may further include additives such as a wetting agent, a dispersing agent. The wetting agent is used to improve the coating property. Specifically, for example, a modified silicone wetting agent such as Dow Corning's Q2-5212, ENBODIC's TEGO WET 250, BYK CHEMIE's BYK 348, etc. may be used. It doesn't happen. Wetting agent is preferably used in 0.1 to 0.5% by weight, it is possible to achieve the desired coating properties in the above range.
본 발명에서 상기 프라이머층은 건조도포두께가 20 ~ 150nm인 것일 수 있다. 건조도포두께가 20nm 미만인 경우는 올리고머 차단특성이 충분히 나타나지 않을 수 있으며, 150nm 초과인 경우는 코팅얼룩이 나타나며, 필름 권취 후 프라이머층끼리 붙어버리는 블록킹(Blocking) 현상이 발생할 가능성이 높아진다.In the present invention, the primer layer may be a dry coating thickness of 20 ~ 150nm. If the dry coating thickness is less than 20nm, the oligomer blocking properties may not be sufficiently exhibited. If the dry coating thickness is greater than 150nm, coating stains may appear, and a blocking phenomenon of sticking primer layers after the winding of the film may increase.
본 발명에서 상기 수분산성 수지조성물은 폴리에스테르 필름 제조 공정 중 인라인 도포방법으로 도포되는 것일 수 있다. 즉 폴리에스테르 베이스필름 제조 시 연신 전 또는 1차 연신 후 2차 연신 전에 인라인 도포방법으로 도포한 후, 연신함으로써 제조될 수 있으며, 2차 연신 및 열고정 과정에서 가열에 의해 물이 증발하게 되어 프라이머층이 형성될 수 있다. 도포방법은 공지의 도포방법이라면 제한되지 않는다.In the present invention, the water-dispersible resin composition may be applied by an in-line coating method of the polyester film manufacturing process. In other words, the polyester base film may be prepared by applying an in-line coating method before stretching or before the second stretching after the primary stretching, or by stretching. Water is evaporated by heating during the secondary stretching and heat setting. Layers can be formed. The coating method is not limited as long as it is a known coating method.
보다 구체적으로, 본 발명의 폴리에스테르 필름을 제조하는 방법은More specifically, the method for producing the polyester film of the present invention
a) 기계방향으로 1축 연신된 폴리에스테르 베이스필름을 제조하는 단계;a) preparing a uniaxially stretched polyester base film in the machine direction;
b) 상기 1축 연신된 폴리에스테르 베이스필름의 일면 또는 양면에 올리고머 차단특성을 갖는 수분산성 수지조성물을 도포하여 프라이머층을 형성하는 단계;b) forming a primer layer by applying a water-dispersible resin composition having oligomer barrier properties to one or both surfaces of the uniaxially stretched polyester base film;
c) 상기 프라이머층이 형성된 1축 연신된 폴리에스테르 베이스필름을 폭방향(TD)으로 2축 연신하는 단계; 및c) biaxially stretching the uniaxially stretched polyester base film on which the primer layer is formed in the width direction (TD); And
d) 상기 2축 연신된 필름을 열고정 및 하기 식 12를 만족하는 범위로 기계방향(MD)의 이완을 수행하는 단계;d) heat setting the biaxially stretched film and performing relaxation in the machine direction (MD) in a range satisfying Equation 12 below;
1.1 ≤ 이완비율(%) ≤ 2.5 [식 12]1.1 ≤ relaxation ratio (%) ≤ 2.5 [Equation 12]
(상기 식에서, 이완비율(%) = (이완처리 구간 내 필름의 주행 속도 - 이완처리 구간 전 필름의 주행 속도)/이완처리 구간 전 필름의 주행 속도 × 100이다.)(In the above formula, the relaxation ratio (%) = (travel speed of the film in the relaxation section-travel speed of the film before the relaxation section) / running speed of the film before the relaxation section × 100.)
를 포함한다.It includes.
본 발명에서 상기 d)단계에서, 기계방향(MD)의 이완은 하기 식 13을 만족하는 온도 범위에서 수행하는 것일 수 있다.In the step d) in the present invention, the relaxation of the machine direction (MD) may be performed in a temperature range satisfying the following equation (13).
연신 온도(℃) ≤ 이완 온도(℃) < 열고정 온도(℃) [식 13]Drawing temperature (℃) ≤ Relaxation temperature (℃) <heat setting temperature (℃) [Equation 13]
본 발명은 상기와 같이 연신을 한 후, 열고정 및 기계방향의 이완을 수행하고, 이완 시 상기 식 9 및 10을 만족하는 조건에서 수행을 함으로써, 고온 조건에서 올리고머가 마이그레이션 되지 않고, 필름의 수축이 발생하지 않으므로 후 공정에 유리한 필름을 제조할 수 있다.In the present invention, after stretching as described above, by performing heat setting and relaxation in the machine direction, and performing the conditions in the conditions satisfying the above formulas 9 and 10 during relaxation, the oligomer does not migrate under high temperature conditions, the shrinkage of the film Since this does not occur, it is possible to produce a film advantageous for the post-process.
보다 구체적으로 본 발명의 폴리에스테르 제조방법에서, 상기 a)단계는 폴리에스테르 칩을 압출기에 넣고 용융 압출한 후 캐스팅 드럼으로 급냉, 고화시켜 폴리에스테르 시트를 제조한 후, 이를 80 ~ 100℃에서 기계방향(MD)으로 1축 연신을 수행하는 단계이다. 이때 연신 비율은 2 ~ 4배인 것이 바람직하다.More specifically, in the polyester manufacturing method of the present invention, the step a) is a polyester chip into an extruder and melt extrusion and then quenched and solidified in a casting drum to produce a polyester sheet, which is then machined at 80 ~ 100 ℃ It is a step of performing uniaxial stretching in the direction MD. At this time, the stretching ratio is preferably 2 to 4 times.
상기 b)단계는 1축 연신된 폴리에스테르 베이스필름에 수분산성 수지조성물을 코팅하는 과정으로, 통상의 당업자에게 공지된 방법을 이용하여 코팅할 수 있다. Step b) is a process of coating the water-dispersible resin composition on the uniaxially stretched polyester base film, it can be coated using a method known to those skilled in the art.
상기 c)단계는 프라이머코팅층이 형성된 폴리에스테르 베이스필름을 폭방향(TD)으로 2축 연신을 수행하는 과정으로, 110 ~ 150℃에서 2 ~ 4배 연신하는 것이 바람직하다.Step c) is a process of performing biaxial stretching in the width direction (TD) of the polyester base film on which the primer coating layer is formed, preferably stretching 2 to 4 times at 110 to 150 ° C.
상기 d)단계는 열고정 및 이완을 수행하는 과정으로, d)단계는 텐터에서 수행되는 것일 수 있다. 열고정 온도는 200 ~ 240℃에서 수행되는 것일 수 있으며, 이완 시 온도는 하기 식 13을 만족하는 범위에서 수행을 하는 것이 바람직하다.Step d) is a process of performing heat setting and relaxation, step d) may be performed in a tenter. The heat setting temperature may be carried out at 200 ~ 240 ℃, the temperature at the time of relaxation is preferably performed in the range satisfying the following equation (13).
연신 온도(℃) ≤ 이완 온도(℃) < 열고정 온도(℃) [식 13]Drawing temperature (℃) ≤ Relaxation temperature (℃) <heat setting temperature (℃) [Equation 13]
상기 이완은 기계 방향(MD방향)으로는 MD Relax 설비를 이용하여 수행하는 것일 수 있으며, 폭방향(TD방향)으로는 Clip에 Passing 경로를 달리하여 수행하는 것일 수 있다. MD Relax 설비는 열처리 구간 이후에 총 9개의 레일(Rail) 사이에 1.1 ~ 2.5% 정도 속도 차이를 둠으로써 향후 MD 방향으로의 수축성능을 제어할 수 있다. 바람직하게는 1.2 ~ 2.0%, 더욱 바람직하게는 1.25 ~ 2.0%의 속도 차이를 두는 것이 좋다. MD Relax 비율 조정에 따라 150℃, 30min 방치 조건 하에서의 MD 방향의 열수축율은 0 ~ 1.0%의 범위를 가지며, 더 바람직하게는 0.3 ~ 0.9% 사이의 범위를 가진다. 또한, 상기 조건 하에서의 TD 방향의 열수축율은 0 ~ 0.5%의 범위를 가지며, 더 바람직하게는 0.0 ~ 0.4% 사이의 범위를 가진다. 또한, Master Roll 전폭 기준에 열수축율의 편차가 MD/TD 방향 ±0.2% 이내인 것이 바람직하다.The relaxation may be performed by using the MD Relax facility in the machine direction (MD direction), and may be performed by changing a passing path to the Clip in the width direction (TD direction). The MD Relax facility can control the shrinkage performance in the MD direction in the future by providing a speed difference of about 1.1% to 2.5% between nine rails after the heat treatment period. Preferably a speed difference of 1.2 to 2.0%, more preferably 1.25 to 2.0% is good. According to the MD Relax ratio adjustment, the heat shrinkage rate in the MD direction at 150 ° C. and 30min standing conditions is in the range of 0 to 1.0%, more preferably in the range of 0.3 to 0.9%. Further, the heat shrinkage in the TD direction under the above conditions is in the range of 0 to 0.5%, more preferably in the range of 0.0 to 0.4%. In addition, it is preferable that the deviation of the thermal contraction rate is within ± 0.2% of the MD / TD direction based on the master roll full width reference.
본 발명에서 상기 스킨층은 무기입자를 포함할 수 있으며, 필름의 초기 헤이즈가 헤이즈가 1.5%미만인 범위를 만족하도록 사용하는 것이 바람직하다. 또한 필름의 표면조도가 10nm이하인 것이 바람직하다. 표면조도가 10nm를 초과하는 경우는 하드코팅 후 최종제품의 평활성 문제가 발생할 수 있다.In the present invention, the skin layer may include inorganic particles, it is preferable to use so that the initial haze of the film satisfies the range of less than 1.5% haze. Moreover, it is preferable that the surface roughness of a film is 10 nm or less. If the surface roughness exceeds 10nm may result in smoothness of the final product after hard coating.
보다 구체적으로는 평균입경이 3㎛미만인 입자를 100ppm이하로 사용하는 것이 바람직하다. 상기 무기입자로는 실리카, 제올라이트, 카올린과 같이 필름에서 사용되는 입자는 모두 가능하다. 이러한 무기입자는 연신공정을 통해 필름의 표면으로 나와서 필름의 슬립성 및 권취성을 향상시킨다. More specifically, it is preferable to use particles having an average particle diameter of less than 3 µm at 100 ppm or less. The inorganic particles may be any particles used in the film, such as silica, zeolite and kaolin. These inorganic particles come out to the surface of the film through the stretching process to improve the slip properties and winding properties of the film.
입자크기가 3㎛이상이면 입자함량이 100ppm이하로 함유되어도 필름의 투명성이 많이 떨어지며 또한 조도(Ra)가 10nm이상으로 평활성이 떨어지므로 광학용 특히 터치판넬용으로 사용하기 곤란하다. If the particle size is 3 μm or more, even if the particle content is 100 ppm or less, the transparency of the film is much lowered, and the roughness (Ra) is lowered to 10 nm or more, so that it is difficult to use for optical, especially for the touch panel.
또한, 입자함량이 100ppm이상의 경우 필름의 투명도가 떨어지게 되어 터치판넬용으로 적합하지 않다. 또한 헤이즈가 1.5%이상인 경우 광학용 및 터치판넬용에 사용시 투명도가 급격하게 떨어지고 빛 투과도가 많이 떨어지고 BLU평가 시 육안으로 결점판단이 어려워져서 광학용으로 사용하기 곤란하다.In addition, when the particle content is 100ppm or more, the transparency of the film is lowered, which is not suitable for the touch panel. In addition, when the haze is 1.5% or more, the transparency and the light transmittance drop sharply when used for the optical and the touch panel, and it is difficult to use the optical for the BLU evaluation with the naked eye.
본 발명의 기재층과 스킨층을 포함하는 폴리에스테르 다층필름의 제조는 제한되지 않지만 적어도 두 개 이상의 용융압출기에서 압출 용융 후 캐스팅하고, 이축연신에 의하여 얻어질 수 있다. 보다 구체적으로 설명하면, 한 압출기에서 폴리에스테르를 압출시키고, 또 다른 압출기에서 폴리에스테르와 실리카나 카올린, 제올라이트와 같은 무기입자 등의 첨가제를 동시에 용융 압출시킨 후 각각의 용융물이 피드블럭에서 만나 공압출되고 캐스팅하고, 냉각한 다음 순차적으로 이축연신한다.The production of the polyester multilayer film including the base layer and the skin layer of the present invention is not limited, but may be obtained by extrusion fusion and casting by biaxial stretching in at least two melt extruders. In more detail, one extruder is used to extrude polyester, and another extruder is melt extruded simultaneously with additives such as polyester, inorganic particles such as silica, kaolin, and zeolite, and each melt is coextruded in the feed block. After casting, casting, cooling and then biaxial stretching in sequence.
일 양태로, 상기 폴리에스테르 필름은 In one aspect, the polyester film
a) 폴리에스테르수지의 올리고머 함량이 0.3 ~ 0.6 중량%이고, 디에틸렌글리콜의 함량이 0.1 ~ 1.2 중량%인 제 1 폴리에스테르 수지를 포함하는 스킨층 조성물과, 고유점도가 하기 식 10을 만족하는 기재층용 제 2 폴리에스테르 수지를 용융압출하여 공압출하는 단계;a) a skin layer composition comprising a first polyester resin having an oligomer content of 0.3 to 0.6% by weight and a diethylene glycol content of 0.1 to 1.2% by weight, and an intrinsic viscosity satisfying Melting and extruding the second polyester resin for the base layer;
1 < Ns/Nc ≤ 1.2 [식 10] 1 <Ns / Nc ≤ 1.2 [Equation 10]
(상기 식에서, Ns는 스킨층을 이루는 폴리에스테르수지의 고유점도이고, Nc는 기재층을 이루는 폴리에스테르수지의 고유점도이다.)(In the above formula, Ns is the intrinsic viscosity of the polyester resin constituting the skin layer, Nc is the intrinsic viscosity of the polyester resin constituting the base layer.)
b) 공압출된 시트를 일축 또는 이축 연신하여 필름을 제조하는 단계;b) uniaxially or biaxially stretching the coextruded sheet to produce a film;
c) 연신된 필름을 열고정 및 하기 식 14를 만족하는 범위로 폭방향(TD)의 이완을 수행하는 단계;c) heat-setting the stretched film and performing relaxation in the width direction (TD) in a range satisfying Equation 14 below;
2 ≤ TDr(%) ≤ 11.5 [식 14]2 ≤ TDr (%) ≤ 11.5 [Equation 14]
[상기 식에서, TDr은 폭방향(TD)의 이완비율을 의미하고, 이완비율(%) = {(이완처리 구간 전 필름의 폭방향의 최대폭길이 - 이완처리 구간 내 필름의 폭방향의 최소폭길이)/이완처리 구간 전 필름의 최대폭길이} × 100이다.][In the above formula, TDr means the relaxation ratio in the width direction (TD), the relaxation ratio (%) = {(maximum width of the width direction of the film before the relaxation section-minimum width of the width direction of the film in the relaxation section ) / The maximum width of the film before the relaxation section} × 100.]
를 포함를 포함할 수 있다. It may include including.
본 발명은 상기와 같이 연신을 한 후, 열고정 및 길이방향의 이완을 수행하고, 이완 시 상기 식 6을 만족하는 조건에서 수행을 함으로써, 고온 조건에서 올리고머가 마이그레이션 되지 않고, 필름의 수축이 발생하지 않으므로 후 공정에 유리한 필름을 제조할 수 있다.In the present invention, after stretching as described above, by performing heat setting and longitudinal relaxation, and performing the conditions in the condition that satisfies Equation 6 at the time of relaxation, the oligomer does not migrate under high temperature conditions, the shrinkage of the film occurs Since it is not possible to produce a film advantageous for the post-process.
보다 구체적으로 본 발명의 폴리에스테르 제조방법에서, 상기 a)단계는 기재층과 스킨층을 이루는 폴리에스테르 수지를 공압출한 후, 캐스팅 드럼으로 급냉, 고화시켜 폴리에스테르 시트를 제조하는 단계로, 스킨층과 기재층에 사용되는 폴리에스테르 수지의 고유점도가 하기 식 10을 만족하는 범위인 것이 바람직하다.More specifically, in the polyester production method of the present invention, step a) is a step of preparing a polyester sheet by co-extrusion of a polyester resin constituting the base layer and the skin layer, followed by quenching and solidifying with a casting drum. It is preferable that the intrinsic viscosity of the polyester resin used for a layer and a base material layer is a range which satisfy | fills following formula (10).
1 < Ns/Nc ≤ 1.2 [식 10] 1 <Ns / Nc ≤ 1.2 [Equation 10]
(상기 식에서, Ns는 스킨층을 이루는 폴리에스테르수지의 고유점도이고, Nc는 기재층을 이루는 폴리에스테르수지의 고유점도이다.)(In the above formula, Ns is the intrinsic viscosity of the polyester resin constituting the skin layer, Nc is the intrinsic viscosity of the polyester resin constituting the base layer.)
다음으로 b)단계는 공압출된 시트를 연신하여 필름으로 제조하는 단계로, 일축 또는 이축연신한 것일 수 있으며, 이축연신을 실시하는 것이 바람직하다. 이축연신을 하는 경우, 80 ~ 100℃에서 길이방향(MD)으로 1축 연신을 수행하고, 이때 연신 비율은 2 ~ 4배인 것이 바람직하다. 다음으로 폭방향(TD)으로 2축 연신을 수행하는 과정으로, 110 ~ 150℃에서 2 ~ 4배 연신하는 것이 바람직하다.Next, step b) is a step of stretching the coextruded sheet into a film, which may be uniaxially or biaxially stretched, and preferably biaxially stretched. In the case of biaxial stretching, uniaxial stretching is performed in the longitudinal direction (MD) at 80 to 100 ° C, and the stretching ratio is preferably 2 to 4 times. Next, in the process of performing the biaxial stretching in the width direction (TD), it is preferable to stretch 2 to 4 times at 110 ~ 150 ℃.
상기 c)단계는 열고정 및 이완을 수행하는 과정으로, d)단계는 텐터에서 수행되는 것일 수 있다. 열고정 온도는 200 ~ 240℃에서 수행되는 것일 수 있으며, 이완 시 폭 방향의 이완율이 하기 식 14를 만족하도록 수행함으로써 열수축율을 제어할 수 있다.Step c) is a process of performing heat setting and relaxation, step d) may be performed in a tenter. The heat setting temperature may be performed at 200 to 240 ° C., and the thermal contraction rate may be controlled by performing the relaxation rate in the width direction during relaxation to satisfy Equation 14 below.
2 ≤ TDr(%) ≤ 11.5 [식 14]2 ≤ TDr (%) ≤ 11.5 [Equation 14]
[상기 식에서, TDr은 폭방향(TD)의 이완비율을 의미하고, 이완비율(%) = {(이완처리 구간 전 필름의 폭방향의 최대폭길이 - 이완처리 구간 내 필름의 폭방향의 최소폭길이)/이완처리 구간 전 필름의 최대폭길이} × 100이다.][In the above formula, TDr means the relaxation ratio in the width direction (TD), the relaxation ratio (%) = {(maximum width of the width direction of the film before the relaxation section-minimum width of the width direction of the film in the relaxation section ) / The maximum width of the film before the relaxation section} × 100.]
또한, 필요에 따라 폭방향과 동시에 하기 식 15 만족하는 범위에서 길이방향의 이완을 수행하는 것일 수 있다. In addition, if necessary, it may be to perform relaxation in the longitudinal direction at the same time in the width direction and satisfying the following equation (15).
0.3 ≤ MDr(%) ≤ 2.5 [식 15]0.3 ≤ MDr (%) ≤ 2.5 [Equation 15]
(상기 식에서, MDr은 기계방향의 이완비율을 의미하고, 이완비율(%) = (이완처리 구간 내 필름의 주행 속도 - 이완처리 구간 전 필름의 주행 속도)/이완처리 구간 전 필름의 주행 속도 × 100이다.)(In the above formula, MDr means the relaxation ratio in the machine direction, and the relaxation ratio (%) = (travel speed of the film in the relaxation section-travel speed of the film before the relaxation section) / travel speed of the film before the relaxation section × 100.)
상기 식 14 및 식 15를 만족하는 범위에서 이완을 수행함으로써, 150℃에서 30분간 유지한 후의 필름의 수축율이 식 1 및 식 2를 만족할 수 있다.By performing the relaxation in the range satisfying the equations (14) and (15), the shrinkage ratio of the film after maintaining for 30 minutes at 150 ° C can satisfy the equations (1) and (2).
본 발명의 폴리에스테르 필름의 상부에 하드코팅층, 점착제층, 광확산층, ITO층, 인쇄층 등이 형성될 수 있으며, 이러한 기능성 코팅층을 형성한 후 가열을 하여도 올리고머의 유출이 차단되어 광학적 특성을 유지할 수 있으므로, 본 발명의 폴리에스테르 필름은 광학 필름으로 사용하기에 적합하다.Hard coating layer, pressure-sensitive adhesive layer, light diffusing layer, ITO layer, printing layer, etc. may be formed on the polyester film of the present invention, and even after heating the functional coating layer, the outflow of the oligomer is blocked to provide optical properties. Since it can be maintained, the polyester film of this invention is suitable for use as an optical film.
이하는 본 발명의 보다 구체적인 설명을 위하여 실시예를 들어 설명을 하는바, 본 발명이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to the following Examples.
이하 물성은 다음의 측정방법으로 측정을 하였다.The physical properties were measured by the following measurement method.
1) 열수축율1) Heat Shrinkage
필름을 가로 10cm, 세로 10cm 규격으로 절단 후, 150℃ 상태의 조건이 유지되고 있는 열풍오븐에 30분간 방치 후의 치수 변화를 JIS C-2318 규격에 따라 측정한다. 단, 해당 필름은 전폭 Roll에 대해 50cm 간격으로 측정하며, 치수 변화는 MD방향, TD방향, TD방향의 시계회전 45도 방향, 135도 방향에 대해 각각 측정을 진행한다.After cut | disconnecting a film to 10 cm in width and 10 cm in length, the dimension change after leaving for 30 minutes in the hot air oven in which the conditions of 150 degreeC conditions are maintained is measured according to JIS C-2318 standard. However, the film is measured at 50cm intervals with respect to the full width roll, and the dimensional change is measured in the clockwise 45 degree direction and 135 degree direction in the MD direction, the TD direction, and the TD direction, respectively.
열수축율(%) = (열처리 전 필름의 길이 - 150℃에서 30분간 유지시킨 후 필름의 길이)/열처리 전 필름의 길이 × 100Thermal shrinkage (%) = (length of film before heat treatment-length of film after holding at 150 ° C. for 30 minutes) / length of film before heat treatment × 100
2) 고유점도2) intrinsic viscosity
페놀과 1,1,2,2-테트라클로로 에탄올을 6:4의 무게비로 혼합한 시약 100ml에 PET 펠렛 (샘플) 0.4g을 넣고 90분간 용해시킨 후, 우베로데 점도계에 옮겨 담아 30℃ 항온조에서 10분간 유지시키고, 점도계와 흡인 장치(aspirator)를 이용하여 용액의 낙하 초수를 구했다. 용매의 낙하 초수도 동일한 방법으로 구한 다음, 하기 수학식 1 및 2에 의해 R.V 값 및 I.V값을 계산하였다.Into 100 ml of a mixture of phenol and 1,1,2,2-tetrachloroethanol at a weight ratio of 6: 4, 0.4 g of PET pellet (sample) was dissolved for 90 minutes, and then transferred to a Uberode viscometer and placed in a 30 ° C thermostat. The solution was held for 10 minutes, and the number of seconds of the drop of the solution was determined using a viscometer and an aspirator. The number of falling seconds of the solvent was also determined in the same manner, and then R.V and I.V values were calculated by the following equations (1) and (2).
하기 수학식에서 C는 시료의 농도를 나타낸다. In the following equation, C represents the concentration of the sample.
[수학식 1][Equation 1]
R.V=(시료의 낙하 초수)/(용매의 낙하 초수)R.V = (number of drops of sample) / (number of drops of solvent)
[수학식 2][Equation 2]
I.V=(1/(R.V-1))/C + 3/4*ln(R.V/C)I.V = (1 / (R.V-1)) / C + 3/4 * ln (R.V / C)
3) 올리고머 함량(%)3) Oligomer content (%)
올리고머 정량적인 방법으로 시료용매인 HFIP(1,1,1,3,3,3-헥사플루오르-2-프로판올)에 클로로포름을 첨가하여 실온에서 용해를 한 후 아세토니트릴을 폴리머로 석출한다. 그런 후 LC분석장비를 이용하여 표준물질(고리형 올리고머)의 검량선을 작성한 후, 시료분석을 통해 고리형 올리고머 순도 결정을 하게 된다. 분석장비는 LC(liquid chromatography)와 Agilent사 1100series를 이용하였다.Oligomer By quantitative method, chloroform is added to HFIP (1,1,1,3,3,3-hexafluoro-2-propanol) as a sample solvent to dissolve at room temperature, and then acetonitrile is precipitated as a polymer. Then, the calibration curve of the standard material (cyclic oligomer) is prepared by using LC analysis equipment, and the cyclic oligomer purity is determined through sample analysis. As analytical equipment, LC (liquid chromatography) and Agilent's 1100 series were used.
4) DEG(Diethylene glycol) 함량(%)4) DEG (Diethylene glycol) content (%)
디에틸렌글리콜(DEG, Diethylene Glycol)의 함량은 시료 1 g을 50 mL 용기에 넣은 후, 모노에탄올아민 3 mL를 가하고 핫 플레이트를 이용하여 가열하여 시료를 완전히 용해시킨 다음, 100 ℃로 냉각시켜 1,6-헥산디올 0.005g을 메탄올 20 mL에 용해시킨 용액을 가하고, 테레프탈산 10 g을 가하여 중화시켰다. 얻어진 중화액을 깔대기 및 여과지를 사용하여 여과한 후 여액을 기체 크로마토그래피(Gas Chromatography)하여 DEG 함량(중량%)을 측정하였다. GC 분석은 시마주(Shimadzu) GC 분석기를 사용하고 시마주 GC 매뉴얼에 따라 측정하였다.Diethylene Glycol (DEG) content is 1 g of a sample in a 50 mL container, 3 mL of monoethanolamine is added and heated using a hot plate to completely dissolve the sample, then cooled to 100 ℃ 1 A solution of 0.005 g of 6-hexanediol dissolved in 20 mL of methanol was added, followed by neutralization by addition of 10 g of terephthalic acid. The obtained neutralized liquid was filtered using a funnel and filter paper, and the filtrate was subjected to gas chromatography (Gas Chromatography) to measure the DEG content (% by weight). GC analysis was measured using a Shimadzu GC analyzer and in accordance with the Shimazu GC manual.
5) 헤이즈 5) haze
제막된 필름의 시편을 HAZE METER(모델명: Nipon denshoku, Model NDH 5000)를 이용하여 JIS K 715에 따라 측정하였다. Specimens of the film formed were measured according to JIS K 715 using a HAZE METER (model name: Nipon denshoku, Model NDH 5000).
6) 헤이즈 변화율(△H)6) Haze change rate (△ H)
필름 내 올리고머의 표면 마이그레이션 측정하기 위해, 필름을 상부가 열려있는 높이 3cm, 가로 21cm,세로 27cm인 상자에 넣고 150℃에서 60min 열처리하여 올리고머를 필름표면으로 마이그레이션(migration)시킨 후 5min간 방치하여 헤이즈 값을 JIS K 715 규격에 따라 HAZE METER (Nipon denshoku, Model NDH 5000)를 이용하여 측정하였다. In order to measure the surface migration of oligomers in the film, the film was placed in a box having a height of 3 cm, a width of 21 cm, and a height of 27 cm, and heat-treated at 150 ° C. for 60 min to migrate the oligomer to the film surface, and to leave for 5 min. The value was measured using HAZE METER (Nipon denshoku, Model NDH 5000) according to JIS K 715 standard.
헤이즈 변화량을 하기 식 11에 따라 계산하였다.The haze change amount was calculated according to the following formula (11).
△H(%) = Hf - Hi [식 11] ΔH (%) = Hf − Hi [Equation 11]
(상기 식에서, Hf는 150℃에서 60분간 유지시킨 후 필름의 헤이즈이고, Hi는 가열 전 필름의 헤이즈이다.) (In the above formula, Hf is the haze of the film after holding at 150 ° C. for 60 minutes, and Hi is the haze of the film before heating.)
7) 프라이머층의 건조도포 두께7) Dry coating thickness of primer layer
코팅 조성물이 코팅된 기재 필름의 전폭을 기계 방향의 수직방향(TD)으로 1m 간격으로 5 Point를 지정하여 필름의 단면을 SEM(Hitachi S-4300)으로 측정하였으며, 5만 배 확대하여 그 구간 내 30Point 측정 후 평균값을 계산하였다.The cross section of the film was measured by SEM (Hitachi S-4300) by designating 5 points at 1m intervals in the vertical direction (TD) of the machine direction to which the coating composition was coated. The average value was calculated after 30 point measurement.
8) 표면조도 (Ra) 8) Surface Roughness (Ra)
사용기기 : 3차원 비접촉 표면조도측정기(NT 2000, WYCO사)Equipment used: 3D non-contact surface roughness measuring instrument (NT 2000, WYCO)
상기의 기기를 활용하여 Ra (중심선 평균거칠기)를 측정하였다. Ra (center line roughness) was measured using the above instrument.
9) 면배향계수9) Planar orientation coefficient
아베굴절계(ATOGO사)를 활용하여 길이방향, 폭방향과 두께방향의 굴절률을 측정하여 다음과 같은 식으로 계산한다.Using the Abego refractometer (ATOGO Co., Ltd.), the refractive index in the longitudinal direction, width direction and thickness direction is measured and calculated as follows.
면배향계수(ns) = {(길이방향 굴절률 + 폭방향 굴절률)/2}-{(길이방향 두께의 굴절률 + 폭방향두께의 굴절률)/2}Plane orientation coefficient (ns) = {(lengthwise refractive index + widthwise refractive index) / 2}-{(lengthwise thickness refractive index + widthwise refractive index / 2}
10) Swelling Ratio, Gel Fraction 및 Tg 측정10) Swelling Ratio, Gel Fraction and Tg Measurement
실시예 및 비교예에서 제조된 수분산성 수지 조성물 15g을 지름 80mm, 높이 15mm 둥근 그릇에 넣고 80℃에서 24시간, 120℃에서 3시간 건조한 후 180℃에서 1시간 Aging하였다. 이로부터 1g의 건조도막을 채취한 후, Tg를 측정하였다. 또한, 상기 건조도막을 증류수 50g 에 담근 후 70℃에서 24시간 방치하였다. 방치했던 도막을 꺼내어 Swelling Ratio를 측정하였다. 방치했던 도막을 120℃에서 3시간 동안 건조 후 무게를 기록하여 Gel Fraction을 측정하였다.15 g of the water-dispersible resin composition prepared in Examples and Comparative Examples was placed in a round bowl having a diameter of 80 mm and a height of 15 mm, dried at 80 ° C. for 24 hours, 120 ° C. for 3 hours, and then Aging at 180 ° C. for 1 hour. After this, 1g of dry coating film was extract | collected and Tg was measured. In addition, the dried coating film was soaked in 50 g of distilled water and left at 70 ° C. for 24 hours. The left uncoated film was taken out and the swelling ratio was measured. Gel Fraction was measured by drying the coating film that was left for 3 hours at 120 ℃ and recording the weight.
(1) 팽윤비(Swelling Ratio) (1) Swelling Ratio
약 1g의 건조도막을 증류수 50g 에 담근 후 70℃에서 24시간 방치하여 방치했던 도막을 꺼내어 무게를 기록한다.After dipping about 1g of the dry coating film in 50g of distilled water, and left for 24 hours at 70 ℃ to take out the coating film left and record the weight.
Swelling Ratio = (방치 후 무게-초기 무게)/초기무게 × 100Swelling Ratio = (Weight after leaving-initial weight) / Initial weight × 100
(2) 겔 분율(Gel Fraction) (2) Gel Fraction
방치했던 도막을 120℃에서 3시간 동안 건조 후 무게를 기록한다. After leaving the coated film at 120 ℃ for 3 hours, the weight is recorded.
Gel Fraction = (건조 후 무게/초기 무게) × 100 Gel Fraction = (Weight after Drying / Initial Weight) × 100
(3) Tg 측정(3) Tg measurement
DSC (PerkinElmer DSC 7 이용) 기기 이용하여, 2nd Run mode 로 측정한다. 10~11mg의 건조 도막을 PerkinElmer DSC7을 이용하여 측정한다. Using a DSC (using PerkinElmer DSC 7) instrument, measure in 2nd Run mode. 10-11 mg dry coating is measured using PerkinElmer DSC7.
1st Run. = 0~200 ℃, 200℃/min 속도로 온도를 올리고, 1st Run. = 0-200 ° C., raise the temperature at 200 ° C./min,
Holding Time 3min 동안 200 ℃온도를 유지한 후, After holding temperature 200 ℃ for 3min,
200℃~ -40℃, 200℃/min 속도로 온도를 내리고, 200 ℃ ~ -40 ℃, temperature down at 200 ℃ / min,
Holding Time 5min 동안 -40℃의 온도를 유지. Holding Time Holds -40 ℃ for 5min.
2nd Run. = -40℃~200℃, 20℃/min 조건으로 측정한다. 2nd Run. = -40 degreeC-200 degreeC, and it measures on 20 degree-C / min conditions.
11) 컬 발생 유무 11) Curls
하드코팅 처리된 필름과 평가용 필름을 150℃, 3mpm의 속도로 합지시킨 후, 폭 방향으로 A4 크기 (가로 29.7cm, 세로 21.0cm)의 규격으로 절단한다. 그리고 나서 80℃ 상태의 조건이 유지되고 있는 열풍오븐에 12시간 방치 후의 치수 변화를 측정한다. 치수 변화는 A4 Film의 4개의 모서리 부분이 바닥에서 떨어진 높이에 대해 각각 측정을 진행한다.After the hard-coated film and the evaluation film are laminated at a speed of 150 ° C. and 3 mpm, the film is cut to a size of A4 size (width 29.7 cm, length 21.0 cm) in the width direction. Then, the dimensional change after standing for 12 hours in a hot air oven in which the condition of 80 ° C is maintained is measured. Dimensional changes are measured for the height of the four corners of the A4 film off the floor.
Curl 발생 유/무 판단은 바닥에서부터 필름 모서리 부분까지의 높이가 3mm 이하 일 때 컬 발생 없음으로 하였다.Curl occurrence was determined as no curl when the height from the bottom to the edge of the film is 3mm or less.
이하 실시예 및 비교예에 사용된 바인더수지는 다음과 같다.The binder resins used in the following Examples and Comparative Examples are as follows.
1) KLX-007 바인더1) KLX-007 Binder
글리시딜기 함유 라디칼 중합성 불포화 모노머가 공중합된 아크릴계 수지(A)와 수분산성 폴리에스테르계 수지(B)의 고형분 중량비가 (A)/(B) = 50 / 50이고, The solid content weight ratio of the acrylic resin (A) copolymerized with the glycidyl group-containing radically polymerizable unsaturated monomer and the water-dispersible polyester resin (B) is (A) / (B) = 50/50,
상기 아크릴계 수지는 공중합 모노머로 글리시딜기 함유 라디칼 중합성 불포화 모노머를 전체 모노머 성분 중 50 몰% 함유하고, The acrylic resin contains 50 mol% of the glycidyl group-containing radical polymerizable unsaturated monomer as a copolymerization monomer in all monomer components,
상기 수분산성 폴리에스테르계 수지는 디에틸렌글리콜을 전체 글리콜 성분 중 50 몰% 함유하고, 술폰산 알칼리 금속염 화합물을 전체 산 성분 중 10몰% 함유하는 것이다.The water-dispersible polyester resin contains 50 mol% of diethylene glycol in the total glycol component and 10 mol% of the sulfonic acid alkali metal salt compound in the total acid component.
2) P3208 바인더2) P3208 Binder
롬앤하스사(Rohm & Haas 社)제품으로, 메틸메타크릴레이트 40 중량%와 에틸아크릴레이트 40 중량% 및 멜라민 20 중량%를 포함하는 바인더이다.Rohm & Haas Co., Ltd., a binder containing 40% by weight of methyl methacrylate, 40% by weight of ethyl acrylate and 20% by weight of melamine.
[실시예 1]Example 1
1) 수분산성 수지조성물(1)의 제조1) Preparation of Water Dispersible Resin Composition (1)
바인더로 글리시딜기 함유 라디칼 중합성 불포화 모노머가 공중합된 아크릴계 수지(A)와 수분산성 폴리에스테르계 수지(B)의 고형분 중량비가 (A)/(B) = 40 / 60인 바인더를 사용하였다.As the binder, a binder having a solid content weight ratio of acrylic resin (A) copolymerized with a glycidyl group-containing radical polymerizable unsaturated monomer and a water-dispersible polyester resin (B) (A) / (B) = 40/60 was used.
상기 아크릴계 수지(A)는 아크릴산 글리시딜 60몰%, 프로피온산비닐 40몰%가 공중합된 것으로, 중량평균분자량이 35000인 것을 사용하였다.The acrylic resin (A) was a copolymer of 60 mol% glycidyl acrylate and 40 mol% vinyl propionate, and a weight average molecular weight of 35000 was used.
상기 수분산성 폴리에스테르계 수지(B)는 디에틸렌글리콜 50 몰%, 에틸렌글리콜 50몰%의 글리콜성분 50몰%에 대하여, 술포테레프탈산 15몰%, 테레프탈산 85몰%의 산성분을 50몰%를 사용하여 중합된 수지로, 중량평균분자량이 14000인 것을 사용하였다.The water-dispersible polyester-based resin (B) is 50 mol% of sulfoterephthalic acid and 85 mol% of terephthalic acid with respect to 50 mol% of diethylene glycol and 50 mol% of ethylene glycol 50 mol%. As the resin polymerized using, a weight average molecular weight of 14000 was used.
상기 바인더의 고형분 함량 0.5 중량%, 실리콘계 웨팅제(BYK CHEMIE사의 BYK 348) 0.3 중량%를 물에 첨가하여 2시간 교반하여 전체 고형분 함량이 0.8 중량%인 수분산성 수지조성물(1)을 제조하였다.0.5 wt% of the solid content of the binder, 0.3 wt% of the silicone-based wetting agent (BYK 348 by BYK CHEMIE) was added to water, and stirred for 2 hours to prepare a water-dispersible resin composition (1) having a total solid content of 0.8 wt%.
제조된 수분산성 수지조성물을 이용하여 상기 기재된 Swelling Ratio, Gel Fraction 및 Tg 측정하였으며, 그 결과를 하기 표 1에 나타내었다.Swelling Ratio, Gel Fraction and Tg were measured using the prepared water dispersible resin composition, and the results are shown in Table 1 below.
2) 올리고머 차단 폴리에스테르 필름의 제조 2) Preparation of Oligomeric Blocking Polyester Film
기재층(B)으로 고유점도가 0.65이고, 디에틸렌글리콜의 함량이 1.2중량%이고, 올리고머 함량이 1.4중량%인 폴리에틸렌테레프탈레이트를 압출기에 투입하여 용융압출하였으며, 스킨층(A)에는 고유점도가 0.67이고, 디에틸렌글리콜의 함량이 0.8중량%이며, 올리고머 함량이 0.5중량%인 고상중합으로 제조된 폴리에틸렌테레프탈레이트 칩을 사용하고, 입경이 0.7㎛인 실리카입자를 전체 폴리에틸렌테레프탈레이트 중량 대비 50ppm을 사용하여 A/B/A 3층으로 공압출 캐스팅한 시트를 제조하였다. 이후, 제조한 수분산성 수지조성물(1)을 바코팅(Bar Coating)방법으로 양면에 코팅한 후, 110 ~ 150 ℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 횡방향(TD)으로 3.5배 연신하였다. 이후 5단 텐터에서 230℃로 열처리를 행하고, 200℃에서 종방향 및 횡방향으로 10% 이완 시켜 열고정하여 양면에 코팅된 188㎛의 2축 연신 필름을 제조하였다. As the base material layer (B), polyethylene terephthalate having an intrinsic viscosity of 0.65, a diethylene glycol content of 1.2% by weight, and an oligomer content of 1.4% by weight was added to an extruder, and melted and extruded. Is 0.67, the diethylene glycol content of 0.8% by weight, the oligomer content of the polyethylene terephthalate chip prepared by the solid phase polymerization of 0.5% by weight, the silica particles with a particle size of 0.7㎛ 50ppm relative to the total weight of polyethylene terephthalate Using to prepare a sheet co-extruded to three layers of A / B / A. Thereafter, the prepared water-dispersible resin composition (1) was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., preheated and dried, and then 3.5 times in the transverse direction (TD). Stretched. Thereafter, heat treatment was performed at 230 ° C. in a 5-stage tenter, followed by heat setting at 10 ° C. in the longitudinal and transverse directions at 200 ° C. to prepare a biaxially stretched film of 188 μm coated on both sides.
제조된 폴리에스테르 다층필름은 기재층이 전체 필름중량의 80중량%이고, 스킨층이 전체필름 중량의 20중량%였으며, 상기 조성물의 프라이머층의 건조도포두께는 20nm이었다. 이렇게 얻어진 폴리에스테르 필름의 물성을 하기 표 2에 나타내었다.The prepared polyester multilayer film was 80 wt% of the total film weight, the skin layer was 20 wt% of the total film weight, and the dry coating thickness of the primer layer of the composition was 20 nm. The physical properties of the polyester film thus obtained are shown in Table 2 below.
[실시예 2]Example 2
1) 수분산성 수지조성물(2)의 제조1) Preparation of Water Dispersible Resin Composition (2)
바인더로 글리시딜기 함유 라디칼 중합성 불포화 모노머가 공중합된 아크릴계 수지(A)와 수분산성 폴리에스테르계 수지(B)의 고형분 중량비가 (A)/(B) = 70 / 30인 바인더를 사용하였다.As the binder, a binder having a solid content weight ratio of acrylic resin (A) copolymerized with a glycidyl group-containing radical polymerizable unsaturated monomer and a water-dispersible polyester resin (B) (A) / (B) = 70/30 was used.
상기 아크릴계 수지(A)는 아크릴산 글리시딜 60몰%, 프로피온산비닐 40몰%가 공중합된 것으로, 중량평균분자량이 30000인 것을 사용하였다.The acrylic resin (A) was a copolymer of 60 mol% glycidyl acrylate and 40 mol% vinyl propionate, and a weight average molecular weight of 30000 was used.
상기 수분산성 폴리에스테르계 수지(B)는 디에틸렌글리콜 50 몰%, 에틸렌글리콜 50몰%의 글리콜성분 50몰%에 대하여, 술포테레프탈산 15몰%, 테레프탈산 85몰%의 산성분을 50몰%를 사용하여 중합된 수지로, 중량평균분자량이 12000인 것을 사용하였다.The water-dispersible polyester-based resin (B) is 50 mol% of sulfoterephthalic acid and 85 mol% of terephthalic acid with respect to 50 mol% of diethylene glycol and 50 mol% of ethylene glycol 50 mol%. As the resin polymerized using, a weight average molecular weight of 12000 was used.
상기 바인더의 고형분 함량 5 중량%, 실리콘계 웨팅제(BYK CHEMIE사의 BYK 348) 0.3 중량%를 물에 첨가하여 2시간 교반하여 전체 고형분 함량이 5.3중량%인 수분산성 수지조성물(2)를 제조하였다. 제조된 수분산성 수지조성물을 이용하여 상기 기재된 Swelling Ratio, Gel Fraction 및 Tg 측정하였으며, 그 결과를 하기 표 1에 나타내었다.5 wt% of the solid content of the binder, 0.3 wt% of the silicone-based wetting agent (BYK 348 by BYK CHEMIE) was added to water, and stirred for 2 hours to prepare a water-dispersible resin composition (2) having a total solid content of 5.3 wt%. Swelling Ratio, Gel Fraction and Tg were measured using the prepared water dispersible resin composition, and the results are shown in Table 1 below.
제조된 수분산성 수지조성물(2)를 사용하여 실시예 1과 동일한 방법으로 양면에 코팅된 188㎛의 2축 연신 필름을 제조하였다. 상기 조성물의 프라이머층의 건조도포두께는 110nm이었다. 이렇게 얻어진 폴리에스테르 필름의 물성을 하기 표 2에 나타내었다.Using the prepared water-dispersible resin composition (2) to prepare a biaxially stretched film of 188㎛ coated on both sides in the same manner as in Example 1. The dry coating thickness of the primer layer of the said composition was 110 nm. The physical properties of the polyester film thus obtained are shown in Table 2 below.
[실시예 3]Example 3
기재층(B)으로 고유점도가 0.65이고, 디에틸렌글리콜의 함량이 1.2중량%이고, 올리고머 함량이 1.4중량%인 폴리에틸렌테레프탈레이트를 압출기에 투입하여 용융압출하였으며, 스킨층(A)에는 고유점도가 0.67이고, 디에틸렌글리콜의 함량이 0.7중량%이며, 올리고머 함량이 0.5중량%인 고상중합으로 제조된 폴리에틸렌테레프탈레이트 칩을 사용하고, 입경이 0.7㎛인 실리카입자를 전체 폴리에틸렌테레프탈레이트 중량 대비 50ppm을 사용하여 A/B/A 3층으로 공압출 캐스팅한 시트를 제조하였다. 이후, 제조한 수분산성 수지조성물(1)을 바코팅(Bar Coating)방법으로 양면에 코팅한 후, 110 ~ 150 ℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 횡방향(TD)으로 3.5배 연신하였다. 이후 5단 텐터에서 230℃로 열처리를 행하고, 200℃에서 종방향 및 횡방향으로 10% 이완 시켜 열고정하여 양면에 코팅된 188㎛의 2축 연신 필름을 제조하였다. As the base material layer (B), polyethylene terephthalate having an intrinsic viscosity of 0.65, a diethylene glycol content of 1.2% by weight, and an oligomer content of 1.4% by weight was added to an extruder, and melted and extruded. Is a polyethylene terephthalate chip of 0.67, diethylene glycol content of 0.7% by weight, oligomer content of 0.5% by weight of the solid phase polymerization, and silica particles having a particle diameter of 0.7㎛ 50ppm relative to the total weight of polyethylene terephthalate Using to prepare a sheet co-extruded to three layers of A / B / A. Thereafter, the prepared water-dispersible resin composition (1) was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., preheated and dried, and then 3.5 times in the transverse direction (TD). Stretched. Thereafter, heat treatment was performed at 230 ° C. in a 5-stage tenter, followed by heat setting at 10 ° C. in the longitudinal and transverse directions at 200 ° C. to prepare a biaxially stretched film of 188 μm coated on both sides.
제조된 폴리에스테르 다층필름은 기재층이 전체 필름중량의 80중량%이고, 스킨층이 전체필름 중량의 20중량%였으며, 상기 조성물의 프라이머층의 건조도포두께는 20nm이었다. 이렇게 얻어진 폴리에스테르 필름의 물성을 하기 표 2에 나타내었다.The prepared polyester multilayer film was 80 wt% of the total film weight, the skin layer was 20 wt% of the total film weight, and the dry coating thickness of the primer layer of the composition was 20 nm. The physical properties of the polyester film thus obtained are shown in Table 2 below.
[실시예 4]Example 4
기재층(B)으로 고유점도가 0.65이고, 디에틸렌글리콜의 함량이 1.2중량%이고, 올리고머 함량이 1.4중량%인 폴리에틸렌테레프탈레이트를 압출기에 투입하여 용융압출하였으며, 스킨층(A)에는 고유점도가 0.67이고, 디에틸렌글리콜의 함량이 0.7중량%이며, 올리고머 함량이 0.5중량%인 고상중합으로 제조된 폴리에틸렌테레프탈레이트 칩을 사용하고, 입경이 0.7㎛인 실리카입자를 전체 폴리에틸렌테레프탈레이트 중량 대비 50ppm을 사용하여 A/B/A 3층으로 공압출 캐스팅한 시트를 제조하였다. 이후, 제조한 수분산성 수지조성물(2)를 바코팅(Bar Coating)방법으로 양면에 코팅한 후, 110 ~ 150 ℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 횡방향(TD)으로 3.5배 연신하였다. 이후 5단 텐터에서 230℃로 열처리를 행하고, 200℃에서 종방향 및 횡방향으로 10% 이완 시켜 열고정하여 양면에 코팅된 188㎛의 2축 연신 필름을 제조하였다. As the base material layer (B), polyethylene terephthalate having an intrinsic viscosity of 0.65, a diethylene glycol content of 1.2% by weight, and an oligomer content of 1.4% by weight was added to an extruder, and melted and extruded. Is a polyethylene terephthalate chip of 0.67, diethylene glycol content of 0.7% by weight, oligomer content of 0.5% by weight of the solid phase polymerization, and silica particles having a particle diameter of 0.7㎛ 50ppm relative to the total weight of polyethylene terephthalate Using to prepare a sheet co-extruded to three layers of A / B / A. Thereafter, the prepared water-dispersible resin composition (2) was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., preheated and dried, and then 3.5 times in the transverse direction (TD). Stretched. Thereafter, heat treatment was performed at 230 ° C. in a 5-stage tenter, followed by heat setting at 10 ° C. in the longitudinal and transverse directions at 200 ° C. to prepare a biaxially stretched film of 188 μm coated on both sides.
제조된 폴리에스테르 다층필름은 기재층이 전체 필름중량의 80중량%이고, 스킨층이 전체필름 중량의 20중량%였으며, 상기 조성물의 프라이머층의 건조도포두께는 110nm이었다. 이렇게 얻어진 폴리에스테르 필름의 물성을 하기 표 2에 나타내었다.The prepared polyester multilayer film was 80% by weight of the total film weight, the skin layer was 20% by weight of the total film weight, the dry coating thickness of the primer layer of the composition was 110nm. The physical properties of the polyester film thus obtained are shown in Table 2 below.
[실시예 5]Example 5
기재층(B)으로 고유점도가 0.65이고, 디에틸렌글리콜의 함량이 1.2중량%이고, 올리고머 함량이 1.4중량%인 폴리에틸렌테레프탈레이트를 압출기에 투입하여 용융압출하였으며, 스킨층(A)에는 고유점도가 0.67이고, 디에틸렌글리콜의 함량이 0.8중량%이며, 올리고머 함량이 0.4중량%인 고상중합으로 제조된 폴리에틸렌테레프탈레이트 칩을 사용하고, 입경이 0.7㎛인 실리카입자를 전체 폴리에틸렌테레프탈레이트 중량 대비 50ppm을 사용하여 A/B/A 3층으로 공압출 캐스팅한 시트를 제조하였다. 이후, 제조한 수분산성 수지조성물(1)을 바코팅(Bar Coating)방법으로 양면에 코팅한 후, 110 ~ 150 ℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 횡방향(TD)으로 3.5배 연신하였다. 이후 5단 텐터에서 230℃로 열처리를 행하고, 200℃에서 종방향 및 횡방향으로 10% 이완 시켜 열고정하여 양면에 코팅된 188㎛의 2축 연신 필름을 제조하였다. As the base material layer (B), polyethylene terephthalate having an intrinsic viscosity of 0.65, a diethylene glycol content of 1.2% by weight, and an oligomer content of 1.4% by weight was added to an extruder, and melted and extruded. Is 0.67, the diethylene glycol content of 0.8% by weight, the oligomer content of 0.4% by weight of polyethylene terephthalate chip prepared by solid phase polymerization, the silica particles with a particle size of 0.7㎛ 50ppm relative to the total weight of polyethylene terephthalate Using to prepare a sheet co-extruded to three layers of A / B / A. Thereafter, the prepared water-dispersible resin composition (1) was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., preheated and dried, and then 3.5 times in the transverse direction (TD). Stretched. Thereafter, heat treatment was performed at 230 ° C. in a 5-stage tenter, followed by heat setting at 10 ° C. in the longitudinal and transverse directions at 200 ° C. to prepare a biaxially stretched film of 188 μm coated on both sides.
제조된 폴리에스테르 다층필름은 기재층이 전체 필름중량의 80중량%이고, 스킨층이 전체필름 중량의 20중량%였으며, 상기 조성물의 프라이머층의 건조도포두께는 20nm이었다. 이렇게 얻어진 폴리에스테르 필름의 물성을 하기 표 2에 나타내었다.The prepared polyester multilayer film was 80 wt% of the total film weight, the skin layer was 20 wt% of the total film weight, and the dry coating thickness of the primer layer of the composition was 20 nm. The physical properties of the polyester film thus obtained are shown in Table 2 below.
[실시예 6]Example 6
기재층(B)으로 고유점도가 0.65이고, 디에틸렌글리콜의 함량이 1.2중량%이고, 올리고머 함량이 1.4중량%인 폴리에틸렌테레프탈레이트를 압출기에 투입하여 용융압출하였으며, 스킨층(A)에는 고유점도가 0.67이고, 디에틸렌글리콜의 함량이 0.8중량%이며, 올리고머 함량이 0.4중량%인 고상중합으로 제조된 폴리에틸렌테레프탈레이트 칩을 사용하고, 입경이 0.7㎛인 실리카입자를 전체 폴리에틸렌테레프탈레이트 중량 대비 50ppm을 사용하여 A/B/A 3층으로 공압출 캐스팅한 시트를 제조하였다. 이후, 제조한 수분산성 수지조성물(2)를 바코팅(Bar Coating)방법으로 양면에 코팅한 후, 110 ~ 150 ℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 횡방향(TD)으로 3.5배 연신하였다. 이후 5단 텐터에서 230℃로 열처리를 행하고, 200℃에서 종방향 및 횡방향으로 10% 이완 시켜 열고정하여 양면에 코팅된 188㎛의 2축 연신 필름을 제조하였다. As the base material layer (B), polyethylene terephthalate having an intrinsic viscosity of 0.65, a diethylene glycol content of 1.2% by weight, and an oligomer content of 1.4% by weight was added to an extruder, and melted and extruded. Is 0.67, the diethylene glycol content of 0.8% by weight, the oligomer content of 0.4% by weight of polyethylene terephthalate chip prepared by solid phase polymerization, the silica particles with a particle size of 0.7㎛ 50ppm relative to the total weight of polyethylene terephthalate Using to prepare a sheet co-extruded to three layers of A / B / A. Thereafter, the prepared water-dispersible resin composition (2) was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., preheated and dried, and then 3.5 times in the transverse direction (TD). Stretched. Thereafter, heat treatment was performed at 230 ° C. in a 5-stage tenter, followed by heat setting at 10 ° C. in the longitudinal and transverse directions at 200 ° C. to prepare a biaxially stretched film of 188 μm coated on both sides.
제조된 폴리에스테르 다층필름은 기재층이 전체 필름중량의 80중량%이고, 스킨층이 전체필름 중량의 20중량%였으며, 상기 조성물의 프라이머층의 건조도포두께는 110nm이었다. 이렇게 얻어진 폴리에스테르 필름의 물성을 하기 표 2에 나타내었다.The prepared polyester multilayer film was 80% by weight of the total film weight, the skin layer was 20% by weight of the total film weight, the dry coating thickness of the primer layer of the composition was 110nm. The physical properties of the polyester film thus obtained are shown in Table 2 below.
[실시예7]Example 7
기재층(B)으로 고유점도가 0.65이고, 디에틸렌글리콜의 함량이 1.2중량%이고, 올리고머 함량이 1.4중량%인 폴리에틸렌테레프탈레이트를 압출기에 투입하여 용융압출하였으며, 스킨층(A)에는 고유점도가 0.67이고, 디에틸렌글리콜의 함량이 0.8중량%이며, 올리고머 함량이 0.5중량%인 고상중합으로 제조된 폴리에틸렌테레프탈레이트 칩을 사용하고, 입경이 0.7㎛인 실리카입자를 전체 폴리에틸렌테레프탈레이트 중량 대비 50ppm을 사용하여 A/B/A 3층으로 공압출 캐스팅한 시트를 제조하였다. 이후, 제조한 수분산성 수지조성물(1)을 바코팅(Bar Coating)방법으로 양면에 코팅한 후, 110 ~ 150 ℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 횡방향(TD)으로 3.5배 연신하였다. 이후 5단 텐터에서 230℃로 열처리를 행하고, 200℃에서 종방향 및 횡방향으로 10% 이완 시켜 열고정하여 양면에 코팅된 188㎛의 2축 연신 필름을 제조하였다. As the base material layer (B), polyethylene terephthalate having an intrinsic viscosity of 0.65, a diethylene glycol content of 1.2% by weight, and an oligomer content of 1.4% by weight was added to an extruder, and melted and extruded. Is 0.67, the diethylene glycol content of 0.8% by weight, the oligomer content of the polyethylene terephthalate chip prepared by the solid phase polymerization of 0.5% by weight, the silica particles with a particle size of 0.7㎛ 50ppm relative to the total weight of polyethylene terephthalate Using to prepare a sheet co-extruded to three layers of A / B / A. Thereafter, the prepared water-dispersible resin composition (1) was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., preheated and dried, and then 3.5 times in the transverse direction (TD). Stretched. Thereafter, heat treatment was performed at 230 ° C. in a 5-stage tenter, followed by heat setting at 10 ° C. in the longitudinal and transverse directions at 200 ° C. to prepare a biaxially stretched film of 188 μm coated on both sides.
제조된 폴리에스테르 다층필름은 기재층이 전체 필름중량의 70중량%이고, 스킨층이 전체필름 중량의 30중량%였으며, 상기 조성물의 프라이머층의 건조도포두께는 20nm이었다. 이렇게 얻어진 폴리에스테르 필름의 물성을 하기 표 2에 나타내었다.The prepared polyester multilayer film was 70% by weight of the total film weight, the skin layer was 30% by weight of the total film weight, and the dry coating thickness of the primer layer of the composition was 20 nm. The physical properties of the polyester film thus obtained are shown in Table 2 below.
[실시예 8]Example 8
기재층(B)으로 고유점도가 0.65이고, 디에틸렌글리콜의 함량이 1.2중량%이고, 올리고머 함량이 1.4중량%인 폴리에틸렌테레프탈레이트를 압출기에 투입하여 용융압출하였으며, 스킨층(A)에는 고유점도가 0.67이고, 디에틸렌글리콜의 함량이 0.8중량%이며, 올리고머 함량이 0.5중량%인 고상중합으로 제조된 폴리에틸렌테레프탈레이트 칩을 사용하고, 입경이 0.7㎛인 실리카입자를 전체 폴리에틸렌테레프탈레이트 중량 대비 50ppm을 사용하여 A/B/A 3층으로 공압출 캐스팅한 시트를 제조하였다. 이후, 제조한 수분산성 수지조성물(2)를 바코팅(Bar Coating)방법으로 양면에 코팅한 후, 110 ~ 150 ℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 횡방향(TD)으로 3.5배 연신하였다. 이후 5단 텐터에서 230℃로 열처리를 행하고, 200℃에서 종방향 및 횡방향으로 10% 이완 시켜 열고정하여 양면에 코팅된 188㎛의 2축 연신 필름을 제조하였다. As the base material layer (B), polyethylene terephthalate having an intrinsic viscosity of 0.65, a diethylene glycol content of 1.2% by weight, and an oligomer content of 1.4% by weight was added to an extruder, and melted and extruded. Is 0.67, the diethylene glycol content of 0.8% by weight, the oligomer content of the polyethylene terephthalate chip prepared by the solid phase polymerization of 0.5% by weight, the silica particles with a particle size of 0.7㎛ 50ppm relative to the total weight of polyethylene terephthalate Using to prepare a sheet co-extruded to three layers of A / B / A. Thereafter, the prepared water-dispersible resin composition (2) was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., preheated and dried, and then 3.5 times in the transverse direction (TD). Stretched. Thereafter, heat treatment was performed at 230 ° C. in a 5-stage tenter, followed by heat setting at 10 ° C. in the longitudinal and transverse directions at 200 ° C. to prepare a biaxially stretched film of 188 μm coated on both sides.
제조된 폴리에스테르 다층필름은 기재층이 전체 필름중량의 70중량%이고, 스킨층이 전체필름 중량의 30중량%였으며, 상기 조성물의 프라이머층의 건조도포두께는 110nm이었다. 이렇게 얻어진 폴리에스테르 필름의 물성을 하기 표 2에 나타내었다.The prepared polyester multilayer film was 70% by weight of the total film weight, the skin layer was 30% by weight of the total film weight, and the dry coating thickness of the primer layer of the composition was 110nm. The physical properties of the polyester film thus obtained are shown in Table 2 below.
[비교예 1]Comparative Example 1
기재층(B)으로 고유점도가 0.65이고, 디에틸렌글리콜의 함량이 1.2중량%이고, 올리고머 함량이 1.4중량%인 폴리에틸렌테레프탈레이트를 압출기에 투입하여 용융압출하였으며, 스킨층(A)에는 고유점도가 0.67이고, 디에틸렌글리콜의 함량이 0.8중량%이며, 올리고머 함량이 0.5중량%인 고상중합으로 제조된 폴리에틸렌테레프탈레이트 칩을 사용하고, 입경이 0.7㎛인 실리카입자를 전체 폴리에틸렌테레프탈레이트 중량 대비 50ppm을 사용하여 A/B/A 3층으로 공압출 캐스팅한 시트를 제조하였다. 이후 110 ~ 150 ℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 횡방향(TD)으로 3.5배 연신하였다. 이후 5단 텐터에서 230℃로 열처리를 행하고, 200℃에서 종방향 및 횡방향으로 10% 이완 시켜 열고정하여 188㎛의 2축 연신 필름을 제조하였다. As the base material layer (B), polyethylene terephthalate having an intrinsic viscosity of 0.65, a diethylene glycol content of 1.2% by weight, and an oligomer content of 1.4% by weight was added to an extruder, and melted and extruded. Is 0.67, the diethylene glycol content of 0.8% by weight, the oligomer content of the polyethylene terephthalate chip prepared by the solid phase polymerization of 0.5% by weight, the silica particles with a particle size of 0.7㎛ 50ppm relative to the total weight of polyethylene terephthalate Using to prepare a sheet co-extruded to three layers of A / B / A. Thereafter, the temperature was increased by 1 ° C. per second to 110 to 150 ° C., followed by preheating and drying to draw 3.5 times in the transverse direction (TD). Thereafter, heat treatment was performed at 230 ° C. in a 5-stage tenter, followed by heat setting at 10 ° C. in the longitudinal and transverse directions at 200 ° C., thereby obtaining a 188 μm biaxially oriented film.
제조된 폴리에스테르 다층필름은 기재층이 전체 필름중량의 80중량%이고, 스킨층이 전체필름 중량의 20중량%이었다. 이렇게 얻어진 폴리에스테르 필름의 물성을 하기 표 2에 나타내었다.The prepared polyester multilayer film was 80% by weight of the total film weight, the skin layer was 20% by weight of the total film weight. The physical properties of the polyester film thus obtained are shown in Table 2 below.
[비교예 2]Comparative Example 2
기재층(B)으로 고유점도가 0.65이고, 디에틸렌글리콜의 함량이 1.2중량%이고, 올리고머 함량이 1.4중량%인 폴리에틸렌테레프탈레이트를 압출기에 투입하여 용융압출하였으며, 스킨층(A)에는 고유점도가 0.67이고, 디에틸렌글리콜의 함량이 0.8중량%이며, 올리고머 함량이 1.4중량%인 고상중합으로 제조된 폴리에틸렌테레프탈레이트 칩을 사용하고, 입경이 0.7㎛인 실리카입자를 전체 폴리에틸렌테레프탈레이트 중량 대비 50ppm을 사용하여 A/B/A 3층으로 공압출 캐스팅한 시트를 제조하였다. 이후, 제조한 수분산성 수지조성물(1)을 바코팅(Bar Coating)방법으로 양면에 코팅한 후, 110 ~ 150 ℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 횡방향(TD)으로 3.5배 연신하였다. 이후 5단 텐터에서 230℃로 열처리를 행하고, 200℃에서 종방향 및 횡방향으로 10% 이완 시켜 열고정하여 양면에 코팅된 188㎛의 2축 연신 필름을 제조하였다. As the base material layer (B), polyethylene terephthalate having an intrinsic viscosity of 0.65, a diethylene glycol content of 1.2% by weight, and an oligomer content of 1.4% by weight was added to an extruder, and melted and extruded. Is a polyethylene terephthalate chip of 0.67, diethylene glycol content of 0.8% by weight, oligomer content of 1.4% by weight of the solid phase polymerization, and silica particles having a particle diameter of 0.7㎛ 50ppm relative to the total weight of polyethylene terephthalate Using to prepare a sheet co-extruded to three layers of A / B / A. Thereafter, the prepared water-dispersible resin composition (1) was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., preheated and dried, and then 3.5 times in the transverse direction (TD). Stretched. Thereafter, heat treatment was performed at 230 ° C. in a 5-stage tenter, followed by heat setting at 10 ° C. in the longitudinal and transverse directions at 200 ° C. to prepare a biaxially stretched film of 188 μm coated on both sides.
제조된 폴리에스테르 다층필름은 기재층이 전체 필름중량의 80중량%이고, 스킨층이 전체필름 중량의 20중량%였으며, 상기 조성물의 프라이머층의 건조도포두께는 20nm이었다. 이렇게 얻어진 폴리에스테르 필름의 물성을 하기 표 2에 나타내었다.The prepared polyester multilayer film was 80 wt% of the total film weight, the skin layer was 20 wt% of the total film weight, and the dry coating thickness of the primer layer of the composition was 20 nm. The physical properties of the polyester film thus obtained are shown in Table 2 below.
[비교예 3]Comparative Example 3
롬앤하스사(Rohm & Haas 社)제품으로, 메틸메타크릴레이트 40 중량%와 에틸아크릴레이트 40 중량% 및 멜라민 20 중량%를 포함하는 바인더(Rohm & Haas 社, P3208)를 사용하였다.As a product of Rohm & Haas, a binder containing 40% by weight of methyl methacrylate, 40% by weight of ethyl acrylate, and 20% by weight of melamine (Rohm & Haas, P3208) was used.
상기 바인더의 고형분 함량 2 중량%, 실리콘계 웨팅제(BYK CHEMIE사의 BYK 348) 0.3 중량%를 물에 첨가하여 2시간 교반하여 전체 고형분 함량이 2.3 중량%인 수분산성 수지조성물(3)을 제조하였다. 제조된 수분산성 수지조성물을 이용하여 상기 기재된 Swelling Ratio, Gel Fraction 및 Tg 측정하였으며, 그 결과를 하기 표 1에 나타내었다.2 wt% of the solid content of the binder, 0.3 wt% of the silicone-based wetting agent (BYK 348 by BYK CHEMIE) was added to water, and stirred for 2 hours to prepare a water-dispersible resin composition (3) having a total solid content of 2.3 wt%. Swelling Ratio, Gel Fraction and Tg were measured using the prepared water dispersible resin composition, and the results are shown in Table 1 below.
제조된 수분산성 수지조성물(3)을 사용하여 실시예 1과 동일한 방법으로 양면에 코팅된 188㎛의 2축 연신 필름을 제조하였다. 상기 조성물의 프라이머층의 건조도포두께는 80nm이었다. 이렇게 얻어진 폴리에스테르 필름의 물성을 하기 표 2에 나타내었다.Using the prepared water-dispersible resin composition (3) to prepare a biaxially stretched film of 188㎛ coated on both sides in the same manner as in Example 1. The dry coating thickness of the primer layer of the said composition was 80 nm. The physical properties of the polyester film thus obtained are shown in Table 2 below.
[비교예 4][Comparative Example 4]
폴리에스테르계 폴리올(중량평균분자량이1000인 폴리에틸렌아디페이트다이올) 9중량%, 헥사메틸렌디이소시아네이트 10중량%, 이온성기를 갖는 반응성유화제(Asahi Denka, 폴리옥시 에틸렌 알릴 글리시딜 노닐 페닐에테르의 술폰산 에스테르인 아데카리아숍 SETM) 1중량% 및 물 80 중량%를 반응시킨 고형분 함량 20 중량%의 수성 폴리우레탄 바인더를 제조하였다.9% by weight of polyester-based polyol (polyethylene adipate diol having a weight average molecular weight of 1000), 10% by weight of hexamethylene diisocyanate, reactive emulsifier having an ionic group (Asahi Denka, polyoxy ethylene allyl glycidyl nonyl phenyl ether An aqueous polyurethane binder having a solid content of 20% by weight was prepared by reacting 1% by weight of adecaria shop SETM), which is a sulfonic acid ester, and 80% by weight of water.
상기 바인더의 고형분 함량 4중량%, 실리콘계 웨팅제(BYK CHEMIE사의 BYK 348) 0.3 중량%를 물에 첨가하여 2시간 교반하여 전체 고형분 함량이 4.3 중량%인 수분산성 수지조성물(4)를 제조하였다. 제조된 수분산성 수지조성물을 이용하여 상기 기재된 Swelling Ratio, Gel Fraction 및 Tg 측정하였으며, 그 결과를 하기 표 1에 나타내었다.4 wt% of the solid content of the binder, 0.3 wt% of the silicone-based wetting agent (BYK 348 by BYK CHEMIE) were added to water, and stirred for 2 hours to prepare a water-dispersible resin composition (4) having a total solid content of 4.3 wt%. Swelling Ratio, Gel Fraction and Tg were measured using the prepared water dispersible resin composition, and the results are shown in Table 1 below.
제조된 수분산성 수지조성물(4)를 사용하여 실시예 1과 동일한 방법으로 양면에 코팅된 188㎛의 2축 연신 필름을 제조하였다. 상기 조성물의 프라이머층의 건조도포두께는 80nm이었다. 이렇게 얻어진 폴리에스테르 필름의 물성을 하기 표 2에 나타내었다.Using the prepared water-dispersible resin composition (4) to prepare a biaxially stretched film of 188㎛ coated on both sides in the same manner as in Example 1. The dry coating thickness of the primer layer of the said composition was 80 nm. The physical properties of the polyester film thus obtained are shown in Table 2 below.
[비교예 5][Comparative Example 5]
2,6-나프탈렌디카르복실산(2,6-Naphtalene dicarboxly acid) 40mol(26몰%), 소듐 2,5-디카르복시벤젠설포네이트(sodium 2,5-dicarboxylbenzene sulfonate) 5몰(3.3몰%), 디메틸테레프탈산 5몰(3.3몰%)와 에틸렌글리콜과 1,4 부틸렌 글리콜을 1:1로 섞어 100몰(66.66몰%)를 무용매 상태에서 혼합하여 이를 반응기에 넣고 170℃에서 250℃까지 분당 1℃ 승온하면서 반응시켜 부산물인 물 또는 메탄올을 제거하면서 에스테르화 반응을 진행하고, 260℃까지 승온한는 것과 동시에 반응기 내 압력을 1mmHg로 감압하여 부생성물인 디올을 회수하면서 중축합 반응을 실시하여 고유점도가 0.4 인 폴리에스테르수지를 제조하였다.40 mol (26 mol%) of 2,6-naphtalene dicarboxly acid, 5 mol (3.3 mol%) of sodium 2,5-dicarboxylbenzene sulfonate ), 5 mole (3.3 mole%) of dimethyl terephthalic acid, ethylene glycol and 1,4 butylene glycol are mixed 1: 1, and 100 mole (66.66 mole%) is mixed in a solvent-free state, which is put into a reactor and 170 ° C. to 250 ° C. The reaction is carried out while raising the temperature to 1 ° C. per minute to remove the by-product water or methanol, and the esterification reaction is carried out. The temperature is raised to 260 ° C., and the pressure in the reactor is reduced to 1 mmHg to recover the by-product diol to perform the polycondensation reaction. To prepare a polyester resin having an intrinsic viscosity of 0.4.
상기 제조된 폴리에스테르수지 25중량%에 물 75중량%를 넣고, 유화시켜 25 중량%의 수성 폴리에스테르바인더를 제조하였다. 25% by weight of water was added to 25% by weight of the polyester resin thus prepared, followed by emulsification to prepare 25% by weight of an aqueous polyester binder.
상기 바인더의 고형분 함량 4중량%, 실리콘계 웨팅제(BYK CHEMIE사의 BYK 348) 0.3 중량%를 물에 첨가하여 2시간 교반하여 전체 고형분 함량이 4.3 중량%인 수분산성 수지조성물(5)를 제조하였다. 제조된 수분산성 수지조성물을 이용하여 상기 기재된 Swelling Ratio, Gel Fraction 및 Tg 측정하였으며, 그 결과를 하기 표 1에 나타내었다.4 wt% of the solids content of the binder and 0.3 wt% of the silicone-based wetting agent (BYK 348 by BYK CHEMIE) were added to water, followed by stirring for 2 hours to prepare a water-dispersible resin composition (5) having a total solids content of 4.3 wt%. Swelling Ratio, Gel Fraction and Tg were measured using the prepared water dispersible resin composition, and the results are shown in Table 1 below.
제조된 수분산성 수지조성물(5)를 사용하여 실시예 1과 동일한 방법으로 양면에 코팅된 188㎛의 2축 연신 필름을 제조하였다. 상기 조성물의 프라이머층의 건조도포두께는 70nm이었다. 이렇게 얻어진 폴리에스테르 필름의 물성을 하기 표 2에 나타내었다.Using the prepared water-dispersible resin composition (5) to prepare a biaxially stretched film of 188㎛ coated on both sides in the same manner as in Example 1. The dry coating thickness of the primer layer of the said composition was 70 nm. The physical properties of the polyester film thus obtained are shown in Table 2 below.
표 1
구분 층조성 Chip 원료 조성 수분산 수지 조성물
스킨층 조성 코어층 조성
기재층(중량%) 스킨층(중량%) 고유점도 DEG(중량%) Oligomer(중량%) 고유점도 DEG(중량%) Oligomer(중량%) Tg(℃) Gel Fraction Swell ratio 밀도
실시예1 80 20 0.67 0.8 0.5 0.65 1.2 1.4 67 96 7 1.311
실시예2 80 20 0.67 0.8 0.5 0.65 1.2 1.4 63 96 27 1.368
실시예3 80 20 0.67 0.8 0.5 0.65 1.2 1.4 67 96 7 1.311
실시예4 80 20 0.67 0.8 0.5 0.65 1.2 1.4 63 96 27 1.368
실시예5 80 20 0.67 0.8 0.4 0.65 1.2 1.4 67 96 7 1.311
실시예6 80 20 0.67 0.8 0.4 0.65 1.2 1.4 63 96 27 1.368
실시예7 70 30 0.67 0.8 0.5 0.65 1.2 1.4 67 96 7 1.311
실시예8 70 30 0.67 0.8 0.5 0.65 1.2 1.4 63 96 27 1.368
비교예1 80 20 0.67 0.8 0.5 0.65 1.2 1.4 - - - -
비교예2 80 20 0.67 0.8 1.4 0.65 1.2 1.4 67 96 7 1.311
비교예3 80 20 0.67 0.8 0.5 0.65 1.2 1.4 44 98 11 1.235
비교예4 80 20 0.67 0.8 0.5 0.65 1.2 1.4 16 soluble 231 1.290
비교예5 80 20 0.67 0.8 0.5 0.65 1.2 1.4 31 89 45 1.251
Table 1
division Layer composition Chip raw material composition Water dispersion resin composition
Skin layer composition Core layer composition
Base layer (% by weight) Skin layer (wt%) Intrinsic viscosity DEG (% by weight) Oligomer (% by weight) Intrinsic viscosity DEG (% by weight) Oligomer (% by weight) Tg (℃) Gel fraction Swell ratio density
Example 1 80 20 0.67 0.8 0.5 0.65 1.2 1.4 67 96 7 1.311
Example 2 80 20 0.67 0.8 0.5 0.65 1.2 1.4 63 96 27 1.368
Example 3 80 20 0.67 0.8 0.5 0.65 1.2 1.4 67 96 7 1.311
Example 4 80 20 0.67 0.8 0.5 0.65 1.2 1.4 63 96 27 1.368
Example 5 80 20 0.67 0.8 0.4 0.65 1.2 1.4 67 96 7 1.311
Example 6 80 20 0.67 0.8 0.4 0.65 1.2 1.4 63 96 27 1.368
Example 7 70 30 0.67 0.8 0.5 0.65 1.2 1.4 67 96 7 1.311
Example 8 70 30 0.67 0.8 0.5 0.65 1.2 1.4 63 96 27 1.368
Comparative Example 1 80 20 0.67 0.8 0.5 0.65 1.2 1.4 - - - -
Comparative Example 2 80 20 0.67 0.8 1.4 0.65 1.2 1.4 67 96 7 1.311
Comparative Example 3 80 20 0.67 0.8 0.5 0.65 1.2 1.4 44 98 11 1.235
Comparative Example 4 80 20 0.67 0.8 0.5 0.65 1.2 1.4 16 soluble 231 1.290
Comparative Example 5 80 20 0.67 0.8 0.5 0.65 1.2 1.4 31 89 45 1.251
표 2
기재필름 두께(㎛) 프라이머층 두께(㎛) Haze(%, 열처리 전) Haze(%, 열처리 후) △Haze(%)
실시예1 188 20/20 1.62 1.68 0.06
실시예2 188 110/110 1.83 1.85 0.02
실시예3 188 20/20 1.63 1.68 0.05
실시예4 188 110/110 1.82 1.83 0.01
실시예5 188 20/20 1.68 1.73 0.05
실시예6 188 110/110 1.80 1.82 0.02
실시예7 188 20/20 1.70 1.73 0.03
실시예8 188 110/110 1.84 1.85 0.01
비교예1 188 - 1.22 3.61 2.39
비교예2 188 20/20 1.64 1.80 0.16
비교예3 188 80/80 1.69 2.11 1.42
비교예4 188 80/80 1.76 13.66 11.90
비교예5 188 70/70 1.71 6.54 4.83
TABLE 2
Base film thickness (㎛) Primer layer thickness (㎛) Haze (%, before heat treatment) Haze (% after heat treatment) △ Haze (%)
Example 1 188 20/20 1.62 1.68 0.06
Example 2 188 110/110 1.83 1.85 0.02
Example 3 188 20/20 1.63 1.68 0.05
Example 4 188 110/110 1.82 1.83 0.01
Example 5 188 20/20 1.68 1.73 0.05
Example 6 188 110/110 1.80 1.82 0.02
Example 7 188 20/20 1.70 1.73 0.03
Example 8 188 110/110 1.84 1.85 0.01
Comparative Example 1 188 - 1.22 3.61 2.39
Comparative Example 2 188 20/20 1.64 1.80 0.16
Comparative Example 3 188 80/80 1.69 2.11 1.42
Comparative Example 4 188 80/80 1.76 13.66 11.90
Comparative Example 5 188 70/70 1.71 6.54 4.83
상기 표 1 및 표 2에서 보이는 바와 같이, 본 발명에 따른 폴리에스테르 다층필름은 열처리 전후의 헤이즈 변화율이 적음으로써 광학필름으로 사용하기에 적합한 특성을 나타내는 것을 알 수 있었다.As shown in Table 1 and Table 2, it was found that the polyester multilayer film according to the present invention exhibits characteristics suitable for use as an optical film due to a low haze change rate before and after heat treatment.
반면, 비교예 1은 프라이머 코팅 처리 없이 베이스 필름의 중합 칩 개선만으로는 헤이즈 변화율이 높은 것을 알 수 있었으며, 후공정에서 다른 필름과 합지 하는 과정 등에서 올리고머가 다량 발생하여 본 발명의 물성을 만족하지 못하는 것을 알 수 있으며, 비교예 2의 경우는 스킨층의 올리고머 함량이 1.4%가 됨에 따라 헤이즈 요구 물성 범위를 벗어나게 됨을 확인할 수 있다. 비교예 3, 4, 5의 경우는 프라이머층의 조성물에 따라 헤이즈 변화율에 영향을 주는 것을 확인할 수 있었다.On the other hand, Comparative Example 1 was found that the haze change rate is high only by improving the polymerized chip of the base film without the primer coating treatment, a large amount of oligomers in the process of laminating with other films in the subsequent process does not satisfy the properties of the present invention As can be seen, in the case of Comparative Example 2, as the oligomer content of the skin layer is 1.4%, it can be confirmed that the haze is out of the required physical property range. In Comparative Examples 3, 4, and 5, it was confirmed that the haze change rate was affected by the composition of the primer layer.
[실시예 9]Example 9
1) 수분산성 수지조성물(6)의 제조1) Preparation of Water Dispersible Resin Composition (6)
KLX-007 바인더(고형분 25%수분산 조성물) 16중량%에 실리콘계 웨팅제(Dow Corning社, 폴리에스테르 실록산 공중합체, Q2-5212) 0.3 중량%, 평균입경이 140nm인 콜로이드 실리카 입자 0.3중량%를 물에 첨가하여 2시간 교반하여 전체 고형분 함량이 4.6 중량%인 수분산성 수지조성물(6)을 제조하였다.0.3 wt% of a silicone wetting agent (Dow Corning, polyester siloxane copolymer, Q2-5212) and 16 wt% of KLX-007 binder (solid content 25% water dispersion composition) and 0.3 wt% of colloidal silica particles having an average particle diameter of 140 nm It was added to water and stirred for 2 hours to prepare a water dispersible resin composition (6) having a total solid content of 4.6% by weight.
2) 열수축율 제어된 올리고머 차단 폴리에스테르 필름의 제조 2) Preparation of Heat Shrinkage Controlled Oligomer Blocking Polyester Film
수분이 제거된 폴리에틸렌테레프탈레이트 칩을 압출기에 넣고 용융 압출한 후 표면온도 20℃인 캐스팅 드럼으로 급냉, 고화시켜 두께가 1500㎛인 폴리에틸렌테레프탈레이트 시트를 제조하였다. 제조된 폴리에틸렌테레프탈레이트 시트를 80℃에서 기계방향(MD)으로 3.5배 연신한 후 상온으로 냉각하였다. 이후, 제조한 수분산성 수지조성물(6)을 바코팅(Bar Coating)방법으로 양면에 코팅한 후, 110 ~ 150 ℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 폭방향(TD)으로 3.5배 연신하였다. 이후 5단 텐터에서 235℃로 열처리를 행하고, 200℃에서 폭방향으로 10% 이완 시켜 열고정 후, MD Relax 설비의 Relax율을 1.25%로 조정함으로써 양면에 코팅된 125㎛의 2축 연신 필름을 제조하였다. The polyethylene terephthalate chip was removed from the moisture in the extruder and melt-extruded, and then quenched and solidified in a casting drum having a surface temperature of 20 ℃ to prepare a polyethylene terephthalate sheet having a thickness of 1500㎛. The prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature. Thereafter, the prepared water-dispersible resin composition 6 was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., preheated and dried, and 3.5 times in the width direction (TD). Stretched. Thereafter, heat treatment was performed at 235 ° C. in a 5-stage tenter, 10% in the width direction at 200 ° C., followed by heat setting. Then, a 125 μm biaxially stretched film coated on both sides was adjusted by adjusting the relaxation rate of the MD Relax facility to 1.25%. Prepared.
상기 조성물의 프라이머 코팅층의 건조도포두께는 80nm이었다. 이렇게 얻어진 폴리에스테르 필름의 물성을 하기 표3, 표4에 나타내었다.The dry coating thickness of the primer coating layer of the composition was 80 nm. The physical properties of the thus obtained polyester film are shown in Tables 3 and 4 below.
[실시예 10]Example 10
1) 수분산성 수지조성물(7)의 제조1) Preparation of Water Dispersible Resin Composition (7)
KLX-007 바인더(고형분 25%수분산 조성물) 8중량%에 실리콘계 웨팅제(Dow Corning社, 폴리에스테르 실록산 공중합체, Q2-5212) 0.3 중량%, 평균입경이 140nm인 콜로이드 실리카 입자 0.3중량%를 물에 첨가하여 2시간 교반하여 전체 고형분 함량이 2.6 중량%인 수분산성 수지조성물(7)을 제조하였다.To 8 wt% of KLX-007 binder (solid content 25% water dispersion composition), 0.3 wt% of silicone-based wetting agent (Dow Corning, polyester siloxane copolymer, Q2-5212) and 0.3 wt% of colloidal silica particles having an average particle diameter of 140 nm It was added to water and stirred for 2 hours to prepare a water dispersible resin composition (7) having a total solid content of 2.6% by weight.
2) 열수축율 제어된 올리고머 차단 폴리에스테르 필름의 제조 2) Preparation of Heat Shrinkage Controlled Oligomer Blocking Polyester Film
수분이 제거된 폴리에틸렌테레프탈레이트 칩을 압출기에 넣고 용융 압출한 후 표면온도 20℃인 캐스팅 드럼으로 급냉, 고화시켜 두께가 1500㎛인 폴리에틸렌테레프탈레이트 시트를 제조하였다. 제조된 폴리에틸렌테레프탈레이트 시트를 80℃에서 기계방향(MD)으로 3.5배 연신한 후 상온으로 냉각하였다. 이후, 제조한 수분산성 수지조성물(7)을 바코팅(Bar Coating)방법으로 양면에 코팅한 후, 110 ~ 150 ℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 폭방향(TD)으로 3.5배 연신하였다. 이후 5단 텐터에서 235℃로 열처리를 행하고, 200℃에서 폭방향으로 10% 이완 시켜 열고정 후, MD Relax 설비의 Relax율을 1.25%로 조정함으로써 양면에 코팅된 125㎛의 2축 연신 필름을 제조하였다. The polyethylene terephthalate chip was removed from the moisture in the extruder and melt-extruded, and then quenched and solidified in a casting drum having a surface temperature of 20 ℃ to prepare a polyethylene terephthalate sheet having a thickness of 1500㎛. The prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature. Thereafter, the prepared water-dispersible resin composition 7 was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., preheated and dried, and 3.5 times in the width direction (TD). Stretched. Thereafter, heat treatment was performed at 235 ° C. in a 5-stage tenter, 10% in the width direction at 200 ° C., followed by heat setting. Then, a 125 μm biaxially stretched film coated on both sides was adjusted by adjusting the relaxation rate of the MD Relax facility to 1.25%. Prepared.
상기 조성물의 프라이머 코팅층의 건조도포두께는 40nm이었다. 이렇게 얻어진 폴리에스테르 필름의 물성을 하기 표3, 표4에 나타내었다.The dry coating thickness of the primer coating layer of the composition was 40 nm. The physical properties of the thus obtained polyester film are shown in Tables 3 and 4 below.
[실시예 11]Example 11
1) 수분산성 수지조성물(8)의 제조1) Preparation of Water Dispersible Resin Composition (8)
KLX-007 바인더(고형분 25%수분산 조성물) 24중량%에 실리콘계 웨팅제(Dow Corning社, 폴리에스테르 실록산 공중합체, Q2-5212) 0.3 중량%, 평균입경이 140nm인 콜로이드 실리카 입자 0.3중량%를 물에 첨가하여 2시간 교반하여 전체 고형분 함량이 6.6 중량%인 수분산성 수지조성물(8)을 제조하였다.To 24 wt% of KLX-007 binder (solid content 25% water dispersion composition), 0.3 wt% of silicone-based wetting agent (Dow Corning, polyester siloxane copolymer, Q2-5212) and 0.3 wt% of colloidal silica particles having an average particle diameter of 140 nm It was added to water and stirred for 2 hours to prepare a water dispersible resin composition (8) having a total solid content of 6.6% by weight.
2) 열수축율 제어된 올리고머 차단 폴리에스테르 필름의 제조 2) Preparation of Heat Shrinkage Controlled Oligomer Blocking Polyester Film
수분이 제거된 폴리에틸렌테레프탈레이트 칩을 압출기에 넣고 용융 압출한 후 표면온도 20℃인 캐스팅 드럼으로 급냉, 고화시켜 두께가 1500㎛인 폴리에틸렌테레프탈레이트 시트를 제조하였다. 제조된 폴리에틸렌테레프탈레이트 시트를 80℃에서 기계방향(MD)으로 3.5배 연신한 후 상온으로 냉각하였다. 이후, 제조한 수분산성 수지조성물(8)을 바코팅(Bar Coating)방법으로 양면에 코팅한 후, 110 ~ 150 ℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 폭방향(TD)으로 3.5배 연신하였다. 이후 5단 텐터에서 235℃로 열처리를 행하고, 200℃에서 폭방향으로 10% 이완 시켜 열고정 후, MD Relax 설비의 Relax율을 1.25%로 조정함으로써 양면에 코팅된 125㎛의 2축 연신 필름을 제조하였다. The polyethylene terephthalate chip was removed from the moisture in the extruder and melt-extruded, and then quenched and solidified in a casting drum having a surface temperature of 20 ℃ to prepare a polyethylene terephthalate sheet having a thickness of 1500㎛. The prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature. Thereafter, the prepared water-dispersible resin composition (8) was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., preheated and dried, and 3.5 times in the width direction (TD). Stretched. Thereafter, heat treatment was performed at 235 ° C. in a 5-stage tenter, 10% in the width direction at 200 ° C., followed by heat setting. Then, a 125 μm biaxially stretched film coated on both sides was adjusted by adjusting the relaxation rate of the MD Relax facility to 1.25%. Prepared.
상기 조성물의 프라이머 코팅층의 건조도포두께는 160nm이었다. 이렇게 얻어진 폴리에스테르 필름의 물성을 하기 표3, 표4에 나타내었다.The dry coating thickness of the primer coating layer of the composition was 160 nm. The physical properties of the thus obtained polyester film are shown in Tables 3 and 4 below.
[실시예 12]Example 12
1) 열수축율 제어된 올리고머 차단 폴리에스테르 필름의 제조 1) Preparation of Heat Shrinkage Controlled Oligomer Blocking Polyester Film
수분이 제거된 폴리에틸렌테레프탈레이트 칩을 압출기에 넣고 용융 압출한 후 표면온도 20℃인 캐스팅 드럼으로 급냉, 고화시켜 두께가 1500㎛인 폴리에틸렌테레프탈레이트 시트를 제조하였다. 제조된 폴리에틸렌테레프탈레이트 시트를 80℃에서 기계방향(MD)으로 3.5배 연신한 후 상온으로 냉각하였다. 이후, 제조한 수분산성 수지조성물(6)을 바코팅(Bar Coating)방법으로 양면에 코팅한 후, 110 ~ 150 ℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 폭방향(TD)으로 3.5배 연신하였다. 이후 5단 텐터에서 245℃로 열처리를 행하고, 200℃에서 폭방향으로 10% 이완 시켜 열고정 후, MD Relax 설비의 Relax율을 1.25%로 조정함으로써 양면에 코팅된 125㎛의 2축 연신 필름을 제조하였다. The polyethylene terephthalate chip was removed from the moisture in the extruder and melt-extruded, and then quenched and solidified in a casting drum having a surface temperature of 20 ℃ to prepare a polyethylene terephthalate sheet having a thickness of 1500㎛. The prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature. Thereafter, the prepared water-dispersible resin composition 6 was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., preheated and dried, and 3.5 times in the width direction (TD). Stretched. Thereafter, heat treatment was performed at 245 ° C. in a 5-stage tenter, followed by heat setting to 10% in the width direction at 200 ° C., followed by adjustment of the relaxation rate of the MD Relax facility to 1.25% to form a 125 μm biaxially stretched film coated on both sides. Prepared.
상기 조성물의 프라이머 코팅층의 건조도포두께는 80nm이었다. 이렇게 얻어진 폴리에스테르 필름의 물성을 하기 표3, 표4에 나타내었다.The dry coating thickness of the primer coating layer of the composition was 80 nm. The physical properties of the thus obtained polyester film are shown in Tables 3 and 4 below.
[실시예 13]Example 13
1) 열수축율 제어된 올리고머 차단 폴리에스테르 필름의 제조 1) Preparation of Heat Shrinkage Controlled Oligomer Blocking Polyester Film
수분이 제거된 폴리에틸렌테레프탈레이트 칩을 압출기에 넣고 용융 압출한 후 표면온도 20℃인 캐스팅 드럼으로 급냉, 고화시켜 두께가 1500㎛인 폴리에틸렌테레프탈레이트 시트를 제조하였다. 제조된 폴리에틸렌테레프탈레이트 시트를 80℃에서 기계방향(MD)으로 3.5배 연신한 후 상온으로 냉각하였다. 이후, 제조한 수분산성 수지조성물(6)을 바코팅(Bar Coating)방법으로 양면에 코팅한 후, 110 ~ 150 ℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 폭방향(TD)으로 3.5배 연신하였다. 이후 5단 텐터에서 237℃로 열처리를 행하고, 200℃에서 폭방향으로 10% 이완 시켜 열고정 후, MD Relax 설비의 Relax율을 2.0%로 조정함으로써 양면에 코팅된 125㎛의 2축 연신 필름을 제조하였다. The polyethylene terephthalate chip was removed from the moisture in the extruder and melt-extruded, and then quenched and solidified in a casting drum having a surface temperature of 20 ℃ to prepare a polyethylene terephthalate sheet having a thickness of 1500㎛. The prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature. Thereafter, the prepared water-dispersible resin composition 6 was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., preheated and dried, and 3.5 times in the width direction (TD). Stretched. Thereafter, heat treatment was performed at 237 ° C. in a 5-stage tenter, followed by heat setting to relax 10% in the width direction at 200 ° C., followed by adjusting the relaxation ratio of the MD Relax facility to 2.0% to form a 125 μm biaxially stretched film coated on both sides. Prepared.
상기 조성물의 프라이머 코팅층의 건조도포두께는 80nm이었다. 이렇게 얻어진 폴리에스테르 필름의 물성을 하기 표3, 표4에 나타내었다.The dry coating thickness of the primer coating layer of the composition was 80 nm. The physical properties of the thus obtained polyester film are shown in Tables 3 and 4 below.
[실시예 14]Example 14
1) 열수축율 제어된 올리고머 차단 폴리에스테르 필름의 제조 1) Preparation of Heat Shrinkage Controlled Oligomer Blocking Polyester Film
수분이 제거된 폴리에틸렌테레프탈레이트 칩을 압출기에 넣고 용융 압출한 후 표면온도 20℃인 캐스팅 드럼으로 급냉, 고화시켜 두께가 1500㎛인 폴리에틸렌테레프탈레이트 시트를 제조하였다. 제조된 폴리에틸렌테레프탈레이트 시트를 80℃에서 기계방향(MD)으로 3.5배 연신한 후 상온으로 냉각하였다. 이후, 제조한 수분산성 수지조성물(6)을 바코팅(Bar Coating)방법으로 양면에 코팅한 후, 110 ~ 150 ℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 폭방향(TD)으로 3.5배 연신하였다. 이후 5단 텐터에서 244℃로 열처리를 행하고, 200℃에서 폭방향으로 10% 이완 시켜 열고정 후, MD Relax 설비의 Relax율을 2.0%로 조정함으로써 양면에 코팅된 125㎛의 2축 연신 필름을 제조하였다. The polyethylene terephthalate chip was removed from the moisture in the extruder and melt-extruded, and then quenched and solidified in a casting drum having a surface temperature of 20 ℃ to prepare a polyethylene terephthalate sheet having a thickness of 1500㎛. The prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature. Thereafter, the prepared water-dispersible resin composition 6 was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., preheated and dried, and 3.5 times in the width direction (TD). Stretched. Thereafter, heat treatment is performed at 244 ° C. in a 5-stage tenter, and heat setting is performed by relaxing 10% in the width direction at 200 ° C., and then adjusting the relaxation rate of the MD Relax facility to 2.0% to obtain a 125 μm biaxially stretched film coated on both sides. Prepared.
상기 조성물의 프라이머 코팅층의 건조도포두께는 80nm이었다. 이렇게 얻어진 폴리에스테르 필름의 물성을 하기 표3, 표4에 나타내었다.The dry coating thickness of the primer coating layer of the composition was 80 nm. The physical properties of the thus obtained polyester film are shown in Tables 3 and 4 below.
[비교예 6]Comparative Example 6
1) 수분산성 수지조성물(9)의 제조1) Preparation of Water Dispersible Resin Composition (9)
P-3208 Binder 9.1 중량% (고형분 44%수분산 조성물), 실리콘계 웨팅제 (Dow Corning社, 폴리에스테르 실록산 공중합체, Q2-5212) 0.3 중량%, 평균입경이 140nm인 콜로이드 실리카 입자 0.3중량% 물에 첨가하여 2시간 교반하여 전체 고형분 함량이 4.6 중량%인 수분산성 수지조성물 (9)를 제조하였다.P-3208 Binder 9.1 wt% (44% solids dispersion composition), 0.3 wt% silicone wetting agent (Dow Corning, polyester siloxane copolymer, Q2-5212), 0.3 wt% colloidal silica particles having an average particle diameter of 140 nm It was added for 2 hours and stirred to prepare a water dispersible resin composition (9) having a total solid content of 4.6 wt%.
2) 열수축율 제어된 올리고머 차단 폴리에스테르 필름의 제조 2) Preparation of Heat Shrinkage Controlled Oligomer Blocking Polyester Film
수분이 제거된 폴리에틸렌테레프탈레이트 칩을 압출기에 넣고 용융 압출한 후 표면온도 20℃인 캐스팅 드럼으로 급냉, 고화시켜 두께가 1500㎛인 폴리에틸렌테레프탈레이트 시트를 제조하였다. 제조된 폴리에틸렌테레프탈레이트 시트를 80℃에서 기계방향(MD)으로 3.5배 연신한 후 상온으로 냉각하였다. 이후, 제조한 수분산성 수지조성물(9)를 바코팅(Bar Coating)방법으로 양면에 코팅한 후, 110 ~ 150 ℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 폭방향(TD)으로 3.5배 연신하였다. 이후 5단 텐터에서 235℃로 열처리를 행하고, 200℃에서 폭방향으로 10% 이완 시켜 열고정 후, MD Relax 설비의 Relax율을 1.25%로 조정함으로써 양면에 코팅된 125㎛의 2축 연신 필름을 제조하였다. The polyethylene terephthalate chip was removed from the moisture in the extruder and melt-extruded, and then quenched and solidified in a casting drum having a surface temperature of 20 ℃ to prepare a polyethylene terephthalate sheet having a thickness of 1500㎛. The prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature. Thereafter, the prepared water-dispersible resin composition 9 was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., preheated and dried, and 3.5 times in the width direction (TD). Stretched. Thereafter, heat treatment was performed at 235 ° C. in a 5-stage tenter, 10% in the width direction at 200 ° C., followed by heat setting. Then, a 125 μm biaxially stretched film coated on both sides was adjusted by adjusting the relaxation rate of the MD Relax facility to 1.25%. Prepared.
상기 조성물의 프라이머 코팅층의 건조도포두께는 80nm이었다. 이렇게 얻어진 폴리에스테르 필름의 물성을 하기 표3, 표4에 나타내었다.The dry coating thickness of the primer coating layer of the composition was 80 nm. The physical properties of the thus obtained polyester film are shown in Tables 3 and 4 below.
[비교예 7]Comparative Example 7
1) 열수축율 제어되지 않은 올리고머 차단 폴리에스테르 필름의 제조 1) Preparation of uncontrolled thermal shrinkage oligomer blocking polyester film
수분이 제거된 폴리에틸렌테레프탈레이트 칩을 압출기에 넣고 용융 압출한 후 표면온도 20℃인 캐스팅 드럼으로 급냉, 고화시켜 두께가 1500㎛인 폴리에틸렌테레프탈레이트 시트를 제조하였다. 제조된 폴리에틸렌테레프탈레이트 시트를 80℃에서 기계방향(MD)으로 3.5배 연신한 후 상온으로 냉각하였다. 이후, 제조한 수분산성 수지조성물(6)을 바코팅(Bar Coating)방법으로 양면에 코팅한 후, 110 ~ 150 ℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 폭방향(TD)으로 3.5배 연신하였다. 이후 5단 텐터에서 235℃로 열처리를 행하고, 200℃에서 폭방향으로 10% 이완 시켜 열고정 후, MD Relax 설비의 Relax율을 1.00%로 조정함으로써 양면에 코팅된 125㎛의 2축 연신 필름을 제조하였다. The polyethylene terephthalate chip was removed from the moisture in the extruder and melt-extruded, and then quenched and solidified in a casting drum having a surface temperature of 20 ℃ to prepare a polyethylene terephthalate sheet having a thickness of 1500㎛. The prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature. Thereafter, the prepared water-dispersible resin composition 6 was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., preheated and dried, and 3.5 times in the width direction (TD). Stretched. Thereafter, heat treatment was performed at 235 ° C. in a 5-stage tenter, followed by heat setting at 10 ° C. in the width direction at 200 ° C., followed by adjustment of the relaxation rate of the MD Relax facility to 1.00%, thereby coating a 125 μm biaxially stretched film coated on both sides. Prepared.
상기 조성물의 프라이머 코팅층의 건조도포두께는 80nm이었다. 이렇게 얻어진 폴리에스테르 필름의 물성을 하기 표3, 표4에 나타내었다.The dry coating thickness of the primer coating layer of the composition was 80 nm. The physical properties of the thus obtained polyester film are shown in Tables 3 and 4 below.
[비교예 8]Comparative Example 8
1) 열수축율 제어되지 않은 올리고머 차단 폴리에스테르 필름의 제조 1) Preparation of uncontrolled thermal shrinkage oligomer blocking polyester film
수분이 제거된 폴리에틸렌테레프탈레이트 칩을 압출기에 넣고 용융 압출한 후 표면온도 20℃인 캐스팅 드럼으로 급냉, 고화시켜 두께가 1500㎛인 폴리에틸렌테레프탈레이트 시트를 제조하였다. 제조된 폴리에틸렌테레프탈레이트 시트를 80℃에서 기계방향(MD)으로 3.5배 연신한 후 상온으로 냉각하였다. 이후, 제조한 수분산성 수지조성물(6)을 바코팅(Bar Coating)방법으로 양면에 코팅한 후, 110 ~ 150 ℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 폭방향(TD)으로 3.5배 연신하였다. 이후 5단 텐터에서 235℃로 열처리를 행하고, 200℃에서 폭방향으로 10% 이완 시켜 열고정 후, MD Relax 설비의 Relax율을 3.00%로 조정함으로써 양면에 코팅된 125㎛의 2축 연신 필름을 제조하였다. The polyethylene terephthalate chip was removed from the moisture in the extruder and melt-extruded, and then quenched and solidified in a casting drum having a surface temperature of 20 ℃ to prepare a polyethylene terephthalate sheet having a thickness of 1500㎛. The prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature. Thereafter, the prepared water-dispersible resin composition 6 was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., preheated and dried, and 3.5 times in the width direction (TD). Stretched. Thereafter, heat treatment was performed at 235 ° C. in a 5-stage tenter, followed by heat setting at 10 ° C. at 10 ° C. in the width direction, and then adjusting the relaxation ratio of the MD Relax facility to 3.00% to prepare a 125 μm biaxially stretched film coated on both sides. Prepared.
상기 조성물의 프라이머 코팅층의 건조도포두께는 80nm이었다. 이렇게 얻어진 폴리에스테르 필름의 물성을 하기 표3, 표4에 나타내었다.The dry coating thickness of the primer coating layer of the composition was 80 nm. The physical properties of the thus obtained polyester film are shown in Tables 3 and 4 below.
[비교예 9]Comparative Example 9
1) 열수축율이 제어되지 않은 올리고머 차단 폴리에스테르 필름의 제조 1) Preparation of Oligomeric Blocking Polyester Film with Uncontrolled Heat Shrinkage
수분이 제거된 폴리에틸렌테레프탈레이트 칩을 압출기에 넣고 용융 압출한 후 표면온도 20℃인 캐스팅 드럼으로 급냉, 고화시켜 두께가 1500㎛인 폴리에틸렌테레프탈레이트 시트를 제조하였다. 제조된 폴리에틸렌테레프탈레이트 시트를 80℃에서 기계방향(MD)으로 3.5배 연신한 후 상온으로 냉각하였다. 이후, 제조한 수분산성 수지조성물(6)을 바코팅(Bar Coating)방법으로 양면에 코팅한 후, 110 ~ 150 ℃까지 초당 1℃씩 승온하여 예열, 건조를 거쳐 폭방향(TD)으로 3.5배 연신하였다. 이후 5단 텐터에서 235℃로 열처리를 행하고, 200℃에서 폭방향으로 10% 이완 시켜 열고정 후, MD Relax 설비의 Relax율을 0%로 조정함으로써 양면에 코팅된 125㎛의 2축 연신 필름을 제조하였다. The polyethylene terephthalate chip was removed from the moisture in the extruder and melt-extruded, and then quenched and solidified in a casting drum having a surface temperature of 20 ℃ to prepare a polyethylene terephthalate sheet having a thickness of 1500㎛. The prepared polyethylene terephthalate sheet was stretched 3.5 times in the machine direction (MD) at 80 ° C. and then cooled to room temperature. Thereafter, the prepared water-dispersible resin composition 6 was coated on both sides by a bar coating method, and then heated to 1 ° C. per second to 110 to 150 ° C., preheated and dried, and 3.5 times in the width direction (TD). Stretched. Thereafter, heat treatment was performed at 235 ° C. in a 5-stage tenter, 10% in the width direction at 200 ° C., followed by heat setting. Then, a 125 μm biaxially stretched film coated on both sides was adjusted by adjusting the relaxation rate of the MD Relax facility to 0%. Prepared.
상기 조성물의 프라이머 코팅층의 건조도포두께는 80nm이었다. 이렇게 얻어진 폴리에스테르 필름의 물성을 하기 표3, 표4에 나타내었다.The dry coating thickness of the primer coating layer of the composition was 80 nm. The physical properties of the thus obtained polyester film are shown in Tables 3 and 4 below.
표 3
기재필름두께(㎛) 프라이머코팅층두께(㎛) 열처리온도(℃) MDRelax율(%) Haze(%, 열처리 전) Haze(%,열처리 후) △Haze(%)
실시예9 125 80/80 235 1.25 1.69 1.71 0.02
실시예10 125 40/40 235 1.25 1.61 1.69 0.08
실시예11 125 160/160 235 1.25 1.62 1.63 0.01
실시예12 125 80/80 245 1.25 1.71 1.75 0.04
실시예13 125 80/80 237 2.0 1.68 1.71 0.03
실시예14 125 80/80 244 2.0 1.70 1.73 0.03
비교예6 125 80/80 235 1.25 1.71 3.22 1.51
비교예7 125 80/80 235 1.0 1.65 1.71 0.06
비교예8 125 80/80 235 3.0 제막 불가 제막 불가 제막 불가
비교예9 125 80/80 235 0 1.60 1.62 0.02
TABLE 3
Base film thickness (㎛) Primer coating layer thickness (㎛) Heat treatment temperature (℃) MDRelax rate (%) Haze (%, before heat treatment) Haze (% after heat treatment) △ Haze (%)
Example 9 125 80/80 235 1.25 1.69 1.71 0.02
Example 10 125 40/40 235 1.25 1.61 1.69 0.08
Example 11 125 160/160 235 1.25 1.62 1.63 0.01
Example 12 125 80/80 245 1.25 1.71 1.75 0.04
Example 13 125 80/80 237 2.0 1.68 1.71 0.03
Example 14 125 80/80 244 2.0 1.70 1.73 0.03
Comparative Example 6 125 80/80 235 1.25 1.71 3.22 1.51
Comparative Example 7 125 80/80 235 1.0 1.65 1.71 0.06
Comparative Example 8 125 80/80 235 3.0 Unveiling is impossible Unveiling is impossible Unveiling is impossible
Comparative Example 9 125 80/80 235 0 1.60 1.62 0.02
표 4
1 2 3 4 5 6 7 8 9 10 편차 컬 정도
실시예9 MD 0.8 0.8 0.8 0.9 0.8 0.8 0.8 0.8 0.9 0.8 0.1 1mm
TD 0.3 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.1
실시예10 MD 0.8 0.8 0.8 0.8 0.8 0.9 0.7 0.8 0.8 0.8 0.2 0mm
TD 0.3 0.2 0.3 0.3 0.3 0.3 0.4 0.3 0.3 0.3 0.2
실시예11 MD 0.8 0.7 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.9 0.2 0mm
TD 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.1
실시예12 MD 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.0 1mm
TD 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1
실시예13 MD 0.4 0.4 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0mm
TD 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1
실시예14 MD 0.4 0.4 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0mm
TD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
비교예6 MD 0.8 0.9 0.8 0.8 0.8 0.8 0.8 0.7 0.8 0.8 0.2 0mm
TD 0.3 0.4 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.3 0.2
비교예7 MD 1.5 1.4 1.2 1.5 1.5 1.4 1.6 1.3 1.5 1.7 0.5 3.5mm
TD 0.3 0.4 0.5 0.3 0.4 0.3 0.2 0.1 0.3 0.5 0.4
비교예9 MD 1.2 1.3 1.3 1.2 1.3 1.2 1.3 1.2 1.1 1.3 0.2 3.5mm
TD 0.0 0.1 0.0 -0.1 0.0 0.1 -0.1 0.0 0.0 0.1 0.2
Table 4
One 2 3 4 5 6 7 8 9 10 Deviation Curl degree
Example 9 MD 0.8 0.8 0.8 0.9 0.8 0.8 0.8 0.8 0.9 0.8 0.1 1 mm
TD 0.3 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.1
Example 10 MD 0.8 0.8 0.8 0.8 0.8 0.9 0.7 0.8 0.8 0.8 0.2 0 mm
TD 0.3 0.2 0.3 0.3 0.3 0.3 0.4 0.3 0.3 0.3 0.2
Example 11 MD 0.8 0.7 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.9 0.2 0 mm
TD 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.1
Example 12 MD 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.0 1 mm
TD 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1
Example 13 MD 0.4 0.4 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0 mm
TD 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1
Example 14 MD 0.4 0.4 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0 mm
TD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Comparative Example 6 MD 0.8 0.9 0.8 0.8 0.8 0.8 0.8 0.7 0.8 0.8 0.2 0 mm
TD 0.3 0.4 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.3 0.2
Comparative Example 7 MD 1.5 1.4 1.2 1.5 1.5 1.4 1.6 1.3 1.5 1.7 0.5 3.5mm
TD 0.3 0.4 0.5 0.3 0.4 0.3 0.2 0.1 0.3 0.5 0.4
Comparative Example 9 MD 1.2 1.3 1.3 1.2 1.3 1.2 1.3 1.2 1.1 1.3 0.2 3.5mm
TD 0.0 0.1 0.0 -0.1 0.0 0.1 -0.1 0.0 0.0 0.1 0.2
표 5
1 2 3 4 5 6 7 8 9 10
실시예9 45 0.7 0.7 0.8 0.7 0.6 0.6 0.7 0.8 0.7 0.7
135 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.7 0.6 0.6
차이 0.1 0.1 0.2 0.1 0 0 0 0.1 0.1 0.1
Twist Curl 발생유무
비교예9 45 0.4 0.7 0.8 0.7 0.6 0.7 0.7 0.7 0.8 0.8
135 0.8 1.0 0.7 0.7 0.6 0.7 0.5 0.5 0.5 0.5
차이 0.4 0.3 0.1 0 0 0 0.2 0.2 0.3 0.3
Twist Curl 발생유무 발생 발생 발생 발생
Table 5
One 2 3 4 5 6 7 8 9 10
Example 9 45 0.7 0.7 0.8 0.7 0.6 0.6 0.7 0.8 0.7 0.7
135 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.7 0.6 0.6
Difference 0.1 0.1 0.2 0.1 0 0 0 0.1 0.1 0.1
Twist Curl occurrence Nil Nil Nil Nil Nil Nil Nil Nil Nil Nil
Comparative Example 9 45 0.4 0.7 0.8 0.7 0.6 0.7 0.7 0.7 0.8 0.8
135 0.8 1.0 0.7 0.7 0.6 0.7 0.5 0.5 0.5 0.5
Difference 0.4 0.3 0.1 0 0 0 0.2 0.2 0.3 0.3
Twist Curl occurrence Occur Occur Nil Nil Nil Nil Nil Nil Occur Occur
상기 표 3에서 보이는 바와 같이, 본 발명에 따른 폴리에스테르 필름은 열처리 전후의 헤이즈 변화율이 적음으로써, 광학필름으로 우수한 특성을 나타내는 것을 알 수 있었다. 반면, 비교예 6은 프라이머 코팅층의 조성물에 따라 헤이즈 변화율에 영향을 주는 것을 확인할 수 있다. 즉, 코팅층의 조성물의 선정을 통해 올리고머(Oligomer) 차단 성능 정도의 차이가 발생할 수 있음을 확인할 수 있다.As shown in Table 3, it can be seen that the polyester film according to the present invention exhibits excellent characteristics as an optical film due to the low haze change rate before and after heat treatment. On the other hand, Comparative Example 6 it can be seen that affect the haze change rate according to the composition of the primer coating layer. That is, it can be seen that a difference in the degree of oligomer blocking performance may occur through the selection of the composition of the coating layer.
또한, 상기 표 4에서 보이는 바와 같이 열처리 온도 및 기계방향 이완(MD Relax)율을 통해 목표로 하는 열수축율을 전폭 기준에 균일하게 확보할 수 있었다. 이는 제품의 컬(Curl) 문제를 제어할 수 있음을 확인시켜주었다. 반면, 비교예 7은 MD Relax율을 1.0%로 하여 기존 설비만으로는 원하는 열수축율을 확보하는 것이 어렵고, 그 균일성 또한 저하되는 것을 알 수 있었다. 또한, 비교예 8은 MD Relax율을 3.0% 설정 시 제막이 불가능하였다. In addition, as shown in Table 4, through the heat treatment temperature and the machine direction relaxation (MD Relax) rate, the target heat shrink rate could be secured uniformly to the full width standard. This confirmed that the product could control the curl problem. On the other hand, in Comparative Example 7, it was difficult to ensure the desired heat shrinkage rate by using only the existing equipment with MD relaxation rate of 1.0%, and the uniformity was also lowered. In Comparative Example 8, the film formation was impossible when the MD Relax ratio was set to 3.0%.
비교예 9는 MD 열수축율이 MD 방향과 TD 방향의 열수축율 편차가 0.2%로 양호한 결과가 확인되었음에도 컬 발생 정도가 3.5mm로 문제가 발생함을 확인할 수 있었다. 이 경우 발생된 컬의 형태는 네 모서리 중 대각 방향으로의 두 모서리에서만 컬이 발생되는 트위스트 컬(Twist Curl)로, 이는 대각 열수축율의 차이에 의해 발생한다. 표 3에서 보이는 바와 같이, 제막 공정의 조건 차이에 의해 대각 열수축율의 차이가 발생하고, 이 차이가 합지 공정 시 발생하는 트위스크 컬을 발생시킴을 확인할 수 있다. 즉, 비교예 9의 경우에는 필름 전폭에 대해 MD방향과 TD 방향의 열수축율 편차가 양호함에도 불구하고 대각 열수축율의 차이가 균일하지 않아 그 차이가 크지 않은 중앙품에서는 컬 제어가 가능하나 그 차이가 0.2% 이상인 양 변부품은 트위스트 컬의 발생으로 컬 제어가 불가능함을 확인할 수 있다.In Comparative Example 9, even though the MD thermal contraction rate was 0.2% in the MD and TD directions, a good result was found to have a curling problem of 3.5 mm, even though a good result was confirmed. In this case, the shape of the generated curl is a twist curl, in which the curl is generated only at two corners in the diagonal direction among the four corners, which is caused by the difference in the diagonal thermal contraction rate. As shown in Table 3, it can be seen that the difference in the diagonal heat shrinkage is caused by the difference in the conditions of the film forming process, and this difference generates the twist curl generated in the lamination process. That is, in the case of Comparative Example 9, even though the thermal shrinkage deviation in the MD direction and the TD direction is good with respect to the full width of the film, the difference in the diagonal heat shrinkage is not uniform, so curl control is possible in the central product having a small difference. Is more than 0.2%, it can be seen that the curl control is impossible due to the occurrence of twist curl.
[실시예 15]Example 15
기재층에는 고유점도가 0.65, 디에틸렌글리콜(DEG) 함량이 1.2중량%이고 올리고머 함량이 1.4중량%인 PET칩을 사용하고, 스킨층에는 고유점도가 0.67이며 DEG함량이 0.8중량%이고 올리고머함량이 0.5%인 고상중합 한 PET칩을 사용하고 입경이 0.7㎛인 입자를 30ppm 사용하여 각각 공압출 캐스팅하였다. 이후 각각 세로와 가로방향으로 3.2배, 3.2배로 순차적으로 연신하고 230℃에서 열처리하고, 폭방향 이완을 3% 부여하여 125㎛의 다층필름을 제조하였다. 이때 폭방향 이완은 연신 후 최대 폭길이에서 텐터내부의 열처리존의 3구간을 순차적으로 이완을 주되 폭 길이는 최대폭방향의 3%길이만큼 폭을 축소시켰다. The base layer uses a PET chip having an intrinsic viscosity of 0.65, a diethylene glycol (DEG) content of 1.2% by weight, and an oligomer content of 1.4% by weight, and the skin layer has a specific viscosity of 0.67, a DEG content of 0.8% by weight, and an oligomer content. The 0.5% solid-phase polymerized PET chip was used, and the particles having a particle diameter of 0.7 μm were co-extruded using 30 ppm. Thereafter, the film was sequentially stretched 3.2 times and 3.2 times in the longitudinal and transverse directions, and heat-treated at 230 ° C., thereby giving a 3% widthwise relaxation to prepare a 125 μm multilayer film. At this time, in the width direction, the three sections of the heat treatment zone inside the tenter were sequentially relaxed at the maximum width after stretching, but the width length was reduced by 3% of the maximum width direction.
이때 스킨층의 입자 구성과 함량은 표6에 나타내었다.Particle composition and content of the skin layer are shown in Table 6.
상기의 다층필름의 기재층은 전체필름중량의 80중량%, 스킨층은 전체필름중량의 20중량% 로 하여서 제조 후 필름의 올리고머 표면 마이그레이션, 표면조도, 헤이즈, 면배향계수, 수축률을 측정하였다.The base layer of the multilayer film was 80% by weight of the total film weight, the skin layer was 20% by weight of the total film weight was measured oligomer surface migration, surface roughness, haze, surface orientation coefficient, shrinkage of the film after production.
[실시예 16 및 17][Examples 16 and 17]
하기 표6과 같이 스킨층의 원료의 DEG 함량만 달리하여 실시예 15과 동일하게 실시하였다.As shown in Table 6, only the DEG content of the raw material of the skin layer was changed in the same manner as Example 15
얻어진 필름에 대하여 필름의 올리고머 표면 마이그레이션, 표면조도, 헤이즈, 면배향계수, 수축률을 측정하였다. About the obtained film, the oligomer surface migration, surface roughness, haze, surface orientation coefficient, and shrinkage rate of the film were measured.
[실시예 18 및 19][Examples 18 and 19]
하기 표6과 같이 스킨층의 원료의 올리고머 함량만 달리하여 실시예 15와 동일하게 실시하였다.It was carried out in the same manner as in Example 15 by changing only the oligomer content of the raw material of the skin layer as shown in Table 6.
얻어진 필름에 대하여 필름의 올리고머 표면 마이그레이션, 표면조도, 헤이즈, 면배향계수, 수축률을 측정하였다.About the obtained film, the oligomer surface migration, surface roughness, haze, surface orientation coefficient, and shrinkage rate of the film were measured.
[실시예 20 및 21][Examples 20 and 21]
실시예 15와 동일하게 실시하되 하기 표6과 같이 스킨층의 중량만 달리하여 실시예1과 동일하게 실시하였다.The same procedure as in Example 15 was performed except that only the weight of the skin layer was changed as in Table 6 below.
[실시예 22 및 23][Examples 22 and 23]
실시예 15와 동일하게 실시하되 하기 표6과 같이 스킨층의 입자함량만 달리하여 실시예1과 동일하게 실시하였다.Example 15 was carried out in the same manner as in Example 15 except that only the particle content of the skin layer was changed as shown in Table 6.
[실시예 24]Example 24
실시예 15와 동일하게 실시하되 폭방향 이완과 동시에 길이방향으로 1.5% 이완을 부여하여 실시예16과 동일하게 실시하였다.Example 15 was carried out in the same manner as in Example 15, but at the same time as the relaxation in the width direction to give 1.5% in the longitudinal direction.
[비교예 10]Comparative Example 10
실시예 15와 동일하게 실시하되 스킨층은 고유점도가 0.65이고 올리고머함량이 1.4%인 PET단독을 사용하고 입자만 스킨층에 실시예16과 같이 하여 제조 후 필름의 올리고머 표면 마이그레이션, 표면조도, 헤이즈, 면배향계수, 수축률을 측정하였다.The same procedure as in Example 15 was carried out, except that the skin layer was made of PET having an intrinsic viscosity of 0.65 and an oligomer content of 1.4%, and only particles were used in the skin layer as in Example 16. , Surface orientation coefficient, and shrinkage were measured.
[비교예 11 및 12][Comparative Examples 11 and 12]
실시예 15와 동일하게 실시하되 스킨층의 DEG함량을 달리하여 표6과 같이 하여 실시하였다.The same procedure as in Example 15 was performed except that the DEG content of the skin layer was changed as shown in Table 6.
얻어진 필름에 대하여 필름의 올리고머 표면 마이그레이션, 표면조도, 헤이즈, 면배향계수, 수축률을 측정하였다. About the obtained film, the oligomer surface migration, surface roughness, haze, surface orientation coefficient, and shrinkage rate of the film were measured.
[비교예 13 및 14][Comparative Examples 13 and 14]
실시예 15와 동일하게 실시하되 스킨층의 올리고머 함량을 달리하여 표6과 같이 하여 실시하였다.얻어진 필름에 대하여 필름의 올리고머 표면 마이그레이션, 표면조도, 헤이즈, 면배향계수, 수축률을 측정하였다.The same procedure as in Example 15 was carried out, except that the oligomer content of the skin layer was changed as shown in Table 6. The oligomer surface migration, surface roughness, haze, plane orientation coefficient, and shrinkage of the film were measured.
[비교예 15 및 16][Comparative Examples 15 and 16]
실시예 15와 동일하게 실시하되 하기 표6과 같이 스킨층의 중량만 달리하여 실시예16과 동일하게 실시하였다.The same process as in Example 15 was performed except that the weight of the skin layer was changed as in Table 6 below.
[비교예 17 및 18][Comparative Examples 17 and 18]
실시예 15와 동일하게 실시하되 하기 표6과 같이 스킨층의 입자함량만 달리하여 실시예16과 동일하게 실시하였다.Example 15 was carried out in the same manner as in Example 15 except that only the particle content of the skin layer was changed as shown in Table 6 below.
[비교예 19 및 20][Comparative Examples 19 and 20]
실시예16과 같은 조성으로 실시하되 열처리온도를 200, 210℃, 폭방향 이완을 1%, 1.5%로 하여 제막하였다. The composition was carried out in the same manner as in Example 16 except that the heat treatment temperature was 200, 210 ° C., and the widthwise relaxation was 1% and 1.5%.
표 6
구분 층조성 원료조성
스킨층 조성 기재층 조성
기재층 (중량%) 스킨층 (중량%) 고유점도 DEG(중량%) 올리고머(중량%) 입자크기(㎛) 입자량(ppm) 고유점도 DEG(중량%) 올리고머(중량%)
실시예15 80% 20% 0.67 0.8 0.5 0.7 50 0.65 1.2 1.4
실시예16 80% 20% 0.67 1.1 0.5 0.7 50 0.65 1.2 1.4
실시예17 80% 20% 0.67 0.7 0.5 0.7 50 0.65 1.2 1.4
실시예18 80% 20% 0.67 0.8 0.6 0.7 50 0.65 1.2 1.4
실시예19 80% 20% 0.67 0.8 0.4 0.7 50 0.65 1.2 1.4
실시예20 70% 30% 0.67 0.8 0.5 0.7 50 0.65 1.2 1.4
실시예21 90% 10% 0.67 0.8 0.5 0.7 50 0.65 1.2 1.4
실시예22 80% 20% 0.67 0.8 0.5 0.7 10 0.65 1.2 1.4
실시예23 80% 20% 0.67 0.8 0.5 0.7 90 0.65 1.2 1.4
실시예24 80% 20% 0.67 0.8 0.5 0.7 50 0.65 1.2 1.4
비교예10 80% 20% 0.65 0.8 1.4 0.7 50 0.65 0.8 1.4
비교예11 80% 20% 0.65 0.8 0.5 0.7 50 0.65 0.8 1.4
비교예12 80% 20% 0.67 1.2 0.5 0.7 50 0.65 1.2 1.4
비교예13 80% 20% 0.67 0.8 0.7 0.7 50 0.65 1.2 1.4
비교예14 95% 5% 0.67 0.8 0.5 0.7 50 0.65 1.2 1.4
비교예15 60% 40% 0.67 0.8 0.5 0.7 50 0.65 1.2 1.4
비교예16 80% 20% 0.67 0.8 0.5 0.7 110 0.65 1.2 1.4
비교예17 80% 20% 0.67 0.8 0.5 3 50 0.65 1.2 1.4
Table 6
division Layer composition Raw material composition
Skin layer composition Substrate layer composition
Base layer (wt%) Skin layer (wt%) Intrinsic viscosity DEG (% by weight) Oligomer (% by weight) Particle size (㎛) Particle amount (ppm) Intrinsic viscosity DEG (% by weight) Oligomer (% by weight)
Example 15 80% 20% 0.67 0.8 0.5 0.7 50 0.65 1.2 1.4
Example 16 80% 20% 0.67 1.1 0.5 0.7 50 0.65 1.2 1.4
Example 17 80% 20% 0.67 0.7 0.5 0.7 50 0.65 1.2 1.4
Example 18 80% 20% 0.67 0.8 0.6 0.7 50 0.65 1.2 1.4
Example 19 80% 20% 0.67 0.8 0.4 0.7 50 0.65 1.2 1.4
Example 20 70% 30% 0.67 0.8 0.5 0.7 50 0.65 1.2 1.4
Example 21 90% 10% 0.67 0.8 0.5 0.7 50 0.65 1.2 1.4
Example 22 80% 20% 0.67 0.8 0.5 0.7 10 0.65 1.2 1.4
Example 23 80% 20% 0.67 0.8 0.5 0.7 90 0.65 1.2 1.4
Example 24 80% 20% 0.67 0.8 0.5 0.7 50 0.65 1.2 1.4
Comparative Example 10 80% 20% 0.65 0.8 1.4 0.7 50 0.65 0.8 1.4
Comparative Example 11 80% 20% 0.65 0.8 0.5 0.7 50 0.65 0.8 1.4
Comparative Example 12 80% 20% 0.67 1.2 0.5 0.7 50 0.65 1.2 1.4
Comparative Example 13 80% 20% 0.67 0.8 0.7 0.7 50 0.65 1.2 1.4
Comparative Example 14 95% 5% 0.67 0.8 0.5 0.7 50 0.65 1.2 1.4
Comparative Example 15 60% 40% 0.67 0.8 0.5 0.7 50 0.65 1.2 1.4
Comparative Example 16 80% 20% 0.67 0.8 0.5 0.7 110 0.65 1.2 1.4
Comparative Example 17 80% 20% 0.67 0.8 0.5 3 50 0.65 1.2 1.4
*A/B/A로 공압출함. (스킨층 두께는 양 A층의 총량)  Co-extruded with A / B / A. (Skin layer thickness is the total amount of both A layers)
표 7
구분 수축률(150℃,30min)MD*TD 면배향계수 표면조도(Ra,nm) 필름의 올리고머 함량
초기Haze(%) 10min후 Haze(%) 20min후 Haze(%) 30min후 Haze(%)
실시예15 0.7*0.3 0.1590 6 1.2 1.7 2.2 2.8
실시예16 0.8*0.3 0.1605 6.5 1.1 1.6 2.1 2.7
실시예17 0.8*0.4 0.1604 6 1.2 1.6 2.1 2.7
실시예18 0.6*0.1 0.1606 6 1.4 1.9 2.5 3.2
실시예19 0.6*0.2 0.1606 6 1.2 1.5 2.1 2.6
실시예20 0.7*0.3 0.1606 6.6 1.3 1.6 2.2 2.6
실시예21 0.7*0.3 0.1608 6.5 1.0 1.6 2.2 2.4
실시예22 0.8*0.4 0.1606 4.5 0.8 1.5 1.7 1.9
실시예23 0.8*0.3 0.1606 8 1.4 1.8 2.3 3.1
실시예24 0.3*0.1 0.1595 6 1.2 1.7 2.1 2.6
비교예10 0.8*0.2 0.1580 12 2.2 2.2 3.4 4.6
비교예11 0.7*0.3 0.1570 12.5 2.2 2.6 2.3 2.8
비교예12 0.7*0.4 0.1600 6 1.1 2.0 3.8 4.6
비교예13 0.6*0.3 0.1590 6 1.2 2.3 3.2 4.4
비교예14 0.7*0.3 0.1600 6 0.7 2.8 3.3 4.4
비교예15 0.7*0.3 공압출 시 계면불안정으로 표면불안정 및 지속 파단발생
비교예16 0.8*0.3 0.1595 15 1.8 2.9 3.4 4.1
비교예17 0.8*0.3 0.1600 20 3.2 4.2 5.6 6.6
비교예18 2.0*1.3 0.1575 12 2.3 2.8 4 4.5
비교예19 1.8*1.1 0.1575 12 2.4 2.7 3.9 4.4
TABLE 7
division Shrinkage (150 ℃, 30min) MD * TD Face orientation coefficient Surface Roughness (Ra, nm) Oligomer content of the film
Initial Haze (%) Haze after 10min (%) Haze after 20min (%) Haze after 30min (%)
Example 15 0.7 * 0.3 0.1590 6 1.2 1.7 2.2 2.8
Example 16 0.8 * 0.3 0.1605 6.5 1.1 1.6 2.1 2.7
Example 17 0.8 * 0.4 0.1604 6 1.2 1.6 2.1 2.7
Example 18 0.6 * 0.1 0.1606 6 1.4 1.9 2.5 3.2
Example 19 0.6 * 0.2 0.1606 6 1.2 1.5 2.1 2.6
Example 20 0.7 * 0.3 0.1606 6.6 1.3 1.6 2.2 2.6
Example 21 0.7 * 0.3 0.1608 6.5 1.0 1.6 2.2 2.4
Example 22 0.8 * 0.4 0.1606 4.5 0.8 1.5 1.7 1.9
Example 23 0.8 * 0.3 0.1606 8 1.4 1.8 2.3 3.1
Example 24 0.3 * 0.1 0.1595 6 1.2 1.7 2.1 2.6
Comparative Example 10 0.8 * 0.2 0.1580 12 2.2 2.2 3.4 4.6
Comparative Example 11 0.7 * 0.3 0.1570 12.5 2.2 2.6 2.3 2.8
Comparative Example 12 0.7 * 0.4 0.1600 6 1.1 2.0 3.8 4.6
Comparative Example 13 0.6 * 0.3 0.1590 6 1.2 2.3 3.2 4.4
Comparative Example 14 0.7 * 0.3 0.1600 6 0.7 2.8 3.3 4.4
Comparative Example 15 0.7 * 0.3 Surface instability and continuous breakage due to interfacial instability during coextrusion
Comparative Example 16 0.8 * 0.3 0.1595 15 1.8 2.9 3.4 4.1
Comparative Example 17 0.8 * 0.3 0.1600 20 3.2 4.2 5.6 6.6
Comparative Example 18 2.0 * 1.3 0.1575 12 2.3 2.8 4 4.5
Comparative Example 19 1.8 * 1.1 0.1575 12 2.4 2.7 3.9 4.4
상기 표 7에서 보이는 바와 같이, 본 발명의 실시예는 150℃에서 30분간 유지시킨 후 필름의 열수축율이 식 1 및 2를 만족하는 범위로 낮으며, 면배향계수가 0.1590이상이고, 표면조도가 10nm이하이며, 가열 전 필름의 헤이즈(Hi)가 1.5%미만이며, 150℃에서 30분간 유지시킨 후 필름의 헤이즈가 식 9를 모두 만족하는 것을 확인하였다. As shown in Table 7, the embodiment of the present invention after maintaining for 30 minutes at 150 ℃ low thermal shrinkage of the film to satisfy the formula 1 and 2, the surface orientation coefficient is 0.1590 or more, the surface roughness It was confirmed that it was 10 nm or less, and the haze (Hi) of the film before heating was less than 1.5%, and it maintained for 150 minutes at 150 degreeC, and the haze of the film satisfy | filled all of Formula 9.
이상에서 본 발명의 바람직한 실시예를 설명하였으나, 본 발명은 다양한 변화와 균등물을 사용할 수 있으며, 상기 실시예를 적절히 변형하여 동일하게 응용할 수 있음이 명확하다. 따라서, 상기 기재 내용은 하기의 특허청구범위의 한계에 의해 정해지는 본 발명의 범위를 한정하는 것이 아니다. Although the preferred embodiment of the present invention has been described above, it is clear that the present invention can use various changes and equivalents, and can be applied in the same manner by appropriately modifying the above embodiment. Accordingly, the above description is not intended to limit the scope of the invention as defined by the following claims.

Claims (38)

  1. 폴리에스테르 수지로 이루어진 폴리에스테르 베이스필름과, 이의 일면 또는 양면에 수분산성 수지조성물을 도포하여 형성한 프라이머층을 포함하며, 하기 식 1 및 2를 만족하는 폴리에스테르 필름.A polyester film comprising a polyester base film made of a polyester resin and a primer layer formed by coating a water dispersible resin composition on one or both thereof, and satisfying the following formulas 1 and 2.
    0 ≤ Smd ≤ 1.5 [식 1]0 ≤ Smd ≤ 1.5 [Equation 1]
    0 ≤ Std ≤ 1.0 [식 2]0 ≤ Std ≤ 1.0 [Equation 2]
    [상기 식에서, Smd 및 Std는 가로 10cm, 세로 10cm 크기의 폴리에스테르 필름을 150℃에서 30분간 유지시킨 후 JIS C-2318 규격에 따라 측정한 필름의 열수축율(%)을 의미하며, 상기 열수축율(%) = (열처리 전 필름의 길이 - 150℃에서 30분간 유지시킨 후 필름의 길이)/열처리 전 필름의 길이 × 100 이고,[In the above formula, Smd and Std means the heat shrinkage (%) of the film measured according to JIS C-2318 standard after maintaining the polyester film of 10cm in width, 10cm in length for 30 minutes at 150 ℃, the heat shrinkage (%) = (Length of film before heat treatment—length of film after holding at 150 ° C. for 30 minutes) / length of film before heat treatment × 100,
    Smd는 필름의 기계방향(MD)의 수축율(%)을 의미하고, Std는 필름의 폭방향(TD)의 수축율(%)을 의미한다.]Smd means the shrinkage rate (%) in the machine direction (MD) of the film, Std means the shrinkage rate (%) in the width direction (TD) of the film.]
  2. 제1항에 있어서,The method of claim 1,
    상기 폴리에스테르 필름은 하기 식 3 및 4를 만족하는 폴리에스테르 필름.The polyester film is a polyester film satisfying the following formulas 3 and 4.
    - 0.2 ≤ Vmd ≤ 0.2 [식 3]0.2 ≦ Vmd ≦ 0.2 [Equation 3]
    - 0.2 ≤ Vtd ≤ 0.2 [식 4]0.2 ≦ Vtd ≦ 0.2 [Equation 4]
    [상기 식에서, Vmd 및 Vtd는 가로 10cm, 세로 10cm 크기의 폴리에스테르 필름을 150℃에서 30분간 유지시킨 후 JIS C-2318 규격에 따라 측정한 필름의 열수축율(%)을 의미하며, 상기 열수축율(%) = (열처리 전 필름의 길이 - 150℃에서 30분간 유지시킨 후 필름의 길이)/열처리 전 필름의 길이 × 100 이고,In the above formula, Vmd and Vtd means the heat shrinkage (%) of the film measured according to JIS C-2318 standard after maintaining the polyester film of 10cm in width, 10cm in length for 30 minutes at 150 ℃, the heat shrinkage (%) = (Length of film before heat treatment—length of film after holding at 150 ° C. for 30 minutes) / length of film before heat treatment × 100,
    Vmd는 필름 전폭을 기준으로 50cm간격으로 선택된 시료 10개의 기계방향의 열수축율의 편차(%)를 의미하고, Vtd는 필름 전폭을 기준으로 50cm간격으로 선택된 시료 10개의 폭방향의 열수축율의 편차(%)를 의미한다.]Vmd means the deviation (%) of thermal shrinkage in the machine direction of 10 samples selected at 50 cm intervals based on the full width of the film, and Vtd is the deviation of thermal shrinkage in the width direction of 10 samples selected at 50 cm intervals based on the full width of the film ( %).]
  3. 제1항에 있어서,The method of claim 1,
    상기 폴리에스테르 필름은 하기 식 5 내지 식 7을 만족하는 것을 더 포함하는 폴리에스테르 필름. The polyester film is a polyester film further comprising satisfying the following formulas 5 to 7.
    0 ≤ S(45) ≤ 1.0 [식 5]0 ≤ S (45) ≤ 1.0 [Equation 5]
    0 ≤ S(135) ≤ 1.0 [식 6]0 ≤ S (135) ≤ 1.0 [Equation 6]
    │S(135)-S(45)│ ≤ 0.2 [식 7]S (135) -S (45) │ ≤ 0.2 [Equation 7]
    [상기 식에서, S(45) 및 S(135)는 가로 10cm, 세로 10cm 크기의 폴리에스테르 필름을 150℃에서 30분간 유지시킨 후 JIS C-2318 규격에 따라 측정한 필름의 열수축율(%)을 의미하며, 상기 열수축율(%) = (열처리 전 필름의 길이 - 150℃에서 30분간 유지시킨 후 필름의 길이)/열처리 전 필름의 길이 × 100 이다. 또한, S(45)는 필름의 폭방향 (TD)을 기준으로 시계 방향으로 45° 각도의 대각방향 수축율(%)을 의미하며, S(135)는 필름의 폭방향 (TD)을 기준으로 시계 방향으로 135° 각도의 대각방향 수축율(%)을 의미한다.][In the above formula, S (45) and S (135) is a thermal shrinkage (%) of the film measured in accordance with JIS C-2318 standard after maintaining a polyester film of 10cm in width, 10cm in length for 30 minutes at 150 ℃ The thermal contraction rate (%) = (the length of the film before heat treatment-the length of the film after holding for 30 minutes at 150 ℃) / the length of the film before heat treatment × 100. In addition, S (45) refers to the diagonal shrinkage (%) at a 45 ° angle clockwise relative to the film width direction (TD), S (135) is a clock based on the film width direction (TD) Refers to the diagonal shrinkage (%) at an angle of 135 ° in the direction.]
  4. 제1항에 있어서,The method of claim 1,
    상기 폴리에스테르 필름은 하기 식 8 및 식 9를 만족하는 폴리에스테르 필름.The polyester film satisfies the following formula 8 and formula 9.
    0.1590 ≤ ns [식 8]0.1590 ≤ ns [Equation 8]
    Hf ≤ Hi × 2.5 [식 9]Hf ≤ Hi × 2.5 [Equation 9]
    [상기 식에서, ns = {(길이방향 굴절률 + 폭방향 굴절률)/2}-{(길이방향 두께의 굴절률 + 폭방향두께의 굴절률)/2}인 면배향계수를 의미하고,[Wherein, ns = {(length-direction refractive index + width-direction refractive index) / 2}-{(length-direction thickness refractive index + width-direction thickness refractive index) / 2} means a plane orientation coefficient,
    상기 Hf는 150℃에서 30분간 유지시킨 후 필름의 헤이즈이며, Hi는 가열 전 필름의 헤이즈를 나타낸 것이다.]Hf is the haze of the film after holding at 150 ° C. for 30 minutes, and Hi represents the haze of the film before heating.]
  5. 제1항에 있어서,The method of claim 1,
    상기 폴리에스테르 베이스필름은 기재층 및 상기 기재층의 양면에 적어도 2층 이상이 적층된 스킨층을 포함하며,The polyester base film includes a base layer and a skin layer in which at least two layers are laminated on both sides of the base layer,
    상기 스킨층을 이루는 폴리에스테르 수지의 올리고머 함량이 0.3 ~ 0.6 중량%이고, 디에틸렌글리콜의 함량이 0.1 ~ 1.2 중량%인 폴리에스테르 필름.Polyester film constituting the skin layer of the oligomer content of 0.3 to 0.6% by weight, the content of diethylene glycol is 0.1 to 1.2% by weight.
  6. 제5항에 있어서,The method of claim 5,
    상기 폴리에스테르 베이스필름은 기재층과 스킨층을 공압출한 것으로, 고유점도가 하기 식 10을 만족하는 것인 폴리에스테르 필름.The polyester base film is a polyester film coextruded from the base layer and the skin layer, the intrinsic viscosity satisfies the following formula 10.
    [식 1][Equation 1]
    1 < Ns/Nc ≤ 1.2 [식 10]1 <Ns / Nc ≤ 1.2 [Equation 10]
    (상기 식에서, Ns는 스킨층을 이루는 폴리에스테르수지의 고유점도이고, Nc는 기재층을 이루는 폴리에스테르수지의 고유점도이다.)(In the above formula, Ns is the intrinsic viscosity of the polyester resin constituting the skin layer, Nc is the intrinsic viscosity of the polyester resin constituting the base layer.)
  7. 제5항에 있어서,The method of claim 5,
    상기 폴리에스테르 베이스필름은 기재층을 이루는 폴리에스테르 수지의 고유 점도가 0.5 내지 1.0이며, 스킨층을 이루는 폴리에스테르 수지의 고유 점도가 0.6 내지 1.0인 폴리에스테르 필름.The polyester base film is a polyester film having an intrinsic viscosity of 0.5 to 1.0 of the polyester resin constituting the base layer, 0.6 to 1.0 inherent viscosity of the polyester resin constituting the skin layer.
  8. 제1항에 있어서,The method of claim 1,
    상기 프라이머층은 Tg가 60℃이상, 팽윤비(Swelling ratio)가 30%이하, 겔분율(Gel fraction)이 95%이상, 밀도가 1.3 ~ 1.4인 폴리에스테르 필름.The primer layer has a Tg of 60 ° C. or more, a swelling ratio of 30% or less, a gel fraction of 95% or more, and a density of 1.3 to 1.4 polyester film.
  9. 제1항에 있어서,The method of claim 1,
    상기 폴리에스테르 필름은 하기 식 11에 따른 헤이즈 변화율(△H)이 0.1% 이하인 폴리에스테르 필름.The polyester film is a polyester film, the haze change rate (ΔH) according to the following formula 11 is 0.1% or less.
    △H(%) = Hf - Hi [식 11]ΔH (%) = Hf − Hi [Equation 11]
    (상기 식에서, Hf는 150℃에서 60분 동안 유지시킨 후 필름의 헤이즈이고, Hi는 가열 전 필름의 헤이즈이다.) (Hf is the haze of the film after holding at 150 ° C. for 60 minutes, and Hi is the haze of the film before heating.)
  10. 제 1항에 있어서,The method of claim 1,
    상기 수분산성 수지조성물은 글리시딜기 함유 라디칼 중합성 불포화 모노머가 공중합된 아크릴계 수지(A)와 수분산성 폴리에스테르계 수지(B)로 이루어진 바인더 수지를 포함하며, The water-dispersible resin composition includes a binder resin composed of an acrylic resin (A) copolymerized with a glycidyl group-containing radical polymerizable unsaturated monomer and a water-dispersible polyester resin (B),
    상기 글리시딜기 함유 라디칼 중합성 불포화 모노머가 공중합된 아크릴계 수지(A)와 수분산성 폴리에스테르계 수지(B)의 고형분 중량비가 (A)/(B) = 20 ~ 80 / 80 ~ 20인 폴리에스테르 필름.Polyester having a solid content weight ratio of the acrylic resin (A) copolymerized with the glycidyl group-containing radically polymerizable unsaturated monomer and the water dispersible polyester resin (B) is (A) / (B) = 20 to 80/80 to 20 film.
  11. 제 1항에 있어서,The method of claim 1,
    상기 수분산성 수지조성물은 바인더 수지의 고형분 함량이 0.5 ~ 10 중량%인 폴리에스테르 필름.The water dispersible resin composition is a polyester film having a solid content of 0.5 to 10% by weight of the binder resin.
  12. 제 1항에 있어서,The method of claim 1,
    상기 수분산성 수지조성물은 실리콘계 웨팅제를 더 포함하는 것인 폴리에스테르 필름.The water-dispersible resin composition is a polyester film further comprising a silicone-based wetting agent.
  13. 제 10항에 있어서,The method of claim 10,
    상기 수분산성 폴리에스테르계 수지는 술폰산 알칼리 금속염 화합물을 포함하는 디카르복실산 성분과, 디에틸렌글리콜을 포함하는 글리콜성분이 공중합된 것인 폴리에스테르 필름.The water-dispersible polyester-based resin is a polyester film in which a dicarboxylic acid component containing a sulfonic acid alkali metal salt compound and a glycol component containing diethylene glycol are copolymerized.
  14. 제 10항에 있어서,The method of claim 10,
    상기 수분산성 폴리에스테르계 수지는 디에틸렌글리콜을 전체 글리콜 성분 중 20 ~ 80 몰% 함유하는 것인 폴리에스테르 필름.The water-dispersible polyester-based resin is a polyester film containing 20 to 80 mol% of diethylene glycol in the total glycol component.
  15. 제 10항에 있어서,The method of claim 10,
    상기 수분산성 폴리에스테르계 수지는 술폰산 알칼리 금속염 화합물을 전체 산 성분 중 6 ~ 20 몰% 함유하는 것인 폴리에스테르 필름.The water-dispersible polyester-based resin is a polyester film containing 6 to 20 mol% of the sulfonic acid alkali metal salt compound in the total acid component.
  16. 제 10항에 있어서,The method of claim 10,
    상기 아크릴계 수지는 공중합 모노머로 글리시딜기 함유 라디칼 중합성 불포화 모노머를 전체 모노머 성분 중 20 ~ 80 몰% 함유하는 것인 폴리에스테르 필름.The acrylic resin is a polyester film containing 20 to 80 mol% of the glycidyl group-containing radically polymerizable unsaturated monomer as the copolymerization monomer.
  17. 제 1항에 있어서,The method of claim 1,
    상기 폴리에스테르 베이스필름은 폴리에틸렌테레프탈레이트 필름인 폴리에스테르 필름.The polyester base film is a polyester film which is a polyethylene terephthalate film.
  18. 제 1항에 있어서,The method of claim 1,
    상기 폴리에스테르 베이스필름은 두께가 25 ~ 250㎛인 폴리에스테르 필름.The polyester base film is a polyester film having a thickness of 25 ~ 250㎛.
  19. 제 1항에 있어서,The method of claim 1,
    상기 프라이머층은 건조도포두께가 20 ~ 150nm인 폴리에스테르 필름.The primer layer has a dry coating thickness of 20 ~ 150nm polyester film.
  20. 제 5항에 있어서,The method of claim 5,
    상기 폴리에스테르 베이스필름은 기재층이 70 ~ 90 중량%이고, 스킨층이 10 ~ 30 중량%인 폴리에스테르 필름.The polyester base film is a polyester film 70 ~ 90% by weight of the base layer, 10 ~ 30% by weight of the skin layer.
  21. 제 1항에 있어서,The method of claim 1,
    상기 폴리에스테르 필름은 표면조도(Ra)가 10nm이하인 폴리에스테르 필름.The polyester film has a surface roughness (Ra) of 10 nm or less polyester film.
  22. 제 5항에 있어서,The method of claim 5,
    상기 스킨층은 무기입자를 100ppm이하로 포함하는 것인 폴리에스테르 다층필름.The skin layer is a polyester multilayer film containing less than 100ppm inorganic particles.
  23. 제 21항에 있어서,The method of claim 21,
    상기 무기입자는 평균입경이 3㎛미만인 폴리에스테르 다층필름.The inorganic particles are polyester multilayer film having an average particle diameter of less than 3㎛.
  24. 제 21항에 있어서,The method of claim 21,
    상기 무기입자는 실리카, 제올라이트, 카올린에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 폴리에스테르 다층필름.The inorganic particles are any one or a mixture of two or more selected from silica, zeolite, kaolin, polyester multilayer film.
  25. 제 1항 내지 제 24항 중에서 선택되는 어느 한 항의 폴리에스테르 필름의 상부에 하드코팅층, 점착제층, 광확산층, ITO층 및 인쇄층에서 선택되는 어느 하나 이상의 기능성 코팅층을 형성한 광학필름.An optical film having at least one functional coating layer selected from a hard coating layer, an adhesive layer, a light diffusing layer, an ITO layer, and a printing layer on the polyester film of any one of claims 1 to 24.
  26. a) 기계방향으로 1축 연신된 폴리에스테르 베이스필름을 제조하는 단계;a) preparing a uniaxially stretched polyester base film in the machine direction;
    b) 상기 1축 연신된 폴리에스테르 베이스필름의 일면 또는 양면에 올리고머 차단특성을 갖는 수분산성 수지조성물을 도포하여 프라이머층을 형성하는 단계;b) forming a primer layer by applying a water-dispersible resin composition having oligomer barrier properties to one or both surfaces of the uniaxially stretched polyester base film;
    c) 상기 프라이머층이 형성된 1축 연신된 폴리에스테르 베이스필름을 폭방향(TD)으로 2축 연신하는 단계; 및c) biaxially stretching the uniaxially stretched polyester base film on which the primer layer is formed in the width direction (TD); And
    d) 상기 2축 연신된 필름을 열고정 및 하기 식 12를 만족하는 범위로 기계방향(MD)의 이완을 수행하는 단계;d) heat setting the biaxially stretched film and performing relaxation in the machine direction (MD) in a range satisfying Equation 12 below;
    1.1 ≤ 이완비율(%) ≤ 2.5 [식 12]1.1 ≤ relaxation ratio (%) ≤ 2.5 [Equation 12]
    (상기 식에서, 이완비율(%) = (이완처리 구간 내 필름의 주행 속도 - 이완처리 구간 전 필름의 주행 속도)/이완처리 구간 전 필름의 주행 속도 × 100이다.)(In the above formula, the relaxation ratio (%) = (travel speed of the film in the relaxation section-travel speed of the film before the relaxation section) / running speed of the film before the relaxation section × 100.)
    를 포함하는 폴리에스테르 필름의 제조방법.Method for producing a polyester film comprising a.
  27. 제 26항에 있어서,The method of claim 26,
    상기 d)단계에서, 기계방향(MD)의 이완은 하기 식 13을 만족하는 온도 범위에서 수행하는 것인 폴리에스테르 필름의 제조방법.In the step d), the relaxation of the machine direction (MD) is performed in a temperature range satisfying the following equation 13.
    연신 온도(℃) ≤ 이완 온도(℃) < 열고정 온도(℃) [식 13]Drawing temperature (℃) ≤ Relaxation temperature (℃) <heat setting temperature (℃) [Equation 13]
  28. 제 26항에 있어서,The method of claim 26,
    상기 수분산성 수지조성물은 글리시딜기 함유 라디칼 중합성 불포화 모노머가 공중합된 아크릴계 수지(A)와 수분산성 폴리에스테르계 수지(B)로 이루어진 바인더 수지를 포함하며, 상기 글리시딜기 함유 라디칼 중합성 불포화 모노머가 공중합된 아크릴계 수지(A)와 수분산성 폴리에스테르계 수지(B)의 고형분 중량비가 (A)/(B) = 20 ~ 80 / 80 ~ 20인 폴리에스테르 필름의 제조방법.The water-dispersible resin composition includes a binder resin comprising an acrylic resin (A) copolymerized with a glycidyl group-containing radical polymerizable unsaturated monomer and a water-dispersible polyester resin (B), and the glycidyl group-containing radical polymerizable unsaturated The manufacturing method of the polyester film whose solid content weight ratio of the acryl-type resin (A) copolymerized with the monomer and water-dispersible polyester-based resin (B) is (A) / (B) = 20-80 / 80-20.
  29. 제 26항에 있어서,The method of claim 26,
    상기 폴리에스테르 필름은 열수축율(%)이 하기 식 1 내지 식 4를 만족하는 폴리에스테르 필름의 제조방법.The polyester film is a method for producing a polyester film, the heat shrinkage (%) satisfies the following formula 1 to formula 4.
    0 ≤ Smd ≤ 1.0 [식 1]0 ≤ Smd ≤ 1.0 [Equation 1]
    0 ≤ Std ≤ 0.5 [식 2]0 ≤ Std ≤ 0.5 [Equation 2]
    - 0.2 ≤ Vmd ≤ 0.2 [식 3]0.2 ≦ Vmd ≦ 0.2 [Equation 3]
    - 0.2 ≤ Vtd ≤ 0.2 [식 4]0.2 ≦ Vtd ≦ 0.2 [Equation 4]
    [상기 식에서, Smd, Std, Vmd 및 Vtd는 가로 10cm, 세로 10cm 크기의 폴리에스테르 필름을 150℃에서 30분간 유지시킨 후 JIS C-2318 규격에 따라 측정한 필름의 열수축율(%)을 의미하며, 상기 열수축율(%) = (열처리 전 필름의 길이 - 150℃에서 30분간 유지시킨 후 필름의 길이)/열처리 전 필름의 길이 × 100 이고,[In the above formula, Smd, Std, Vmd and Vtd means the thermal shrinkage (%) of the film measured according to JIS C-2318 standard after maintaining the polyester film of 10cm in width, 10cm in length for 30 minutes at 150 ℃ , The heat shrinkage percentage (%) = (length of the film before heat treatment-the length of the film after holding for 30 minutes at 150 ℃) / length of the film before heat treatment × 100,
    Smd는 필름의 기계방향(MD)의 수축율(%)을 의미하고, Std는 필름의 폭방향(TD)의 수축율(%)을 의미하며, Vmd는 필름 전폭을 기준으로 50cm간격으로 선택된 시료 10개의 기계방향의 열수축율의 편차(%)를 의미하고, Vtd는 필름 전폭을 기준으로 50cm간격으로 선택된 시료 10개의 폭방향의 열수축율의 편차(%)를 의미한다.]Smd means the shrinkage rate (%) in the machine direction (MD) of the film, Std means the shrinkage rate (%) in the width direction (TD) of the film, Vmd is 10 samples selected at 50cm intervals based on the full width of the film The deviation of thermal shrinkage in the machine direction (%), Vtd refers to the deviation (%) of thermal shrinkage in the width direction of 10 samples selected at 50cm intervals based on the full width of the film.]
  30. 제 26항에 있어서,The method of claim 26,
    상기 폴리에스테르 필름은 하기 식 5 내지 식 7을 만족하는 것을 더 포함하는 폴리에스테르 필름. The polyester film is a polyester film further comprising satisfying the following formulas 5 to 7.
    0 ≤ S(45) ≤ 1.0 [식 5]0 ≤ S (45) ≤ 1.0 [Equation 5]
    0 ≤ S(135) ≤ 1.0 [식 6]0 ≤ S (135) ≤ 1.0 [Equation 6]
    │S(135)-S(45)│ ≤ 0.2 [식 7]S (135) -S (45) │ ≤ 0.2 [Equation 7]
    [상기 식에서, S(45) 및 S(135)는 가로 10cm, 세로 10cm 크기의 폴리에스테르 필름을 150℃에서 30분간 유지시킨 후 JIS C-2318 규격에 따라 측정한 필름의 열수축율(%)을 의미하며, 상기 열수축율(%) = (열처리 전 필름의 길이 - 150℃에서 30분간 유지시킨 후 필름의 길이)/열처리 전 필름의 길이 × 100 이다. 또한, S(45)는 필름의 폭방향 (TD)을 기준으로 시계 방향으로 45° 각도의 대각방향 수축율(%)을 의미하며, S(135)는 필름의 폭방향 (TD)을 기준으로 시계 방향으로 135° 각도의 대각방향 수축율(%)을 의미한다.][In the above formula, S (45) and S (135) is a thermal shrinkage (%) of the film measured in accordance with JIS C-2318 standard after maintaining a polyester film of 10cm in width, 10cm in length for 30 minutes at 150 ℃ The thermal contraction rate (%) = (the length of the film before heat treatment-the length of the film after holding for 30 minutes at 150 ℃) / the length of the film before heat treatment × 100. In addition, S (45) refers to the diagonal shrinkage (%) at a 45 ° angle clockwise relative to the film width direction (TD), S (135) is a clock based on the film width direction (TD) Refers to the diagonal shrinkage (%) at an angle of 135 ° in the direction.]
  31. 제 26항에 있어서,The method of claim 26,
    상기 프라이머층은 Tg가 60℃이상, 팽윤비(Swelling ratio)가 30%이하, 겔 분율(Gel fraction)이 95%이상, 밀도가 1.3 ~ 1.4인 폴리에스테르 필름의 제조방법.The primer layer has a T g of 60 ° C. or more, a swelling ratio of 30% or less, a gel fraction of 95% or more, and a density of 1.3 to 1.4.
  32. 제 26항에 있어서,The method of claim 26,
    상기 폴리에스테르 필름은 하기 식 11에 따른 헤이즈 변화율(△H)이 0.1% 이하인 폴리에스테르 필름의 제조방법.The said polyester film is a manufacturing method of the polyester film whose haze change rate ((DELTA) H) based on following formula 11 is 0.1% or less.
    △H(%) = Hf - Hi [식 11]ΔH (%) = Hf − Hi [Equation 11]
    (상기 식에서, Hf는 150℃에서 60분 동안 유지시킨 후 필름의 헤이즈이고, Hi는 가열 전 필름의 헤이즈이다.) (Hf is the haze of the film after holding at 150 ° C. for 60 minutes, and Hi is the haze of the film before heating.)
  33. a) 폴리에스테르수지의 올리고머 함량이 0.3 ~ 0.6 중량%이고, 디에틸렌글리콜의 함량이 0.1 ~ 1.2 중량%인 제 1 폴리에스테르 수지를 포함하는 스킨층 조성물과, 고유점도가 하기 식 10을 만족하는 기재층용 제 2 폴리에스테르 수지를 용융압출하여 공압출하는 단계;a) a skin layer composition comprising a first polyester resin having an oligomer content of 0.3 to 0.6% by weight and a diethylene glycol content of 0.1 to 1.2% by weight, and an intrinsic viscosity satisfying Melting and extruding the second polyester resin for the base layer;
    1 < Ns/Nc ≤ 1.2 [식 10] 1 <Ns / Nc ≤ 1.2 [Equation 10]
    (상기 식에서, Ns는 스킨층을 이루는 폴리에스테르수지의 고유점도이고, Nc는 기재층을 이루는 폴리에스테르수지의 고유점도이다.)(In the above formula, Ns is the intrinsic viscosity of the polyester resin constituting the skin layer, Nc is the intrinsic viscosity of the polyester resin constituting the base layer.)
    b) 공압출된 시트를 일축 또는 이축 연신하여 필름을 제조하는 단계;b) uniaxially or biaxially stretching the coextruded sheet to produce a film;
    c) 연신된 필름을 열고정 및 하기 식 14를 만족하는 범위로 폭방향(TD)의 이완을 수행하는 단계;c) heat-setting the stretched film and performing relaxation in the width direction (TD) in a range satisfying Equation 14 below;
    2 ≤ TDr(%) ≤ 11.5 [식 14]2 ≤ TDr (%) ≤ 11.5 [Equation 14]
    [상기 식에서, TDr은 폭방향(TD)의 이완비율을 의미하고, 이완비율(%) = {(이완처리 구간 전 필름의 폭방향의 최대폭길이 - 이완처리 구간 내 필름의 폭방향의 최소폭길이)/이완처리 구간 전 필름의 최대폭길이} × 100이다.][In the above formula, TDr means the relaxation ratio in the width direction (TD), the relaxation ratio (%) = {(maximum width of the width direction of the film before the relaxation section-minimum width of the width direction of the film in the relaxation section ) / The maximum width of the film before the relaxation section} × 100.]
    를 포함하는 폴리에스테르 필름의 제조방법.Method for producing a polyester film comprising a.
  34. 제 33항에 있어서,The method of claim 33, wherein
    상기 a)단계에서 스킨층 조성물은 무기입자를 100ppm이하로 포함하는 것인 폴리에스테르 필름의 제조방법.Skin layer composition in step a) is a method for producing a polyester film containing less than 100ppm inorganic particles.
  35. 제 33항에 있어서,The method of claim 33, wherein
    상기 무기입자는 평균입경이 3㎛미만인 폴리에스테르 필름의 제조방법.The inorganic particles are a method for producing a polyester film having an average particle diameter of less than 3㎛.
  36. 제 33항에 있어서,The method of claim 33, wherein
    상기 폴리에스테르 필름의 표면조도(Ra)가 10nm이하이고, 열수축율이 하기 식 1 내지 식 2를 만족하고, 면배향계수(ns)가 하기 식 8을 만족하며, 150℃에서 30분간 유지시킨 후 필름의 헤이즈가 하기 식 9를 만족하는 폴리에스테르 다층필름의 제조방법.After the surface roughness (Ra) of the polyester film is 10nm or less, the heat shrinkage satisfies the following formula 1 to formula 2, the surface orientation coefficient (ns) satisfies the following formula 8, and maintained for 30 minutes at 150 ℃ The manufacturing method of the polyester multilayer film in which the haze of a film satisfy | fills following formula 9.
    0 ≤ Smd ≤ 1.5 [식 1]0 ≤ Smd ≤ 1.5 [Equation 1]
    0 ≤ Std ≤ 1.0 [식 2]0 ≤ Std ≤ 1.0 [Equation 2]
    0.1590 ≤ ns [식 8]0.1590 ≤ ns [Equation 8]
    Hf ≤ Hi × 2.5 [식 9]Hf ≤ Hi × 2.5 [Equation 9]
    (상기 식에서, Smd, Std는 가로 10cm, 세로 10cm 크기의 필름을 150℃에서 30분간 유지시킨 후 JIS C-2318 규격에 따라 측정한 필름의 열수축율(%)을 의미하며, 상기 열수축율(%) = (열처리 전 필름의 길이 - 150℃에서 30분간 유지시킨 후 필름의 길이)/열처리 전 필름의 길이 × 100 이고, Smd는 필름의 길이방향(MD)의 수축율(%)을 의미하고, Std는 필름의 폭방향(TD)의 수축율(%)을 의미하며,(In the above formula, Smd, Std means the heat shrinkage rate (%) of the film measured according to JIS C-2318 standard after maintaining the horizontal 10cm, vertical 10cm size film at 150 ℃ for 30 minutes, the thermal shrinkage (% ) = (Length of film before heat treatment-length of film after holding at 150 ° C. for 30 minutes) / length of film before heat treatment x 100, Smd means shrinkage percentage (%) of film direction (MD), Std Means the shrinkage percentage (%) of the width direction (TD) of the film,
    상기 면배향계수(ns) = {(길이방향 굴절률 + 폭방향 굴절률)/2}-{(길이방향 두께의 굴절률 + 폭방향두께의 굴절률)/2}이고,The plane orientation coefficient (ns) = {(length direction refractive index + width direction refractive index) / 2}-{(length direction thickness refractive index + width direction thickness refractive index) / 2},
    상기 Hf는 150℃에서 30분간 유지시킨 후 필름의 헤이즈이고, Hi는 가열 전 필름의 헤이즈이다.]Hf is the haze of the film after holding at 150 ° C. for 30 minutes, and Hi is the haze of the film before heating.]
  37. 제 33항에 있어서,The method of claim 33, wherein
    상기 폴리에스테르 베이스필름은 기재층과 스킨층을 공압출한 것으로, 고유점도가 하기 식 10을 만족하는 것인 폴리에스테르 다층필름의 제조방법.The polyester base film is a co-extrusion of the base layer and the skin layer, the method of producing a polyester multilayer film that the intrinsic viscosity satisfies the following formula 10.
    1 < Ns/Nc ≤ 1.2 [식 10] 1 <Ns / Nc ≤ 1.2 [Equation 10]
    (상기 식에서, Ns는 스킨층을 이루는 폴리에스테르수지의 고유점도이고, Nc는 기재층을 이루는 폴리에스테르수지의 고유점도이다.)(In the above formula, Ns is the intrinsic viscosity of the polyester resin constituting the skin layer, Nc is the intrinsic viscosity of the polyester resin constituting the base layer.)
  38. 제 33항에 있어서,The method of claim 33, wherein
    상기 c)단계에서 이완 시, 폭방향의 이완과 동시에 하기 식 15를 만족하는 범위로 길이방향의 이완을 수행하는 것인 폴리에스테르 다층필름의 제조방법.When relaxing in the step c), at the same time to relax in the width direction at the same time to perform the relaxation in the longitudinal direction in a range satisfying the following equation 15 polyester polyester film production method.
    0.3 ≤ MDr(%) ≤ 2.5 [식 15]0.3 ≤ MDr (%) ≤ 2.5 [Equation 15]
    [상기 식에서, MDr은 기계방향의 이완비율을 의미하고, 이완비율(%) = (이완처리 구간 내 필름의 주행 속도 - 이완처리 구간 전 필름의 주행 속도)/이완처리 구간 전 필름의 주행 속도 × 100이다.][In the above formula, MDr means the relaxation ratio in the machine direction, the relaxation ratio (%) = (travel speed of the film in the relaxation section-running speed of the film before the relaxation section) / running speed of the film before the relaxation section × 100.]
PCT/KR2014/005737 2013-06-27 2014-06-27 Polyester film and method for manufacturing same WO2014209056A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480046297.3A CN105473649B (en) 2013-06-27 2014-06-27 Polyester film and preparation method thereof
JP2016523651A JP2016525465A (en) 2013-06-27 2014-06-27 Polyester film and method for producing the same
CN201811653488.2A CN110028687B (en) 2013-06-27 2014-06-27 Polyester film and method for producing same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2013-0074235 2013-06-27
KR1020130074235A KR101985469B1 (en) 2013-06-27 2013-06-27 Polyester multi-layer film and manufacturing method thereof
KR20130075812 2013-06-28
KR10-2013-0075812 2013-06-28
KR1020130075754A KR101998344B1 (en) 2013-06-28 2013-06-28 Polyester multi-layer film
KR10-2013-0075754 2013-06-28
KR10-2014-0078719 2014-06-26
KR1020140078719A KR102186530B1 (en) 2013-06-28 2014-06-26 Polyester film and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2014209056A1 true WO2014209056A1 (en) 2014-12-31

Family

ID=52142300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/005737 WO2014209056A1 (en) 2013-06-27 2014-06-27 Polyester film and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2014209056A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107267079A (en) * 2016-03-31 2017-10-20 可隆工业株式会社 Polyester film
JP2018538162A (en) * 2015-10-16 2018-12-27 トーレ・フィルムズ・ヨーロッパ Improved polyester / primer / metal composite film that is tacky and impermeable to gas, method for its production, and primer used in such method
US10286597B2 (en) * 2015-10-02 2019-05-14 Unitika Ltd. Polyester film, laminate, and method for producing polyester film
KR102052843B1 (en) * 2019-01-07 2019-12-06 도레이첨단소재 주식회사 Polarizer-protecting polyester film and manufacturing method thereof and polarization plate using the same
CN113861465A (en) * 2021-09-28 2021-12-31 中国科学技术大学 Optical polyester film and preparation method thereof
CN113861475A (en) * 2021-09-28 2021-12-31 中国科学技术大学 Polyester film for optical display and preparation method thereof
CN114196052A (en) * 2020-09-16 2022-03-18 南亚塑胶工业股份有限公司 Polyester film and coating liquid
CN114728498A (en) * 2019-11-20 2022-07-08 东洋纺株式会社 Laminated film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004066617A (en) * 2002-08-06 2004-03-04 Teijin Dupont Films Japan Ltd Biaxially oriented polyester film
JP2007253511A (en) * 2006-03-24 2007-10-04 Toray Ind Inc Laminated polyester film and display member using it
JP2009292949A (en) * 2008-06-05 2009-12-17 Toyobo Co Ltd Oriented polyester film for forming
KR20110051801A (en) * 2009-11-11 2011-05-18 도레이첨단소재 주식회사 Biaxially-oriented polyester adhesive film with copolymeric polyester resin for improving surface leveling property
KR20130003505A (en) * 2011-06-30 2013-01-09 코오롱인더스트리 주식회사 Laminated film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004066617A (en) * 2002-08-06 2004-03-04 Teijin Dupont Films Japan Ltd Biaxially oriented polyester film
JP2007253511A (en) * 2006-03-24 2007-10-04 Toray Ind Inc Laminated polyester film and display member using it
JP2009292949A (en) * 2008-06-05 2009-12-17 Toyobo Co Ltd Oriented polyester film for forming
KR20110051801A (en) * 2009-11-11 2011-05-18 도레이첨단소재 주식회사 Biaxially-oriented polyester adhesive film with copolymeric polyester resin for improving surface leveling property
KR20130003505A (en) * 2011-06-30 2013-01-09 코오롱인더스트리 주식회사 Laminated film

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10286597B2 (en) * 2015-10-02 2019-05-14 Unitika Ltd. Polyester film, laminate, and method for producing polyester film
JP2018538162A (en) * 2015-10-16 2018-12-27 トーレ・フィルムズ・ヨーロッパ Improved polyester / primer / metal composite film that is tacky and impermeable to gas, method for its production, and primer used in such method
CN107267079A (en) * 2016-03-31 2017-10-20 可隆工业株式会社 Polyester film
CN107267079B (en) * 2016-03-31 2020-07-24 可隆工业株式会社 Polyester film
KR102052843B1 (en) * 2019-01-07 2019-12-06 도레이첨단소재 주식회사 Polarizer-protecting polyester film and manufacturing method thereof and polarization plate using the same
WO2020145451A1 (en) * 2019-01-07 2020-07-16 도레이첨단소재 주식회사 Polyester film for protecting polarizer, manufacturing method therefor, and polarizing film comprising same
CN114728498A (en) * 2019-11-20 2022-07-08 东洋纺株式会社 Laminated film
CN114728498B (en) * 2019-11-20 2024-01-12 东洋纺株式会社 Laminated film
CN114196052A (en) * 2020-09-16 2022-03-18 南亚塑胶工业股份有限公司 Polyester film and coating liquid
CN113861475A (en) * 2021-09-28 2021-12-31 中国科学技术大学 Polyester film for optical display and preparation method thereof
CN113861465A (en) * 2021-09-28 2021-12-31 中国科学技术大学 Optical polyester film and preparation method thereof
CN113861475B (en) * 2021-09-28 2022-12-30 中国科学技术大学 Polyester film for optical display and preparation method thereof
CN113861465B (en) * 2021-09-28 2023-06-20 中国科学技术大学 Optical polyester film and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2014209056A1 (en) Polyester film and method for manufacturing same
WO2017111300A1 (en) Polyamic acid solution to which diamine monomer having novel structure is applied, and polyimide film comprising same
WO2014185685A1 (en) Polarizing plate
WO2018004288A2 (en) Polyester multilayered film
WO2013048156A2 (en) Water-dispersion composition and optical film using same
WO2014193072A1 (en) Optical film with excellent ultraviolet cut-off function and polarizing plate including same
WO2012128518A9 (en) Polyester-based deposition film
WO2018124585A1 (en) Polyester resin, preparation method therefor, and copolymer polyester film manufacturing method using same
WO2021060752A1 (en) Polyimide-based film having excellent surface evenness and method for producing same
WO2018147606A1 (en) Polyamide-imide film and method for preparing same
WO2024010242A1 (en) Release film
WO2021246851A1 (en) Polyester release film and method for manufacturing same
WO2021221374A1 (en) Polyamide-based composite film and display device comprising same
WO2022182014A1 (en) Photonic crystal structure and manufacturing method therefor
WO2022045737A1 (en) Positive photosensitive resin composition
WO2018147617A1 (en) Polyamide-imide film and method for producing same
WO2019160355A1 (en) Film touch sensor and structural body for film touch sensor
WO2020235773A1 (en) Tile flooring material
WO2022220513A1 (en) Biaxially stretched film, laminate, and eco-friendly packaging material comprising film
WO2021085938A1 (en) Polyester-based film, and method for recycling polyester-based container using same
WO2024019353A1 (en) Multilayer sheet and multilayer electronic device
WO2023043100A1 (en) Multilayered biodegradable film, method for manufacturing same, and eco-friendly packaging material comprising same
WO2022045764A1 (en) Polyester film and method for preparing same
WO2023068594A1 (en) Biodegradable polyester resin, and biodegradable polyester film and laminate comprising same
WO2023277647A1 (en) Optical film and panel comprising same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480046297.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14817056

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016523651

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14817056

Country of ref document: EP

Kind code of ref document: A1