WO2014208922A1 - Hydraulic rotating striking device - Google Patents

Hydraulic rotating striking device Download PDF

Info

Publication number
WO2014208922A1
WO2014208922A1 PCT/KR2014/005334 KR2014005334W WO2014208922A1 WO 2014208922 A1 WO2014208922 A1 WO 2014208922A1 KR 2014005334 W KR2014005334 W KR 2014005334W WO 2014208922 A1 WO2014208922 A1 WO 2014208922A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure chamber
shock absorber
hydraulic
low pressure
striking
Prior art date
Application number
PCT/KR2014/005334
Other languages
French (fr)
Korean (ko)
Inventor
김진국
Original Assignee
주식회사 에버다임
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140061905A external-priority patent/KR101565140B1/en
Application filed by 주식회사 에버다임 filed Critical 주식회사 에버다임
Publication of WO2014208922A1 publication Critical patent/WO2014208922A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B6/00Drives for drilling with combined rotary and percussive action
    • E21B6/02Drives for drilling with combined rotary and percussive action the rotation being continuous
    • E21B6/04Separate drives for percussion and rotation

Definitions

  • the present invention relates to a hydraulic rotary striking device, and more particularly to a hydraulic rotary striking device having an impact buffer device for improving the drilling performance and increase the durability of the striking device.
  • blasting works are performed to crush crushed materials such as rocks and soil for the purpose of collecting aggregates and removing rocks.In this case, blasting powder is charged for blasting work. Hydraulic drilling machines (rock drills) are used to drill holes for charging powders in the crushed material such as rocks and ground.
  • a hydraulic rotary striking device (drifter) 30 such as the example shown in FIG. 1 on the mast of the hydraulic boring machine for drilling the charge charging hole into the to-be-shipped material enables the reciprocating conveyance on the guide. Is mounted.
  • the hydraulic perforator transfers the rod 34 on the mast through a transfer means such as a cylinder or a hydraulic feed motor during the perforation of the crushed material 90.
  • a transfer means such as a cylinder or a hydraulic feed motor during the perforation of the crushed material 90.
  • the impact piston 32 for performing a reciprocating motion by hydraulic pressure in the hydraulic rotary striking device 30 is the shank (34)
  • the hydraulic pressure By transmitting the driving force and the rotational driving force transmitted from the hydraulic motor 80 to the drill bit 70 in contact with the object 90 through the shank 34 and the rod 60, the hydraulic pressure
  • the rotational driving force of the motor 80 and the striking force of the striking piston 32 are applied to the crushed object 90 to perform the function of crushing the crushed object 90.
  • the hydraulic structure of the hydraulic rotary striking device 30 will be described in detail.
  • the hydraulic oil discharged from the first hydraulic pump 10 is supplied to the hydraulic rotary striking device 30, the hydraulic type is applied.
  • the reciprocating motion of the striking piston 32 is performed, and at this time, the kinetic energy generated when the striking piston 32 descends is converted into impact energy by the striking piston 32 striking the shank 34.
  • the impact energy generated when the striking piston 32 strikes the shank 34 is transmitted to the drill bit 70 installed at the end portion through one or more rods 60 engaged with the shank 34.
  • the impact energy transmitted to the drill bit 70 is transmitted to the crushed object 90 in contact with the crushed object 90.
  • the hydraulic oil when discharged from the second hydraulic pump 20, it is supplied to the hydraulic motor 80 through the third control valve 22 through the flow path, the second hydraulic pump 20 in the hydraulic motor (80).
  • the rotational driving force is generated by the high-pressure hydraulic fluid discharged from the hydraulic drive, and the rotational driving force generated by the hydraulic motor 80 drives the pinion gear 82 to rotate.
  • the pinion gear 82 is engaged with the drive gear 36 so that the rotational driving force generated from the hydraulic motor 80 is transmitted to the drive gear 36.
  • the rotational driving force transmitted to the drive gear 36 rotates the shank 34 coupled to the drive gear 36 through a fastening means such as a spline 56 and the like, and is transmitted to the shank 34.
  • the rotational driving force is transmitted to one or more rods 60 connected to the shank 34, and the rotational driving force transmitted to the rods 60 rotates the drill bit 70 coupled to the end of the rod 60.
  • the rotational driving force transmitted to the drill bit 70 is transmitted to the crushed object 90 so that the crushed object 90 is crushed.
  • the structure of the conventional hydraulic rotary striking device driven by the above operation is engaged with the pinion gear 82 so that the rotational driving force of the hydraulic motor 80 can be transmitted to the shank 34.
  • the lower side portion of the thrust plate 38 is in contact with the upper side of the drive gear 36 to be connected, and the upper side portion of the thrust plate 38 is the body portion 40 of the striking device 30. It is formed to contact with.
  • the striking force generated when the striking piston 32 strikes the shank 34 is not completely used for the crushing of the crushed object 90, and a part of the crushing force is reflected from the crushed object 90 so that the drill bit 70 and It is transmitted to the striking device 30 via the rod 60 and the shank 34.
  • the impact reaction force is increased as the strength of the crushed object 90 increases, and thus the contact surface of the drive gear 36 and the thrust plate 38 and the contact surface of the thrust plate 38 and the body part 40.
  • the transmitted reaction force is also increased.
  • the impact reaction force acts in a direction U opposite to the drilling direction D, that is, in a direction of separating the contact between the crushed object 90 and the drill bit 70, and thus, the drill bit (
  • the contact force applied to contact 70 is lowered, and in some cases, the contact between the drill bit 70 and the crushed object 90 is released when the impact reaction force is greater than the force for pressing the drill bit 70. Will be generated until.
  • the upper surface of the thrust plate 38 hits the lower side of the thrust plate 38 and at the same time the upper side of the thrust plate 38 hits the body portion 40 of the striking device 30, the drive gear 36, Severe damage to the strut plate 38 and the striking device 30 It can result.
  • the type and strength of the crushed object 90 is changed depending on the depth of drilling during the drilling operation, when the hardness of the crushed object 90 suddenly lowers due to the sudden appearance of soft ground, such as a cylinder or a hydraulic feed motor of a hydraulic punching machine.
  • the drilling speed of the drill bit 70 with respect to the to-be-damaged object 90 is increased instantaneously rather than the feeding speed D of the striking device 30.
  • the contact between the drill bit 70 and the object 90 is released because the contact between the drill bit 70 and the object 90 is not formed, resulting in a thrust of the drive gear 36 and the thrust.
  • the contact surface of the plate 38 and the contact between the thrust plate 38 and the body portion 40 of the striking device 30 are released.
  • an object of the present invention is to prevent the damage of the striking device due to friction during rotational drive by preventing contact of the internal parts of the striking device and the body part during the drilling operation, and at the same time hydraulically buffers the impact reaction from the crushed object back to the striking device Accordingly, an object of the present invention is to provide a hydraulic rotary striking device having an impact buffer device that can prevent mechanical shock from being transmitted to a body part of the striking device.
  • the drill bit of the drill bit to the object to be crushed is faster than the conveying speed of the striking device by a conveying means such as a cylinder or a hydraulic feed motor to prevent the contact of the drill bit and the object to be released momentarily to prevent the drill bit and the object to be released.
  • a conveying means such as a cylinder or a hydraulic feed motor to prevent the contact of the drill bit and the object to be released momentarily to prevent the drill bit and the object to be released.
  • An object of the present invention is to provide a hydraulic rotary blower with a function to prevent the damage.
  • the hydraulic rotary striking device configured to enable the reciprocating movement of the striking piston by a hydraulic circuit having a plurality of flow paths and control valves, the interior of the striking device An impact buffer device is installed so as to be able to slide on the coaxial line with the striking piston.
  • a through hole is formed in the center of the shock absorber to accommodate the striking piston, and an annular collar portion protruding outward is provided in the center of the outer diameter portion.
  • the upper portion is provided with an upper and lower portion facing the inner upper end of the body portion on the basis of the collar portion, the lower portion facing the striking surface of the shank is provided on the lower side of the collar portion, the hydraulic fluid flows into one side of the upper and lower portions It characterized in that the bypass passage is provided or discharged.
  • the bypass passage may include at least one second bypass passage formed on one side of the upper diameter portion, and at least one first bypass passage formed on one side of the lower diameter portion.
  • a high pressure chamber is provided in the body portion of the striking device to operate the shock absorber, a second low pressure chamber is provided above the high pressure chamber, and a first low pressure chamber is provided below the high pressure chamber. It is characterized by.
  • the high pressure chamber is in communication with the second high pressure flow path receiving the high pressure hydraulic fluid discharged from the first hydraulic pump to form a high pressure
  • the second low pressure chamber is in communication with the third low pressure flow path to form a low pressure
  • the first low pressure chamber communicates with the first low pressure flow path to form a low pressure.
  • the second bypass flow passage may be configured to selectively communicate or block communication between the high pressure chamber and the second pressure chamber applying hydraulic pressure to the rear surface of the impact buffer device according to the position of the shock absorber.
  • the first bypass passage may be configured to selectively communicate or block communication between the first low pressure chamber and the first pressure chamber applying hydraulic pressure to the front surface of the impact buffer device according to the position of the shock absorber.
  • the second low pressure flow path is formed to selectively communicate with or block communication with the low pressure flow path and the second pressure chamber for applying hydraulic pressure to the upper surface of the impact buffer device according to the position of the shock absorber.
  • the hydraulic rotary striking device is provided with an impact buffer device, thereby preventing mechanical contact of the internal parts of the striking device and the body part when transferring the rotational force generated from the hydraulic motor during the drilling operation to the drill bit, the impact device body It is possible to increase the durability by preventing damage to the parts.
  • productivity can be increased by improving the drilling performance by maintaining the drill bit and the crushed object at all times in various situations caused by the type and strength change of the crushed object depending on the piercing depth.
  • FIG. 1 is a view showing an external appearance of a hydraulic rotary striking device.
  • FIG. 2 shows a schematic internal structure of a conventional hydraulic rotary striking device.
  • FIG. 3 is an enlarged cross-sectional view showing in detail the structure of the rotating part of the hydraulic rotary striking device shown in FIG.
  • FIG. 4 is a view showing a detailed structure of the shock absorber according to an embodiment of the present invention.
  • FIG. 5 is a view illustrating a state in which the drilling oil is not discharged from the first hydraulic pump in a state in which contact support force between the drill bit and the crushed object is formed during operation of the shock absorber according to an embodiment of the present invention, and thus no drilling operation is performed drawing.
  • FIG. 6 is a view illustrating a state in which a normal drilling operation is performed by discharging hydraulic fluid from a first hydraulic pump in a state in which contact support force between a drill bit and a crushed object is formed during operation of an impact buffer device according to an embodiment of the present invention.
  • FIG. 7 is a view showing a schematic internal structure of a hydraulic rotary striking device having a shock absorber according to an embodiment of the present invention.
  • FIG 8 is a view showing a state during the soft section puncture operation of the shock absorber according to an embodiment of the present invention.
  • FIG. 9 is a view showing a state at the time of drilling a cavity section of the impact buffer device according to an embodiment of the present invention.
  • FIG. 4 is a view showing a detailed structure of the shock absorber according to an embodiment of the present invention
  • Figure 5 is a contact support force between the drill bit and the workpiece during operation of the shock absorber according to an embodiment of the present invention is formed
  • FIG. 6 is a view illustrating a state in which a drilling operation is not performed because no hydraulic fluid is discharged from a first hydraulic pump in a state
  • FIG. 6 is a contact between a drill bit and a to-be-damaged object during operation of an impact buffer device according to an embodiment of the present invention. It is a figure which shows the state in which hydraulic oil is discharged from a 1st hydraulic pump in the state in which the support force was formed.
  • the hydraulic rotary striking device 300 is a blow force generated when the striking piston 310 is formed to reciprocate in the body 400 hit the shank 320 and the rotational driving force transmitted from the hydraulic motor 230.
  • the crushed object 800 is crushed.
  • the hydraulic rotary striking device 300 accommodates the shock absorbing device 500 that performs hydraulic shock absorbing action inside the body 400 so as to reciprocate, and the first hydraulic pressure.
  • the impact piston 310 reciprocates in the shock absorber 500, and the shank 320 is driven to rotate.
  • the high-pressure chamber 430 is formed therein,
  • the second low pressure chamber 440 is in communication with the third low pressure flow path 150 and the low pressure is formed therein, and the second pressure chamber 460 to which the high pressure hydraulic fluid is supplied or blocked according to the position of the shock absorber 500.
  • the first pressure chamber 450 is compressed or expanded according to the position of the shock absorber 500, and the first low pressure chamber 420 in communication with the first low pressure passage 146, the low pressure is formed therein, respectively It is provided.
  • the shock absorber 500 has a cylindrical shape in which a through hole 510 is formed at a central portion thereof so as to be able to slide in the same axial direction as the striking piston 310 in a space located by a predetermined distance in the drilling direction D with respect to the striking piston 310. It is made of and disposed in the body portion 400.
  • the shock absorbing device 500 is formed of an annular collar portion 520 protruding outward from the center of the outer diameter portion, the upper portion 512 is formed on the upper side of the collar portion 520, the body portion 400
  • the upper diameter portion 530 facing the inner upper end of the) and the lower diameter portion 540 formed at the lower side of the collar portion 520 and facing the striking surface of the shank 320.
  • the second bypass passage 532 may be formed at one side of the upper diameter portion 530
  • the first bypass passage 544 may be formed at one side of the lower diameter portion 540.
  • the first pressure chamber 450 for supplying the hydraulic pressure to the lower surface 524 of the collar portion 520, the second pressure chamber 460 for multiplying the hydraulic pressure to the upper surface 522 of the collar portion 520 and
  • a first low pressure chamber 420 communicating with the first low pressure passage 146 and having a low pressure therein may be further provided, and a high pressure chamber 430 communicating with the second high pressure passage 144 and having a high pressure.
  • the first pressure chamber 450 may communicate with or block communication with the first low pressure chamber 420 through the first bypass passage 544, and the second pressure chamber 460 may have a second bypass passage. The communication with the high pressure chamber 430 or the communication may be blocked through 532.
  • the high pressure hydraulic fluid discharged from the first hydraulic pump 100 is supplied to the high pressure chamber 430 through the second high pressure passage 144, and the high pressure supplied to the high pressure chamber 430 is supplied to the shock absorber 500.
  • the operating oil of the is supplied to the second pressure chamber 460 formed on the upper surface 522 side of the collar portion 520 through the second bypass flow path 532 to form a high pressure.
  • a pressing force in the drilling direction D is formed on the upper surface 522 side of the collar part 520.
  • the first hydraulic pressure is formed.
  • the magnitude of the contact reaction force transmitted from the crushed object 900 is greater than the pressing force applied to the upper surface 522 of the collar part 520.
  • the upper surface 522 side of the collar portion 520 is raised to the top dead center position in contact with the body portion 400 of the striking device 300.
  • the upper surface 512 formed at the end of the upper diameter portion 530 is not in contact with the inner surface 410 of the body portion 400 of the striking device 300.
  • the first pressure chamber 450 formed on the lower surface 524 of the collar portion 520 of the shock absorber 500 may have a first bypass flow path.
  • the low pressure is formed by communicating with the first low pressure chamber 420 where the low pressure is formed through the 544. At this time, leakage occurs from the second pressure chamber 460 to the first pressure chamber 450 through the outer circumferential surface of the collar part 520, so that the pressure of the second pressure chamber 460 is lowered.
  • the second pressure chamber 460 and the high pressure chamber 430 communicate with each other or block the communication through the second bypass flow passage 532, so that the upper surface 522 of the collar part 520 of the shock absorbing device 500.
  • the pressure of the second pressure chamber 460 acting on the side is appropriately adjusted. Therefore, the contact support reaction force generated when the drill bit 700 and the to-be-damaged object 800 are contacted by the punching direction D of the striking device 300 and the upper surface of the collar part 520 of the impact buffer device 500 ( The shock absorber 500 is positioned at the point where the punching direction D acting on the side of the pressure 522 is balanced.
  • the striking device 300 is transferred in the drilling direction (D) in the drilling direction (D) between the drill bit 700 and the crushed object (800).
  • the drill bit 700 and the workpiece 800 The contact support force of the liver is increased to make a more firm contact between the drill bit 700 and the workpiece 800.
  • Figure 7 shows a schematic internal structure of the hydraulic rotary striking device with a shock absorber according to an embodiment of the present invention, wherein the position of the shock absorber 500 is normally operating oil as shown in FIG. Is the position of the shock absorber 500 in the drilling operation is supplied.
  • the stroke piston 310 is reciprocated by the 130, 134, 136, 138, 140, 142 and the first and second control valves 110 and 120, and the movement generated when the strike piston 310 moves downward.
  • the energy is converted into impact energy when the striking piston 310 strikes the shank 320 and is transferred to the crushed object 800 through the shank 320, the rod 600, and the drill bit 700, thereby giving the crushed object 800. ) Is crushed.
  • the high pressure hydraulic fluid discharged from the second hydraulic pump 200 is supplied to the hydraulic motor 230 through the third control valve 210 and the flow path 220 to rotate the drive shaft of the hydraulic motor 230 to rotate the driving force. Generates.
  • the rotational driving force generated in the hydraulic motor 230 is transmitted to the shank 320 through the pinion gear 232, the drive gear 330, the rotational driving force transmitted to the shank 320 at least one rod 600
  • the crusher bit 700 and the crushed object 800 is to crush the crushed object (800).
  • the striking piston 310 in a state in which the striking device 300 is transferred in the drilling direction D by a transfer means such as a feed motor installed on the mast of the perforator so as to contact the drill bit 700 and the workpiece 800.
  • a transfer means such as a feed motor installed on the mast of the perforator so as to contact the drill bit 700 and the workpiece 800.
  • the perforation work is made by transferring the crushed material 800.
  • the shock absorber 500 since the high pressure is formed in the second pressure chamber 460 of the shock absorber 500 by being communicated with the high pressure chamber 430 through the second bypass flow path 532, the impact reflected from the to-be-damaged object 800 is affected.
  • the reaction force is transmitted to the shock absorber 500 through the shank 320, the shock absorber 500 is moved in the opposite direction (U) by a fine distance.
  • the second pressure chamber 460 is compressed to increase the internal pressure, and due to the increase in the internal pressure of the second pressure chamber 460, the upper surface 522 of the collar part 520 of the shock absorber 500 is increased.
  • the pressing force in the puncturing direction D acting on is increased so that the shock absorber 500 is moved in the puncturing direction D again by a minute distance to return to the position before the impact reaction is transmitted.
  • the impact reaction force transmitted back from the crushed object 800 is increased in pressure and pressure of the second pressure chamber 460 acting on the upper surface 522 of the collar portion 520 of the shock absorber 500 as described above. It is absorbed by hydraulic dampening of the descent.
  • the shock absorbing device 500 since the time required for the impact shock absorbing device 500 to move slightly in the opposite direction of the drilling U and return again is very short, before the impact piston 310 hits the shank 320 again, the shock absorbing device ( The return of 500 is made, at which time the rise and fall of the pressure in the second pressure chamber 460 is observed at an instantaneous peak pressure.
  • the contact between the shock absorber 500, the shank 320, the rod 600, and the drill bit 700 and the workpiece 800 is always maintained.
  • the impact energy generated when the shank 320 of the striking piston 310 strikes can be smoothly transmitted to the crushed object 800, so that the punching performance of the striking device 300 is improved, thereby increasing the productivity of the perforator.
  • the rotational force generated by the rotation of the hydraulic motor 230 during the drilling operation is passed through the pinion gear 232, the drive gear 330, the shank 320, the rod 600 and the drill bit 700 (The direct contact between the internal parts of the striking device 300 and the body part 400 is not generated in the process of being transmitted to 800, thereby improving durability of the striking device 300.
  • FIG 8 is a view showing a state during the soft section puncture operation of the shock absorber according to an embodiment of the present invention, the drill bit 700 than the feed rate of the striking device 300 during operation of the shock absorber 500
  • the impact device 300 when a soft piercing section that suddenly lowers the strength of the crushed object 800 appears
  • the drilling speed of the drill bit 700 to drill the crushed object 800 is increased more than the feed rate of the instantaneously.
  • the collar part of the shock absorber 500 is rapidly moved forward in the drilling direction D by the pressure of the second pressure chamber 460 applied to the upper surface 522.
  • the contact between the upper end of the shank 320 and the lower surface 542 of the shock absorber 500 is maintained, and at the same time, the contact between the drill bit 700 and the workpiece 800 is continuously maintained.
  • the impact energy of the striking device 300 is smoothly transmitted to the crushed object 800. Accordingly, it is possible to prevent collision between the internal parts of the striking device 300 and the body part 400 of the striking device 300 due to instantaneous contact release.
  • the impact energy generated when hitting the shank 320 of the striking piston 310 is transmitted to the crushed object 800 smoothly to ensure a stable puncturing performance, thereby improving productivity.
  • the second pressure toward the upper surface 522 of the collar part 520 of the shock absorbing device 500 acts so that the shock absorber 500 moves quickly in the drilling direction D.
  • the second pressure chamber 460 is blocked from communicating with the high pressure chamber 430 through the second bypass flow path 532. 2 the pressure applied to the pressure shock absorber 500 is reduced by maintaining the pressure applied to the pressure chamber 460.
  • FIG. 9 is a view illustrating a state in the cavity section drilling operation of the shock absorber according to an embodiment of the present invention, and more specifically, transfer of the striking device 300 during operation of the shock absorber 500.
  • FIG. 8 is a view illustrating an impact buffer device 500 during a drilling operation in a cavity section in which a drilling speed of the drill bit 700 penetrating the crushed object 800 is increased more than the speed of the soft section work shown in FIG. 8. . This is mainly generated during the drilling operation of the hollow point where the crushed material 800 which is occasionally generated during the drilling operation does not exist.
  • the shock absorber 500 may be moved to a position where the lower surface 524 of the collar portion 520 collides with the body portion 400 of the striking device 300 by the pressing force applied to the upper surface 522.
  • the collar portion 520 of the shock absorber 500 is strongly collided with the body portion 400 of the striking device 300, the collar portion 520 may be damaged since the body portion 400 may be damaged.
  • the impact force applied to the colliding portion should be minimized as much as possible.
  • the second pressure chamber 460 is supplied with the hydraulic oil supplied from the high pressure chamber 430 through the second bypass flow path 532.
  • the internal pressure of the second pressure chamber 460 is lowered by being blocked.
  • the pressing force in the drilling direction D applied to the upper surface 522 of the collar portion 520 is reduced, so that the lower portion 524 of the collar portion 520 is reduced.
  • the impact force applied to the impact portion when the body portion 400 of the striking device 300 collides is reduced.
  • the shock absorber 500 when the shock absorber 500 is further lowered in the drilling direction D more than the set distance, the first pressure chamber 450 formed on the lower surface 524 side of the collar portion 520 is the first bypass flow path ( Communication with the first low pressure chamber 420 is blocked by 544, so that the first pressure chamber 450 is closed.
  • the second pressure chamber 460 formed on the upper surface 522 side of the collar part 520 communicates with the first low pressure passage 146 through the second low pressure passage 148, the second pressure chamber 460 is not included in the second pressure chamber 460. Low pressure is formed. Accordingly, the pressing force in the drilling direction D applied to the upper surface 522 side of the collar portion 520 is further reduced.
  • the collision between the lower portion 524 of the collar portion 520 of the impact buffer device 500 and the body portion 400 of the impact device 300 due to the lowering speed and the pressing force of the punching direction D of the impact buffer device 500 is reduced. It is possible to prevent, and even if a collision occurs, it is possible to minimize the amount of impact generated in the collision part, so that no damage can be caused.
  • the impact buffer device 500 when the impact buffer device 500 is crushed at the cavity point descends in the drilling direction D at a very high speed, in the high pressure chamber 430 through the second bypass flow path 532.
  • the inflow of the hydraulic oil supplied to the second pressure chamber 460 is blocked so that the pressure of the second pressure chamber 460 is lowered, and in some cases, a low pressure is formed in the second pressure chamber 460 so that the collar portion is formed. 520, the pressing force in the drilling direction D applied to the upper surface 522 can be reduced.
  • the first bypass passage 544 is blocked to seal the first pressure chamber 450 formed on the lower surface 524 of the collar part 520, the internal pressure is increased, so that the punching direction D of the impact buffer device 500 is increased. It is possible to reduce the moving speed to). Accordingly, the collision between the shock absorber 500 and the striking device 300 body 400 is prevented, and even if a collision occurs, the impact buffer 500 and the body of the striking device 300 are minimized by minimizing the amount of impact. Damage to the 400 can be prevented.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)

Abstract

The present invention relates to a hydraulic rotating striking device having a shock buffering device, which is configured to buffer a shock, formed to be able to reciprocate inside a body portion of the striking device. The hydraulic rotating striking device comprises, between the body portion and the outer peripheral surface of the shock device, a high-pressure chamber, a first low-pressure chamber, a second low-pressure chamber, a first pressure chamber, and a second pressure chamber, respectively. The shock buffering device is characterized by comprising: an annular collar portion formed at the center of an outer diameter portion; an upper diameter portion formed on the upper side of the collar portion, the upper end surface of the upper diameter portion facing the inner upper end of the body portion; a lower diameter portion formed on the lower side of the collar portion, the lower end surface of the lower diameter portion facing a striking surface of a shank; and a second bypass channel for establishing communication between the high-pressure chamber and the second pressure chamber, when the distance of movement is below a preset distance during a boring operation, and interrupting the communication between the high-pressure chamber and the second pressure chamber, when the distance of movement is equal to or above the preset distance.

Description

유압식 회전 타격장치Hydraulic Rotary Blower
본 발명은 유압식 회전 타격장치에 관한 것으로, 더욱 상세하게는 천공성능 향상 및 타격장치의 내구성을 증대시키기 위한 충격완충장치를 구비한 유압식 회전 타격장치에 관한 것이다. The present invention relates to a hydraulic rotary striking device, and more particularly to a hydraulic rotary striking device having an impact buffer device for improving the drilling performance and increase the durability of the striking device.
각종 채석장과 터널 공사 및 지반마련 공사 현장에서는 골재 채취, 암석 제거 등을 목적으로 암석, 지반 등과 같은 피파쇄물을 파쇄시키기 위한 발파 작업이 이루어지는데, 이때, 발파 작업을 위한 발파용 화약의 장입을 위해 암석, 지반 등과 같은 피파쇄물에 화약 장입용 구멍을 천공하는 유압 천공기(락-드릴, Rock Drilling Machine)가 사용된다.At various quarries, tunnels, and ground refining sites, blasting works are performed to crush crushed materials such as rocks and soil for the purpose of collecting aggregates and removing rocks.In this case, blasting powder is charged for blasting work. Hydraulic drilling machines (rock drills) are used to drill holes for charging powders in the crushed material such as rocks and ground.
일반적으로, 피파쇄물에 화약 장입용 구멍을 천공하기 위해 유압 천공기의 마스트 상에 도 1에 도시한 일례와 같은 유압식 회전 타격장치(드리프터, Drifter)(30)가 가이드 상에 왕복 이송이 가능하게 장착된다.In general, a hydraulic rotary striking device (drifter) 30 such as the example shown in FIG. 1 on the mast of the hydraulic boring machine for drilling the charge charging hole into the to-be-shipped material enables the reciprocating conveyance on the guide. Is mounted.
상기 유압 천공기는 도 2에 도시된 바와 같이, 피파쇄물(90)의 천공 작업시 실린더 또는 유압 피드모터 등과 같은 이송수단을 통해 마스트 상에서 로드(Rod)(34)를 이송시켜 로드(34) 끝단부에 체결되는 드릴비트(Drill Bit)(70)를 피파쇄물(90)에 접촉시킨 후에 유압식 회전 타격장치(30)의 내부에서 유압에 의해 왕복운동을 수행하는 타격 피스톤(32)이 생크(34)를 타격할 때 발생되는 타격력과 유압모터(80)로부터 전달되는 회전 구동력을 생크(34)와 로드(60)를 통하여 피파쇄물(90)과 접촉되어 있는 드릴비트(70)에 전달시킴으로써, 상기 유압모터(80)의 회전 구동력과 타격 피스톤(32)의 타격력을 피파쇄물(90)에 가하여 피파쇄물(90)을 파쇄하는 기능을 수행하게 된다.As shown in FIG. 2, the hydraulic perforator transfers the rod 34 on the mast through a transfer means such as a cylinder or a hydraulic feed motor during the perforation of the crushed material 90. After contacting the drill bit (70) fastened to the workpiece 90 to the object to be crushed 90, the impact piston 32 for performing a reciprocating motion by hydraulic pressure in the hydraulic rotary striking device 30 is the shank (34) By transmitting the driving force and the rotational driving force transmitted from the hydraulic motor 80 to the drill bit 70 in contact with the object 90 through the shank 34 and the rod 60, the hydraulic pressure The rotational driving force of the motor 80 and the striking force of the striking piston 32 are applied to the crushed object 90 to perform the function of crushing the crushed object 90.
상기 도 1과 도 2를 참조하여 유압식 회전 타격장치(30)의 작동 구조를 상세하게 설명하면, 제 1 유압펌프(10)부터 토출된 작동유가 유압식 회전 타격장치(30)에 공급되면, 상기 유압식 회전 타격장치(30)의 내측 바디부(40)에 형성된 다수의 유로(油路)(42, 44, 46, 48, 50, 52, 54) 및 제 1, 2 제어밸브(12, 14)에 의해 타격 피스톤(32)의 왕복운동이 이루어지는데, 이때, 타격 피스톤(32)의 하강시 발생된 운동에너지는 타격 피스톤(32)이 생크(34)를 타격함으로써 충격에너지로 변환된다. 1 and 2, the hydraulic structure of the hydraulic rotary striking device 30 will be described in detail. When the hydraulic oil discharged from the first hydraulic pump 10 is supplied to the hydraulic rotary striking device 30, the hydraulic type is applied. To the plurality of flow paths 42, 44, 46, 48, 50, 52, 54 and the first and second control valves 12, 14 formed in the inner body portion 40 of the rotary striking device 30. The reciprocating motion of the striking piston 32 is performed, and at this time, the kinetic energy generated when the striking piston 32 descends is converted into impact energy by the striking piston 32 striking the shank 34.
상기 타격 피스톤(32)이 생크(34)를 타격함으로써 발생된 충격에너지는 상기 생크(34)와 체결된 1개 이상의 로드(60)를 통해 끝단부에 설치된 드릴비트(70)에 전달되고, 상기 드릴비트(70)로 전달된 충격에너지는 접촉되어 있는 피파쇄물(90)에 전달되어 피파쇄물(90)이 파쇄된다.The impact energy generated when the striking piston 32 strikes the shank 34 is transmitted to the drill bit 70 installed at the end portion through one or more rods 60 engaged with the shank 34. The impact energy transmitted to the drill bit 70 is transmitted to the crushed object 90 in contact with the crushed object 90.
또한, 제 2 유압펌프(20)로부터 작동유가 토출되면, 유로를 통해 제 3 제어밸브(22)를 통해 유압모터(80)에 공급되고, 상기 유압모터(80)에서는 제 2 유압펌프(20)로부터 토출된 고압의 작동유에 의해 회전 구동력이 발생되며, 상기 유압모터(80)에서 발생된 회전 구동력은 피니언 기어(82)를 회전 구동시키게 된다.In addition, when the hydraulic oil is discharged from the second hydraulic pump 20, it is supplied to the hydraulic motor 80 through the third control valve 22 through the flow path, the second hydraulic pump 20 in the hydraulic motor (80). The rotational driving force is generated by the high-pressure hydraulic fluid discharged from the hydraulic drive, and the rotational driving force generated by the hydraulic motor 80 drives the pinion gear 82 to rotate.
이때, 상기 피니언 기어(82)는 드라이브 기어(36)에 치합되어 있어 상기 유압모터(80)로부터 발생된 회전 구동력은 드라이브 기어(36)로 전달된다.At this time, the pinion gear 82 is engaged with the drive gear 36 so that the rotational driving force generated from the hydraulic motor 80 is transmitted to the drive gear 36.
상기 드라이브 기어(36)로 전달된 회전 구동력은 드라이브 기어(36)에 스플라인(Spline)(56) 등과 같은 체결수단을 통해 결합된 생크(34)를 회전시키게 되고, 상기 생크(34)로 전달된 회전 구동력은 생크(34)와 연결된 1개 이상의 로드(60)로 전달되며, 상기 로드(60)로 전달된 회전 구동력은 로드(60)의 끝단부에 결합된 드릴비트(70)를 회전시키며, 상기 드릴비트(70)로 전달된 회전 구동력은 피파쇄물(90)로 전달되어 피파쇄물(90)이 파쇄된다.The rotational driving force transmitted to the drive gear 36 rotates the shank 34 coupled to the drive gear 36 through a fastening means such as a spline 56 and the like, and is transmitted to the shank 34. The rotational driving force is transmitted to one or more rods 60 connected to the shank 34, and the rotational driving force transmitted to the rods 60 rotates the drill bit 70 coupled to the end of the rod 60. The rotational driving force transmitted to the drill bit 70 is transmitted to the crushed object 90 so that the crushed object 90 is crushed.
결과적으로, 타격 피스톤(32)이 생크(34)를 타격할 때 발생되는 타격력과 유압모터(80)로부터 발생된 회전 구동력이 상기 드릴비트(70)를 통해 피파쇄물(90)에 전달되어 파쇄 작업이 이루어지게 된다.As a result, the striking force generated when the striking piston 32 strikes the shank 34 and the rotational driving force generated from the hydraulic motor 80 are transmitted to the crushed object 90 through the drill bit 70 to be crushed. This is done.
상기와 같은 동작으로 구동되는 기존의 유압식 회전 타격장치의 구조는 도 2에 도시한 바와 같이, 유압모터(80)의 회전 구동력이 생크(34)에 전달될 수 있도록 피니언 기어(82)와 치합되어 연결되는 드라이브 기어(36)의 상부측에 쓰러스트 플레이트(38)(Thrust Plate)의 하측면부가 접촉되고, 상기 쓰러스트 플레이트(38)의 상측면부는 타격장치(30)의 바디부(40)에 접촉되도록 형성된다.As shown in FIG. 2, the structure of the conventional hydraulic rotary striking device driven by the above operation is engaged with the pinion gear 82 so that the rotational driving force of the hydraulic motor 80 can be transmitted to the shank 34. The lower side portion of the thrust plate 38 is in contact with the upper side of the drive gear 36 to be connected, and the upper side portion of the thrust plate 38 is the body portion 40 of the striking device 30. It is formed to contact with.
따라서, 상기 유압모터(80)의 회전 구동력을 생크(34)에 전달하기 위해서 드라이브 기어(36)가 회전되는 경우, 상기 드라이브 기어(36)와 쓰러스트 플레이트(38)의 접촉면, 그리고, 상기 타격장치(30)의 바디부(40)와 상기 쓰러스트 플레이트(38)의 접촉면에서 기계적인 마찰에 의한 마모가 발생되며, 로드(60) 끝단부에 조립된 드릴비트(70)를 피파쇄물(90)에 가압시키는 가압력이 클수록 쓰러스트 플레이트(38)의 기계적인 마찰에 의한 마찰열 상승으로 인해 마모가 빠르게 진행된다.Therefore, when the drive gear 36 is rotated to transmit the rotational driving force of the hydraulic motor 80 to the shank 34, the contact surface of the drive gear 36 and the thrust plate 38, and the strike Mechanical friction wear occurs at the contact surface between the body portion 40 of the device 30 and the thrust plate 38, and the drill bit 70 assembled at the end of the rod 60 is crushed. The greater the pressing force to be pressed), the faster the wear due to the increase in frictional heat due to the mechanical friction of the thrust plate 38.
또한, 상기 타격 피스톤(32)의 생크(34) 타격시 발생된 타격력은 온전히 피파쇄물(90)의 파쇄에 사용되지 않고, 타격력의 일부가 피파쇄물(90)로부터 반사되어 드릴비트(70)와 로드(60), 그리고, 생크(34)를 거쳐 타격장치(30)로 전달된다. 이때, 상기 피파쇄물(90)로부터 반사된 타격반력에 의해 드라이브 기어(36)와 쓰러스트 플레이트(38)의 접촉면, 그리고, 상기 쓰러스트 플레이트(38)와 타격장치(30)의 바디부(40) 접촉면에서 충격이 발생된다.In addition, the striking force generated when the striking piston 32 strikes the shank 34 is not completely used for the crushing of the crushed object 90, and a part of the crushing force is reflected from the crushed object 90 so that the drill bit 70 and It is transmitted to the striking device 30 via the rod 60 and the shank 34. At this time, the contact surface of the drive gear 36 and the thrust plate 38 by the impact reaction reflected from the crushed object 90, and the body portion 40 of the thrust plate 38 and the striking device 30. ) An impact occurs at the contact surface.
이러한 타격반력은 피파쇄물(90)의 강도가 높을수록 커지게 되어 상기 드라이브 기어(36)와 쓰러스트 플레이트(38)의 접촉면, 그리고 상기 쓰러스트 플레이트(38)와 바디부(40)의 접촉면에 전달되는 타격반력도 증가되게 된다.The impact reaction force is increased as the strength of the crushed object 90 increases, and thus the contact surface of the drive gear 36 and the thrust plate 38 and the contact surface of the thrust plate 38 and the body part 40. The transmitted reaction force is also increased.
상술한 바와 같은 타격반력은 천공방향(D)의 반대방향(U), 즉 피파쇄물(90)과 드릴비트(70)의 접촉을 분리시키는 방향으로 작용되므로, 피파쇄물(90)에 드릴비트(70)을 접촉시키기 위해 가해지는 접촉 지지력을 저하시키며, 경우에 따라 타격반력이 드릴비트(70)를 가압시키는 힘보다 클 경우 상기 드릴비트(70)와 피파쇄물(90)의 접촉이 해제되는 상황까지 발생시키게 된다.As described above, the impact reaction force acts in a direction U opposite to the drilling direction D, that is, in a direction of separating the contact between the crushed object 90 and the drill bit 70, and thus, the drill bit ( The contact force applied to contact 70 is lowered, and in some cases, the contact between the drill bit 70 and the crushed object 90 is released when the impact reaction force is greater than the force for pressing the drill bit 70. Will be generated until.
타격반력으로 인해 상기 드릴비트(70)와 피파쇄물(90)의 접촉이 해제되면 드라이브 기어(36)와 쓰러스트 플레이트(38)의 접촉뿐 아니라, 상기 쓰러스트 플레이트(38)와 타격장치(30) 바디부(40)의 접촉도 해제되는데, 이때 상기 타격 피스톤(32)이 하강하여 생크(34)를 타격하는 경우, 타격시 발생된 타격력이 피파쇄물(90)에 정상적으로 전달되지 못하여 천공 성능이 저하될 뿐만 아니라, 드릴비트(70)가 피파쇄물(90)을 타격한 후 타격반력으로 인해 천공 반대방향(U)으로 반발되어 튀어오르고, 이로 인해 생크(34)와 조립된 드라이브 기어(36)의 상단면이 쓰러스트 플레이트(38)의 하측면부를 타격함과 동시에 쓰러스트 플레이트(38)의 상측면부가 타격장치(30)의 바디부(40)를 타격하게 되어 드라이브 기어(36), 쓰러스트 플레이트(38), 그리고 타격장치(30)에 심각한 손상을 초래할 수 있다.When the contact between the drill bit 70 and the to-be-damaged object 90 is released due to the impact reaction force, the thrust plate 38 and the striking device 30 as well as the contact between the drive gear 36 and the thrust plate 38 are removed. The contact of the body portion 40 is also released. At this time, when the striking piston 32 descends and strikes the shank 34, the striking force generated at the time of striking is not normally transmitted to the to-be-damaged object 90, so that punching performance is achieved. Not only is it lowered, but the drill bit 70 hits the object 90 and then rebounds and bounces in the opposite direction U due to the strike reaction, thereby driving the drive gear 36 assembled with the shank 34. The upper surface of the thrust plate 38 hits the lower side of the thrust plate 38 and at the same time the upper side of the thrust plate 38 hits the body portion 40 of the striking device 30, the drive gear 36, Severe damage to the strut plate 38 and the striking device 30 It can result.
또한, 천공 작업시 천공 깊이에 따라 피파쇄물(90)의 종류와 강도가 변화되는데, 갑작스러운 연약지반의 출현으로 피파쇄물(90)의 경도가 갑자기 낮아지는 경우 유압천공기의 실린더 또는 유압 피드모터 등에 의한 타격장치(30)의 천공방향(D) 이송속도보다 드릴비트(70)의 피파쇄물(90)에 대한 천공 속도가 순간적으로 증가되게 된다.In addition, the type and strength of the crushed object 90 is changed depending on the depth of drilling during the drilling operation, when the hardness of the crushed object 90 suddenly lowers due to the sudden appearance of soft ground, such as a cylinder or a hydraulic feed motor of a hydraulic punching machine. As a result, the drilling speed of the drill bit 70 with respect to the to-be-damaged object 90 is increased instantaneously rather than the feeding speed D of the striking device 30.
이러한 경우, 드릴비트(70)와 피파쇄물(90) 사이의 접촉이 형성되지 못하여 드릴비트(70)와 피파쇄물(90) 사이의 접촉이 해제되는 상황이 발생되어 드라이브 기어(36)와 쓰러스트 플레이트(38)의 접촉면, 그리고, 쓰러스트 플레이트(38)와 타격장치(30)의 바디부(40)의 접촉이 해제된다.In this case, the contact between the drill bit 70 and the object 90 is released because the contact between the drill bit 70 and the object 90 is not formed, resulting in a thrust of the drive gear 36 and the thrust. The contact surface of the plate 38 and the contact between the thrust plate 38 and the body portion 40 of the striking device 30 are released.
이러한 순간에, 피스톤(32)이 생크(34)를 타격하게 되면 드릴비트(70)가 피파쇄물(90) 타격후 타격반력에 의해 튀어 오르고, 이로 인해 생크(34)와 조립된 드라이브 기어(36)의 상단면이 쓰러스트 플레이트(38)의 하측면부를 타격함과 동시에, 쓰러스트 플레이트(38)의 상측면부가 타격장치(30)의 바디부(40)를 타격하여 드라이브 기어(36), 쓰러스트 플레이트(38) 그리고 타격장치(30)에 심각한 손상을 초래할 수 있다.At this moment, when the piston 32 strikes the shank 34, the drill bit 70 springs up by the strike reaction after hitting the workpiece 90, thereby driving drive 36 assembled with the shank 34. The upper surface of the thrust plate 38 strikes the lower surface of the thrust plate 38, and the upper surface of the thrust plate 38 strikes the body portion 40 of the striking device 30, thereby driving the drive gear 36, Serious damage to thrust plate 38 and striking device 30 can result.
상술한 바와 같이, 종래의 유압식 회전 타격장치에서는 생크의 회전시 쓰러스트 플레이트와 드라이브 기어의 접촉면, 그리고, 쓰러스트 플레이트와 타격장치 바디부의 접촉면에 기계적인 마찰 및 마찰열 발생에 의한 마모가 발생되고, 피파쇄물의 타격시에는 피파쇄물로부터 반사되는 타격반력에 의한 각 부품들간의 충격전달, 그리고 드릴비트와 피파쇄물의 접촉 해제시 발생되는 천공성능 저하 및 타격장치 내부에서의 부품간 충격전달 등에 기인한 내구성 저하의 문제점을 가지고 있다.As described above, in the conventional hydraulic rotary striking device, wear occurs due to mechanical friction and frictional heat generated on the contact surface of the thrust plate and the drive gear and the contact surface of the thrust plate and the body of the striking device when the shank rotates. The impact of each part due to the impact reaction reflected from the object to be impacted when the object to be crushed, due to the degradation of puncture performance generated when the drill bit and the object to be contacted is released, and the impact transmission between parts inside the impact device, etc. There is a problem of deterioration in durability.
더불어, 회전시의 마모와 타격시 타격반력에 의한 내부 부품간의 충격전달이 누적되어 쓰러스트 플레이트 및 드라이브 기어 등의 부품이 파손되는 경우 파손에 의해 이탈된 파편으로인해 타격장치 내부에 심각한 손상을 야기할 수도 있다.In addition, when the parts of the thrust plate and the drive gear are damaged due to the accumulation of impacts due to wear at the time of the rotation and impact reaction at the time of impact, the debris separated by the damage causes serious damage to the inside of the impact device. You may.
본 발명의 과제는 천공 작업시 타격장치의 내부 부품과 바디부의 접촉을 방지함으로써, 회전 구동시 마찰에 의한 타격장치의 손상을 방지하고, 동시에 피파쇄물로부터 타격장치로 되돌아오는 타격반력를 유압적으로 완충함으로써 타격장치의 바디부에 기계적인 충격이 전달되는 것을 방지할 수 있도록 하는 충격완충장치를 구비한 유압식 회전 타격장치를 제공하는 것을 목적으로 한다.The object of the present invention is to prevent the damage of the striking device due to friction during rotational drive by preventing contact of the internal parts of the striking device and the body part during the drilling operation, and at the same time hydraulically buffers the impact reaction from the crushed object back to the striking device Accordingly, an object of the present invention is to provide a hydraulic rotary striking device having an impact buffer device that can prevent mechanical shock from being transmitted to a body part of the striking device.
또한, 드릴비트의 피파쇄물에 대한 천공속도가 실린더 또는 유압 피드모터 등과 같은 이송수단에 의한 타격장치의 이송속도보다 빨라져 드릴비트와 피파쇄물의 접촉이 순간적으로 해제되는 것을 방지하여 드릴비트와 피파쇄물의 접촉을 항시유지시킬 수 있는 기능을 갖춘 유압식 회전 타격장치를 제공하는 것을 목적으로 한다.In addition, the drill bit of the drill bit to the object to be crushed is faster than the conveying speed of the striking device by a conveying means such as a cylinder or a hydraulic feed motor to prevent the contact of the drill bit and the object to be released momentarily to prevent the drill bit and the object to be released An object of the present invention is to provide a hydraulic rotary striking device having a function of maintaining contact at all times.
동시에, 드릴비트와 피파쇄물의 접촉을 지속적으로 유지시키기 위하여 충격완충장치가 천공방향으로 소정 거리 이상 이동할 경우, 충격완충장치와 타격장치의 내측 바디부와의 충돌을 방지하여 유압회전 타격장치의 손상을 방지할 수 있는 기능을 갖춘 유압식 회전 타격장치를 제공하는 것을 목적으로 한다.At the same time, if the shock absorber moves more than a predetermined distance in the drilling direction in order to maintain the contact of the drill bit and the to-be-damaged object, damage of the hydraulic rotary striking device is prevented by preventing collision between the shock absorber and the inner body of the striking device. An object of the present invention is to provide a hydraulic rotary blower with a function to prevent the damage.
상기의 과제를 달성하기 위한 본 발명에 따른 유압 회전식 타격장치는, 다수의 유로 및 제어밸브를 구비한 유압회로에 의해 타격 피스톤의 왕복이송이 가능하도록 구성된 유압식 회전 타격장치에 있어서, 타격장치의 내부에서 타격 피스톤과 동축선 상에서 습동 가능하도록 충격완충장치가 설치되는 것을 특징으로 한다.In the hydraulic rotary striking device according to the present invention for achieving the above object, in the hydraulic rotary striking device configured to enable the reciprocating movement of the striking piston by a hydraulic circuit having a plurality of flow paths and control valves, the interior of the striking device An impact buffer device is installed so as to be able to slide on the coaxial line with the striking piston.
상기 충격완충장치의 중앙에는 관통 홀을 형성하여 타격 피스톤을 수용하고, 외경부의 중앙에는 외측으로 돌출된 환형의 카라부를 마련한다. 또한, 상기 카라부를 기준으로 상측에는 바디부의 내측 상단과 마주하는 상경부과 마련되고, 상기 카라부의 하측에는 생크의 타격면과 마주하는 하경부가 마련되며, 상기 상경부와 하경부의 일측에는 작동유가 유입되거나 배출되는 바이패스 유로가 마련되는 것을 특징으로 한다. 여기서, 상기 바이패스 유로는 상기 상경부의 일측에 형성되는 적어도 하나 이상의 제 2 바이패스 유로와, 상기 하경부의 일측에 형성되는 적어도 하나 이상의 제 1 바이패스 유로로 이루어진 것을 특징으로 한다. A through hole is formed in the center of the shock absorber to accommodate the striking piston, and an annular collar portion protruding outward is provided in the center of the outer diameter portion. In addition, the upper portion is provided with an upper and lower portion facing the inner upper end of the body portion on the basis of the collar portion, the lower portion facing the striking surface of the shank is provided on the lower side of the collar portion, the hydraulic fluid flows into one side of the upper and lower portions It characterized in that the bypass passage is provided or discharged. The bypass passage may include at least one second bypass passage formed on one side of the upper diameter portion, and at least one first bypass passage formed on one side of the lower diameter portion.
또한, 상기 충격완충장치를 작동시키기 위하여 상기 타격장치의 바디부에는 고압챔버가 마련되고, 상기 고압챔버의 상부에는 제 2 저압챔버가 마련되며, 상기 고압챔버의 하부에는 제 1 저압챔버가 마련되는 것을 특징으로 한다. 여기서, 상기 고압챔버는 제 1 유압펌프로부터 토출된 고압의 작동유를 공급받는 제 2 고압유로와 연통되어 고압이 형성되고, 제 2 저압챔버는 제 3 저압유로와 연통되어 있어 저압이 형성되며, 제 1 저압챔버는 제 1 저압유로와 연통되어 저압이 형성된다. In addition, a high pressure chamber is provided in the body portion of the striking device to operate the shock absorber, a second low pressure chamber is provided above the high pressure chamber, and a first low pressure chamber is provided below the high pressure chamber. It is characterized by. Here, the high pressure chamber is in communication with the second high pressure flow path receiving the high pressure hydraulic fluid discharged from the first hydraulic pump to form a high pressure, the second low pressure chamber is in communication with the third low pressure flow path to form a low pressure, The first low pressure chamber communicates with the first low pressure flow path to form a low pressure.
상기 제 2 바이패스 유로는 충격완충장치의 위치에 따라 고압챔버와 충격완충장치 카라부의 후면에 유압을 가하는 제 2 압력챔버를 선택적으로 연통시키거나 연통을 차단하도록 형성된다. The second bypass flow passage may be configured to selectively communicate or block communication between the high pressure chamber and the second pressure chamber applying hydraulic pressure to the rear surface of the impact buffer device according to the position of the shock absorber.
상기 제 1 바이패스 유로는 충격완충장치의 위치에 따라 제 1 저압챔버와 충격완충장치 카라부의 전면에 유압을 가하는 제 1 압력챔버를 선택적으로 연통시키거나 연통을 차단하도록 형성된다.The first bypass passage may be configured to selectively communicate or block communication between the first low pressure chamber and the first pressure chamber applying hydraulic pressure to the front surface of the impact buffer device according to the position of the shock absorber.
또한, 제 2 저압유로는 충격완충장치의 위치에 따라 충격완충장치 카라부 상면에 유압을 가하는 제 2 압력챔버와 저압유로를 선택적으로 연통시키거나 연통을 차단하도록 형성된다.In addition, the second low pressure flow path is formed to selectively communicate with or block communication with the low pressure flow path and the second pressure chamber for applying hydraulic pressure to the upper surface of the impact buffer device according to the position of the shock absorber.
본 발명에 따르면, 유압식 회전 타격장치가 충격완충장치를 구비함으로써, 천공작업시 유압모터로부터 발생되는 회전력을 드릴비트로 전달할 때 타격장치의 내부 부품과 바디부의 기계적인 접촉을 방지해 주어, 타격장치 바디부의 손상을 방지하여 내구성을 증대시킬 수 있다.According to the present invention, the hydraulic rotary striking device is provided with an impact buffer device, thereby preventing mechanical contact of the internal parts of the striking device and the body part when transferring the rotational force generated from the hydraulic motor during the drilling operation to the drill bit, the impact device body It is possible to increase the durability by preventing damage to the parts.
그리고, 천공 작업시 발생되는 타격반력을 유압적인 완충작용에 의해 순간적인 압력 상승 및 압력 강하의 형태로 흡수시켜 타격장치 바디부로의 기계적인 충격 전달을 방지함으로써, 타격장치 바디부의 손상을 방지하여 내구성을 증대시킬 수 있다.In addition, by absorbing the impact reaction generated during the drilling work in the form of instantaneous pressure rise and pressure drop by the hydraulic buffer action to prevent mechanical shock transfer to the impact device body portion, to prevent damage to the impact device body parts durability Can be increased.
아울러, 상기 타격장치의 바디부와 내부 부품의 파손 방지 및 내구성 증대로 인해 타격장치에 대한 유지보수 비용을 절감시킬 수 있다.In addition, it is possible to reduce the maintenance cost for the striking device due to the damage prevention and durability of the body and the internal parts of the striking device.
또한, 천공작업시 천공깊이에 따라 달라지는 피파쇄물의 종류 및 강도 변화에 의해 발생하는 다양한 상황에 대하여도, 드릴비트와 피파쇄물이 항시 접촉되도록 유지시킴으로써 천공 성능을 향상시켜 생산성이 증대될 수 있다. In addition, productivity can be increased by improving the drilling performance by maintaining the drill bit and the crushed object at all times in various situations caused by the type and strength change of the crushed object depending on the piercing depth.
도 1은 유압식 회전 타격장치의 외관 모습을 도시하는 도면.1 is a view showing an external appearance of a hydraulic rotary striking device.
도 2는 종래의 유압식 회전 타격장치의 개략적인 내부 구조를 도시하는 도면.2 shows a schematic internal structure of a conventional hydraulic rotary striking device.
도 3은 도 2에 도시되어 있는 유압식 회전 타격장치의 회전부 구조를 상세하게 도시하는 확대 단면도.3 is an enlarged cross-sectional view showing in detail the structure of the rotating part of the hydraulic rotary striking device shown in FIG.
도 4는 본 발명의 일실시예에 의한 충격완충장치의 상세한 구조을 도시하는 도면.4 is a view showing a detailed structure of the shock absorber according to an embodiment of the present invention.
도 5는 본 발명의 일실시예에 의한 충격완충장치의 동작중 드릴비트와 피파쇄물 사이의 접촉 지지력이 형성된 상태에서 제 1 유압펌프에서 작동유가 토출되지 않아 천공작업이 수행되지 않는 상태를 도시하는 도면.FIG. 5 is a view illustrating a state in which the drilling oil is not discharged from the first hydraulic pump in a state in which contact support force between the drill bit and the crushed object is formed during operation of the shock absorber according to an embodiment of the present invention, and thus no drilling operation is performed drawing.
도 6은 본 발명의 일실시예에 의한 충격완충장치의 동작중 드릴비트와 피파쇄물 사이의 접촉 지지력이 형성된 상태에서 제 1 유압펌프에서 작동유가 토출되어 정상적인 천공작업이 수행되는 상태를 도시하는 도면.FIG. 6 is a view illustrating a state in which a normal drilling operation is performed by discharging hydraulic fluid from a first hydraulic pump in a state in which contact support force between a drill bit and a crushed object is formed during operation of an impact buffer device according to an embodiment of the present invention. .
도 7은 본 발명의 일실시예에 의한 충격완충장치를 구비한 유압식 회전 타격장치의 개략적인 내부 구조를 도시하는 도면.7 is a view showing a schematic internal structure of a hydraulic rotary striking device having a shock absorber according to an embodiment of the present invention.
도 8은 본 발명의 일실시예에 의한 충격완충장치의 연질구간 천공작업시 상태를 도시하는 도면.8 is a view showing a state during the soft section puncture operation of the shock absorber according to an embodiment of the present invention.
도 9는 본 발명의 일실시예에 의한 충격완충장치의 공동(空洞)구간 천공작업시 상태를 도시하는 도면.9 is a view showing a state at the time of drilling a cavity section of the impact buffer device according to an embodiment of the present invention.
이하 첨부된 도면을 참조하여 바람직한 실시예에 따른 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
도 4는 본 발명의 일실시예에 의한 충격완충장치의 상세한 구조을 도시한 도면이고, 도 5는 본 발명의 일실시예에 의한 충격완충장치의 동작중 드릴비트와 피파쇄물 사이의 접촉 지지력은 형성된 상태에서 제 1 유압펌프에서 작동유가 토출되지 않아 천공작업이 수행되지 않는 상태를 도시하는 도면이며, 도 6은 본 발명의 일실시예에 의한 충격완충장치의 동작중 드릴비트와 피파쇄물 사이의 접촉 지지력이 형성된 상태에서 제 1 유압펌프에서 작동유가 토출되는 상태를 도시하는 도면이다. 여기서, 유압식 회전 타격장치(300)는 바디부(400) 내부에서 왕복운동하도록 형성된 타격 피스톤(310)이 생크(320)를 타격할때 발생되는 타격력과 유압모터(230)로부터 전달되는 회전 구동력을 생크(320)와 로드(600)를 통하여 피파쇄물(800)과 접촉되어 있는 드릴비트(700)에 전달시킴으로써 피파쇄물(800)을 파쇄하는 기능을 수행한다. Figure 4 is a view showing a detailed structure of the shock absorber according to an embodiment of the present invention, Figure 5 is a contact support force between the drill bit and the workpiece during operation of the shock absorber according to an embodiment of the present invention is formed FIG. 6 is a view illustrating a state in which a drilling operation is not performed because no hydraulic fluid is discharged from a first hydraulic pump in a state, and FIG. 6 is a contact between a drill bit and a to-be-damaged object during operation of an impact buffer device according to an embodiment of the present invention. It is a figure which shows the state in which hydraulic oil is discharged from a 1st hydraulic pump in the state in which the support force was formed. Here, the hydraulic rotary striking device 300 is a blow force generated when the striking piston 310 is formed to reciprocate in the body 400 hit the shank 320 and the rotational driving force transmitted from the hydraulic motor 230. By transferring the shank 320 and the rod 600 to the drill bit 700 in contact with the crushed object 800, the crushed object 800 is crushed.
도 4 내지 도 6에 도시된 바와 같이, 유압식 회전 타격장치(300)는 바디부(400) 내부에 유압적인 완충작용을 수행하는 충격완충장치(500)를 왕복 이동 가능하게 수용하며, 제 1 유압펌프(100)로부터 토출된 고압의 작동유가 유압회로들을 통해 공급됨에 따라 충격완충장치(500) 내에서 타격 피스톤(310)이 왕복이송하는 동시에 생크(320)가 회전 구동하게 된다. 이때, 바디부(400)와 충격완충장치(500)의 외주면 사이에는 제 1 유압펌프(100)로부터 토출된 고압의 작동유를 고압유로를 통해 공급받아 내부에 고압이 형성된 고압챔버(430)와, 제 3 저압유로(150)와 연통되어 있어 내부에 저압이 형성된 제 2 저압챔버(440)와, 충격완충장치(500)의 위치에 따라 고압의 작동유가 공급되거나 차단되는 제 2 압력챔버(460)와, 충격완충장치(500)의 위치에 따라 압축되거나 팽창이 이루어지는 제 1 압력챔버(450), 및 제 1 저압유로(146)와 연통되어 내부에 저압이 형성된 제 1 저압챔버(420)가 각각 구비된다. As shown in FIGS. 4 to 6, the hydraulic rotary striking device 300 accommodates the shock absorbing device 500 that performs hydraulic shock absorbing action inside the body 400 so as to reciprocate, and the first hydraulic pressure. As the high pressure hydraulic oil discharged from the pump 100 is supplied through the hydraulic circuits, the impact piston 310 reciprocates in the shock absorber 500, and the shank 320 is driven to rotate. At this time, between the body 400 and the outer circumferential surface of the shock absorber 500 is supplied with a high-pressure hydraulic fluid discharged from the first hydraulic pump 100 through a high-pressure flow path, the high-pressure chamber 430 is formed therein, The second low pressure chamber 440 is in communication with the third low pressure flow path 150 and the low pressure is formed therein, and the second pressure chamber 460 to which the high pressure hydraulic fluid is supplied or blocked according to the position of the shock absorber 500. And, the first pressure chamber 450 is compressed or expanded according to the position of the shock absorber 500, and the first low pressure chamber 420 in communication with the first low pressure passage 146, the low pressure is formed therein, respectively It is provided.
충격완충장치(500)는 타격 피스톤(310)에 대하여 천공방향(D)으로 소정 거리만큼 위치한 공간에 타격 피스톤(310)과 동일 축선 방향으로 습동 가능하도록 중앙부에 관통홀(510)이 형성된 원기둥 형상으로 이루어져 바디부(400)의 내에 배치된다. 여기서, 충격완충장치(500)는 외경부의 중앙에서 외측으로 돌출된 환형(環形)의 카라부(520)와, 상기 카라부(520)의 상측에 형성되고 상단면(512)이 바디부(400)의 내측 상단과 마주하는 상경부(530)와, 상기 카라부(520)의 하측에 형성되고 하단면(542)이 생크(320)의 타격면과 마주하는 하경부(540)로 이루어진다. 여기서, 상경부(530)의 일측에는 제 2 바이패스 유로(532)가 형성되고, 하경부(540)의 일측에는 제 1 바이패스 유로(544)가 형성될 수 있다.The shock absorber 500 has a cylindrical shape in which a through hole 510 is formed at a central portion thereof so as to be able to slide in the same axial direction as the striking piston 310 in a space located by a predetermined distance in the drilling direction D with respect to the striking piston 310. It is made of and disposed in the body portion 400. Here, the shock absorbing device 500 is formed of an annular collar portion 520 protruding outward from the center of the outer diameter portion, the upper portion 512 is formed on the upper side of the collar portion 520, the body portion 400 The upper diameter portion 530 facing the inner upper end of the) and the lower diameter portion 540 formed at the lower side of the collar portion 520 and facing the striking surface of the shank 320. Here, the second bypass passage 532 may be formed at one side of the upper diameter portion 530, and the first bypass passage 544 may be formed at one side of the lower diameter portion 540.
그리고, 카라부(520)의 하면(524)으로 유압을 공급하는 제 1 압력챔버(450)와, 상기 카라부(520)의 상면(522)으로 유압을 곱급하는 제 2 압력챔버(460)와, 제 1 저압유로(146)와 연통되어 내부에 저압이 형성된 제 1 저압챔버(420), 및 제 2 고압유로(144)와 연통되어 고압이 형성된 고압챔버(430)를 더 구비할 수 있다. 여기서, 제 1 압력챔버(450)는 제 1 바이패스 유로(544)를 통해 제 1 저압챔버(420)와 연통되거나 연통이 차단될 수 있으며, 제 2 압력챔버(460)는 제 2 바이패스 유로(532)를 통해 고압챔버(430)와 연통되거나 연통이 차단될 수 있다. Then, the first pressure chamber 450 for supplying the hydraulic pressure to the lower surface 524 of the collar portion 520, the second pressure chamber 460 for multiplying the hydraulic pressure to the upper surface 522 of the collar portion 520 and A first low pressure chamber 420 communicating with the first low pressure passage 146 and having a low pressure therein may be further provided, and a high pressure chamber 430 communicating with the second high pressure passage 144 and having a high pressure. Here, the first pressure chamber 450 may communicate with or block communication with the first low pressure chamber 420 through the first bypass passage 544, and the second pressure chamber 460 may have a second bypass passage. The communication with the high pressure chamber 430 or the communication may be blocked through 532.
한편, 충격완충장치(500)에는 제 1 유압펌프(100)로부터 토출된 고압의 작동유가 제 2 고압유로(144)를 통해 고압챔버(430)로 공급되고, 고압챔버(430)로 공급된 고압의 작동유는 제 2 바이패스 유로(532)를 통해 카라부(520)의 상면(522) 측에 형성된 제 2 압력챔버(460)로 공급되어 고압을 형성시키게 된다. On the other hand, the high pressure hydraulic fluid discharged from the first hydraulic pump 100 is supplied to the high pressure chamber 430 through the second high pressure passage 144, and the high pressure supplied to the high pressure chamber 430 is supplied to the shock absorber 500. The operating oil of the is supplied to the second pressure chamber 460 formed on the upper surface 522 side of the collar portion 520 through the second bypass flow path 532 to form a high pressure.
이와 같이, 제 2 압력챔버(460)에 고압이 형성되면 카라부(520)의 상면(522) 측으로는 천공방향(D)으로의 가압력이 형성되는데, 도 5에 도시한 바와 같이, 제 1 유압펌프(100)로부터 작동유가 토출되지 않는 상황에서는 피파쇄물(900)로부터 전달되는 접촉반력의 크기가 카라부(520) 상면(522)에 가해지는 가압력보다 커지게되므로 충격완충장치(500)가 상승되어 카라부(520)의 상면(522) 측이 타격장치(300)의 바디부(400)에 접촉되는 상사점 위치까지 상승하게 된다. As such, when a high pressure is formed in the second pressure chamber 460, a pressing force in the drilling direction D is formed on the upper surface 522 side of the collar part 520. As shown in FIG. 5, the first hydraulic pressure is formed. In the situation where the hydraulic fluid is not discharged from the pump 100, the magnitude of the contact reaction force transmitted from the crushed object 900 is greater than the pressing force applied to the upper surface 522 of the collar part 520. Thus, the upper surface 522 side of the collar portion 520 is raised to the top dead center position in contact with the body portion 400 of the striking device 300.
이때, 충격완충장치(500)의 상사점 위치에서는 상경부(530) 끝단부에 형성된 상단면(512)이 타격장치(300)의 바디부(400) 내측면(410)과 접촉되지 않게 된다.At this time, at the top dead center position of the shock absorber 500, the upper surface 512 formed at the end of the upper diameter portion 530 is not in contact with the inner surface 410 of the body portion 400 of the striking device 300.
그러나 도 6에 도시된 바와 같이, 제 1 유압펌프(100)로부터 고압의 작동유가 토출되어 제 1 고압유로(142)를 통해 타격장치(300)로 고압의 작동유가 공급되면, 타격 피스톤(310)은 상승행정이 시작되는 동시에 제 1 고압유로(142)로부터 분기된 제 2 고압유로(144)를 통해 고압챔버(430)로 고압의 작동유가 공급된다. 그러면, 도 6과 같이 고압챔버(430)에 공급된 고압의 작동유는 제 2 바이패스 유로(532)를 통해 제 2 압력챔버(460)로 공급되어 카라부(520) 상면(522) 측에 가압력을 형성시킴으로써 충격완충장치(500)를 천공방향(D)으로 이동시키게 된다.However, as shown in FIG. 6, when the high pressure hydraulic oil is discharged from the first hydraulic pump 100 and the high pressure hydraulic oil is supplied to the striking device 300 through the first high pressure passage 142, the blow piston 310. At the same time as the rising stroke starts, the high pressure hydraulic fluid is supplied to the high pressure chamber 430 through the second high pressure passage 144 branched from the first high pressure passage 142. Then, the high-pressure hydraulic oil supplied to the high pressure chamber 430 as shown in FIG. 6 is supplied to the second pressure chamber 460 through the second bypass flow path 532 to apply pressure to the upper surface 522 of the collar part 520. By forming the shock absorbing device 500 is moved in the drilling direction (D).
이때, 충격완충장치(500)가 제 2 압력챔버(460)에 형성된 고압에 의해 설정거리 이상 천공방향(D)으로 이동할 경우, 제 2 바이패스 유로(532)를 통한 제 2 압력챔버(460)와 고압챔버(430)의 연통이 차단되어 제 2 압력챔버(460)로 유입되는 작동유가 차단된다.At this time, when the shock absorber 500 moves in the drilling direction D more than the set distance by the high pressure formed in the second pressure chamber 460, the second pressure chamber 460 through the second bypass flow passage 532. Communication between the high pressure chamber 430 is blocked and the working oil flowing into the second pressure chamber 460 is blocked.
또한, 충격완충장치(500)가 천공방향(D)으로 이동할 때, 충격완충장치(500)의 카라부(520) 하면(524) 측에 형성된 제 1 압력챔버(450)는 제 1 바이패스 유로(544)를 통해 저압이 형성되어 있는 제 1 저압챔버(420)와 연통되므로 저압이 형성되게 된다. 이때, 상기 카라부(520)의 외주면을 통해 제 2 압력챔버(460)로부터 제 1 압력챔버(450)로 누유가 발생되어 제 2 압력챔버(460)의 압력은 하강하게 된다. In addition, when the shock absorber 500 moves in the drilling direction D, the first pressure chamber 450 formed on the lower surface 524 of the collar portion 520 of the shock absorber 500 may have a first bypass flow path. The low pressure is formed by communicating with the first low pressure chamber 420 where the low pressure is formed through the 544. At this time, leakage occurs from the second pressure chamber 460 to the first pressure chamber 450 through the outer circumferential surface of the collar part 520, so that the pressure of the second pressure chamber 460 is lowered.
이와 같이, 제 2 바이패스 유로(532)를 통해 제 2 압력챔버(460)와 고압챔버(430)를 연통시키거나 연통을 차단시켜 충격완충장치(500)의 카라부(520) 상면(522) 측에 작용하는 제 2 압력챔버(460)의 압력이 적절히 조절되는 것이다. 따라서, 타격장치(300)의 천공방향(D) 이송에 의해 드릴비트(700)와 피파쇄물(800)의 접촉시 발생되는 접촉 지지반력과 충격완충장치(500) 카라부(520)의 상면(522) 측에 작용하는 천공방향(D) 가압력이 평형을 이루는 지점에 충격완충장치(500)가 위치하게 된다. As such, the second pressure chamber 460 and the high pressure chamber 430 communicate with each other or block the communication through the second bypass flow passage 532, so that the upper surface 522 of the collar part 520 of the shock absorbing device 500. The pressure of the second pressure chamber 460 acting on the side is appropriately adjusted. Therefore, the contact support reaction force generated when the drill bit 700 and the to-be-damaged object 800 are contacted by the punching direction D of the striking device 300 and the upper surface of the collar part 520 of the impact buffer device 500 ( The shock absorber 500 is positioned at the point where the punching direction D acting on the side of the pressure 522 is balanced.
상술한 바와 같이, 제 1 바이패스 유로(544)와 제 2 바이패스 유로(532)를 통해 제1, 2 압력챔버(450, 460)에 가해지는 유압을 조절함으로써, 접촉 지지반력과 충격완충장치(500) 카라부(520)의 상면(522) 측에 작용하는 천공방향(D) 가압력이 평형을 이루는 위치가 정상적인 천공 작업에서의 충격완충장치(500)의 위치가 된다. As described above, by adjusting the hydraulic pressure applied to the first and second pressure chambers 450 and 460 through the first bypass passage 544 and the second bypass passage 532, the contact supporting reaction force and the shock absorber (500) The position where the punching direction D acting on the upper surface 522 side of the collar portion 520 is in equilibrium becomes the position of the shock absorber 500 in the normal drilling operation.
그리고, 제 1 유압펌프(100)로부터 작동유가 토출되지 않는 상태에서 타격장치(300)를 천공방향(D)으로 이송시켜 드릴비트(700)와 피파쇄물(800) 사이에 천공방향(D)으로의 접촉 지지력을 형성시킴과 더불어, 제 1 유압펌프(100)로부터 고압의 작동유가 토출되어 충격완충장치(500)를 천공방향(D)으로 이동시키게 되면 드릴비트(700)와 피파쇄물(800) 간의 접촉 지지력이 증가되어 드릴비트(700)와 피파쇄물(800) 사이를 더욱 견고하게 접촉시키게 된다.Then, in the state in which the hydraulic oil is not discharged from the first hydraulic pump 100, the striking device 300 is transferred in the drilling direction (D) in the drilling direction (D) between the drill bit 700 and the crushed object (800). In addition to forming a contact bearing force of the drill bit, when the high pressure hydraulic fluid is discharged from the first hydraulic pump 100 to move the shock absorber 500 in the drilling direction D, the drill bit 700 and the workpiece 800 The contact support force of the liver is increased to make a more firm contact between the drill bit 700 and the workpiece 800.
도 7은 본 발명의 일실시예에 의한 충격완충장치를 구비한 유압식 회전 타격장치의 개략적인 내부 구조를 도시한 것으로, 이때 충격완충장치(500)의 위치는 도 6에 도시한 바와 같이 정상적으로 작동유가 공급되는 천공 작업에서의 충격완충장치(500)의 위치가 된다.Figure 7 shows a schematic internal structure of the hydraulic rotary striking device with a shock absorber according to an embodiment of the present invention, wherein the position of the shock absorber 500 is normally operating oil as shown in FIG. Is the position of the shock absorber 500 in the drilling operation is supplied.
상기 도면에 도시된 바와 같이, 제 1 유압펌프(100)에서 토출된 고압의 작동유는 제 1 고압유로(142)를 거쳐 타격장치(300)에 공급되면 타격장치(300) 내부에 형성된 다수의 유로(130, 134, 136, 138, 140, 142) 및 제 1, 2 제어밸브(110, 120)에 의해 타격 피스톤(310)은 왕복운동하게 되고, 타격 피스톤(310)의 하강행정시 발생되는 운동에너지는 타격 피스톤(310)이 생크(320)를 타격할 때 충격에너지로 변환되어 생크(320), 로드(600) 및 드릴비트(700)를 거쳐 피파쇄물(800)에 전달되므로써 피파쇄물(800)이 파쇄된다.As shown in the figure, when the high pressure hydraulic fluid discharged from the first hydraulic pump 100 is supplied to the striking device 300 via the first high pressure flow path 142, a plurality of flow paths formed inside the striking device 300 The stroke piston 310 is reciprocated by the 130, 134, 136, 138, 140, 142 and the first and second control valves 110 and 120, and the movement generated when the strike piston 310 moves downward. The energy is converted into impact energy when the striking piston 310 strikes the shank 320 and is transferred to the crushed object 800 through the shank 320, the rod 600, and the drill bit 700, thereby giving the crushed object 800. ) Is crushed.
또한, 제 2 유압펌프(200)에서 토출된 고압의 작동유는 제 3 제어밸브(210)와 유로(220)를 통해 유압모터(230)에 공급되어 유압모터(230)의 구동축을 회전시켜 회전 구동력을 발생시킨다.In addition, the high pressure hydraulic fluid discharged from the second hydraulic pump 200 is supplied to the hydraulic motor 230 through the third control valve 210 and the flow path 220 to rotate the drive shaft of the hydraulic motor 230 to rotate the driving force. Generates.
이때, 유압모터(230)에서 발생된 회전 구동력은 피니언 기어(232), 드라이브 기어(330)를 통해 생크(320)로 전달되고, 상기 생크(320)로 전달된 회전 구동력을 하나 이상의 로드(600)와 드릴비트(700)를 통해 피파쇄물(800)로 전달시킴으로써 피파쇄물(800)을 파쇄시키게 된다. At this time, the rotational driving force generated in the hydraulic motor 230 is transmitted to the shank 320 through the pinion gear 232, the drive gear 330, the rotational driving force transmitted to the shank 320 at least one rod 600 By passing through the drill bit 700 and the crushed object 800 is to crush the crushed object (800).
즉, 천공기의 마스트 상에 설치된 피드모터 등과 같은 이송수단에 의해 타격장치(300)를 천공방향(D)으로 이송시켜 드릴비트(700)와 피파쇄물(800)을 접촉시킨 상태에서 타격 피스톤(310)이 생크(320)를 타격하여 충격에너지를 발생시키고, 이때 발생된 충격에너지와 유압모터(230)의 회전에 의해 발생된 회전 구동력을 하나 이상의 로드(600)와 드릴비트(700)를 통해 피파쇄물(800)로 전달시킴으로써 천공작업이 이루어지게 된다.That is, the striking piston 310 in a state in which the striking device 300 is transferred in the drilling direction D by a transfer means such as a feed motor installed on the mast of the perforator so as to contact the drill bit 700 and the workpiece 800. ) Strikes the shank 320 to generate impact energy, and the impact energy generated at this time and the rotational driving force generated by the rotation of the hydraulic motor 230 are avoided through at least one rod 600 and the drill bit 700. The perforation work is made by transferring the crushed material 800.
상기와 같은 천공작업시에는 타격 피스톤(310)의 생크(320)의 타격시 발생된 모든 충격에너지가 피파쇄물(800)을 파쇄시키는데 사용되지는 못하고, 충격 에너지중 일부는 피파쇄물(800)로부터 반사되어 드릴비트(700), 로드(600) 및 생크(320)를 통해 타격장치(300)로 전달된다.In the above drilling operation, all the impact energy generated when the shank 320 of the striking piston 310 is hit is not used to crush the crushed object 800, and some of the impact energy is lost from the crushed object 800. Reflected and transmitted to the striking device 300 through the drill bit 700, the rod 600 and the shank 320.
이때, 충격완충장치(500)의 제 2 압력챔버(460)에는 제 2 바이패스 유로(532)를 통해 고압챔버(430)와 연통되어 고압이 형성되기 때문에, 피파쇄물(800)로부터 반사된 타격반력이 생크(320)를 거쳐 충격완충장치(500)로 전달되면 충격완충장치(500)는 미세 거리만큼 천공 반대방향(U)으로 이동하게 된다. 이에 따라, 제 2 압력챔버(460)가 압축되어 내부 압력이 상승하게 되고, 제 2 압력챔버(460)의 내부 압력 상승으로 인해 충격완충장치(500)의 카라부(520) 상면(522) 측에 작용하는 천공방향(D)의 가압력이 증대되어 충격완충장치(500)는 다시 미세 거리만큼 천공방향(D)으로 이동되어 타격반력이 전달되기 전의 위치로 복귀하게 된다.In this case, since the high pressure is formed in the second pressure chamber 460 of the shock absorber 500 by being communicated with the high pressure chamber 430 through the second bypass flow path 532, the impact reflected from the to-be-damaged object 800 is affected. When the reaction force is transmitted to the shock absorber 500 through the shank 320, the shock absorber 500 is moved in the opposite direction (U) by a fine distance. Accordingly, the second pressure chamber 460 is compressed to increase the internal pressure, and due to the increase in the internal pressure of the second pressure chamber 460, the upper surface 522 of the collar part 520 of the shock absorber 500 is increased. The pressing force in the puncturing direction D acting on is increased so that the shock absorber 500 is moved in the puncturing direction D again by a minute distance to return to the position before the impact reaction is transmitted.
즉, 피파쇄물(800)로부터 역 전달되는 타격반력은 상술한 바와 같이 충격완충장치(500)의 카라부(520) 상면(522) 측에 작용하는 제 2 압력챔버(460)의 압력상승 및 압력하강의 유압적인 완충작용을 통해 흡수된다.That is, the impact reaction force transmitted back from the crushed object 800 is increased in pressure and pressure of the second pressure chamber 460 acting on the upper surface 522 of the collar portion 520 of the shock absorber 500 as described above. It is absorbed by hydraulic dampening of the descent.
또한, 충격완충장치(500)가 미세하게 천공 반대방향(U)으로 이동하였다가 다시 복귀하는데 소요되는 시간은 매우 짧기 때문에 타격 피스톤(310)이 생크(320)를 재차 타격하기 전에 충격완충장치(500)의 복귀가 이루어지고, 이때, 제 2 압력챔버(460)의 압력 상승 및 압력하강은 순간적인 피크압력으로 관찰된다.In addition, since the time required for the impact shock absorbing device 500 to move slightly in the opposite direction of the drilling U and return again is very short, before the impact piston 310 hits the shank 320 again, the shock absorbing device ( The return of 500 is made, at which time the rise and fall of the pressure in the second pressure chamber 460 is observed at an instantaneous peak pressure.
이러한 유압적인 완충작용으로 인하여 타격장치(300)의 내부 부품과 바디부(400) 내측면(410)과의 기계적인 접촉 및 충격 전달이 발생되지 않게 되어 타격장치(300) 본체의 내구성이 향상되는 동시에, 충격완충장치(500) 하경부(540)의 하단면(542)과 생크(320)의 접촉 또한 항상 유지되므로 접촉 해제시 충격 전달에 의한 타격장치(300) 내부 부품의 파손이 방지된다.Due to the hydraulic shock absorbing action, mechanical contact and impact transmission between the internal parts of the striking device 300 and the inner surface 410 of the body part 400 are not generated, thereby improving durability of the main body of the striking device 300. At the same time, the bottom surface 542 of the impact shock absorbing device 500, 540 and the contact of the shank 320 is also always maintained, thereby preventing damage to the internal parts of the striking device 300 due to the shock transmission when the contact is released.
또한, 충격완충장치(500)의 유압적인 완충작용으로 인해 충격완충장치(500), 생크(320), 로드(600) 및 드릴비트(700)와 피파쇄물(800) 사이의 접촉이 항시 유지될 수 있어 타격 피스톤(310)의 생크(320) 타격시 발생되는 충격에너지가 피파쇄물(800)에 원할히 전달되므로 타격장치(300)의 천공성능이 향상되고 이로 인해 천공기의 생산성이 증대된다.Also, due to the hydraulic shock absorbing action of the shock absorber 500, the contact between the shock absorber 500, the shank 320, the rod 600, and the drill bit 700 and the workpiece 800 is always maintained. The impact energy generated when the shank 320 of the striking piston 310 strikes can be smoothly transmitted to the crushed object 800, so that the punching performance of the striking device 300 is improved, thereby increasing the productivity of the perforator.
또한, 천공작업시 유압모터(230)의 회전에 의해 발생된 회전력이 피니언 기어(232), 드라이브 기어(330), 생크(320), 로드(600) 및 드릴비트(700)를 거쳐 피파쇄물(800)에 전달되는 과정에서 타격장치(300)의 내부 부품과 바디부(400) 사이의 직접적인 접촉이 발생되지 않게 되어 타격장치(300)의 내구성이 향상된다.In addition, the rotational force generated by the rotation of the hydraulic motor 230 during the drilling operation is passed through the pinion gear 232, the drive gear 330, the shank 320, the rod 600 and the drill bit 700 ( The direct contact between the internal parts of the striking device 300 and the body part 400 is not generated in the process of being transmitted to 800, thereby improving durability of the striking device 300.
도 8은 본 발명의 일실시예에 의한 충격완충장치의 연질구간 천공작업시 상태를 도시하는 도면으로서, 충격완충장치(500)의 동작중 타격장치(300)의 이송속도보다 드릴비트(700)가 피파쇄물(800)을 뚫고 들어가는 천공속도가 순간적으로 증가되어 빠른 속도로 천공방향(D)으로 이동되는 연질구간의 천공작업시 충격완충장치(500)의 상태를 도시한 도면이다.8 is a view showing a state during the soft section puncture operation of the shock absorber according to an embodiment of the present invention, the drill bit 700 than the feed rate of the striking device 300 during operation of the shock absorber 500 A diagram showing the state of the shock absorber 500 during the drilling operation of the soft section moving in the drilling direction (D) at a rapid speed by increasing the drilling speed penetrating through the crushed object (800).
상기 도면에 도시된 바와 같이, 천공작업시 천공깊이에 따라 피파쇄물(800)의 종류와 강도가 변화하는데 피파쇄물(800)의 강도가 갑자기 낮아지는 연질의 천공구간이 나타나는 경우 타격장치(300)의 이송속도보다 드릴비트(700)가 피파쇄물(800)을 천공하는 천공속도가 순간적으로 증가되게 된다.As shown in the figure, when the type and the strength of the crushed object 800 is changed according to the depth of drilling during the drilling operation, the impact device 300 when a soft piercing section that suddenly lowers the strength of the crushed object 800 appears The drilling speed of the drill bit 700 to drill the crushed object 800 is increased more than the feed rate of the instantaneously.
이러한 경우, 천공기의 마스트 상에 설치된 실린더 또는 유압피드모터 등과 같은 이송수단에 의해 드릴비트(700)와 피파쇄물(800) 사이에 형성된 접촉 지지력이 낮아지기 때문에, 충격완충장치(500)의 카라부(520) 상면(522) 측에 가해지는 제 2 압력챔버(460)의 압력에 의해 충격완충장치(500)가 천공방향(D)으로 빠르게 전진 이동된다.In this case, since the contact bearing force formed between the drill bit 700 and the to-be-damaged object is lowered by a conveying means such as a cylinder or a hydraulic feed motor installed on the mast of the perforator, the collar part of the shock absorber 500 The shock absorbing device 500 is rapidly moved forward in the drilling direction D by the pressure of the second pressure chamber 460 applied to the upper surface 522.
따라서, 생크(320) 상단부와 충격완충장치(500)의 하단면(542)의 접촉이 계속 유지되는 동시에 드릴비트(700)와 피파쇄물(800) 사이의 접촉도 지속적으로 유지시킬 수 있게 되어, 타격장치(300)의 충격에너지가 원활하게 피파쇄물(800)로 전달된다. 이에 따라, 순간적인 접촉 해제로 인한 타격장치(300)의 내부부품 및 타격장치(300) 바디부(400)의 충돌을 방지할 수 있게 된다,Accordingly, the contact between the upper end of the shank 320 and the lower surface 542 of the shock absorber 500 is maintained, and at the same time, the contact between the drill bit 700 and the workpiece 800 is continuously maintained. The impact energy of the striking device 300 is smoothly transmitted to the crushed object 800. Accordingly, it is possible to prevent collision between the internal parts of the striking device 300 and the body part 400 of the striking device 300 due to instantaneous contact release.
또한, 타격 피스톤(310)의 생크(320) 타격시 발생된 충격에너지가 피파쇄물(800)에 원할히 전달되어 천공 성능을 안정적으로 확보할 수 있게 되므로 생산성을 향상시킬 수 있다. In addition, the impact energy generated when hitting the shank 320 of the striking piston 310 is transmitted to the crushed object 800 smoothly to ensure a stable puncturing performance, thereby improving productivity.
상술한 바와 같이 타격장치(300)의 이송속도보다 드릴비트(700)의 천공속도가 순간적으로 빨라지는 상황에 있어서, 충격완충장치(500)의 카라부(520) 상면(522) 측으로 제 2 압력챔버(460)의 고압이 작용하여 충격완충장치(500)가 천공방향(D)으로 빠르게 이동하게 된다. 그리고, 이때 충격완충장치(500)가 설정거리 이상 천공방향(D)으로 이동할 경우 제 2 압력챔버(460)는 제 2 바이패스 유로(532)를 통한 고압챔버(430)와의 연통이 차단되어 제 2 압력챔버(460)로 가해지는 압력을 유지시켜 충격완충장치(500)에 가해지는 천공방향(D)으로의 가압력이 감소된다.As described above, in a situation where the drilling speed of the drill bit 700 is instantaneously faster than the conveying speed of the striking device 300, the second pressure toward the upper surface 522 of the collar part 520 of the shock absorbing device 500. The high pressure of the chamber 460 acts so that the shock absorber 500 moves quickly in the drilling direction D. In this case, when the shock absorber 500 moves in the drilling direction D more than the set distance, the second pressure chamber 460 is blocked from communicating with the high pressure chamber 430 through the second bypass flow path 532. 2 the pressure applied to the pressure shock absorber 500 is reduced by maintaining the pressure applied to the pressure chamber 460.
도 9는 본 발명의 일실시예에 의한 충격완충장치의 공동(空洞)구간 천공작업시 상태를 도시하는 도면으로서, 더욱 상세하게는 충격완충장치(500)의 동작중 타격장치(300)의 이송속도보다 드릴비트(700)가 피파쇄물(800)을 뚫고 들어가는 천공속도가 도 8에 도시된 연질구간 작업 속도보다 더욱더 증가되는 공동구간에서의 천공작업시 충격완충장치(500)를 도시한 도면이다. 이는, 주로 천공작업중 간혹 발생되는 피파쇄물(800)이 존재하지 않는 공동(空洞)지점의 천공 작업시 발생된다.FIG. 9 is a view illustrating a state in the cavity section drilling operation of the shock absorber according to an embodiment of the present invention, and more specifically, transfer of the striking device 300 during operation of the shock absorber 500. FIG. 8 is a view illustrating an impact buffer device 500 during a drilling operation in a cavity section in which a drilling speed of the drill bit 700 penetrating the crushed object 800 is increased more than the speed of the soft section work shown in FIG. 8. . This is mainly generated during the drilling operation of the hollow point where the crushed material 800 which is occasionally generated during the drilling operation does not exist.
상기와 같이 피파쇄물(800)이 존재하지 않는 공동(空洞) 지점에서는 드릴비트(700)와 피파쇄물(800) 사이에 접촉 지지력이 형성되지 않기 때문에 충격완충장치(500)의 카라부(520) 상면(522) 측에 가해지는 가압력에 의하여 카라부(520) 하면(524)이 타격장치(300) 바디부(400)와 충돌되는 위치까지 충격완충장치(500)가 이동될 수 있다. Cara 520 of the shock absorber 500, because the contact support force is not formed between the drill bit 700 and the object to be crushed at the cavity point where the object to be crushed (800) does not exist as described above The shock absorber 500 may be moved to a position where the lower surface 524 of the collar portion 520 collides with the body portion 400 of the striking device 300 by the pressing force applied to the upper surface 522.
만약, 충격완충장치(500)의 카라부(520) 하면(524)이 타격장치(300)의 바디부(400)에 강하게 충돌된다면 바디부(400)가 파손될 수 있기 때문에, 카라부(520) 하면(524)이 바디부(400)와 충돌되지 않도록 하거나, 충돌을 피할 수 없는 경우에는 최대한 충돌부에 가해지는 충격력을 최소화시켜야 한다.If the collar portion 520 of the shock absorber 500 is strongly collided with the body portion 400 of the striking device 300, the collar portion 520 may be damaged since the body portion 400 may be damaged. When the lower surface 524 does not collide with the body portion 400 or when collision cannot be avoided, the impact force applied to the colliding portion should be minimized as much as possible.
따라서, 충격완충장치(500)가 설정거리 이상 천공방향(D)으로 이동하면 제 2 압력챔버(460)는 제 2 바이패스 유로(532)를 통해 고압챔버(430)로부터 공급받던 작동유의 공급이 차단되어 제 2 압력챔버(460)의 내부 압력이 하강하게 된다. 이처럼, 제 2 압력챔버(460)의 내부 압력이 하강됨에 따라 카라부(520) 상면(522) 측에 가해지던 천공방향(D)의 가압력이 감소되므로, 카라부(520) 하면(524)과 타격장치(300) 바디부(400)가 충돌할 때 충돌부에 가해지는 충격력은 감소된다.Therefore, when the shock absorber 500 moves in the drilling direction D more than the set distance, the second pressure chamber 460 is supplied with the hydraulic oil supplied from the high pressure chamber 430 through the second bypass flow path 532. The internal pressure of the second pressure chamber 460 is lowered by being blocked. As such, as the internal pressure of the second pressure chamber 460 is lowered, the pressing force in the drilling direction D applied to the upper surface 522 of the collar portion 520 is reduced, so that the lower portion 524 of the collar portion 520 is reduced. The impact force applied to the impact portion when the body portion 400 of the striking device 300 collides is reduced.
또한, 충격완충장치(500)가 설정거리 이상 천공방향(D)으로 더욱더 하강하게 되면, 카라부(520)의 하면(524) 측에 형성된 제 1 압력챔버(450)는 제 1 바이패스 유로(544)에 의해 제 1 저압챔버(420)와 연통이 차단되어 제 1 압력챔버(450)는 밀폐된 상태가 된다.In addition, when the shock absorber 500 is further lowered in the drilling direction D more than the set distance, the first pressure chamber 450 formed on the lower surface 524 side of the collar portion 520 is the first bypass flow path ( Communication with the first low pressure chamber 420 is blocked by 544, so that the first pressure chamber 450 is closed.
이때, 상기 제 1 압력챔버(450)가 밀폐된 상황에서 충격완충장치(500)가 천공방향(D)으로 더욱더 하강하게 되면 제 1 압력챔버(450)의 내부 압력은 급격히 상승 하게되고, 상기 제 1 압력챔버(450)의 급격한 내부 압력 상승으로 인해 충격완충장치(500)의 하강속도는 급격히 감소된다.At this time, when the shock absorber 500 is further lowered in the drilling direction D in a situation where the first pressure chamber 450 is sealed, the internal pressure of the first pressure chamber 450 is rapidly increased, 1 Due to the rapid increase in the internal pressure of the pressure chamber 450, the falling speed of the shock absorber 500 is sharply reduced.
또한, 카라부(520)의 상면(522) 측에 형성된 제 2 압력챔버(460)는 제 2 저압유로(148)를 통해 제 1 저압유로(146)와 연통되므로 제 2 압력챔버(460)에는 저압이 형성된다. 이에 따라, 카라부(520)의 상면(522) 측에 가해지는 천공방향(D)으로의 가압력은 더욱 감소하게 된다.In addition, since the second pressure chamber 460 formed on the upper surface 522 side of the collar part 520 communicates with the first low pressure passage 146 through the second low pressure passage 148, the second pressure chamber 460 is not included in the second pressure chamber 460. Low pressure is formed. Accordingly, the pressing force in the drilling direction D applied to the upper surface 522 side of the collar portion 520 is further reduced.
이러한, 충격완충장치(500)의 천공방향(D) 하강 속도와 가압력 감소로 인해 충격완충장치(500)의 카라부(520) 하면(524)과 타격장치(300) 바디부(400)의 충돌을 방지할 수 있으며, 만약, 충돌이 발생되더라도 충돌부에 발생되는 충격량을 최소화 시킬 수 있게 되므로 파손을 발생시키지 않을 수 있게 된다.The collision between the lower portion 524 of the collar portion 520 of the impact buffer device 500 and the body portion 400 of the impact device 300 due to the lowering speed and the pressing force of the punching direction D of the impact buffer device 500 is reduced. It is possible to prevent, and even if a collision occurs, it is possible to minimize the amount of impact generated in the collision part, so that no damage can be caused.
상기와 같이, 공동(空洞) 지점에 대한 파쇄시 충격완충장치(500)가 매우 빠른 속도로 천공방향(D)으로 하강하는 경우에서는 제 2 바이패스 유로(532)를 통해 고압챔버(430)에서 제 2 압력챔버(460)로 공급되는 작동유의 유입이 차단되어 제 2 압력챔버(460)의 압력이 하강될 뿐만 아니라, 경우에 따라서는 제 2 압력챔버(460)에 저압이 형성되도록 하여 카라부(520) 상면(522)에 가해지는 천공방향(D)으로의 가압력을 감소시킬 수 있게 된다. 또한, 제 1 바이패스 유로(544)를 차단시켜 카라부(520) 하면(524)에 형성된 제 1 압력챔버(450)를 밀폐시키면 내부 압력이 상승되어 충격완충장치(500)의 천공방향(D)으로의 이동속도를 감소시킬 수 있게 된다. 이에 따라, 충격완충장치(500)와 타격장치(300) 바디부(400)와의 충돌이 방지되며, 만약 충돌이 발생되더라도 그 충격량을 최소화시킴으로써 충격완충장치(500)와 타격장치(300) 바디부(400)의 손상을 방지할 수 있게 된다.As described above, when the impact buffer device 500 is crushed at the cavity point descends in the drilling direction D at a very high speed, in the high pressure chamber 430 through the second bypass flow path 532. The inflow of the hydraulic oil supplied to the second pressure chamber 460 is blocked so that the pressure of the second pressure chamber 460 is lowered, and in some cases, a low pressure is formed in the second pressure chamber 460 so that the collar portion is formed. 520, the pressing force in the drilling direction D applied to the upper surface 522 can be reduced. In addition, when the first bypass passage 544 is blocked to seal the first pressure chamber 450 formed on the lower surface 524 of the collar part 520, the internal pressure is increased, so that the punching direction D of the impact buffer device 500 is increased. It is possible to reduce the moving speed to). Accordingly, the collision between the shock absorber 500 and the striking device 300 body 400 is prevented, and even if a collision occurs, the impact buffer 500 and the body of the striking device 300 are minimized by minimizing the amount of impact. Damage to the 400 can be prevented.
상술한 바와 같이 충격완충장치를 구비한 유압식 회전 타격장치의 구조와 작동에 대해서 도면에 도시된 실시예를 참고로 설명하였으나, 이는 예시적인 것에 불과하며, 충격완충장치의 유압적인 회로가 동일하다면 이것은 본 발명과 동일한 것으로 간주되며, 또한 당업자라면 누구든지 본 발명으로부터 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. As described above, the structure and operation of the hydraulic rotary striking device having the shock absorber have been described with reference to the embodiment shown in the drawings. However, this is merely illustrative, and if the hydraulic circuits of the shock absorber are the same, It is to be regarded as equivalent to the present invention, and one of ordinary skill in the art will understand that other embodiments may be modified and equivalent from the present invention.
따라서, 진정한 기술적 보호범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.Therefore, the true technical protection scope should be defined by the technical spirit of the appended claims.

Claims (4)

  1. 바디부 내부에 유압적인 완충작용을 수행하는 충격완충장치가 왕복 이동 가능하게 수용되며, 제 1 유압펌프로부터 토출된 고압의 작동유가 유압회로들을 통해 공급됨에 따라 상기 충격완충장치 내에서 타격 피스톤이 왕복이송하는 동시에 생크가 회전 구동하는 유압식 회전 타격장치에 있어서, A shock absorber that hydraulically buffers the body is accommodated in a reciprocating manner, and the blow piston reciprocates in the shock absorber as the high pressure hydraulic fluid discharged from the first hydraulic pump is supplied through the hydraulic circuits. In the hydraulic rotary striking device which drives the shank while rotating,
    상기 바디부와 충격완충장치의 외주면 사이에는 상기 제 1 유압펌프로부터 토출된 고압의 작동유를 고압유로를 통해 공급받아 내부에 고압이 형성된 고압챔버와, 제 3 저압유로와 연통되어 있어 내부에 저압이 형성된 제 2 저압챔버와, 상기 충격완충장치의 위치에 따라 고압의 작동유가 공급되거나 차단되는 제 2 압력챔버와, 상기 충격완충장치의 위치에 따라 압축되거나 팽창이 이루어지는 제 1 압력챔버, 및 제 1 저압유로와 연통되어 내부에 저압이 형성된 제 1 저압챔버가 각각 구비되며, Between the body portion and the outer circumferential surface of the shock absorber is supplied with a high-pressure hydraulic fluid discharged from the first hydraulic pump through a high pressure flow path and a high pressure chamber formed therein, and a third low pressure flow path communicates with the low pressure inside A second low pressure chamber formed therein, a second pressure chamber through which high-pressure hydraulic fluid is supplied or blocked according to the position of the shock absorber, a first pressure chamber compressed or expanded according to the position of the shock absorber, and a first The first low pressure chamber which is in communication with the low pressure flow path and the low pressure is formed therein, respectively,
    상기 충격완충장치는 타격 피스톤에 대하여 천공방향으로 소정 거리만큼 위치한 공간에 타격 피스톤과 동일 축선 방향으로 습동 가능하도록 중앙부에 관통홀이 형성된 원기둥 형상으로 이루어져 상기 바디부의 내에 배치되며, The shock absorbing device is disposed in the body portion having a cylindrical shape having a through hole formed in a central portion thereof so as to be able to slide in the same axial direction as the striking piston in a space located at a predetermined distance with respect to the striking piston.
    외경부의 중앙에 형성되고 외측으로 돌출된 환형의 카라부;An annular collar portion formed in the center of the outer diameter portion and protruding outwardly;
    상기 카라부의 상측에 형성되고 상단면이 상기 바디부의 내측 상단과 마주하는 상경부; An upper diameter portion formed on an upper side of the collar portion and having an upper end surface facing an inner upper end of the body portion;
    상기 카라부의 하측에 형성되고 하단면이 상기 생크의 타격면과 마주하는 하경부; 및A lower diameter portion formed at a lower side of the collar portion and having a lower end facing the striking surface of the shank; And
    상기 상경부의 일측에 형성되며, 천공 작업시 설정거리 미만으로 이동하면 고압챔버와 제 2 압력챔버를 연통시키고, 설정거리 이상으로 이동하면 고압챔버와 제 2 압력챔버의 연통을 차단하는 적어도 하나 이상의 제 2 바이패스 유로를 구비한 것을 특징으로 하는 유압식 회전 타격장치.Is formed on one side of the upper diameter portion, when moving to less than the set distance during the drilling operation, the high pressure chamber and the second pressure chamber is in communication, when moving to more than the set distance at least one or more agents for blocking the communication between the high pressure chamber and the second pressure chamber 2. A hydraulic rotary striking device comprising a bypass channel.
  2. 제 1 항에 있어서, 상기 충격완충장치는,According to claim 1, wherein the shock absorber,
    상기 제 1 압력챔버를 제 1 저압챔버와 연통시키는 적어도 하나 이상의 제 1 바이패스 유로를 더 포함하는 구성으로 이루어지는 것을 특징으로 하는 유압식 회전 타격장치.And at least one first bypass passage for communicating the first pressure chamber with the first low pressure chamber.
  3. 제 2 항에 있어서, 상기 제 1 바이패스 유로는,The method of claim 2, wherein the first bypass flow path,
    상기 충격완충장치가 설정거리 미만으로 이동하면 제 1 압력챔버와 제 1 저압챔버를 연통시켜 제 1 압력챔버로부터 제 1 저압챔버로 작동유의 배출이 이루어지도록 하여 제 1 압력챔버 내부의 압력을 하강시킴으로써 카라부 하면 측에 가해지는 가압력을 감소시키고,When the shock absorber moves below the set distance, the first pressure chamber and the first low pressure chamber communicate with each other to discharge hydraulic oil from the first pressure chamber to the first low pressure chamber, thereby lowering the pressure inside the first pressure chamber. To reduce the pressure applied to the lower side of the collar,
    상기 충격완충장치가 설정거리 이상 천공방향으로 이동하면 제 1 압력챔버로부터 제 1 저압챔버로의 작동유 배출을 차단시키도록 하여 제 1 압력챔버 내부의 압력을 상승시킴으로써 충격완충장치의 천공방향 이동속도를 감소시키는 것을 특징으로 하는 유압식 회전 타격장치.When the shock absorber moves in the puncturing direction over the set distance, it blocks the discharge of hydraulic oil from the first pressure chamber to the first low pressure chamber to increase the pressure in the first pressure chamber, thereby increasing the speed in the puncturing direction of the shock absorber. Hydraulic rotary blow device, characterized in that for reducing.
  4. 제 1 항에 있어서, 상기 제 2 압력챔버는,The method of claim 1, wherein the second pressure chamber,
    상기 충격완충장치가 설정거리 이상 천공방향으로 이동하면 제 1 저압유로와 연결된 제 2 저압유로가 연통되어 저압이 형성되는 것을 특징으로 하는 유압식 회전 타격장치.When the shock absorber moves in the drilling direction over a set distance, the second low pressure passage connected to the first low pressure passage communicates with the hydraulic rotary blow device, characterized in that the low pressure is formed.
PCT/KR2014/005334 2013-06-24 2014-06-18 Hydraulic rotating striking device WO2014208922A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130072083 2013-06-24
KR10-2013-0072083 2013-06-24
KR10-2014-0061905 2014-05-22
KR1020140061905A KR101565140B1 (en) 2013-06-24 2014-05-22 Hydraulic rotary percussive drilling tool

Publications (1)

Publication Number Publication Date
WO2014208922A1 true WO2014208922A1 (en) 2014-12-31

Family

ID=52142203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/005334 WO2014208922A1 (en) 2013-06-24 2014-06-18 Hydraulic rotating striking device

Country Status (1)

Country Link
WO (1) WO2014208922A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116556823A (en) * 2023-07-10 2023-08-08 四川蓝海智能装备制造有限公司 High-frequency breaking hammer and tunneling equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001341083A (en) * 2000-06-01 2001-12-11 Furukawa Co Ltd Damper pressure control device for hydraulic rock drill
KR20040091661A (en) * 2002-03-19 2004-10-28 몬타베르트 에스.에이. Hydraulic rotary-percussive hammer drill
KR20090006657A (en) * 2007-07-12 2009-01-15 주식회사대신중공업 Front head assembly for hydraulic breaker
KR20100039036A (en) * 2008-10-07 2010-04-15 주식회사 에버다임 Hydraulic breaker

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001341083A (en) * 2000-06-01 2001-12-11 Furukawa Co Ltd Damper pressure control device for hydraulic rock drill
KR20040091661A (en) * 2002-03-19 2004-10-28 몬타베르트 에스.에이. Hydraulic rotary-percussive hammer drill
KR20090006657A (en) * 2007-07-12 2009-01-15 주식회사대신중공업 Front head assembly for hydraulic breaker
KR20100039036A (en) * 2008-10-07 2010-04-15 주식회사 에버다임 Hydraulic breaker

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116556823A (en) * 2023-07-10 2023-08-08 四川蓝海智能装备制造有限公司 High-frequency breaking hammer and tunneling equipment
CN116556823B (en) * 2023-07-10 2023-09-22 四川蓝海智能装备制造有限公司 High-frequency breaking hammer and tunneling equipment

Similar Documents

Publication Publication Date Title
KR100661701B1 (en) Damper pressure control apparatus for hydraulic rock drill
JP3904612B2 (en) Drilling machine structure and drilling control method
JP3483015B2 (en) Hydraulic shock absorber shock absorber
US3490549A (en) Hydraulic percussive drill
EP2257684B1 (en) Internally dampened percussion rock drill
WO2014092387A1 (en) Hydraulic rotating impact apparatus
WO2014208922A1 (en) Hydraulic rotating striking device
EP1385673A1 (en) Linerbolt removal tool
CN107355220B (en) Rock drill is swung in taking precautions against earthquakes
CN103195421A (en) Reciprocating impact tunnel boring machine
JPH0679506A (en) Adjustable chuck for drill for tap hole of blast furnace
CN107552131A (en) A kind of drive assembly of intelligent crushing machine
CN102985230A (en) Drilling machine
KR101565140B1 (en) Hydraulic rotary percussive drilling tool
WO2014104608A1 (en) Shock absorbing device for hydraulic rotary hitting apparatus
JP4514900B2 (en) Shock absorber of hydraulic striking device
JP3824112B2 (en) Shock absorber of hydraulic striking device
CN201250607Y (en) Structure capable of idle drilling and preventing idle striking for hydraulic rock drill
US4072198A (en) Hydraulic rock drill
CA2722539C (en) A force balancing system for use with a well bore tool
CN216811552U (en) Movable down-hole drill for hydraulic engineering
JP2537370B2 (en) Hydraulic impact tool
CN112360481B (en) Rock breaking equipment and impact device thereof
CN114961723B (en) Anti-impact protection device for anchor cable net formation and use method
CN212105723U (en) Reverse circulation impact device with guide structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14817653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14817653

Country of ref document: EP

Kind code of ref document: A1