WO2014208912A1 - 수지막, 수지막의 제조 방법 및 도공액 - Google Patents

수지막, 수지막의 제조 방법 및 도공액 Download PDF

Info

Publication number
WO2014208912A1
WO2014208912A1 PCT/KR2014/005170 KR2014005170W WO2014208912A1 WO 2014208912 A1 WO2014208912 A1 WO 2014208912A1 KR 2014005170 W KR2014005170 W KR 2014005170W WO 2014208912 A1 WO2014208912 A1 WO 2014208912A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin film
cerium oxide
silsesquioxane
containing particles
mass
Prior art date
Application number
PCT/KR2014/005170
Other languages
English (en)
French (fr)
Inventor
코보리시게토
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013136031A external-priority patent/JP6514427B2/ja
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Publication of WO2014208912A1 publication Critical patent/WO2014208912A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C73/00Repairing of articles made from plastics or substances in a plastic state, e.g. of articles shaped or produced by using techniques covered by this subclass or subclass B29D
    • B29C73/16Auto-repairing or self-sealing arrangements or agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • C08J2483/07Polysiloxanes containing silicon bound to unsaturated aliphatic groups

Definitions

  • This invention relates to a resin film, the manufacturing method of a resin film, and a coating liquid.
  • cage-shaped silsesquioxane and inorganic oxide fine particles are contained in the high refractive index layer of the optical film.
  • the inorganic oxide fine particles have a core / shell structure, but both the core and the shell are made of inorganic material.
  • the cage-like silsesquioxane is also included in the hard coat layer and the low refractive index layer. According to this technique, the strength of the optical film is expected to be improved.
  • the optical film disclosed in JP2009-42351 A has a problem of extremely low bending resistance and crack resistance. Specifically, while the optical film disclosed in JP2009-42351 A has high strength, it is very soft, and there is a problem that cracks easily occur even if only slightly bent. In addition, there was a problem that hardly repaired when there was a scar. For this reason, an optical film with high flexibility and self-healing property has been desired.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a novel and improved resin film capable of improving flexibility and self-healing properties while maintaining high strength, and a method for producing the same. And providing a coating liquid.
  • the resin film includes a matrix containing silsesquioxane as a structural unit; And a cerium oxide-containing particle dispersed in the matrix, wherein the cerium oxide-containing particle includes a core containing cerium oxide and an organic polymer layer covering the core.
  • Another aspect of the present invention relates to a method for producing a resin film.
  • the method includes preparing a coating solution by mixing silsesquioxane, cerium oxide containing particles and a solvent having a boiling point of about 160 ° C. or higher; And producing a resin film by using the coating solution, wherein the cerium oxide-containing particles have a core containing cerium oxide and an organic polymer layer covering the core. Since the polar solvent whose boiling point is about 160 degreeC or more is used as a solvent, it is possible to stably disperse a cerium oxide containing particle
  • the coating solution includes silsesquioxane, cerium oxide containing particles and a solvent having a boiling point of about 160 ° C. or more, and the cerium oxide containing particles include a core comprising cerium oxide and an organic polymer layer covering the core. It is done.
  • the polar solvent whose boiling point is about 160 degreeC or more is used as a solvent, cerium oxide containing particle
  • grains can be stably dispersed in a resin film.
  • a resin film having improved flexibility and self-healing properties can be produced while maintaining high strength.
  • the resin film includes a matrix containing cage-like silsesquioxane as the structural unit and cerium oxide-containing particles.
  • grains is about 20 mass%-about 50 mass% with respect to the gross mass of a matrix and a cerium oxide containing particle
  • FIG. 1 is a sectional view showing a schematic configuration of a resin film according to an embodiment of the present invention
  • FIG. 2 is a perspective view showing a partially broken structure of the cerium oxide-containing particle according to the embodiment
  • the resin film includes a matrix containing silsesquioxane as a structural unit; And a cerium oxide-containing particle dispersed in the matrix, wherein the cerium oxide-containing particle includes a core containing cerium oxide and an organic polymer layer covering the core.
  • the silsesquioxane may have a cage shape.
  • the content rate of the cerium oxide-containing particles may be about 20% by mass to about 50% by mass relative to the total mass of the matrix and the cerium oxide-containing particles. In the above range, the resin film can improve flexibility and self-healing while maintaining high strength.
  • the resin film may have a pencil strength of 6H or more.
  • the organic polymer layer ie, the shell, may comprise polyvinylpyrrolidone.
  • the shell contains polyvinylpyrrolidone, the flexibility and the self-healing property of the resin film are further improved.
  • the organic polymer layer may have a thickness of about 1 nm or more and about 6 nm or less.
  • the cerium oxide-containing particles may have an average particle diameter of about 50 nm or less.
  • a first elastic portion derived from a matrix or a core and a second elastic portion derived from a shell are alternately present, and the first elastic portion has a higher elasticity than the second elastic portion.
  • Another aspect of the present invention relates to a method for producing a resin film.
  • the method includes preparing a coating solution by mixing silsesquioxane, cerium oxide containing particles and a solvent having a boiling point of about 160 ° C. or higher; And producing a resin film by using the coating solution, wherein the cerium oxide-containing particles have a core containing cerium oxide and an organic polymer layer covering the core. Since the polar solvent whose boiling point is about 160 degreeC or more is used as a solvent, it is possible to stably disperse a cerium oxide containing particle
  • the content rate of the cerium oxide-containing particles may be about 20% by mass to about 50% by mass relative to the total mass of the silsesquioxane and the cerium oxide-containing particles.
  • the solvent may be a polar solvent.
  • the organic polymer layer may include polyvinylpyrrolidone. According to this aspect, since the organic polymer layer of the cerium oxide-containing particles, that is, the shell, contains polyvinylpyrrolidone, the flexibility and the self-healing property of the resin film are further improved.
  • the step of preparing the resin film may include coating a coating solution on a substrate; Drying the coating solution to produce a coating layer; Irradiating light to the coating layer to polymerize cage-like silsesquioxanes in the coating layer.
  • the coating solution includes silsesquioxane, cerium oxide containing particles and a solvent having a boiling point of about 160 ° C. or more, and the cerium oxide containing particles include a core comprising cerium oxide and an organic polymer layer covering the core. It is done.
  • the polar solvent whose boiling point is about 160 degreeC or more is used as a solvent, cerium oxide containing particle
  • grains can be stably dispersed in a resin film.
  • a resin film having improved flexibility and self-healing properties can be produced while maintaining high strength.
  • the silsesquioxane may have a cage shape.
  • the content rate of the cerium oxide-containing particles may be about 20% by mass to about 50% by mass relative to the total mass of the silsesquioxane and the cerium oxide-containing particles.
  • the solvent may be a polar solvent.
  • the coating solution may further include a polymerization initiator.
  • the resin film 10 includes a matrix 20 and cerium oxide containing particles 30.
  • the matrix 20 contains silsesquioxane as a structural unit, and preferably contains cage-shaped silsesquioxane as a structural unit.
  • the matrix 20 is formed by polymerizing cage-like silsesquioxanes.
  • Silsesquioxane has a position as an intermediate material of inorganic silica SiO 2 and organosilicon (R 2 SiO) n , as can be seen from the composition formula (RSiO 1.5 ) n .
  • Cage-like silsesquioxane has a cage-shaped structure among silsesquioxanes.
  • An example of the structure of cage-shaped silsesquioxane is shown in following structural formula 1.
  • the cage-shaped silsesquioxane according to the present embodiment is not limited to the example of Structural Formula 1.
  • R group is a polymeric functional group couple
  • R group is preferably an acrylic group.
  • Cage-like silsesquioxane is polymerized into a very hard (highly elastic) resin.
  • the matrix 20 is made of a very hard resin.
  • the cerium oxide containing particles 30 are particles dispersed in the matrix 20, and as shown in FIGS. 1 and 2, a core 31 containing cerium oxide and an organic polymer layer (ie, a shell) covering the core 32). Therefore, the cerium oxide containing particle 30 has a so-called core shell structure.
  • the core 31 is preferably composed of cerium oxide. Therefore, the core 31 is very hard (high elasticity).
  • the shell 32 contains an organic polymer. Specifically, the shell 32 contains polyvinylpyrrolidone.
  • the shell 32 is preferably composed of polyvinylpyrrolidone. Since the shell 32 contains an organic polymer, it is more flexible than the core 31 (it is low elasticity). When the shell 32 is composed of polyvinylpyrrolidone, the elasticity of the shell 32 is particularly low.
  • the layer thickness of the shell 32 is not specifically limited, For example, it is preferable that they are about 1 nm or more and about 6 nm or less. When the layer thickness of the shell 32 becomes a value within this range, flexibility and self-healing property are particularly improved. Layer thickness can be measured, for example, by a transmission electron microscope (TEM). In the Example and the comparative example mentioned later, layer thickness was confirmed using this apparatus.
  • TEM transmission electron microscope
  • the shell 32 of the cerium oxide containing particle 30 is comprised from the flexible organic polymer layer, adhesiveness with the matrix 20 becomes favorable.
  • a high elastic portion (the matrix 20 and the core 31) and a low elastic portion (the shell 32) are mixed. That is, in both the thickness direction and the surface direction of the resin film 10, a high elastic part and a low elastic part exist alternately.
  • the resin film may alternately include a first elastic part derived from a matrix or a core and a second elastic part derived from a shell, and the first elastic part may have a higher elasticity than the second elastic part.
  • the resin film 10 since the resin film 10 includes a high elastic part, high strength can be maintained. On the other hand, the resin film 10 hardly generates cracks when it is bent. That is, the resin film 10 has excellent flexibility. Moreover, even if a scar arises with a pencil etc., the resin film 10 can repair the scar. That is, the resin film 10 is also excellent in self-repairing property (wound repair property). As the reason why the resin film 10 is excellent in flexibility and self-healing properties, the low elastic portion disperses the stress caused by the bending or scarring when the resin film 10 is bent or when a scar is generated, and the low elastic portion is curved or Also in the case where a scar has occurred, the point of firm contact with the surrounding matrix 20 is considered.
  • the average particle diameter (diameter) of the cerium oxide containing particle 30 is not specifically limited, When using the resin film 10 as a material of an optical film, it is about 50 nm or less, for example, about 1 nm or more and about 40 nm or less. desirable. This is because if the average particle diameter of the cerium oxide-containing particle 30 exceeds about 50 nm, the haze value of the resin film 10 is greatly increased, resulting in poor transparency.
  • the average particle diameter of the cerium oxide containing particle 30 is an arithmetic mean value of the particle diameter of the cerium oxide containing particle 30 (diameter when assuming that the cerium oxide containing particle 30 is spherical).
  • the particle diameter of the cerium oxide containing particle 30 is measured by a laser diffraction scattering particle size distribution analyzer (specifically, HORIBA LA-920, for example).
  • the laser diffraction scattering particle size distribution meter is not limited to HORIBA LA-920. In the following Examples and Comparative Examples, the average particle diameter was measured by HORIBA LA-920.
  • the content rate of the cerium oxide containing particle 30 is set to about 20 mass%-about 50 mass% with respect to the gross mass of the matrix 20 and the cerium oxide containing particle 30.
  • the content of cerium oxide-containing particles 30 falls within this range, the above effects are obtained.
  • the use of the resin film 10 is not specifically limited. That is, the resin film 10 can be applied to any technical field as long as it is a technical field requiring high strength and flexibility.
  • the resin film 10 is applied to the hard coat layer of an optical film, especially an optical film, for example.
  • a coating liquid is produced by mixing cage silsesquioxane, the cerium oxide containing particle 30, and the polar solvent whose boiling point is about 160 degreeC or more.
  • the content rate of the cerium oxide containing particle 30 becomes about 20 mass%-about 50 mass% with respect to the gross mass of cage-shaped silsesquioxane and the cerium oxide containing particle 30. As shown in FIG.
  • boiling point is about 160 degreeC or more.
  • the cerium oxide particles 30 are stably dispersed in the coating solution.
  • a polar solvent diacetone alcohol (boiling point 166 degreeC), propylene glycol (boiling point 188 degreeC), etc. are mentioned, for example.
  • a boiling point is a polar solvent which is about 160 degreeC or more, those other than these may be sufficient.
  • the polar solvent may be included in about 40% by mass to about 80% by mass of the total coating solution.
  • a well-known additive for example, a polymerization initiator etc.
  • a polymerization initiator for example, a polymerization initiator etc.
  • the resin film 10 is produced using a coating liquid.
  • a coating layer is coated on the predetermined base material 100 (refer FIG. 3), and a coating layer is dried, and a coating layer is produced.
  • cage-shaped silsesquioxanes in the coating layer are polymerized.
  • cage-shaped silsesquioxane becomes a photocurable resin
  • light is irradiated to a coating layer.
  • light is irradiated to the coating layer using a metal halide lamp.
  • the resin film 10 is produced.
  • Example 1 the resin film was produced with the following manufacturing method.
  • a cerium oxide-containing particle solution (HOKKO Chemical Co., Ltd.) 10.2% by weight (mass)% 196 parts by weight (mass)% 80 parts by weight of propylene glycol was added to the mixture while stirring to prepare a first mixture.
  • grain solution used in Example 1 contains 10.2 mass% of cerium oxide containing particle
  • the shell was made of polyvinylpyrrolidone, and the layer thickness of the shell was about 1.5 nm.
  • This coating liquid contains 35 mass% of solid content (cerium oxide containing particle
  • grains becomes 80:20.
  • the coating liquid was apply
  • the coating layer was produced by drying the coating liquid on the substrate at 110 ° C. for about 5 minutes. Then, the resin layer (hardened film) was produced by irradiating this coating layer with 2000 mJ light with a metal halide lamp.
  • Example 2 The same treatment as in Example 1 was performed except that the mass ratio of the cage-like silsesquioxane and cerium oxide-containing particles and the kind of the solvent were changed.
  • Comparative Example 1, 9-13 the process similar to Example 1 was performed except having changed the mass ratio of cage-shaped silsesquioxane and a cerium oxide containing particle
  • Comparative Examples 2-8 at least one of cage-shaped silsesquioxane and cerium oxide containing particle
  • Table 1 the mass% of solid content in the solution in Examples 1-5 and Comparative Examples 1-13, the mass ratio of each raw material, and the solvent of a coating liquid are shown collectively.
  • the evaluation result is also shown in Table 1, the evaluation method of each Example and a comparative example is mentioned later.
  • PG propylene glycol
  • DAA diacetone alcohol
  • MIBK represents methyl isobutyl ketone (boiling point: 116.2 ° C).
  • PGM propylene glycol methyl ether (boiling point: 120 degreeC).
  • numerical values given to PG and MIBK represent volume ratios of these solvents.
  • the boiling point of n-BuOH (n-butanol) is 118 ° C, and the boiling point of 2-ethoxy ethanol is 135 ° C.
  • * 1 represents urethane acrylate oligomer U-4HA (made by Shin-Nakamura Chemical Co., Ltd.).
  • * 2 represents silica fine particle PGM-AC-2140Y (made by Nissan Chemical Corporation).
  • * 3 represents a crosslinked urethane organic fine particle art pearl MM (made by Negami Kogyo Co., Ltd.).
  • * 4 represents a core-shell organic fine particle Silcrusta MK03 (made by Nikko Corp.). The core is made of PMMA and the shell is made of silicon.
  • the pencil drawing test based on JIS-K-5600 was done.
  • the test apparatus 500 used for the pencil drawing test is demonstrated. 3 has shown the state which performs the pencil drawing test of the resin film 10 which concerns on this embodiment using the test apparatus 500. As shown in FIG.
  • the test apparatus 500 includes an apparatus main body 500A, a level 502, a small moving weight 503, a fastening tool 504, and an O-shaped ring 505.
  • the through-hole in which the pencil 501 is inserted is formed in 500 A of apparatus main bodies.
  • the angle ⁇ of the longitudinal direction of the pencil 501 inserted into the through hole and the bottom surface of the apparatus main body 500A (ie, the surface of the resin film 10) is 45 °.
  • the level 502 is a part for confirming that the apparatus main body 500A is horizontal.
  • the small moving weight 503 is a component for adjusting the load applied to the core 501A of the pencil 501.
  • the small moving weight 503 is movable in the direction of the arrow 503A.
  • the fastening tool 504 fixes the pencil 501 in the apparatus main body 500A.
  • the O-ring 505 is rotatably attached to the apparatus main body 500A.
  • the O-ring 505 moves the test apparatus 500 in the test direction by rolling
  • the pencil drawing test method is explained.
  • the pencil drawing test method is demonstrated using the pencil drawing test of the resin film 10 (thing formed on the base material 100) which concerns on this embodiment as an example.
  • the pencil 501 is inserted and fixed to the test apparatus 500.
  • the center of the pencil 501 is pressed against the resin film 10.
  • the level 502 confirms that the test apparatus 500 is horizontal.
  • a load of 750 g is applied to the shim 501A of the pencil 501.
  • the test apparatus 500 is moved at a speed of 0.8 mm / second in the test direction shown in FIG.
  • the core 501A of the pencil 501 is drawn on the surface of the resin film 10.
  • the above process becomes a pencil drawing test. After that, check for the presence of scars with the naked eye.
  • the self-healing test was done using the said pencil drawing test apparatus 500.
  • FIG. Specifically, the pencil drawing test was performed similarly to the above, and the resin film after a test was left to stand for 24 hours. And the resin film was aimed and the maximum hardness (penal hardness (after 24 hours)) with which the scar was not recognized (repaired) was measured. The greater the hardness, the higher the self-healing property.
  • the evaluation results are shown in Table 1.
  • the resin film was observed with a laser microscope immediately after rubbing the resin film according to Example 1 with a hardness 7H pencil, and after 24 hours, a scar was formed immediately after the resin film of Example 1 was drawn with a pencil. After the passage, it was confirmed that the scar disappeared and became self-repair.
  • the resin film according to Example 1 is higher in strength than Comparative Example 1, and also has excellent flexibility and self-healing properties.
  • the resin film 10 which concerns on this embodiment is high in intensity
  • the resin film 10 contains the matrix 20 which contains cage-shaped silsesquioxane as a structural unit, and the cerium oxide containing particle 30.
  • the content rate of the cerium oxide containing particle 30 is 20-50 mass% with respect to the total mass of the matrix 20 and the cerium oxide containing particle 30.
  • the organic polymer layer of the cerium oxide containing particle 30, that is, the shell 32 contains polyvinylpyrrolidone, the flexibility and the self-healing property of the resin film 10 are further improved. do.
  • grains 30 can be stably dispersed in the resin film 10. FIG. have. Therefore, the resin film 10 with improved flexibility and self-healing property can be manufactured while maintaining high strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 높은 강도를 유지하면서, 굴곡성 및 자기수복성을 향상시키는 것이 가능한, 신규하면서도 개량된 수지막, 그 제조 방법 및 도공액을 제공하는 것을 과제로 한다. 상기 과제를 해결하기 위해서, 본 발명의 어느 하나의 관점에 따르면, 케이지 형상 실세스퀴옥산을 구조 단위로서 포함하는 매트릭스와, 산화세륨을 포함하는 코어 및 코어를 덮는 유기 폴리머층을 구비하고, 매트릭스 중에 분산된 산화세륨 함유 입자를 포함하되, 산화세륨 함유 입자의 함유율은 매트릭스와 산화세륨 함유 입자의 총 질량에 대해서 약 20질량% 내지 50질량%인 것을 특징으로 하는 수지막이 제공된다.

Description

수지막, 수지막의 제조 방법 및 도공액
본 발명은 수지막, 수지막의 제조 방법 및 도공액에 관한 것이다.
JP2009-42351 A에 개시된 기술에서는, 광학 필름의 고굴절률층에 케이지(cage) 형상 실세스퀴옥산(silsesquioxane) 및 무기 산화물 미립자를 함유시킨다. 여기에서, 무기 산화물 미립자는, 코어/셸(core/shell) 구조를 지니지만, 코어 및 셸은 모두 무기물로 구성되어 있다. 또, JP2009-42351 A에 개시된 기술에서는, 하드 코트층 및 저굴절률층에도 케이지 형상 실세스퀴옥산이 포함된다. 이 기술에 따르면, 광학 필름의 강도가 향상될 것으로 기대된다.
그러나, JP2009-42351 A에 개시된 광학 필름은, 굴곡성(bending성), 내크랙성(crack resistance)이 대단히 낮은 문제가 있었다. 구체적으로는, JP2009-42351 A에 개시된 광학 필름은 강도가 높은 반면, 대단히 무르고, 약간 구부린 것만으로도 용이하게 크랙이 생겨버리는 문제가 있었다. 또한, 상흔이 있을 경우에 거의 수복되지 않는 문제도 있었다. 이 때문에, 굴곡성 및 자기수복성이 높은 광학 필름이 요망되고 있었다.
그래서, 본 발명은, 상기 문제를 감안하여 이루어진 것으로서, 본 발명의 목적으로 하는 바는, 높은 강도를 유지하면서, 굴곡성 및 자기수복성을 향상시키는 것이 가능한, 신규하면서도 개량된 수지막, 그 제조 방법 및 도공액을 제공하는 것에 있다.
본 발명의 한 관점은 수지막에 관한 것이다. 상기 수지막은 실세스퀴옥산을 구조 단위로서 포함하는 매트릭스; 및 상기 매트릭스 중에 분산된 산화세륨 함유 입자를 포함하되, 상기 산화세륨 함유 입자는, 산화세륨을 포함하는 코어 및 상기 코어를 덮는 유기 폴리머층을 구비하는 것을 특징으로 한다.
본 발명의 다른 관점은 수지막의 제조 방법에 관한 것이다. 상기 방법은 실세스퀴옥산, 산화세륨 함유 입자 및 비점이 약 160℃ 이상인 용매를 혼합함으로써 도공액을 제작하는 단계; 및 상기 도공액을 이용해서 수지막을 제작하는 단계를 포함하되, 상기 산화세륨 함유 입자는 산화세륨을 포함하는 코어 및 상기 코어를 덮는 유기 폴리머층을 구비하는 것을 특징으로 한다. 용매로서 비점이 약 160℃ 이상인 극성 용매를 사용하므로, 수지막 중에 산화세륨 함유 입자를 안정적으로 분산시키는 것이 가능하다. 따라서, 높은 강도를 유지하면서, 굴곡성 및 자기수복성이 향상된 수지막을 제조할 수 있다.
본 발명의 또 다른 관점은 도공액에 관한 것이다. 상기 도공액은 실세스퀴옥산, 산화세륨 함유 입자 및 비점이 약 160℃ 이상인 용매를 포함하고, 상기 산화세륨 함유 입자는 산화세륨을 포함하는 코어 및 상기 코어를 덮는 유기 폴리머층을 구비하는 것을 특징으로 한다. 수지막을 제조할 때, 용매로서 비점이 약 160℃ 이상인 극성 용매를 사용하므로, 수지막 중에 산화세륨 함유 입자를 안정적으로 분산시킬 수 있다. 따라서, 높은 강도를 유지하면서, 굴곡성 및 자기수복성이 향상된 수지막을 제조할 수 있다.
본 발명에 따르면, 수지막은, 케이지 형상 실세스퀴옥산을 구조 단위로서 포함하는 매트릭스와 산화세륨 함유 입자를 구비한다. 그리고, 산화세륨 함유 입자의 함유율은, 매트릭스와 산화세륨 함유 입자의 총 질량에 대해서 약 20질량% 내지 약 50질량%이다. 이것에 의해, 수지막은, 높은 강도를 유지하면서, 굴곡성 및 자기수복성을 향상시킬 수 있다.
도 1은 본 발명의 실시형태에 따른 수지막의 개략 구성을 나타낸 단면도;
도 2는 상기 실시형태에 따른 산화세륨 함유 입자의 구조를 일부 파단시켜서 나타낸 사시도;
도 3은 연필 긋기 시험에 사용되는 시험 장치의 구성을 나타낸 모식도이다.
본 발명의 한 관점은 수지막에 관한 것이다. 상기 수지막은 실세스퀴옥산을 구조 단위로서 포함하는 매트릭스; 및 상기 매트릭스 중에 분산된 산화세륨 함유 입자를 포함하되, 상기 산화세륨 함유 입자는, 산화세륨을 포함하는 코어 및 상기 코어를 덮는 유기 폴리머층을 구비하는 것을 특징으로 한다.
상기 실세스퀴옥산은 케이지 형상일 수 있다.
상기 산화세륨 함유 입자의 함유율은 상기 매트릭스와 상기 산화세륨 함유 입자의 총 질량에 대해서 약 20질량% 내지 약 50질량%일 수 있다. 상기 범위에서 수지막은 높은 강도를 유지하면서, 굴곡성 및 자기수복성을 향상시킬 수 있다.
상기 수지막은 연필강도가 6H이상일 수 있다.
상기 유기 폴리머층, 즉, 셸은 폴리비닐피롤리돈을 포함할 수 있다. 이처럼 셸이 폴리비닐피롤리돈을 함유하므로, 수지막의 굴곡성 및 자기수복성이 더욱 향상된다.
상기 유기 폴리머층의 두께는 약 1㎚ 이상 약 6㎚ 이하일 수 있다.
상기 산화세륨 함유 입자는 평균 입경이 약 50㎚ 이하일 수 있다.
상기 수지막은 매트릭스 또는 코어로부터 유래된 제1탄성 부분과 셸로부터 유래된 제2탄성 부분이 교대로 존재하며, 제1탄성 부분은 제2탄성 부분보다 탄성이 높은 것을 특징으로 한다.
본 발명의 다른 관점은 수지막의 제조 방법에 관한 것이다. 상기 방법은 실세스퀴옥산, 산화세륨 함유 입자 및 비점이 약 160℃ 이상인 용매를 혼합함으로써 도공액을 제작하는 단계; 및 상기 도공액을 이용해서 수지막을 제작하는 단계를 포함하되, 상기 산화세륨 함유 입자는 산화세륨을 포함하는 코어 및 상기 코어를 덮는 유기 폴리머층을 구비하는 것을 특징으로 한다. 용매로서 비점이 약 160℃ 이상인 극성 용매를 사용하므로, 수지막 중에 산화세륨 함유 입자를 안정적으로 분산시키는 것이 가능하다. 따라서, 높은 강도를 유지하면서, 굴곡성 및 자기수복성이 향상된 수지막을 제조할 수 있다.
상기 산화세륨 함유 입자의 함유율은 상기 실세스퀴옥산과 상기 산화세륨 함유 입자의 총 질량에 대해서 약 20질량% 내지 약 50질량%일 수 있다.
상기 용매는 극성 용매일 수 있다.
상기 유기 폴리머층은 폴리비닐피롤리돈을 포함할 수 있다. 이 관점에 따르면, 산화세륨 함유 입자의 유기 폴리머층, 즉, 셸은 폴리비닐피롤리돈을 함유하므로, 수지막의 굴곡성 및 자기수복성이 더욱 향상된다.
구체예에서, 상기 수지막을 제작하는 단계는, 도공액을 기재 상에 도공하고; 상기 도공액을 건조시켜 도공층을 제작하고; 상기 도공층에 광을 조사하여 도공층 내의 케이지 형상 실세스퀴옥산끼리 중합시키는 단계를 포함한다.
본 발명의 또 다른 관점은 도공액에 관한 것이다. 상기 도공액은 실세스퀴옥산, 산화세륨 함유 입자 및 비점이 약 160℃ 이상인 용매를 포함하고, 상기 산화세륨 함유 입자는 산화세륨을 포함하는 코어 및 상기 코어를 덮는 유기 폴리머층을 구비하는 것을 특징으로 한다. 수지막을 제조할 때, 용매로서 비점이 약 160℃ 이상인 극성 용매를 사용하므로, 수지막 중에 산화세륨 함유 입자를 안정적으로 분산시킬 수 있다. 따라서, 높은 강도를 유지하면서, 굴곡성 및 자기수복성이 향상된 수지막을 제조할 수 있다.
상기 실세스퀴옥산은 케이지 형상일 수 있다.
상기 산화세륨 함유 입자의 함유율은 상기 실세스퀴옥산과 상기 산화세륨 함유 입자의 총 질량에 대해서 약 20질량% 내지 약 50질량%일 수 있다.
상기 용매는 극성 용매일 수 있다.
상기 도공액은 중합 개시제를 더 포함할 수 있다.
이하에 첨부 도면을 참조하면서, 본 발명의 바람직한 실시형태에 대해서 상세히 설명한다. 또, 본 명세서 및 도면에 있어서, 실질적으로 동일한 기능 구성을 지니는 구성 요소에 대해서는, 동일한 부호를 붙임으로써 중복 설명을 생략한다.
<1. 수지막의 구성>
우선, 도 1 및 도 2에 의거해서, 본 실시형태에 따른 수지막(10)의 구성에 대해서 설명한다.
도 1에 나타낸 바와 같이, 수지막(10)은 매트릭스(20)와 산화세륨 함유 입자(30)를 포함한다. 매트릭스(20)는, 실세스퀴옥산을 구조 단위로서 포함하며, 바람직하게는 케이지 형상 실세스퀴옥산을 구조 단위로서 포함한다. 예를 들어, 매트릭스(20)는, 케이지 형상 실세스퀴옥산끼리 중합시킴으로써 형성된다. 여기에서, 실세스퀴옥산(SQ)이란, 주쇄골격이 Si-O 결합으로 이루어진 실록산계의 화합물로, (RSiO1.5)n의 조성식으로 표시된다. 단위조성식 중에 1.5개(1.5 = sesqui)의 산소를 지니는 실록산이라고 하는 의미로, 실세스퀴옥산이라고 지칭된다. 실세스퀴옥산은, 그 조성식 (RSiO1.5)n으로부터 알 수 있는 바와 같이, 무기 실리카 SiO2와 유기 실리콘 (R2SiO)n의 중간적인 물질로서의 위치를 가진다. 케이지 형상 실세스퀴옥산은, 실세스퀴옥산 중, 특히 케이지 형상의 구조를 지니는 것이다. 케이지 형상 실세스퀴옥산의 구조의 일례를 이하의 구조식 1에 나타낸다. 물론, 본 실시형태에 따른 케이지 형상 실세스퀴옥산은 구조식 1의 예로 한정되지 않는다.
[구조식 1]
Figure PCTKR2014005170-appb-I000001
여기서, R기는, 다른 실세스퀴옥산의 R기와 결합하는 중합성 작용기로서, 서로 독립적으로, 아크릴기, 메타크릴기, 에폭시기 및 옥세탄기로 이루어진 군으로부터 선택된다. R기는 바람직하게는 아크릴기이다. 어느 쪽인가의 R기가 광중합성 작용기(예를 들어 아크릴기)로 될 경우, 케이지 형상 실세스퀴옥산에 광을 조사함으로써 케이지 형상 실세스퀴옥산끼리가 R기를 통해 중합된다. 즉, 케이지 형상 실세스퀴옥산은 소위 광경화성 수지로 된다. 케이지 형상 실세스퀴옥산은 중합함으로써 매우 단단한(고탄성의) 수지로 된다. 따라서, 매트릭스(20)는 매우 단단한 수지로 된다.
산화세륨 함유 입자(30)는, 매트릭스(20) 중에 분산된 입자로, 도 1 및 도 2에 나타낸 바와 같이, 산화세륨을 함유하는 코어(31)와, 코어를 덮는 유기 폴리머층(즉, 셸)(32)을 구비한다. 따라서, 산화세륨 함유 입자(30)는 소위 코어 셸 구조를 지닌다. 코어(31)는 바람직하게는 산화세륨으로 구성된다. 따라서, 코어(31)는 매우 단단하다(고탄성이다).
한편, 셸(32)은 유기 폴리머를 함유한다. 구체적으로는, 셸(32)은 폴리비닐피롤리돈을 함유한다. 셸(32)은, 바람직하게는, 폴리비닐피롤리돈으로 구성된다. 셸(32)은, 유기 폴리머를 함유하므로, 코어(31)보다도 유연하다(저탄성이다). 셸(32)이 폴리비닐피롤리돈으로 구성될 경우, 셸(32)의 탄성은 특히 낮아진다. 셸(32)의 층 두께는 특별히 한정되지 않지만, 예를 들어 약 1㎚ 이상 약 6㎚ 이하인 것이 바람직하다. 셸(32)의 층 두께가 이 범위 내의 값이 될 경우에, 굴곡성 및 자기수복성이 특히 향상된다. 층 두께는, 예를 들어, 투과형 전자현미경(Transmission Electron Microscope; TEM)에 의해 측정가능하다. 후술하는 실시예 및 비교예에서는, 이 장치를 이용해서 층 두께를 확인하였다.
이와 같이, 산화세륨 함유 입자(30)의 셸(32)은 유연한 유기 폴리머층으로 구성되므로, 매트릭스(20)와의 밀착성이 양호해진다. 또, 수지막(10)의 내부는, 고탄성 부분(매트릭스(20) 및 코어(31))과, 저탄성 부분(셸(32))이 혼재한다. 즉, 수지막(10)의 두께 방향 및 면방향의 어느 것에 있어서도, 고탄성 부분과 저탄성 부분이 교대로 존재한다. 구체예에서 상기 수지막은 매트릭스 또는 코어로부터 유래된 제1탄성 부분과 셸로부터 유래된 제2탄성 부분이 교대로 존재하며, 제1탄성 부분은 제2탄성 부분보다 탄성이 높은 것을 특징으로 한다.
따라서, 수지막(10)은, 고탄성 부분을 포함하므로, 높은 강도를 유지할 수 있다. 한편, 수지막(10)은, 굴곡되었을 때 크랙을 발생하기 어렵다. 즉, 수지막(10)은 우수한 굴곡성을 지닌다. 또, 수지막(10)은, 연필 등으로 상흔이 생겨도, 그 상흔을 수복시킬 수 있다. 즉, 수지막(10)은, 자기수복성(상처의 수복성)도 우수하다. 수지막(10)이 굴곡성 및 자기수복성이 우수한 이유로서, 수지막(10)의 굴곡 시 또는 상흔이 생겼을 때 저탄성 부분이 굴곡 또는 상흔에 의한 응력을 분산시키는 점, 저탄성 부분이 굴곡 또는 상흔이 생겼을 때에 있어서도 주변의 매트릭스(20)와 강고하게 밀착하는 점이 고려된다.
산화세륨 함유 입자(30)의 평균 입경(직경)은 특별히 한정되지 않지만, 수지막(10)을 광학 필름의 재료로서 이용할 경우, 약 50㎚ 이하, 예를 들면 약 1㎚ 이상 약 40㎚ 이하인 것이 바람직하다. 산화세륨 함유 입자(30)의 평균 입경이 약 50㎚를 초과하면, 수지막(10)의 헤이즈(haze) 값이 크게 상승되어 버려, 투명성이 떨어지기 때문이다.
여기서, 산화세륨 함유 입자(30)의 평균 입경은, 산화세륨 함유 입자(30)의 입경(산화세륨 함유 입자(30)을 구라고 가정했을 때의 직경)의 산술평균치이다. 산화세륨 함유 입자(30)의 입경은, 예를 들어, 레이저 회절·산란 입도 분포계(구체적으로는, 예를 들어, HORIBA LA-920)에 의해서 측정된다. 또, 레이저 회절·산란 입도 분포계는 HORIBA LA-920에 한정되지 않는다. 이하의 실시예 및 비교예에서는, 평균 입경을 HORIBA LA-920으로 측정하였다.
또한, 산화세륨 함유 입자(30)의 함유율은, 매트릭스(20) 및 산화세륨 함유 입자(30)의 총 질량에 대해서 약 20질량% 내지 약 50질량%로 된다. 산화세륨 함유 입자(30)의 함유율이 이 범위 내로 될 경우에, 상기 효과가 얻어진다.
수지막(10)의 용도는 특별히 한정되지 않는다. 즉, 수지막(10)은, 높은 강도와 굴곡성이 요구되는 기술분야이면, 어떤 기술분야이더라도 적용가능하다. 수지막(10)은, 예를 들어, 광학 필름, 특히 광학 필름의 하드 코트층에 적용된다.
<2. 수지막의 제조 방법>
다음에, 수지막의 제조 방법에 대해서 설명한다. 우선, 케이지 형상 실세스퀴옥산과, 산화세륨 함유 입자(30)와, 비점이 약 160℃ 이상인 극성 용매를 혼합함으로써 도공액을 제작한다. 여기에서, 산화세륨 함유 입자(30)의 함유율은, 케이지 형상 실세스퀴옥산 및 산화세륨 함유 입자(30)의 총 질량에 대해서 약 20질량% 내지 약 50질량%로 된다.
또, 극성 용매는 비점이 약 160℃ 이상인 것이 필요하다. 극성 용매의 비점이 약 160℃ 이상으로 될 경우에, 도공액 중에서 산화세륨 입자(30)가 안정적으로 분산된다. 이러한 극성 용매로서는, 예를 들어, 다이아세톤 알코올(비점 166℃) 및 프로필렌 글라이콜(비점 188℃) 등을 들 수 있다. 물론, 비점이 약 160℃ 이상인 극성 용매이면, 이들 이외의 것이어도 된다.
상기 극성 용매는 전체 도공액중 약 40질량% 내지 약 80 질량 %로 포함될 수 있다.
또한, 도공액에는, 공지의 첨가제, 예를 들어, 중합 개시제 등을 첨가해도 된다. 예를 들어, 케이지 형상 실세스퀴옥산이 광경화성 수지가 될 경우, 광중합개시제를 첨가해도 된다.
다음에, 도공액을 이용해서 수지막(10)을 제작한다. 예를 들어, 도공액을 소정의 기재(100)(도 3 참조) 상에 도공하고, 도공액을 건조시킴으로써, 도공층을 제작한다. 이어서, 도공층 내의 케이지 형상 실세스퀴옥산끼리 중합시킨다. 예를 들어, 케이지 형상 실세스퀴옥산이 광경화성 수지로 될 경우, 도공층에 광을 조사한다. 예를 들어, 메탈 할라이드 램프(metal halide lamp)를 이용해서 도공층에 광을 조사한다. 이것에 의해, 케이지 형상 실세스퀴옥산끼리 중합하고, 매트릭스(20)가 형성된다. 이상의 처리에 의해, 수지막(10)이 제작된다.
[실시예]
(실시예 1)
다음에, 본 실시형태의 실시예에 대해서 설명한다. 실시예 1에서는 이하의 제법에 의해 수지막을 제작하였다.
산화세륨 함유 입자 용액(홋코(HOKKO)화학공업사 제품 세리아 나노입자 10.2중량(질량)% 196질량부에 프로필렌 글라이콜 80질량부를 교반하면서 첨가함으로써, 제1배합액을 제작하였다. 여기에서, 실시예 1에서 사용한 산화세륨 함유 입자 용액은, 산화세륨 함유 입자를 용액의 총 질량에 대해서 10.2질량% 함유한다. 또, 산화세륨 함유 입자의 평균 입경은 20㎚였다. 또한, 코어는 산화세륨으로 구성되고, 셸은 폴리비닐피롤리돈으로 구성되어 있다. 셸의 층 두께는 약 1.5㎚였다.
이어서, 제1배합액에 케이지 형상 실세스퀴옥산(동아합성사(TOAGOSEI) 제품 AC-SQ-TA100)을 80질량부 첨가하여 60분 교반함으로써, 제2배합액을 제작하였다. 실시예 1에서 사용한 케이지 형상 실세스퀴옥산은, 구조식 1로 표시되는 구조를 지니고, R기는 모두 아크릴 기로 되어 있다. 다음에, 제2배합액에 중합 개시제(바스프 재팬사(BASF JAPAN) 제품 Irg184)를 5질량부 첨가하고, 또한 첨가제로서 DIC사 제품 RS75를 5질량부 첨가해서 30분간 교반하였다. 이것에 의해, 도공액을 완성시켰다. 이 도공액은, 고형분(산화세륨 함유 입자+케이지 형상 실세스퀴옥산)을 도공액의 총 질량에 대해서 35질량% 함유한다. 또한, 케이지 형상 실세스퀴옥산과 산화세륨 함유 입자의 질량비는 80:20으로 된다.
다음에, 와이어 바(wire bar)를 이용해서 도공액을 수지막의 막 두께가 10㎛로 되도록 폴리메틸메타크릴레이트(PMMA) 기재(두께 1㎜) 상에 도포하였다. 이어서, 기재 상의 도공액을 110℃에서 약 5분간 건조 처리함으로써, 도공층을 제작하였다. 그 후, 이 도공층에 메탈 할라이드 램프로 2000 mJ의 광을 조사함으로써 수지막(경화막)을 제작하였다.
(실시예 2 내지 5)
케이지 형상 실세스퀴옥산과 산화세륨 함유 입자의 질량비 및 용매의 종류를 변경한 것 이외에 실시예 1과 마찬가지 처리를 행하였다.
(비교예 1 내지 13)
비교예 1, 9 내지 13에서는, 케이지 형상 실세스퀴옥산과 산화세륨 함유 입자의 질량비 및 용매의 종류를 변경한 것 이외에는 실시예 1과 마찬가지 처리를 행하였다. 비교예 2 내지 8에서는, 케이지 형상 실세스퀴옥산 및 산화세륨 함유 입자 중 적어도 한쪽을 다른 원료로 변경하고, 또 이들 원료의 질량비를 변경해서 실시예 1과 마찬가지 처리를 행하였다. 표 1에 실시예 1 내지 5, 비교예 1 내지 13에 있어서의 용액 중의 고형분의 질량%、각 원료의 질량비 및 도공액의 용매를 정리해서 나타낸다. 또한, 표 1에는 평가 결과도 아울러서 나타내지만, 각 실시예 및 비교예의 평가 방법에 대해서는 후술한다.
표 1
용액고형분(질량%) 조성(질량%) 용매 평가결과
SQ CeO2함유입자 연필경도 연필경도(24시간후) 내크랙성
실시예 1 35 80 20 PG 6H 7H O
2 35 70 30 PG 6H 7H O
3 35 60 40 PG 6H 7H O
4 35 50 50 PG 6H 7H O
5 35 70 30 DAA 6H 7H O
비교예 1 35 100 0 PG 5H 5H ×
2 35 100※1 0 PG 5H 5H ×
3 35 70 30※2 PG 6H 6H ×
4 35 70※1 30※2 PG 6H 6H ×
5 35 70 30※3 PG 3H 3H O
6 35 70※1 30※3 PG 3H 3H O
7 35 70 30※4 PG 3H 3H ×
8 35 70※1 30※4 PG 3H 3H ×
9 35 70 30 PG(70):MIBK(30) 5H 5H ×
10 35 70 30 PG(50):MIBK(50) 5H 5H ×
11 35 70 30 n-BuOH 5H 5H ×
12 35 70 30 2-에톡시에탄올 5H 5H ×
13 35 70 30 PGM 5H 5H ×
표 1 중, 「PG」는 프로필렌 글라이콜을 나타내고, 「DAA」는 다이아세톤 알코올을 나타낸다. 「MIBK」는 메틸아이소뷰틸케톤(비점: 116.2℃)을 나타낸다. 「PGM」은 프로필렌 글라이콜 메틸 에터(비점: 120℃)를 나타낸다. 비교예 9 및 10에 있어서, PG 및 MIBK에 부여된 수치는, 이들 용매의 체적비를 나타낸다. n-BuOH(n-뷰탄올)의 비점은 118℃이며, 2-에톡시 에탄올의 비점은 135℃이다.
또, ※1은 우레탄 아크릴레이트 올리고머 U-4HA(신나카무라화학공업(新中村化學工業)사 제품)을 나타낸다. ※2는 실리카 미립자 PGM-AC-2140Y(닛산화학사 제품)을 나타낸다. ※3은 가교 우레탄 유기 미립자 아트펄 MM(네가미공업(根上工業)사 제품)을 나타낸다. ※4는 코어 셸형 유기 미립자 Silcrusta MK03(닛코리카사제)을 나타낸다. 코어는 PMMA로 구성되고, 셸은 실리콘(Silicone)으로 구성된다.
(굴곡성 시험)
다음에, 수지막의 굴곡성(벤딩성, 내크랙성)을 평가하기 위하여, 굴곡성 시험을 행하였다. 구체적으로는, 기재 상에 형성된 수지막을 기재와 함께 100℃의 오븐에 60분간 투입하였다. 그 후, 크랙의 유무를 육안으로 확인하였다. 또, 기재를 구성하는 폴리메틸메타크릴레이트는 가열에 의해 연화된다. 이 결과, 수지막은 그 잔존 경화 수축력에 의해서 굴곡된다. 굴곡된 수지막은, 굴곡을 제대로 견디지 못할 경우, 크랙을 발생한다. 평가 결과를 표 1에 나타낸다. 「○」는 육안으로 크랙을 확인할 수 없었던 것, 「×」는 육안으로 크랙을 확인할 수 있었던 것을 나타낸다.
(연필 긋기 시험)
수지막의 강도를 평가하기 위하여, JIS-K-5600에 준거한 연필 긋기 시험을 행하였다. 여기에서, 도 3에 의거해서, 연필 긋기 시험에 이용되는 시험 장치(500)에 대해서 설명한다. 도 3은, 시험 장치(500)를 이용해서 본 실시형태에 따른 수지막(10)의 연필 긋기 시험을 행하는 상태를 나타내고 있다.
시험 장치(500)는, 장치 본체(500A)와, 수준기(502)와, 소형 이동추(503)와, 체결도구(504)와, O형 링(505)을 구비한다. 장치 본체(500A)에는 연필(501)이 삽입되는 관통 구멍이 형성되어 있다. 관통 구멍에 삽입된 연필(501)의 길이 방향과 장치 본체(500A)의 밑면(즉, 수지막(10)의 표면)과의 각도 θ는 45°이다. 수준기(502)는 장치 본체(500A)가 수평한 것을 확인하기 위한 부품이다. 소형 이동추(503)는, 연필(501)의 심(core)(501A)에 가해지는 하중을 조정하기 위한 부품이다. 소형 이동추(503)는 화살표(503A) 방향으로 이동 가능해지고 있다. 체결도구(504)는, 연필(501)을 장치 본체(500A) 내에 고정하는 것이다. O형 링(505)은 장치 본체(500A)에 회전가능하게 부착되어 있다. O형 링(505)은, 수지막(10) 위를 굴러감으로써, 시험 장치(500)를 시험 방향으로 이동시킨다.
다음에, 연필 긋기 시험 방법을 설명한다. 여기에서는, 본 실시형태에 따른 수지막(10)(기재(100) 상에 형성된 것)의 연필 긋기 시험을 일례로 해서 연필 긋기 시험 방법을 설명한다.
우선, 시험 장치(500)에 연필(501)을 삽입, 고정한다. 다음에, 수지막(10)에 연필(501)의 중심을 누른다. 이어서, 시험 장치(500)가 수평으로 되어있는 것을 수준기(502)로 확인한다. 그 후, 소형 추(503)의 위치를 조정함으로써, 연필(501)의 심(501A)에 750g의 하중을 가한다. 다음에, 시험 장치(500)를 도 3에 나타낸 시험 방향으로 0.8㎜/초의 속도로 이동시킨다. 이것에 의해, 연필(501)의 심(501A)이 수지막(10)의 표면에 긋게 된다. 이상의 처리가 연필 긋기 시험이 된다. 그 후, 육안으로 상흔의 유무를 확인한다. 상흔이 확인되었을 경우에는, 연필(501)의 심(501A)의 경도를 낮추고, 상기의 연필 긋기 시험을 행한다. 상처가 확인되지 않을 경우에는, 연필(501)의 심(501A)의 경도를 올리고, 상기의 연필 긋기 시험을 행한다. 그리고, 수지막(10)을 육안으로 관찰하여, 상흔이 확인되지 않는 최대의 경도(연필경도)를 측정한다. 이 경도는, 수지막(10)의 강도(내찰상성)를 나타내는 파라미터로 된다. 연필경도는 7H > 6H > 5H > 4H > 3H의 순번으로 높아진다. 평가 결과를 표 1에 나타낸다.
(자기수복성 시험)
상기 연필 긋기 시험 장치(500)를 이용해서 자기수복성 시험을 행하였다. 구체적으로는, 상기와 마찬가지로 연필 긋기 시험을 행하고, 시험 후의 수지막을 24시간 방치하였다. 그리고, 수지막을 조준하여, 상흔이 확인되지 않은(수복된) 최대의 경도(연필경도(24시간 후))를 측정하였다. 경도가 클수록, 자기수복성이 높다고 할 수 있다. 평가 결과를 표 1에 나타낸다.
(평가)
표 1에 따르면, 실시예 1 내지 5에 따른 수지막에서는, 크랙은 확인할 수 없었다. 또, 실시예 1 내지 5에 따른 수지막은, 비교예 1 내지 13에 따른 수지막보다도 강도가 높고, 자기수복성도 높은 것이 확인되었다.
또한, 상기 실시예 1 및 비교예 1에 따른 수지막을 굴곡시킨 후 각 수지막을 레이저 현미경으로 관찰하였으며, 실시예 1에 따른 수지막은 굴곡되어도 크랙을 발생시키지 않는 반면, 비교예 1에 따른 수지막을 굴곡되었을 때 크랙이 발생되는 것이 확인되었다.
또한, 실시예 1에 따른 수지막을 경도 7H 연필로 문지른 직후 및 24시간 후에 각각 수지막을 레이저 현미경으로 관찰하였으며, 이를 통해 실시예 1의 수지막을 연필로 그은 직후에는 상흔이 형성되지만, 이로부터 24시간 경과 후에는 상흔이 소실되어 자기 수복이 되는 것을 확인할 수 있었다.
이와 같이, 실시예 1에 따른 수지막은 비교예 1보다도 강도가 높고, 또한, 굴곡성 및 자기수복성도 우수한 것을 알 수 있다. 실시예 및 비교예에 의해, 본 실시형태에 따른 수지막(10)은, 강도가 높고, 또한 굴곡성 및 자기수복성도 우수하다는 것이 확인되었다.
즉, 상기 실시예 및 비교예에 따르면, 케이지 형상 실세스퀴옥산 및 산화세륨 함유 입자의 질량비가 약 80:20 내지 약 50:50으로 될 경우에, 소망의 효과가 얻어지는 것이 확인되었다. 또, 케이지 형상 실세스퀴옥산 및 산화세륨 함유 입자 중 어느 것인가가 다른 원료로 치환된 경우, 예를 들어, 이들 질량비가 상기 범위 내였다고 해도, 소망의 효과가 얻어지지 않는 것이 확인되었다. 또한, 수지막 제조 시 사용되는 극성 용매는, 비점이 약 160℃ 이상인 것이 필요한 것도 확인되었다.
이상으로부터, 본 실시형태에 따르면, 수지막(10)은 케이지 형상 실세스퀴옥산을 구조 단위로서 포함하는 매트릭스(20)와, 산화세륨 함유 입자(30)를 포함한다. 그리고, 산화세륨 함유 입자(30)의 함유율은 매트릭스(20)와 산화세륨 함유 입자(30)의 총 질량에 대해서 20 내지 50질량%이다. 이것에 의해, 수지막(10)은, 높은 강도를 유지하면서, 굴곡성 및 자기수복성을 향상시킬 수 있다.
또, 본 실시형태에 따르면, 산화세륨 함유 입자(30)의 유기 폴리머층, 즉, 셸(32)은 폴리비닐피롤리돈을 포함하므로, 수지막(10)의 굴곡성 및 자기수복성이 더욱 향상된다.
또한, 본 실시형태에 따르면, 수지막(10)을 제조할 때, 용매로서 비점이 160℃ 이상인 극성 용매를 사용하므로, 수지막(10) 중에 산화세륨 함유 입자(30)을 안정적으로 분산시킬 수 있다. 따라서, 높은 강도를 유지하면서, 굴곡성 및 자기수복성이 향상된 수지막(10)을 제조할 수 있다.
이상, 첨부 도면을 참조하면서 본 발명의 바람직한 실시형태에 대해서 상세에 설명했지만, 본 발명은 이러한 예로 한정되지 않는다. 본 발명이 속하는 기술 분야에 있어서의 통상의 지식을 가진 자라면, 특허청구범위에 기재된 기술적 사상의 범주 내에 있어서, 각종 변경예 또는 수정예에 도달할 수 있는 것은 명확하고, 이들에 대해서도, 당연히 본 발명의 기술적 범위에 속하는 것으로 이해된다.

Claims (19)

  1. 실세스퀴옥산을 구조 단위로서 포함하는 매트릭스; 및
    상기 매트릭스 중에 분산된 산화세륨 함유 입자를 포함하되,
    상기 산화세륨 함유 입자는,
    산화세륨을 포함하는 코어 및 상기 코어를 덮는 유기 폴리머층을 구비하는 것을 특징으로 하는 수지막.
  2. 제1항에 있어서, 상기 실세스퀴옥산은 케이지 형상인 것을 특징으로 하는 수지막.
  3. 제1항에 있어서, 상기 산화세륨 함유 입자의 함유율은 상기 매트릭스와 상기 산화세륨 함유 입자의 총 질량에 대해서 약 20질량% 내지 약 50질량%인 수지막.
  4. 제1항에 있어서, 상기 수지막은 연필강도가 6H이상인 수지막.
  5. 제1항에 있어서, 상기 유기 폴리머층은 폴리비닐피롤리돈을 포함하는 것을 특징으로 하는 수지막.
  6. 제1항에 있어서, 상기 유기 폴리머층의 두께는 약 1㎚ 이상 약 6㎚ 이하인 수지막.
  7. 제1항에 있어서, 상기 산화세륨 함유 입자는 평균 입경이 약 50㎚ 이하인 수지막.
  8. 제1항에 있어서, 상기 수지막은 매트릭스 또는 코어로부터 유래된 제1탄성 부분과 셸로부터 유래된 제2탄성 부분이 교대로 존재하며, 제1탄성 부분은 제2탄성 부분보다 탄성이 높은 것을 특징으로 하는 수지막.
  9. 실세스퀴옥산, 산화세륨 함유 입자 및 비점이 약 160℃ 이상인 용매를 혼합함으로써 도공액을 제작하는 단계; 및
    상기 도공액을 이용해서 수지막을 제작하는 단계를 포함하되,
    상기 산화세륨 함유 입자는 산화세륨을 포함하는 코어 및 상기 코어를 덮는 유기 폴리머층을 구비하는 것을 특징으로 하는 수지막의 제조 방법.
  10. 제9항에 있어서, 상기 실세스퀴옥산은 케이지 형상인 것을 특징으로 하는 수지막의 제조 방법.
  11. 제9항에 있어서, 상기 산화세륨 함유 입자의 함유율은 상기 실세스퀴옥산과 상기 산화세륨 함유 입자의 총 질량에 대해서 약 20질량% 내지 약 50질량%인 수지막의 제조 방법.
  12. 제9항에 있어서, 상기 용매는 극성 용매인 것을 특징으로 하는 수지막의 제조 방법.
  13. 제9항에 있어서, 상기 유기 폴리머층은 폴리비닐피롤리돈을 포함하는 것을 특징으로 하는 수지막의 제조 방법.
  14. 제9항에 있어서, 상기 수지막을 제작하는 단계는,
    도공액을 기재 상에 도공하고;
    상기 도공액을 건조시켜 도공층을 제작하고;
    상기 도공층에 광을 조사하여 도공층 내의 케이지 형상 실세스퀴옥산끼리 중합시키는;
    단계를 포함하는 수지막의 제조 방법.
  15. 실세스퀴옥산, 산화세륨 함유 입자 및 비점이 약 160℃ 이상인 용매를 포함하고,
    상기 산화세륨 함유 입자는 산화세륨을 포함하는 코어 및 상기 코어를 덮는 유기 폴리머층을 구비하는 것을 특징으로 하는 도공액.
  16. 제15항에 있어서, 상기 실세스퀴옥산은 케이지 형상인 것을 특징으로 하는 도공액.
  17. 제15항에 있어서, 상기 산화세륨 함유 입자의 함유율은 상기 실세스퀴옥산과 상기 산화세륨 함유 입자의 총 질량에 대해서 약 20질량% 내지 약 50질량%인 도공액.
  18. 제15항에 있어서, 상기 용매는 극성 용매인 것을 특징으로 하는 도공액.
  19. 제15항에 있어서, 상기 도공액은 중합 개시제를 더 포함하는 도공액.
PCT/KR2014/005170 2013-06-28 2014-06-12 수지막, 수지막의 제조 방법 및 도공액 WO2014208912A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-136031 2013-06-28
JP2013136031A JP6514427B2 (ja) 2013-06-28 2013-06-28 樹脂膜、樹脂膜の製造方法、及び塗工液
KR1020130116959A KR101659129B1 (ko) 2013-06-28 2013-09-30 수지막, 수지막의 제조 방법 및 도공액
KR10-2013-0116959 2013-09-30

Publications (1)

Publication Number Publication Date
WO2014208912A1 true WO2014208912A1 (ko) 2014-12-31

Family

ID=52142197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/005170 WO2014208912A1 (ko) 2013-06-28 2014-06-12 수지막, 수지막의 제조 방법 및 도공액

Country Status (1)

Country Link
WO (1) WO2014208912A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049786A1 (en) * 2004-10-29 2006-05-11 Transitions Optical, Inc. Photochromic coating compositions, methods of making coated articles and articles thereof
JP3912288B2 (ja) * 2001-03-21 2007-05-09 ダイキン工業株式会社 無機・有機複合材料からなる表面処理剤
JP2009042351A (ja) * 2007-08-07 2009-02-26 Konica Minolta Opto Inc 光学フィルム、偏光板及び表示装置
US20100015188A1 (en) * 2006-10-10 2010-01-21 Nat. Ins. of Adv. Industrial Sci. and Technology Core-shell-type cerium oxide microparticle, dispersion solution comprising the microparticle, and process for production of the microparticle or dispersion solution
KR20120004474A (ko) * 2009-03-26 2012-01-12 시그넷 아모라이트, 인코포레이티드 무기 박막 코팅에 대한 개선된 접착력을 지닌 내스크래치성 코팅

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3912288B2 (ja) * 2001-03-21 2007-05-09 ダイキン工業株式会社 無機・有機複合材料からなる表面処理剤
WO2006049786A1 (en) * 2004-10-29 2006-05-11 Transitions Optical, Inc. Photochromic coating compositions, methods of making coated articles and articles thereof
US20100015188A1 (en) * 2006-10-10 2010-01-21 Nat. Ins. of Adv. Industrial Sci. and Technology Core-shell-type cerium oxide microparticle, dispersion solution comprising the microparticle, and process for production of the microparticle or dispersion solution
JP2009042351A (ja) * 2007-08-07 2009-02-26 Konica Minolta Opto Inc 光学フィルム、偏光板及び表示装置
KR20120004474A (ko) * 2009-03-26 2012-01-12 시그넷 아모라이트, 인코포레이티드 무기 박막 코팅에 대한 개선된 접착력을 지닌 내스크래치성 코팅

Similar Documents

Publication Publication Date Title
US8349934B2 (en) Hardening composition and hardened product thereof
KR102353577B1 (ko) 무기 미립자 분산액의 제조 방법, 당해 분산액을 포함하는 경화성 조성물, 및 그 경화물
KR101050650B1 (ko) 내마모성 및 지문제거성이 우수한 코팅 조성물 및 코팅 필름
TWI498391B (zh) 透明被覆膜形成用塗佈液及附有透明被覆膜之基材
EP2080773B1 (en) Paste composition for light guide and light guide utilizing the same
JP6331464B2 (ja) 感光性樹脂組成物、ならびにそれを用いた塗膜
WO2020013371A1 (ko) 항균성, 항곰팡이성 및 고기능성 코팅액 조성물 및 이를 이용한 제품
JP2015193758A (ja) オーバーコート用感光性樹脂組成物、ならびにそれを用いた塗膜
WO2011037338A2 (ko) 전도성 바닥재 및 이의 제조방법
KR101273167B1 (ko) 눈부심 방지 조성물 및 이의 제조방법
TWI656629B (zh) 柔性顯示裝置覆蓋基板及使用其之柔性顯示裝置
WO2013089413A1 (en) Hard coating composition
CN112375243A (zh) 一种高耐磨、低闪点的防眩光膜及其制备方法
KR101659129B1 (ko) 수지막, 수지막의 제조 방법 및 도공액
JP6024375B2 (ja) 樹脂組成物、ならびにそれを用いた保護膜およびタッチパネル用絶縁膜
JP5709706B2 (ja) 透明被膜形成用塗料および透明被膜付基材
JP6617785B2 (ja) 感光性樹脂組成物、ならびにそれを用いた塗膜
WO2014208912A1 (ko) 수지막, 수지막의 제조 방법 및 도공액
WO2016018123A1 (ko) 폴리테트라플루오로에틸렌을 포함하는 하드코팅 조성물, 하드코팅층 및 이를 포함하는 바닥재
JP2014141550A (ja) 無機微粒子分散体、感光性組成物、および塗膜
JP2014043506A (ja) 樹脂組成物、ならびにそれを用いた塗膜
KR101813250B1 (ko) 자외선 경화형 코팅 조성물 및 이를 이용한 투명 코팅막 형성방법
CN115232550A (zh) 一种低反射涂布组合物及其制备方法
WO2019022545A1 (ko) 무용매 타입의 열경화성 유무기 하이브리드 절연소재
KR101650450B1 (ko) 하드코팅 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14817630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14817630

Country of ref document: EP

Kind code of ref document: A1