WO2014207969A1 - レギュレータ回路、電圧安定化回路及び半導体装置 - Google Patents

レギュレータ回路、電圧安定化回路及び半導体装置 Download PDF

Info

Publication number
WO2014207969A1
WO2014207969A1 PCT/JP2014/001713 JP2014001713W WO2014207969A1 WO 2014207969 A1 WO2014207969 A1 WO 2014207969A1 JP 2014001713 W JP2014001713 W JP 2014001713W WO 2014207969 A1 WO2014207969 A1 WO 2014207969A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
regulator circuit
load
resistor
regulator
Prior art date
Application number
PCT/JP2014/001713
Other languages
English (en)
French (fr)
Inventor
野間崎 大輔
森江 隆史
直志 柳沢
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2014207969A1 publication Critical patent/WO2014207969A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/46Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter
    • H03M1/466Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter using switched capacitors
    • H03M1/468Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter using switched capacitors in which the input S/H circuit is merged with the feedback DAC array

Definitions

  • the present disclosure relates to a regulator circuit that supplies power to a load circuit and a semiconductor device including the regulator circuit.
  • the regulator circuit is a circuit that supplies a reference power to various circuits, and it is desired to supply a stable reference power.
  • an output current is generated by passing an output current through a load resistor and performing voltage conversion.
  • Patent Document 1 discloses a technique related to a regulator circuit in which fluctuation of the output current Iout due to variation in resistance value of the resistance element Ra1 in a manufacturing process or the like is small as an example of a regulator circuit.
  • FIG. 14 is a diagram showing a circuit configuration example of a successive approximation AD (Analog-to-Digital) converter, which is an example of a load circuit connected to a regulator circuit.
  • the successive approximation AD converter 80 includes, for example, a capacitive DAC (Digital-to-Analog-Converter) 81, a DAC control unit 82, a comparator 83, and a latch circuit 84.
  • the capacitor DAC 81 has a plurality of capacitor elements C1, C2,..., C512 (capacitance values 1C, 2C,..., 512C) connected in parallel.
  • the DAC control unit 82 switches the voltage supplied to the lower electrodes of the capacitive elements C1, C2,..., C512 of the capacitive DAC 81 to either the high reference voltage VREFH or the low reference voltage VREFL according to the control signal.
  • the upper electrodes of the capacitive elements C1, C2,..., C512 are connected to the common node N85, and the analog input signal AIN is supplied to the common node N85 and sampled by the capacitor DAC81.
  • the comparator 83 compares the sampled analog signal of the common node N85 with the reference voltage, and performs AD conversion one bit or several bits at a time from the upper bit.
  • the AD converted digital signal is stored in the latch circuit 84, and the DAC control unit 82 determines a control signal used for comparison of the next lower bit in accordance with the value of the digital signal output from the latch circuit 84.
  • the regulator circuit supplies a reference power supply (reference voltage) to the successive approximation AD converter 80, for example.
  • a reference power supply reference voltage
  • the high reference voltage VREFH and the low reference voltage VREFL of the capacitor DAC 81 are supplied.
  • the DAC control unit 82 switches the lower electrode of the capacitor DAC 81 between the high reference voltage VREFH and the low reference voltage VREFL, so that the charge of the capacitor DAC 81 is redistributed each time. For this reason, a charging current is applied or a discharging current is drawn from the output terminal of the regulator circuit at each clock edge, which causes the reference voltage supplied from the regulator circuit to drop.
  • the reference voltage drop amount is within a range where the required AD conversion accuracy can be achieved. Or the reference voltage dropped until the next clock edge determined by the comparison result must be recovered to a desired value.
  • a stabilization capacitor may be added to the output of the regulator circuit.
  • the stabilizing capacity of the regulator circuit is realized by the built-in capacity of the LSI.
  • the capacitance value that can be realized as the built-in capacitor is on the order of several hundred pF.
  • the stabilization capacitance is on the order of several hundred pF, there is a possibility that a sufficient amount of charge cannot be supplied when the load circuit draws a current, and the drop amount of the output voltage of the regulator circuit cannot be sufficiently suppressed.
  • 15A and 15B show a conventional regulator circuit that receives a reference voltage VREF and supplies a reference power supply (voltage VOUT) to a load circuit (for example, the successive approximation AD converter 80).
  • a load circuit for example, the successive approximation AD converter 80.
  • FIG. 15A shows the operation example at the time of adding the built-in capacity
  • FIG. 15A when the output current of the regulator circuit is small, the output voltage VOUT cannot be recovered sufficiently, and every time the sampling period (1 / F) elapses with respect to the reference voltage VREF. The output voltage VOUT has dropped. Therefore, the reference power supply with the accuracy required by the load circuit cannot be supplied.
  • the stabilization capacitance is reduced (for example, several tens of pF) in order to recover the output voltage VOUT of the regulator circuit at high speed, the stability deteriorates. Specifically, as shown in FIG. 15B, the output voltage VOUT of the regulator circuit is pulled by the current drawn by the load circuit and the current supplied by the regulator circuit, and the output voltage VOUT is greatly ringed. Therefore, in this case as well, the reference power with the accuracy required by the load circuit cannot be supplied.
  • an object of the present disclosure is to provide a low power consumption regulator circuit that supplies a stable reference power source to a load circuit without providing a stabilization capacitor for the regulator circuit outside the LSI. To do. It is another object of the present invention to provide a voltage stabilizing circuit that stabilizes a reference voltage supplied from an external regulator circuit to a load circuit.
  • a regulator circuit that supplies a reference power supply to a load circuit includes an operational amplifier that receives a reference voltage at one input terminal and the load circuit, and is connected to the other of the operational amplifiers.
  • a first resistor and a first capacitor connected in series are provided between second power sources having different potentials.
  • a semiconductor device includes the regulator circuit according to the first aspect, a reference voltage generation circuit that supplies a reference voltage to the regulator circuit, and the load circuit that receives power supply from the regulator circuit. It has.
  • the first resistor and the first capacitor are connected in series between the output terminal of the regulator circuit and the second power source, and the impedance (resistance value R0) of the first resistor is the load.
  • the impedance (1 / (2 ⁇ ⁇ F ⁇ C0)) of the first capacitor at the operating frequency F of the circuit is set sufficiently large to be negligible. That is, as a result of various studies, the inventors set the resistance value R0 of the first resistor to be larger than 10 times the impedance (1 / (2 ⁇ ⁇ F ⁇ C0)) of the first capacitor, It came to the conclusion that a stable reference power supply can be supplied.
  • the first capacitor is the stabilization capacitor.
  • the voltage of the reference power supply output from the regulator circuit drops momentarily greatly without playing a role.
  • the load circuit is charged from the path through the first resistor, and the voltage of the reference power supply quickly recovers to the original voltage.
  • stable reference power can be supplied. Therefore, when the regulator circuit described in the first aspect is incorporated in a semiconductor device (for example, an LSI) as shown in the second aspect, for example, it is necessary to provide a stabilization capacitor for the regulator circuit outside the semiconductor device. Absent.
  • the direct current can be interrupted by the first capacitor, and a constant operation that satisfies the relational expression of the above equation (1).
  • Current is supplied to the load circuit only when the output voltage of the regulator circuit fluctuates above the frequency. Thereby, there is no unnecessary through current, and the power consumption is very low.
  • a voltage stabilization circuit that stabilizes a reference voltage supplied from a regulator circuit to a load circuit, and is connected in series between two power supply terminals to which the reference voltage is supplied.
  • a semiconductor device includes the voltage stabilization circuit according to the third aspect, and the load circuit connected in parallel with the voltage stabilization circuit between the two power supply terminals. .
  • the first resistor and the first capacitor are connected in series between the two power supply terminals to which the reference voltage is supplied from the regulator circuit, and the first resistor
  • the impedance (resistance value R0) is set sufficiently large so that the impedance (1 / (2 ⁇ ⁇ F ⁇ C0)) of the first capacitor at the operating frequency F of the load circuit can be ignored. That is, as a result of various studies, the inventors have determined that the resistance value R0 of the first resistor is more than 10 times the impedance (1 / (2 ⁇ ⁇ F ⁇ C0)) of the first capacitor in the voltage stabilization circuit.
  • the reference voltage supplied from the regulator circuit to the load circuit via the power supply terminal can be stabilized by setting it large. Furthermore, since the first capacitor is connected in series to the current path through the first resistor, the voltage stabilization circuit according to this aspect has no unnecessary through current as in the first aspect, and has very low power consumption. It is.
  • the reference voltage is stabilized. It is not necessary to provide a stabilization capacitor for the purpose of the semiconductor device outside the semiconductor device.
  • the present disclosure it is possible to provide a regulator circuit that can supply a stable reference power supply without providing a stabilization capacitor for the regulator circuit outside the semiconductor device, and that has low power consumption.
  • this regulator circuit by applying this regulator circuit to a semiconductor device, the number of external terminals of the semiconductor device can be reduced, and an external part such as a chip capacitor (ceramic capacitor) is unnecessary, thereby realizing a reduction in cost. be able to.
  • FIG. 1 is a conceptual diagram of a semiconductor device according to the present disclosure. It is a schematic diagram which shows the operation example of the regulator circuit which concerns on this indication. It is a conceptual diagram which shows the operation example of the regulator circuit which concerns on this indication. It is a conceptual diagram which shows the operation example of the regulator circuit which concerns on this indication. It is a conceptual diagram which shows the operation example of the regulator circuit which concerns on this indication. It is a conceptual diagram which shows the operation example of the regulator circuit which concerns on this indication. It is a conceptual diagram which shows the operation example of the regulator circuit which concerns on this indication. It is a key map of other semiconductor devices concerning this indication. It is a key map of other semiconductor devices concerning this indication. It is a key map of other semiconductor devices concerning this indication. It is a key map of other semiconductor devices concerning this indication. It is a key map of other semiconductor devices concerning this indication. It is a key map of other semiconductor devices concerning this indication. It is a key map of other semiconductor devices concerning this indication. It is a key map of other semiconductor devices concerning
  • FIG. 13 is a diagram illustrating an example of operation waveforms of the regulator circuit illustrated in FIG. 12. It is a figure showing an example of circuit composition of a successive approximation type AD converter which is an example of a load circuit. It is a figure for demonstrating the subject of the conventional regulator circuit. It is a key map of other semiconductor devices concerning this indication.
  • a dedicated terminal is provided in a semiconductor device (hereinafter also referred to as an LSI), and the output of the regulator circuit is drawn out of the LSI via the dedicated terminal, and a large stabilization capacitor (for example, a ceramic capacitor) is provided at the dedicated terminal.
  • a large stabilization capacitor for example, a ceramic capacitor
  • FIG. 12 is a schematic diagram showing a circuit configuration example in which a large external stabilizing capacitor 71 is added to the dedicated terminals P1 and P2 of the semiconductor device 5A to stabilize the reference power supply of the regulator circuit 50.
  • an external stabilizing capacitor having a capacitance value for example, several ⁇ F
  • a capacitance for example, hundreds pF
  • 71 for example, a ceramic capacitor
  • a regulator circuit 50 receives a reference voltage VREF supplied from a reference voltage generation circuit (referred to as a REF circuit in FIG. 12) 60 at its positive input terminal, and receives an output of the operational amplifier 51 at its gate.
  • An output transistor 52 and a resistor 53 connected between the output transistor 52 and the ground VSS are provided.
  • the reference power output from the regulator circuit 50 is supplied to the load circuit 70.
  • the output of the regulator circuit 50 is fed back to the negative input terminal of the operational amplifier 51.
  • FIG. 13 is a diagram showing an example of the operation waveform of the regulator circuit 50.
  • the load circuit 70 instantaneously draws current at times T1, T2, and T3.
  • the output voltage VREF_OUT of the regulator circuit 50 drops with respect to the desired reference voltage VREF.
  • the drop amount can be suppressed to be extremely small.
  • the desired reference voltage can be maintained even when the voltage recovery time is long due to the small output current ID supplied from the output transistor 52 of the regulator circuit 50. Therefore, in the circuit of FIG.
  • the external stabilization capacitor 71 having a sufficiently large capacitance value (for example, several ⁇ F)
  • the operation of the load circuit 70 even when the load circuit 70 instantaneously draws current. And the performance can be prevented.
  • the stabilization capacitor is realized by the built-in capacitor of the LSI, it is difficult to have a large capacitance value, so that when the load circuit 70 draws a current, a sufficient charge cannot be supplied, and the regulator circuit 50 It is conceivable that the drop amount of the output voltage VREF_OUT increases. For this reason, countermeasures are necessary.
  • FIG. 1 is a conceptual diagram of a semiconductor device according to the present disclosure.
  • a semiconductor device 1A includes a reference voltage generation circuit (referred to as a REF circuit in FIG. 1) 20 that supplies a reference voltage VREF, and a regulator circuit that receives the reference voltage VREF and supplies an output voltage VREF_OUT as a reference power supply. 10 and a load circuit 30 that receives supply of the reference power supply (output voltage VREF_OUT) from the regulator circuit 10.
  • a reference voltage generation circuit referred to as a REF circuit in FIG. 1
  • a regulator circuit that receives the reference voltage VREF and supplies an output voltage VREF_OUT as a reference power supply.
  • a load circuit 30 that receives supply of the reference power supply (output voltage VREF_OUT) from the regulator circuit 10.
  • a regulator circuit 10 receives a reference voltage VREF supplied from a reference voltage generation circuit 20 at a positive input terminal, an output of the operational amplifier 11 at a gate, a power supply VDD as a first power supply, and an output An N-type output transistor 12 (source follower structure) connected between the terminal VO and a load resistor 13 (resistance value is RD) connected between the output transistor 12 and the ground VSS as the second power source. Is provided.
  • the output terminal VO of the regulator circuit 10 is feedback-connected to the negative input terminal of the operational amplifier 11 via the feedback node NFB.
  • the regulator circuit 10 further includes a built-in resistor 14 as a first resistor and a built-in capacitor 15 as a first capacitor connected in series between the feedback node NFB and the ground VSS.
  • the regulator circuit 10 supplies an output voltage VREF_OUT (reference voltage VREF) to various load circuits 30 such as an analog circuit and a digital circuit.
  • the output voltage VREF_OUT is used as a power supply voltage for the load circuit 30, for example.
  • FIG. 2 is a schematic diagram illustrating an operation example of the regulator circuit 10 according to the present disclosure.
  • a discrete signal processing system that operates in synchronization with a clock CLK (frequency is F) is connected to the regulator circuit 10 as a load circuit 30. That is, the operating frequency of the discrete signal processing system is F.
  • the impedance of the built-in resistor 14 is set to be sufficiently large so that the impedance of the built-in capacitor 15 at the operating frequency F can be ignored, and the amount of current supplied via the built-in resistor 14 is the same as that of the built-in resistor 14 and the regulator circuit. It is assumed that the built-in capacitor 15 has almost no influence on the amount of current to be supplied, which is almost determined by the voltage value of the output voltage VREF_OUT of 10. That is, when the resistance value of the built-in resistor 14 is R0, the capacitance value of the built-in capacitor 15 is C0, and the operating frequency of the load circuit 30 is F, the relationship of Expression (1) is satisfied.
  • the load circuit 30 performs charge filling in synchronization with the clock CLK. That is, it is assumed that a current is drawn from the regulator circuit 10 to the load circuit 30 at the rising edge of each CLK (time T1, T2, T3).
  • the built-in resistor 14 having a sufficiently large impedance is connected in series with the built-in capacitor 15, so that the built-in capacitor 15 serves as a stabilizing capacitor.
  • the output voltage VREF_OUT of the regulator circuit 10 drops greatly instantaneously.
  • the load circuit 30 is gradually charged from the path through the built-in resistor 14.
  • the impedance of the built-in capacitor 15 at the operating frequency F is the impedance of the built-in resistor 14.
  • the built-in resistor side terminal 15a of the built-in capacitor 15 can be operated so as to be at a fixed voltage.
  • the output voltage VREF_OUT is largely dropped as described above, if the capacitive impedance is dominant, the stored charge is limited, so that when the current is supplied, the built-in capacitance that is the supply source The voltage of the 15 built-in resistor side terminals 15a drops so as to approach the dropped output voltage VREF_OUT, and the current supplied from the built-in capacitor 15 is significantly reduced.
  • the amount of current to be supplied is determined by the built-in resistor 14 and the voltage value of the output voltage VREF_OUT of the regulator circuit 10. Thereby, a large current continues to be supplied until the output voltage VREF_OUT is recovered. Further, since the output voltage VREF_OUT drops momentarily, the voltage between the drain and the source of the output transistor 12 spreads, and a larger current is supplied from the output transistor 12 than before the output voltage VREF_OUT is dropped. This contributes to rapid recovery of the voltage VREF_OUT.
  • the load circuit 30 is filled with electric charges through the two current paths including the path via the built-in resistor 14 and the path via the output transistor 12, so that the output voltage VREF_OUT of the regulator circuit 10 is rapidly recovered. be able to.
  • the regulator circuit 10 current is drawn from the output terminal VO of the regulator circuit 10 by the load circuit 30, for example, by making the impedance of the built-in resistor 14 sufficiently larger than the impedance of the built-in capacitor 15. At this time, the output voltage VREF_OUT output from the regulator circuit 10 drops momentarily, while the load circuit 30 is charged with charge, and the output voltage VREF_OUT quickly recovers to the original voltage. Therefore, stable supply of reference power from the regulator circuit 10 to the load circuit 30 becomes possible.
  • a built-in capacitor 15 is connected in series to the current path via the built-in resistor 14, a direct current can be cut off by the built-in capacitor 15, and a constant operating frequency satisfying the relational expression (1).
  • the current is supplied to the load circuit 30 only when the output voltage VREF_OUT of the regulator circuit 10 fluctuates. Thereby, there is no unnecessary through current, and the power consumption is very low.
  • the resistance value R0 of the built-in resistor 14 may be set so as to satisfy another relational expression in addition to the relational expression of the formula (1).
  • the impedance (1 / (2 ⁇ ⁇ F ⁇ CL)) of the load capacitance and the regulator The resistance value R0 of the built-in resistor 14 may be set so that the impedance (resistance value R0) of the built-in resistor 14 of the circuit 10 satisfies the relationship of Expression (2).
  • the inventors set the resistance value R0 of the built-in resistor 14 as shown in Expression (2), thereby setting the instantaneous drop amount of the output voltage VREF_OUT within an appropriate range when a current is drawn to the load circuit 30. In other words, it was concluded that a stable reference power can be supplied more effectively.
  • the instantaneous drop amount of the output voltage VREF_OUT can be more sufficiently secured by setting the resistance value R0 of the built-in resistor 14 so as to satisfy the relationship of Expression (2).
  • the output voltage VREF_OUT output from the regulator circuit 10 drops greatly instantaneously, but then passes through the built-in resistor 14 Since the load circuit 30 is filled with electric charges from the two paths including the path and the path through the output transistor 12, the output voltage VREF_OUT can be quickly restored to the original voltage (for example, VREF). Therefore, stable reference power can be supplied from the regulator circuit 10 to the load circuit 30.
  • the regulator circuit 10 can supply a reference power source to a clock synchronous discrete signal processing system (operation frequency F) such as an AD converter as the load circuit 30.
  • operation frequency F operation frequency
  • the output voltage may be restored to a predetermined value (for example, within a predetermined error range) every 1 / F time that is each operation timing.
  • a predetermined value for example, within a predetermined error range
  • the output voltage may be recovered to a predetermined value (for example, within a predetermined error range).
  • a predetermined value for example, within a predetermined error range.
  • equation (5) can also be expressed as equation (3).
  • the system is required at each clock edge of the discrete signal processing system by setting the resistance value R0 of the built-in resistor 14 and the mutual conductance gm of the output transistor 12 so as to satisfy the relationship of the expression (3).
  • the output voltage VREF_OUT of the regulator circuit 10 can be rapidly recovered to the voltage accuracy of Specifically, even if the output voltage VREF_OUT of the regulator circuit 10 drops momentarily, the electric charge is then applied to the load circuit 30 from two current paths, the path via the built-in resistor 14 and the path via the output transistor 12. And the output voltage VREF_OUT of the regulator circuit 10 can be rapidly recovered to the accuracy required by the load circuit 30 which is a clock synchronous discrete signal processing system such as an AD converter.
  • the resistance value R0 of the built-in resistor 14 and the mutual conductance gm of the output transistor 12 may be set so as to satisfy another relational expression in addition to the expression (3) or instead of the expression (3).
  • the resistance value R0 of the built-in resistor 14 and the output transistor may satisfy the relationship of Expression (4). That is, the inventors set the path through the built-in resistor 14 by setting the mutual conductance gm of the output transistor 12 and the resistance value R0 of the built-in resistor 14 of the regulator circuit 10 so as to satisfy the relationship of Expression (4). It came to the conclusion that the amount of current from can be more sufficiently secured.
  • 3 and 4 are conceptual diagrams showing an operation example of the regulator circuit 10 when the resistance value of the built-in resistor is changed. 3 and 4, it is assumed that the regulator circuit 10 is connected to the successive approximation AD converter 80 shown in FIG. 14 as the load circuit 30. Specifically, the output voltage VREF_OUT from the regulator circuit 10 is supplied as the high reference voltage VREFH of the AD converter 80, and the ground VSS of the regulator circuit 10 is connected to the low reference voltage VREFL.
  • the frequency of the clock CLK used in the AD converter 80 is F, that is, the operating frequency of the AD converter 80 is F, and at the rising edge of each clock CLK (time T11, T12, T21, T22). It is assumed that a current is drawn to the AD converter 80.
  • the output voltage VREF_OUT is 1.2 V
  • the operating frequency F of the load circuit 30 (AD converter 80) is 630 MHz
  • the allowable error Vm of the AD converter 80 at the rising edge of the clock CLK is 1 mV.
  • FIG. 3 (a) shows the waveform of the clock CLK
  • FIG. 3 (b) shows the output voltage VREF_OUT of the regulator circuit 10
  • FIG. 3 (c) is an enlarged view of the region X1 in FIG. 3 (b).
  • the capacitance value C0 of the built-in capacitor 15 is 50 pF. Therefore, the impedance (1 / (2 ⁇ ⁇ F ⁇ C0)) of the internal capacitor 15 is about 5.1 ⁇ .
  • W11 shows an example in which the resistance value R0 of the built-in resistor 14 is 0 ⁇ .
  • W12 to W14 have a resistance value R0 of the built-in resistor 14 of 30 ⁇ , 100 ⁇ , An example of 200 ⁇ is shown.
  • the output voltage VREF_OUT increases as the resistance value R0 of the built-in resistor 14 increases from 0 ⁇ to 200 ⁇ . The amount of instantaneous drop is large. On the other hand, as the resistance value R0 of the built-in resistor 14 is larger, the output voltage VREF_OUT is rapidly recovered thereafter. As a result, at the rising edge (time T12) of the next clock CLK, the output voltage VREF_OUT has recovered to within the allowable error Vm under the conditions of W13 and W14.
  • the inventors have conducted various studies including the operation example of FIG. 3 as described above, and as a result, when the relationship of Expression (1) is satisfied, that is, the impedance (resistance value R0) of the built-in resistor 14 is set to the built-in capacitor 15. It was concluded that a stable reference power supply can be supplied by setting the impedance to a value larger than 10 times the impedance (1 / (2 ⁇ ⁇ F ⁇ C0)).
  • FIG. 4 (a) shows the waveform of the clock CLK
  • FIG. 4 (b) shows the output voltage VREF_OUT of the regulator circuit 10
  • FIG. 4 (c) is an enlarged view of the region X2 in FIG. 4 (b).
  • the capacitance value CL of the load capacitance (not shown) of the load circuit 30 is 1 pF. Therefore, the load capacitance impedance (1 / (2 ⁇ ⁇ F ⁇ CL)) of the load circuit 30 is about 250 ⁇ .
  • W21 shows an example in which the resistance value R0 of the built-in resistor 14 is 0 ⁇ .
  • W22 to W24 have a resistance value R0 of the built-in resistor 14 of 30 ⁇ , 100 ⁇ , An example of 200 ⁇ is shown.
  • 5 and 6 are conceptual diagrams showing an operation example of the regulator circuit 10 when the resistance value of the built-in resistor 14 and the characteristics of the output transistor 12 are changed. 5 and 6, it is assumed that the regulator circuit 10 is connected to the successive approximation AD converter 80 shown in FIG. 14 as the load circuit 30 as in FIG. Further, it is assumed that the operating frequency of the AD converter 80 is F, and a current is drawn to the AD converter 80 at the rising edge (time T31, T32, T41, T42) of each clock CLK.
  • the output voltage VREF_OUT is 1.2 V
  • the operating frequency F of the load circuit 30 (AD converter 80) is 1.6 GHz
  • the accuracy of the reference voltage required for the AD converter 80 is 10 It is assumed that the allowable error Vm of the AD converter 80 at the rising edge of the clock CLK is 1 mV.
  • FIG. 5A shows the waveform of the clock CLK
  • FIG. 5B shows the output voltage VREF_OUT of the regulator circuit 10
  • FIG. 5C is an enlarged view of the region X3 in FIG. 5B.
  • the capacitance value CL of the load capacitance (not shown) of the load circuit 30 is 1 pF.
  • W31 is an example in which the resistance value R0 of the built-in resistor 14 is 2 k ⁇ , and the mutual conductance gm of the output transistor 12 is 2.4 mS.
  • W32 to W34 are built-in.
  • the resistance value R0 of the resistor 14 is 400 ⁇ , 400 ⁇ , and 200 ⁇
  • the mutual conductance gm of the output transistor 12 is 2.4 mS, 1.2 mS, and 2.4 mS, respectively.
  • FIG. 6A shows the waveform of the clock CLK
  • FIG. 6B shows the output voltage VREF_OUT of the regulator circuit 10
  • FIG. 6C is an enlarged view of a region X4 in FIG. 6B.
  • the value of the mutual conductance gm of the output transistor 12 is assumed to be 2.4 mS.
  • W41 shows an example in which the resistance value R0 of the built-in resistor 14 is 2 k ⁇
  • W42 and W43 show examples in which the resistance value R0 of the built-in resistor 14 is 400 ⁇ and 200 ⁇ , respectively.
  • the resistance value is generally about 0.1 ⁇ to 1 ⁇ .
  • Equation (1) Since the resistance value of ESR as R0 (left side) of Equation (1) connected in series with the stabilization capacitor is about 1 ⁇ as described above, when the external stabilization capacitor 71 is to be realized with a built-in capacitor Does not satisfy the relationship of equation (1).
  • the ESR is made of, for example, a parasitic component of wiring.
  • the ESR is made of, for example, a parasitic component of wiring.
  • the operation of the regulator circuit 50 when an ESR is connected in series with the external stabilization capacitor 71 as shown in FIG. 12 will be examined in detail.
  • the resistance value of the ESR connected in series with the external stabilization capacitor 71 is small.
  • Instantaneous charge charging is performed.
  • the dropped output voltage VREF_OUT of the regulator circuit 50 and the high-potential-side electrode voltage of the external stabilization capacitor 71 become almost equal instantaneously.
  • current is supplied to both the load circuit 70 and the external stabilization capacitor 71 only from the output transistor 52. Therefore, the voltage change of the output voltage VREF_OUT of the regulator circuit 50 is small, and the output voltage VREF_OUT of the regulator circuit 50 cannot be rapidly recovered.
  • FIG. 7 to 11 are conceptual diagrams of another semiconductor device 1A according to the present disclosure.
  • the load resistor 13 is omitted from the regulator circuit 10.
  • a load resistor 33 that is the same as or similar to the load resistor 13 is provided in the load circuit 30.
  • the load circuit 30 includes a load circuit unit 30a having the same or similar configuration as the load circuit 30 in FIG. 1, and a load resistor 33 connected in parallel with the load circuit unit 30a.
  • the load resistor 13 can be omitted from the regulator circuit 10 when the same or similar load resistor (for example, the load resistor 33 in FIG. 7) is provided on the load circuit 30 side.
  • the output current ID flowing through the output transistor 12 flows through the load resistor 33 of the load circuit 30 and is converted into a voltage, whereby the output voltage VREF_OUT is generated.
  • the function as the regulator circuit 10 is the same as or similar to that in FIG. 1, and the desired reference voltage that is the same as or similar to that in the above embodiment can be obtained from the regulator circuit 10. Specifically, for example, when a current is drawn from the output terminal VO of the regulator circuit 10 by the load circuit unit 30 a of the load circuit 30, two currents, a path through the built-in resistor 14 and a path through the output transistor 12. The load circuit section 30a of the load circuit 30 is filled with charges from the path, and the output voltage VREF_OUT of the regulator circuit 10 can be rapidly recovered. Thereby, the regulator circuit 10 of FIG. 7 can supply a stable reference power supply and can realize low power consumption.
  • the semiconductor device 1A of FIG. 8 differs from FIG. 1 in that the output transistor 12 having a source follower structure is replaced with a P-type output transistor 16 whose source is grounded. Another difference is that the connection between the positive input terminal and the negative input terminal of the operational amplifier 11 is reversed.
  • the function as the regulator circuit 10 is the same as or similar to that in FIG. 1, and the output voltage VREF_OUT of the regulator circuit 10 is equal to the reference voltage VREF due to the high amplification factor of the operational amplifier 11, resulting in obtaining a desired reference voltage. be able to. Therefore, the regulator circuit 10 shown in FIG. 8 can supply a stable reference power as in the regulator circuit 10 shown in FIG. 1, and can realize low power consumption.
  • the built-in capacitor 15 is not limited to a capacitive device of a passive element such as an MIM capacitor (Metal Insulator Metal) or an MOM (Metal Oxide Metal) capacitor.
  • a passive element such as an MIM capacitor (Metal Insulator Metal) or an MOM (Metal Oxide Metal) capacitor.
  • the impedance of the internal resistor 14 is set sufficiently larger than the impedance of the MOS capacitor 17.
  • the resistance value of the built-in resistor 14 is R0
  • the capacitance value of the MOS capacitor 17 is C1
  • the operating frequency of the load circuit 30 is F
  • the resistance value R0 and the capacitance so as to satisfy the following expression (7). Set the value C1.
  • the regulator circuit 10 of FIG. 9 can supply a stable reference power supply and can realize low power consumption, similarly to the regulator circuit 10 of FIG. Further, the circuit area can be reduced by making the internal capacitor 15 an active element.
  • the built-in resistor 14 is not limited to a passive element resistance device made of a uniform material such as a polysilicon resistor, an OD (Oxide Diffusion) resistor, or a metal resistor.
  • a passive element resistance device made of a uniform material such as a polysilicon resistor, an OD (Oxide Diffusion) resistor, or a metal resistor.
  • the output impedance of the transistor 18 is set sufficiently larger than the impedance of the internal capacitor 15. Specifically, when the output resistance value of the transistor 18 is r0, the capacitance value of the built-in capacitor 15 is C0, and the operating frequency of the load circuit 30 is F, the output resistance value r0 and the following expression (8) are satisfied. A capacitance value C0 is set.
  • the regulator circuit 10 of FIG. 10 can supply a stable reference power supply and can realize low power consumption, similarly to the regulator circuit 10 of FIG. Further, the circuit area can be reduced by using the transistor 18 instead of the built-in resistor 14.
  • an active bypass circuit 40 that assists recovery of the output voltage VREF_OUT is added to the regulator circuit 10 shown in FIG.
  • the active bypass circuit 40 is connected between the output transistor 12 and the output terminal VO.
  • the active bypass circuit 40 includes a bypass transistor 41 connected between the output terminal VO and the ground VSS, and a second capacitor connected between the output terminal VO and the gate of the bypass transistor 41.
  • a capacitor 42 and a resistor 43 as a second resistor connected between a bias terminal BN_GM to which a bias voltage VBIAS is supplied from the outside and the gate of the bypass transistor 41 are provided.
  • the active bypass circuit 40 uses the bypass transistor 41 instead of the resistance element as a resistance path. As a result, a large current change corresponding to the mutual conductance of the bypass transistor 41 can be created with respect to the fluctuation of the output voltage VREF_OUT of the regulator circuit 10, and the output voltage VREF_OUT can be rapidly recovered.
  • the bias voltage VBIAS is applied to the gate of the bypass transistor 41 via the resistor 43, so that a constant current flows through the bypass transistor 41.
  • the regulator circuit 10 capable of supplying a more stable reference power can be provided.
  • the active bypass circuit 40 is not limited to the circuit of this aspect, and may have another circuit configuration.
  • the same or similar effect can be obtained even if the output transistor 12 is replaced with a P-type output transistor whose source is grounded as in FIG. At this time, the connection of the positive side input terminal and the negative side input terminal of the operational amplifier 11 is reversed as in FIG.
  • the built-in resistor 14 and the built-in capacitor 15 may be provided outside the regulator circuit 10 in the semiconductor device 1A.
  • the semiconductor device 2 ⁇ / b> A includes a voltage stabilization circuit 110 and a load circuit 30 that are connected in parallel between a power supply terminal VIN and a ground terminal T_VSS.
  • the voltage stabilization circuit 110 includes a built-in resistor 114 as a first resistor and a built-in capacitor 115 as a first capacitor connected in series between a power supply terminal VIN and a ground terminal T_VSS.
  • a reference voltage VREF_IN is supplied from the regulator circuit 100 provided outside the semiconductor device 1A between the power supply terminal VIN and the ground terminal T_VSS.
  • the regulator circuit 100 includes a reference voltage generation circuit (referred to as a REF circuit in FIG. 16) 120, an operational amplifier 111 that receives a reference voltage VREF supplied from the reference voltage generation circuit 120 at its positive input terminal, and an output of the operational amplifier 111.
  • An output transistor 112 received at the gate, and a resistor 113 connected between the output transistor 112 and the ground VSS are provided. Further, the output of the regulator circuit 100 is fed back to the negative input terminal of the operational amplifier 111.
  • the resistance value R0 of the built-in resistor 114 may be set so as to satisfy the relational expression of Expression (2) as in the above-described embodiment (FIG. 2).
  • the instantaneous drop amount of the reference voltage VREF_IN when a current is drawn to the load circuit 30 can be more sufficiently ensured, so that the reference voltage VREF_IN can be rapidly recovered. it can.
  • a clock synchronous discrete signal processing system such as an AD converter is used as the load circuit 30 that receives the supply of the reference voltage VREF_IN.
  • the resistance value R0 of the built-in resistor 114 may be set so as to satisfy the relational expression (3) and / or (4). .
  • the reference voltage VREF_IN can be rapidly recovered when a current is drawn through the load circuit 30.
  • the clock-synchronized discrete signal processing system is connected as the load circuit 30, but another clock-synchronized circuit or a load circuit that operates at a predetermined operating frequency is connected. Even if it is done, the same effect can be obtained.
  • the regulator circuit according to the present disclosure and the semiconductor device including the regulator circuit can supply a stable reference power supply without connecting the output of the regulator circuit to the outside of the LSI for the purpose of connecting to the stabilization capacitor. As a result, it is possible to reduce the number of terminals and external parts of the LSI, and it is possible to reduce the size and cost of the semiconductor device and the equipment including the same. Further, since the output (reference power supply) of the regulator circuit can be recovered at a high speed with a small DC current, the power consumption of the regulator circuit and the semiconductor device including the regulator circuit can be reduced. Therefore, the present invention can be applied to LSIs for portable communication devices and video receiving devices. In particular, the present invention can be applied to products equipped with a clock synchronous discrete signal processing system such as a successive approximation AD converter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

 レギュレータ回路(10)は、一方の入力端子に基準電圧(VREF)を受ける演算増幅器(11)と、負荷回路(30)が接続されるものであり、演算増幅器(11)の他方の入力端子にフィードバック接続された出力端子(VO)と、演算増幅器(11)の出力信号をゲートに受け、第1電源(VDD)と出力端子(VO)との間に接続された出力トランジスタ(12)と、出力端子(VO)と第2電源(VSS)との間に直列に接続された第1抵抗(14)及び第1容量(15)とを備えている。

Description

レギュレータ回路、電圧安定化回路及び半導体装置
 本開示は、負荷回路に電源を供給するレギュレータ回路及びこれを備えた半導体装置に関する。
 レギュレータ回路は、参照電源を様々な回路に供給する回路であり、安定した参照電源を供給すること望まれている。一般的なレギュレータ回路では、出力電流を負荷抵抗に流し、電圧変換させることによって出力電圧を生成している。
 特許文献1には、レギュレータ回路の一例として、製造工程等における抵抗素子Ra1の抵抗値のばらつきに起因する出力電流Ioutの変動が小さいレギュレータ回路に関する技術が開示されている。
特開2005-251130号公報
 図14は、レギュレータ回路に接続される負荷回路の一例である逐次比較型のAD(Analog to Digital)変換器の回路構成例を示した図である。逐次比較型AD変換器80は、図14に示すように、例えば容量DAC(Digital to Analog Converter)81、DAC制御部82、比較器83、及びラッチ回路84から構成される。容量DAC81は、並列接続された複数の容量素子C1,C2,…,C512(容量値1C,2C,…,512C)を有している。
 逐次比較型AD変換器80の動作について具体的に説明する。
 DAC制御部82は、容量DAC81の各容量素子C1,C2,…,C512の下部電極に供給する電圧を、制御信号によって高基準電圧VREFHまたは低基準電圧VREFLのいずれか一方に切り替える。各容量素子C1,C2,…,C512の上部電極は共通ノードN85に接続されており、アナログ入力信号AINは、この共通ノードN85に供給されて容量DAC81によってサンプリングされる。比較器83は、サンプリングされた共通ノードN85のアナログ信号と基準電圧とを比較して、上位ビットから順に1ビットまたは数ビットずつAD変換を行う。AD変換されたデジタル信号はラッチ回路84に蓄えられ、DAC制御部82は、ラッチ回路84から出力されたデジタル信号の値に応じて次の下位ビットの比較に使われる制御信号を決定する。
 レギュレータ回路は、例えばこの逐次比較型AD変換器80に参照電源(参照電圧)を供給する。具体的には、容量DAC81の高基準電圧VREFH及び低基準電圧VREFLを供給する。各ビットの比較時には、DAC制御部82が容量DAC81の下部電極を高基準電圧VREFHと低基準電圧VREFLとの間で切り替えるため、容量DAC81の電荷はその度に再配分される。そのため、クロックエッジ毎にレギュレータ回路の出力端子から充電電流が印加され、または放電電流が引かれることになり、レギュレータ回路から供給される参照電圧がドロップする原因となる。
 上記のように、基準となる参照電圧が大きくドロップした状態で比較結果が確定すると、誤った比較結果が生じてしまうため、要求されるAD変換精度が実現可能な範囲内に参照電圧のドロップ量を小さく抑えるか、または比較結果が決定する次のクロックエッジまでの間にドロップした参照電圧を所望の値まで回復させる必要がある。この参照電圧の回復には例えばレギュレータ回路の出力に安定化容量を追加することが考えられる。
 ここで、昨今の携帯通信機器、映像受信機器に求められる小型化、低コスト化を実現するためには、LSI(Large Scale Integrated circuit)端子及び外部部品を極力減らすことが望まれている。したがって、レギュレータ回路の安定化容量はLSIの内蔵容量で実現することが好ましい。しかしながら、安定化容量を内蔵容量で実現する場合において、小型化、低コスト化を考えると、内蔵容量として実現可能な容量値は数百pFオーダーまでである。しかしながら、安定化容量が数百pFオーダーの場合、負荷回路が電流を引いたときに十分な電荷を供給できず、レギュレータ回路の出力電圧のドロップ量が十分に抑えられない可能性がある。
 図15(a),(b)は、参照電圧VREFを受けて負荷回路(例えば上記の逐次比較型AD変換器80)に参照電源(電圧VOUT)を供給する従来のレギュレータ回路において、出力端子に安定化容量として数百pFオーダーの内蔵容量を追加した場合における動作例を示す模式図である。図15(a)に示すように、レギュレータ回路の出力電流が小さい場合には、出力電圧VOUTが十分に回復できず、参照電圧VREFに対して、サンプリング周期(1/F)が経過するごとに出力電圧VOUTが低下している。したがって、負荷回路が必要とする精度の参照電源が供給できない。
 一方で、レギュレータ回路の出力電圧VOUTを高速に回復させようとして安定化容量を小さくする(例えば数十pF)と安定性が悪くなる。具体的には、図15(b)に示すように、負荷回路が引く電流とレギュレータ回路が供給する電流とによって、レギュレータ回路の出力電圧VOUTを引っ張り合い、出力電圧VOUTが大きくリンギングしてしまう。したがって、この場合も負荷回路が要求する精度の参照電源が供給できない。
 以上のように、安定化容量を内蔵した場合においてレギュレータ回路の出力電圧を安定化させるためには、レギュレータ回路の出力インピーダンスを下げて、負荷回路が大きな電流を引いた場合にも追従できる電流能力を持たせなければならない。しかしながら、十分な電流能力を確保しようとすると、レギュレータ回路の消費電力が増大してしまう。昨今の機器には小型化、低コスト化と同時に低消費電力化も強く求められており、消費電力を増大させる手法は相応しくない。
 上記の課題に鑑み、本開示は、レギュレータ回路のための安定化容量をLSIの外部に設けることなく、安定した参照電源を負荷回路に供給する低消費電力のレギュレータ回路を提供することを目的とする。また、外部のレギュレータ回路から負荷回路に供給される参照電圧を安定化させる電圧安定化回路を提供することを目的とする。
 本開示の第1態様では、負荷回路に参照電源を供給するレギュレータ回路は、一方の入力端子に基準電圧を受ける演算増幅器と、前記負荷回路が接続されるものであり、前記演算増幅器の他方の入力端子にフィードバック接続された出力端子と、前記演算増幅器の出力信号をゲートに受け、かつ第1電源及び前記出力端子の間に接続された出力トランジスタと、前記出力端子及び前記第1電源とは電位が異なる第2電源の間に直列に接続された第1抵抗及び第1容量とを備える。そして、前記負荷回路の動作周波数をF、前記第1抵抗の抵抗値をR0、及び前記第1容量の容量値をC0としたときに、下式(1)の関係を満たすことを特徴とする。
Figure JPOXMLDOC01-appb-M000001
 本開示の第2態様では、半導体装置は、第1態様に記載のレギュレータ回路と、前記レギュレータ回路に基準電圧を供給する参照電圧生成回路と、前記レギュレータ回路からの電源供給を受ける前記負荷回路とを備えている。
 この第1態様によると、レギュレータ回路の出力端子と第2電源との間に第1抵抗と第1容量とが直列に接続されており、かつ第1抵抗のインピーダンス(抵抗値R0)は、負荷回路の動作周波数Fにおける第1容量のインピーダンス(1/(2π×F×C0))が無視できる程度に十分大きく設定されている。すなわち、発明者らは、種々の検討を行った結果、第1抵抗の抵抗値R0を第1容量のインピーダンス(1/(2π×F×C0))の10倍よりも大きく設定することによって、安定した参照電源を供給することができるとする結論に至った。具体的には、例えば負荷回路によってレギュレータ回路の出力端子から電流が引かれた時、第1抵抗のインピーダンスが第1容量のインピーダンスと比較して十分に大きいため、第1容量が安定化容量の役目を果たさず、レギュレータ回路から出力される参照電源の電圧は瞬間的に大きくドロップする。しかしながら、その後、第1抵抗を介した経路から負荷回路に電荷が充填され、上記参照電源の電圧は急速に元の電圧に回復する。これにより、安定した参照電源の供給が可能になる。したがって、第1態様に記載のレギュレータ回路を、例えば第2態様に示すように半導体装置(例えばLSI)に内蔵した場合において、このレギュレータ回路のための安定化容量を半導体装置の外部に設ける必要はない。さらに、第1抵抗を介する電流経路には第1容量が直列に接続されているため、この第1容量によって直流電流を遮断することができ、上記式(1)の関係式を満たす一定の動作周波数以上でレギュレータ回路の出力電圧が変動する時のみ負荷回路へ電流が供給される。これにより、不要な貫通電流がなく非常に低消費電力である。
 本開示の第3態様では、レギュレータ回路から負荷回路に供給される参照電圧を安定化させる電圧安定化回路であって、前記参照電圧が供給される2個の電源端子間に直列に接続された第1抵抗及び第1容量を備えており、前記負荷回路の動作周波数をF、前記第1抵抗の抵抗値をR0、及び前記第1容量の容量値をC0としたときに、下式(1)の関係を満たすことを特徴とする。
Figure JPOXMLDOC01-appb-M000002
 本開示の第4態様では、半導体装置は、第3態様記載の電圧安定化回路と、前記2個の電源端子間に前記電圧安定化回路と並列に接続された前記負荷回路とを備えている。
 この第3態様によると、電圧安定化回路において、レギュレータ回路から参照電圧が供給される2個の電源端子間に第1抵抗と第1容量とが直列に接続されており、かつ第1抵抗のインピーダンス(抵抗値R0)は、負荷回路の動作周波数Fにおける第1容量のインピーダンス(1/(2π×F×C0))が無視できる程度に十分大きく設定されている。すなわち、発明者らは、種々の検討を行った結果、電圧安定化回路において、第1抵抗の抵抗値R0を第1容量のインピーダンス(1/(2π×F×C0))の10倍よりも大きく設定することによって、レギュレータ回路から電源端子を介して負荷回路に供給される参照電圧を安定化させることができるとする結論に至った。さらに、本態様に係る電圧安定化回路は、第1抵抗を介する電流経路に、第1容量が直列に接続されているため、第1態様と同様に不要な貫通電流がなく非常に低消費電力である。
 上記のように参照電源を安定化させることができる第3態様に記載の電圧安定化回路を、例えば第4態様に示すように半導体装置(例えばLSI)に内蔵した場合において、この参照電圧を安定化させるための安定化容量を半導体装置の外部に設ける必要はない。
 本開示によると、レギュレータ回路のための安定化容量を半導体装置の外部に設けることなく安定した参照電源が供給可能であり、かつ低消費電力のレギュレータ回路を提供することができる。また、このレギュレータ回路を半導体装置に適用することにより、半導体装置の外部端子数を削減することができるとともに、チップコンデンサ(セラミックコンデンサ)などの外部部品が不要であるため、低コスト化を実現することができる。
本開示に係る半導体装置の概念図である。 本開示に係るレギュレータ回路の動作例を示す模式図である。 本開示に係るレギュレータ回路の動作例を示す概念図である。 本開示に係るレギュレータ回路の動作例を示す概念図である。 本開示に係るレギュレータ回路の動作例を示す概念図である。 本開示に係るレギュレータ回路の動作例を示す概念図である。 本開示に係るその他の半導体装置の概念図である。 本開示に係るその他の半導体装置の概念図である。 本開示に係るその他の半導体装置の概念図である。 本開示に係るその他の半導体装置の概念図である。 本開示に係るその他の半導体装置の概念図である。 LSIの専用端子に大きな安定化容量を付加したレギュレータ回路の一例を示す図である。 図12に示すレギュレータ回路の動作波形の一例を示す図である。 負荷回路の一例である逐次比較型のAD変換器の回路構成例を示した図である。 従来のレギュレータ回路の課題を説明するための図である。 本開示に係るその他の半導体装置の概念図である。
 一般的なレギュレータ回路においては、参照電源供給先の負荷回路が引く電流量は負荷回路の動作に応じ時間的に変化し、それによりレギュレータ回路の出力電圧が変化して不安定となる。そのため、例えば、半導体装置(以下、LSIともいう)に専用端子を設け、その専用端子を介してレギュレータ回路の出力をLSIの外側に引出し、その専用端子に大きな安定化容量(例えばセラミックコンデンサ)を付加して、参照電源の安定化を図っている。以下では図12及び図13を用いてその一例を説明する。
 図12は半導体装置5Aの専用端子P1,P2に大きな外部安定化容量71を付加してレギュレータ回路50の参照電源の安定化を図った回路構成例を示した概略図である。具体的には、レギュレータ回路50の出力及びグランドVSSが接続された専用端子P1,P2間に内蔵可能な容量(数百pF)よりもさらに大きな容量値(例えば数μF)を有する外部安定化容量71(例えばセラミックコンデンサ)を設けて、レギュレータ回路50の出力電圧VREF_OUTの安定化を図っている。
 図12において、レギュレータ回路50は、参照電圧生成回路(図12ではREF回路と記載する)60から供給される参照電圧VREFを正側入力端子に受けるオペアンプ51と、オペアンプ51の出力をゲートに受ける出力トランジスタ52と、出力トランジスタ52とグランドVSSとの間に接続された抵抗53とを備える。レギュレータ回路50が出力する参照電源は負荷回路70に供給される。また、レギュレータ回路50の出力は、オペアンプ51の負側入力端子にフィードバックされる。
 図13はレギュレータ回路50の動作波形の一例を示した図である。図13において、時間T1,T2,T3では、負荷回路70が瞬時に電流を引いているものとする。図13に示すように、負荷回路70が瞬時に電流を引いた時、レギュレータ回路50の出力電圧VREF_OUTは、所望の参照電圧VREFに対してドロップする。しかしながら、大きな容量値を有する外部安定化容量71から負荷回路70に対して瞬時に必要な電流が供給されるため、そのドロップ量は極めて小さく抑えられる。これにより、レギュレータ回路50の出力トランジスタ52から供給される出力電流IDが小さいことに起因して電圧の復帰時間が長くかかるような場合においても、所望の参照電圧を維持することができる。したがって、図12の回路においては、十分に大きな容量値(例えば数μF)を有する外部安定化容量71を付加することによって、負荷回路70が瞬時に電流を引いた場合においても負荷回路70の動作や性能に影響を及ぼさないようにすることができる。一方で、安定化容量をLSIの内蔵容量で実現する場合には大きな容量値を持たせることが難しいため、負荷回路70が電流を引いたときに十分な電荷を供給できず、レギュレータ回路50の出力電圧VREF_OUTのドロップ量が大きくなることが考えられる。このため、対策が必要である。
 以下、本開示に係る実施の形態について、図面を参照しながら詳細に説明する。
 図1は本開示に係る半導体装置の概念図である。図1において、半導体装置1Aは、参照電圧VREFを供給する参照電圧生成回路(図1ではREF回路と記載する)20と、参照電圧VREFを受けて参照電源としての出力電圧VREF_OUTを供給するレギュレータ回路10と、レギュレータ回路10から参照電源(出力電圧VREF_OUT)の供給を受ける負荷回路30とを備える。
 (レギュレータ回路)
 図1において、レギュレータ回路10は、参照電圧生成回路20から供給された参照電圧VREFを正側入力端子に受けるオペアンプ11と、オペアンプ11の出力をゲートに受け、第1電源としての電源VDDと出力端子VOとの間に接続されたN型の出力トランジスタ12(ソースフォロア構造)と、出力トランジスタ12と第2電源としてのグランドVSSとの間に接続された負荷抵抗13(抵抗値はRD)とを備える。レギュレータ回路10の出力端子VOは、フィードバックノードNFBを介してオペアンプ11の負側入力端子にフィードバック接続される。レギュレータ回路10は、さらにフィードバックノードNFBとグランドVSSとの間に直列に接続された第1抵抗としての内蔵抵抗14及び第1容量としての内蔵容量15を備える。
 (レギュレータ回路の動作)
 以下、レギュレータ回路10の動作について詳細に説明する。
 レギュレータ回路10では、出力トランジスタ12に流れるDC電流IDが負荷抵抗13に流れて電圧に変換されることによって、出力電圧VREF_OUT(=ID×RD)が生成される。また、オペアンプ11の高い増幅率によって出力電圧VREF_OUTと参照電圧VREFとが等しくなり、レギュレータ回路10は出力電圧VREF_OUTとして所望の参照電圧VREFを出力する。レギュレータ回路10は、アナログ回路やデジタル回路等の様々な負荷回路30に出力電圧VREF_OUT(参照電圧VREF)を供給する。出力電圧VREF_OUTは、例えば負荷回路30の電源電圧として使用する。
 図2は本開示に係るレギュレータ回路10の動作例を示す模式図である。図2において、レギュレータ回路10には負荷回路30として、クロックCLK(周波数はF)に同期して動作する離散信号処理システムが接続されているものとする。すなわち、離散信号処理システムの動作周波数はFである。
 ここで、内蔵抵抗14のインピーダンスは、動作周波数Fにおける内蔵容量15のインピーダンスが無視できる程度に十分大きく設定されているものとし、内蔵抵抗14を介して供給する電流量が内蔵抵抗14とレギュレータ回路10の出力電圧VREF_OUTの電圧値でほぼ決まり、内蔵容量15は供給する電流量にほとんど影響しないようにされているものとする。すなわち、内蔵抵抗14の抵抗値をR0、内蔵容量15の容量値をC0、及び負荷回路30の動作周波数をFとした場合に、式(1)の関係を満たすものとする。
Figure JPOXMLDOC01-appb-M000003
 また、負荷回路30はクロックCLKに同期して電荷の充填を行うものとする。すなわち、各CLKの立ち上がりエッジ(時間T1,T2,T3)において、レギュレータ回路10から負荷回路30に電流が引かれるものとする。
 時間T1,T2,T3において負荷回路30に電流が引かれた時、インピーダンスが十分に大きい内蔵抵抗14が内蔵容量15と直列に接続されているため、内蔵容量15が安定化容量の役目を果たさず、レギュレータ回路10の出力電圧VREF_OUTが瞬間的に大きくドロップする。その後、内蔵抵抗14を介した経路から負荷回路30に徐々に電荷が充填されるが、式(1)にも示したとおり、動作周波数Fでの内蔵容量15のインピーダンスは内蔵抵抗14のインピーダンスに対して無視できる程度に設定されているため、仮想的に内蔵容量15の内蔵抵抗側端子15aは固定電圧になっているように動作させることができる。
 ここで、上記のように出力電圧VREF_OUTが大きくドロップした場合において、仮に容量性のインピーダンスが支配的なときには、蓄えた電荷に制限があるため、電流を供給していくと供給元である内蔵容量15の内蔵抵抗側端子15aの電圧がドロップ後の出力電圧VREF_OUTに近づくように下がっていってしまい、内蔵容量15から供給される電流が著しく減ってしまう。
 一方で、本開示では、抵抗性のインピーダンスが支配的であるため、内蔵抵抗14とレギュレータ回路10の出力電圧VREF_OUTの電圧値とによって供給する電流量が決まる。これにより、出力電圧VREF_OUTが回復するまで大きな電流が供給され続ける。さらに、出力電圧VREF_OUTが瞬間的に大きくドロップしたことにより、出力トランジスタ12のドレイン・ソース間の電圧が広がり、出力トランジスタ12からは出力電圧VREF_OUTのドロップ前と比較して大きな電流が供給され、出力電圧VREF_OUTの急速な回復に寄与する。
 このとき、内蔵容量15の内蔵抵抗側端子15aは、レギュレータ回路10の出力電圧VREF_OUTよりも高い電圧を維持しているため、出力トランジスタ12からの電流は内蔵容量15側にはほとんど供給されることなく、その電流のほぼ全てを負荷回路30に供給することができる。このように、内蔵抵抗14を介した経路と、出力トランジスタ12を介した経路との2つの電流経路から負荷回路30に電荷が充填されるため、レギュレータ回路10の出力電圧VREF_OUTを急速に回復させることができる。
 以上のように、レギュレータ回路10において、内蔵抵抗14のインピーダンスを内蔵容量15のインピーダンスと比較して十分に大きくすることによって、例えば負荷回路30によってレギュレータ回路10の出力端子VOから電流が引かれた時、レギュレータ回路10から出力される出力電圧VREF_OUTは瞬間的に大きくドロップする一方で、その後負荷回路30に電荷が充填され出力電圧VREF_OUTは急速に元の電圧に回復する。したがって、レギュレータ回路10から負荷回路30に対して安定した参照電源の供給が可能になる。
 さらに、内蔵抵抗14を介する電流経路には内蔵容量15が直列に接続されているため、この内蔵容量15によって直流電流を遮断することができ、式(1)の関係式を満たす一定の動作周波数以上でレギュレータ回路10の出力電圧VREF_OUTが変動する時のみ負荷回路30へ電流が供給される。これにより、不要な貫通電流がなく非常に低消費電力である。
 なお、式(1)の関係式に加えて別の関係式を満たすように内蔵抵抗14の抵抗値R0を設定してもよい。具体的には、例えば、式(1)の条件に加えて、負荷回路30の負荷容量の値がCLである場合において、その負荷容量のインピーダンス(1/(2π×F×CL))とレギュレータ回路10の内蔵抵抗14のインピーダンス(抵抗値R0)とが式(2)の関係を満たすように内蔵抵抗14の抵抗値R0を設定するようにしてもよい。すなわち、発明者らは、式(2)のように内蔵抵抗14の抵抗値R0を設定することによって、負荷回路30に電流が引かれた時に出力電圧VREF_OUTの瞬間的なドロップ量を適切な範囲内でより大きくすることができる、すなわち安定した参照電源の供給がより効果的に行われるとの結論に至った。
Figure JPOXMLDOC01-appb-M000004
 具体的には、式(2)の関係を満たすように内蔵抵抗14の抵抗値R0を設定することによって、出力電圧VREF_OUTの瞬間的なドロップ量をより十分に確保することができる。これにより、例えば負荷回路30によってレギュレータ回路10の出力端子VOから電流が引かれた時、レギュレータ回路10から出力される出力電圧VREF_OUTは瞬間的に大きくドロップする一方で、その後内蔵抵抗14を介した経路と出力トランジスタ12を介した経路の2つの経路から負荷回路30に電荷が充填されるため、出力電圧VREF_OUTを急速に元の電圧(例えばVREF)に回復させることができる。したがって、レギュレータ回路10から負荷回路30に安定した参照電源の供給が可能になる。
 (レギュレータ回路の適用例)
 本開示に係るレギュレータ回路10の適用例について詳細に説明する。本開示に係るレギュレータ回路10は、負荷回路30として、例えばAD変換器のようなクロック同期式の離散信号処理システム(動作周波数F)等に参照電源を供給することができる。レギュレータ回路10から離散信号処理システムに参照電源が供給する場合には、各動作タイミングである1/F時間毎に出力電圧が所定の値(例えば所定の誤差範囲内)まで回復すればよい。具体的には、各クロックエッジにおいて、レギュレータ回路10から離散信号処理システムに電流が引かれてレギュレータ回路10の出力電圧VREF_OUTが大きくドロップしたとしても、次の動作タイミングである1/F時間後までに出力電圧が所定の値(例えば所定の誤差範囲内)まで回復すればよい。換言すると、離散信号処理システムに必要とされる参照電圧の精度がNビットであり、レギュレータ回路10の出力電圧VREF_OUTの回復に係る時定数がτであるとすると、下式(5)の関係が成立すればよい。
Figure JPOXMLDOC01-appb-M000005
 ここで、負荷回路30にはレギュレータ回路10の出力トランジスタ12を介する経路と内蔵抵抗14を介する経路の2つの経路から電流が供給され、これによりレギュレータ回路10の出力電圧VREF_OUTが回復していく。したがって、負荷回路30の負荷容量値がCL、出力トランジスタ12の相互コンダクタンスがgmであるとすると、レギュレータ回路10の出力電圧VREF_OUTの回復における時定数τは下式(6)で表される。
Figure JPOXMLDOC01-appb-M000006
 式(6)を式(5)に代入すると、式(5)は式(3)のように表すこともできる。
Figure JPOXMLDOC01-appb-M000007
 以上のように、式(3)の関係を満たすように内蔵抵抗14の抵抗値R0及び出力トランジスタ12の相互コンダクタンスgmを設定することにより、離散信号処理システムの各クロックエッジにおいて、そのシステムが必要とする電圧精度までレギュレータ回路10の出力電圧VREF_OUTを急速に回復させることができる。具体的には、レギュレータ回路10の出力電圧VREF_OUTが瞬間的に大きくドロップしても、その後、内蔵抵抗14を介した経路と出力トランジスタ12を介した経路の2つの電流経路から負荷回路30に電荷が充填され、レギュレータ回路10の出力電圧VREF_OUTをADコンバータ等のクロック同期式の離散信号処理システムである負荷回路30が必要とする精度まで急速に回復させることができる。
 なお、内蔵抵抗14の抵抗値R0及び出力トランジスタ12の相互コンダクタンスgmが、式(3)に加えてまたは式(3)に代えて別の関係式を満たすように設定してもよい。具体的には、例えば、式(1)の条件に加えて、または式(1)及び式(2)及び/若しくは式(3)の条件に加えて、内蔵抵抗14の抵抗値R0及び出力トランジスタ12の相互コンダクタンスgmが式(4)の関係を満たすようにしてもよい。すなわち、発明者らは、出力トランジスタ12の相互コンダクタンスgmとレギュレータ回路10の内蔵抵抗14の抵抗値R0とを式(4)の関係を満たすように設定することによって、内蔵抵抗14を介した経路からの電流量をより十分に確保することができるとの結論に至った。
Figure JPOXMLDOC01-appb-M000008
 これにより、例えば負荷回路30によってレギュレータ回路10の出力端子VOから電流が引かれた時に、出力電圧VREF_OUTの瞬間的なドロップが発生しても、内蔵抵抗14を介した経路と出力トランジスタ12を介した経路の2つの経路から負荷回路30に電荷が充填される。このとき、特に内蔵抵抗14を介した経路からの電流が大きく寄与して、レギュレータ回路10の出力電圧VREF_OUTを急速に元の電圧に回復させることができる。したがって、出力トランジスタ12から負荷回路30に対して安定した参照電源の供給が可能になる。
 (内蔵抵抗の抵抗値を変化させた場合の動作例)
 図3及び図4は内蔵抵抗の抵抗値を変化させた場合におけるレギュレータ回路10の動作例を示す概念図である。図3及び図4において、レギュレータ回路10には負荷回路30として、図14に示す逐次比較型のAD変換器80が接続されているものとする。具体的には、AD変換器80の高基準電圧VREFHとしてレギュレータ回路10からの出力電圧VREF_OUTが供給され、低基準電圧VREFLはレギュレータ回路10のグランドVSSが接続されているものとする。また、AD変換器80に用いられるクロックCLKの周波数はFである、すなわちAD変換器80の動作周波数はFであるものとし、各クロックCLKの立ち上がりエッジ(時間T11,T12,T21,T22)においてAD変換器80に電流が引かれるものとする。また、本開示では出力電圧VREF_OUTは1.2V、負荷回路30(AD変換器80)の動作周波数Fは630MHzであり、クロックCLKの立ち上がりエッジにおけるAD変換器80の許容誤差Vmは1mVであるものとする。
 図3(a)はクロックCLKの波形を、図3(b)はレギュレータ回路10の出力電圧VREF_OUTを示しており、図3(c)は図3(b)の領域X1の拡大図である。ここで、本開示では内蔵容量15の容量値C0は50pFであるものとする。したがって、内蔵容量15のインピーダンス(1/(2π×F×C0))は約5.1Ωである。
 また、図3(b),(c)において、W11は内蔵抵抗14の抵抗値R0が0Ωの例を示しており、同様にW12~W14は内蔵抵抗14の抵抗値R0がそれぞれ30Ω,100Ω,200Ωの例を示している。
 図3(b),(c)に示すように、時間T11において負荷回路30に電流が引かれた時、内蔵抵抗14の抵抗値R0が0Ωから200Ωへと大きくなるにしたがって、出力電圧VREF_OUTの瞬間的なドロップ量が大きくなっている。一方で、内蔵抵抗14の抵抗値R0が大きいほど、出力電圧VREF_OUTは、その後急速に回復している。結果として、次のクロックCLKの立ち上がりエッジ(時間T12)において、W13及びW14の条件では出力電圧VREF_OUTが許容誤差Vmの範囲内まで回復している。
 発明者らは、上記のような図3の動作例を含めて種々の検討を行った結果、式(1)の関係を満たす場合、すなわち内蔵抵抗14のインピーダンス(抵抗値R0)を内蔵容量15のインピーダンス(1/(2π×F×C0))の10倍よりも大きい値に設定することによって、安定した参照電源を供給することができるとする結論に至った。
 図4(a)はクロックCLKの波形を、図4(b)はレギュレータ回路10の出力電圧VREF_OUTを示しており、図4(c)は図4(b)の領域X2の拡大図である。ここで、負荷回路30の負荷容量(図示しない)の容量値CLは1pFであるものとする。したがって、負荷回路30の負荷容量のインピーダンス(1/(2π×F×CL))は約250Ωである。
 また、図4(b),(c)において、W21は内蔵抵抗14の抵抗値R0が0Ωの例を示しており、同様にW22~W24は内蔵抵抗14の抵抗値R0がそれぞれ30Ω,100Ω,200Ωの例を示している。
 図4(b),(c)に示すように、時間T21において負荷回路30に電流が引かれた時、内蔵抵抗14の抵抗値R0が0Ωから200Ωへと大きくなるにしたがって、瞬間的な出力電圧VREF_OUTのドロップ量が大きくなっている。一方で、内蔵抵抗14の抵抗値R0が大きいほど、出力電圧VREF_OUTは、その後急速に回復している。結果として、次のクロックCLKの立ち上がりエッジ(時間T22)において、W23及びW24の条件では出力電圧VREF_OUTが許容誤差Vmの範囲内まで回復している。
 発明者らは、上記のような図4の動作例を含めて種々の検討を行った結果、式(2)の関係を満たす場合、すなわち内蔵抵抗14のインピーダンス(抵抗値R0)の5倍の値を負荷容量のインピーダンス(1/(2π×F×CL))よりも大きい値に設定することによって、より安定した参照電源を供給することができるとする結論に至った。
 (内蔵抵抗及び出力トランジスタの特性を変化させた場合の動作例)
 図5及び図6は内蔵抵抗14の抵抗値及び出力トランジスタ12の特性を変化させた場合におけるレギュレータ回路10の動作例を示す概念図である。図5及び図6において、レギュレータ回路10には図3と同様に負荷回路30として、図14に示す逐次比較型のAD変換器80が接続されているものとする。また、AD変換器80の動作周波数はFであるものとし、各クロックCLKの立ち上がりエッジ(時間T31,T32,T41,T42)においてAD変換器80に電流が引かれるものとする。また、本開示では出力電圧VREF_OUTは1.2V、負荷回路30(AD変換器80)の動作周波数Fは1.6GHzであるものとし、AD変換器80に必要とされる参照電圧の精度が10ビットであり、クロックCLKの立ち上がりエッジにおけるAD変換器80の許容誤差Vmは1mVであるものとする。
 図5(a)はクロックCLKの波形を、図5(b)はレギュレータ回路10の出力電圧VREF_OUTを示しており、図5(c)は図5(b)の領域X3の拡大図である。ここで、負荷回路30の負荷容量(図示しない)の容量値CLは1pFであるものとする。
 また、図5(b),(c)において、W31は内蔵抵抗14の抵抗値R0が2kΩ、出力トランジスタ12の相互コンダクタンスgmが2.4mSの例を示しており、同様にW32~W34は内蔵抵抗14の抵抗値R0がそれぞれ400Ω,400Ω,200Ω、出力トランジスタ12の相互コンダクタンスgmがそれぞれ2.4mS,1.2mS,2.4mSの例を示している。
 図5(c)に示すように、時間T31において負荷回路30に電流が引かれた時、式(3)の左辺の値が小さくなるにしたがって、瞬間的な出力電圧VREF_OUTのドロップ量が小さくなっている。そして、全条件において、出力電圧VREF_OUTは、ドロップした後に急速に回復している。結果として、次のクロックCLKの立ち上がりエッジ(時間T32)において、W34の条件では出力電圧VREF_OUTが許容誤差Vmの範囲内まで回復している。
 発明者らは、上記のような図5の動作例を含めて種々の検討を行った結果、式(3)の関係を満たす場合には、より安定した参照電源を供給することができるとする結論に至った。
 図6(a)はクロックCLKの波形を、図6(b)はレギュレータ回路10の出力電圧VREF_OUTを示しており、図6(c)は図6(b)の領域X4の拡大図である。ここで、図6(b),(c)において、出力トランジスタ12の相互コンダクタンスgmの値は2.4mSであるものとする。また、W41は内蔵抵抗14の抵抗値R0が2kΩ、例を示しており、同様にW42,W43は内蔵抵抗14の抵抗値R0がそれぞれ400Ω,200Ωの例を示している。
 図6(b),(c)に示すように、時間T41において負荷回路30に電流が引かれた時、内蔵抵抗14の値が小さくなるにしたがって、瞬間的な出力電圧VREF_OUTのドロップ量が小さくなっている。そして、全条件において、出力電圧VREF_OUTは、ドロップした後に急速に回復している。結果として、次のクロックCLKの立ち上がりエッジ(時間T42)において、W43の条件では出力電圧VREF_OUTが許容誤差Vmの範囲内まで回復している。
 発明者らは、上記のような図6の動作例を含めて種々の検討を行った結果、式(4)の関係を満たす場合には、より安定した参照電源を供給することができるとする結論に至った。
 (安定化容量を内蔵する場合との比較)
 ここで、図12に示したようなLSIの専用端子P1,P2に接続された外部安定化容量71を内蔵容量で実現しようとした場合について検討する。安定化容量をレギュレータ回路50の出力端子に接続する場合、一般的には、レギュレータ回路50の出力電圧VREF_OUTが不安定になることを防ぐために、位相補償を目的として安定化容量と直列に等価直列抵抗(図示しない。以下、ESR(Equivalent Series Resistance)ともいう。)を接続することが考えられる。一般的には、ESRは安定化容量による安定化の性能を劣化させないことを目的として小さい値が選ばれる。具体的には、安定化容量として内蔵可能な容量は数百pF程度であるため、その抵抗値は0.1Ω~1Ω程度であるのが一般的である。仮に、安定化容量として500pFを内蔵し、負荷回路70の動作周波数Fが1GHzであるものとすると、式(1)の右辺は、
 10×1/(2π×F×C0)=10/(2π×1G×500p)=3.3Ω
となる。
 安定化容量に直列に接続される式(1)のR0(左辺)としてのESRの抵抗値は上記のとおり~1Ω程度であるため、外部安定化容量71を内蔵容量で実現しようとした場合には式(1)の関係は満たさない。なお、ESRは例えば配線の寄生成分で作られる。
 次に、図12に示したような外部安定化容量71を内蔵容量で実現しようとした場合におけるレギュレータ回路50の動作について詳細に検討する。この場合において、レギュレータ回路50から負荷回路70に電流が引かれた時、安定化容量と直列に接続されたESRの抵抗値が小さいため、安定化容量から負荷回路70に対して瞬時に必要な電荷の充填が行われる。これにより、ドロップしたレギュレータ回路50の出力電圧VREF_OUTと安定化容量の高電位側の電極電圧とが瞬時にほぼ等しくなる。その後は出力トランジスタ52からのみによって、負荷回路70と安定化容量との両方に電流が供給される。そのため、レギュレータ回路50の出力電圧VREF_OUTの電圧変化は小さく、レギュレータ回路50の出力電圧VREF_OUTを急速に回復させることができない。
 (外部安定化容量にESRを直列接続する場合との比較)
 図12に示したようなLSIの専用端子P1,P2に外部安定化容量71を接続するような回路構成においても、レギュレータ回路50の出力電圧VREF_OUTが不安定になることを防ぐために、位相補償として外部安定化容量71と直列にESR(図示しない)を接続する場合がある。しかしながら、レギュレータ回路50の出力電圧VREF_OUTを安定化させる効果が低下することを防ぐために、ESRの抵抗値として小さい値が選ばれる。具体的には、外部安定化容量71の容量値等に応じて定められるが、その抵抗値は0.01Ω~0.1Ω程度であるのが一般的である。負荷回路70の負荷容量値は数十pF程度までであることが一般的なので、仮に、負荷回路70の負荷容量値が50pFであり、負荷回路70の動作周波数Fが1GHzであるものとすると、式(2)の右辺は、
 1/(2π×F×CL)=1/(2π×1G×50p)=3.3Ω
となる。安定化容量に直列に接続される式(2)のR0(右辺)としてのESRの抵抗値は上記のとおり~0.1Ω程度であるため、外部安定化容量71にESRを直列接続してレギュレータ回路50の出力電圧VREF_OUTの安定化を図った場合には式(2)の関係は満たさない。なお、ESRは例えば配線の寄生成分で作られる。
 次に、図12に示したような外部安定化容量71と直列にESRを接続した場合におけるレギュレータ回路50の動作について詳細に検討する。この場合において、レギュレータ回路50から負荷回路70に電流が引かれた時、外部安定化容量71と直列に接続されたESRの抵抗値が小さいため、外部安定化容量71から負荷回路70に対して瞬時に必要な電荷の充填が行われる。これにより、ドロップしたレギュレータ回路50の出力電圧VREF_OUTと外部安定化容量71の高電位側の電極電圧とが瞬時にほぼ等しくなる。その後は出力トランジスタ52からのみによって、負荷回路70と外部安定化容量71との両方に電流が供給される。そのため、レギュレータ回路50の出力電圧VREF_OUTの電圧変化は小さく、レギュレータ回路50の出力電圧VREF_OUTを急速に回復させることができない。
 [その他の実施形態]
 以上、本出願において開示する技術の例示として、実施形態を説明した。しかしながら本開示における技術はこれに限定されず、適宜、変更、置き換え、付加、省略などを行った実施形態にも適用可能である。以下、その他の実施形態を例示する。
 図7~図11は本開示に係るその他の半導体装置1Aの概念図である。
 図7の半導体装置1Aにおいて、図1と異なるのはレギュレータ回路10から負荷抵抗13が省かれている点である。一方で、負荷回路30内に負荷抵抗13と同一または類似の負荷抵抗33が設けられている。具体的には、負荷回路30は、図1における負荷回路30と同一または類似の構成からなる負荷回路部30aと、負荷回路部30aと並列接続された負荷抵抗33とを有している。このように、負荷抵抗13は、負荷回路30側に同一または類似の負荷抵抗(例えば図7では負荷抵抗33)が設けられている場合には、レギュレータ回路10内から省くことができる。
 この場合においても、出力トランジスタ12に流れる出力電流IDが負荷回路30の負荷抵抗33に流れて、電圧に変換されることによって出力電圧VREF_OUTが生成される。なお、レギュレータ回路10としての機能は図1と同一または類似であり、レギュレータ回路10からは上記の実施形態と同一または類似の所望の参照電圧が得られる。具体的には、例えば負荷回路30の負荷回路部30aによってレギュレータ回路10の出力端子VOから電流が引かれた時、内蔵抵抗14を介した経路と出力トランジスタ12を介した経路との2つの電流経路から負荷回路30の負荷回路部30aに電荷が充填され、レギュレータ回路10の出力電圧VREF_OUTを急速に回復させることができる。これにより、図7のレギュレータ回路10は、安定な参照電源を供給でき、かつ低い消費電力を実現することができる。
 (出力トランジスタの変形例)
 図8の半導体装置1Aにおいて、図1と異なるのはソースフォロア構造であった出力トランジスタ12が、ソース接地されたP型の出力トランジスタ16に置き換えられている点である。また、オペアンプ11の正側入力端子及び負側入力端子の接続が逆になる点で異なる。
 なお、レギュレータ回路10としての機能は図1と同一または類似であり、オペアンプ11の高い増幅率によって、レギュレータ回路10の出力電圧VREF_OUTと参照電圧VREFとが等しくなり、結果として所望の参照電圧を得ることができる。したがって、図8のレギュレータ回路10は、図1のレギュレータ回路10と同様に安定した参照電源を供給することができ、かつ低い消費電力を実現することができる。
 (内蔵容量の変形例)
 図1において、内蔵容量15は、MIM容量(Metal Insulator Metal)やMOM(Metal Oxide Metal)容量等の受動素子の容量デバイスに限らず、例えば図9に示すように、トランジスタによって構成されたMOS容量17(能動素子)であってもよい。この場合も、内蔵抵抗14のインピーダンスは、MOS容量17のインピーダンスより十分に大きく設定する。具体的には、内蔵抵抗14の抵抗値をR0、MOS容量17の容量値をC1、負荷回路30の動作周波数をFとした場合に、下式(7)を満たすように抵抗値R0及び容量値C1を設定する。
Figure JPOXMLDOC01-appb-M000009
 これにより、図9のレギュレータ回路10は、図1のレギュレータ回路10と同様に安定な参照電源を供給でき、かつ低い消費電力を実現することができる。また、内蔵容量15を能動素子にすることによって、回路面積を削減することができる。
 (内蔵抵抗の変形例)
 図1において、内蔵抵抗14は、ポリシリコン抵抗やOD(Oxide Diffusion)抵抗、メタル抵抗等の均一な材料でできた受動素子の抵抗デバイスに限らず、例えば図10に示すように、トランジスタ18(能動素子)で構成してもよい。この場合も、トランジスタ18の出力インピーダンスは、内蔵容量15のインピーダンスより十分に大きく設定する。具体的には、トランジスタ18の出力抵抗値をr0、内蔵容量15の容量値をC0、負荷回路30の動作周波数をFとした場合に、下式(8)を満たすように出力抵抗値r0及び容量値C0を設定する。
Figure JPOXMLDOC01-appb-M000010
 これにより、図10のレギュレータ回路10は、図1のレギュレータ回路10と同様に安定した参照電源を供給でき、かつ低い消費電力を実現することができる。また、内蔵抵抗14の代わりにトランジスタ18を用いることによって、回路面積を削減することができる。
 (アクティブバイパス回路)
 図11では、図1に示したレギュレータ回路10に、出力電圧VREF_OUTの回復を補助するアクティブバイパス回路40が追加されている。アクティブバイパス回路40は、出力トランジスタ12と出力端子VOとの間に接続されている。具体的には、アクティブバイパス回路40は、出力端子VOとグランドVSSとの間に接続されたバイパストランジスタ41と、出力端子VOとバイパストランジスタ41のゲートとの間に接続された第2容量としての容量42と、外部からバイアス電圧VBIASが供給されるバイアス端子BN_GMとバイパストランジスタ41のゲートとの間に接続された第2抵抗としての抵抗43とを備える。上記のように、このアクティブバイパス回路40は抵抗パスとして抵抗素子ではなくバイパストランジスタ41を利用している。これにより、レギュレータ回路10の出力電圧VREF_OUTの変動に対してバイパストランジスタ41の相互コンダクタンスに応じた大きな電流変化を作り出し、出力電圧VREF_OUTを急速に回復させることができる。
 以下に、アクティブバイパス回路40の動作について詳細に説明する。
 レギュレータ回路10の出力電圧VREF_OUTが安定しているときには、抵抗43を介してバイアス電圧VBIASがバイパストランジスタ41のゲートに与えられているため、バイパストランジスタ41には一定の電流が流れている。
 一方で、負荷回路30から電流が引かれた時、すなわちレギュレータ回路10の出力電圧VREF_OUTがドロップした時には、出力端子VOとバイパストランジスタ41のゲートとの間に接続された容量42があるため、バイパストランジスタ41のゲート電圧が下がる。これにより、バイパストランジスタ41のゲート・ソース間の電圧が瞬間的に小さくなるため、バイパストランジスタ41に流れる電流が減る。これにより、レギュレータ回路10の出力電圧VREF_OUTが安定している場合と比較して、負荷回路30に割り当てられる電流が増えるため、結果として出力電圧VREF_OUTが早く回復する。
 また、ノイズ等の影響によってグランドVSSの電位が一時的に上がった場合においても、バイパストランジスタ41のゲート・ソース間の電圧が一時的に小さくなるため、バイパストランジスタ41はグランドVSSの電位を元に戻す方向に働く。また、レギュレータ回路10の出力電圧VREF_OUTがノイズ等の影響によって瞬間的に上がった時には、バイパストランジスタ41のゲート・ソース間電圧が広がるため、バイパストランジスタ41に流れる電流が増え、出力電圧VREF_OUTを瞬時に下げようとする方向に働く。
 以上のように、内蔵抵抗14及び内蔵容量15による出力電圧VREF_OUT回復機構とアクティブバイパス回路40とを併用することによって、さらに安定した参照電源が供給可能であるレギュレータ回路10を提供することができる。なお、アクティブバイパス回路40は本態様の回路に限定されず、他の回路構成のものを用いてもよい。
 また、上記の図11のレギュレータ回路10において、図8と同様に出力トランジスタ12をソース接地されたP型の出力トランジスタに置き換えても同一または類似の効果が得られる。このとき、オペアンプ11の正側入力端子及び負側入力端子の接続は図8と同様に逆になる。
 また、上述の実施形態及びその変形例において、内蔵抵抗14及び内蔵容量15が、半導体装置1A内においてレギュレータ回路10の外部に設けられていてもよい。
 また、内蔵抵抗14及び内蔵容量15を省いたレギュレータ回路が半導体装置の外部に設けられていても同様の効果が得られる。具体的には、図16に示すように、半導体装置2Aは、電源端子VINとグランド端子T_VSSとの間に並列に接続された電圧安定化回路110と負荷回路30とを備える。電圧安定化回路110は、電源端子VINとグランド端子T_VSSとの間に直列に接続された第1抵抗としての内蔵抵抗114及び第1容量としての内蔵容量115を備える。そして、電源端子VINとグランド端子T_VSSとの間には、半導体装置1Aの外部に設けられたレギュレータ回路100から参照電圧VREF_INが供給される。
 レギュレータ回路100は、参照電圧生成回路(図16ではREF回路と記載する)120と、参照電圧生成回路120から供給される参照電圧VREFを正側入力端子に受けるオペアンプ111と、オペアンプ111の出力をゲートに受ける出力トランジスタ112と、出力トランジスタ112とグランドVSSとの間に接続された抵抗113とを備える。また、レギュレータ回路100の出力は、オペアンプ111の負側入力端子にフィードバックされる。
 ここで上述の実施形態(図2)と同様に、内蔵抵抗114の抵抗値をR0、内蔵容量115の容量値をC0、及び負荷回路30の動作周波数をFとした場合に、式(1)の関係を満たすものとする。このような構成とすることにより、負荷回路30に電流が引かれた時、瞬間的に参照電圧VREF_INが大きくドロップする一方で、その後内蔵抵抗114を介した電流経路等から負荷回路30に電荷が充填されるため、参照電圧VREF_INを急速に回復させることができる。すなわち、電圧安定化回路110は負荷回路30に供給される参照電圧VREF_INを安定化させることができる。
 なお、式(1)の関係式に加えて、上述の実施形態(図2)と同様に式(2)の関係式を満たすように内蔵抵抗114の抵抗値R0を設定してもよい。このような構成とすることにより、負荷回路30に電流が引かれた時における参照電圧VREF_INの瞬間的なドロップ量をより十分に確保することができるため、参照電圧VREF_INを急速に回復させることができる。
 また、上述の実施形態(図2)と同様に、参照電圧VREF_INの供給を受ける負荷回路30として、例えばAD変換器のようなクロック同期式の離散信号処理システム(動作周波数F)等を用いた場合において、レギュレータ回路100の出力トランジスタ112の相互コンダクタンスがgmであるとき、式(3)及び/または式(4)の関係式を満たすように内蔵抵抗114の抵抗値R0を設定してもよい。このような構成とすることにより、負荷回路30に電流が引かれた時に参照電圧VREF_INを急速に回復させることができる。
 また、上述の実施形態及びその変形例において、負荷回路30としてクロック同期の離散信号処理システムが接続されているものとしたが、他のクロック同期回路や所定の動作周波数で動作する負荷回路が接続されていても同様の効果が得られる。
 本開示に係るレギュレータ回路及びこれを備えた半導体装置は、安定化容量に接続することを目的としてレギュレータ回路の出力をLSIの外部に出さなくても、安定した参照電源を供給できる。これにより、LSIの端子及び外部部品の削減が可能であり、半導体装置及びこれを備えた機器の小型化、低コスト化を実現できる。また、少ないDC電流でレギュレータ回路の出力(参照電源)が高速に回復するので、レギュレータ回路及びこれを備えた半導体装置の低消費電力化も実現できる。したがって、携帯通信機器、映像受信機器向けのLSI等に適用することができる。特に逐次比較型AD変換器等のクロック同期式の離散信号処理システムを搭載した製品への利用が可能である。
 1A 半導体装置
 10 レギュレータ回路
 11 オペアンプ(演算増幅器)
 12,16 出力トランジスタ
 14,114 内蔵抵抗(第1抵抗)
 15,115 内蔵容量(第1容量)
 20 参照電圧生成回路
 30 負荷回路
 40 アクティブバイパス回路
 41 バイパストランジスタ
 42 容量(第2容量)
 43 抵抗(第2抵抗)
 80 AD変換器(負荷回路)
 110 電圧安定化回路
 VO 出力端子
 VREF 参照電圧(基準電圧)
 VBIAS バイアス電圧
 VDD 電源(第1電源)
 VSS グランド(第2電源)
 VREF_IN 参照電圧

Claims (20)

  1.  負荷回路に参照電源を供給するレギュレータ回路であって、
     一方の入力端子に基準電圧を受ける演算増幅器と、
     前記負荷回路が接続されるものであり、前記演算増幅器の他方の入力端子にフィードバック接続された出力端子と、
     前記演算増幅器の出力信号をゲートに受け、かつ第1電源及び前記出力端子の間に接続された出力トランジスタと、
     前記出力端子及び前記第1電源とは電位が異なる第2電源の間に直列に接続された第1抵抗及び第1容量とを備えており、
     前記負荷回路の動作周波数をF、前記第1抵抗の抵抗値をR0、及び前記第1容量の容量値をC0としたときに、
    Figure JPOXMLDOC01-appb-M000011
    の関係を満たすことを特徴とするレギュレータ回路。
  2.  請求項1記載のレギュレータ回路において、
     前記負荷回路の負荷容量の容量値をCLとしたときに、
    Figure JPOXMLDOC01-appb-M000012
    の関係を満たすことを特徴とするレギュレータ回路。
  3.  請求項1記載のレギュレータ回路において、
     前記負荷回路の負荷容量の容量値をCL、前記出力トランジスタの相互コンダクタンスをgm、及び前記レギュレータ回路から供給される参照電源の電圧の必要精度をNビットとしたときに、
    Figure JPOXMLDOC01-appb-M000013
    の関係を満たすことを特徴とするレギュレータ回路。
  4.  請求項1記載のレギュレータ回路において、
     前記出力トランジスタの相互コンダクタンスをgmとしたときに、
    Figure JPOXMLDOC01-appb-M000014
    の関係を満たすことを特徴とするレギュレータ回路。
  5.  請求項1記載のレギュレータ回路において、
     前記出力トランジスタは、ソースフォロア構成である
    ことを特徴とするレギュレータ回路。
  6.  請求項1記載のレギュレータ回路において、
     前記出力トランジスタは、ソース接地されている
    ことを特徴とするレギュレータ回路。
  7.  請求項1記載のレギュレータ回路において、
     前記負荷回路は、クロック同期の離散信号処理システムである
    ことを特徴とするレギュレータ回路。
  8.  請求項7記載のレギュレータ回路において、
     前記離散信号処理システムは逐次比較型AD(Analog to Digital)変換器である
    ことを特徴とするレギュレータ回路。
  9.  請求項1記載のレギュレータ回路において、
     前記第1抵抗は受動素子である
    ことを特徴とするレギュレータ回路。
  10.  請求項1記載のレギュレータ回路において、
     前記第1抵抗は能動素子である
    ことを特徴とするレギュレータ回路。
  11.  請求項1記載のレギュレータ回路において、
     前記第1容量は受動素子である
    ことを特徴とするレギュレータ回路。
  12.  請求項1記載のレギュレータ回路において、
     前記第1容量は能動素子である
    ことを特徴とするレギュレータ回路。
  13.  請求項1記載のレギュレータ回路において、
     前記出力トランジスタと前記レギュレータ回路の出力端子との間にアクティブバイパス回路を備える
    ことを特徴とするレギュレータ回路。
  14.  請求項13記載のレギュレータ回路において、
     前記アクティブバイパス回路は、
     前記出力端子と前記第2電源との間に接続されたバイパストランジスタと、
     前記出力端子と前記バイパストランジスタのゲートとの間に接続された第2容量とを備え、
     前記バイパストランジスタのゲートには、第2抵抗を介してバイアス電圧が印加されている
    ことを特徴とするレギュレータ回路。
  15.  請求項1に記載のレギュレータ回路と、
     前記レギュレータ回路に基準電圧を供給する参照電圧生成回路と、
     前記レギュレータ回路からの電源供給を受ける前記負荷回路とを備えている
    ことを特徴とする半導体装置。
  16.  レギュレータ回路から負荷回路に供給される参照電圧を安定化させる電圧安定化回路であって、
     前記参照電圧が供給される2個の電源端子間に直列に接続された第1抵抗及び第1容量を備えており、
     前記負荷回路の動作周波数をF、前記第1抵抗の抵抗値をR0、及び前記第1容量の容量値をC0としたときに、
    Figure JPOXMLDOC01-appb-M000015
    の関係を満たすことを特徴とする電圧安定化回路。
  17.  請求項16記載の電圧安定化回路において、
     前記負荷回路の負荷容量の容量値をCLとしたときに、
    Figure JPOXMLDOC01-appb-M000016
    の関係を満たすことを特徴とする電圧安定化回路。
  18.  請求項16記載の電圧安定化回路において、
     前記レギュレータ回路は、一方の前記電源端子に接続された出力トランジスタを有し、
     前記負荷回路の負荷容量の容量値をCL、前記出力トランジスタの相互コンダクタンスをgm、及び前記参照電圧の必要精度をNビットとしたときに、
    Figure JPOXMLDOC01-appb-M000017
    の関係を満たすことを特徴とする電圧安定化回路。
  19.  請求項16記載の電圧安定化回路において、
     前記レギュレータ回路は、一方の前記電源端子に接続された出力トランジスタを有し、
     前記出力トランジスタの相互コンダクタンスをgmとしたときに、
    Figure JPOXMLDOC01-appb-M000018
    の関係を満たすことを特徴とする電圧安定化回路。
  20.  請求項16記載の電圧安定化回路と、
     前記2個の電源端子間に前記電圧安定化回路と並列に接続された前記負荷回路とを備えている
    ことを特徴とする半導体装置。
PCT/JP2014/001713 2013-06-28 2014-03-25 レギュレータ回路、電圧安定化回路及び半導体装置 WO2014207969A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013136913 2013-06-28
JP2013-136913 2013-06-28

Publications (1)

Publication Number Publication Date
WO2014207969A1 true WO2014207969A1 (ja) 2014-12-31

Family

ID=52141349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001713 WO2014207969A1 (ja) 2013-06-28 2014-03-25 レギュレータ回路、電圧安定化回路及び半導体装置

Country Status (1)

Country Link
WO (1) WO2014207969A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04252313A (ja) * 1991-01-28 1992-09-08 Sharp Corp 電圧降下回路
JP2005160013A (ja) * 2003-11-26 2005-06-16 Hynix Semiconductor Inc A/dコンバータ及び半導体装置
JP2005316788A (ja) * 2004-04-30 2005-11-10 New Japan Radio Co Ltd 電源回路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04252313A (ja) * 1991-01-28 1992-09-08 Sharp Corp 電圧降下回路
JP2005160013A (ja) * 2003-11-26 2005-06-16 Hynix Semiconductor Inc A/dコンバータ及び半導体装置
JP2005316788A (ja) * 2004-04-30 2005-11-10 New Japan Radio Co Ltd 電源回路

Similar Documents

Publication Publication Date Title
US10739729B2 (en) Time-to-digital converter
WO2022100754A1 (zh) 一种片内rc振荡器、芯片及通信终端
US7863873B2 (en) Power management circuit and method of frequency compensation thereof
CN108052149B (zh) 信号发生电路
US8536844B1 (en) Self-calibrating, stable LDO regulator
US8174317B2 (en) Fully-differential amplifier circuit
US8878510B2 (en) Reducing power consumption in a voltage regulator
US7612547B2 (en) Series voltage regulator with low dropout voltage and limited gain transconductance amplifier
US9847763B2 (en) Self-regulated reference for switched capacitor circuit
EP2940862B1 (en) Reference buffer with wide trim range
US7605654B2 (en) Telescopic operational amplifier and reference buffer utilizing the same
US10141897B2 (en) Source follower
US9831892B1 (en) Noise reduction circuit and associated delta-sigma modulator
JP5986295B2 (ja) 信号出力回路
US20100289936A1 (en) Buffer circuit, image sensor chip comprising the same, and image pickup device
US9628099B2 (en) Load current compensation for analog input buffers
US10554190B2 (en) Transmitter circuit with power detection
US10613569B2 (en) Low power half-VDD generation circuit with high driving capability
WO2014207969A1 (ja) レギュレータ回路、電圧安定化回路及び半導体装置
JP2020166648A (ja) 基準電圧発生回路、および半導体装置
EP2351210A1 (en) Voltage clamp
KR101939147B1 (ko) 가변 기준전압 발생회로 및 이를 포함한 아날로그 디지털 변환기
US7768324B1 (en) Dual voltage buffer with current reuse
JP2010213043A (ja) トラックアンドホールド回路及びa/dコンバータ
US11646662B2 (en) Reference buffer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14818073

Country of ref document: EP

Kind code of ref document: A1