WO2014206185A1 - 一种接触网和储能装置混合供电的动车组牵引系统 - Google Patents

一种接触网和储能装置混合供电的动车组牵引系统 Download PDF

Info

Publication number
WO2014206185A1
WO2014206185A1 PCT/CN2014/079172 CN2014079172W WO2014206185A1 WO 2014206185 A1 WO2014206185 A1 WO 2014206185A1 CN 2014079172 W CN2014079172 W CN 2014079172W WO 2014206185 A1 WO2014206185 A1 WO 2014206185A1
Authority
WO
WIPO (PCT)
Prior art keywords
traction
energy storage
storage device
interface
converter
Prior art date
Application number
PCT/CN2014/079172
Other languages
English (en)
French (fr)
Inventor
李军
王成涛
荀玉涛
李雪飞
韩伟
Original Assignee
长春轨道客车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长春轨道客车股份有限公司 filed Critical 长春轨道客车股份有限公司
Publication of WO2014206185A1 publication Critical patent/WO2014206185A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/32Control or regulation of multiple-unit electrically-propelled vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/30Electric propulsion with power supplied within the vehicle using propulsion power stored mechanically, e.g. in fly-wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/53Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells in combination with an external power supply, e.g. from overhead contact lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/24Electric propulsion with power supply external to the vehicle using ac induction motors fed from ac supply lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/24Electric propulsion with power supply external to the vehicle using ac induction motors fed from ac supply lines
    • B60L9/28Electric propulsion with power supply external to the vehicle using ac induction motors fed from ac supply lines polyphase motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/297Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal for conversion of frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/20AC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention relates to an EMU traction system, in particular to an EMU electric traction system with a hybrid supply of a contact network and an energy storage device.
  • the traction system is the core of the EMU transmission system, shouldering the task of providing driving power for the train.
  • the traditional EMU traction system is mainly a single electric traction. It adopts the contact network power supply mode and can only run on the electrified railway. According to China's railway planning, by the end of 2012, China's electrified railways accounted for 53% of the national railway lines. According to the Medium and Long-term Railway Network Plan, it is estimated that in 2020, electrified railways will account for 60% of the national railway lines, and non-electrified railways will still It has a large proportion in the long run. All single electric traction EMUs cannot meet the requirements of running on non-electrified railways, and they cannot implement self-rescue in time when the electrified road section fails or the vehicle's own high-voltage system fails.
  • the traditional centralized power supply train adopts the method of centralized power supply and traction of the internal combustion engine, which is the main source of the internal combustion engine.
  • the braking energy is mainly consumed by the braking resistor, resulting in a huge waste of energy.
  • the object of the present invention is to provide a hybrid EMU traction system, which can realize the normal operation of the EMU and the contactless net, realize the energy recycling, and realize the optimal acceleration performance of the hybrid power and Emergency rescue, combat readiness and other purposes.
  • the present invention provides an EMU traction system with a hybrid power supply of a contact network and an energy storage device, which is characterized in that: mainly includes a traction transformer, an energy storage device, a traction converter, a traction motor, and the contact network passes the power receiving
  • the bow is connected to the primary side of the traction transformer.
  • the two secondary windings of the traction transformer are directly connected to the traction converter.
  • the traction converter is connected to the traction motor, and the energy storage device is connected to the intermediate DC bus of the traction converter.
  • Traction converter includes traction transformer interface, energy storage device interface, first pre-charging device, second pre-charging device, four-quadrant rectifier, intermediate DC link, traction inverter, bidirectional DC/DC chopper, overvoltage suppression a circuit, a traction motor interface, and an auxiliary converter interface, the traction transformer interface being coupled to an input of the rectifier, the energy storage device interface being coupled to the bidirectional DC/DC chopper, and coupled in parallel a DC bus on the output of the quadrant rectifier, the first pre-charging device is disposed on a circuit between the traction transformer interface and the four-quadrant rectifier, and the second pre-charging device is disposed at the energy storage device interface On the circuit between the bidirectional DC/DC chopper, the output of the four-quadrant rectifier is connected to the output of the traction inverter, and the intermediate DC link is connected in parallel to the output of the four-quadrant rectifier An output terminal of the traction inverter is configured to be connected to the traction motor
  • the first pre-charging device and the second pre-charging device each include a main contactor, a pre-charging contactor and a pre-charging resistor; the main contactor is used for controlling the on-off of the main circuit, and the pre-charging contactor is used for separately controlling The first pre-charging device and the second pre-charging device pre-charge the supporting capacitor.
  • the intermediate DC link includes a supporting capacitor and a capacitor discharge resistor.
  • the bidirectional DC/DC chopper includes two IGBT power devices and a reactor, and the two IGBT power devices are connected to the reactor.
  • the overvoltage suppression circuit includes an IGBT power device and an energy absorbing resistor connected in series.
  • the energy storage mode is adopted to realize the normal operation of the contactless network.
  • the braking energy is absorbed by the energy storage device, which realizes the recycling of energy and reflects the concept of green energy saving.
  • the EMU not only has the operational capability of non-electrified sections, but also has emergency rescue and combat readiness functions in special rain or snow weather or contact network damage, and can also be used as mobile power.
  • FIG. 1 is a schematic diagram of a main circuit according to an embodiment of the present invention.
  • Figure 2 is a block diagram of the composition of the traction converter
  • FIG. 3 is a schematic diagram of the main circuit of the traction converter. detailed description
  • an embodiment of the present invention mainly includes a traction transformer, an energy storage device, a traction converter, and a traction motor.
  • the contact net is connected to the primary side of the traction transformer through a pantograph, and the two secondary windings of the transformer are directly connected to the traction converter.
  • the traction converter drives the traction motor.
  • the function of the traction transformer is to reduce the single-phase network voltage of the AC contact network as the input voltage of the traction converter.
  • the traction converter drives the traction motor to realize the traction of the EMU, and the intermediate DC bus of the energy storage device and the traction converter. Connected.
  • the traction transformer interface 1 is connected to the input of the four-quadrant rectifier 5, and the traction transformer interface 1 is used to step down the single-phase network voltage of the contact network.
  • the energy storage device interface 3 is connected to the bidirectional DC/DC chopper 8 and is connected in parallel to the DC bus of the output of the four-quadrant rectifier 5, and the intermediate DC link 6 is connected in parallel to the four images.
  • the output of the four-quadrant rectifier 5 is connected to the input of the traction inverter 7, and the output of the traction inverter 7 is connected to the traction motor interface 10 for the traction motor interface 10 Power is supplied to the EMU via the traction motor interface 10.
  • the intermediate DC link 6 may include a supporting capacitor C1 and a capacitor discharging resistor Rc l.
  • the supporting capacitor C1 has a filtering effect on the output end of the four-quadrant rectifier 5, and can stabilize the DC voltage at the output of the four-quadrant rectifier 5.
  • the energy storage device interface 3 can be connected to a battery or a super capacitor, or to other energy storage components such as a flywheel or a fuel cell.
  • the overvoltage suppression circuit 9 is connected in parallel to the DC bus of the output of the four-quadrant rectifier 5.
  • the overvoltage suppression circuit 9 includes an IGBT power device IV7 and an energy absorbing resistor Rov connected in series, and the overvoltage suppression circuit 9 is used to absorb the intermediate DC support capacitor 6 The instantaneous voltage spike in the circuit to ensure the safety of the IGBT power device in the circuit.
  • the auxiliary converter interface 2 is connected in parallel to the DC bus of the output of the four-quadrant rectifier 5, and the auxiliary converter interface 2 is supplied with power through the intermediate DC support capacitor 6, and the auxiliary converter interface 2 is used to supply power to the auxiliary load of the EMU.
  • the first pre-charging device 4 is disposed on the circuit between the traction transformer interface 1 and the four-quadrant converter 5, and the second pre-charging device 11 is disposed between the energy storage device interface 3 and the bidirectional DC/DC chopper 8.
  • the first pre-charging device 4 includes a first main contactor LK1, a first pre-charging contactor K1 and a first pre-charging resistor R1.
  • the second pre-charging device 11 includes a second main contactor K4, a second pre-charging contactor ⁇ 3, and a second pre-charging resistor R3.
  • the first pre-charging contactor K1 When the intermediate DC voltage of the intermediate DC link 6 is low, the first pre-charging contactor K1 can be closed first, and the anti-parallel diodes of the first pre-charging resistor R1 and the four-quadrant rectifier 5 can charge the supporting capacitor C1. When the voltage across the supporting capacitor C1 reaches a certain value, the first main contact LK1 is closed, the first pre-charging contactor K1 is turned off, and the four-quadrant rectifier 5 is activated.
  • the second main contactor ⁇ 4 is used to control the on/off of the main circuit, and the second pre-charge contactor ⁇ 3 controls the second pre-charge resistor R3 to pre-charge the supporting capacitor C1.
  • the second pre-charging contactor ⁇ 3 is closed first, and the anti-parallel diode of the second pre-charging resistor R3, the reactor L1 and the IGNT power device BV1 is charged to the intermediate supporting capacitor C1.
  • the main contact K4 is closed, the precharge contactor ⁇ 3 is turned off, and then the DC/DC chopper 8 is activated bidirectionally.
  • the four-quadrant rectifier 5 includes eight IGBT (Insulated Gate Bipolar Transistor) power devices, specifically IGBT power devices CV1-CV8, and the rectifier 5 is used to implement AC/DC (AC-DC).
  • IGBT Insulated Gate Bipolar Transistor
  • the four-quadrant rectifier 5 adopts a two-level main circuit topology, and the equivalent switching frequency of the four-quadrant rectifier 5 is changed to a single four-quadrant converter switching frequency by phase-shifting pulse width modulation technology. Twice, thus greatly reducing the current harmonics of the four-quadrant rectifier 5; in the power pack supply mode, diode-uncontrolled or four-quadrant rectification can be performed using only the three-phase bridge arm to provide a stable DC voltage.
  • the traction inverter 7 can comprise six IGBT power devices IV1-IV6, which are converted to a voltage and frequency adjustable three-phase alternating current by means of a DC/AC (DC/AC) conversion for driving parallel traction
  • the motor interface 10 provides power to the EMU.
  • the traction inverter 7 can adopt a high-performance motor control algorithm. On the basis of accurate flux linkage observation, accurate torque control can be performed on the traction motor interface 10 to ensure good acceleration and deceleration performance and stable and reliable operation of the EMU.
  • Multi-mode modulation algorithms can be used to take full advantage of DC voltage and reduce power device losses and noise.
  • the bidirectional DC/DC chopper 8 includes two IGBT power devices BV1, BV2 and a reactor L1. Two IGBT power devices BV1 and BV2 are connected and connected to reactor L1.
  • the charging and discharging control of the energy storage device is realized by different switching modes, specifically: in the power package power supply mode, when the vehicle is in the traction state, if the power package power is insufficient, the energy storage device interface 3 passes through the bidirectional DC/DC chopper 8 Boost control is performed to output traction energy to compensate for insufficient power of the power pack; when the vehicle is in a braking state, the bidirectional DC/DC chopper 8 is stepped down to charge the energy storage device to absorb the brake Energy, energy recycling.
  • the four-quadrant converter Under the condition of electric power source, when the train is towed, the four-quadrant converter is used for power supply to ensure the normal operation of the train traction and auxiliary system, and the energy storage device will be stored under the premise of meeting the traction demand of the train. When the train is braking, the energy storage device is preferentially stored. When the energy storage device reaches critical saturation, the four-quadrant converter is used to return the braking energy to the grid.
  • the bidirectional DC/DC chopper In the case of no power source, when the train is towed, the bidirectional DC/DC chopper is used to discharge the energy storage device to meet the train operation demand and obtain the best acceleration performance. When the train is braking, the braking energy is fully fed back. It can be installed to achieve energy efficient use and energy saving.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种接触网和储能装置混合供电的动车组牵引系统,包括牵引变压器、储能装置、牵引变流器、牵引电机等。牵引变压器原边绕组通过受电弓与接触网相连,牵引变压器两个副边绕组直接与牵引变流器相连,牵引变流器与牵引电机连接,储能装置与牵引变流器中间直流母线相连。该牵引系统可以同时运行在电气化线路和非电气化线路上。在无接触网工况下,储能装置吸收制动能量;在特殊雨雪天气或接触网受损时,储能装置可以作为移动电源。

Description

技术领域
本发明涉及动车组牵引系统, 尤其涉及一种接触网和储能装置混合供电 的动车组电力牵引系统。 背景技术
牵引系统是动车组传动系统的核心,肩负着为列车提供行驶动力的任务。 传统的动车组牵引系统主要为单一的电力牵引, 采用接触网供电模式, 只能 运行在电气化铁路上。 而根据我国铁路规划, 截至 2012年底, 我国电气化铁 路占全国铁路线路的 53%; 根据《中长期铁路网规划》 , 预计 2020年, 电气 化铁路将占全国铁路线路的 60%, 非电气化铁路仍将长期占有很大比例。 所 有单一电力牵引的动车组无法满足在非电气化铁路上运行, 并且在电气化路 段发生故障或者车辆本身高压系统发生故障时, 无法及时实行自救。
另外, 在目前非电气化路段, 传统集中供电的列车采用热动力源即内燃 机车集中供电牵引的方式, 在制动过程中, 制动能量主要通过制动电阻的方 式消耗, 造成能源的巨大浪费。 发明内容
本发明的目的是提供一种混合动力的动车组牵引系统, 实现动车组有、 无接触网的情况下都能正常运行的同时, 实现能量的循环利用, 同时实现混 合动力的最佳加速性能和应急救援、 战备等目的。
为实现上述目的, 本发明提供一种接触网和储能装置混合供电的动车组 牵引系统, 其特征在于: 主要包括牵引变压器、 储能装置、 牵引变流器、 牵 引电机, 接触网通过受电弓与牵引变压器原边相连, 牵引变压器两个副边绕 组直接与牵引变流器相连, 牵引变流器与牵引电机连接, 储能装置与牵引变 流器中间直流母线相连。
牵引变流器包括牵引变压器接口、 储能装置接口、 第一预充电装置、 第 二预充电装置、 四象限整流器、 中间直流环节、 牵引逆变器、 双向 DC/DC斩 波器、 过压抑制电路、 牵引电机接口和辅助变流器接口, 所述牵引变压器接 口与所述整流器的输入端连接,所述储能装置接口与所述双向 DC/DC斩波器 连接, 且并联在所述四象限整流器的输出端直流母线上, 所述第一预充电装 置设置在所述牵引变压器接口与所述四象限整流器之间的电路上, 所述第二 预充电装置设置在所述储能装置接口与所述双向 DC/DC 斩波器之间的电路 上, 所述四象限整流器的输出端与所述牵引逆变器的输出端连接, 所述中间 直流环节并联在所述四象限整流器的输出端直流母线上, 所述牵引逆变器的 输出端用于与所述牵引电机接口连接, 所述过压抑制电路并联在所述四象限 整流器的输出端直流母线上, 所述辅助变流器接口并联在所述四象限整流器 的输出端直流母线上。
所述第一预充电装置、 第二预充电装置均包括主接触器、 预充电接触器 和预充电电阻; 所述主接触器用于控制主电路的通断, 所述预充电接触器用 于分别控制所述第一预充电装置、 第二预充电装置向所述支撑电容预充电。
所述中间直流环节包括支撑电容和电容放电电阻。
所述双向 DC/DC斩波器包括两个 IGBT功率器件和一个电抗器, 所述两 个 IGBT功率器件连接后与电抗器连接。
所述过压抑制电路包括串联的 IGBT功率器件和能量吸收电阻。
本发明与现有技术相比所具有的有益效果:
1 ) 能够实现跨线运行, 可适应不同环境的不同运输需求。
2)在非电气化路段, 采用储能装置供电模式, 实现无接触网工况的正常 运行。
3 ) 在非电气化路段, 实现 "零"排放。
4 )在无接触网工况下, 制动能量通过储能装置进行吸收, 实现了能量的 循环利用, 体现绿色节能理念。
5 ) 由于采用了储能装置, 该动车组不仅具有非电气化路段的运行能力, 在特殊的雨雪天气或接触网受损时有应急救援和战备功能, 还可以作为移动 电源使用。 附图说明
图 1为本发明实施方式的主电路原理图;
图 2为牵引变流器组成框图;
图 3为牵引变流器主电路原理图。 具体实施方式
参照图 1, 本发明实施方式主要包括牵引变压器、 储能装置、 牵引变流 器和牵引电机, 接触网通过受电弓与牵引变压器原边相连, 变压器两个副边 绕组直接与牵引变流器相连, 牵引变流器驱动牵引电机。 牵引变压器的作用 是将交流接触网的单相网压降压, 作为牵引变流器的输入电压, 牵引变流器 再驱动牵引电机实现动车组牵引,储能装置与牵引变流器中间直流母线相连。
参照图 2、 图 3, 1-牵引变压器接口; 2-辅助变流器接口; 3-储能装置接 口; 4-第一预充电装置; 5-四象限整流器; 6-中间直流环节; 7-牵引逆变器; 8-双向 DC/DC斩波器; 9-过压抑制电路; 10-牵引电机接口; 11-第二预充电 装置
牵引变压器接口 1与四象限整流器 5的输入端连接, 牵引变压器接口 1 用于对接触网的单相网压降压。储能装置接口 3与双向 DC/DC斩波器 8连接, 且并联在四象限整流器 5的输出端直流母线上, 中间直流环节 6并联在四象 限整流器 5的输出端直流母线上, 四象限整流器 5的输出端与牵引逆变器 7 的输入端连接, 牵引逆变器 7的输出端用于与牵引电机接口 10连接, 为牵引 电机接口 10供电, 通过牵引电机接口 10为动车组提供动力。 中间直流环节 6可以包括支撑电容 C1和电容放电电阻 Rc l,支撑电容 C1对四象限整流器 5 的输出端具有滤波作用, 能够稳定四象限整流器 5输出端的直流电压。 储能 装置接口 3可以与蓄电池或超级电容连接, 也可以与飞轮或燃料电池等其他 储能元件连接。 过压抑制电路 9并联在四象限整流器 5的输出端直流母线上 的, 过压抑制电路 9包括串联的 IGBT功率器件 IV7和能量吸收电阻 Rov, 过 压抑制电路 9用于吸收中间直流支撑电容 6中的瞬时电压尖峰, 以保证电路 中 IGBT功率器件的安全。辅助变流器接口 2并联在四象限整流器 5的输出端 直流母线上, 通过中间直流支撑电容 6为辅助变流器接口 2供电, 辅助变流 器接口 2用于向动车组的辅助负载供电。 第一预充电装置 4设置在牵引变压 器接口 1与四象限变流器 5之间的电路上,第二预充电装置 11设置在储能装 置接口 3与双向 DC/DC斩波器 8之间的电路上; 其中, 第一预充电装置 4和 第二预充电装置 11相同, 第一预充电装置 4包括第一主接触器 LK1、 第一预 充电接触器 K1和第一预充电电阻 Rl。 第二预充电装置 11包括第二主接触器 K4、 第二预充电接触器 Κ3和第二预充电电阻 R3。
当中间直流环节 6的中间直流电压较低时, 可以先闭合第一预充电接触 器 K1 , 同过第一预充电电阻 R1和四象限整流器 5的反并联二极管对支撑电 容 C1充电。 当支撑电容 C1两端的电压达到一定值后闭合第一主接触 LK1、 断开第一预充电接触器 Kl, 启动四象限整流器 5。
第二主接触器 Κ4用于控制主电路的通断, 第二预充电接触器 Κ3分别控 制第二预充电电阻 R3向支撑电容 C1预充电。 当中间直流环节 6的中间直流 电压较低时, 先闭合第二预充电接触器 Κ3, 同过第二预充电电阻 R3、 电抗器 L1和 IGNT功率器件 BV1的反并联二极管对中间支撑电容 C1充电。 当中间支 撑电容 C1两端的电压接近储能电池电压后闭合主接触 K4、 断开预充电接触 器 Κ3, 然后双向启动 DC/DC斩波器 8。
在本实施例中, 四象限整流器 5包括八个 IGBT ( Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)功率器件,具体为 IGBT功率器件 CV1-CV8 , 整流器 5用于实现 AC/DC (交流直流) 变换, 接触网供电模式下, 该四象限 整流器 5采用两电平主电路拓扑, 通过移相脉宽调制技术使得该四象限整流 器 5的等效开关频率变为单个四象限变流器开关频率的两倍, 从而大大减小 四象限整流器 5的电流谐波; 动力包供电模式下, 可以仅利用三相桥臂进行 二极管不控或四象限整流, 以提供稳定的直流电压。
牵引逆变器 7可以包括六个 IGBT功率器件 IV1-IV6 , 通过 DC/AC (直流 / 交流) 变换, 将中间直流电压逆变为电压和频率可调节的三相交流电, 用于 驱动并联的牵引电机接口 10, 为动车组提供动力。 牵引逆变器 7可以采用高 性能电机控制算法, 在准确磁链观测的基础上, 可以对牵引电机接口 10进行 精确的转矩控制, 以保证动车组良好的加减速性能和运行的平稳可靠; 另外, 可以采用多模式调制算法, 以充分利用直流电压, 并降低功率器件损耗, 减 小噪声。
双向 DC/DC斩波器 8包括两个 IGBT功率器件 BV1、BV2和一个电抗器 Ll。 两个 IGBT功率器件 BV1、 BV2连接后与电抗器 L1连接。通过不同的开关方式 实现对储能装置进行充放电控制, 具体为: 动力包供电模式下, 车辆处于牵 引状态时, 若动力包功率不足, 储能装置接口 3通过双向 DC/DC斩波器 8进 行升压控制, 以输出牵引能量, 以补偿动力包的功率不足; 当车辆处于制动 状态时, 对双向 DC/DC斩波器 8进行降压控制, 对储能装置充电, 以吸收制 动能量, 实现能量循环利用。
工作过程: 在有电力源工况下, 在列车牵引时, 使用四象限变流器进行 供电, 保证列车牵引、 辅助系统正常运行, 在满足列车牵引需求的前提下将 对储能装置进行储能; 在列车制动时, 优先对储能装置进行储能, 当储能装 置能量达到临界饱和时, 使用四象限变流器将制动能量回馈电网。
在无电力源工况下, 在列车牵引时, 使用双向 DC/DC斩波器进行储能装 置放电, 满足列车运行需求, 获得最佳加速性能; 在列车制动时, 制动能量 全部回馈储能装置, 实现能量高效利用与节能减排。

Claims

权 利 要 求 书
1、 一种接触网和储能装置混合供电的动车组牵引系统, 其特征在于: 主 要包括牵引变压器、 储能装置、 牵引变流器、 牵引电机, 接触网通过受电弓 与牵引变压器原边相连, 牵引变压器两个副边绕组直接与牵引变流器相连, 牵引变流器与牵引电机连接, 储能装置与牵引变流器中间直流母线相连。
2、根据权利要求 1所述的一种接触网和储能装置混合供电的动车组牵引 系统, 其特征在于: 牵引变流器包括牵引变压器接口、 储能装置接口、 第一 预充电装置、 第二预充电装置、 四象限整流器、 中间直流环节、 牵引逆变器、 双向 DC/DC斩波器、 过压抑制电路、牵引电机接口和辅助变流器接口, 所述 牵引变压器接口与所述整流器的输入端连接, 所述储能装置接口与所述双向 DC/DC斩波器连接, 且并联在所述四象限整流器的输出端直流母线上, 所述 第一预充电装置设置在所述牵引变压器接口与所述四象限整流器之间的电路 上,所述第二预充电装置设置在所述储能装置接口与所述双向 DC/DC斩波器 之间的电路上,所述四象限整流器的输出端与所述牵引逆变器的输出端连接, 所述中间直流环节并联在所述四象限整流器的输出端直流母线上, 所述牵引 逆变器的输出端用于与所述牵引电机接口连接, 所述过压抑制电路并联在所 述四象限整流器的输出端直流母线上, 所述辅助变流器接口并联在所述四象 限整流器的输出端直流母线上。
3、根据权利要求 2所述的一种接触网和储能装置混合供电的动车组牵引 系统, 其特征在于: 所述第一预充电装置、 第二预充电装置均包括主接触器、 预充电接触器和预充电电阻; 所述主接触器用于控制主电路的通断, 所述预 充电接触器用于分别控制所述第一预充电装置、 第二预充电装置向所述支撑 电容预充电。
4、根据权利要求 2所述的一种接触网和储能装置混合供电的动车组牵引 系统, 其特征在于: 所述中间直流环节包括支撑电容和电容放电电阻。
5、根据权利要求 2所述的一种接触网和储能装置混合供电的动车组牵引 系统, 其特征在于: 所述双向 DC/DC斩波器包括两个 IGBT功率器件和一个 电抗器, 所述两个 IGBT功率器件连接后与电抗器连接。
6、根据权利要求 2所述的一种接触网和储能装置混合供电的动车组牵引 系统, 其特征在于: 所述过压抑制电路包括串联的 IGBT功率器件和能量吸 收电阻。
PCT/CN2014/079172 2013-06-24 2014-06-04 一种接触网和储能装置混合供电的动车组牵引系统 WO2014206185A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310251308.9A CN103350647B (zh) 2013-06-24 2013-06-24 一种接触网和储能装置混合供电的动车组牵引系统
CN201310251308.9 2013-06-24

Publications (1)

Publication Number Publication Date
WO2014206185A1 true WO2014206185A1 (zh) 2014-12-31

Family

ID=49307101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079172 WO2014206185A1 (zh) 2013-06-24 2014-06-04 一种接触网和储能装置混合供电的动车组牵引系统

Country Status (2)

Country Link
CN (1) CN103350647B (zh)
WO (1) WO2014206185A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019025123A1 (de) * 2017-08-01 2019-02-07 Siemens Aktiengesellschaft Energieversorgungseinrichtung für ein schienenfahrzeug
EP3705336A4 (en) * 2017-11-03 2021-07-28 CRRC Zhuzhou Locomotive Co., Ltd HYBRID RAIL TRAFFIC POWER CIRCUIT, ENERGY STORAGE BATTERY PACK AND ASSOCIATED POWER SUPPLY PROCESS

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103350647B (zh) * 2013-06-24 2016-06-08 长春轨道客车股份有限公司 一种接触网和储能装置混合供电的动车组牵引系统
CN104071018B (zh) * 2014-07-22 2016-06-01 南车株洲电力机车有限公司 一种列车供电电路、列车及供电控制方法
CN104290762B (zh) * 2014-10-17 2017-03-08 中车四方车辆有限公司 混合动力式动力分散型动车组
CN104836511A (zh) * 2015-02-17 2015-08-12 中国铁道科学研究院 一种牵引变流器主电路
CN105116260B (zh) * 2015-09-07 2017-10-17 西南交通大学 一种直流牵引变电所再生电能利用试验系统
WO2017084716A1 (en) * 2015-11-19 2017-05-26 Abb Schweiz Ag A converter arrangement using converter modules
CN105539164B (zh) * 2016-01-22 2018-08-21 株洲南车时代电气股份有限公司 一种双源制电力机车变流装置
CN106042957B (zh) * 2016-06-01 2019-04-30 北京交通大学 一种混合动力动车组牵引变流器过分相控制策略
CN105857320B (zh) * 2016-06-01 2019-03-01 北京交通大学 混合动力动车组牵引传动系统能量管理策略
CN106564508A (zh) * 2016-11-01 2017-04-19 株洲中车时代电气股份有限公司 一种无火回送方法
CN107284252A (zh) * 2016-12-20 2017-10-24 中铁电气化局集团有限公司 一种地铁牵引供电系统及方法
CN109421548B (zh) * 2017-08-31 2021-03-23 株洲中车时代电气股份有限公司 一种主辅一体化牵引系统的控制方法
CN107650690B (zh) * 2017-09-20 2020-12-04 株洲时代电子技术有限公司 一种铁路工程机械混合动力源控制方法
CN107554299B (zh) * 2017-09-20 2021-04-02 株洲时代电子技术有限公司 一种铁路工程机械混合动力源系统
CN107554313B (zh) * 2017-09-22 2019-10-11 中车唐山机车车辆有限公司 轨道车辆牵引系统及轨道车辆
CN108032862B (zh) * 2017-12-08 2020-01-17 中车株洲电力机车有限公司 一种内燃动车组混合供电动力系统及供电方法
CN110014864B (zh) * 2017-12-20 2021-02-09 中车长春轨道客车股份有限公司 一种列车牵引救援方法及系统
CN110549899B (zh) * 2018-06-01 2021-07-09 比亚迪股份有限公司 轨道交通车辆的充电方法和充电系统
CN109624791A (zh) * 2018-07-10 2019-04-16 北京千驷驭电气有限公司 牵引变流器和动车组牵引传动系统
CN108944474A (zh) * 2018-07-25 2018-12-07 合肥市智信汽车科技有限公司 一种车辆运输牵引系统
CN110855158A (zh) * 2018-08-20 2020-02-28 中车株洲电力机车研究所有限公司 变流器模块及变流器
CN109450285B (zh) * 2018-11-01 2023-10-31 北京交通大学 轨道交通车辆主辅一体化模式能量双向流动辅助供电系统
CN110539668B (zh) * 2019-01-29 2021-01-22 中车长春轨道客车股份有限公司 一种动车组应急牵引系统
CN111923757B (zh) * 2019-05-13 2024-05-14 中车株洲电力机车研究所有限公司 一种轨道列车的网侧变流系统及其控制方法
CN112953255B (zh) * 2019-12-11 2024-01-23 株洲中车时代电气股份有限公司 一种牵引变流器
CN113300579A (zh) * 2020-02-24 2021-08-24 株洲中车时代电气股份有限公司 一种工程车的多源供电设备及系统
CN111959530B (zh) * 2020-08-25 2022-12-27 西南交通大学 一种列车应急储能电源拓扑结构及其控制方法
CN113263920B (zh) * 2021-04-27 2022-05-17 西南交通大学 电气化铁路车载混合式储能系统及其能量管理方法
CN113489315B (zh) * 2021-06-30 2022-09-09 中车大连电力牵引研发中心有限公司 基于一体化设计间歇式供电牵引控制器
CN113682153B (zh) * 2021-08-27 2024-04-05 中车青岛四方机车车辆股份有限公司 基于受电弓及动力电池的双电源供电控制方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1150934A (zh) * 1995-07-21 1997-06-04 财团法人铁道总合技术研究所 再生混合电源系统
CN103350647A (zh) * 2013-06-24 2013-10-16 长春轨道客车股份有限公司 一种接触网和储能装置混合供电的动车组牵引系统
CN203372079U (zh) * 2013-06-24 2014-01-01 长春轨道客车股份有限公司 一种接触网和储能装置混合供电的动车组牵引系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9193268B2 (en) * 2001-03-27 2015-11-24 General Electric Company Hybrid energy power management system and method
JP4643355B2 (ja) * 2005-05-09 2011-03-02 株式会社東芝 電気車制御装置
CN1970359A (zh) * 2006-12-01 2007-05-30 西安交通大学 一种充电式混合动力电动汽车的动力系统
CN201506271U (zh) * 2009-09-14 2010-06-16 广州智光电气股份有限公司 一种电力机车牵引同相供电装置
US8364332B2 (en) * 2010-01-15 2013-01-29 GM Global Technology Operations LLC Control algorithm for low-voltage circuit in hybrid and conventional vehicles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1150934A (zh) * 1995-07-21 1997-06-04 财团法人铁道总合技术研究所 再生混合电源系统
CN103350647A (zh) * 2013-06-24 2013-10-16 长春轨道客车股份有限公司 一种接触网和储能装置混合供电的动车组牵引系统
CN203372079U (zh) * 2013-06-24 2014-01-01 长春轨道客车股份有限公司 一种接触网和储能装置混合供电的动车组牵引系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FAN, YUNXIN; ET AL.: "Research and Development of Dual Power Electric Shunting Locomotives", ELECTRIC LOCOMOTIVES & MASS TRANSIT VEHICLES, vol. 35, no. 5, 20 September 2012 (2012-09-20), pages 11 - 15 *
HE, LIANG; ET AL.: "Electric Drive and Control System of CKD6E Hybrid Power Locomotive", ELECTRIC DRIVE FOR LOCOMOTIVES, no. 4, 10 July 2012 (2012-07-10), pages 18 - 22 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019025123A1 (de) * 2017-08-01 2019-02-07 Siemens Aktiengesellschaft Energieversorgungseinrichtung für ein schienenfahrzeug
EP3705336A4 (en) * 2017-11-03 2021-07-28 CRRC Zhuzhou Locomotive Co., Ltd HYBRID RAIL TRAFFIC POWER CIRCUIT, ENERGY STORAGE BATTERY PACK AND ASSOCIATED POWER SUPPLY PROCESS

Also Published As

Publication number Publication date
CN103350647A (zh) 2013-10-16
CN103350647B (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
WO2014206185A1 (zh) 一种接触网和储能装置混合供电的动车组牵引系统
WO2014206079A1 (zh) 接触网、动力包和储能装置混合供电的动车组牵引系统
WO2014206184A1 (zh) 一种接触网和动力包混合供电的动车组牵引系统
WO2014206080A1 (zh) 一种动力包和储能装置混合供电的动车组牵引系统
WO2014206081A1 (zh) 一种储能装置供电的动车组牵引系统
WO2019085228A1 (zh) 一种轨道交通混合动力电路、储能动力包及其供电方法
CN203372078U (zh) 接触网、动力包和储能装置混合供电的动车组牵引系统
CN207328441U (zh) 一种电力机车牵引系统
US9025352B2 (en) Transformer tap-changing circuit and method of making same
WO2018040367A1 (zh) 一种内燃动车组及其供电系统及牵引控制方法
WO2018040368A1 (zh) 一种内燃动车组及其供电系统及牵引控制方法
CN205632170U (zh) 一种含储能的低压逆变回馈式牵引供电系统
WO2020019540A1 (zh) 双向高频辅助变流系统
WO2019119495A1 (zh) 一种列车牵引救援方法及系统
CN203372079U (zh) 一种接触网和储能装置混合供电的动车组牵引系统
WO2020057279A1 (zh) 一种干线混合动力机车组控制系统及方法
WO2011113191A1 (zh) 制动能量管理系统及其控制方法
CN104135055A (zh) 一种工程车牵引充电机
CN206086434U (zh) 一种混合牵引供电装置
WO2020097896A1 (zh) 一种油电混合动力机车能量管理控制系统和控制方法
CN106877479A (zh) 一种车载超级电容储能系统控制方法
CN105083034A (zh) 一种交直电力机车牵引装置及系统
CN203318183U (zh) 一种接触网和动力包混合供电的动车组牵引系统
CN109768721A (zh) 一种智能化能量双向流动的三电平变流器控制方法
CN110071648A (zh) 一种城轨交通牵引供电系统中pwm整流器的运行控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818306

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14818306

Country of ref document: EP

Kind code of ref document: A1