WO2020019540A1 - 双向高频辅助变流系统 - Google Patents
双向高频辅助变流系统 Download PDFInfo
- Publication number
- WO2020019540A1 WO2020019540A1 PCT/CN2018/111155 CN2018111155W WO2020019540A1 WO 2020019540 A1 WO2020019540 A1 WO 2020019540A1 CN 2018111155 W CN2018111155 W CN 2018111155W WO 2020019540 A1 WO2020019540 A1 WO 2020019540A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- main circuit
- isolated
- power
- circuit
- way
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
- H02M3/33584—Bidirectional converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/53—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells in combination with an external power supply, e.g. from overhead contact lines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L9/00—Electric propulsion with power supply external to the vehicle
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J9/00—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
- H02J9/04—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/007—Plural converter units in cascade
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/285—Single converters with a plurality of output stages connected in parallel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the invention relates to a vehicle-mounted power system, in particular to a two-way high-frequency auxiliary converter system capable of realizing the emergency traction demand of a battery.
- the existing high-frequency auxiliary converter system adopts the setting of the pre-stage chopping + LLC resonant converter to replace the traditional power-frequency auxiliary converter system, thereby reducing the volume and weight of the system, increasing the power density, and realizing the lightening demand.
- the existing high-frequency auxiliary converter system still can only realize the unidirectional flow of energy, that is, the energy can only be charged by the traction DC bus through the high-frequency auxiliary converter system to charge the battery and power the load, and the energy cannot flow in the reverse direction.
- the low-voltage battery used can only supply power to the control circuit and load, and cannot directly provide energy to the traction motor.
- the emergency traction power is far greater than the normal power supply, and the frequency of emergency traction is low, coupled with the limited volume of the train, so the bidirectional change
- the flow system must have high power density, and the existing on-board auxiliary converter system cannot meet the above requirements.
- the technical problem to be solved by the present invention is that the existing on-board auxiliary converter system cannot achieve bidirectional transmission of energy, so that it cannot provide emergency energy for the traction motor when the on-board pannet is powered off.
- the present invention provides a two-way high-frequency auxiliary converter system, which includes a main circuit and a traction intermediate DC bus and a power battery respectively connected to the main circuit;
- the main circuit includes two of the two-way isolated DC / DC converters, which are used to realize two-way transmission of power between a traction intermediate DC bus and a power battery, and provide power to a load;
- the traction intermediate DC bus is used to realize bidirectional transmission of power between the traction motor and the main circuit;
- the power battery is configured to provide emergency power to the traction motor and the load through the main circuit.
- the main circuit includes:
- Two-way high-frequency isolated DC / DC module used to realize two-way high-frequency isolated DC conversion
- a bidirectional multiple chopper has one end connected to the bidirectional high-frequency isolated DC / DC module and the other end connected to the power battery for charging and discharging the power battery.
- the two-way high-frequency isolated DC / DC module includes a three-level buck-boost circuit and two-way two-way isolated DC / DC converters connected in parallel with the primary side in series and the secondary side, and two of the two-way isolated DC / DC.
- the primary side of the converter is connected in series with the three-level buck-boost circuit.
- the main circuit further includes:
- One-way charger has one end connected to the secondary sides of the two two-way isolated DC / DC converters, and the other end is used to connect a DC load and / or a DC battery.
- the unidirectional charger includes a DC / DC converter.
- the main circuit further includes:
- One end of a three-phase inverter is connected to the secondary sides of the two bidirectionally isolated DC / DC converters, and the other end is connected to an AC load.
- the main circuit further includes:
- One-way charger has one end connected to the output end of the three-phase inverter and the other end connected to a DC load and / or a DC battery.
- the unidirectional charger includes an uncontrolled rectifier circuit and a DC / DC converter connected in series, and an input terminal of the uncontrolled rectifier circuit is connected to an output terminal of the three-phase inverter, and the DC The output of the / DC converter is used to connect a DC load and / or a DC battery.
- control unit including a microcomputer control unit, an isolated driving unit, and a sensor detection circuit.
- the microcomputer control unit is connected to the main circuit through the isolated driving unit, and the sensor detection circuit is respectively connected to the main circuit.
- a microcomputer control unit is connected to the main circuit.
- the sensor detection circuit is configured to detect the main circuit and transmit a detection result to the microcomputer control unit.
- the microcomputer control unit is configured to The main circuit performs control.
- the microcomputer control unit controls the two-way isolated DC / DC converter, the two-way multiple chopper circuit, and the three-level step-up / step-down circuit in the main circuit by using a phase shift control method.
- one or more embodiments in the foregoing solution may have the following advantages or beneficial effects:
- the main circuit can be set to realize the bidirectional transmission of the electric power between the traction intermediate DC bus and the power battery, so that when the vehicle pantograph network works normally, the energy is provided by the traction DC
- the busbar charges the power battery and supplies power to the load through the main circuit.
- the power battery can supply power to the traction motor and load through the main circuit to achieve two-way high-frequency auxiliary current conversion.
- the three-level step-up and step-down circuit in the bidirectional high-frequency isolated DC / DC module realizes the bidirectional power conversion, and adopts multilevel out-of-phase control, which can reduce the voltage and current stress and improve the working ability of the circuit with wide input;
- the bi-directional isolated DC / DC converter in the high-frequency isolated DC / DC module realizes bi-directional power conversion, and realizes soft switching in the full load range in both forward and reverse directions, improving conversion efficiency, and improving the utilization efficiency of power batteries during emergency power supply.
- This application uses multi-level technology, multiple circuit technology, and soft switching technology to further increase the operating frequency of the bidirectional converter, reduce the system volume, and increase the system power density.
- FIG. 1 is a schematic structural diagram of a two-way high-frequency auxiliary converter system according to an embodiment of the present invention
- FIG. 2 shows a detailed structural diagram of the two-way high-frequency auxiliary converter system in FIG. 1.
- the existing on-board high-frequency auxiliary converter system for rail transit usually can only realize unidirectional flow of energy, that is, energy can only be charged by the traction DC bus through the high-frequency auxiliary converter system to charge the battery and power the load. Energy cannot flow in the reverse direction. .
- the low-voltage battery used can only supply power to the control circuit and load, and cannot directly provide energy to the traction motor.
- the emergency traction power needs to be much larger than the normal power supply, and the frequency of emergency traction is low, coupled with the limited volume of the train, so the two-way converter system must have High power density, and the existing on-board auxiliary converter system cannot meet the above requirements.
- an embodiment of the present invention provides a two-way high-frequency auxiliary converter system.
- FIG. 1 shows a schematic structural diagram of a two-way high-frequency auxiliary converter system according to an embodiment of the present invention.
- the bidirectional high-frequency auxiliary converter system of this embodiment includes a main circuit, a traction intermediate DC bus, a power battery, and a control unit, wherein the main circuit is connected to the traction intermediate DC bus, the power battery, and the control unit, respectively.
- the main circuit is used for bidirectional transmission of the power between the traction intermediate DC bus and the power battery, and provides power for the load. Specifically, when the bownet is normally powered, the main circuit outputs the power of the traction intermediate DC bus to the power battery and provides power to the load; when the bownet is powered off, the power battery sequentially passes the stored power through the main circuit and traction.
- the intermediate DC bus provides power to the traction motor and load.
- the main circuit includes a two-way high-frequency isolated DC / DC module, a three-phase inverter, and a two-way multiple chopper.
- One end of the two-way high-frequency isolated DC / DC module is connected to a three-phase inverter and a two-way multiple, respectively.
- Chopper connection One-way high-frequency isolated DC / DC module is used to perform high-frequency and high-efficiency two-way high-frequency isolated DC / DC conversion of electricity, so that the energy of the auxiliary system can flow in both directions, thereby realizing the emergency traction of the power battery when the pantograph is powered off. And auxiliary power functions.
- the three-phase inverter circuit is used to convert a DC voltage into a three-phase power frequency AC voltage to provide AC power to the load.
- the three-phase inverter circuit mainly converts the intermediate direct current DC700V into a three-phase power frequency AC voltage AC380V, which supplies AC auxiliary equipment such as train fans, air compressors, air conditioners and one-way chargers; it uses a three-phase four-wire system, which can For three-phase unbalanced load or single-phase load power supply, the three-phase four-wire system is realized by split capacitor type, autotransformer type and four bridge arm type.
- the bi-directional multiple chopper is a bi-directional non-isolated DC / DC converter, which realizes the function of a bi-directional charger.
- bidirectional multiple chopper constitutes a two-way charger for charging and discharging power batteries
- its normal power supply works in forward step-down mode, its input is the intermediate bus voltage DC700V, and its output is for power battery charging
- emergency traction power supply When it works in reverse boost mode, its input is connected to the power battery, and its output DC700V voltage is used as the input of two-way high-frequency isolated DC / DC module and three-phase auxiliary inverter.
- the two-way high-frequency isolated DC / DC module includes a three-level buck-boost circuit and two bi-directional isolated DC / DC converters connected in parallel on the primary side and the secondary side in parallel.
- the primary side of the two-way isolated DC / DC converter is connected, and the other end is used as an input or output terminal of the two-way high-frequency isolated DC / DC module, and is connected to the traction intermediate DC bus;
- the secondary side is used as the other input or output end of the bidirectional high-frequency isolated DC / DC module, and is connected to the input end of the three-phase inverter and the colored end of the bidirectional multiple chopper.
- the three-level buck-boost circuit is a bi-directional non-isolated DC / DC converter, which realizes bi-directional power conversion and adopts multi-level out-of-phase control, which can reduce the voltage and current stress and improve the working ability of the circuit under wide input conditions. It works in forward three-level step-down mode during normal power supply. Its input is traction DC bus voltage DC3600V, and its output is used as the input of bidirectional isolated DC / DC converter. It works in reverse three-level step-up mode during emergency traction power supply. , Its input is the output of a bidirectional isolated DC / DC converter, and its output to DC3600V provides emergency power for the traction inverter.
- the three-level buck-boost circuit can not only reduce the voltage stress of the chopper circuit, but also reduce the circuit current stress. .
- the bi-directional isolated DC / DC converter can be a bi-directional LLC resonant converter or a dual active bridge converter (DAB) or other high-frequency isolated DC / DC converters. It realizes bi-directional conversion of power and realizes full load range in both forward and reverse directions. Internal soft switching reduces switching losses and improves conversion efficiency, especially to improve the utilization efficiency of power batteries during emergency power supply.
- the two-way isolated DC / DC converters are connected in series on the primary side and in parallel on the secondary side, and adopt out-of-phase control. It works in forward mode during normal power supply, and its input is the output of a three-level buck-boost circuit, and its output is DC700V bus voltage.
- the three-level buck-boost technology can not only reduce the voltage stress of the chopper circuit, but also reduce the current stress of the circuit; the three-level buck-boost circuit and the bidirectional isolated DC / DC converter jointly realize the bidirectional energy flow of the auxiliary system.
- the traction intermediate DC bus is used for bidirectional transmission of the power between the traction motor and the main circuit; the power battery is used for emergency power supply to the traction motor and the load.
- the control unit is used to control and detect the working state of the main circuit. It includes a microcomputer control unit and an isolated driving unit connected to each other.
- the microcomputer control unit is connected to the main circuit through the isolated driving unit, and controls the working state of the main circuit by controlling the components in the main circuit.
- the control unit also includes a sensor detection circuit.
- the sensor detection circuit is respectively connected to the microcomputer control unit and the main circuit, and is used to detect the working status of each element in the main circuit and send the detection result to the microcomputer control unit.
- the microcomputer control unit Analyze the detection results and control the working state of the main circuit based on the analysis results.
- the microcomputer control unit adopts the out-of-phase control method for the bidirectional isolated DC / DC converter, the bidirectional multiple chopper circuit, and the three-level buck-boost circuit.
- the microcomputer control unit also has the function of storing and allowing downloading of the detection results.
- the load includes an AC load, a DC load, and a DC battery.
- the AC load is connected to the output of the three-phase inverter.
- the main circuit also includes a one-way charger, which is used to power the train's DC equipment, specifically the DC load and the DC battery. It can be composed of three-phase uncontrolled rectification and half-bridge circuit or full-bridge circuit. It can be designed as a hard switch or a soft switch.
- the unidirectional charger includes an uncontrolled rectifier circuit and a DC / DC converter connected in series, an input terminal of the uncontrolled rectifier circuit is used as an input terminal of the unidirectional charger, and an output terminal of the DC / DC converter is used as unidirectional charging. Machine output.
- the DC / DC converter is a direct current DC / DC converter.
- the input of the uncontrolled rectifier circuit is connected to the output of the three-phase inverter; the output of the DC / DC converter is connected to a DC load and a DC battery, respectively.
- the DC battery is a 110V battery.
- the DC battery can supply power to the control unit, and it can also supply DC loads when the pantograph is powered off.
- FIG. 2 shows The specific structure diagram of the two-way high-frequency auxiliary converter system in FIG. 1 will be described in detail with reference to FIG. 2.
- the two-way high-frequency auxiliary converter system includes a main circuit 10, a control unit 20, a power battery 12, and a load 30.
- the main circuit 10 includes a bidirectional high-frequency isolated DC / DC module 11, a three-phase inverter 5, a bidirectional multiple chopper 4, and a unidirectional charger 6.
- the bidirectional high-frequency isolated DC / DC module 11 includes three levels. Buck-boost circuit 1, and two-way isolated DC / DC converters 2 and 3. Among them, the primary sides of the two-way isolated DC / DC converters 2 and 3 are connected in series and the secondary sides are connected in parallel, and the primary sides of the two-way isolated DC / DC converters 2 and 3 are connected to the three-level buck-boost circuit 1.
- the bi-directional high-frequency isolated DC / DC module 11 converts the traction intermediate DC bus voltage DC3600V to the auxiliary intermediate DC bus DC700V voltage, and powers the three-phase inverter 5 and the bidirectional multiple chopper 4; during emergency power supply, the power battery 12 Discharge to DC700V auxiliary intermediate DC bus via bidirectional multiple chopper 4; part of the energy is converted to traction intermediate DC bus voltage DC3600V by bidirectional high-frequency isolated DC / DC module 11 and power the traction motor when the pantograph network is powered off; The other part of the energy supplies power to the train load and control circuit via the three-phase inverter 5 and the one-way charger 6.
- the output power of the bidirectional high-frequency isolated DC / DC module is 220kW.
- the load includes an AC load 13, a DC load 15, and a DC battery 14.
- the three-phase inverter 5 is used to invert the auxiliary intermediate DC bus DC700V voltage into a three-phase power frequency AC voltage AC380V in order to power the AC load 13 whether in normal power supply or emergency power supply.
- the unidirectional charger 6 is used to convert the three-phase power frequency AC voltage AC380V into 110V DC power for powering the DC battery 14 and the DC load 15 whether in normal power supply or emergency power supply.
- the control unit includes a microcomputer control unit 8, an isolated driving unit 7, and a sensor detection circuit 9.
- the microcomputer control unit 8 controls the working state of the main circuit 10 through the isolation driving unit 7 so that the bownet can normally transmit power during normal work and emergency work.
- the sensor detection circuit 9 is connected to each component in the main circuit 10 to detect the working status of each component, and at the same time sends the detected working status signal of each component to the microcomputer control unit 8 so that the microcomputer control unit 8 can Analyze and implement further control of the main circuit based on the analysis results.
- the main circuit is set to realize the bidirectional transmission of the electric power between the traction intermediate DC bus and the power battery, so that when the vehicle pantograph network works normally, the energy is provided by the traction DC bus.
- the main battery is used to charge the power battery and supply power to the load. When the vehicle pantograph is disconnected, the power battery can supply power to the traction motor and load through the main circuit to achieve bidirectional high-frequency auxiliary current conversion.
- the three-level step-up and step-down circuit in the bidirectional high-frequency isolated DC / DC module realizes the bidirectional power conversion, and adopts multilevel out-of-phase control, which can reduce the voltage and current stress and improve the working ability of the circuit with wide input;
- the bi-directional isolated DC / DC converter in the high-frequency isolated DC / DC module realizes bi-directional power conversion, and realizes soft switching in the full load range in both forward and reverse directions, improving conversion efficiency, and improving the utilization efficiency of power batteries during emergency power supply.
- This application uses multi-level technology, multiple circuit technology, and soft switching technology to further increase the operating frequency of the bidirectional converter, reduce the system volume, and increase the system power density.
- an embodiment of the present invention further provides another two-way high-frequency auxiliary converter system.
- the system of this embodiment is a modification based on the first embodiment.
- the main circuit also includes a unidirectional charger, which is used to supply the DC equipment of the train, specifically the DC load and the DC battery. It can be composed of three-phase uncontrolled rectification and half-bridge circuit or full-bridge circuit. It can be designed as a hard switch or a soft switch.
- the unidirectional charger includes a DC / DC converter, an input terminal of the DC / DC converter is used as an input terminal of the unidirectional charger, and an output terminal of the DC / DC converter is used as an output terminal of the unidirectional charger.
- the DC / DC converter is a direct current DC / DC converter.
- the input end of the DC / DC converter is connected to the output end of the bidirectional high-frequency isolated DC / DC module; the output end of the DC / DC converter is connected to a DC load and a DC battery, respectively.
- the unidirectional charger draws power from the auxiliary intermediate DC bus DC700V, which can eliminate the uncontrolled rectifier circuit, and its input range is small, which is conducive to parameter design and device selection.
- the DC battery is a 110V battery.
- the DC battery can supply power to the control unit, and it can also supply DC loads when the pantograph is powered off.
- Corresponding unidirectional chargers in other locations in the first embodiment are DC / DC converters, and all are connected to the output end of a bidirectional high-frequency isolated DC / DC module for supplying power to a DC load and a DC battery.
- the other components of the two-way high-frequency auxiliary converter system are the same as those of the first embodiment, so they are not described in detail here.
- the main circuit is set to realize the bidirectional transmission of the electric power between the traction intermediate DC bus and the power battery, so that when the vehicle pantograph network works normally, the energy is provided by the traction DC bus.
- the main battery is used to charge the power battery and supply power to the load. When the vehicle pantograph is disconnected, the power battery can supply power to the traction motor and load through the main circuit to achieve bidirectional high-frequency auxiliary current conversion.
- the three-level step-up and step-down circuit in the bidirectional high-frequency isolated DC / DC module realizes bidirectional power conversion and adopts multilevel out-of-phase control, which can reduce the voltage and current stress and improve the working ability of the circuit with wide input;
- the bi-directional isolated DC / DC converter in the high-frequency isolated DC / DC module realizes bi-directional power conversion, and realizes soft switching in the full load range in both forward and reverse directions, improving conversion efficiency, and improving the utilization efficiency of power batteries during emergency power supply.
- This application uses multi-level technology, multiple circuit technology, and soft switching technology to further increase the operating frequency of the bidirectional converter, reduce the system volume, and increase the system power density.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Dc-Dc Converters (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
一种双向高频辅助变流系统,包括主电路(10)以及分别与主电路关联的牵引中间直流母线、动力蓄电池(12)和控制单元(20)。该系统通过将主电路设置为将牵引中间直流母线和动力蓄电池之间的电量进行双向传输,实现双向高频辅助变流。
Description
本申请要求享有2018年07月27日提交的名称为“双向高频辅助变流系统”的中国专利申请CN201810842446.7的优先权,其全部内容通过引用并入本文中。
本发明涉及车载动力系统,具体涉及一种可实现蓄电池应急牵引需求的双向高频辅助变流系统。
随着动车高铁的普遍化,轨道交通已成为普遍的交通方式。传统的轨道交通车载辅助变流系统存在体积大以及功率密度低等问题,且传统的轨道交通的车载辅助变流系统的能量只能单向传递,即能量只能由牵引直流母线经过辅助变流系统为蓄电池充电并为负载供电,能量不能反向流动。
现有的高频辅助变流系统采用前级斩波+LLC谐振变换器的设置,来取代传统工频辅助变流系统,从而减小系统体积重量,提高功率密度,实现轻量化需求。然而现有的高频辅助变流系统仍然只能实现能量的单向流动,即能量只能由牵引直流母线经过高频辅助变流系统为蓄电池充电和为负载供电,能量不能反向流动。且使用的低压蓄电池因容量和放电倍率的限制,只能为控制电路和负载供电,无法直接为牵引电机提供能量。若要实现在弓网断电时对牵引电机提供应急供电,则需满足如下条件:应急牵引功率要远大于正常供电功率,且应急牵引使用频次低,又加上列车体积空间有限,所以双向变流系统必须具有高功率密度,而现有车载辅助变流系统还无法实现上述要求。
因此,亟需一种满足大功率化、高频化、高功率密度、高效率和轻量化的车载双向高频辅助变流系统。
发明内容
本发明所要解决的技术问题是现有的车载辅助变流系统无法实现能量的双向传递,从而在车载弓网断电时无法为牵引电机提供应急能量。
为了解决上述技术问题,本发明提供了一种双向高频辅助变流系统,包括主电路以及 与所述主电路分别连接的牵引中间直流母线和动力蓄电池;其中,
所述主电路,包括两路所述双向隔离DC/DC变换器,用于实现牵引中间直流母线和动力蓄电池之间电量的双向传输,并为负载提供电量;
所述牵引中间直流母线,用于实现牵引电机和所述主电路之间电量的双向传输;
所述动力蓄电池,用于通过所述主电路对所述牵引电机和所述负载进行应急供电。
优选的是,所述主电路包括:
双向高频隔离型DC/DC模块,用于实现双向高频隔离型直流变换;
双向多重斩波器,其一端连接所述双向高频隔离型DC/DC模块,另一端连接所述动力蓄电池,用于对所述动力蓄电池进行充放电。
优选的是,所述双向高频隔离型DC/DC模块包括三电平升降压电路和原边串联副边并联的两路双向隔离DC/DC变换器,两路所述双向隔离DC/DC变换器的原边串联后与所述三电平升降压电路连接。
优选的是,所述主电路还包括:
单向充电机,其一端连接所述两路双向隔离DC/DC变换器的副边,另一端用于连接直流负载和/或直流蓄电池。
优选的是,所述单向充电机包括DC/DC变换器。
优选的是,所述主电路还包括:
三相逆变器,其一端连接所述两路双向隔离DC/DC变换器的副边,另一端连接交流负载。
优选的是,所述主电路还包括:
单向充电机,其一端连接所述三相逆变器的输出端,另一端用于连接直流负载和/或直流蓄电池。
优选的是,所述单向充电机包括串联连接的不控整流电路和DC/DC变换器,所述不控整流电路的输入端与所述三相逆变器的输出端连接,所述DC/DC变换器的输出端用于连接直流负载和/或直流蓄电池。
优选的是,还包括控制单元,其包括微机控制单元、隔离驱动单元以及传感器检测电路,所述微机控制单元通过所述隔离驱动单元与所述主电路连接,所述传感器检测电路分别与所述微机控制单元和所述主电路连接,所述传感器检测电路用于对所述主电路进行检测,并将检测结果传输给所述微机控制单元,所述微机控制单元用于根据所述检测结果对所述主电路进行控制。
优选的是,所述微机控制单元对所述主电路中的所述双向隔离DC/DC变换器、双向 多重斩波电路以及三电平升降压电路均采用错相控制法控制。
与现有技术相比,上述方案中的一个或多个实施例可以具有如下优点或有益效果:
应用本发明实施例提供的双向高频辅助变流系统,通过将主电路设置为可实现牵引中间直流母线和动力蓄电池之间的电量进行双向传输,使得车载弓网正常工作时,能量由牵引直流母线经过主电路为动力蓄电池充电并为负载供电,车载弓网断开时,动力蓄电池经可经过主电路为牵引电机和负载供电,实现双向高频辅助变流。同时双向高频隔离型DC/DC模块中的三电平升降压电路,实现功率双向变换,采用多电平错相控制,可降低电压电流应力,提高电路宽输入情况下的工作能力;双向高频隔离型DC/DC模块中双向隔离DC/DC变换器,实现功率双向变换,正反向都实现全负载范围内软开关,提高变换效率,提高了应急供电时动力蓄电池的利用效率。本申请采用多电平技术、多重电路技术、以及软开关技术来进一步提高双向变换器工作频率,降低系统体积,提高系统功率密度。
本发明的其它特征和优点将在随后的说明书中阐述,并且部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例共同用于解释本发明,并不构成对本发明的限制。在附图中:
图1示出了本发明实施例一双向高频辅助变流系统的结构示意图;
图2示出了图1中双向高频辅助变流系统的具体结构示意图。
以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成技术效果的实现过程能充分理解并据以实施。需要说明的是,只要不构成冲突,本发明中的各个实施例以及各实施例中的各个特征可以相互结合,所形成的技术方案均在本发明的保护范围之内。
现有的轨道交通车载高频辅助变流系统通常只能实现能量的单向流动,即能量只能由牵引直流母线经过高频辅助变流系统为蓄电池充电和为负载供电,能量不能反向流动。且使用的低压蓄电池因容量和放电倍率的限制,只能为控制电路和负载供电,无法直接为牵引电机提供能量。若要实现在弓网断电时对牵引电机提供应急供电则需使得应急牵引功率要远大于正常供电功率,且应急牵引使用频次低,又加上列车体积空间有限,所以双向变 流系统必须具有高功率密度,而现有车载辅助变流系统还无法实现上述要求。
实施例一
为解决现有技术中存在的上述技术问题,本发明实施例提供了一种双向高频辅助变流系统。
图1示出了本发明实施例一双向高频辅助变流系统的结构示意图。参照图1,本实施例双向高频辅助变流系统包括主电路、牵引中间直流母线、动力蓄电池以及控制单元,其中,主电路分别与牵引中间直流母线、动力蓄电池和控制单元连接。
主电路用于将牵引中间直流母线和动力蓄电池之间的电量进行双向传输,并为负载提供电量。具体地,在弓网正常供电时,主电路将牵引中间直流母线的电量输出给动力蓄电池,并为负载提供电量;在弓网断电时,动力蓄电池将其中存储的电量依次通过主电路和牵引中间直流母线为牵引电机和负载提供电量。
更进一步地,主电路包括双向高频隔离型DC/DC模块、三相逆变器和双向多重斩波器,双向高频隔离型DC/DC模块的一端分别与三相逆变器和双向多重斩波器连接。双向高频隔离型DC/DC模块用于将电量进行高频高效率的双向高频隔离型DC/DC变换,使得辅助系统的能量可以双向流动,进而实现弓网断电时动力蓄电池的应急牵引和辅助供电功能。三相逆变电路用于将直流电压转换为三相工频交流电压,以实现为负载提供交流电。三相逆变电路主要将中间直流DC700V逆变成三相工频交流电压AC380V,为列车风机、空气压缩机、空调等交流辅助设备和单向充电机供电;其采用三相四线制,可以为三相不平衡负载或者单相负载供电,通过分裂电容式、自耦变压器式和四桥臂式来实现三相四线制。双向多重斩波器为双向非隔离型DC/DC变换器,实现双向充电机功能,由多重电路错相控制,降低了输出电流脉动和电流应力,提高了充放电控制精度,实现了动力蓄电池大倍率放电;双向多重斩波器构成双向充电机,为动力蓄电池进行充放电;其正常供电时工作在正向降压模式,其输入为中间母线电压DC700V,其输出为动力蓄电池充电;应急牵引供电时工作在反向升压模式,其输入连接动力蓄电池,其输出DC700V电压作为双向高频隔离型DC/DC模块和三相辅助逆变器的输入。
更进一步地,双向高频隔离型DC/DC模块包括三电平升降压电路和原边串联副边并联的两路双向隔离DC/DC变换器,三电平升降压电路的一端与两路双向隔离DC/DC变换器的原边连接,另一端作为双向高频隔离型DC/DC模块的一个输入端或输出端,与牵引中间直流母线连接;两路双向隔离DC/DC变换器的副边作为双向高频隔离型DC/DC模块的另一个输入端或输出端,与三相逆变器输入端和双向多重斩波器色一端连接。其中, 三电平升降压电路为双向非隔离型DC/DC变换器,实现功率双向变换,采用多电平错相控制,可降低电压电流应力,提高电路宽输入情况下的工作能力;其正常供电时工作在正向三电平降压模式,其输入为牵引直流母线电压DC3600V,其输出作为双向隔离DC/DC变换器的输入;应急牵引供电时工作在反向三电平升压模式,其输入为双向隔离DC/DC变换器的输出,其输出到DC3600V电压为牵引逆变器紧急供电,三电平升降压电路不仅能够减小斩波电路电压应力,还可以降低电路电流应力。
双向隔离DC/DC变换器可以是双向LLC谐振变换器或者双有源桥变换器(DAB)或者其他高频隔离型DC/DC变换器,实现功率的双向变换,正反向都实现全负载范围内软开关,降低开关损耗,提高变换效率,特别是提高应急供电时动力蓄电池的利用效率。且两路双向隔离DC/DC变换器原边串联,副边并联,采用错相控制。正常供电时工作在正向模式,其输入为三电平升降压电路的输出,其输出为DC700V母线电压;应急牵引供电时工作在反向模式,其输入为双向多重斩波电路的输出DC700V,其输出作为三电平升降压电路的输入。三电平升降压技术不仅能够减小斩波电路电压应力,还可以降低电路电流应力;三电平升降压电路和双向隔离DC/DC变换器共同实现辅助系统的能量双向流动。
牵引中间直流母线用于将牵引电机和主电路之间的电量进行双向传输;动力蓄电池用于对牵引电机和负载进行应急供电。
控制单元用于对主电路的工作状态进行控制及检测。其包括相互连接的微机控制单元和隔离驱动单元,微机控制单元通过隔离驱动单元和主电路连接,通过控制主电路中的元件来对主电路的工作状态进行控制。控制单元还包括传感器检测电路,传感器检测电路分别与微机控制单元和主电路分别连接,用于对主电路中的各个元件的工作状态进行检测,并将检测结果发送给微机控制单元,微机控制单元对检测结果进行分析,并根据分析结果对主电路的工作状态进行控制。需要说明的是,微机控制单元对双向隔离DC/DC变换器、双向多重斩波电路以及三电平升降压电路均采用错相控制法控制。微机控制单元对检测结果还具有存储及允许下载的功能。
负载包括交流负载、直流负载和直流蓄电池,交流负载与三相逆变器的输出端连接。
主电路还包括单向充电机,单向充电机用于为列车直流设备供电,具体为直流负载和直流蓄电池供电。可采用三相不控整流和半桥电路或者全桥电路构成,可以设计成硬开关或者软开关形式。优选地,单向充电机包括串联连接的不控整流电路和DC/DC变换器,不控整流电路的输入端作为单向充电机的输入端,DC/DC变换器的输出端作为单向充电机的输出端。其中,DC/DC变换器为直流DC/DC变换器。不控整流电路的输入端和三相逆变器输出端连接;DC/DC变换器的输出端分别与直流负载和直流蓄电池连接。优选地, 直流蓄电池为110V蓄电池。直流蓄电池可为控制单元供电,同时在弓网断电时也可为直流负载供电。
为了进一步说明本发明双向高频辅助变流系统的结构及工作时的工作状态,以下列举了一种本发明双向高频辅助变流系统的实施结构;如图2所示,图2示出了图1中双向高频辅助变流系统的具体结构示意图,结合图2对其进行详细的说明。
双向高频辅助变流系统包括主电路10、控制单元20、动力蓄电池12以及负载30。主电路10包括双向高频隔离型DC/DC模块11、三相逆变器5、双向多重斩波器4以及单向充电机6;双向高频隔离型DC/DC模块11又包括三电平升降压电路1、以及双向隔离DC/DC变换器2和3。其中,双向隔离DC/DC变换器2和3原边串联副边并联,且双向隔离DC/DC变换器2和3的原边与三电平升降压电路1相连接,在正常供电时,双向高频隔离型DC/DC模块11将牵引中间直流母线电压DC3600V电压变换为辅助中间直流母线DC700V电压,为三相逆变器5和双向多重斩波器4供电;在应急供电时,动力蓄电池12经双向多重斩波器4放电至DC700V辅助中间直流母线,一部分能量经双向高频隔离型DC/DC模块11变换为牵引中间直流母线电压DC3600V,在弓网断电时,为牵引电机供电;另一部分能量经三相逆变器5以及单向充电机6为列车负载及控制电路供电。双向高频隔离型DC/DC模块输出功率为220kW。
负载包括交流负载13、直流负载15以及直流蓄电池14。三相逆变器5无论是在正常供电还是应急供电时,均用于将辅助中间直流母线DC700V电压逆变成三相工频交流电压AC380V,以为交流负载13供电。同理单向充电机6无论是在正常供电还是应急供电时,均用于将三相工频交流电压AC380V转换为110V直流电,以为直流蓄电池14和直流负载15供电。
控制单元包括微机控制单元8、隔离驱动单元7以及传感器检测电路9。微机控制单元8通过隔离驱动单元7对主电路10的工作状态进行控制,以使得弓网在正常工作时和应急工作时均可以正常进行电量的传输。而传感器检测电路9与主电路中10中的各个元件连接,以检测各个元件的工作状态,同时将检测到的各个元件的工作状态信号发送给微机控制单元8,以便于微机控制单元8对其进行分析,并根据分析结果实现对主电路更进一步的控制。
附图2中,16+为牵引中间直流母线DC3600V+;16-为牵引中间直流母线DC3600V-;17+为辅助中间直流母线DC700V+;17-为辅助中间直流母线DC700V-;18A为三相逆变器输出工频交流AC380V的A相;18B为三相逆变器输出工频交流AC380V的B相;18C为三相逆变器输出工频交流AC380V的C相;18N为三相逆变器输出工频交流AC380V 的N相;19+为单向充电机输出直流母线DC110V+;19-为单向充电机输出直流母线DC110V-;20+为动力蓄电池母线DC650V+;20-为动力蓄电池母线DC650V-。
应用本发明实施例提供的双向高频辅助变流系统,通过将主电路设置为实现牵引中间直流母线和动力蓄电池之间的电量进行双向传输,使得车载弓网正常工作时,能量由牵引直流母线经过主电路为动力蓄电池充电并为负载供电,车载弓网断开时,动力蓄电池经可经过主电路为牵引电机和负载供电,实现双向高频辅助变流。同时双向高频隔离型DC/DC模块中的三电平升降压电路,实现功率双向变换,采用多电平错相控制,可降低电压电流应力,提高电路宽输入情况下的工作能力;双向高频隔离型DC/DC模块中双向隔离DC/DC变换器,实现功率双向变换,正反向都实现全负载范围内软开关,提高变换效率,提高了应急供电时动力蓄电池的利用效率。本申请采用多电平技术、多重电路技术、以及软开关技术来进一步提高双向变换器工作频率,降低系统体积,提高系统功率密度。
实施例二
为解决现有技术中存在的上述技术问题,本发明实施例还提供了另一种双向高频辅助变流系统。本实施例系统是在实施例一的基础上进行的修改。
与实时例一不同的地方为,主电路还包括单向充电机,单向充电机用于为列车直流设备供电,具体为直流负载和直流蓄电池供电。可采用三相不控整流和半桥电路或者全桥电路构成,可以设计成硬开关或者软开关形式。优选地,单向充电机包括DC/DC变换器,DC/DC变换器的输入端作为单向充电机的输入端,DC/DC变换器的输出端作为单向充电机的输出端。其中,DC/DC变换器为直流DC/DC变换器。DC/DC变换器的输入端和双向高频隔离型DC/DC模块的输出端连接;DC/DC变换器的输出端分别与直流负载和直流蓄电池连接。即单向充电机从辅助中间直流母线DC700V取电,从而可以省去不控整流电路,其输入范围小,有利于参数设计和器件选型。优选地,直流蓄电池为110V蓄电池。直流蓄电池可为控制单元供电,同时在弓网断电时也可为直流负载供电。
相应的实施例一中其它位置的单向充电机均为DC/DC变换器,且均与双向高频隔离型DC/DC模块的输出端连接,以用于对直流负载和直流蓄电池提供电量。
双向高频辅助变流系统的其他元件均与实施例一相同,因此在此不在对其进行赘述。
应用本发明实施例提供的双向高频辅助变流系统,通过将主电路设置为实现牵引中间直流母线和动力蓄电池之间的电量进行双向传输,使得车载弓网正常工作时,能量由牵引直流母线经过主电路为动力蓄电池充电并为负载供电,车载弓网断开时,动力蓄电池经可经过主电路为牵引电机和负载供电,实现双向高频辅助变流。同时双向高频隔离型DC/DC 模块中的三电平升降压电路,实现功率双向变换,采用多电平错相控制,可降低电压电流应力,提高电路宽输入情况下的工作能力;双向高频隔离型DC/DC模块中双向隔离DC/DC变换器,实现功率双向变换,正反向都实现全负载范围内软开关,提高变换效率,提高了应急供电时动力蓄电池的利用效率。本申请采用多电平技术、多重电路技术、以及软开关技术来进一步提高双向变换器工作频率,降低系统体积,提高系统功率密度。
虽然本发明所公开的实施方式如上,但所述的内容只是为了便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属技术领域内的技术人员,在不脱离本发明所公开的精神和范围的前提下,可以在实施的形式上及细节上作任何的修改与变化,但本发明的保护范围,仍须以所附的权利要求书所界定的范围为准。
Claims (10)
- 一种双向高频辅助变流系统,包括主电路以及与所述主电路分别连接的牵引中间直流母线和动力蓄电池;其中,所述主电路,包括两路所述双向隔离DC/DC变换器,用于实现牵引中间直流母线和动力蓄电池之间电量的双向传输,并为负载提供电量;所述牵引中间直流母线,用于实现牵引电机和所述主电路之间电量的双向传输;所述动力蓄电池,用于通过所述主电路对所述牵引电机和所述负载进行应急供电。
- 根据权利要求1所述的变流系统,其中,所述主电路包括:双向高频隔离型DC/DC模块,用于实现双向高频隔离型直流变换;双向多重斩波器,其一端连接所述双向高频隔离型DC/DC模块,另一端连接所述动力蓄电池,用于对所述动力蓄电池进行充放电。
- 根据权利要求2中所述的变流系统,其中,所述双向高频隔离型DC/DC模块包括三电平升降压电路和原边串联副边并联的两路双向隔离DC/DC变换器,两路所述双向隔离DC/DC变换器的原边串联后与所述三电平升降压电路连接。
- 根据权利要求3所述的变流系统,其中,所述主电路还包括:单向充电机,其一端连接所述两路双向隔离DC/DC变换器的副边,另一端用于连接直流负载和/或直流蓄电池。
- 根据权利要求4所述的变流系统,其中,所述单向充电机包括DC/DC变换器。
- 根据权利要求3所述的变流系统,其中,所述主电路还包括:三相逆变器,其一端连接所述两路双向隔离DC/DC变换器的副边,另一端连接交流负载。
- 根据权利要求6所述的变流系统,其中,所述主电路还包括:单向充电机,其一端连接所述三相逆变器的输出端,另一端用于连接直流负载和/或直流蓄电池。
- 根据权利要求7所述的变流系统,其中,所述单向充电机包括串联连接的不控整流电路和DC/DC变换器,所述不控整流电路的输入端与所述三相逆变器的输出端连接,所述DC/DC变换器的输出端用于连接直流负载和/或直流蓄电池。
- 根据权利要求3所述的变流系统,其中,还包括控制单元,其包括微机控制单元、隔离驱动单元以及传感器检测电路,所述微机控制单元通过所述隔离驱动单元与所述主电路连接,所述传感器检测电路分别与所述微机控制单元和所述主电路连接,所述传感器检测电路用于对所述主电路进行检测,并将检测结果传输给所述微机控制单元,所述微机控 制单元用于根据所述检测结果对所述主电路进行控制。
- 根据权利要求9所述的变流系统,其中,所述微机控制单元对所述主电路中的所述双向隔离DC/DC变换器、双向多重斩波电路以及三电平升降压电路均采用错相控制法控制。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810842446.7A CN110768521A (zh) | 2018-07-27 | 2018-07-27 | 双向高频辅助变流系统 |
CN201810842446.7 | 2018-07-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020019540A1 true WO2020019540A1 (zh) | 2020-01-30 |
Family
ID=69182158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/111155 WO2020019540A1 (zh) | 2018-07-27 | 2018-10-22 | 双向高频辅助变流系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110768521A (zh) |
WO (1) | WO2020019540A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111572567A (zh) * | 2020-04-24 | 2020-08-25 | 北京北交新能科技有限公司 | 轨道交通用无网自行走蓄电池与直流母线双向变流系统 |
CN113071436A (zh) * | 2021-04-20 | 2021-07-06 | 西华大学 | 一种电动汽车七合一高压集成系统电路结构及其工作方法 |
CN114024444A (zh) * | 2021-11-05 | 2022-02-08 | 中车青岛四方车辆研究所有限公司 | 一种适用于双压制式的辅助变流器及其控制方法 |
CN114454720A (zh) * | 2022-02-21 | 2022-05-10 | 中国铁道科学研究院集团有限公司 | 列车供电控制装置、系统以及方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111224413B (zh) * | 2020-03-12 | 2021-09-28 | 国家电网有限公司 | 一种三相电不平衡的应急调节系统 |
CN111532145B (zh) * | 2020-04-24 | 2024-05-31 | 北京北交新能科技有限公司 | 轨道交通用无网自走行储能及单向dc/dc变流系统 |
CN112583273B (zh) * | 2020-07-01 | 2022-04-12 | 株洲中车时代电气股份有限公司 | 一种磁浮车用双路输出功率电源及其控制方法 |
CN114928155A (zh) * | 2022-06-16 | 2022-08-19 | 江苏莱提电气股份有限公司 | 混合型动态电压恢复器、电网维护设备和微电网系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3006254A1 (en) * | 2014-10-08 | 2016-04-13 | Nissan Motor Manufacturing (UK) Limited | Propulsion and charger system for an electric vehicle |
CN106114531A (zh) * | 2016-08-30 | 2016-11-16 | 中车株洲电力机车有限公司 | 一种内燃动车组及其供电系统及牵引控制方法 |
CN106956598A (zh) * | 2017-04-11 | 2017-07-18 | 山东大学 | 一种提高功率密度的电力电子变压器牵引供电系统 |
CN107070282A (zh) * | 2017-05-17 | 2017-08-18 | 中国铁道科学研究院 | 一种辅助变流器、牵引动力单元及车辆 |
CN107769239A (zh) * | 2017-09-11 | 2018-03-06 | 北京交通大学 | 一种新型的交流电力电子变压器拓扑结构 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7595597B2 (en) * | 2006-01-18 | 2009-09-29 | General Electric Comapany | Vehicle propulsion system |
CN103496327B (zh) * | 2013-06-24 | 2015-09-30 | 长春轨道客车股份有限公司 | 一种动力包和储能装置混合供电的动车组牵引系统 |
CN105305828A (zh) * | 2014-06-26 | 2016-02-03 | 株洲南车时代电气股份有限公司 | 一种适应多工作模式的智能车载直流电源 |
CN104765337B (zh) * | 2015-02-05 | 2015-12-09 | 青岛四方车辆研究所有限公司 | 动车组牵引控制系统 |
CN105743344A (zh) * | 2016-04-14 | 2016-07-06 | 西安许继电力电子技术有限公司 | 一种带耦合电感的隔离型三电平双向直流-直流变换器 |
CN105790317B (zh) * | 2016-04-29 | 2019-04-05 | 株洲中车时代电气股份有限公司 | 一种适用于多种电源供电的轨道交通车辆主电路 |
CN107070255A (zh) * | 2017-05-17 | 2017-08-18 | 中国铁道科学研究院 | 一种牵引动力装置 |
CN107627860B (zh) * | 2017-09-13 | 2020-07-28 | 北京交通大学 | 一种实现无火回送的外接供电装置和方法 |
CN107650690B (zh) * | 2017-09-20 | 2020-12-04 | 株洲时代电子技术有限公司 | 一种铁路工程机械混合动力源控制方法 |
CN107554299B (zh) * | 2017-09-20 | 2021-04-02 | 株洲时代电子技术有限公司 | 一种铁路工程机械混合动力源系统 |
CN107878228B (zh) * | 2017-10-26 | 2023-10-03 | 北京北交新能科技有限公司 | 一种可实现动车组应急走行的新型辅助供电系统及方法 |
-
2018
- 2018-07-27 CN CN201810842446.7A patent/CN110768521A/zh active Pending
- 2018-10-22 WO PCT/CN2018/111155 patent/WO2020019540A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3006254A1 (en) * | 2014-10-08 | 2016-04-13 | Nissan Motor Manufacturing (UK) Limited | Propulsion and charger system for an electric vehicle |
CN106114531A (zh) * | 2016-08-30 | 2016-11-16 | 中车株洲电力机车有限公司 | 一种内燃动车组及其供电系统及牵引控制方法 |
CN106956598A (zh) * | 2017-04-11 | 2017-07-18 | 山东大学 | 一种提高功率密度的电力电子变压器牵引供电系统 |
CN107070282A (zh) * | 2017-05-17 | 2017-08-18 | 中国铁道科学研究院 | 一种辅助变流器、牵引动力单元及车辆 |
CN107769239A (zh) * | 2017-09-11 | 2018-03-06 | 北京交通大学 | 一种新型的交流电力电子变压器拓扑结构 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111572567A (zh) * | 2020-04-24 | 2020-08-25 | 北京北交新能科技有限公司 | 轨道交通用无网自行走蓄电池与直流母线双向变流系统 |
CN111572567B (zh) * | 2020-04-24 | 2024-05-31 | 北京北交新能科技有限公司 | 轨道交通用无网自行走蓄电池与直流母线双向变流系统 |
CN113071436A (zh) * | 2021-04-20 | 2021-07-06 | 西华大学 | 一种电动汽车七合一高压集成系统电路结构及其工作方法 |
CN113071436B (zh) * | 2021-04-20 | 2023-05-09 | 西华大学 | 一种电动汽车七合一高压集成系统电路结构及其工作方法 |
CN114024444A (zh) * | 2021-11-05 | 2022-02-08 | 中车青岛四方车辆研究所有限公司 | 一种适用于双压制式的辅助变流器及其控制方法 |
CN114024444B (zh) * | 2021-11-05 | 2023-08-08 | 中车青岛四方车辆研究所有限公司 | 一种适用于双压制式的辅助变流器及其控制方法 |
CN114454720A (zh) * | 2022-02-21 | 2022-05-10 | 中国铁道科学研究院集团有限公司 | 列车供电控制装置、系统以及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110768521A (zh) | 2020-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020019540A1 (zh) | 双向高频辅助变流系统 | |
US11752887B2 (en) | Apparatus for energy transfer using converter and method of manufacturing same | |
KR102368860B1 (ko) | Dc/dc 컨버터를 위한 시스템 및 방법 | |
CN109687722B (zh) | 一种电动汽车用集成多模式功率转换器及其控制方法 | |
CN103684202B (zh) | 集成驱动及充放电功能的电机控制器 | |
WO2021169143A1 (zh) | 一种兼容交流充电桩与直流充电桩的车载充电机 | |
CN101369735B (zh) | 紧急辅助负载的供电方法、辅助变换器及其铁道车辆 | |
US8816641B2 (en) | Bi-directional inverter-charger | |
CN106208641B (zh) | 一种交直流复用的电路 | |
CN109450285B (zh) | 轨道交通车辆主辅一体化模式能量双向流动辅助供电系统 | |
CN110768531A (zh) | 双向高频隔离型dc/dc模块 | |
CN102969932A (zh) | 一种多功能电流型双向ac/dc变流器及其控制方法 | |
Karshenas et al. | Basic families of medium-power soft-switched isolated bidirectional dc-dc converters | |
WO2021109456A1 (zh) | 一种电力机车及其牵引电路 | |
CN109367417A (zh) | 具有充电及v2g功能的两级双向功率变换器及控制方法 | |
CN209079670U (zh) | 具有充电及v2g功能的两级双向功率变换器 | |
CN105083268A (zh) | 一种燃料电池混合动力汽车系统的控制方法 | |
CN113263924B (zh) | 列车储能及应急冗余一体化供电电路及其控制方法和控制系统 | |
CN112224052B (zh) | 能量转换装置、动力系统以及车辆 | |
CN220410295U (zh) | 车载供电装置、动力总成、电动汽车 | |
US12107454B1 (en) | Efficient charging of an external energy storage system from a vehicle battery system | |
KR102644445B1 (ko) | 충전 시 전기차용 배터리의 전류 리플 제거를 위한 위상 천이 풀 브릿지 컨버터 및 그 이용 방법 | |
CN219394710U (zh) | 一种电动汽车的功率变换器 | |
Bharathiraja et al. | A Common Ground Bridgeless Buck Boost PFC Converter With Negative DC Output Voltage Based on Board Bi Directional Charger for Electric Vehicles | |
CN113346769A (zh) | 混合式整流装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18927592 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18927592 Country of ref document: EP Kind code of ref document: A1 |