WO2021169143A1 - 一种兼容交流充电桩与直流充电桩的车载充电机 - Google Patents

一种兼容交流充电桩与直流充电桩的车载充电机 Download PDF

Info

Publication number
WO2021169143A1
WO2021169143A1 PCT/CN2020/101125 CN2020101125W WO2021169143A1 WO 2021169143 A1 WO2021169143 A1 WO 2021169143A1 CN 2020101125 W CN2020101125 W CN 2020101125W WO 2021169143 A1 WO2021169143 A1 WO 2021169143A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
phase
acdc
charging pile
bus
Prior art date
Application number
PCT/CN2020/101125
Other languages
English (en)
French (fr)
Inventor
刘钧
冯颖盈
姚顺
刘骥
徐金柱
Original Assignee
深圳威迈斯新能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳威迈斯新能源股份有限公司 filed Critical 深圳威迈斯新能源股份有限公司
Publication of WO2021169143A1 publication Critical patent/WO2021169143A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4233Arrangements for improving power factor of AC input using a bridge converter comprising active switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates to the field of electric vehicles, in particular to a vehicle-mounted charger compatible with an AC charging pile and a DC charging pile.
  • FIG. 1 is a functional block diagram of a charging system matching the current 300-400V power battery
  • Figure 2 is its circuit diagram. It can work normally with the highest voltage 500V or 750V DC piles currently laid out in large numbers
  • Figure 3 is a schematic block diagram of a charging system that matches a 700-800V power battery with an additional power conversion component
  • Figure 4 is its circuit diagram.
  • the present invention proposes a vehicle-mounted charger compatible with AC charging piles and DC charging piles.
  • a vehicle-mounted charger compatible with AC charging piles and DC charging piles which includes an ACDC module, an internal DC bus and a switching module, wherein the ACDC module is used to connect the AC charging pile to connect the AC power Converted into direct current and transmitted to the internal DC bus; the switching module is used to connect the DC charging pile, and connect the direct current output from the DC charging pile to the input end of the ACDC module or the internal DC bus according to the switching instruction ;
  • the internal DC bus is connected to the vehicle load to charge it.
  • the output end of the internal DC bus is connected in series with a DCDC module, and the DCDC module converts the amplitude of the DC on the internal DC bus to the vehicle load.
  • the DCDC module is connected in series with a power factor correction module where it is connected to the internal DC bus, and the power factor correction module is used to correct the power factor.
  • the switching module can connect the positive pole output by the DC charging pile to the positive bus bar of the internal DC bus, and connect the negative pole output by the DC charging pile to the negative bus bar of the internal DC bus.
  • the switching module can connect the positive pole of the DC charging pile output to the input terminal of the ACDC module, and connect the negative pole of the DC charging pile output to the negative bus of the internal DC bus; or equivalently, The negative pole of the DC charging pile output is connected to the input end of the ACDC module, and the positive pole of the DC charging pile output is connected to the positive pole of the internal bus bar.
  • the ACDC module adopts a single-phase ACDC module, and the switching module can connect the positive pole of the DC charging pile output to the live wire input end of the single-phase ACDC module.
  • the ACDC module adopts a single-phase ACDC module, and the switching module can connect the positive pole output by the DC charging pile to the live wire input terminal and the neutral wire input terminal of the single-phase ACDC module.
  • the ACDC module adopts a three-phase ACDC module, and the switching module can connect the positive pole of the DC charging pile output to a phase line input end of the three-phase ACDC module.
  • the ACDC module adopts a three-phase ACDC module, and the switching module can connect the positive pole of the DC charging pile output to the three phase line input ends of the three-phase ACDC module.
  • the three-phase ACDC module adopts a three-phase bridgeless PFC module with a neutral line, a three-phase BUCK type PFC module, a three-phase BUCK type PFC circuit with a neutral line, a three-phase BUCK type PFC cascaded BOOST module, and a three-phase belt.
  • a three-phase bridgeless PFC module with a neutral line a three-phase BUCK type PFC module
  • a three-phase BUCK type PFC circuit with a neutral line a three-phase BUCK type PFC cascaded BOOST module
  • a three-phase belt a three-phase belt.
  • One of the midline BUCK PFC cascaded BOOST modules One of the midline BUCK PFC cascaded BOOST modules.
  • the switching module adopts one of contactors, relays, semiconductors, and electronic switches.
  • the DCDC module adopts an isolated DCDC module or a non-isolated DCDC module.
  • the circuit of the on-board charger By rationally designing the circuit of the on-board charger, it can achieve both AC/DC conversion function and DC/DC conversion; it is effectively compatible with AC charging piles and 500V/750V DC charging piles, and at the same time solves the problem of power battery voltage increase
  • the charging voltage range of the whole vehicle is matched with the current basic charging facilities; the present invention reasonably shares the power conversion circuit of the existing parts of the whole vehicle, and only needs to make partial adjustments to the existing parts without adding additional separate parts ; Effectively compatible with various charging infrastructures, reducing the renewal and investment of charging infrastructures, and facilitating the rapid introduction of new models to the market.
  • Figure 1 is a functional block diagram of a charging system matching 300-400V power batteries in the prior art
  • Figure 2 is a circuit diagram of a charging system matching 300-400V power batteries in the prior art
  • Figure 3 is a functional block diagram of a charging system matching 700-800V power batteries in the prior art
  • Figure 4 is a circuit diagram of a charging system matching 700-800V power batteries in the prior art
  • Fig. 5 is a functional block diagram of the charging system of the present invention.
  • FIG. 6 is a circuit diagram of the charging system of the present invention.
  • FIG. 7 is a block diagram of the principle of the present invention.
  • Figure 8 is a single-phase ACDC module and isolated DCDC topology realization circuit diagram
  • Figure 9 is a single-phase (rectifier) bridgeless ACDC and isolated DCDC topology realization circuit diagram
  • Figure 10 is another single-phase (rectifier) bridgeless ACDC and isolated DCDC topology realization circuit diagram
  • Figure 11 is a three-phase ACDC and isolated DCDC topology realization circuit diagram
  • Figure 12 is a three-phase (rectifier) bridgeless PFC isolation DCDC topology realization circuit diagram
  • Figure 13 is another three-phase (rectifier) bridgeless PFC isolation DCDC topology realization circuit diagram
  • Figure 14 is a three-phase (rectifier) bridgeless PFC topology circuit diagram with neutral;
  • Figure 15 is a three-phase BUCK type PFC topology and non-isolated DCDC topology implementation circuit diagram
  • Figure 16 is a three-phase with neutral BUCK type PFC topology and non-isolated DCDC topology implementation circuit diagram
  • Figure 17 is a three-phase BUCK type PFC cascade topology realization circuit diagram
  • Figure 18 is another three-phase BUCK-type PFC cascade topology with neutral circuit diagram.
  • the invention discloses a vehicle-mounted charger compatible with an AC charging pile and a DC charging pile, which includes an ACDC module, an internal DC bus and a switching module. And transmitted to the internal DC bus; the switching module is used to connect the DC charging pile, and connect the DC power output by the DC charging pile to the input end of the ACDC module or the internal DC bus according to the switching instruction; The DC bus is connected to the vehicle load to charge it.
  • FIG. 5 it is a block diagram of the principle of the charging system of the present invention.
  • the on-board charger When in use, the on-board charger is connected to either an AC charging pile or a DC charging pile, and can receive electric energy from the AC charging pile or the DC charging pile to charge the vehicle.
  • Fig. 6 shows the circuit diagram of the charging system of the present invention, in which the upper left part is an AC charging pile, the lower left part is a DC charging pile, and the right side is an on-board charger.
  • Cooperate with the current large-scale laying of the highest voltage 500V or 750V DC piles realize the compatibility of AC piles and DC piles in a single component. And by reasonably sharing the internal power conversion circuit, the system cost can be saved to the utmost extent.
  • the output end of the internal DC bus is connected in series with a DCDC module, and the DCDC module converts the amplitude of the DC on the internal DC bus to the vehicle load.
  • the DCDC module is connected in series with a power factor correction module where the internal DC bus is connected, and the power factor correction module is used to correct the power factor.
  • Either AC or DC can be used as the input of this on-board charger.
  • the AC input passes through the ACDC module to the DCDC module, and the final output is a DC voltage to charge the power battery.
  • the DC input is connected to the ACDC module through the switching device, shares the power circuit in the ACDC module, and finally passes through the DCDC module and then outputs a DC voltage to charge the power battery.
  • the switching module can be either a dual-switch switching device or a multi-switch switching device.
  • the DCDC module adopts an isolated DCDC module or a non-isolated DCDC module, even without this level of DCDC module.
  • the switching module adopts one of contactors, relays, semiconductors, and electronic switches.
  • the switching module may connect the positive pole of the DC charging pile to the positive bus of the internal DC bus, and connect the negative pole of the DC charging pile to the negative bus of the internal DC bus.
  • the ACDC module may be a single-phase ACDC module.
  • FIG. 8 shows a circuit diagram of a single-phase ACDC module and an isolated DCDC topology implementation.
  • 501 is a switching module, which can be implemented using contactors, relays, semiconductor devices, etc.
  • 502 is a rectifier bridge circuit, and the diode in the circuit can also be replaced by a MOSFET.
  • 503 is a single-switch power factor correction circuit.
  • 504 is the implementation circuit of the DCDC module.
  • the example is an isolated full-bridge LLC circuit. DCDC circuits such as half-bridge LLC, hard-switched full-bridge/half-bridge, phase-shifted full-bridge/half-bridge, dual-tube forward can also be used.
  • the diodes in the circuit shown can also be replaced by MOSFET or IGBT parallel diodes.
  • the MOSFET in the circuit shown can also be replaced by an IGBT in parallel with a diode.
  • the output of one switch or multiple switches can also be connected to the AC input.
  • the ACDC module can be a three-phase ACDC module.
  • Fig. 11 shows a circuit diagram of a three-phase ACDC and isolated DCDC topology implementation.
  • 801 is a switching module, which can be implemented using contactors, relays, semiconductor devices, etc.
  • 802 is a three-phase rectifier bridge circuit.
  • 803 is a single-switch power factor correction circuit.
  • 804 is the implementation circuit of the DCDC module.
  • the example is an isolated full-bridge LLC circuit. DCDC circuits such as half-bridge LLC, hard-switched full-bridge/half-bridge, phase-shifted full-bridge/half-bridge, dual-tube forward can also be used.
  • the diodes in the circuit shown can also be replaced by MOSFET or IGBT parallel diodes.
  • the MOSFET in the circuit shown can also be replaced by an IGBT in parallel with a diode.
  • the output of one switch or multiple switches can also be connected to the AC input.
  • the switching module can connect the positive pole of the DC charging pile output to the input terminal of the ACDC module, and connect the negative pole of the DC charging pile output to the negative bus of the internal DC bus; or equivalently, the DC charging The negative pole of the pile output is connected to the input end of the ACDC module, and the positive pole of the DC charging pile output is connected to the positive pole of the internal bus bar.
  • the ACDC module adopts a single-phase ACDC module, and the switching module can connect the positive pole of the DC charging pile output to the live wire input end of the single-phase ACDC module.
  • Figure 9 shows a circuit diagram of a single-phase (rectifier) bridgeless ACDC and isolated DCDC topology.
  • 601 is a switching module, which can be implemented using contactors, relays, semiconductor devices, etc.
  • 602 is a totem pole bridgeless PFC circuit.
  • 603 is the implementation circuit of the DCDC module.
  • the example is an isolated full-bridge LLC circuit. DCDC circuits such as half-bridge LLC, hard-switched full-bridge/half-bridge, phase-shifted full-bridge/half-bridge, dual-tube forward can also be used.
  • the diodes in the circuit shown can also be replaced by MOSFET or IGBT parallel diodes.
  • the MOSFET in the circuit shown can also be replaced by an IGBT in parallel with a diode.
  • the output of one switch or multiple switches can also be connected to the AC input.
  • the ACDC module adopts a single-phase ACDC module, and the switching module can connect the positive pole of the DC charging pile to the live wire input terminal and the neutral wire input terminal of the single-phase ACDC module.
  • Figure 10 shows another single-phase (rectifier) bridgeless ACDC and isolated DCDC topology implementation circuit diagram.
  • 701 is a switching module, which can be implemented using contactors, relays, semiconductor devices, etc.
  • 702 is a full-bridge PFC circuit.
  • 703 is the implementation circuit of the DCDC module.
  • the example is an isolated full-bridge LLC circuit.
  • DCDC circuits such as half-bridge LLC, hard-switched full-bridge/half-bridge, phase-shifted full-bridge/half-bridge, and dual-tube forward can also be used.
  • the diodes in the circuit shown can also be replaced by MOSFET or IGBT parallel diodes.
  • the MOSFET in the circuit shown can also be replaced by an IGBT in parallel with a diode.
  • the ACDC module adopts a three-phase ACDC module, and the switching module can connect the positive pole of the DC charging pile output to a phase line input terminal of the three-phase ACDC module.
  • the ACDC module adopts a three-phase ACDC module, and the switching module can connect the positive pole of the DC charging pile output to the three phase line input ends of the three-phase ACDC module.
  • Figure 12 shows a three-phase (rectifier) bridgeless PFC isolation DCDC topology realization circuit diagram
  • 901 is a switching device, which can be implemented using contactors, relays, semiconductor devices, etc.
  • 902 is a three-phase bridgeless PFC circuit.
  • 903 is the implementation circuit of the DCDC module.
  • the example is an isolated full-bridge LLC circuit.
  • DCDC circuits such as half-bridge LLC, hard-switched full-bridge/half-bridge, phase-shifted full-bridge/half-bridge, dual-tube forward, etc. can also be used.
  • the diodes in the circuit shown can also be replaced by MOSFET or IGBT parallel diodes.
  • the MOSFET in the circuit shown can also be replaced by an IGBT in parallel with a diode.
  • the three-phase ACDC module adopts a three-phase bridgeless PFC module with a neutral line, a three-phase BUCK type PFC module, a three-phase BUCK type PFC circuit with a neutral line, a three-phase BUCK type PFC cascaded BOOST module, and a three-phase BUCK type with a neutral line.
  • PFC cascaded BOOST modules PFC is a power factor correction circuit
  • Buck is a step-down conversion circuit
  • BOOST is a step-up conversion circuit.
  • FIG. 13 shows another three-phase (rectifier) bridgeless PFC isolated DCDC topology realization circuit.
  • 1001 is a switching module, which can be implemented using contactors, relays, semiconductor devices, etc.
  • 1002 is a three-phase bridgeless PFC circuit with a neutral line.
  • 1003 is the implementation circuit of the DCDC module.
  • the example is an isolated full-bridge LLC circuit.
  • DCDC circuits such as half-bridge LLC, hard-switched full-bridge/half-bridge, phase-shifted full-bridge/half-bridge, dual-tube forward can also be used.
  • the diodes in the circuit shown can also be replaced by MOSFET or IGBT parallel diodes.
  • the MOSFET in the circuit shown can also be replaced by an IGBT in parallel with a diode.
  • Figure 14 is a three-phase (rectifier) bridgeless PFC topology realization circuit with neutral.
  • 1101 is a switching module, which can be implemented using contactors, relays, semiconductor devices, etc.
  • 1102 is a three-phase bridgeless PFC circuit with neutral. It is also possible to cancel the neutral line and the corresponding diode device, as shown in 902 in FIG. 12.
  • the diodes in the circuit shown can also be replaced by MOSFET or IGBT parallel diodes.
  • the MOSFET in the circuit shown can also be replaced by an IGBT in parallel with a diode.
  • Figure 15 shows a three-phase BUCK type PFC topology and a non-isolated DCDC topology implementation circuit.
  • 1201 is a switching module, which can be implemented using contactors, relays, semiconductor devices, etc.
  • 1202 is a three-phase BUCK type PFC circuit.
  • 1203 is a non-isolated BOOST type DCDC.
  • the diodes in the circuit shown can also be replaced by MOSFET or IGBT parallel diodes.
  • the MOSFET in the circuit shown can also be replaced by an IGBT in parallel with a diode.
  • the output of one switch or multiple switches can also be connected to the AC input.
  • Figure 16 shows a three-phase BUCK-type PFC topology with neutral line and a non-isolated DCDC topology implementation circuit.
  • 1301 is a switching module, which can be implemented using contactors, relays, semiconductor devices, etc.
  • 1302 is a three-phase BUCK type PFC circuit with a neutral line.
  • 1303 is a non-isolated BOOST DCDC.
  • the diodes in the circuit shown can also be replaced by MOSFET or IGBT parallel diodes.
  • the MOSFET in the circuit shown can also be replaced by an IGBT in parallel with a diode.
  • the output of one switch or multiple switches can also be connected to the AC input.
  • Figure 17 is a three-phase BUCK type PFC cascade topology realization circuit.
  • 1401 is a switching module, which can be implemented using contactors, relays, semiconductor devices, etc.
  • 1402 is a three-phase BUCK type PFC circuit cascaded BOOST.
  • the diodes in the circuit shown can also be replaced by MOSFET or IGBT parallel diodes.
  • the MOSFET in the circuit shown can also be replaced by an IGBT in parallel with a diode.
  • the output of one switch or multiple switches can also be connected to the AC input.
  • Figure 18 shows another three-phase BUCK-type PFC cascade topology realization circuit with neutral.
  • 1501 is a switching module, which can be implemented using contactors, relays, semiconductor devices, etc.
  • 1502 is a three-phase BUCK type PFC circuit cascaded BOOST with a neutral line.
  • the diodes in the circuit shown can also be replaced by MOSFET or IGBT parallel diodes.
  • the MOSFET in the circuit shown can also be replaced by an IGBT in parallel with a diode.
  • the output of one switch or multiple switches can also be connected to the AC input.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Abstract

本发明公开了一种兼容交流充电桩与直流充电桩的车载充电机,其包括ACDC模块、内部直流母线和切换模块,其中所述ACDC模块,用以连接交流充电桩,将交流电转换为直流电、并输送到内部直流母线上;所述切换模块,用以连接直流充电桩,根据切换指令将直流充电桩输出的直流电连接至所述ACDC模块的输入端或所述内部直流母线上;所述内部直流母线连接车辆负载向其充电;本发明有效的兼容交流充电桩与500V/750V直流充电桩,同时解决动力电池电压提升后的整车充电电压范围与当前基础充电设施的匹配问题;本发明合理的共用整车上已有零部件的功率转换电路,无需增加额外的单独零部件;有效的兼容各种充电基础设施,减少充电基础设施的投资,便于新车型快速推向市场应用。

Description

一种兼容交流充电桩与直流充电桩的车载充电机 技术领域
本发明涉及电动汽车领域,尤其涉及一种兼容交流充电桩与直流充电桩的车载充电机。
背景技术
随着电动汽车的蓬勃发展,电动汽车的保有量越来越多。给车辆充电的充电桩主要分交流充电桩和直流充电桩。图1为匹配当前300~400V动力电池的充电系统原理框图、图2是其电路图。配合当前大量铺设的最高电压500V或750V直流桩可以正常工作。图3为匹配700~800V动力电池的增加一级额外功率转换零部件的充电系统原理框图,图4是其电路图。配合当前大量铺设的最高电压500V或750V直流桩,需要在整车上增加一个额外的车载高压转换零部件实现升压转换,将电压范围提升,以满足700~800V动力电池的充电需求。现有车载充电机要么是交流的,要么是直流的,不具有兼容性。
因此,如何设计一种兼容交流充电桩与直流充电桩的车载充电机是业界亟待解决的技术问题。
发明内容
为了解决现有技术中存在的上述缺陷,本发明提出一种兼容交流充电桩与直流充电桩的车载充电机。
本发明采用的技术方案是:一种兼容交流充电桩与直流充电桩的车载充电机,其包括ACDC模块、内部直流母线和切换模块,其中所述ACDC模块,用以连接交流充电桩,将交流电转换为直流电、并输送到内部直流母线上;所述切换模块,用以连接直流充电桩,根据切换指令将直流充电桩输出的直流电连接至所述ACDC模块的输入端或所述内部直流母线上;所述内部直流母线连接车辆负载向其充电。
所述内部直流母线的输出端串接DCDC模块,所述DCDC模块将内部直流母线上的直流电变换幅值后输送给车辆负载。
所述DCDC模块在连接内部直流母线处串接功率因数校正模块,所述功率因 数校正模块用以校正功率因数。
优选的,所述切换模块可将直流充电桩输出的正极连接至所述内部直流母线的正极母线、可将直流充电桩输出的负极连接至所述内部直流母线的负极母线。
优选的,所述切换模块可将直流充电桩输出的正极连接至所述ACDC模块的输入端、可将直流充电桩输出的负极连接至所述内部直流母线的负极母线;或做等效置换,将直流充电桩输出的负极连接至所述ACDC模块的输入端、将直流充电桩输出的正极连接至所述内部母线的正极。
优选的,所述ACDC模块采用单相ACDC模块,所述切换模块可将直流充电桩输出的正极连接至所述单相ACDC模块的火线输入端。
优选的,所述ACDC模块采用单相ACDC模块,所述切换模块可将直流充电桩输出的正极连接至所述单相ACDC模块的火线输入端和零线输入端。
优选的,所述ACDC模块采用三相ACDC模块,所述切换模块可将直流充电桩输出的正极连接至所述三相ACDC模块的一个相线输入端。
优选的,所述ACDC模块采用三相ACDC模块,所述切换模块可将直流充电桩输出的正极连接至所述三相ACDC模块的三个相线输入端。
优选的,所述三相ACDC模块采用三相带中线的无桥PFC模块、三相BUCK型PFC模块、三相带中线的BUCK型PFC电路、三相BUCK型PFC级联BOOST模块、三相带中线BUCK型PFC级联BOOST模块中的一种。
所述切换模块采用接触器、继电器、半导体、电子开关中的一种。
所述DCDC模块采用隔离型DCDC模块、或非隔离型DCDC模块。
本发明提供的技术方案的有益效果是:
通过合理的设计车载充电机的电路,使其既能实现AC/DC转换功能,也能实现DC/DC转换;有效的兼容交流充电桩与500V/750V直流充电桩,同时解决动力电池电压提升后的整车充电电压范围与当前基础充电设施的匹配问题;本发明合理的共用整车上已有零部件的功率转换电路,仅需针对现有零部件做局部调整,无需增加额外的单独零部件;有效的兼容各种充电基础设施,减少充电基础设施的更新及投资工作,便于新车型快速推向市场应用。
附图说明
下面结合实施例和附图对本发明进行详细说明,其中:
图1是现有技术匹配300~400V动力电池的充电系统原理框图;
图2是现有技术匹配300~400V动力电池的充电系统电路图;
图3是现有技术匹配700~800V动力电池的充电系统原理框图;
图4是现有技术匹配700~800V动力电池的充电系统电路图;
图5是本发明充电系统原理框图;
图6是本发明充电系统电路图;
图7是本发明原理框图;
图8是单相ACDC模块及隔离DCDC拓扑实现电路图;
图9是一种单相无(整流)桥ACDC及隔离DCDC拓扑实现电路图;
图10是另一种单相无(整流)桥ACDC及隔离DCDC拓扑实现电路图;
图11是一种三相ACDC及隔离DCDC拓扑实现电路图;
图12是一种三相无(整流)桥PFC隔离DCDC拓扑实现电路图;
图13是另一种三相无(整流)桥PFC隔离DCDC拓扑实现电路图;
图14是一种三相带中线的无(整流)桥PFC拓扑实现电路图;
图15是一种三相BUCK型PFC拓扑及非隔离DCDC拓扑实现电路图;
图16是一种三相带中线的BUCK型PFC拓扑及非隔离DCDC拓扑实现电路图;
图17是一种三相BUCK型PFC级联拓扑实现电路图;
图18是另一种三相带中线的BUCK型PFC级联拓扑实现电路图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。
本发明公开了一种兼容交流充电桩与直流充电桩的车载充电机,其包括ACDC模块、内部直流母线和切换模块,其中所述ACDC模块,用以连接交流充电桩,将交流电转换为直流电、并输送到内部直流母线上;所述切换模块,用以连接直流充电桩,根据切换指令将直流充电桩输出的直流电连接至所述ACDC模 块的输入端或所述内部直流母线上;所述内部直流母线连接车辆负载向其充电。
参看图5示出的是本发明充电系统原理框图,使用时,车载充电机要么连接交流充电桩、要么连接直流充电桩,可以接收交流充电桩或直流充电桩的电能向车辆充电。图6示出的是本发明充电系统电路图,其中左侧上部为交流充电桩,左侧下部为直流充电桩,右侧为车载充电机。配合当前大量铺设的最高电压500V或750V直流桩,在单个零部件中实现交流桩与直流桩的兼容。并通过合理的共用内部功率转换电路,实现最大限度的节省系统成本。
参看图7示出的本发明原理框图,所述内部直流母线的输出端串接DCDC模块,所述DCDC模块将内部直流母线上的直流电变换幅值后输送给车辆负载。所述DCDC模块在连接内部直流母线处串接功率因数校正模块,所述功率因数校正模块用以校正功率因数。交流或直流均可作为此车载充电机的输入。交流输入经过ACDC模块至DCDC模块,最终输出为直流电压给动力电池充电。直流输入经过切换装置接入至ACDC模块中,共用ACDC模块中的功率电路,最终通过DCDC模块之后输出直流电压给动力电池充电。切换模块,既可以是双开关的切换装置,也可以是多开关的切换装置。所述DCDC模块采用隔离型DCDC模块、或非隔离型DCDC模块,甚至于无需此级DCDC模块。
所述切换模块采用接触器、继电器、半导体、电子开关中的一种。在一个实施例中,所述切换模块可将直流充电桩输出的正极连接至所述内部直流母线的正极母线、可将直流充电桩输出的负极连接至所述内部直流母线的负极母线。
所述ACDC模块可以采用单相ACDC模块,图8示出了一种单相ACDC模块及隔离DCDC拓扑实现电路图。501为切换模块,可以使用接触器、继电器、半导体器件等实现。502为整流桥电路,电路中的二极管也可用MOSFET来代替。503为单开关的功率因数校正电路。504为DCDC模块的实现电路,示例中为隔离型的全桥LLC电路,也可使用半桥LLC、硬开关全桥/半桥、移相全桥/半桥、双管正激等DCDC电路。所示电路中的二极管也可用MOSFET或IGBT并联二极管来代替。所示电路中的MOSFET,也可用IGBT并联二极管来代替。切换装置在产品内部模块间的连接,除了图示的方式以外,也可以将其中一个开关或多个开关的输出连接至交流输入处。
所述ACDC模块可以采用三相ACDC模块,图11示出了一种三相ACDC及隔 离DCDC拓扑实现电路图。801为切换模块,可以使用接触器、继电器、半导体器件等实现。802为三相整流桥电路。803为单开关的功率因数校正电路。804为DCDC模块的实现电路,示例中为隔离型的全桥LLC电路,也可使用半桥LLC、硬开关全桥/半桥、移相全桥/半桥、双管正激等DCDC电路。所示电路中的二极管也可用MOSFET或IGBT并联二极管来代替。所示电路中的MOSFET,也可用IGBT并联二极管来代替。切换装置在产品内部模块间的连接,除了图示的方式以外,也可以将其中一个开关或多个开关的输出连接至交流输入处。
所述切换模块可将直流充电桩输出的正极连接至所述ACDC模块的输入端、可将直流充电桩输出的负极连接至所述内部直流母线的负极母线;或做等效置换,将直流充电桩输出的负极连接至所述ACDC模块的输入端、将直流充电桩输出的正极连接至所述内部母线的正极。
在一个实施例中,所述ACDC模块采用单相ACDC模块,所述切换模块可将直流充电桩输出的正极连接至所述单相ACDC模块的火线输入端。图9示出了一种单相无(整流)桥ACDC及隔离DCDC拓扑实现电路图。601为切换模块,可以使用接触器、继电器、半导体器件等实现。602为图腾柱无桥PFC电路。603为DCDC模块的实现电路,示例中为隔离型的全桥LLC电路,也可使用半桥LLC、硬开关全桥/半桥、移相全桥/半桥、双管正激等DCDC电路。所示电路中的二极管也可用MOSFET或IGBT并联二极管来代替。所示电路中的MOSFET,也可用IGBT并联二极管来代替。切换装置在产品内部模块间的连接,除了图示的方式以外,也可以将其中一个开关或多个开关的输出连接至交流输入处。
在另一个实施例中,所述ACDC模块采用单相ACDC模块,所述切换模块可将直流充电桩输出的正极连接至所述单相ACDC模块的火线输入端和零线输入端。图10示出了另一种单相无(整流)桥ACDC及隔离DCDC拓扑实现电路图。701为切换模块,可以使用接触器、继电器、半导体器件等实现。702为全桥型PFC电路。703为DCDC模块的实现电路,示例中为隔离型的全桥LLC电路,也可使用半桥LLC、硬开关全桥/半桥、移相全桥/半桥、双管正激等DCDC电路。所示电路中的二极管也可用MOSFET或IGBT并联二极管来代替。所示电路中的MOSFET,也可用IGBT并联二极管来代替。
在一个实施例中,所述ACDC模块采用三相ACDC模块,所述切换模块可将 直流充电桩输出的正极连接至所述三相ACDC模块的一个相线输入端。
在另一个实施例中,所述ACDC模块采用三相ACDC模块,所述切换模块可将直流充电桩输出的正极连接至所述三相ACDC模块的三个相线输入端。图12示出了一种三相无(整流)桥PFC隔离DCDC拓扑实现电路图,901为切换装置,可以使用接触器、继电器、半导体器件等实现。902为三相无桥PFC电路。903为DCDC模块的实现电路,示例中为隔离型的全桥LLC电路,也可使用半桥LLC、硬开关全桥/半桥、移相全桥/半桥、双管正激等DCDC电路。所示电路中的二极管也可用MOSFET或IGBT并联二极管来代替。所示电路中的MOSFET,也可用IGBT并联二极管来代替。
所述三相ACDC模块采用三相带中线的无桥PFC模块、三相BUCK型PFC模块、三相带中线的BUCK型PFC电路、三相BUCK型PFC级联BOOST模块、三相带中线BUCK型PFC级联BOOST模块中的一种。其中PFC是功率因数校正电路,Buck为降压式变换电路,BOOST为升压式变换电路。
以下是各种三相ACDC模块和各种DCDC模块搭配实施例,这种搭配方式可以拓宽输出电压范围:
图13为另一种三相无(整流)桥PFC隔离DCDC拓扑实现电路。1001为切换模块,可以使用接触器、继电器、半导体器件等实现。1002为带中线的三相无桥PFC电路。1003为DCDC模块的实现电路,示例中为隔离型的全桥LLC电路,也可使用半桥LLC、硬开关全桥/半桥、移相全桥/半桥、双管正激等DCDC电路。所示电路中的二极管也可用MOSFET或IGBT并联二极管来代替。所示电路中的MOSFET,也可用IGBT并联二极管来代替。
图14为一种三相带中线的无(整流)桥PFC拓扑实现电路。1101为切换模块,可以使用接触器、继电器、半导体器件等实现。1102为三相带中线的无桥PFC电路。也可取消中线及对应二极管器件,如图12中902所示。所示电路中的二极管也可用MOSFET或IGBT并联二极管来代替。所示电路中的MOSFET,也可用IGBT并联二极管来代替。
图15为一种三相BUCK型PFC拓扑及非隔离DCDC拓扑实现电路。1201为切换模块,可以使用接触器、继电器、半导体器件等实现。1202为三相的BUCK型PFC电路。1203为非隔离的BOOST型DCDC。所示电路中的二极管也可用MOSFET 或IGBT并联二极管来代替。所示电路中的MOSFET,也可用IGBT并联二极管来代替。切换模块在产品内部模块间的连接,除了图示的方式以外,也可以将其中一个开关或多个开关的输出连接至交流输入处。
图16为一种三相带中线的BUCK型PFC拓扑及非隔离DCDC拓扑实现电路。1301为切换模块,可以使用接触器、继电器、半导体器件等实现。1302为三相带中线的BUCK型PFC电路。1303为非隔离的BOOST型DCDC。所示电路中的二极管也可用MOSFET或IGBT并联二极管来代替。所示电路中的MOSFET,也可用IGBT并联二极管来代替。切换模块在产品内部模块间的连接,除了图示的方式以外,也可以将其中一个开关或多个开关的输出连接至交流输入处。
图17为一种三相BUCK型PFC级联拓扑实现电路。1401为切换模块,可以使用接触器、继电器、半导体器件等实现。1402为三相的BUCK型PFC电路级联BOOST。所示电路中的二极管也可用MOSFET或IGBT并联二极管来代替。所示电路中的MOSFET,也可用IGBT并联二极管来代替。切换模块在产品内部模块间的连接,除了图示的方式以外,也可以将其中一个开关或多个开关的输出连接至交流输入处。
图18为另一种三相带中线的BUCK型PFC级联拓扑实现电路。1501为切换模块,可以使用接触器、继电器、半导体器件等实现。1502为三相带中线的BUCK型PFC电路级联BOOST。所示电路中的二极管也可用MOSFET或IGBT并联二极管来代替。所示电路中的MOSFET,也可用IGBT并联二极管来代替。切换模块在产品内部模块间的连接,除了图示的方式以外,也可以将其中一个开关或多个开关的输出连接至交流输入处。
以上实施例仅为举例说明,非起限制作用。任何未脱离本申请精神与范畴,而对其进行的等效修改或变更,均应包含于本申请的权利要求范围之中。

Claims (10)

  1. 一种兼容交流充电桩与直流充电桩的车载充电机,其特征在于:包括ACDC模块、内部直流母线和切换模块,其中
    所述ACDC模块,用以连接交流充电桩,将交流电转换为直流电、并输送到内部直流母线上;
    所述切换模块,用以连接直流充电桩,根据切换指令将直流充电桩输出的直流电连接至所述ACDC模块的输入端或所述内部直流母线上;
    所述内部直流母线连接车辆负载向其充电。
  2. 如权利要求1所述的兼容交流充电桩与直流充电桩的车载充电机,其特征在于:所述内部直流母线的输出端串接DCDC模块,所述DCDC模块将内部直流母线上的直流电变换幅值后输送给车辆负载。
  3. 如权利要求2所述的兼容交流充电桩与直流充电桩的车载充电机,其特征在于:所述DCDC模块在连接内部直流母线处串接功率因数校正模块,所述功率因数校正模块用以校正功率因数。
  4. 如权利要求1所述的兼容交流充电桩与直流充电桩的车载充电机,其特征在于:所述切换模块可将直流充电桩输出的正极连接至所述内部直流母线的正极母线、可将直流充电桩输出的负极连接至所述内部直流母线的负极母线。
  5. 如权利要求1所述的兼容交流充电桩与直流充电桩的车载充电机,其特征在于:所述切换模块可将直流充电桩输出的正极连接至所述ACDC模块的输入端、可将直流充电桩输出的负极连接至所述内部直流母线的负极母线;或做等效置换,将直流充电桩输出的负极连接至所述ACDC模块的输入端、将直流充电桩输出的正极连接至所述内部母线的正极。
  6. 如权利要求5所述的兼容交流充电桩与直流充电桩的车载充电机,其特征在于:所述ACDC模块采用单相ACDC模块,所述切换模块可将直流充电桩输出的正极连接至所述单相ACDC模块的火线输入端。
  7. 如权利要求5所述的兼容交流充电桩与直流充电桩的车载充电机,其特征在于:所述ACDC模块采用单相ACDC模块,所述切换模块可将直流充电桩输出的正极连接至所述单相ACDC模块的火线输入端和零线输入端。
  8. 如权利要求5所述的兼容交流充电桩与直流充电桩的车载充电机,其 特征在于:所述ACDC模块采用三相ACDC模块,所述切换模块可将直流充电桩输出的正极连接至所述三相ACDC模块的一个相线输入端。
  9. 如权利要求8所述的兼容交流充电桩与直流充电桩的车载充电机,其特征在于:所述ACDC模块采用三相ACDC模块,所述切换模块可将直流充电桩输出的正极连接至所述三相ACDC模块的三个相线输入端。
  10. 如权利要求8或9所述的兼容交流充电桩与直流充电桩的车载充电机,其特征在于:所述三相ACDC模块采用三相带中线的无桥PFC模块、三相BUCK型PFC模块、三相带中线的BUCK型PFC电路、三相BUCK型PFC级联BOOST模块、三相带中线BUCK型PFC级联BOOST模块中的一种。
PCT/CN2020/101125 2020-02-27 2020-07-09 一种兼容交流充电桩与直流充电桩的车载充电机 WO2021169143A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010124740.1 2020-02-27
CN202010124740.1A CN111224447A (zh) 2020-02-27 2020-02-27 一种兼容交流充电桩与直流充电桩的车载充电机

Publications (1)

Publication Number Publication Date
WO2021169143A1 true WO2021169143A1 (zh) 2021-09-02

Family

ID=70829826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101125 WO2021169143A1 (zh) 2020-02-27 2020-07-09 一种兼容交流充电桩与直流充电桩的车载充电机

Country Status (2)

Country Link
CN (1) CN111224447A (zh)
WO (1) WO2021169143A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113949151A (zh) * 2021-10-19 2022-01-18 浙江德升新能源科技有限公司 一种储能变流器黑启动供电电路
WO2023237962A1 (en) 2022-06-08 2023-12-14 Stellantis Europe S.P.A. System for charging electric vehicles
WO2023237963A1 (en) 2022-06-08 2023-12-14 Stellantis Europe S.P.A. System for charging electric vehicles
WO2024028693A1 (en) 2022-08-04 2024-02-08 Stellantis Europe S.P.A. System for charging electric vehicles

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111224447A (zh) * 2020-02-27 2020-06-02 深圳威迈斯新能源股份有限公司 一种兼容交流充电桩与直流充电桩的车载充电机
CN113859003B (zh) * 2020-06-30 2024-04-16 比亚迪股份有限公司 车载充电机、控制车辆直流充电方法及充电转接头和车辆
CN112821533B (zh) * 2021-01-11 2023-06-09 深圳威迈斯新能源股份有限公司 一种ptc复用为dcdc的电动汽车电力转换系统
CN113346529B (zh) * 2021-05-25 2022-12-06 富特智电(杭州)信息技术有限公司 一种交流输入和直流输入兼容的v2b应用系统及方法
CN114447961A (zh) * 2021-12-27 2022-05-06 广州市奔流电力科技有限公司 一种考虑单相交流桩和三相直流桩充电功率分配的控制方法和系统
CN114771326B (zh) * 2022-04-29 2024-04-09 东风柳州汽车有限公司 一种交直流兼容的充电控制方法、装置、车载终端及系统
CN115593255A (zh) * 2022-09-26 2023-01-13 重庆长安汽车股份有限公司(Cn) 适用于高电压平台电动汽车的交直流双功能充电机及车辆
CN115514070A (zh) * 2022-09-26 2022-12-23 深圳易能电科技有限公司 一种高效的充电电路以及应用该充电电路的充电装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203896021U (zh) * 2014-06-13 2014-10-22 国家电网公司 一种交直流兼容型车载充电机前级电路和车载充电机
CN206908337U (zh) * 2017-06-16 2018-01-19 武汉科华动力科技有限公司 一种交直流兼容式车载充电系统
CN109687722A (zh) * 2019-02-01 2019-04-26 华南理工大学 一种电动汽车用集成多模式功率转换器及其控制方法
CN111224447A (zh) * 2020-02-27 2020-06-02 深圳威迈斯新能源股份有限公司 一种兼容交流充电桩与直流充电桩的车载充电机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060198172A1 (en) * 2003-10-01 2006-09-07 International Rectifier Corporation Bridgeless boost converter with PFC circuit
CN105226735B (zh) * 2014-06-13 2019-04-09 国家电网公司 一种交直流兼容型车载充电机前级电路和车载充电机
CN105356739B (zh) * 2014-08-21 2018-06-26 维谛技术有限公司 一种图腾无桥pfc电路的控制方法、装置和整流电路
CN105576731A (zh) * 2014-10-17 2016-05-11 天宝电子(惠州)有限公司 一种车载充电与逆变双向变流电源系统
CN107820467B (zh) * 2017-02-09 2020-10-02 上海欣锐电控技术有限公司 一种车载充电机以及车载充电系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203896021U (zh) * 2014-06-13 2014-10-22 国家电网公司 一种交直流兼容型车载充电机前级电路和车载充电机
CN206908337U (zh) * 2017-06-16 2018-01-19 武汉科华动力科技有限公司 一种交直流兼容式车载充电系统
CN109687722A (zh) * 2019-02-01 2019-04-26 华南理工大学 一种电动汽车用集成多模式功率转换器及其控制方法
CN111224447A (zh) * 2020-02-27 2020-06-02 深圳威迈斯新能源股份有限公司 一种兼容交流充电桩与直流充电桩的车载充电机

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113949151A (zh) * 2021-10-19 2022-01-18 浙江德升新能源科技有限公司 一种储能变流器黑启动供电电路
WO2023237962A1 (en) 2022-06-08 2023-12-14 Stellantis Europe S.P.A. System for charging electric vehicles
WO2023237963A1 (en) 2022-06-08 2023-12-14 Stellantis Europe S.P.A. System for charging electric vehicles
WO2024028693A1 (en) 2022-08-04 2024-02-08 Stellantis Europe S.P.A. System for charging electric vehicles

Also Published As

Publication number Publication date
CN111224447A (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
WO2021169143A1 (zh) 一种兼容交流充电桩与直流充电桩的车载充电机
CN109687722B (zh) 一种电动汽车用集成多模式功率转换器及其控制方法
CN113261191B (zh) 双向多端口功率转换系统及方法
CA3005188C (en) Apparatus for energy transfer using converter and method of manufacturing same
EP2815913A1 (en) Recharging system for electric vehicles
US10476401B2 (en) Device for converting voltage, traction network and method for charging a battery
CN106208641B (zh) 一种交直流复用的电路
KR20200115785A (ko) 양방향 완속 충전기 및 그 제어 방법
WO2020019540A1 (zh) 双向高频辅助变流系统
CN111602329B (zh) 变流器部件和这种变流器部件的半导体模块
JPWO2013168491A1 (ja) モータ駆動装置
CN104539187A (zh) 一种新型有源前端控制器拓扑结构
CN102111008A (zh) 电动汽车的高压电池充电系统架构
CN104022675A (zh) 单级双向隔离ac-dc变换器
US10245961B2 (en) Inverter-charger combination
CN104320042A (zh) 一种可用于充电和驱动的多功能逆变器
WO2021109456A1 (zh) 一种电力机车及其牵引电路
Tan et al. A bipolar-DC-bus EV fast charging station with intrinsic DC-bus voltages equalization and minimized voltage ripples
Hou et al. Family of hybrid dc-dc converters for connecting dc current bus and dc voltage bus
CN113890122A (zh) 面向办公居住园区用的交直流多端口配电系统
CN218161811U (zh) 具有高低压输出的单级变换拓扑结构充电机
Asa et al. A novel bi-directional ac/dc-dc/ac wireless power transfer system for grid support applications
CN109905035A (zh) 一种能量双向流动的超低纹波电动汽车充电电源
CN106972752A (zh) 可宽范围调节输出的dc‑dc变换器
Cuma et al. Performance benchmarking of active-front-end rectifier topologies used in high-power, high-voltage onboard EV chargers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20921460

Country of ref document: EP

Kind code of ref document: A1