WO2014206019A1 - 显示面板及其制造方法 - Google Patents

显示面板及其制造方法 Download PDF

Info

Publication number
WO2014206019A1
WO2014206019A1 PCT/CN2013/089002 CN2013089002W WO2014206019A1 WO 2014206019 A1 WO2014206019 A1 WO 2014206019A1 CN 2013089002 W CN2013089002 W CN 2013089002W WO 2014206019 A1 WO2014206019 A1 WO 2014206019A1
Authority
WO
WIPO (PCT)
Prior art keywords
alignment
sub
layer
alignment layer
cathode
Prior art date
Application number
PCT/CN2013/089002
Other languages
English (en)
French (fr)
Inventor
周春苗
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/363,229 priority Critical patent/US9281348B2/en
Publication of WO2014206019A1 publication Critical patent/WO2014206019A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/731Liquid crystalline materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/868Arrangements for polarized light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE

Definitions

  • Embodiments of the present invention relate to a display panel and a method of fabricating the same. Background technique
  • 3D display technology can be divided into two types: glasses type and eye type.
  • the Mirror 3D technology is mainly divided into color difference type, polarized type and active shutter type.
  • the image effect of the polarized 3D technology is better than the color difference type, so it is widely used in practical life.
  • the polarized 3D technology performs splitting by using different polarization directions of light, and the left-eye image light and the right-eye image light have different polarization directions through the phase difference plate, and then the left and right eye images having different polarization directions are used by the 3D eyepiece mirror. Light is sent to the left and right eyes, and then the brain is combined to form a stereoscopic image.
  • the current polarized 3D technology using an OLED display panel usually requires a polarizing film to be applied to the substrate on the light-emitting side of the OLED display panel to convert the natural light emitted from the display panel into polarized light, and then on the light-emitting side of the polarizing film.
  • the phase difference plate is arranged such that the light emitted by the odd-line pixels or the even-numbered rows of pixels becomes polarized light of two different directions after passing through the polarizing film and the phase difference plate, and then received by the left and right lenses of the polarized glasses correspondingly, thereby making the human The left and right eyes receive polarized light in different directions to produce a stereoscopic effect.
  • a polarizing film is attached on the board and a phase difference plate is disposed on the light emitting side thereof. Since the splitting positions of the left and right eyes are spaced apart from the pixel emitting positions, a crosstalk region is formed between the light rays emitted from the edges of the display panel. The dead zone cannot achieve 3D viewing, resulting in a narrow 3D viewing angle.
  • the phase difference plate needs to correspond to the odd row pixels and the even row pixels of the display panel, and the structure is currently difficult to cause alignment in the process.
  • Embodiments of the present invention provide a display panel and a manufacturing method thereof, which solve the technical problem that the upper and lower viewing angles of the existing OLED polarized 3D display panel are too narrow and the alignment on the process is difficult.
  • a polarized 3D display device that achieves a complete viewing angle and a complete and stereoscopic image.
  • an embodiment of the present invention provides a display panel, including: a first substrate; a second substrate, the second substrate is disposed in parallel with the first substrate; and an anode/cathode formed on the first substrate a cathode/anode formed on the second substrate; a first alignment layer disposed on the anode/cathode, the first alignment layer including a plurality of first alignment directions arranged alternately in the first direction a first sub-alignment layer and a plurality of second sub-alignment layers having a second alignment direction, the first alignment direction and the second alignment direction are at an angle of 90 degrees; the second alignment layer is disposed on the On the anode/anode, the second alignment layer includes a plurality of third sub-alignment layers having the first alignment direction and a plurality of the second alignment directions alternately disposed along the first direction a fourth sub-alignment layer, wherein the first sub-alignment layer is opposite to a position of the third sub-alignment layer, the second sub
  • an embodiment of the present invention provides a method of fabricating the above display panel, comprising: preparing a first substrate and a second substrate; forming an anode/cathode on the first substrate; forming a cathode/anode in the On the second substrate; a plurality of first sub-alignment layers having a first alignment direction and a plurality of second sub-alignment layers having a second alignment direction are alternately formed on the anode/cathode in a first direction, wherein Forming the first sub-alignment layer and the plurality of second sub-alignment layers to form the first alignment layer; and having a plurality of third sub-alignment layers having the first alignment direction and having the second alignment direction a plurality of fourth sub-alignment layers alternately formed on the cathode/anode in the first direction, wherein the plurality of third sub-alignment layers and the plurality of fourth sub-alignment layers form the second An alignment layer; and the light-emitting layer
  • FIG. 1 is a cross-sectional view of a display panel in accordance with an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of another display panel in accordance with an embodiment of the present invention
  • FIG. 3 is a cross-sectional view of still another display panel in accordance with an embodiment of the present invention.
  • FIG. 4 is a perspective view of a display device having a display panel according to an embodiment of the present invention. detailed description
  • the embodiment of the present invention solves the technical problem that the upper and lower viewing angles of the existing OLED polarized 3D display panel are too narrow and the alignment on the process is difficult to provide a display panel and a manufacturing method thereof, and the viewing angle is complete and the stereoscopic image can be realized.
  • a true and complete polarized 3D display device A true and complete polarized 3D display device.
  • a display panel includes: a first substrate; a second substrate, the second substrate is disposed in parallel with the first substrate; and a cathode/cathode formed on the first substrate a cathode/anode formed on the second substrate; a first transport layer disposed on the anode/cathode; a second transport layer disposed on the cathode/anode; a first alignment layer, disposed On the first transport layer, the first alignment layer includes a plurality of first sub-alignment layers having a first alignment direction and a plurality of second sub-alignment layers having a second alignment direction alternately disposed in a first direction The angle between the first alignment direction and the second alignment direction is 90 degrees; the second alignment layer is disposed on the second transmission layer, and the second alignment layer includes alternating along the first direction a plurality of third sub-alignment layers having the first alignment direction and a plurality of fourth sub-alignment layers having the second alignment direction, the first
  • the manufacturing method of the above display panel includes: preparing a first substrate and a second substrate; forming a male/cathode on the first substrate; forming the first transport layer On the anode/cathode; forming a cathode/anode on the second substrate; forming the second transport layer on the cathode/anode; and having a plurality of first sub-elements having a first alignment direction An alignment layer and a plurality of second sub-alignment layers having a second alignment direction are alternately formed on the first transmission layer in a first direction, wherein the plurality of first sub-alignment layers and the plurality of second sub-alignments Forming the first alignment layer; forming a plurality of third sub-alignment layers having the first alignment direction and a plurality of fourth sub-alignment layers having the second alignment direction alternately in the first direction On the second transport layer, Wherein the plurality of third sub-alignment layers and the plurality of
  • the first alignment layer, the second alignment layer, and the prepared light-emitting layer having the liquid crystal-polarized organic electroluminescent material it is not necessary to additionally attach a polarizing film and a phase difference plate to the light-emitting side of the OLED display panel to solve
  • the existing 3D display device is not required to have a polarizing film and a phase difference plate attached to the outside of the display panel, so that a crosstalk region and a dead zone are formed between the light rays, and the 3D viewing is not possible, and the upper and lower viewing angles are too narrow and the process is opposite.
  • the technical problem of ensuring the viewing angle of the polarized 3D is achieved by attaching difficult technical problems.
  • the illuminating layer emits linearly polarized light with different polarization directions, and then the left-eye image and the right-eye image are respectively received by the left and right eyes through the polarized glasses, and then the brain is synthesized into a true and complete stereoscopic image, thereby realizing 3D viewing. .
  • the display panel 100 includes a first substrate 11, a cathode/cathode 41, a first alignment layer 31, and a second substrate 12. , a cathode/anode 42, a second alignment layer 32, and a light-emitting layer 40.
  • the second substrate 11 and the first substrate 12 are disposed on the upper and lower sides, and are disposed in parallel.
  • the first alignment layer 31 is formed on the anode/cathode 41.
  • the first alignment layer 31 is made of an alignment material capable of transporting carriers, such as a polyimide alignment layer or the like.
  • the polyimide alignment layer is a doped polyimide alignment layer, such as a star-amine doped polyimide (PI) alignment layer or a polyphenylene vinyl (PpV) prepolymer. Body alignment layer.
  • the first alignment layer 31 includes a plurality of first sub-alignment layers 311 and a plurality of second sub-alignment layers 312 spaced apart in the first direction.
  • the plurality of first sub-alignment layers 311 have a first alignment direction, and the plurality of first sub-alignment layers 311 are formed on the anode/cathode 41 in a first alignment direction.
  • the plurality of second sub-alignment layers 312 have a second alignment direction, and the plurality of second sub-alignment layers 312 are formed on the anode/cathode 41 in a second alignment direction.
  • the angle between the first alignment direction and the second alignment direction is 90
  • the first alignment direction is 45 degrees and the second alignment direction is 135 degrees.
  • the second alignment layer 32 is coated on the cathode/anode 42.
  • the second alignment layer 32 is made of an alignment material capable of transporting carriers, such as a polyimide alignment layer or the like.
  • the polyimide alignment layer may be a doped polyimide alignment layer, for example, a star-amine doped polyimide (PI) alignment layer or a polyphenylene ethylene (PpV) prepolymer. Body alignment layer.
  • the second alignment layer 32 includes a plurality of third sub-orientation layers 323 and a plurality of fourth sub-alignment layers 324 spaced apart in a first direction (e.g., the X direction).
  • the plurality of third sub-alignment layers 323 have a first alignment direction opposite to the positions of the plurality of first sub-alignment layers 311, and the plurality of third sub-alignment layers 323 are formed on the cathode/anode 42 according to the first alignment direction. of.
  • the plurality of fourth sub-alignment layers 324 have a second alignment direction and are opposite to the positions of the plurality of second sub-alignment layers 324, and the plurality of fourth sub-alignment layers 324 are formed on the cathode/anode 42 in the second alignment direction.
  • the light emitting layer 40 is located between the first alignment layer 31 and the second alignment layer 32, and the arrangement of the light emitting layers is controlled by the first alignment layer 31 and the second alignment layer 32.
  • the light-emitting layer 40 contains a liquid crystal polymer doped with an organic electroluminescent material capable of emitting polarized light.
  • the luminescent layer 40 may comprise a ruthenium polymer, for example, PFO-poly(9,9-dioctylfluorene) or poly(9,9-ethyl(2-ethyl-hexyl) fluorene.
  • the light-emitting layer 40 Since the light-emitting layer 40 has the property of electroluminescence, when the electrons enter the light-emitting layer 40 from the anode/cathode 41 and the cathode/anode 42, the light-emitting layer 40 emits light. Further, since the light-emitting layer 40 is formed of a material capable of emitting polarized light, the light emitted from the light-emitting layer 40 is linearly polarized light.
  • a display panel is corresponding to each of a plurality of sub-pixel units, a plurality of first sub-alignment layers 311, and each of the third sub-alignment layers 323 corresponding thereto and a row/column sub-pixel unit.
  • the adjacent second sub-alignment layer 312 and each fourth sub-alignment layer 324 corresponding thereto are disposed corresponding to the adjacent row/column sub-pixel units.
  • the first direction is a sub-pixel The row direction or column direction of the cell.
  • FIG. 2 shows a cross-sectional view of another display panel according to an embodiment of the present invention.
  • the display panel according to an embodiment of the present invention is further The method may include: a first transfer layer 21 disposed between the anode/cathode 41 and the first alignment layer 31; and a second transfer layer 22 disposed at the cathode/anode 42 and the second alignment layer Between layers 32.
  • One of the first transport layer 21 and the second transport layer 22 is for transferring electrons, and the other is for transferring holes.
  • the first transfer layer 21 is disposed adjacent to the anode, it is used to transport holes, and when disposed adjacent to the cathode, it is used to transport electrons, and also for the second transfer layer 22, here is not Repeat them.
  • the first alignment layer 31, the second alignment layer 32, and the light-emitting layer 40 made of a liquid crystal polymer having a doped organic electroluminescent material capable of emitting polarized light, it is not necessary to additionally use the outside of the display panel 100.
  • the polarizing film and the phase difference plate are attached, which solves the problem that the crosstalk region and the dead zone are not formed between the light rays due to the need to additionally attach the polarizing film and the phase difference plate on the outside of the display panel in the prior art, and the 3D viewing is impossible.
  • the polarized 3D display device has a narrow vertical viewing angle and a technical problem of difficulty in attaching the alignment on the process, and can realize a polarized 3D display device in which the viewing angle is complete and the stereoscopic image is true and complete.
  • the angle between the first alignment direction and the second alignment direction is 90 degrees, for example, the first alignment direction is 45 degrees, and when the second alignment direction is 135 degrees, the plurality of first sub-alignments
  • the light of the unit and the light of the right-eye unit are respectively entered into the left and right eyes of the person, and then synthesized by the brain to form a true and
  • the thickness of the light-emitting layer according to an embodiment of the present invention may be determined according to actual conditions.
  • the display panel according to an embodiment of the present invention may further include a plurality of color filters disposed between the first substrate and the anode/cathode on the display surface side or on the display surface The second substrate of the side is between the cathode and the anode, and each of the plurality of color filters is disposed corresponding to each of the sub-pixel units.
  • Fig. 3 shows an example in which a color filter is disposed between the first substrate and the anode/cathode, and Fig. 3 shows that a color filter is further provided on the basis of the display panel shown in Fig. 1, Alternatively, a color filter may be further provided on the basis of the display panel shown in FIG. 2, and the drawings of the embodiments of the present invention are not shown for the sake of cleaning.
  • the plurality of color filters are a red color filter, a green color filter, and a blue color filter, respectively corresponding to one sub-pixel unit setting.
  • a black matrix may also be disposed between the plurality of color filters for blocking light.
  • a plurality of sub-pixel units may be formed as a plurality of red sub-pixel units, a plurality of green sub-pixel units, and a plurality of blue sub-pixel units, wherein the emission is set in the red sub-pixel unit Red polarized ruthenium polymer, for example, ⁇ /DA type naphthothiadithiophene/benzo selenium
  • Red polarized ruthenium polymer for example, ⁇ /DA type naphthothiadithiophene/benzo selenium
  • PFBT azole-alternating copolymer
  • PFBT ruthenium-e
  • each of the first sub-alignment layer, each of the second sub-alignment layers, each of the third sub-alignment layers, and each of the fourth sub-alignment layers corresponds to a column/row of sub-pixel units.
  • an embodiment of the present invention further provides a method of manufacturing the display panel 100, including the following steps:
  • a plurality of first sub-alignment layers 311 having a first alignment direction and a plurality of second sub-alignment layers 312 having a second alignment direction are alternately formed on the anodes/cathodes in a first direction, wherein the plurality of The first sub-alignment layer and the plurality of second sub-alignment layers form the first alignment layer 31;
  • a plurality of third sub-alignment layers 323 having the first alignment direction and a plurality of fourth sub-alignment layers 324 having the second alignment direction are alternately formed on the cathode/anode in the first direction Wherein the plurality of third sub-alignment layers and the plurality of fourth sub-alignment layers form the second alignment layer 32;
  • the first sub-alignment layer is opposite to a position of the third sub-alignment layer
  • the second sub-alignment The layer is opposite to the position of the fourth sub-alignment layer
  • the light-emitting layer comprises a liquid crystal polymer doped with an organic light-emitting material for emitting polarized light.
  • the plurality of first sub-alignment layers 311, the plurality of second sub-alignment layers 312, the plurality of third sub-alignment layers 323, and the plurality of fourth sub-alignment layers 324 may be, for example, inkjet, deposited, coated, or Coating by sputtering.
  • the method of manufacturing the display panel 100 may further include: forming a first transfer layer between the anode/cathode and the first alignment layer; and at the cathode/anode and A second transport layer is formed between the second alignment layers, wherein the first transport layer is formed on the first substrate by deposition, coating or sputtering.
  • the second transport layer is deposited, coated A method of coating or sputtering is formed on the second substrate.
  • the manufacturing method of the display panel 100 according to the embodiment of the present invention may further include: between the first substrate and the anode/cathode on the display surface side or the second substrate on the display surface side A plurality of color filters are formed between the anode and cathode.
  • the method of manufacturing the display panel 100 according to the embodiment of the present invention before the forming the light emitting layer between the first alignment layer and the second alignment layer, further includes: The anode/cathode, the first substrate of the first alignment layer, and the second substrate pair formed with a cathode/anode and the second alignment layer.
  • the method of manufacturing the display panel 100 according to the embodiment of the present invention before the forming the light emitting layer between the first alignment layer and the second alignment layer, further includes: The anode/cathode, the first substrate of the first alignment layer, and the second substrate pair formed with a cathode/anode and the second alignment layer.
  • forming the luminescent layer between the first alignment layer and the second alignment layer comprises: injecting the luminescent layer into the first substrate and the second substrate after the box Between the alignment layer and the second alignment layer; curing the light-emitting layer, for example, photocuring or heat curing.
  • forming the luminescent layer between the first alignment layer and the second alignment layer comprises: depositing, coating or splashing on the first alignment layer or the second alignment layer Forming the light-emitting layer in a manner of forming; the first substrate on which the anode/cathode, the first alignment layer is to be formed, and the first portion on which a cathode/anode and the second alignment layer are formed a second substrate pair cassette; or the first substrate on which the anode/cathode, the first transport layer, the first alignment layer is formed, and a cathode/anode, the second transport layer, and the The second substrate pair of the second alignment layer; and curing the light emitting layer.
  • the display panel 100 manufactured by the manufacturing method of the display panel 100 described above can solve the problem in the prior art that the crosstalk region and the dead zone are not formed between the light rays due to the need to additionally attach the polarizing film and the phase difference plate on the outside of the display panel.
  • the viewing, as well as the technical problem that the polarized 3D display device has a narrow upper and lower viewing angle and difficulty in attaching to the process, can realize a polarized 3D display device with complete viewing angle and stereo image.
  • the light emitted by the light emitting layer 40 of the left eye pixel unit and the light polarizing direction emitted by the light emitting layer 40 of the right eye pixel unit are different from each other, the left and right lenses of the polarized glasses having the corresponding polarization directions, the light of the left eye pixel unit, and the right
  • the light of the eye pixel unit enters the left and right eyes of the person respectively, and then is synthesized by the brain to form a true and complete stereoscopic image, thereby realizing 3D viewing.
  • an embodiment of the present invention provides a display device including the above display panel, as shown in the figure
  • the display device 20 includes a housing 120 and a display panel 100 disposed in the housing 120.
  • display device 200 is a display, or any device that can be used to display image data, such as a television, computer, cell phone, and the like.
  • the display device 200 can also solve the technical problem that the upper and lower viewing angles of the polarized 3D display are too narrow and the process is difficult to attach in the prior art, and the polarized light 3D is realized.

Abstract

一种显示面板及其制造方法,该显示面板(100)包括:第一基板(11);第二基板(12),该第二基板与第一基板相对平行设置;阳极/阴极(41),形成在第一基板上;阴极/阳极(42),形成在第二基板上;第一配向层(31),设置在阳极/阴极上,第一配向层包括沿第一方向交替设置的具有第一配向方向的多个第一子配向层(311),和具有第二配向方向的多个第二子配向层(312),第一配向方向与第二配向方向的夹角为90度;第二配向层(32),设置于阴极/阳极上,该第二配向层包括沿第一方向交替设置的具有第一配向方向的多个第三子配向层(323),和具有第二配向方向的多个第四子配向层(324),第一子配向层与第三子配向层的位置相对,第二子配向层与第四子配向层的位置相对;和发光层(40),设置在第一配向层和第二配向层之间,该发光层为包含掺杂有机发光材料的液晶聚合物,用于发射偏振光。

Description

显示面板及其制造方法 技术领域
本发明的实施例涉及一种显示面板及其制造方法。 背景技术
3D显示技术可以分为眼镜式和棵眼式两大类。 目艮镜式 3D技术主要分为 色差式、 偏光式和主动快门式, 其中偏光式 3D技术的图像效果比色差式好, 因此而在实际生活中得到广泛应用。
偏光式 3D技术是利用光线的偏振方向不同而进行分光, 通过相位差板 使得左眼图像光和右眼图像光具有不同的偏振方向, 然后利用 3D目艮镜将具 有不同偏振方向的左右眼图像光分别送入左右眼 ,再经过大脑合成立体影像。
目前的采用 OLED显示面板的偏光式 3D技术通常需在 OLED显示面板 的出光侧的基板外贴付一层偏光膜,以将显示面板射出的自然光转为偏振光, 然后再在偏光膜的出光侧设置相位差板, 使奇数行像素或偶数行像素出射的 光在经过偏光膜以及相位差板后变为两种不同方向的偏振光, 然后被偏光眼 镜的左右镜片对应地接收, 从而使人的左右眼接收到不同方向的偏振光, 产 生立体视觉效果。 板上贴付一层偏光膜并在其出光侧设置相位差板, 由于左右眼的分光位置与 像素发光位置存在一定的间隔, 因此, 从显示面板的边缘处射出的光线之间 形成串扰区和死区无法实现 3D观视, 从而造成 3D上下视角过窄。
另外, 在现有的采用 OLED显示面板的偏光式 3D显示装置中, 相位差 板需要和显示面板的奇数行像素和偶数行像素相对应, 而该结构目前在工艺 上易造成对位困难。 发明内容
本发明的实施例提供一种显示面板及其制造方法, 解决了现有的 OLED 偏光式 3D显示面板的上下视角过窄和工艺上对位贴附困难的技术问题, 能 够实现视角完整和立体影像真实完整的偏光式 3D显示装置。
一方面, 本发明的实施例提供一种显示面板, 包括: 第一基板; 第二基 板, 所述第二基板与所述第一基板相对平行设置; 阳极 /阴极, 形成在所述第 一基板上; 阴极 /阳极, 形成在所述第二基板上; 第一配向层, 设置于所述 阳极 /阴极上,所述第一配向层包括沿第一方向交替设置的具有第一配向方向 的多个第一子配向层和具有第二配向方向的多个第二子配向层, 所述第一配 向方向与所述第二配向方向的夹角为 90度; 第二配向层, 设置于所述阴才l/ 阳极上, 所述第二配向层包括沿所述第一方向交替设置的具有所述第一配向 方向的多个第三子配向层和具有所述第二配向方向的多个第四子配向层, 所 述第一子配向层与所述第三子配向层的位置相对, 所述第二子配向层与所述 第四子配向层的位置相对; 和发光层, 设置在所述第一配向层和所述第二配 向层之间, 所述发光层为包含掺杂有机发光材料的液晶聚合物, 用于发射偏 振光。
另一方面, 本发明的实施例提供一种上述显示面板的制造方法, 包括: 准备第一基板以及第二基板; 将阳极 /阴极形成在所述第一基板上; 将阴极 / 阳极形成在所述第二基板上; 将具有第一配向方向的多个第一子配向层与具 有第二配向方向的多个第二子配向层沿第一方向交替形成在所述阳极 /阴极 上, 其中所述多个第一子配向层和所述多个第二子配向层形成所述第一配向 层; 将具有所述第一配向方向的多个第三子配向层与具有所述第二配向方向 的多个第四子配向层沿所述第一方向交替形成在所述阴¼ /阳极上,其中所述 多个第三子配向层和所述多个第四子配向层形成所述第二配向层; 以及将所 述发光层形成于所述第一配向层和所述第二配向层之间, 其中所述第一子配 向层与所述第三子配向层的位置相对, 所述第二子配向层与所述第四子配向 层的位置相对所述发光层包含掺杂有机发光材料的液晶聚合物, 用于发射偏 振光。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 筒单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。 图 1为根据本发明实施例的一种显示面板的剖面示意图; 图 2为根据本发明实施例的另一种显示面板的剖面图;
图 3为根据本发明实施例的再一种显示面板的剖面图; 以及
图 4为具有根据本发明实施例的显示面板的显示装置的立体图。 具体实施方式
本发明的实施例通过提供一种显示面板及其制造方法, 解决了现有的 OLED偏光式 3D显示面板的上下视角过窄和工艺上对位贴附困难的技术问 题, 能够实现视角完整和立体影像真实完整的偏光式 3D显示装置。
示例性地, 根据本发明实施例的显示面板, 包括: 第一基板; 第二基板, 所述第二基板与所述第一基板相对平行设置; 阳¼/阴极, 形成在所述第一基 板上; 阴极 /阳极, 形成在所述第二基板上; 第一传输层, 设置在所述阳极 / 阴极上; 第二传输层, 设置在所述阴¼ /阳极上; 第一配向层, 设置于所述第 一传输层上, 所述第一配向层包括沿第一方向交替设置的具有第一配向方向 的多个第一子配向层和具有第二配向方向的多个第二子配向层, 所述第一配 向方向与所述第二配向方向的夹角为 90度;第二配向层,设置于所述第二传 输层上, 所述第二配向层包括沿所述第一方向交替设置的具有所述第一配向 方向的多个第三子配向层和具有所述第二配向方向的多个第四子配向层, 所 述第一子配向层与所述第三子配向层的位置相对, 所述第二子配向层与所述 第四子配向层的位置相对; 和发光层, 设置在所述第一配向层和所述第二配 向层之间, 所述发光层为包含掺杂有机发光材料的液晶聚合物, 用于发射偏 振光。
示例性地, 根据本发明实施例的上述显示面板的制造方法, 包括: 准备 第一基板以及第二基板; 将阳¼ /阴极形成在所述第一基板上; 将所述第一传 输层形成于所述阳极 /阴极上; 将阴极 /阳极形成在所述第二基板上; 将所述 第二传输层形成于所述阴¼ /阳极上;将具有第一配向方向的多个第一子配向 层与具有第二配向方向的多个第二子配向层沿第一方向交替形成在所述第一 传输层上, 其中所述多个第一子配向层和所述多个第二子配向层形成所述第 一配向层; 将具有所述第一配向方向的多个第三子配向层与具有所述第二配 向方向的多个第四子配向层沿所述第一方向交替形成在所述第二传输层上, 其中所述多个第三子配向层和所述多个第四子配向层形成所述第二配向层; 以及将所述发光层形成于所述第一配向层和所述第二配向层之间, 其中所述 第一子配向层与所述第三子配向层的位置相对, 所述第二子配向层与所述第 四子配向层的位置相对所述发光层包含掺杂有机发光材料的液晶聚合物, 用 于发射偏振光。
通过采用第一配向层、 第二配向层和具有液晶偏振有机电致发光材料的 制成的发光层, 因此, 不需要再在 OLED显示面板的出光侧另外贴附偏光膜 和相位差板, 解决了现有的 3D显示装置因为需要在显示面板的外面另外贴 附偏光膜和相位差板而造成光线之间形成串扰区和死区无法实现 3D观视, 以及上下视角过窄和在工艺上对位贴附困难的技术问题,达到保证偏光式 3D 的视角的技术效果。
示例性地, 因为所述第一配向方向与所述第二配向方向的夹角为 90度, 通过第一子配向层和第三子配向层以及第二子配向层和第四子配向层的配 向, 发光层发出偏振方向不同的线偏振光, 然后通过偏光眼镜而使得左眼图 像和右眼图像分别被人的左右目艮接收,再经过大脑合成真实完整的立体影像, 从而实现 3D观视。
下面将结合附图对上述技术方案进行详细的说明。
图 1示出了根据本发明实施例的一种显示面板的剖面图, 如图 1所示, 显示面板 100包括第一基板 11、阳¼ /阴极 41、第一配向层 31、第二基板 12、 阴极 /阳极 42、 第二配向层 32和发光层 40。
第二基板 11与第一基板 12设置在上下两侧, 并相对平行设置。
第一配向层 31形成于阳极 /阴极 41上。 第一配向层 31为一种可传递载 流子的配向材料制成, 如聚酰亚胺配向层等。 在本实施例中, 聚酰亚胺配向 层为掺杂性聚酰亚胺配向层, 例如掺杂星形-胺的聚酰亚胺(PI )配向层或聚 苯撑乙烯( PpV )前聚体配向层。
第一配向层 31包括沿第一方向间隔设置的多个第一子配向层 311和多个 第二子配向层 312。 多个第一子配向层 311具有第一配向方向, 多个第一子 配向层 311是按照第一配向方向形成于阳¼ /阴极 41上的。 多个第二子配向 层 312具有第二配向方向, 多个第二子配向层 312是按照第二配向方向形成 于阳极 /阴极 41上的。 示例性地, 第一配向方向和第二配向方向的夹角为 90 度, 例如, 第一配向方向为 45度, 第二配向方向为 135度。
第二配向层 32涂设于阴极 /阳极 42上。 第二配向层 32为一种可传递载 流子的配向材料制成, 如聚酰亚胺配向层等。 示例性地, 聚酰亚胺配向层可 以为掺杂性聚酰亚胺配向层, 例如, 掺杂星形-胺的聚酰亚胺(PI )配向层或 聚苯撑乙烯(PpV )前聚体配向层。
第二配向层 32包括沿第一方向(例如, X方向)间隔设置的多个第三子 配向层 323和多个第四子配向层 324。 多个第三子配向层 323具有第一配向 方向, 且与多个第一子配向层 311的位置相对, 多个第三子配向层 323是按 照第一配向方向形成于阴¼ /阳极 42上的。 多个第四子配向层 324具有第二 配向方向且与多个第二子配向层 312的位置相对, 多个第四子配向层 324是 按照第二配向方向形成于阴极 /阳极 42上的。
发光层 40位于第一配向层 31和第二配向层 32之间, 通过第一配向层 31和第二配向层 32控制发光层的排列。发光层 40包含能够发射偏振光的掺 杂有机电致发光材料的液晶聚合物。示例性地,发光层 40可以包括芴聚合物, 例如, PFO-聚(9,9-二辛基芴)或聚(9,9-乙(2-乙基-己基) 芴。
因为发光层 40为具有电致发光的特性, 因此, 当电子由阳极 /阴极 41和 阴极 /阳极 42进入发光层 40时, 发光层 40会发光。 又因为发光层 40由能够 发射偏振光的材料形成, 因此发光层 40发出的光即为线性偏振光。
示例性地, 根据本发明实施例的显示面板被多个亚像素单元, 多个第一 子配向层 311的每个和与其对应的每个第三子配向层 323与一行 /一列亚像素 单元对应设置, 相邻的每个第二子配向层 312和与其对应的每个第四子配向 层 324与相邻行 /列亚像素单元对应设置, 示例性地, 其中所述第一方向为亚 像素单元的行方向或列方向。
示例性地, 图 2示出了根据本发明实施例的另一显示面板的剖面图, 如 图 2所示, 在图 1示出的显示面板的基础上, 根据本发明实施例的显示面板 还可以包括: 第一传输层 21 , 设置在所述阳¼ /阴极 41与所述第一配向层 31 之间; 以及第二传输层 22, 设置在所述阴极 /阳极 42与所述第二配向层 32 之间。 其中第一传输层 21和第二传输层 22其中之一用于传递电子, 另一个 用于传递空穴。 例如, 当第一传输层 21邻近阳极设置时, 其用于传输空穴, 而邻近阴极设置时, 其用于传输电子, 对于第二传输层 22也是如此, 这里不 进行赘述。
通过采用第一配向层 31、 第二配向层 32和具有能够发射偏振光的掺杂 有机电致发光材料的液晶聚合物制成的发光层 40, 因此, 不需要再在显示面 板 100的外面另外贴附偏光膜和相位差板, 解决了现有技术中因为需要在显 示面板的外面另外贴附偏光膜和相位差板而造成光线之间形成串扰区和死区 无法实现 3D观视,以及该偏光式 3D显示装置的上下视角过窄和工艺上对位 贴附困难的技术问题, 能够实现视角完整和立体影像真实完整的偏光式 3D 显示装置。
所述第一配向方向与所述第二配向方向的夹角为 90度,例如,所述第一 配向方向为 45度, 所述第二配向方向为 135度时, 通过多个第一子配向层 311和多个第三子配向层 323以及多个第二子配向层 312和多个第四子配向 层 324的配向,又因为第一和第三子配向层分别对应于相邻的两行 /两列亚像 素单元, 左眼像素单元的发光层 40发出的光和右眼像素单元的发光层 40发 出的光偏振方向彼此垂直, 通过具有相应偏振方向的偏光眼镜的左右镜片, 左眼像素单元的光和右目艮像素单元的光分别进入人的左目艮和右眼, 再经过大 脑合成而形成真实完整的立体影像, 从而实现 3D观视。
示例性地,根据本发明实施例的发光层的厚度可以根据实际情况而确定。 示例性地, 根据本发明实施例的显示面板还可以包括多个滤色器, 多个 滤色器设置在位于显示面侧的所述第一基板与阳极 /阴极之间或者设置在位 于显示面侧的所述第二基板与阴¼ /阳极之间,且所述多个滤色器的每个对应 于每个亚像素单元设置。 图 3给出了一种示例, 其中滤色器设置在第一基板 与阳极 /阴极之间, 图 3给出的是在图 1所示的显示面板的基础上进一步设置 了滤色器, 示例性地, 也可以在图 2所示的显示面板的基础上进一步设置滤 色器, 为了筒洁, 本发明实施例的附图并未示出。
示例性地, 多个滤色器为红光滤色器、 绿光滤色器和蓝光滤色器, 分别 对应于一个亚像素单元设置。
示例性地, 多个滤色器之间还可以设置有黑矩阵, 用于挡光。
示例性地, 根据本发明实施例的多个亚像素单元可以形成为多个红光亚 像素单元、 多个绿光亚像素单元以及多个蓝光亚像素单元, 其中红光亚像素 单元中设置发射红色偏振光的芴聚合物, 例如, 芴 /D-A型萘并噻二唾 /苯并硒 二唑共聚物或芴 /噻喻 /苯并硒二唑共聚物,绿光亚像素单元中设置发射绿色偏 振光的芴聚合物, 例如, 9,9-二辛基聚芴-苯并噻二唑交替共聚物 (PFBT)或芴 乙烯-喻噻嗪乙烯共聚物, 蓝光亚像素单元中设置发射蓝色偏振光的芴聚合 物, 例如, 聚 9, 9-二己基芴 (PF2/6)或二辛基芴 (PFO)。 这时, 在显示面侧可 以不需要设置滤色器。
示例性地, 每个第一子配向层、 每个第二子配向层、 每个第三子配向层 和每个第四子配向层都对应于一列 /一行亚像素单元。
进一步地, 本发明的实施例还提供一种显示面板 100的制造方法, 包括 以下步骤:
准备第一基板 11以及第二基板 12;
将阳极 /阴极 41形成于所述第一基板 11上;
将阴极 /阳极 42形成于所述第二基板 12上;
将具有第一配向方向的多个第一子配向层 311与具有第二配向方向的多 个第二子配向层 312沿第一方向交替形成在所述阳¼ /阴极上,其中所述多个 第一子配向层和所述多个第二子配向层形成所述第一配向层 31;
将具有所述第一配向方向的多个第三子配向层 323与具有所述第二配向 方向的多个第四子配向层 324沿所述第一方向交替形成在所述阴¼ /阳极上, 其中所述多个第三子配向层和所述多个第四子配向层形成所述第二配向层 32; 以及
将发光层 40形成于所述第一配向层 31和所述第二配向层 32之间, 其中所述第一子配向层与所述第三子配向层的位置相对, 所述第二子配 向层与所述第四子配向层的位置相对, 所述发光层包含掺杂有机发光材料的 液晶聚合物, 用于发射偏振光。
示例性地, 多个第一子配向层 311、 多个第二子配向层 312、 多个第三子 配向层 323和多个第四子配向层 324可以以例如喷墨、 沉积、 涂覆或者溅射 的方式涂设。
示例性地, 根据本发明实施例的显示面板 100的制造方法还可以包括: 在所述阳极 /阴极与所述第一配向层之间形成第一传输层; 以及在所述阴极 / 阳极与所述第二配向层之间形成第二传输层,其中所述第一传输层通过沉积、 涂覆或者溅射的方式形成于所述第一基板上。 所述第二传输层通过沉积、 涂 覆或者溅射的方式形成于所述第二基板上。
示例性地, 根据本发明实施例的显示面板 100的制造方法还可以包括: 在位于显示面侧的所述第一基板与阳极 /阴极之间或者在位于显示面侧的所 述第二基板与阴 阳极之间形成多个滤色器。
示例性地, 根据本发明实施例的显示面板 100的制造方法, 在将所述发 光层形成于所述第一配向层和所述第二配向层之间之前, 还包括: 将形成有 所述阳极 /阴极、 所述第一配向层的所述第一基板与形成有阴极 /阳极、 所述 第二配向层的所述第二基板对盒。 或者, 在将所述发光层形成于所述第一配 向层和所述第二配向层之间之前, 还包括: 将形成有所述阳¼/阴极、 所述第 一传输层、 所述第一配向层的所述第一基板与形成有阴¼/阳极、 所述第二传 输层、 所述第二配向层的所述第二基板对盒。 进一步地, 将所述发光层形成 于所述第一配向层和所述第二配向层之间包括: 将所述发光层注入到对盒后 的第一基板和第二基板的所述第一配向层与所述第二配向层之间; 对所述发 光层进行固化, 例如, 光固化或热固化。
示例性地, 将所述发光层形成于所述第一配向层和所述第二配向层之间 包括: 在所述第一配向层或所述第二配向层上通过沉积、 涂覆或者溅射的方 式形成所述发光层; 将所述将形成有所述阳极 /阴极、 所述第一配向层的所述 第一基板与形成有阴极 /阳极、 所述第二配向层的所述第二基板对盒; 或者将 形成有所述阳极 /阴极、 所述第一传输层、 所述第一配向层的所述第一基板与 形成有阴极 /阳极、 所述第二传输层、 所述第二配向层的所述第二基板对盒; 以及对所述发光层进行固化。
通过上述显示面板 100的制造方法制造出来的显示面板 100能够解决现 有技术中因为需要在显示面板的外面另外贴附偏光膜和相位差板而造成光线 之间形成串扰区和死区无法实现 3D观视,以及该偏光式 3D显示装置的上下 视角过窄和工艺上对位贴附困难的技术问题, 能够实现视角完整和立体影像 真实完整的偏光式 3D显示装置。
另外, 左眼像素单元的发光层 40发出的光和右眼像素单元的发光层 40 发出的光偏振方向彼此不同,通过具有相应偏振方向的偏光眼镜的左右镜片, 左眼像素单元的光和右眼像素单元的光分别进入人的左目艮和右眼, 再经过大 脑合成而形成真实完整的立体影像, 从而实现 3D观视。 进一步地, 本发明的实施例提供了包括上述显示面板的显示装置, 如图
4所示,根据本发明实施例的显示装置 20包括壳体 120和设置于壳体 120内 的显示面板 100。
示例性地, 显示装置 200为显示器, 或任何可以用于显示图像数据的设 备, 如电视机、 电脑、 手机等。
因为显示装置 200采用了上述显示面板 100, 因此显示装置 200同样能 解决了现有技术中偏光式 3D显示的上下视角过窄和工艺上对位贴附困难的 技术问题, 实现了保证偏光式 3D显示装置的视角完整且立体影像真实的技 术效果。
尽管已描述了本发明的实施例, 但本领域内的技术人员一旦得知了基本 创造性概念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权利要 求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权利要求书
1、 一种显示面板, 包括:
第一基板;
第二基板, 所述第二基板与所述第一基板相对平行设置;
阳才l/阴极, 形成在所述第一基板上;
阴才l/阳极, 形成在所述第二基板上;
第一配向层, 设置于所述阳极 /阴极上, 所述第一配向层包括沿第一方向 交替设置的具有第一配向方向的多个第一子配向层和具有第二配向方向的多 个第二子配向层, 所述第一配向方向与所述第二配向方向的夹角为 90度; 第二配向层, 设置于所述阴极 /阳极上, 所述第二配向层包括沿所述第一 方向交替设置的具有所述第一配向方向的多个第三子配向层和具有所述第二 配向方向的多个第四子配向层, 所述第一子配向层与所述第三子配向层的位 置相对, 所述第二子配向层与所述第四子配向层的位置相对; 和
发光层, 设置在所述第一配向层和所述第二配向层之间, 所述发光层为 包含掺杂有机发光材料的液晶聚合物, 用于发射偏振光。
2、如权利要求 1所述的显示面板,其中所述显示面板被分为多个亚像素 单元,多个第一子配向层的每个和与其对应的每个第三子配向层与一行 /一列 亚像素单元对应设置, 相邻的每个第二子配向层和与其对应的每个第四子配 向层与相邻行 /列亚像素单元对应设置, 所述第一方向为行方向或列方向。
3、 如权利要求 2所述的显示面板, 其中所述发光层包括芴聚合物。
4、 如权利要求 3所述的显示面板, 其中所述芴聚合物为 PFO-聚(9,9- 二辛基芴)或聚(9,9-乙 (2-乙基-己基) 芴。
5、如权利要求 1-4中任一项权利要求所述的显示面板, 其中所述第一配 向层和第二配向层由具有载流子传输能力的配向材料形成。
6、如权利要求 5中所述的显示面板,其中所述第一配向层和所述第二配 向层为聚酰亚胺配向层。
7、如权利要求 6所述的显示面板,其中所述聚酰亚胺配向层为掺杂性聚 酰亚胺配向层。
8、如权利要求 7所述的显示面板,其中所述掺杂性聚酰亚胺配向层为掺 杂星形 -胺的聚酰亚胺配向层或者聚苯撑乙烯前聚体配向层。
9、如权利要求 2-4中任一项所述的显示面板, 其中所述显示面板还包括 多个滤色器,设置在位于显示面侧的所述第一基板与阳极 /阴极之间或者设置 在位于显示面侧的所述第二基板与阴¼ /阳极之间,且所述多个滤色器的每个 对应于每个亚像素单元设置。
10、 如权利要求 9所述的显示面板, 其中多个滤色器之间还设置有黑矩 阵。
11、 如权利要求 3所述的显示面板, 其中多个亚像素单元被为多个红光 亚像素单元、 多个绿光亚像素单元以及多个蓝光亚像素单元。
12、如权利要求 11所述的显示面板,其中对应于所述红光亚像素单元的 所述发光层包括芴/ D-A型萘并噻二唑 /苯并踊二唑共聚物, 芴 /噻喻 /苯并踊二 唑共聚物, 对应于绿光亚像素单元的发光层包括 9,9-二辛基聚芴 -苯并噻二唑 交替共聚物 (PFBT), 芴乙烯-喻噻嗪乙烯共聚物, 对应于蓝光亚像素单元的发 光层包括聚 9, 9-二己基芴 (PF2/6), 二辛基芴 (PFO)。
13、 如权利要求 1-4中任一项所述的显示面板, 其中所述第一配向方向 为 45度或 0度, 所述第二配向方向为 135度或 90度。
14、 如权利要求 2-4中任一项所述的显示面板, 还包括:
第一传输层, 设置在所述阳极 /阴极与所述第一配向层之间;
第二传输层, 设置在所述阴极 /阳极与所述第二配向层之间。
15、 如权利要求 2-4中任一项所述的显示面板, 其中所述每个第一子配 向层、 每个第二子配向层、 每个第三子配向层和每个第四子配向层的宽度相 同。
16、 一种如权利要求 1-15中任一项所述的显示面板的制造方法, 包括: 准备第一基板以及第二基板;
将阳极 /阴极形成在所述第一基板上;
将阴极 /阳极形成在所述第二基板上;
将具有第一配向方向的多个第一子配向层与具有第二配向方向的多个第 二子配向层沿第一方向交替形成在所述阳极 /阴极上,其中所述多个第一子配 向层和所述多个第二子配向层形成所述第一配向层;
将具有所述第一配向方向的多个第三子配向层与具有所述第二配向方向 的多个第四子配向层沿所述第一方向交替形成在所述阴¼ /阳极上,其中所述 多个第三子配向层和所述多个第四子配向层形成所述第二配向层; 以及 将所述发光层形成于所述第一配向层和所述第二配向层之间, 其中所述第一子配向层与所述第三子配向层的位置相对, 所述第二子配 向层与所述第四子配向层的位置相对所述发光层包含掺杂有机发光材料的液 晶聚合物, 用于发射偏振光。
17、如权利要求 16所述的显示面板的制造方法,在将所述发光层形成于 所述第一配向层和所述第二配向层之间之前, 还包括:
将形成有所述阳极 /阴极、所述第一配向层的所述第一基板与形成有阴极 /阳极、 所述第二配向层的所述第二基板对盒。
18、如权利要求 17所述的显示面板的制造方法,其中将所述发光层形成 于所述第一配向层和所述第二配向层之间包括:
将所述发光层注入到对盒后的第一基板和第二基板的所述第一配向层与 所述第二配向层之间;
对所述发光层进行固化。
19、如权利要求 16所述的显示面板的制造方法,其中将所述发光层形成 于所述第一配向层和所述第二配向层之间包括:
在所述第一配向层或所述第二配向层上通过沉积、 涂覆或溅射形成所述 发光层;
将所述将形成有所述阳极 /阴极、 所述第一传输层、 所述第一配向层的所 述第一基板与形成有阴极 /阳极、 所述第二传输层、 所述第二配向层的所述第 二基板对盒; 以及
对所述发光层进行固化。
20、如权利要求 16所述的显示面板的制造方法,还包括: 在位于显示面 侧的所述第一基板与阳极 /阴极之间或者在位于显示面侧的所述第二基板与 阴极 /阳极之间形成多个滤色器; 在所述阳极 /阴极与所述第一配向层之间形 成第一传输层; 以及在所述阴极 /阳极与所述第二配向层之间形成第二传输 层。
PCT/CN2013/089002 2013-06-27 2013-12-10 显示面板及其制造方法 WO2014206019A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/363,229 US9281348B2 (en) 2013-06-27 2013-12-10 Display panel and fabricating method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310263834.7 2013-06-27
CN201310263834.7A CN103353673B (zh) 2013-06-27 2013-06-27 一种显示面板及其制作方法、显示装置

Publications (1)

Publication Number Publication Date
WO2014206019A1 true WO2014206019A1 (zh) 2014-12-31

Family

ID=49310059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089002 WO2014206019A1 (zh) 2013-06-27 2013-12-10 显示面板及其制造方法

Country Status (3)

Country Link
US (1) US9281348B2 (zh)
CN (1) CN103353673B (zh)
WO (1) WO2014206019A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103353673B (zh) * 2013-06-27 2015-03-04 京东方科技集团股份有限公司 一种显示面板及其制作方法、显示装置
CN105467604B (zh) * 2016-02-16 2018-01-12 京东方科技集团股份有限公司 一种3d显示装置及其驱动方法
CN105742331B (zh) * 2016-03-24 2019-03-26 深圳市华星光电技术有限公司 3d显示面板及3d显示装置
CN106526951B (zh) * 2016-11-29 2021-01-26 京东方科技集团股份有限公司 一种镜面显示装置及其控制方法
CN108010940A (zh) * 2017-11-14 2018-05-08 南京中电熊猫液晶显示科技有限公司 一种有机发光二极管面板、三维显示装置及面板制造方法
CN107991783A (zh) * 2018-01-30 2018-05-04 京东方科技集团股份有限公司 3d显示器件
CN110824746A (zh) * 2018-08-10 2020-02-21 咸阳彩虹光电科技有限公司 一种自发光显示结构及显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1096807A (zh) * 1993-02-17 1994-12-28 霍夫曼-拉罗奇有限公司 光学部件
US20040085507A1 (en) * 2002-10-22 2004-05-06 Sharp Kabushiki Kaisha Liquid crystal optical element and three-dimensional display system including the liquid crystal optical element
US6891583B1 (en) * 1997-07-03 2005-05-10 Eidgenössische Technische Hochschule Zurich Photoluminescent display devices having a photoluminescent layer with a high degree of polarization in its absorption, and methods for making the same
CN102169200A (zh) * 2011-05-31 2011-08-31 京东方科技集团股份有限公司 相位差板制作方法、3d面板及3d显示设备
CN102695774A (zh) * 2009-09-30 2012-09-26 洛马克斯有限公司 含芴衍生物的电致发光材料
CN102713726A (zh) * 2010-01-22 2012-10-03 株式会社Lg化学 用于光取向膜取向处理的粘性薄膜
CN103353673A (zh) * 2013-06-27 2013-10-16 京东方科技集团股份有限公司 一种显示面板及其制作方法、显示装置
CN203299460U (zh) * 2013-06-27 2013-11-20 京东方科技集团股份有限公司 一种显示面板及显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2403023A (en) * 2003-06-20 2004-12-22 Sharp Kk Organic light emitting device
JP5013362B2 (ja) * 2006-08-18 2012-08-29 Nltテクノロジー株式会社 液晶表示パネル及びその製造方法
TWI344032B (en) * 2006-09-07 2011-06-21 Taiwan Tft Lcd Ass Liquid crystal display panel and method of fabricating the liquid crystal display panel
JP5116359B2 (ja) * 2007-05-17 2013-01-09 株式会社半導体エネルギー研究所 液晶表示装置
GB2456298A (en) * 2008-01-07 2009-07-15 Anthony Ian Newman Electroluminescent materials comprising oxidation resistant fluorenes
CN101571649B (zh) * 2008-04-28 2012-10-17 上海天马微电子有限公司 光学补偿弯曲型液晶显示面板
TWI422931B (zh) * 2010-10-11 2014-01-11 Au Optronics Corp 液晶顯示面板
CN102890366B (zh) * 2012-10-16 2015-12-02 京东方科技集团股份有限公司 半透半反液晶显示面板及其制作方法、液晶显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1096807A (zh) * 1993-02-17 1994-12-28 霍夫曼-拉罗奇有限公司 光学部件
US6891583B1 (en) * 1997-07-03 2005-05-10 Eidgenössische Technische Hochschule Zurich Photoluminescent display devices having a photoluminescent layer with a high degree of polarization in its absorption, and methods for making the same
US20040085507A1 (en) * 2002-10-22 2004-05-06 Sharp Kabushiki Kaisha Liquid crystal optical element and three-dimensional display system including the liquid crystal optical element
CN102695774A (zh) * 2009-09-30 2012-09-26 洛马克斯有限公司 含芴衍生物的电致发光材料
CN102713726A (zh) * 2010-01-22 2012-10-03 株式会社Lg化学 用于光取向膜取向处理的粘性薄膜
CN102169200A (zh) * 2011-05-31 2011-08-31 京东方科技集团股份有限公司 相位差板制作方法、3d面板及3d显示设备
CN103353673A (zh) * 2013-06-27 2013-10-16 京东方科技集团股份有限公司 一种显示面板及其制作方法、显示装置
CN203299460U (zh) * 2013-06-27 2013-11-20 京东方科技集团股份有限公司 一种显示面板及显示装置

Also Published As

Publication number Publication date
CN103353673A (zh) 2013-10-16
CN103353673B (zh) 2015-03-04
US9281348B2 (en) 2016-03-08
US20150084018A1 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
WO2014206019A1 (zh) 显示面板及其制造方法
US20230380237A1 (en) Non-common capping layer on an organic device
TWI714604B (zh) 具有改良效率之有機發光二極體裝置
US10237538B2 (en) Display panel, driving method thereof, manufacturing method thereof and display device
CN107331647B (zh) 一种显示基板及其制作方法、显示装置
US10872939B2 (en) Viewing angle color shift control
US8836873B2 (en) Display devices and methods of manufacturing the same
US10578883B2 (en) Autostereoscopic displays
KR102474208B1 (ko) 마스크 조립체, 이를 이용한 표시 장치의 제조 장치 및 표시 장치의 제조 방법
CN103748874A (zh) 自动立体显示设备
US20220059631A1 (en) Preparation method of display panel, display panel and displaying device
US9958698B2 (en) 3D displaly panel and 3D display device
US10483489B2 (en) Integrated circular polarizer and permeation barrier for flexible OLEDs
US11703693B2 (en) Array substrate and manufacturing method thereof, three-dimensional display panel and display device
CN112038383A (zh) 一种显示面板、制备方法及显示装置
JP2013092772A (ja) 3次元画像表示装置
US20120129107A1 (en) Method for manufacturing a patterned retarder
CN108010940A (zh) 一种有机发光二极管面板、三维显示装置及面板制造方法
CN111969025A (zh) 一种显示基板及其制作方法、显示装置
WO2014206025A1 (zh) 一种3d显示器件及其制造方法、显示装置
US20060001364A1 (en) Organic electroluminescent stereoscopic image display apparatus and fabricating method thereof
JP2012204012A (ja) 有機el表示装置
CN112713173A (zh) 电致发光显示装置
US7220496B2 (en) Polarized electroluminescent light-emitting panel and its fabrication method
US11968856B2 (en) Polarizer-free LED displays

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14363229

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13887678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/06/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13887678

Country of ref document: EP

Kind code of ref document: A1