WO2014206012A1 - 三管制全热处理多联机空调系统及温湿度独立控制方法 - Google Patents

三管制全热处理多联机空调系统及温湿度独立控制方法 Download PDF

Info

Publication number
WO2014206012A1
WO2014206012A1 PCT/CN2013/088536 CN2013088536W WO2014206012A1 WO 2014206012 A1 WO2014206012 A1 WO 2014206012A1 CN 2013088536 W CN2013088536 W CN 2013088536W WO 2014206012 A1 WO2014206012 A1 WO 2014206012A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
wide
width
air
wind
Prior art date
Application number
PCT/CN2013/088536
Other languages
English (en)
French (fr)
Inventor
刘敏
张文强
曹锐
李亚军
邓玉平
王远鹏
曹培春
Original Assignee
青岛海信日立空调系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信日立空调系统有限公司 filed Critical 青岛海信日立空调系统有限公司
Publication of WO2014206012A1 publication Critical patent/WO2014206012A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/002Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an intermediate heat-transfer fluid
    • F24F12/003Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an intermediate heat-transfer fluid using a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/147Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with both heat and humidity transfer between supplied and exhausted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/007Compression machines, plants or systems with reversible cycle not otherwise provided for three pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02742Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/062Capillary expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/02Humidity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Definitions

  • the invention relates to a multi-line air conditioning control technology, in particular to a three-control full heat treatment multi-line air conditioning system and an independent temperature and humidity control method. Background technique
  • the multi-connected air conditioning system is mainly used to control the temperature and humidity in the room.
  • it includes one or more outdoor units, one or more indoor units, and a line controller.
  • the line controller is connected to the indoor unit, and the indoor unit is connected to the outdoor unit.
  • the outdoor unit is generally composed of an outdoor side heat exchanger, a compressor and other refrigeration accessories.
  • the indoor unit is composed of a fan and a heat exchanger.
  • the outdoor unit of the multi-connected air conditioning system is shared, which can effectively reduce the equipment. Cost, and can realize centralized management of each indoor unit. It can start an indoor unit operation alone, or multiple indoor units can be started at the same time, making the control more flexible.
  • the multi-connected air conditioning system processes the air, it needs to adjust and control the temperature, humidity and the number of fresh air exchanges. Among them, the humidity control is relatively more difficult.
  • the cooling and dehumidifying methods of the fresh air and the return air alone and the dehumidification mode of the rotor are used to adjust the indoor air comfort.
  • the method of cooling and dehumidifying on the one hand, excessively lowering the supply air temperature will result in higher energy consumption of the multi-connected air conditioning system and lowering of the evaporating temperature, and the lowering of the evaporating temperature will result in lower energy efficiency of the multi-connected air conditioning system, on the other hand,
  • the system using the wheel dehumidification can concentrate the air humidity in the case of large air volume.
  • the method in order to regenerate the moisture absorbing material, the method must be heated by the electric heating wire for the return air, and the overall energy consumption of the multi-connected air conditioning system is additionally increased.
  • the rotor dehumidification system is bulky and cannot be used with the air supply end of the multi-connected air conditioning system. Therefore, based on the consideration of energy consumption, the temperature and humidity control of the multi-connected air conditioning system scenario is not suitable for the cooling and dehumidification method and the rotary dehumidification system.
  • FIG. 1 is a schematic structural view of a conventional improved multi-connected air conditioning system.
  • the existing improved multi-connected air conditioning system includes an outdoor unit 01 and an indoor unit 02, wherein
  • the outdoor unit 01 includes: a compressor 1, a unidirectional wide 2, a first four-way reversing width 3, a first heat exchanger 4, a first electronic expansion width 5, a gas-liquid separator 6, a first cut-off width 7, and a first The second cut-off width 8, the third cut-off width 9 and the fourth cut-off width 10, wherein the output end of the compressor 1 is connected to the input end of the one-way wide 2, and the output end of the one-way wide 2 is respectively commutated with the first four-way The first end of the wide 3 is connected to the input end of the first cut-off width 7.
  • the second end of the first four-way reversing wide 3 is connected to the input end of the first heat exchanger 4, and the output end of the first heat exchanger 4 Connected to the input end of the first electronic expansion width 5, the output end of the first electronic expansion width 5 is connected to the input end of the fourth cut-off width 10, and the output end of the fourth cut-off width 10 is connected to the indoor unit 02, the first four-way
  • the third end of the commutating width 3 is connected to the input end of the gas-liquid separator 6 and the input end of the third cut-off width 9, respectively, and the output end of the gas-liquid separator 6 is connected to the input end of the compressor 1, the first four
  • the fourth end of the commutating width 3 is connected to the input end of the second cut-off width 8, the first cut-off width 7 and the second end
  • the output ends of the cut-off width 8 and the third cut-off width 9 are respectively connected to the indoor unit 02.
  • the indoor unit 02 includes: a first air chamber unit, a second air chamber unit, and a third air chamber unit, wherein the first air chamber unit is provided with a second heat exchanger 33, a fresh air passage 11, and a first air supply passage 14 a first wind chamber 17, a first wind width 20, a second wind width 21, a fifth wind width 24, a sixth wind width 25, a first air duct 28, and a third air duct 30; There is a third heat exchanger 35, a first return air passage 12, an exhaust passage 15, a second air chamber 18, a first end, a third end, a third wind width 22, a fourth wind width 23, and a seventh wind width 26, the eighth wind width 27, the second air duct 29, the fourth air duct 31, the second four-way commutation width 32 and the second electronic expansion width 34; the third air chamber unit is provided with a second end, The four-end, fourth heat exchanger 37, the second return air passage 13, the second air supply passage 16, the third air chamber 19, and the third electronic expansion width 36.
  • the indoor unit 01 and the indoor unit 02 are separately controlled by the condenser and the evaporator, and the temperature and humidity can be independently controlled, the structure is compact and the equipment integration is high; and, by recovering the cooling amount and heat of the return air,
  • the multi-connected air conditioning system has a higher evaporation temperature and a lower condensing temperature, so that the energy efficiency ratio of the multi-connected air conditioning system is higher, and the energy efficiency ratio of the operation of the multi-connected air conditioning system is improved; however, the outdoor of the improved technical solution
  • the machine 01 is a four-control system, that is, the outdoor unit 01 and the indoor unit 02 are connected through four refrigerant pipes, thus increasing installation and construction costs in the case of long piping; and, due to the multi-function multi-line sold in the existing market
  • the product and heat recovery multi-line product is a three-control system. Therefore, the improved technical
  • Embodiments of the present invention provide a three-control full heat treatment multi-connected air conditioning system that reduces installation and construction costs of long piping and improves versatility.
  • the embodiment of the invention also provides an independent temperature and humidity control method for the multi-connected air conditioning system, which reduces the installation and construction cost of the long pipe and improves the versatility.
  • a three-control full heat treatment multi-connected air conditioning system includes: an indoor unit, further comprising: an outdoor unit, a high pressure air pipe, a low pressure air pipe, a high pressure liquid pipe, and a first Two electromagnetic wide and third electromagnetic wide, among them,
  • the outdoor unit includes: a control unit, a switching unit, a shunting unit, a first heat exchanger, a first electronic expansion, a first electromagnetic wide, and a capillary;
  • the first end of the switching unit is connected to the output end of the shunting unit, and the output end of the shunting unit is further connected to the first end of the outdoor unit;
  • the second end of the switching unit is connected to one end of the first heat exchanger, the other end of the first heat exchanger is connected to the first end of the first electronic expansion, and the other end of the first electronic expansion is connected to the third end of the outdoor unit ;
  • the fourth end of the switching unit is connected to one end of the first electromagnetic wide, the other end of the first electromagnetic wide is connected to one end of the capillary, and the other end of the capillary is respectively connected with the third end of the switching unit, the input end of the shunting unit, and the outdoor unit The second end is connected;
  • the first end of the outdoor unit is connected to one end of the high pressure air tube, and the other end of the high pressure air tube is respectively connected to the first end of the indoor unit and the third electromagnetic wide end, and the other end of the third electromagnetic wide is connected to the second end of the indoor unit.
  • the second end of the outdoor unit is connected to one end of the low pressure air tube, the other end of the low pressure air tube is connected to the third end of the indoor unit and the second electromagnetic wide end, and the other end of the second electromagnetic wide is connected to the second end of the indoor unit
  • the third end of the outdoor unit is connected to one end of the high pressure liquid pipe, and the other end of the high pressure liquid pipe is connected to the fourth end of the indoor unit;
  • control unit configured to control the first heat exchanger as a condenser and a fourth heat exchanger in the indoor unit as an evaporator when the multi-connected air conditioning system is in a cooling condition; the third electromagnetic wide is closed, and the switching unit is switched ⁇
  • a splitting unit configured to merge the switching unit, the capillary, and the high-pressure refrigerant input to the second end of the outdoor unit, and after being compressed, perform splitting, respectively outputting the first refrigerant and the second refrigerant, wherein the first strand
  • the refrigerant enters the first end of the switching unit, and the second refrigerant enters the first end of the outdoor unit.
  • the indoor unit includes: a first air chamber unit, a second air chamber unit, and a third air chamber unit, wherein the first air chamber unit is provided with a second heat exchanger, a fresh air passage, and a first air supply unit
  • the air passage and the first air chamber, the fresh air passage and the first air supply passage are respectively located at two sides of the first air chamber unit
  • the second air chamber unit is provided with a third heat exchanger, a first return air passage, an exhaust air passage, a second air chamber, a first end of the indoor unit, and a third end of the indoor unit, the first return air passage and the exhaust air passage are respectively located at two sides of the second air chamber unit
  • the third air chamber unit is provided with an indoor unit a second end, a fourth end of the indoor unit, a fourth heat exchanger, a second return air passage, a second air supply passage, and a third air chamber, wherein the second return air passage and the second air supply passage are respectively located in the third wind Both sides of the room unit.
  • the first air chamber unit further includes: a first wind width, a second wind width, a fifth wind width, a sixth wind width, a first air duct, and a third air duct, wherein
  • a fresh air passage is opened at one end of the inner wall of the first air chamber, and a first air supply passage is opened at the other end of the inner wall.
  • the first wind and the second air are disposed at the end of the inner wall of the fresh air passage leading to the first air supply passage and close to the fresh air passage.
  • a damper wherein the first air supply passage leads to the fresh air passage and is adjacent to the other end of the inner wall of the first air supply passage, and is provided with a fifth wind width and a sixth wind width; and in the first wind chamber, a second heat exchange is disposed Device
  • the second air chamber unit further comprises: a third wind width, a fourth wind width, a seventh wind width, an eighth wind width, a second air duct, a fourth air duct, and a second four-way commutation Broad and the second electronic expansion is wide, among them,
  • a first return air passage is opened at one end of the inner wall of the second air chamber and the first air chamber, and an exhaust air passage is opened at the other end of the inner air passage, and the first return air passage leads to the exhaust air passage and is adjacent to the first return air passage
  • One end of the inner wall is provided with a third wind width and a fourth wind width, and the seventh wind width and the eighth wind width are disposed at the other end of the inner wall of the exhaust passage leading to the first return air passage and close to the exhaust passage;
  • a second four-way commutating width, a second electronic expansion wide, and a third heat exchanger are disposed; a second duct connecting the fourth air gap to the first air chamber, and a fourth air connecting the seventh wind floor to the first air chamber, at a junction of the first air chamber and the second air chamber tube;
  • the third plenum unit further includes: a third electronic expansion width,
  • the air between the third air chamber and the second air chamber is not permeable
  • a second return air passage is opened at one end of the inner wall of the third air chamber and the first air chamber, and a second air supply passage is opened at the other end of the inner wall, and a third electronic expansion wide and a fourth change are arranged in the third wind chamber.
  • the first end of the indoor unit is connected to the second end of the second four-way commutation, the first end of the second four-way reversing is connected to one end of the second heat exchanger, and the other end of the second heat exchanger is Two ends of the second electronic expansion are connected, the other end of the second electronic expansion is connected to one end of the third heat exchanger, and the other end of the third heat exchanger is connected to the third end of the second four-way reversing, second The fourth end of the four-way reversing width is connected to the third end of the indoor unit;
  • the second end of the indoor unit is connected to one end of the fourth heat exchanger, the other end of the fourth heat exchanger is connected to the third electronically expanded end, and the other end of the third electronic expansion is connected to the fourth end of the indoor unit. .
  • the shunting unit comprises: a compressor, a unidirectional wide and a gas-liquid separator, the output end of the compressor is connected to the unidirectional wide input end, the unidirectional wide output end is respectively connected with the switching unit and the first end Connected, the input end of the gas-liquid separator is connected to the output end of the switching unit and the second end, and the output end of the gas-liquid separator is connected to the input end of the compressor;
  • the switching unit is a first four-way commutating width, the first end of the first four-way reversing width is connected with the one-way wide output end, and the first four-way reversing the second end of the wide and the input of the first heat exchanger
  • the third end of the first four-way commutation is connected to the input end and the second end of the gas-liquid separator, and the fourth end of the first four-way reversing width is connected to the first electromagnetic wide input end;
  • the first end of the outdoor unit is the first cut-off width
  • the second end of the outdoor unit is the third cut-off width
  • the third end of the outdoor unit is the fourth cut-off width
  • the first heat exchanger, the second heat exchanger, the third heat exchanger and the fourth heat exchanger are aluminum foil finned copper tube heat exchangers or aluminum finned microchannel heat exchangers,
  • the fins of the second heat exchanger and the third heat exchanger are coated with a moisture absorbing material.
  • the first end of the first four-way commutation is in communication with the second end, and the third end is connected to the fourth end, the first electromagnetic wide and the third electromagnetic wide Closed, the second electromagnetic wide open, according to a preset program, the first electronic expansion of the evaporator liquid supply amount is fully opened, the second electronic expansion width and the third electronic expansion width respectively act as a throttling, and the refrigerant flowing through is regulated. Flow the amount;
  • the refrigerant is discharged from the exhaust port of the compressor into a one-way wide, and the high-pressure refrigerant gas that is unidirectionally wide is divided into a first refrigerant and a second refrigerant, respectively entering the first four-way commutator One end and the first cutoff width;
  • the first refrigerant is switched from the first end of the first four-way to the first end of the first four-way to the second end of the first, and sequentially enters the first heat exchanger, the first electronic expansion is wide, and the fourth is wide, a high pressure liquid pipe, a fourth end of the indoor unit, a third electronic expansion wide, a fourth heat exchanger, a second end of the indoor unit, a second electromagnetic wide, a low pressure gas pipe, and a third cut-off width, and then returned to the gas-liquid separator Finally entering the compressor by the compressor suction port;
  • the second refrigerant passes through the first end of the high-pressure gas pipe and the first end of the indoor unit, enters the second end of the second four-way reversing, and passes through the third end of the indoor unit, the low-pressure air pipe, and the The third cut is wide, and then flows back to the gas-liquid separator, and finally enters the compressor through the suction port of the compressor;
  • the first heat exchanger as a condenser discharges heat into the atmosphere; the indoor return air enters the third air chamber from the second return air passage and exchanges heat with the fourth heat exchanger as an evaporator, and the heat of the return air is The low-temperature refrigerant in the four heat exchangers is taken away, and the air is cooled and sent into the room by the second air supply passage.
  • the cooling condition includes a first cycle period of cyclic switching and a second cycle period
  • the second heat exchanger acts as an evaporator and the third heat exchanger acts as a condenser, the first four ends of the second four-way commutation are in communication with the fourth end, and the second four-way is commutating The second end is connected to the third end.
  • the first wind width, the third wind width, the sixth wind width, and the eighth wind width open, the second wind width, the fourth wind width, the fifth wind width and the seventh wind width are closed. ;
  • a second refrigerant that enters the second end of the second four-way reversing width, flows through the third end of the second four-way reversing, and sequentially enters the third heat exchanger, the second electronic expansion, and the second heat exchange
  • the heat and mass transfer is carried out, the high temperature and high humidity fresh air is cooled by the second heat exchanger, and the water vapor in the fresh air is absorbed by the moisture absorbing material on the fins of the second heat exchanger, and the fresh air is cooled and dehumidified and then sent by the first
  • the air passage is sent into the room; the indoor return air enters the second air chamber from the first return air passage, and exchanges heat and mass with the third heat exchanger, and the low temperature and low humidity return air absorbs the heat of the
  • the heated and humidified air is discharged into the atmosphere via the exhaust passage;
  • the second heat exchanger acts as a condenser and the third heat exchanger acts as an evaporator, the first end of the second four-way commutation is in communication with the second end and the second four-way is commutating
  • the three ends are connected to the fourth end, and the first wind width, the third wind width, the sixth wind width, and the eighth wind width are closed, the second wind width, the fourth wind width, the fifth wind width, and the seventh wind width opening ;
  • a second refrigerant that enters the second end of the second four-way reversing width flows through the first end of the second four-way reversing width, and sequentially enters the second heat exchanger, the second electronic expansion wide, and the third heat exchange
  • the heat and mass transfer is carried out, the high temperature and high humidity fresh air is cooled by the third heat exchanger, and the water vapor in the fresh air is absorbed by the moisture absorption material on the fins of the third heat exchanger, and the fresh air is cooled and dehumidified and then passed through the second wind.
  • the room is finally sent into the room by the first air supply passage;
  • the indoor return air enters the first air chamber from the first return air passage, exchanges heat and mass transfer with the second heat exchanger, and the low temperature and low humidity return air absorbs the heat of the second heat exchanger, and the cooling capacity in the return air is Recycling, and the return air takes away the moisture absorbed by the moisture absorbing material on the fins of the second heat exchanger in the first cycle, and the heated humidified air is discharged into the atmosphere via the exhaust passage, at a time set in the second cycle When it is time, the trigger enters the first cycle and cycles like this.
  • the first end of the first four-way commutation is in communication with the fourth end, and the second end is in communication with the third end, the first electromagnetic wide and the second electromagnetic Widely closed, the third electromagnetic wide open, the first electronic expansion broad, the second electronic expansion broad and the third electronic expansion wide are both throttled, regulating the flow of refrigerant flowing through;
  • the refrigerant is discharged from the exhaust port of the compressor into a one-way wide, and the high-pressure refrigerant gas that is unidirectionally wide is divided into a first refrigerant and a second refrigerant, respectively entering the first four-way commutator One end and the first cutoff width;
  • the first refrigerant is commutated to the first end of the first through the first four-way, and flows through the first end of the first four-way to the fourth end, and enters the first electromagnetic wide state and is in a stagnation state;
  • the second refrigerant entering the first cut-off width enters the high-pressure gas pipe from the first cut-off outlet, and is divided into two parts, wherein
  • a part of the second refrigerant is input into the third electromagnetic wide, enters the second end of the indoor unit, flows through the fourth heat exchanger, the third electronic expansion wide, the fourth end of the indoor unit, the high pressure liquid pipe, flows into the fourth
  • the cut-off is wide, and then flows through the first electronically expanded wide, first heat exchanger, from the second end of the switching unit into the third end of the switching unit, back to the gas-liquid separator, and finally enters by the suction port of the compressor Compressor;
  • another part of the second refrigerant is input into the first end of the indoor unit, and enters the second four-way commutation
  • the second end is passed through the third end of the indoor unit, the low pressure air pipe, and the third cut-off width, and then returned to the gas-liquid separator, and finally enters the compressor through the compressor suction port;
  • the first heat exchanger as the evaporator absorbs heat from the atmosphere; the indoor return air enters the third air chamber from the second return air passage, and exchanges heat with the fourth heat exchanger as a condenser, the fourth heat exchanger The heat is discharged into the return air, and after the air is heated, it is sent into the room by the second air supply passage.
  • the heating condition includes a third cycle of cyclic switching and a fourth cycle period
  • the second heat exchanger acts as an evaporator and the third heat exchanger acts as a condenser, the first four ends of the second four-way commutation are in communication with the fourth end, and the second four-way is commutating
  • the second end is connected to the third end, and the first wind width, the third wind width, the sixth wind width, and the eighth wind width are closed, and the second wind width, the fourth wind width, the fifth wind width, and the seventh wind width open ;
  • the refrigerant entering the second end of the second four-way reversing width flows through the third end of the second four-way reversing, and sequentially enters the third heat exchanger, the second electronic expansion wide, the second heat exchanger, and the second
  • the second four-way switch is widened to the first end, the second four-way is changed to the wide fourth end, and flows into the third end of the indoor unit;
  • the fresh air enters the second air chamber from the fresh air passage, and exchanges heat and mass with the third heat exchanger.
  • the low temperature and low humidity fresh air is heated by the heat of the third heat exchanger, and the dry fresh air absorbs the wings of the third heat exchanger.
  • the moisture absorbed by the moisture absorbing material on the sheet during the fourth cycle, the fresh air is heated and humidified, and then sent into the room through the first air supply passage;
  • the indoor return air enters the first air chamber from the first return air passage, and performs heat and mass transfer exchange with the second heat exchanger, and the high temperature and high humidity return air is cooled by the low temperature refrigerant in the second heat exchanger, and is returned to the wind.
  • the heat is recovered, and the water vapor in the return air is absorbed by the moisture absorbing material on the fins of the second heat exchanger, and the air cooled and dehumidified is discharged into the atmosphere through the exhaust passage;
  • the second heat exchanger acts as a condenser and the third heat exchanger acts as an evaporator, the first end of the second four-way commutation is in communication with the second end, and the second four-way is commutating
  • the three ends are connected to the fourth end, and the first wind width, the third wind width, the sixth wind width, and the eighth wind width are open, the second wind width, the fourth wind width, the fifth wind width, and the seventh wind width are closed. ;
  • a refrigerant that enters the second end of the second four-way reversing width flows through the first end of the second four-way reversing width, and sequentially enters the second heat exchanger, the second electronic expansion wide, the third heat exchanger, and the second
  • the second four-way is changed to the wide third end, the second four-way is changed to the wide fourth end, and flows into the third end of the indoor unit;
  • the outdoor fresh air enters the first air chamber from the fresh air passage, and exchanges heat and mass with the second heat exchanger.
  • the low temperature and low humidity fresh air is heated by the heat of the second heat exchanger, and the dry fresh air absorbs the second heat exchanger.
  • the indoor return air enters the second air chamber from the first return air passage, and performs heat and mass transfer exchange with the third heat exchanger.
  • the high temperature and high humidity return air is cooled by the low temperature refrigerant in the third heat exchanger, and the return air is in the return air.
  • the heat is recovered, and the water vapor in the return air is absorbed by the moisture absorbing material on the fins of the third heat exchanger, and the air cooled and dehumidified is discharged into the atmosphere through the exhaust passage, and the time set in the fourth cycle is timed. , trigger into the third cycle, and so on.
  • an embodiment of the present invention further provides a temperature and humidity independent control method for a multi-connected air conditioning system, the method comprising:
  • the refrigerant received by the outdoor unit is compressed by the branching unit, the refrigerant is split, and the first refrigerant and the second refrigerant are respectively output;
  • the first refrigerant outputted by the diverting unit is switched from the first four-way to the wide first end and flows through the outdoor unit, the fourth cut-off wide, the high-pressure liquid pipe, and the fourth heat exchanger. , the low pressure air pipe and the third cut-off width, return to the diverting unit;
  • the second refrigerant passes through the first end of the high-pressure gas pipe and the indoor end of the first cut-off outlet, enters the second end of the second four-way reversing, and passes through the third end of the indoor unit, the low-pressure gas pipe and the third Close to the limit, return to the diversion unit;
  • the first refrigerant outputted by the diverting unit is changed from the first four-way to the first end of the wide, and flows through the fourth end of the first four-way reversing to the fourth end.
  • the second refrigerant enters the high pressure gas pipe from the first cut-off output end, and is divided into two parts, wherein a part of the second refrigerant is input into the third electromagnetic wide, and flows through the fourth heat exchanger and the high pressure liquid pipe.
  • the fourth cut-off is wide, flowing from the second end of the switching unit to the third end of the switching unit, and flowing back to the splitting unit; the other part of the second refrigerant is input to the first end of the indoor unit, and the second end is switched to the second wide
  • the end, the third end of the indoor unit, the low pressure air pipe and the third cutoff are returned to the flow dividing unit.
  • the outdoor unit comprises: a compressor, a unidirectional wide, a first four-way commutation, a first heat exchanger, a first electronic expansion, a gas-liquid separator, a first cut-off width, and a third cut-off Wide, fourth cut wide, first electromagnetic wide and capillary;
  • the indoor unit includes: a fresh air passage, a first return air passage, a second return air passage, a first air supply passage, an exhaust air passage, a second air supply passage, a first air chamber, a second air chamber, and a third wind Room, first wide, second wide, third wide, fourth wide, fifth wide, sixth wide, seventh wide, eighth wide, first duct, second wind Tube, third duct, fourth duct, second four-way exchange a broad, a second heat exchanger, a second electronic expansion broad, a third heat exchanger, a third electronic expansion broad, and a fourth heat exchanger;
  • the flow dividing unit comprises: a compressor, a unidirectional wide and a gas-liquid separator, the output end of the compressor is connected to the unidirectional wide input end, and the unidirectional wide output end is respectively connected with the switching unit and the first end, the gas liquid
  • the input end of the separator is connected to the output end of the switching unit and the second end, and the output end of the gas-liquid separator is connected to the input end of the compressor;
  • the refrigerant is discharged from the exhaust port of the compressor into a one-way wide, and the high-pressure refrigerant gas that is unidirectionally wide is divided into a first refrigerant and a second refrigerant, respectively entering the first four-way commutator One end and the first cutoff width;
  • the first end of the first four-way reversing is connected to the second end, and the third end is connected to the fourth end, and the first electromagnetic wide and the third electromagnetic wide are closed, and the second The electromagnetic opening is wide open, the first electronic expansion of the evaporator liquid supply amount is adjusted according to a preset program, and the second electronic expansion width and the third electronic expansion width respectively function as a throttling to adjust the flow rate of the refrigerant flowing through;
  • the first refrigerant of the first four-way is diverted to the first end of the first four-way, and the second end of the first-stage commutator is turned into the first heat exchanger, the first electronic expansion wide, the fourth cut-off wide, and the high-pressure liquid.
  • the second refrigerant passes through the first end of the high-pressure gas pipe and the first end of the indoor unit, enters the second end of the second four-way reversing, and passes through the third end of the indoor unit, the low-pressure air pipe, and the The third cut is wide, and then flows back to the gas-liquid separator, and finally enters the compressor through the suction port of the compressor;
  • the first heat exchanger as a condenser discharges heat into the atmosphere; the indoor return air enters the third air chamber from the second return air passage and exchanges heat with the fourth heat exchanger as an evaporator, and the heat of the return air is
  • the low-temperature refrigerant in the four heat exchangers is taken away, and the air is cooled and sent into the room by the second air supply passage; when the multi-connected air-conditioning system is in the heating condition, the first four-way is switched to the first end and the first The four ends are connected, the second end is connected to the third end, the first electromagnetic wide and the second electromagnetic wide are closed, the third electromagnetic wide open, the first electronic expansion wide, the second electronic expansion wide and the third electronic expansion broadening Flow, regulating the flow of refrigerant flowing through;
  • the first refrigerant is commutated to the first end of the first through the first four-way, and flows through the first end of the first four-way to the fourth end, and enters the first electromagnetic wide state and is in a stagnation state;
  • the second refrigerant entering the first cut-off width enters the high-pressure gas pipe from the first cut-off output end, and is divided into two parts, wherein a part of the second refrigerant is input into the third electromagnetic wide, enters the second end of the indoor unit, flows through the fourth heat exchanger, the third electronic expansion wide, the fourth end of the indoor unit, the high pressure liquid pipe, flows into the fourth
  • the cut-off is wide, and then flows through the first electronically expanded wide, first heat exchanger, from the second end of the switching unit into the third end of the switching unit, back to the gas-liquid separator, and finally enters by the suction port of the compressor Compressor;
  • another portion of the second refrigerant is input into the first end of the indoor unit, enters the second end of the second four-way reversing, and passes through the third end of the indoor unit, the low-pressure air pipe, and the third cut-off width, and then Returning to the gas-liquid separator, and finally entering the compressor by the compressor suction port;
  • the first heat exchanger as the evaporator absorbs heat from the atmosphere; the indoor return air enters the third air chamber from the second return air passage, and exchanges heat with the fourth heat exchanger as a condenser, the fourth heat exchanger The heat is discharged into the return air, and after the air is heated, it is sent into the room by the second air supply passage.
  • the cooling condition includes a first cycle period of cyclic switching and a second cycle period
  • the second heat exchanger acts as the second evaporator and the third heat exchanger acts as the second condenser, and the first end of the second four-way commutation is in communication with the fourth end and the second four-way exchange
  • the wide second end is connected to the third end, the first wind width, the third wind width, the sixth wind width, and the eighth wind width open, the second wind width, the fourth wind width, the fifth wind width and the Seven winds wide closed;
  • the second refrigerant entering the first end of the indoor unit is switched from the second four-way to the second wide end, and flows through the third end of the second four-way to the third end, and sequentially enters the third heat exchanger and the second electron Expanding a wide, second heat exchanger, a second end of the second four-way reversing, and a fourth end of the second four-way reversing, and flowing into the third end of the indoor unit;
  • the second heat exchanger acts as the second condenser and the third heat exchanger acts as the second evaporator, and the first end of the second four-way commutation is in communication with the second end and the second four-way exchange
  • the third end is connected to the fourth end, and the first wind width, the third wind width, the sixth wind width, and the eighth wind width are closed, the second wind width, the fourth wind width, the fifth wind width and the Seven winds wide open;
  • the second refrigerant entering the first end of the indoor unit is switched from the second four-way to the second wide end, and flows through the second end of the second four-way to the second end, and sequentially enters the second heat exchanger and the second electron
  • the expanded end, the third heat exchanger, the second end of the second four-way reversing wide, and the fourth end of the second four-way reversing wide open into the third end of the indoor unit.
  • the heating condition includes a third cycle of cyclic switching and a fourth cycle period
  • the second heat exchanger acts as the second evaporator and the third heat exchanger acts as the second condenser, and the first end of the second four-way commutation is in communication with the fourth end and the second four-way exchange Wide to the second The end is connected to the third end, the first wind width, the third wind width, the sixth wind width, and the eighth wind width are closed, the second wind width, the fourth wind width, the fifth wind width, and the seventh wind width opening;
  • the refrigerant entering the first end of the indoor unit is changed from the second four-way to the second end of the wide, and flows through the second end of the second four-way to the third end, and sequentially enters the third heat exchanger, and the second electronic expansion is wide.
  • the second heat exchanger acts as the second condenser and the third heat exchanger acts as the second evaporator, and the first end of the second four-way commutation is in communication with the second end and the second four-way exchange
  • the third end is connected to the fourth end, and the first wind width, the third wind width, the sixth wind width, and the eighth wind width open, the second wind width, the fourth wind width, the fifth wind width and the Seven winds wide closed;
  • the refrigerant entering the first end of the indoor unit is switched from the second four-way to the second end of the wide end, and flows through the second end of the second four-way to the first end, and sequentially enters the second heat exchanger, and the second electronic expansion is wide.
  • the third heat exchanger, the third end of the second four-way reversing, and the fourth end of the second four-way reversing are wide, and flow into the third end of the indoor unit.
  • the three-control full heat treatment multi-connected air-conditioning system and the temperature and humidity independent control method provided by the embodiments of the present invention protect the first four-way commutating width by adding the first electromagnetic broad and capillary in the outdoor unit. And using high-pressure air pipe, low-pressure air pipe, high-pressure liquid pipe, second electromagnetic wide and third electromagnetic wide connection outdoor unit and indoor unit, by recovering the return cooling amount or heat, the fresh air ventilation, cooling capacity recovery and temperature and The humidity independent adjustment control is concentrated in one indoor unit, which ensures the efficient operation of the multi-connected air conditioning system, realizes the indoor fresh air ventilation and independent control of temperature and humidity.
  • the three refrigerant pipes are connected to the outdoor unit and the outdoor unit. In the case of piping, the installation and construction costs can be reduced, and the existing three-control multi-function products and heat recovery multi-line system can be integrated to improve versatility.
  • FIG. 1 is a schematic structural view of a conventional improved multi-connected air conditioning system.
  • FIG. 2 is a schematic structural view of a three-control full heat treatment multi-connected air conditioning system according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a flow path of a refrigerant in a second cycle of a full-heat treatment multi-line system in a cooling condition according to a third embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a flow path of a refrigerant under a heating condition of a multi-line system according to an embodiment of the present invention.
  • Fig. 7 is a flow chart showing the flow of the third cycle of the refrigerant under the heating condition of the full heat treatment multi-line system according to the third embodiment of the present invention.
  • Fig. 8 is a flow chart showing the flow of the fourth cycle of the refrigerant under the heating condition of the full heat treatment multi-line system according to the third embodiment of the present invention.
  • FIG. 9 is a schematic flow chart of a method for independently controlling temperature and humidity of a controlled total heat treatment multi-connected air conditioning system according to an embodiment of the present invention. detailed description
  • the existing temperature and humidity control method by the cooling and dehumidifying means and the wheel dehumidification system is not suitable for the multi-connected air conditioning system because of the low energy efficiency ratio and large volume; and the existing improved multi-connected air conditioning system adopts four refrigerant pipes.
  • the installation and construction cost of connecting the outdoor unit to the indoor captain piping is high, and it cannot be integrated with the multi-function multi-line product and the heat recovery multi-line system of the existing three-control system, and the versatility is low.
  • the embodiment of the invention provides a three-control full heat treatment multi-connected air conditioning system, which adds a first electromagnetic wide and a capillary tube in the outdoor unit, protects the first four-way reversing width, and utilizes three refrigerant pipes: a high-pressure air pipe, a low-pressure air pipe, The high-pressure liquid pipe, and the second electromagnetic wide and the third electromagnetic wide connection are connected to the outdoor unit and the indoor unit, and the fresh air ventilation, the cooling amount recovery, and the independent adjustment control of the temperature and humidity are concentrated in one set by recovering the cooling amount or heat of the return air.
  • the indoor unit enables the multi-connected air-conditioning system to use the cooling air or heat of the return air as the energy source to meet the functions of summer fresh air ventilation, return air cooling recovery, cooling and dehumidification; and to meet the indoor indoor fresh air ventilation and return air heat.
  • the functions of recovery, heating and humidification ensure the efficient operation of the multi-connected air-conditioning system while achieving independent control of indoor fresh air ventilation and temperature and humidity.
  • the multi-connected air-conditioning system according to the embodiment of the present invention adopts three refrigeration systems.
  • the agent pipe is connected to the outdoor unit and the outdoor unit, and can be used in the case of long piping; , 0_ ⁇ regulation can sentence multi-function product from right camp system and execute it back off Integration, improve versatility.
  • the multi-connected air conditioning system is independently controlled by temperature and humidity, and includes: an indoor unit 02, an outdoor unit 01, a high pressure air tube 62, a low pressure air tube 63, a high pressure liquid tube 64, a second electromagnetic width 65, and a third electromagnetic width 66.
  • the outdoor unit 01 is one or more units
  • the indoor unit 02 is one or more units
  • the outdoor unit 01 includes: a control unit, a switching unit, a splitting unit, a first heat exchanger 4, and a first electronic expansion width 5, a first electromagnetic width 60 and a capillary 61, wherein
  • the first end of the switching unit is connected to the output end of the shunting unit, and the output end of the shunting unit is further connected to the first end of the outdoor unit 01;
  • the second end of the switching unit is connected to one end of the first heat exchanger 4, and the other end of the first heat exchanger 4 is connected to one end of the first electronic expansion width 5, and the other end of the first electronic expansion width 5 is connected to the outdoor unit 01. Connected to the third end;
  • the fourth end of the switching unit is connected to one end of the first electromagnetic width 60, the other end of the first electromagnetic width 60 is connected to one end of the capillary 61, and the other end of the capillary 61 is respectively connected with the third end of the switching unit and the input end of the shunting unit. And the second end of the outdoor unit 01 is connected;
  • the first end of the outdoor unit 01 is connected to one end of the high-pressure air tube 62, and the other end of the high-pressure air tube 62 is connected to the first end of the indoor unit 02 and one end of the third electromagnetic wide 66, respectively, and the other end of the third electromagnetic wide 66 is indoors.
  • the second end of the outdoor unit 01 is connected to one end of the low-pressure air pipe 63, and the other end of the low-pressure air pipe 63 is connected to the third end of the indoor unit 02 and one end of the second electromagnetic wide 65, the second electromagnetic The other end of the wide 65 is connected to the second end of the indoor unit 02; the third end of the outdoor unit 01 is connected to one end of the high pressure liquid pipe 64, and the other end of the high pressure liquid pipe 64 is connected to the fourth end of the indoor unit 02;
  • control unit configured to control the first heat exchanger 4 as a condenser, the fourth heat exchanger 37 in the indoor unit 02 as an evaporator when the multi-connected air conditioning system is in a cooling condition; the third electromagnetic wide 66 is closed, The first end of the switching unit is in communication with the second end, such that the first end of the switching unit receives the first refrigerant output by the shunting unit, and outputs the second refrigerant to the first heat exchanger 4 through the second end of the switching unit, and passes through the first electronic
  • the expansion end 5 and the third end of the outdoor unit 01, the high pressure liquid pipe 64 is output to the fourth end of the indoor unit 02, and passes through the second end of the indoor unit 02, the second electromagnetic width 65, the low pressure air pipe 63, and the outdoor unit 01.
  • the second end is returned to the input end of the shunting unit; the first end of the outdoor unit 01 receives the second refrigerant outputted by the diverting unit, is output to the first end of the indoor unit 02 through the high pressure air pipe 62, and passes through the first unit of the indoor unit 02
  • the three-terminal, low-pressure gas pipe 63 is returned to the input end of the flow dividing unit;
  • the first heat exchanger 4 is controlled as an evaporator and the fourth heat exchanger 37 is used as a condenser; the first electromagnetic wide 60 is closed, and the second end and the third end of the switching unit are
  • the first end of the outdoor unit 01 receives all the refrigerant outputted by the flow dividing unit, and is output to the first end of the indoor unit 02 and the third electromagnetic wide 66 through the high pressure air tube 62, and is output to the first end of the indoor unit 02.
  • the refrigerant is returned to the input end of the flow dividing unit via the third end of the indoor unit 02, the low pressure air pipe 63, and the second end of the outdoor unit 01; the refrigerant output to the third electromagnetic width 66 is output to the indoor unit 02
  • the second end is recirculated to the third end of the outdoor unit 01 via the fourth end of the indoor unit 02, and the third end of the outdoor unit 01 is passed through the first electronic expansion wall 5, the first heat exchanger 4, and the second end of the switching unit Three ends, returning to the input of the shunt unit;
  • a flow dividing unit configured to merge the high-pressure refrigerant input to the switching unit, the capillary tube and the second end of the outdoor unit, and after being compressed, perform splitting to respectively output the first refrigerant and the second refrigerant;
  • the splitting unit comprises: a compressor 1, a unidirectional wide 2 and a gas-liquid separator 6, the output end of the compressor 1 is connected to the input end of the unidirectional wide 2, and the output end of the unidirectional wide 2 and the switching unit respectively Connected at one end, the input end of the gas-liquid separator 6 is connected to the output end of the switching unit and the second end, and the output end of the gas-liquid separator 6 is connected to the input end of the compressor 1;
  • the switching unit is the first four-way reversing width 3, the first end of the first four-way reversing width 3 is connected with the output end of the one-way wide 2, and the second end of the first four-way reversing wide 3 is replaced with the first one.
  • the input end of the heat exchanger 4 is connected, the third end of the first four-way reversing width 3 is connected with the input end and the second end of the gas-liquid separator 6, and the fourth end of the first four-way reversing wide 3 is first Electromagnetic wide 60 input terminals are connected;
  • the first end of the outdoor unit 01 is the first cut-off width 7
  • the second end of the outdoor unit 01 is the third cut-off width
  • the third end of the outdoor unit is the fourth cut-off width 10;
  • the outdoor unit 01 includes: a compressor 1, a unidirectional width 2, a first four-way reversing width 3, a first heat exchanger 4, a first electronic expansion width 5, a gas-liquid separator 6, and a first a cut-off width of 7, a third cut-off width of 9, a fourth cut-off width of 10, a first electromagnetic wide 60 and a capillary 61, wherein
  • the output end of the compressor 1 is connected to the input end of the unidirectional wide 2, and the output end of the unidirectional wide 2 is respectively connected with the first end of the first four-way reversing width 3 and the input end of the first cut-off width 7, respectively.
  • the second end of the four-way reversing width 3 is connected to the input end of the first heat exchanger 4, and the output end of the first heat exchanger 4 is connected to the input end of the first electronic expansion width 5, and the first electronic expansion is 5
  • the output end is connected to the input end of the fourth cut-off width 10, the output end of the fourth cut-off width 10 is connected to the input end of the high-pressure liquid pipe 64, and the third end of the first four-way change width 3 is respectively connected with the gas-liquid separator 6
  • the input end, the input end of the third cut-off width 9 and the output end of the capillary 61 are connected, and the output end of the gas-liquid separator 6 is compressed
  • the input end of the machine 1 is connected, and the fourth end of the first four-way reversing width 3 is connected to the input end of the first electromagnetic wide 60.
  • the output end of the first electromagnetic wide 60 is connected to the input end of the capillary 60, and the first cut-off is wide.
  • the output of 7 is connected to the high-pressure gas pipe 62, and the output of the third cut-off width 9 is connected to the low-pressure gas pipe 63.
  • the output end of the fourth cut-off width 10 is connected to the high-pressure liquid pipe 64.
  • the compressor 1 may be composed of one or more fixed speed compressors, a variable speed compressor, or a combination of a fixed speed compressor and a variable speed compressor.
  • the first electromagnetic wide 60 and the capillary 61 are used to protect the first four-way reversing width 3.
  • the gaseous refrigerant will condense into a liquid refrigerant.
  • the presence of liquid refrigerant will cause the first The four-way reversing width 3 cannot be reversed, or damaged.
  • the first refrigerant is throttled through the capillary 61 and then enters the gas-liquid separator 6 to perform gas-liquid separation, thereby ensuring the first four-way commutation.
  • the work of the wide 3 is normal.
  • the indoor unit 02 can be an indoor unit 02 used in the existing improved multi-connected air conditioning system, including: a first air chamber unit, a second air chamber unit, and a third air chamber unit, wherein
  • the first air chamber unit is provided with a second heat exchanger 33, a fresh air passage 11, a first air supply passage 14, and a first air chamber 17, and the fresh air passage 11 and the first air supply passage 14 are respectively located in the first air chamber unit.
  • the exhaust passages 15 are respectively located at two sides of the second air chamber unit;
  • the third air chamber unit is provided with a second end, a fourth end, a fourth heat exchanger 37, a second return air passage 13, and a second air supply passage 16 And the third plenum 19, the second return air passage 13 and the second air supply passage 16 are respectively located at two sides of the third plenum unit;
  • the first air chamber unit of the indoor unit 01 may further include: a first wind width 20, a second wind width 21, a fifth air width 24, a sixth air width 25, a first air duct 28, and a third Duct 30, wherein
  • a fresh air passage 11 is opened at one end of the inner wall of the first air chamber 17, and a first air supply passage 14 is opened at the other end of the inner wall, and the fresh air passage 11 is connected to the first air supply passage 14 and is adjacent to the inner wall of the fresh air passage 11 at one end.
  • the first damper 20 and the second damper 21 are provided with a fifth wind width 24 and a sixth wind width at the other end of the inner wall of the first air supply passage 14 leading to the fresh air passage 11 and adjacent to the first air supply passage 14. 25; in the first air chamber 17, is provided with a second heat exchanger 33;
  • the second air chamber unit further includes: a third wind width 22, a fourth wind width 23, a seventh wind width 26, an eighth wind width 27, a second air duct 29, a fourth air duct 31, and a second four-way commutation
  • the width 32 and the second electronic expansion are 34, wherein
  • a first return air passage 12 is defined at one end of the inner wall of the second air chamber 18 and the first air chamber 17 , and the other end of the inner wall is provided with an exhaust passage 15 , and the first return air passage 12 leads to the exhaust passage 15 , and A third wind width 22 and a fourth wind width 23 are disposed near one end of the inner wall of the first return air passage 12, and the exhaust air passage 15 leads to the first return air passage 12 and is adjacent to the other end of the inner wall of the air exhaust passage 15, a seventh wind width 26 and an eighth wind width 27 are provided; in the second air chamber 18, a second four-way reversing width 32, a second electronic expansion width 34, and a third heat exchanger 35 are disposed;
  • a second duct 29 connecting the fourth plenum 23 to the first plenum 17 is provided, and the seventh louver 26 is connected to the first The fourth duct 31 of the air chamber 17.
  • the third air chamber unit further includes: a third electronic expansion width 36,
  • the third plenum 19 and the second plenum 18 are impervious to air;
  • a third return air passage 13 is defined at one end of the inner wall of the third air chamber 19 and the first air chamber 17 , and a second air supply passage 16 is opened at the other end of the inner wall, and a third electronic unit is disposed in the third air chamber 19 .
  • the first end of the indoor unit 02 is connected to the second end of the second four-way reversing width 32, and the first end of the second four-way reversing width 32 is connected to one end of the second heat exchanger 33, and the second heat exchanger 33
  • the other end is connected to one end of the second electronic expansion flange 34, the other end of the second electronic expansion flange 34 is connected to one end of the third heat exchanger 35, and the other end of the third heat exchanger 35 is commutated with the second four-way
  • the third end of the wide 32 is connected, and the fourth end of the second four-way reversing wide 32 is connected to the third end of the indoor unit 02;
  • the second end of the indoor unit 02 is connected to one end of the fourth heat exchanger 37, the other end of the fourth heat exchanger 37 is connected to one end of the third electronic expansion flange 36, and the other end of the third electronic expansion flange 36 is connected to the indoor unit.
  • the fourth end of 02 is connected.
  • the first heat exchanger 4, the second heat exchanger 33, the third heat exchanger 35 and the fourth heat exchanger 37 are aluminum foil finned copper tube heat exchangers or aluminum fins.
  • the fins of the chip microchannel heat exchanger, the second heat exchanger 33 and the third heat exchanger 35 are coated with a moisture absorbing material.
  • the indoor unit 02 controls the second heat exchanger 33 and the third heat exchanger 35 to perform the cyclic switching in the first cycle period and the second cycle period.
  • FIG. 3 is a third embodiment of the present invention for controlling the total heat treatment of a multi-line system under refrigeration conditions Flow path diagram. See Figure 3:
  • the first end of the first four-way reversing width 3 is in communication with the second end, and the third end is connected to the fourth end, and the first electromagnetic width is 60 and The third electromagnetic width 66 is closed, and the second electromagnetic width is 65 open.
  • the first electronic expansion width of the evaporator is adjusted according to a preset procedure, and the second electronic expansion width 34 and the third electronic expansion width 36 are respectively started. Flow, regulating the flow of refrigerant flowing through;
  • the refrigerant is discharged from the exhaust port (output end) of the compressor 1 into the unidirectional width 2, and the high-pressure refrigerant gas from the unidirectional width 2 is divided into two parts, and a part of the refrigerant (the first refrigerant) enters the first The four-way reversing the first end of the wide 3, and the other part of the refrigerant (the second refrigerant) enters the first cut-off width of 7;
  • the first refrigerant is switched from the first end to the first end of the wide 3 through the first end of the first four-way to the third end of the wide 3, and sequentially enters the first heat exchanger 4, the first electronic expansion wide 5, Four cut-off width 10, high pressure liquid pipe 64, fourth end of indoor unit 02, third electronic expansion width 36, fourth heat exchanger 37, second end of indoor unit 02, second electromagnetic width 65, low pressure air pipe 63 and
  • the third cut-off width is 9, and then flows back to the gas-liquid separator 6, and finally enters the compressor 1 by the compressor suction port (input end);
  • the second refrigerant passes through the first end of the first cut-off width 7 (output end) through the first end of the high-pressure gas pipe 62 and the indoor unit 02, enters the second end of the second four-way reversing width 32, and passes through the indoor unit 01
  • the third end, the low pressure gas pipe 63, and the third cutoff width 9, are returned to the gas-liquid separator 6, and finally enter the compressor 1 by the compressor suction port;
  • the indoor return air enters the third air chamber 19 from the second return air passage 13 and is exchanged with the fourth heat exchange
  • the heat exchange of the returning air is carried out by the low-temperature refrigerant in the evaporator (fourth heat exchanger 37), and the air is cooled and sent into the room by the second air supply passage 16.
  • Fig. 4 is a flow chart showing the flow of the refrigerant in the first cycle of the full-heat treatment multi-line system under the cooling condition of the third embodiment of the present invention. See Figure 4,
  • the second heat exchanger 33 acts as an evaporator and the third heat exchanger 35 acts as a condenser, and the first end of the second four-way commutation width 32 is in communication with the fourth end and the second four-way exchange
  • the second end and the third end of the wide 32 are connected, and the first wind width 20, the third wind width 22, the sixth wind width 25, and the eighth wind width 27 are opened, and the second wind width 21 and the fourth wind width 23 , the fifth wind width 24 and the seventh wind width 26 are closed;
  • the second refrigerant entering the second end of the second four-way reversing valve 32 is switched to the third end of the second four-way reversing width 32, and sequentially enters the third heat exchanger 35, the second electronic expansion width 34, Second exchange
  • the heat exchanger 33, the first end of the second four-way reversing width 32, the fourth end of the second four-way reversing width 32, the third end of the indoor unit 02, the low-pressure air tube 63, and the third cut-off width 9 are returned.
  • the gas-liquid separator 6, finally enters the compressor 1 by the suction port (input) of the compressor;
  • the fresh air enters the first air chamber 17 from the fresh air passage 11, exchanges heat and mass with the second heat exchanger 33, and the fresh air with high temperature and high humidity is cooled by the second heat exchanger 33, and the water vapor in the fresh air is second.
  • the moisture absorbing material on the fins of the heat exchanger 33 is absorbed, and the fresh air is cooled and dehumidified, and then sent into the room through the first air supply passage 14;
  • the indoor return air enters the second air chamber 18 from the first return air passage 12, and performs heat and mass transfer exchange with the third heat exchanger 35, and the low temperature and low humidity return air absorbs the heat of the third heat exchanger 35, and returns to the wind.
  • the amount of cold is recovered, and the return air takes away the moisture absorbed by the moisture absorbing material on the fins of the third heat exchanger 35 in the second cycle, so that the moisture in the part of the moisture absorbing material is sucked away, thereby realizing regeneration.
  • the heated humidified air is discharged into the atmosphere via the exhaust passage 15.
  • FIG. 5 is a schematic diagram of a flow path of a refrigerant in a second cycle of a full-heat treatment multi-line system in a cooling condition according to a third embodiment of the present invention. See Figure 5,
  • the second heat exchanger 33 acts as a condenser and the third heat exchanger 35 acts as an evaporator, and the first end of the second four-way commutation width 32 is in communication with the second end and the second four-way exchange
  • the third end and the fourth end of the wide 32 are connected, and the first wind width 20, the third wind width 22, the sixth wind width 25, and the eighth wind width 27 are closed, and the second wind width 21 and the fourth wind width 23 , the fifth wind width 24 and the seventh wind width 26 open;
  • the second refrigerant entering the second end of the second four-way switching valve 32 is switched to the first end of the second four-way reversing width 32, and sequentially enters the second heat exchanger 33, the second electronic expansion width 34, The third heat exchanger 35, the third end of the second four-way reversing width 32, the fourth end of the second four-way reversing width 32, the third end of the indoor unit 02, the low-pressure air tube 63, and the third cut-off width 9 , return to the gas-liquid separator 6, and finally enter the compressor 1 by the compressor suction port (input);
  • the fresh air enters the second air chamber 18 from the fresh air passage 11 and exchanges heat and mass with the third heat exchanger 35.
  • the high temperature and high humidity fresh air is cooled by the third heat exchanger 35, and the water vapor in the fresh air is third.
  • the moisture absorbing material on the fins of the heat exchanger 35 is absorbed, and the fresh air is cooled and dehumidified, passes through the second air chamber 18, and finally sent into the room through the first air supply passage 14;
  • the indoor return air enters the first air chamber 17 from the first return air passage 12, performs heat and mass transfer exchange with the second heat exchanger 33, and the low temperature and low humidity return air absorbs the heat of the second heat exchanger 33, and returns to the wind.
  • the cold amount is recovered, and the return air takes away the moisture absorbed by the moisture absorbing material on the fins of the second heat exchanger 33 in the first cycle, so that the part of the moisture absorbing material is regenerated, and the heated humidified air passes through the exhaust passage.
  • 15 is discharged into the atmosphere, and when the time set by the second cycle is reached, the trigger enters the first cycle, and the cycle is performed, thereby achieving independent control of cooling and dehumidification.
  • the indoor unit 02 controls the second heat exchanger 33 and the third heat exchanger 35 to perform the cyclic switching in the third cycle and the fourth cycle.
  • Fig. 6 is a schematic view showing the flow path of the refrigerant under the heating condition of the controlled full heat treatment multi-line system according to the third embodiment of the present invention. See Figure 6,
  • the first end of the first four-way reversing width 3 is in communication with the fourth end, and the second end is connected to the third end, and the first electromagnetic width is 60 and The second electromagnetic width 65 is closed, the third electromagnetic width 66 is opened, the first electronic expansion width 5, the second electronic expansion width 34 and the third electronic expansion width 36 both throttle, and regulate the flow rate of the refrigerant flowing through;
  • the refrigerant is discharged from the exhaust port (output end) of the compressor 1 into the unidirectional width 2, and the high-pressure refrigerant gas from the unidirectional width 2 is divided into two parts, and a part of the refrigerant (the first refrigerant) enters the first The four-way reversing the first end of the wide 3, and the other part of the refrigerant (the second refrigerant) enters the first cut-off width of 7;
  • the first refrigerant is switched to the fourth end of the first four-way reversing width 3 via the first end of the first four-way reversing width 3, and enters the first electromagnetic width 60, since the first electromagnetic width 60 is closed, therefore, The first refrigerant is in a stagnation state;
  • the first refrigerant merges with the second refrigerant flowing from the third cut-off width 9 into the outdoor unit 01, and returns to the gas-liquid separator. 6, finally enter the compressor 1 by the compressor suction port (input);
  • the second refrigerant entering the first cut-off width 7 enters the high-pressure gas pipe 62 from the outlet (output end) of the first cut-off width 7 and is divided into two parts, wherein
  • a part of the second refrigerant is input into the third electromagnetic width 66, enters the second end of the indoor unit 02, flows through the fourth heat exchanger 37, the third electronic expansion flange 36, the fourth end of the indoor unit 02, and the high pressure liquid
  • the tube 64 flows into the third end of the outdoor unit 01 (the fourth cut-off width 10), and then flows through the first electronic expansion wide 5 and the first heat exchanger 4 in sequence, and switches from the second end of the switching unit to the switching unit.
  • Another portion of the second refrigerant is input to the first end of the indoor unit 02, enters the second end of the second four-way reversing width 32, and passes through the third end of the indoor unit 01, the low pressure air tube 63, and the third cut-off width 9 , then return to the gas-liquid separator 6, and finally enter the compressor 1 from the compressor suction port;
  • the indoor return air enters the third air chamber 19 from the second return air passage 13 and is connected to the fourth heat exchanger 37 In the heat exchange, the condenser (fourth heat exchanger 37) discharges heat into the return air, and after the air is heated, it is sent into the room by the second air supply passage 16.
  • Fig. 7 is a flow chart showing the flow of the third cycle of the refrigerant under the heating condition of the full heat treatment multi-line system according to the third embodiment of the present invention. See Figure 7,
  • the second heat exchanger 33 acts as an evaporator and the third heat exchanger 35 acts as a condenser, and the first end of the second four-way commutation width 32 is in communication with the fourth end and the second four-way exchange
  • the second end and the third end of the wide 32 are connected, and the first wind width 20, the third wind width 22, the sixth wind width 25, and the eighth wind width 27 are closed, and the second wind width 21 and the fourth wind width 23 , the fifth wind width 24 and the seventh wind width 26 open;
  • the refrigerant entering the second end of the second four-way reversing width 32 is switched to the third end of the second four-way reversing width 32, and sequentially enters the third heat exchanger 35, the second electronic expansion width 34, and the second exchange
  • the heat exchanger 33, the first end of the second four-way reversing width 32, the fourth end of the second four-way reversing width 32, the third end of the indoor unit 02, the low-pressure air tube 63, and the third cut-off width 9 are returned.
  • the gas-liquid separator 6, finally enters the compressor 1 by the suction port (input) of the compressor;
  • the fresh air enters the second air chamber 18 from the fresh air passage 11 and exchanges heat and mass with the third heat exchanger 35.
  • the fresh air of low temperature and low humidity is heated by the heat of the third heat exchanger 35, and the fresh air of the fresh air is absorbed for the third time.
  • the moisture absorbed by the moisture absorbing material on the fins of the heat exchanger 35 in the fourth cycle is such that the moisture absorbing material is dried and regenerated, and the fresh air is heated and humidified, and then sent to the room through the first air supply passage 14;
  • the indoor return air enters the first air chamber 17 from the first return air passage 12, and performs heat and mass transfer exchange with the second heat exchanger 33, and the high temperature and high humidity return air is cooled by the low temperature refrigerant in the second heat exchanger 33.
  • the heat in the return air is recovered, and the water vapor in the return air is absorbed by the moisture absorbing material on the fins of the second heat exchanger 33, and the air cooled and dehumidified is discharged into the atmosphere via the exhaust passage 15.
  • Fig. 8 is a flow chart showing the flow of the fourth cycle of the refrigerant under the heating condition of the full heat treatment multi-line system according to the third embodiment of the present invention. See Figure 8,
  • the second heat exchanger 33 acts as a condenser and the third heat exchanger 35 acts as an evaporator, and the first end of the second four-way commutation width 32 is in communication with the second end and the second four-way exchange
  • the third end and the fourth end of the wide 32 are connected, and the first wind width 20, the third wind width 22, the sixth wind width 25, and the eighth wind width 27 are opened, and the second wind width 21 and the fourth wind width 23 , the fifth wind width 24 and the seventh wind width 26 are closed;
  • the refrigerant entering the second end of the second four-way reversing width 32 is switched to the first end of the second four-way reversing width 32, and sequentially enters the second heat exchanger 33, the second electronic expansion width 34, and the third exchange Heater 35,
  • the second four-way reversing the third end of the wide 32, the fourth end of the second four-way reversing wide 32, the third end of the indoor unit 02, the low-pressure air tube 63, and the third cut-off width 9, returning to the gas-liquid separator 6, finally enter the compressor 1 by the compressor suction port (input);
  • the outdoor fresh air enters the first air chamber 17 from the fresh air passage 11, exchanges heat and mass with the second heat exchanger 33, and the fresh air of low temperature and low humidity is heated by the heat of the second heat exchanger 33, and the fresh air of the drying absorbs the second.
  • the moisture absorbed by the moisture absorbing material on the fins of the heat exchanger 33 in the third cycle is such that the part of the moisture absorbing material is regenerated, and the fresh air is heated and humidified, and then sent to the room through the first air supply passage 14;
  • the air passage 12 enters the second air chamber 18, and performs heat and mass transfer exchange with the third heat exchanger 35.
  • the high temperature and high humidity return air is cooled by the low temperature refrigerant in the third heat exchanger 35, and the heat in the return air is recovered. And the water vapor in the return air is absorbed by the moisture absorbing material on the fins of the third heat exchanger 35, and the air cooled and dehumidified is discharged into the atmosphere via the exhaust passage 15, when the time set by the fourth cycle is expired, The trigger enters the third cycle and is cycled to achieve independent control of humidification and heating.
  • the multi-connected air conditioning system is in a cooling condition, the first heat exchanger 4 acts as a condenser, and the heat is discharged into the atmosphere; the fourth heat exchanger 37 serves as an evaporator, and the indoor return air is returned by the second return air.
  • the passage 13 enters the third plenum 19 and exchanges heat with the fourth heat exchanger 37.
  • the heat of the return air is taken away by the low temperature refrigerant in the evaporator (the fourth heat exchanger 37), and the air is cooled and then sent by the second
  • the air passage 16 is sent indoors;
  • the fourth heat exchanger 37 bears most of the indoor sensible heat load, and functions as a cooling function
  • the second heat exchanger 33 acts as an evaporator and the third heat exchanger 35 acts as a condenser; at this time, the first wind width 20, the third wind width 22, the first The six winds wide 25 and the eighth wind width 27 are open, the second wind width 21, the fourth wind width 23, the fifth wind width 24 and the seventh wind width 26 are closed, and the outdoor fresh air is entered by the fresh air passage 11 through the first wind width 20
  • the first air chamber 17 performs heat and mass transfer with the second heat exchanger 33, and the fresh air of high temperature and high humidity is cooled by the second heat exchanger 33, and the water vapor in the fresh air is winged by the second heat exchanger 33.
  • the moisture absorption material on the sheet is absorbed, and the fresh air is cooled and dehumidified, passes through the sixth wind width 25, and is sent into the room by the first air supply passage 14;
  • the indoor return air passes through the first return air passage 12, enters the second air chamber 18 via the third wind width 22, performs heat and mass transfer exchange with the third heat exchanger 35, and the low temperature and low humidity return air absorbs the third heat exchanger 35.
  • Row The amount of heat in the return air is recovered, and the return air carries away the moisture absorbed by the moisture absorbing material on the fins of the third heat exchanger 35 in the previous cycle, so that the moisture in the part of the moisture absorbing material is sucked away.
  • the heated and humidified air is discharged into the atmosphere through the exhaust duct 15 via the eighth wind width 27;
  • the water absorption mass on the fins of the second heat exchanger 33 is increased, and the moisture absorbing material on the fins of the third heat exchanger 35 is regenerated (dried), triggering the control of the second four-way reversing width 32 Reversing, entering the second cycle, the second heat exchanger 33 acts as a condenser and the third heat exchanger 35 acts as an evaporator.
  • the first wind width 20, the third wind width 22, the sixth wind width 25 and The eighth wind width 27 is closed, the second wind width 21, the fourth wind width 23, the fifth wind width 24 and the seventh wind width 26 are opened, and the fresh air is entered into the first air duct 28 by the fresh air passage 11 via the second wind width 21, Then entering the second air chamber 18, performing heat and mass transfer with the third heat exchanger 35, the high temperature and high humidity fresh air is cooled and cooled by the third heat exchanger 35, and the water vapor in the fresh air is used by the third heat exchanger 35.
  • the moisture absorption material on the fins is absorbed, and the fresh air is cooled and dehumidified, passes through the third air duct 30, passes through the fifth air gap 24, and finally is sent into the room through the first air supply passage 14;
  • the indoor return air enters the second air duct 29 from the first air return passage 12 via the fourth wind width 23, and then enters the first air chamber 17, exchanges heat and mass with the second heat exchanger 33, and returns to the low temperature and low humidity. Absorbing the heat of the second heat exchanger 33, the cooling amount in the return air is recovered, and the return air takes away the moisture absorbed by the moisture absorbing material on the fins of the second heat exchanger 33 in the previous cycle, so that the portion is hygroscopic The material is regenerated, and the heated and humidified air is discharged into the atmosphere through the fourth air duct 31, and then discharged to the atmosphere through the exhaust duct 15 through the seventh wind width 26, and is triggered to enter the first cycle period when the time set by the second cycle is reached. This cycle, so as to achieve independent control of cooling and dehumidification;
  • the second heat exchanger 33 and the third heat exchanger 35 are switched by the second four-way commutation width 32 to realize timing switching between the evaporator and the condenser, and the two heat exchangers bear indoors.
  • the latent heat load and part of the sensible heat load function to dehumidify and cool down.
  • the multi-connected air conditioning system is in a heating condition, including an alternating third cycle period and a fourth cycle period.
  • the first heat exchanger 4 acts as an evaporator to absorb heat from the atmosphere.
  • the fourth heat exchanger 37 serves as a condenser, and the indoor return air enters the third air chamber 19 from the second return air passage 13 and exchanges heat with the fourth heat exchanger 37, and the condenser (fourth heat exchanger 37) will The heat is discharged into the return air, and after the air is heated, it is sent into the room by the second air supply passage 16;
  • the fourth heat exchanger 37 bears most of the indoor sensible heat load and functions as a heating function;
  • the second heat exchanger 33 acts as an evaporator and the third heat exchanger 35 acts as a condenser.
  • the first wind width 20, the third wind width 22, the first The six winds wide 25 and the eighth wind width 27 are closed, the second wind width 21, the fourth wind width 23, the fifth wind width 24 and the seventh wind width 26 are opened, and the fresh air is entered by the fresh air passage 11 through the second wind width 21
  • a duct 28 enters the second air chamber 18 and exchanges heat and mass with the third heat exchanger 35.
  • the fresh air of low temperature and low humidity is heated by the heat of the third heat exchanger 35, and the fresh air of the dry air absorbs the third.
  • the moisture absorbing material on the fins of the heat exchanger 35 absorbs moisture in the previous cycle, so that the part of the moisture absorbing material is dried and regenerated, and the fresh air is heated and humidified, passes through the third air duct 30, and then passes through the fifth wind width 24, and finally Being sent into the room by the first air supply passage 14;
  • the indoor return air enters the second air duct 29 from the first air return passage 12 via the fourth wind width 23, and then enters the first air chamber 17, and performs heat and mass transfer with the second heat exchanger 33, and the high temperature and high humidity are returned.
  • the wind is cooled by the low temperature refrigerant in the second heat exchanger 33, the heat in the return air is recovered, and the water vapor in the return air is absorbed by the moisture absorbing material on the fins of the second heat exchanger 33, and the air is cooled and dehumidified.
  • the seventh air duct 26 is discharged into the atmosphere by the exhaust passage 15;
  • the moisture absorbing material on the fins of the second heat exchanger 33 is increased in mass by adsorbing water vapor in the return air, and the moisture absorbing material on the fins of the third heat exchanger 35 is regenerated.
  • the four-way reversing direction is 32 commutation, triggering into the fourth cycle, the second heat exchanger 33 acts as a condenser and the third heat exchanger 35 acts as an evaporator.
  • the first wind width 20 and the third wind width 22 , the sixth wind width 25 and the eighth wind width 27 open, the second wind width 21, the fourth wind width 23, the fifth wind width 24 and the seventh wind width 26 are closed, the outdoor fresh air is replaced by the fresh air passage 11 through the first wind width 20 enters the first air chamber 17, performs heat and mass transfer with the second heat exchanger 33, the low temperature and low humidity fresh air is heated by the exhaust heat of the second heat exchanger 33, and the dried fresh air absorbs the second heat exchanger 33.
  • the moisture absorbed by the moisture absorbing material on the fin in the previous cycle causes the moisture absorbing material to regenerate, and the fresh air is heated and humidified, and then passed through the sixth air vent 25 and sent into the room by the first air supply passage 14;
  • the indoor return air enters the second air chamber 18 through the first air return passage 12 through the third wind width 22, and performs heat and mass transfer exchange with the third heat exchanger 35, and the high temperature and high humidity return air is used by the third heat exchanger 35.
  • the low temperature refrigerant is cooled, the heat in the return air is recovered, and the water vapor in the return air is absorbed by the moisture absorbing material on the fins of the third heat exchanger 35, and the air cooled and dehumidified is discharged through the eighth wind width 27
  • the air passage 15 is discharged into the atmosphere, and when the time set by the fourth cycle is reached, the triggering enters the third cycle, and the cycle is performed, thereby achieving independent control of humidification and heating;
  • the second heat exchanger 33 and the third heat exchanger 35 are switched by the second four-way commutation width 32, thereby achieving timing switching between the evaporator and the condenser, so that the second heat exchange 33
  • the third heat exchanger 35 can perform indoor latent heat load and partial sensible heat load, and functions to humidify and heat.
  • FIG. 9 is a schematic flow chart of a method for independently controlling temperature and humidity of a controlled total heat treatment multi-connected air conditioning system according to an embodiment of the present invention. See Figure 9. The process includes:
  • Step 901 After the refrigerant received by the outdoor unit is compressed by the splitting unit, splitting is performed, and the first refrigerant and the second refrigerant are respectively output;
  • the refrigerant received by the outdoor unit includes:
  • the multi-connected air conditioning system When the multi-connected air conditioning system is in a cooling condition, the first refrigerant flowing from the second end of the indoor unit via the second electromagnetic wide and low pressure gas pipe and the second end, and the low pressure gas pipe flowing out from the third end of the indoor unit And a third refrigerant having a third cut-off width;
  • the second refrigerant flowing out from the third end of the indoor unit via the rolling air pipe and the third cut-off is discharged, and the high-pressure liquid flowing out from the fourth end of the indoor unit a tube, a third end, a first electronic expansion, a first heat exchanger, and a second refrigerant that is switched from a second end of the switching unit to a third end of the switching unit;
  • the outdoor unit includes: a compressor, a unidirectional wide, a first four-way commutation, a first heat exchanger, a first electronic expansion, a gas-liquid separator, a first cut-off width, and a third cut-off
  • a compressor a unidirectional wide
  • a first four-way commutation a first heat exchanger
  • a first electronic expansion a gas-liquid separator
  • a gas-liquid separator a first cut-off width
  • a third cut-off The first, the first cut-off is the first end of the outdoor unit, the third cut-off is the second end of the outdoor unit, and the fourth cut-off is the third end of the outdoor unit;
  • the indoor unit includes: a fresh air passage, a first return air passage, a second return air passage, a first air supply passage, an exhaust air passage, a second air supply passage, a first air chamber, a second air chamber, a third air chamber, The first wind width, the second wind width, the third wind width, the fourth wind width, the fifth wind width, the sixth wind width, the seventh wind width, the eighth wind width, the first air duct, the second air duct, a third air duct, a fourth air duct, a second four-way commutation wide, a second heat exchanger, a second electronic expansion wide, a third heat exchanger, a third electronic expansion wide, and a fourth heat exchanger;
  • the flow dividing unit comprises a compressor, a unidirectional wide and a gas-liquid separator, wherein the output end of the compressor is connected to the unidirectional wide input end, and the unidirectional wide output end is respectively connected with the switching unit and the first end, the gas
  • the input end of the liquid separator is connected to the output end of the switching unit, the output end of the capillary tube, and the second end of the outdoor unit, and the output end of the gas-liquid separator is connected to the input end of the compressor;
  • the refrigerant is discharged from the exhaust port of the compressor into a one-way wide, and the high-pressure refrigerant gas that is unidirectionally wide is divided into a first refrigerant and a second refrigerant, respectively entering the first four-way commutator One end and the first cutoff are wide.
  • Step 902 determining whether the multi-connected air conditioning system is in a cooling condition or a heating condition; In the cold condition, step 903 is performed, otherwise, step 904 is performed;
  • Step 903 When the multi-connected air conditioning system is in a cooling condition, the first refrigerant outputted by the diverting unit is changed from the first four-way to the first end of the wide flow through the outdoor unit, the fourth cut-off wide, the high-pressure liquid pipe, and the fourth The heat exchanger, the low pressure gas pipe and the third cut-off are wide, returning to the flow dividing unit;
  • the second refrigerant passes through the first end of the high-pressure gas pipe and the indoor end of the first cut-off outlet, enters the second end of the second four-way reversing, and passes through the third end of the indoor unit, the low-pressure gas pipe and the third Close to the limit, return to the diversion unit;
  • the first refrigerant is switched from the first end of the first four-way to the first end of the first four-way to the second end of the first, and sequentially enters the first heat exchanger, the first electronic expansion is wide, and the fourth is wide, a high pressure liquid pipe, a fourth end of the indoor unit, a third electronic expansion wide, a fourth heat exchanger, a second end of the indoor unit, a second electromagnetic wide, a low pressure gas pipe, and a third cut-off width, and then returned to the gas-liquid separator Finally entering the compressor by the compressor suction port;
  • the second refrigerant passes through the first end of the high-pressure gas pipe and the first end of the indoor unit, enters the second end of the second four-way reversing, and passes through the third end of the indoor unit, the low-pressure air pipe, and the The third cut is wide, and then flows back to the gas-liquid separator, and finally enters the compressor through the suction port of the compressor;
  • the first heat exchanger as a condenser discharges heat into the atmosphere; the indoor return air enters the third air chamber from the second return air passage and exchanges heat with the fourth heat exchanger as an evaporator, and the heat of the return air is The low-temperature refrigerant in the four heat exchangers is taken away, and the air is cooled and sent into the room by the second air supply passage.
  • the cooling condition includes a first cycle period and a second cycle period of cyclic switching
  • the second heat exchanger acts as the second evaporator and the third heat exchanger acts as the second condenser, and the first end of the second four-way commutation is in communication with the fourth end and the second four-way exchange
  • the wide second end is connected to the third end, the first wind width, the third wind width, the sixth wind width, and the eighth wind width open, the second wind width, the fourth wind width, the fifth wind width and the Seven winds wide closed;
  • the second refrigerant entering the first end of the indoor unit is switched from the second four-way to the second wide end, and flows through the third end of the second four-way to the third end, and sequentially enters the third heat exchanger and the second electron
  • the expansion end, the second heat exchanger, the second end of the second four-way reversing, and the fourth end of the second four-way reversing The third end of the machine passes through the third end of the indoor unit, the low pressure air pipe, and the third cut-off width, and then flows back to the gas-liquid separator, and finally enters the compressor through the suction port of the compressor;
  • the fresh air enters the first air chamber from the fresh air passage, and exchanges heat and mass with the second heat exchanger.
  • the high temperature and high humidity fresh air is cooled by the second heat exchanger, and the water vapor in the fresh air is used by the second heat exchanger.
  • the moisture absorption material on the fin is absorbed, and the fresh air is sent to the room by the first air supply passage after being cooled and dehumidified; the indoor return air enters the second air chamber from the first return air passage, and performs heat and mass transfer with the third heat exchanger.
  • the low temperature and low humidity return air absorbs the heat of the third heat exchanger, the cooling amount in the return air is recovered, and the return air takes away the moisture absorbed by the moisture absorbing material on the fins of the third heat exchanger in the second cycle.
  • the moisture in the partially hygroscopic material is sucked away to achieve regeneration, and the heated humidified air is discharged into the atmosphere via the exhaust passage;
  • the second heat exchanger acts as the second condenser and the third heat exchanger acts as the second evaporator, and the first end of the second four-way commutation is in communication with the second end and the second four-way exchange
  • the third end is connected to the fourth end, and the first wind width, the third wind width, the sixth wind width, and the eighth wind width are closed, the second wind width, the fourth wind width, the fifth wind width and the Seven winds wide open;
  • the second refrigerant entering the first end of the indoor unit is switched from the second four-way to the second wide end, and flows through the second end of the second four-way to the second end, and sequentially enters the second heat exchanger and the second electron
  • the low pressure gas pipe and the third cut-off are wide, and then return to the gas-liquid separator, and finally enter the compressor by the compressor suction port;
  • the fresh air enters the second air chamber from the fresh air passage, and exchanges heat and mass with the third heat exchanger.
  • the high temperature and high humidity fresh air is cooled by the third heat exchanger, and the water vapor in the fresh air is replaced by the third heat exchanger.
  • the moisture absorption material on the fin is absorbed, and the fresh air is cooled and dehumidified, passes through the second air chamber, and finally is sent into the room by the first air supply passage;
  • the indoor return air enters the first air chamber from the first return air passage, exchanges heat and mass transfer with the second heat exchanger, and the low temperature and low humidity return air absorbs the heat of the second heat exchanger, and the cooling capacity in the return air is Recycling, and the return air carries away the moisture absorbed by the moisture absorbing material on the fins of the second heat exchanger in the first cycle, so that the part of the moisture absorbing material is regenerated, and the heated humidified air is discharged into the atmosphere through the exhaust passage,
  • the trigger enters the first cycle, and the cycle is performed, thereby achieving independent control of cooling and dehumidification.
  • Step 904 When the multi-connected air conditioning system is in a heating condition, the first refrigerant outputted by the diverting unit is changed from the first four-way to the first end of the wide, and flows through the fourth end of the first four-way reversing , entering the first electromagnetic wide and capillary, and returning to the diverting unit;
  • the second refrigerant enters the high pressure gas pipe from the first cut-off output end, and is divided into two parts, wherein a part of the second refrigerant is input into the third electromagnetic wide, and flows through the fourth heat exchanger and the high pressure liquid pipe.
  • the fourth cut-off is wide, flowing from the second end of the switching unit to the third end of the switching unit, and flowing back to the splitting unit; the other part of the second refrigerant is input to the first end of the indoor unit, and the second end is switched to the second wide
  • the end, the third end of the indoor unit, the low pressure air pipe and the third cutoff are returned to the flow dividing unit.
  • the first end of the first four-way reversing is connected with the fourth end, and the second end is connected with the third end, the first electromagnetic wide and the second electromagnetic Widely closed, the third electromagnetic wide open, the first electronic expansion broad, the second electronic expansion broad and the third electronic expansion wide are both throttled, regulating the flow of refrigerant flowing through;
  • the first refrigerant is commutated to the first end of the first through the first four-way, and flows through the first end of the first four-way to the fourth end, and enters the first electromagnetic wide state and is in a stagnation state;
  • the first refrigerant is periodically opened in a heating condition, so that the first refrigerant merges with the second refrigerant flowing from the second end of the outdoor unit, and is returned to the flow dividing unit;
  • the second refrigerant entering the first cut-off width enters the high-pressure gas pipe from the first cut-off output end, and is divided into two parts, wherein
  • a part of the second refrigerant is input into the third electromagnetic wide, enters the second end of the indoor unit, flows through the fourth heat exchanger, the third electronic expansion wide, the fourth end of the indoor unit, the high pressure liquid pipe, flows into the fourth
  • the cut-off is wide, and then flows through the first electronically expanded wide, first heat exchanger, from the second end of the switching unit into the third end of the switching unit, back to the gas-liquid separator, and finally enters by the suction port of the compressor Compressor;
  • another portion of the second refrigerant is input into the first end of the indoor unit, enters the second end of the second four-way reversing, and passes through the third end of the indoor unit, the low-pressure air pipe, and the third cut-off width, and then Returning to the gas-liquid separator, and finally entering the compressor by the compressor suction port;
  • the first heat exchanger as the evaporator absorbs heat from the atmosphere; the indoor return air enters the third air chamber from the second return air passage, and exchanges heat with the fourth heat exchanger as a condenser, the fourth heat exchanger The heat is discharged into the return air, and after the air is heated, it is sent into the room by the second air supply passage.
  • the heating condition includes a third cycle of cyclic switching and a fourth cycle
  • the second heat exchanger serves as a second evaporator
  • the third heat exchanger serves as a
  • the second condenser is connected to the fourth end of the second four-way reversing width
  • the second end of the second four-way reversing is connected to the third end, the first wind width, the third wind width, and the sixth
  • the wide wind and the eighth wind width are closed, the second wind width, the fourth wind width, the fifth wind width and the seventh wind width open;
  • the refrigerant entering the first end of the indoor unit is changed from the second four-way to the second end of the wide, and flows through the second end of the second four-way to the third end, and sequentially enters the third heat exchanger, and the second electronic expansion is wide.
  • Second heat exchanger The second four-way reversing the wide first end and the second four-way reversing the wide fourth end, flowing into the third end of the indoor unit, passing through the low-pressure air pipe, and the third cut-off width, and then returning to the gas-liquid separator.
  • the compressor inlet port enters the compressor;
  • the fresh air enters the second air chamber from the fresh air passage, and exchanges heat and mass with the third heat exchanger.
  • the low temperature and low humidity fresh air is heated by the heat of the third heat exchanger, and the dry fresh air absorbs the wings of the third heat exchanger.
  • the moisture absorbed by the moisture absorbing material on the sheet in the fourth cycle period causes the moisture absorbing material to dry and be regenerated, and the fresh air is heated and humidified, and then sent into the room through the first air supply passage;
  • the indoor return air enters the first air chamber from the first return air passage, and performs heat and mass transfer exchange with the second heat exchanger, and the high temperature and high humidity return air is cooled by the low temperature refrigerant in the second heat exchanger, and is returned to the wind.
  • the heat is recovered, and the water vapor in the return air is absorbed by the moisture absorbing material on the fins of the second heat exchanger, and the air cooled and dehumidified is discharged into the atmosphere through the exhaust passage;
  • the second heat exchanger acts as the second condenser and the third heat exchanger acts as the second evaporator, and the first end of the second four-way commutation is in communication with the second end and the second four-way exchange
  • the third end is connected to the fourth end, and the first wind width, the third wind width, the sixth wind width, and the eighth wind width open, the second wind width, the fourth wind width, the fifth wind width and the Seven winds wide closed;
  • the refrigerant entering the first end of the indoor unit is switched from the second four-way to the second end of the wide end, and flows through the second end of the second four-way to the first end, and sequentially enters the second heat exchanger, and the second electronic expansion is wide.
  • the outdoor fresh air enters the first air chamber from the fresh air passage, and exchanges heat and mass with the second heat exchanger.
  • the low temperature and low humidity fresh air is heated by the heat of the second heat exchanger, and the dry fresh air absorbs the second heat exchanger.
  • the moisture absorbed by the moisture absorbing material on the fin in the third cycle period causes the moisture absorbing material to be regenerated, and the fresh air is heated and humidified, and then sent into the room through the first air supply passage;
  • the indoor return air enters the second air chamber from the first return air passage, and performs heat and mass transfer exchange with the third heat exchanger.
  • the high temperature and high humidity return air is cooled by the low temperature refrigerant in the third heat exchanger, and the return air is in the return air.
  • the heat is recovered, and the water vapor in the return air is absorbed by the moisture absorbing material on the fins of the third heat exchanger, and the air cooled and dehumidified is discharged into the atmosphere through the exhaust passage, and the time set in the fourth cycle is timed. , trigger into the third cycle, and thus cycle, so as to achieve independent control of humidification and heating.

Abstract

一种三管制全热处理多联机空调系统,包括室内机(02)、室外机(01)、高压气管(62)、低压气管(63)、高压液管(64)、第二电磁阀(65)和第三电磁阀(66)。室外机(01)的第一端与高压气管(62)的一端相连,高压气管(62)的另一端分别与室内机(02)的第一端以及第三电磁阀(66)的一端相连,第三电磁阀(66)的另一端与室内机(02)的第二端相连;室外机(01)的第二端与低压气管(63)的一端相连,低压气管(63)的另一端与室内机(02)的第三端以及第二电磁阀(65)的一端相连,第二电磁阀(65)的另一端与室内机(02)的第二端相连;室外机(01)的第三端与高压液管(64)的一端相连,高压液管(64)的另一端与室内机(02)的第四端相连。还公开了一种温湿度独立控制方法。

Description

说 明 书 三管制全热处理多联机空调系统及温湿度独立控制方法 技术领域
本发明涉及多联机空调控制技术, 尤其涉及一种三管制全热处理多联机空 调系统及温湿度独立控制方法。 背景技术
随着人们生活水平的不断提高, 通过在居住和室内工作环境下安装空 调系统, 用以提升居住和工作环境的舒适性, 成为人们提高舒适性需求的 一个重要选择。 其中, 多联机空调技术由于具有控制自由、 高效节能、 便 于安装维护等优点, 是空调发展的一个重要方向。
多联机空调系统主要用于控制室内的温湿度, 一般包括一台或多台室 外机、 一台或多台室内机以及线控器, 线控器与室内机相连, 室内机再与 室外机相连。 室外机一般由室外侧换热器、 压缩机和其它制冷附件组成; 室内机由风机和换热器等组成, 与多台家用空调相比, 多联机空调系统的 室外机共用, 可有效降低设备成本, 并可实现各室内机的集中管理, 可单 独启动一台室内机运行, 也可多台室内机同时启动运行, 使得控制更加灵 活。
多联机空调系统对空气进行处理时, 需要对空气的温度、 湿度及新风 换气次数进行调节和控制, 其中, 相对来说, 湿度控制难度更大。 现有多 联机空调系统中, 主要采用新风与回风单独处理的降温除湿方式以及转轮 除湿方式调节室内空气舒适度。 其中, 降温除湿的方法, 一方面, 过度降 低送风温度将导致多联机空调系统能耗高、 且蒸发温度降低, 而蒸发温度 的降低又将导致多联机空调系统能效比较低, 另一方面, 为避免冷吹风感 强烈对用户造成的不舒适性, 需要对送风采用电加热丝加热, 而这将进一 步增加多联机空调系统的能耗。 采用转轮除湿的系统可在大风量场合下对 空气湿度进行集中处理, 但该方法为了使吸湿材料再生, 必须对回风采用 电加热丝进行加热, 也额外增加了多联机空调系统整体能耗, 此外, 转轮 除湿系统体积庞大, 无法与多联机空调系统送风末端配合使用。 因而, 基 于能耗的考虑, 应用多联机空调系统场景的温湿度控制不适合采用降温除 湿手段和转轮除湿系统。 为了降低多联机空调系统功耗, 提高多联机空调系统制冷性能, 且通 过多联机空调系统实现温湿度独立控制, 现有技术提出了一种改进的多联 机空调系统(公开号: CN102878613A ) 。 图 1为现有改进的多联机空调系 统结构示意图。 参见图 1 , 现有改进的多联机空调系统包括室外机 01及室 内机 02, 其中,
室外机 01包括: 压缩机 1、 单向阔 2、 第一四通换向阔 3、 第一换热器 4、 第一电子膨胀阔 5、 气液分离器 6、 第一截止阔 7、 第二截止阔 8、 第三 截止阔 9和第四截止阔 10, 其中, 压缩机 1的输出端与单向阔 2的输入端 相连, 单向阔 2的输出端分别与第一四通换向阔 3的第一端以及第一截止 阔 7的输入端相连, 第一四通换向阔 3的第二端与第一换热器 4的输入端 相连, 第一换热器 4的输出端与第一电子膨胀阔 5的输入端相连, 第一电 子膨胀阔 5的输出端与第四截止阔 10的输入端相连, 第四截止阔 10的输 出端与室内机 02相连, 第一四通换向阔 3的第三端分别与气液分离器 6的 输入端以及第三截止阔 9的输入端相连相连, 气液分离器 6的输出端与压 缩机 1的输入端相连, 第一四通换向阔 3的第四端与第二截止阔 8的输入 端相连, 第一截止阔 7、 第二截止阔 8以及第三截止阔 9的输出端分别与室 内机 02相连。
室内机 02包括: 第一风室单元、 第二风室单元以及第三风室单元, 其 中,第一风室单元中设置有第二换热器 33、新风通道 11、第一送风通道 14、 第一风室 17、 第一风阔 20、 第二风阔 21、 第五风阔 24、 第六风阔 25、 第 一风管 28以及第三风管 30; 第二风室单元中设置有第三换热器 35、 第一 回风通道 12、 排风通道 15、 第二风室 18、 第一端、 第三端、 第三风阔 22、 第四风阔 23、 第七风阔 26、 第八风阔 27、 第二风管 29、 第四风管 31、 第 二四通换向阔 32以及第二电子膨胀阔 34;第三风室单元中,设置有第二端、 第四端、 第四换热器 37、 第二回风通道 13、 第二送风通道 16、 第三风室 19以及第三电子膨胀阔 36。
关于室外机 01及室内机 02的详细结构及具体工作流程, 具体可参见 相关技术文献, 在此不再赞述。 在该多联机空调系统中, 室内机部分通过 冷凝器与蒸发器的切换, 可实现温度与湿度的独立控制, 结构紧凑且设备 集成度高; 而且, 通过回收回风的冷量及热量, 使得多联机空调系统的蒸 发温度较高且冷凝温度较低, 从而使得多联机空调系统运行的能效比高, 提高了多联机空调系统运行的能效比; 但是, 该改进的技术方案中的室外 机 01为四管制系统, 即室外机 01与室内机 02通过四根制冷剂管道连接, 这样, 在长配管场合下增加了安装及施工费用; 而且, 由于现有市场上销 售的多功能多联机产品及热回收多联机产品为三管制系统, 因此, 该改进 的技术方案无法与现有多功能多联机产品及热回收多联机系统融合, 通用 性低。 发明内容
本发明的实施例提供一种三管制全热处理多联机空调系统, 减小长配 管安装及施工费用、 提高通用性。
本发明的实施例还提供一种多联机空调系统温湿度独立控制方法, 减 小长配管安装及施工费用、 提高通用性。
为达到上述目的, 本发明实施例提供的一种三管制全热处理多联机空 调系统, 该系统包括: 室内机, 其特征在于, 还包括: 室外机、 高压气管、 低压气管、 高压液管、 第二电磁阔以及第三电磁阔, 其中,
室外机包括: 控制单元、 切换单元、 分流单元、 第一换热器、 第一电 子膨胀阔、 第一电磁阔以及毛细管;
切换单元的第一端与分流单元的输出端相连, 分流单元的输出端还与 室外机的第一端相连;
切换单元的第二端与第一换热器的一端相连, 第一换热器的另一端与 第一电子膨胀阔的一端相连, 第一电子膨胀阔的另一端与室外机的第三端 相连;
切换单元的第四端与第一电磁阔的一端相连, 第一电磁阔的另一端与 毛细管的一端相连, 毛细管的另一端分别与切换单元的第三端、 分流单元 的输入端以及室外机的第二端相连;
室外机的第一端与高压气管的一端相连, 高压气管的另一端分别与室 内机的第一端以及第三电磁阔的一端相连, 第三电磁阔的另一端与室内机 的第二端相连; 室外机的第二端与低压气管的一端相连, 低压气管的另一 端与室内机的第三端以及第二电磁阔的一端相连, 第二电磁阔的另一端与 室内机的第二端相连; 室外机的第三端与高压液管的一端相连, 高压液管 的另一端与室内机的第四端相连;
控制单元, 用于当多联机空调系统处于制冷工况时, 控制第一换热器 作为冷凝器、 室内机中的第四换热器作为蒸发器; 第三电磁阔关闭, 将切 换蕈元 ^第一 ^^第二^ i车 ϋ: 当多联机空调系统处于制热工况时, 控制第一换热器作为蒸发器、 第 四换热器作为冷凝器; 第一电磁阔关闭, 将切换单元的第二端与第三端连 通;
分流单元, 用于将切换单元、 毛细管以及室外机的第二端输入的高压 制冷剂汇流, 经压缩后, 进行分流, 分别输出第一股制冷剂以及第二股制 冷剂, 其中, 第一股制冷剂进入切换单元的第一端, 第二股制冷剂进入室 外机的第一端。
较佳地, 所述室内机包括: 第一风室单元、 第二风室单元以及第三风 室单元, 其中, 第一风室单元中设置有第二换热器、 新风通道、 第一送风 通道以及第一风室, 新风通道以及第一送风通道分别位于第一风室单元两 侧; 第二风室单元中设置有第三换热器、 第一回风通道、 排风通道、 第二 风室、 室内机的第一端以及室内机的第三端, 第一回风通道以及排风通道 分别位于第二风室单元两侧; 第三风室单元中, 设置有室内机的第二端、 室内机的第四端、 第四换热器、 第二回风通道、 第二送风通道以及第三风 室, 第二回风通道以及第二送风通道分别位于第三风室单元两侧。
较佳地, 所述第一风室单元进一步包括: 第一风阔、 第二风阔、 第五 风阔、 第六风阔、 第一风管以及第三风管, 其中,
第一风室的内壁一端开设有新风通道, 内壁另一端开设有第一送风通 道, 在新风通道通往第一送风通道、 且靠近新风通道的内壁一端, 设置有 第一风以及第二风阀, 在第一送风通道通往新风通道、 且靠近第一送风通 道的内壁另一端, 设置有第五风阔以及第六风阔; 在第一风室内, 设置有 第二换热器;
在第一风室与第二风室的连接处, 设置有将第二风阔连接至第二风室 单元的第一风管、 以及, 将第五风阔连接至第二风室单元的第三风管。
较佳地, 所述第二风室单元进一步包括: 第三风阔、 第四风阔、 第七 风阔、 第八风阔、 第二风管、 第四风管、 第二四通换向阔以及第二电子膨 胀阔, 其中,
第二风室与第一风室同向的内壁一端开设有第一回风通道, 内壁另一 端开设有排风通道, 在第一回风通道通往排风通道、 且靠近第一回风通道 的内壁一端, 设置有第三风阔以及第四风阔, 在排风通道通往第一回风通 道、 且靠近排风通道的内壁另一端, 设置有第七风阔以及第八风阔; 在第 二风室内, 设置有第二四通换向阔、 第二电子膨胀阔以及第三换热器; 在第一风室与第二风室的连接处, 设置有将第四风阔连接至第一风室 的第二风管、 以及, 将第七风阔连接至第一风室的第四风管;
所述第三风室单元进一步包括: 第三电子膨胀阔,
第三风室与第二风室间不透风;
第三风室与第一风室同向的内壁一端开设有第二回风通道, 内壁另一 端开设有第二送风通道, 在第三风室内, 设置有第三电子膨胀阔以及第四 换热器;
室内机的第一端与第二四通换向阔第二端相连, 第二四通换向阔的第 一端与第二换热器的一端相连, 第二换热器的另一端与第二电子膨胀阔的 一端相连, 第二电子膨胀阔的另一端与第三换热器的一端相连, 第三换热 器的另一端与第二四通换向阔的第三端相连, 第二四通换向阔的第四端与 室内机的第三端相连;
室内机的第二端与第四换热器的一端相连, 第四换热器的另一端与第 三电子膨胀阔的一端相连, 第三电子膨胀阔的另一端与室内机的第四端相 连。
较佳地, 所述分流单元包括: 压缩机、 单向阔以及气液分离器, 压缩 机的输出端与单向阔的输入端相连, 单向阔的输出端分别与切换单元以及 第一端相连, 气液分离器的输入端与切换单元的输出端以及第二端相连, 气液分离器的输出端与压缩机的输入端相连;
切换单元为第一四通换向阔, 第一四通换向阔的第一端与单向阔的输 出端相连, 第一四通换向阔的第二端与第一换热器的输入端相连, 第一四 通换向阔的第三端与气液分离器的输入端及第二端相连, 第一四通换向阔 的第四端与第一电磁阔输入端相连;
室外机的第一端为第一截止阔, 室外机的第二端为第三截止阔, 室外 机的第三端为第四截止阔。
较佳地, 所述第一换热器、 第二换热器、 第三换热器及第四换热器为 铝箔翅片铜管换热器或铝制翅片式微通道换热器, 第二换热器和第三换热 器的翅片上涂有吸湿材料。
较佳地, 当多联机空调系统处于制冷工况时, 第一四通换向阔的第一 端与第二端连通, 第三端与第四端连通, 第一电磁阔和第三电磁阔关闭, 第二电磁阔打开, 按照预设程序调节蒸发器供液量的第一电子膨胀阔全开, 第二电子膨胀阔和第三电子膨胀阔分别起节流作用, 调节流经的制冷剂流 量;
制冷剂由压缩机排气口排出进入单向阔, 由单向阔出来的高压制冷剂 气体被分为第一股制冷剂以及第二股制冷剂, 分别进入第一四通换向阔的 第一端以及第一截止阔;
第一股制冷剂由第一四通换向阔的第一端流经第一四通换向阔的第二 端, 依次进入第一换热器、 第一电子膨胀阔、 第四截止阔、 高压液管、 室 内机的第四端、 第三电子膨胀阔、 第四换热器、 室内机的第二端、 第二电 磁阔、 低压气管和第三截止阔, 再回流到气液分离器, 最后由压缩机吸气 口进入压缩机;
第二股制冷剂由第一截止阔的出口经高压气管和室内机的第一端, 进 入第二四通换向阔的第二端, 并经室内机的第三端、 低压气管、 和第三截 止阔, 再回流到气液分离器, 最后由压缩机吸气口进入压缩机;
作为冷凝器的第一换热器将热量排入大气; 室内回风由第二回风通道 进入第三风室并与作为蒸发器的第四换热器进行热量交换, 回风的热量被 第四换热器中低温制冷剂带走, 空气被降温进而由第二送风通道送入室内。
较佳地, 所述制冷工况包括循环切换的第一循环周期以及第二循环周 期,
在第一循环周期, 第二换热器作为蒸发器且第三换热器作为冷凝器, 第二四通换向阔的第一端与第四端连通且第二四通换向阔的第二端与第三 端连通, 第一风阔、 第三风阔、 第六风阔、 及第八风阔开启, 第二风阔、 第四风阔、 第五风阔及第七风阔关闭;
进入第二四通换向阔的第二端的第二股制冷剂, 流经第二四通换向阔 的第三端, 依次进入第三换热器、 第二电子膨胀阔、 第二换热器、 第二四 通换向阔的第一端、 第二四通换向阔的第四端, 流入室内机的第三端; 新风由新风通道进入第一风室, 与第二换热器进行传热传质交换, 高 温高湿的新风通过第二换热器降温冷却, 且新风中的水蒸汽被第二换热器 的翅片上的吸湿材料吸收, 新风被降温除湿后由第一送风通道送入室内; 室内回风由第一回风通道进入第二风室, 与第三换热器进行传热传质 交换, 低温低湿的回风吸收第三换热器的排热, 回风中的冷量被回收, 且 回风带走第三换热器的翅片上的吸湿材料在第二循环周期中吸收的水分, 使得该部分吸湿材料中的水分被吸走, 从而实现再生, 被加热加湿的空气 经由排风通道排入大气; 在第二循环周期, 第二换热器作为冷凝器且第三换热器作为蒸发器, 第二四通换向阔的第一端与第二端连通且第二四通换向阔的第三端与第四 端连通, 第一风阔、 第三风阔、 第六风阔、 及第八风阔关闭, 第二风阔、 第四风阔、 第五风阔及第七风阔开启;
进入第二四通换向阔的第二端的第二股制冷剂, 流经第二四通换向阔 的第一端, 依次进入第二换热器、 第二电子膨胀阔、 第三换热器、 第二四 通换向阔的第三端、 第二四通换向阔的第四端, 流入室内机的第三端; 新风由新风通道进入第二风室, 与第三换热器进行传热传质交换, 高 温高湿的新风通过第三换热器降温冷却, 且新风中的水蒸汽被第三换热器 的翅片上的吸湿材料吸收, 新风被降温除湿后经第二风室, 最后由第一送 风通道送入室内;
室内回风由第一回风通道进入第一风室, 与第二换热器进行传热传质 交换, 低温低湿的回风吸收第二换热器的排热, 回风中的冷量被回收, 且 回风带走第二换热器的翅片上的吸湿材料在第一循环周期中吸收的水分, 被加热加湿的空气经由排风通道排入大气, 在第二循环周期设定的时间到 时, 触发进入第一循环周期, 如此循环。
较佳地, 当多联机空调系统处于制热工况时, 第一四通换向阔的第一 端与第四端连通, 第二端与第三端连通, 第一电磁阔和第二电磁阔关闭, 第三电磁阔打开, 第一电子膨胀阔、 第二电子膨胀阔和第三电子膨胀阔均 起节流作用, 调节流经的制冷剂流量;
制冷剂由压缩机排气口排出进入单向阔, 由单向阔出来的高压制冷剂 气体被分为第一股制冷剂以及第二股制冷剂, 分别进入第一四通换向阔的 第一端以及第一截止阔;
第一股制冷剂经由第一四通换向阔的第一端, 流经第一四通换向阔的 第四端, 进入第一电磁阔后处于滞止状态;
进入第一截止阔的第二股制冷剂由第一截止阔的出口进入高压气管, 分为两部分, 其中,
一部分的第二股制冷剂输入第三电磁阔, 进入到室内机的第二端, 流 经第四换热器、 第三电子膨胀阔、 室内机的第四端、 高压液管, 流入第四 截止阔, 再依次流经第一电子膨胀阔、 第一换热器, 从切换单元的第二端 流入切换单元的第三端, 回到气液分离器, 最后由由压缩机吸气口进入压 缩机; 另一部分第二股制冷剂输入室内机的第一端, 进入第二四通换向阔 的第二端, 并经室内机的第三端、 低压气管、 和第三截止阔, 再回流到气 液分离器, 最后由压缩机吸气口进入压缩机;
作为蒸发器的第一换热器, 从大气吸收热量; 室内回风由第二回风通 道进入第三风室, 并与作为冷凝器的第四换热器进行热量交换, 第四换热 器将热量排入回风中, 空气被加热后, 进而由第二送风通道送入室内。
较佳地, 所述制热工况包括循环切换的第三循环周期以及第四循环周 期,
在第三循环周期, 第二换热器作为蒸发器且第三换热器作为冷凝器, 第二四通换向阔的第一端与第四端连通且第二四通换向阔的第二端与第三 端连通, 第一风阔、 第三风阔、 第六风阔、 及第八风阔关闭, 第二风阔、 第四风阔、 第五风阔及第七风阔开启;
进入第二四通换向阔的第二端的制冷剂, 流经第二四通换向阔的第三 端, 依次进入第三换热器、 第二电子膨胀阔、 第二换热器、 第二四通换向 阔的第一端、 第二四通换向阔的第四端, 流入室内机的第三端;
新风由新风通道进入第二风室, 与第三换热器进行传热传质交换, 低 温低湿的新风通过第三换热器的排热加热, 且干燥的新风吸收第三换热器 的翅片上的吸湿材料在第四循环周期吸收的水分, 新风被加热加湿后, 经 由第一送风通道送入室内;
室内回风由第一回风通道进入第一风室, 与第二换热器进行传热传质 交换, 高温高湿的回风被第二换热器中的低温冷媒降温, 回风中的热量被 回收, 且回风中的水蒸汽被第二换热器的翅片上的吸湿材料吸收, 被降温 降湿的空气经由排风通道排入大气;
在第四循环周期, 第二换热器作为冷凝器且第三换热器作为蒸发器, 第二四通换向阔的第一端与第二端连通且第二四通换向阔的第三端与第四 端连通, 第一风阔、 第三风阔、 第六风阔、 及第八风阔开启, 第二风阔、 第四风阔、 第五风阔及第七风阔关闭;
进入第二四通换向阔的第二端的制冷剂, 流经第二四通换向阔的第一 端, 依次进入第二换热器、 第二电子膨胀阔、 第三换热器、 第二四通换向 阔的第三端、 第二四通换向阔的第四端, 流入室内机的第三端;
室外新风由新风通道进入第一风室, 与第二换热器进行传热传质交换, 低温低湿的新风通过第二换热器的排热加热, 且干燥的新风吸收第二换热 器的翅片上的吸湿材料在第三循环周期吸收的水分, 新风被加热加湿后, 经由第一送风通道送入室内;
室内回风由第一回风通道进入第二风室, 与第三换热器进行传热传质 交换, 高温高湿的回风被第三换热器中的低温冷媒降温, 回风中的热量被 回收, 且回风中的水蒸汽被第三换热器的翅片上的吸湿材料吸收, 被降温 降湿的空气经由排风通道排入大气, 在第四循环周期设定的时间到时, 触 发进入第三循环周期, 如此循环。
根据本发明的另一方面, 本发明实施例还提供了一种多联机空调系统 温湿度独立控制方法, 该方法包括:
将室外机接收的制冷剂经分流单元压缩后, 进行分流, 分别输出第一 股制冷剂以及第二股制冷剂;
判断多联机空调系统处于制冷工况还是制热工况;
多联机空调系统处于制冷工况时, 将分流单元输出的第一股制冷剂由 第一四通换向阔的第一端流经室外机第四截止阔、 高压液管、 第四换热器、 低压气管和第三截止阔, 回到分流单元;
第二股制冷剂由第一截止阔的出口经高压气管和室内机的第一端, 进 入第二四通换向阔的第二端, 并经室内机的第三端、 低压气管和第三截止 阔, 回到分流单元;
多联机空调系统处于制热工况时, 将分流单元输出的第一股制冷剂由 第一四通换向阔的第一端, 流经第一四通换向阔的第四端, 进入第一电磁 阔及毛细管, 回流到分流单元;
第二股制冷剂由第一截止阔的输出端进入高压气管, 分为两部分, 其 中, 一部分的第二股制冷剂输入第三电磁阔, 经第四换热器、 高压液管, 流入第四截止阔, 从切换单元的第二端流入切换单元的第三端, 回流到分 流单元; 另一部分第二股制冷剂输入室内机的第一端, 经第二四通换向阔 的第二端、 室内机的第三端、 低压气管和第三截止阔, 回流到分流单元。
较佳地, 所述室外机包括: 压缩机、 单向阔、 第一四通换向阔、 第一 换热器、 第一电子膨胀阔、 气液分离器、 第一截止阔、 第三截止阔、 第四 截止阔、 第一电磁阔和毛细管;
所述室内机包括: 新风通道、 第一回风通道、 第二回风通道、 第一送 风通道、 排风通道、 第二送风通道、 第一风室、 第二风室、 第三风室、 第 一风阔、 第二风阔、 第三风阔、 第四风阔、 第五风阔、 第六风阔、 第七风 阔、 第八风阔、 第一风管、 第二风管、 第三风管、 第四风管、 第二四通换 向阔、 第二换热器、 第二电子膨胀阔、 第三换热器、 第三电子膨胀阔以及 第四换热器;
所述分流单元包括: 压缩机、 单向阔以及气液分离器, 压缩机的输出 端与单向阔的输入端相连, 单向阔的输出端分别与切换单元以及第一端相 连, 气液分离器的输入端与切换单元的输出端以及第二端相连, 气液分离 器的输出端与压缩机的输入端相连;
制冷剂由压缩机排气口排出进入单向阔, 由单向阔出来的高压制冷剂 气体被分为第一股制冷剂以及第二股制冷剂, 分别进入第一四通换向阔的 第一端以及第一截止阔;
当多联机空调系统处于制冷工况时, 第一四通换向阔的第一端与第二 端连通, 第三端与第四端连通, 第一电磁阔和第三电磁阔关闭, 第二电磁 阔打开, 按照预设程序调节蒸发器供液量的第一电子膨胀阔全开, 第二电 子膨胀阔和第三电子膨胀阔分别起节流作用, 调节流经的制冷剂流量; 第一股制冷剂由第一四通换向阔的第一端流经第一四通换向阔的第二 端, 依次进入第一换热器、 第一电子膨胀阔、 第四截止阔、 高压液管、 室 内机的第四端、 第三电子膨胀阔、 第四换热器、 室内机的第二端、 第二电 磁阔、 低压气管和第三截止阔, 再回流到气液分离器, 最后由压缩机吸气 口进入压缩机;
第二股制冷剂由第一截止阔的出口经高压气管和室内机的第一端, 进 入第二四通换向阔的第二端, 并经室内机的第三端、 低压气管、 和第三截 止阔, 再回流到气液分离器, 最后由压缩机吸气口进入压缩机;
作为冷凝器的第一换热器将热量排入大气; 室内回风由第二回风通道 进入第三风室并与作为蒸发器的第四换热器进行热量交换, 回风的热量被 第四换热器中低温制冷剂带走, 空气被降温进而由第二送风通道送入室内; 当多联机空调系统处于制热工况时, 第一四通换向阔的第一端与第四 端连通, 第二端与第三端连通, 第一电磁阔和第二电磁阔关闭, 第三电磁 阔打开, 第一电子膨胀阔、 第二电子膨胀阔和第三电子膨胀阔均起节流作 用, 调节流经的制冷剂流量;
第一股制冷剂经由第一四通换向阔的第一端, 流经第一四通换向阔的 第四端, 进入第一电磁阔后处于滞止状态;
进入第一截止阔的第二股制冷剂由第一截止阔的输出端进入高压气 管, 分为两部分, 其中, 一部分的第二股制冷剂输入第三电磁阔, 进入到室内机的第二端, 流 经第四换热器、 第三电子膨胀阔、 室内机的第四端、 高压液管, 流入第四 截止阔, 再依次流经第一电子膨胀阔、 第一换热器, 从切换单元的第二端 流入切换单元的第三端, 回到气液分离器, 最后由由压缩机吸气口进入压 缩机; 另一部分第二股制冷剂输入室内机的第一端, 进入第二四通换向阔 的第二端, 并经室内机的第三端、 低压气管、 和第三截止阔, 再回流到气 液分离器, 最后由压缩机吸气口进入压缩机;
作为蒸发器的第一换热器, 从大气吸收热量; 室内回风由第二回风通 道进入第三风室, 并与作为冷凝器的第四换热器进行热量交换, 第四换热 器将热量排入回风中, 空气被加热后, 进而由第二送风通道送入室内。
较佳地, 所述制冷工况包括循环切换的第一循环周期以及第二循环周 期,
在第一循环周期, 第二换热器作为第二蒸发器且第三换热器作为第二 冷凝器, 第二四通换向阔的第一端与第四端连通且第二四通换向阔的第二 端与第三端连通, 第一风阔、 第三风阔、 第六风阔、 及第八风阔开启, 第 二风阔、 第四风阔、 第五风阔及第七风阔关闭;
进入室内机第一端的第二股制冷剂由第二四通换向阔的第二端, 流经 第二四通换向阔的第三端, 依次进入第三换热器、 第二电子膨胀阔、 第二 换热器、 第二四通换向阔的第一端、 第二四通换向阔的第四端, 流入室内 机的第三端;
在第二循环周期, 第二换热器作为第二冷凝器且第三换热器作为第二 蒸发器, 第二四通换向阔的第一端与第二端连通且第二四通换向阔的第三 端与第四端连通, 第一风阔、 第三风阔、 第六风阔、 及第八风阔关闭, 第 二风阔、 第四风阔、 第五风阔及第七风阔开启;
进入室内机第一端的第二股制冷剂由第二四通换向阔的第二端, 流经 第二四通换向阔的第一端, 依次进入第二换热器、 第二电子膨胀阔、 第三 换热器、 第二四通换向阔的第三端、 第二四通换向阔的第四端, 流入室内 机的第三端。
较佳地, 所述制热工况包括循环切换的第三循环周期以及第四循环周 期,
在第三循环周期, 第二换热器作为第二蒸发器且第三换热器作为第二 冷凝器, 第二四通换向阔的第一端与第四端连通且第二四通换向阔的第二 端与第三端连通, 第一风阔、 第三风阔、 第六风阔、 及第八风阔关闭, 第 二风阔、 第四风阔、 第五风阔及第七风阔开启;
进入室内机第一端的制冷剂由第二四通换向阔的第二端, 流经第二四 通换向阔的第三端, 依次进入第三换热器、 第二电子膨胀阔、 第二换热器、 第二四通换向阔的第一端、 第二四通换向阔的第四端, 流入室内机的第三 端;
在第四循环周期, 第二换热器作为第二冷凝器且第三换热器作为第二 蒸发器, 第二四通换向阔的第一端与第二端连通且第二四通换向阔的第三 端与第四端连通, 第一风阔、 第三风阔、 第六风阔、 及第八风阔开启, 第 二风阔、 第四风阔、 第五风阔及第七风阔关闭;
进入室内机第一端的制冷剂由第二四通换向阔的第二端, 流经第二四 通换向阔的第一端, 依次进入第二换热器、 第二电子膨胀阔、 第三换热器、 第二四通换向阔的第三端、 第二四通换向阔的第四端, 流入室内机的第三 端。
由上述技术方案可见, 本发明实施例提供的一种三管制全热处理多联 机空调系统及温湿度独立控制方法, 通过在室外机内添加第一电磁阔和毛 细管, 保护第一四通换向阔, 而且利用高压气管、 低压气管、 高压液管、 第二电磁阔以及第三电磁阔连接室外机与室内机, 通过回收回风的冷量或 热量, 将新风换气、 冷量回收和温度及湿度独立调节控制集中于一套室内 机, 保证了多联机空调系统的高效运行, 实现了室内新风换气与温度及湿 度独立控制; 同时, 利用三根制冷剂管道连接室外机与室外机, 在长配管 场合下可以减小安装及施工费用, 且能够与现有三管制多功能产品及热回 收多联机系统融合, 提高通用性。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,以下将对 实施例或现有技术描述中所需要使用的附图作筒单地介绍。 显而易见地, 以下描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员 而言, 还可以根据这些附图所示实施例得到其它的实施例及其附图。
图 1为现有改进的多联机空调系统结构示意图。
图 2为本发明实施例三管制全热处理多联机空调系统结构示意图。 图 3 为本发明实施例三管制全热处理多联机系统制冷工况下制冷剂的 流 ^童 HL 图 4为本发明实施例三管制全热处理多联机系统制冷工况下第一循环 周期制冷剂的流路示意图。
图 5 为本发明实施例三管制全热处理多联机系统制冷工况下第二循环 周期制冷剂的流路示意图。
图 6为本发明实施例多联机系统制热工况下制冷剂的流路示意图。 图 7 为本发明实施例三管制全热处理多联机系统制热工况下第三循环 周期制冷剂的流路示意图。
图 8 为本发明实施例三管制全热处理多联机系统制热工况下第四循环 周期制冷剂的流路示意图。
图 9 为本发明实施例三管制全热处理多联机空调系统温湿度独立控制 方法流程示意图。 具体实施方式
以下将结合附图对本发明各实施例的技术方案进行清楚、 完整的描 述, 显然, 所描述的实施例仅仅是本发明的一部分实施例, 而不是全部的 实施例。基于本发明中的实施例, 本领域普通技术人员在没有做出创造性 劳动的前提下所得到的所有其它实施例, 都属于本发明所保护的范围。
现有通过降温除湿手段和转轮除湿系统进行温湿度控制的方法, 由于 能效比低且体积庞大, 不适用于多联机空调系统; 而现有改进的多联机空 调系统, 采用四根制冷剂管道连接室外机与室内机长配管的安装及施工费 用高, 且无法与现有三管制系统的多功能多联机产品及热回收多联机系统 融合, 通用性低。
本发明实施例提出一种三管制全热处理多联机空调系统, 在室外机内 添加第一电磁阔和毛细管, 保护第一四通换向阔, 而且利用三根制冷剂管 道: 高压气管、 低压气管、 高压液管, 以及第二电磁阔、 第三电磁阔连接 室外机与室内机, 通过回收回风的冷量或热量, 将新风换气、 冷量回收和 温度及湿度独立调节控制集中于一套室内机, 使得多联机空调系统能够利 用回风的冷量或热量作为能源, 满足夏季室内新风换气、 回风冷量回收、 降温及除湿的功能; 并满足冬季室内新风换气、 回风热量回收、 供暖及加 湿的功能, 保证多联机空调系统高效运行的同时, 实现室内新风换气与温 度及湿度独立控制; 同时, 从经济角度出发, 本发明实施例涉及的多联机 空调系统采用三根制冷剂管道连接室外机与室外机, 在长配管场合下可以 ; 小 ^奘及施工^用, 0_能句多^规右三營制 功能产品及执回故 关机 统融合, 提高通用性。
图 2 为本发明实施例三管制全热处理多联机空调系统结构示意图。 参 见图 2, 该多联机空调系统采用温湿度独立控制, 包括: 室内机 02、 室外 机 01、 高压气管 62、 低压气管 63、 高压液管 64、 第二电磁阔 65以及第三 电磁阔 66 , 其中, 室外机 01为一台或多台, 室内机 02为一台或多台, 室外机 01 包括: 控制单元、 切换单元、 分流单元、 第一换热器 4、 第 一电子膨胀阔 5、 第一电磁阔 60以及毛细管 61 , 其中,
切换单元的第一端与分流单元的输出端相连, 分流单元的输出端还与 室外机 01的第一端相连;
切换单元的第二端与第一换热器 4的一端相连, 第一换热器 4的另一 端与第一电子膨胀阔 5的一端相连, 第一电子膨胀阔 5的另一端与室外机 01的第三端相连;
切换单元的第四端与第一电磁阔 60的一端相连, 第一电磁阔 60的另 一端与毛细管 61 的一端相连, 毛细管 61 的另一端分别与切换单元的第三 端、 分流单元的输入端以及室外机 01的第二端相连;
室外机 01的第一端与高压气管 62的一端相连, 高压气管 62的另一端 分别与室内机 02的第一端以及第三电磁阔 66的一端相连, 第三电磁阔 66 的另一端与室内机 02的第二端相连; 室外机 01的第二端与低压气管 63的 一端相连, 低压气管 63的另一端与室内机 02的第三端以及第二电磁阔 65 的一端相连, 第二电磁阔 65的另一端与室内机 02的第二端相连; 室外机 01的第三端与高压液管 64的一端相连, 高压液管 64的另一端与室内机 02 的第四端相连;
其中,
控制单元, 用于当多联机空调系统处于制冷工况时, 控制第一换热器 4 作为冷凝器、 室内机 02中的第四换热器 37作为蒸发器; 第三电磁阔 66关 闭, 将切换单元的第一端与第二端连通, 使得切换单元的第一端接收分流 单元输出的第一股制冷剂, 通过切换单元的第二端输出至第一换热器 4, 经 第一电子膨胀阔 5及室外机 01的第三端、 高压液管 64输出至室内机 02的 第四端, 并经室内机 02的第二端、 第二电磁阔 65、 低压气管 63、 室外机 01的第二端回流至分流单元的输入端; 室外机 01的第一端接收分流单元输 出的第二股制冷剂, 经过高压气管 62输出至室内机 02的第一端, 并经室 内机 02的第三端、 低压气管 63回流至分流单元的输入端; 当多联机空调系统处于制热工况时, 控制第一换热器 4作为蒸发器、 第四换热器 37作为冷凝器; 第一电磁阔 60关闭, 将切换单元的第二端与 第三端连通, 使得室外机 01的第一端接收分流单元输出的全部制冷剂, 通 过高压气管 62分别输出至室内机 02的第一端以及第三电磁阔 66, 输出至 室内机 02的第一端的制冷剂, 经室内机 02的第三端、 低压气管 63、 室外 机 01的第二端回流至分流单元的输入端; 输出至第三电磁阔 66的制冷剂, 输出至室内机 02的第二端, 并经室内机 02的第四端、 高压液管 64回流至 室外机 01 的第三端, 经第一电子膨胀阔 5、 第一换热器 4、 切换单元的第 二端与第三端, 回流至分流单元的输入端;
分流单元, 用于将切换单元、 毛细管以及室外机的第二端输入的高压 制冷剂汇流, 经压缩后, 进行分流, 分别输出第一股制冷剂以及第二股制 冷剂;
其中, 分流单元包括: 压缩机 1、 单向阔 2以及气液分离器 6, 压缩机 1的输出端与单向阔 2的输入端相连,单向阔 2的输出端分别与切换单元以 及第一端相连, 气液分离器 6 的输入端与切换单元的输出端以及第二端相 连, 气液分离器 6的输出端与压缩机 1的输入端相连;
切换单元为第一四通换向阔 3 , 第一四通换向阔 3的第一端与单向阔 2 的输出端相连, 第一四通换向阔 3的第二端与第一换热器 4的输入端相连, 第一四通换向阔 3的第三端与气液分离器 6的输入端及第二端相连, 第一 四通换向阔 3的第四端与第一电磁阔 60输入端相连;
较佳地, 室外机 01的第一端为第一截止阔 7 , 室外机 01的第二端为第 三截止阔 9, 室外机的第三端为第四截止阔 10;
这样, 具体来说, 室外机 01 包括: 压缩机 1、 单向阔 2、 第一四通换 向阔 3、 第一换热器 4、 第一电子膨胀阔 5、 气液分离器 6、 第一截止阔 7、 第三截止阔 9、 第四截止阔 10、 第一电磁阔 60和毛细管 61 , 其中,
压缩机 1的输出端与单向阔 2的输入端相连, 单向阔 2的输出端分别 与第一四通换向阔 3的第一端以及第一截止阔 7的输入端相连, 第一四通 换向阔 3的第二端与第一换热器 4的输入端相连, 第一换热器 4的输出端 与第一电子膨胀阔 5的输入端相连, 第一电子膨胀阔 5的输出端与第四截 止阔 10的输入端相连, 第四截止阔 10的输出端与高压液管 64的输入端相 连, 第一四通换向阔 3的第三端分别与气液分离器 6的输入端、 第三截止 阔 9的输入端以及毛细管 61的输出端相连, 气液分离器 6的输出端与压缩 机 1的输入端相连, 第一四通换向阔 3的第四端与第一电磁阔 60的输入端 相连, 第一电磁阔 60的输出端与毛细管 60的输入端相连, 第一截止阔 7 的输出端与高压气管 62相连, 第三截止阔 9的输出端与低压气管 63相连 第四截止阔 10的输出端与高压液管 64相连。
本发明实施例中, 压缩机 1 可由一台或多台定速压缩机构成, 也可以 由变速压缩机构成, 还可以由定速压缩机与变速压缩机组合构成。
本发明实施例中, 第一电磁阔 60及毛细管 61用于保护第一四通换向 阔 3。 当第一四通换向阔 3存在死循环时, 气态的制冷剂会冷凝成液态的制 冷剂, 在第一四通换向阔 3 需要换向时, 液态的制冷剂的存在会造成第一 四通换向阔 3 不能换向, 或者损坏。 这样, 通过在制热工况下定期打开第 一电磁阔 60, 使第一股制冷剂经毛细管 61节流后进入气液分离器 6, 进行 气液分离, 从而保证了第一四通换向阔 3的正常工作。
较佳地, 室内机 02可以是现有改进的多联机空调系统所采用的室内机 02, 包括: 第一风室单元、 第二风室单元以及第三风室单元, 其中,
第一风室单元中设置有第二换热器 33、 新风通道 11、 第一送风通道 14 以及第一风室 17 , 新风通道 11以及第一送风通道 14分别位于第一风室单 元两侧; 第二风室单元中设置有第三换热器 35、 第一回风通道 12、 排风通 道 15、 第二风室 18、 第一端以及第三端, 第一回风通道 12以及排风通道 15 分别位于第二风室单元两侧; 第三风室单元中设置有第二端、 第四端、 第四换热器 37、 第二回风通道 13、 第二送风通道 16以及第三风室 19, 第 二回风通道 13以及第二送风通道 16分别位于第三风室单元两侧;
较佳地, 室内机 01的第一风室单元还可以进一步包括: 第一风阔 20、 第二风阔 21、 第五风阔 24、 第六风阔 25、 第一风管 28以及第三风管 30, 其中,
第一风室 17的内壁一端开设有新风通道 11 , 内壁另一端开设有第一送 风通道 14, 在新风通道 11通往第一送风通道 14、 且靠近新风通道 11的内 壁一端, 设置有第一风阀 20以及第二风阀 21 , 在第一送风通道 14通往新 风通道 11、 且靠近第一送风通道 14的内壁另一端, 设置有第五风阔 24以 及第六风阔 25; 在第一风室 17内, 设置有第二换热器 33;
在第一风室 17与第二风室 18的连接处, 设置有将第二风阔 21连接至 第二风室单元的第一风管 28、 以及, 将第五风阔 24连接至第二风室单元的 第三风管 30。 第二风室单元进一步包括: 第三风阔 22、 第四风阔 23、 第七风阔 26、 第八风阔 27、 第二风管 29、 第四风管 31、 第二四通换向阔 32以及第二电 子膨胀阔 34, 其中,
第二风室 18与第一风室 17同向的内壁一端开设有第一回风通道 12, 内壁另一端开设有排风通道 15 , 在第一回风通道 12通往排风通道 15、 且 靠近第一回风通道 12的内壁一端, 设置有第三风阔 22以及第四风阔 23 , 在排风通道 15通往第一回风通道 12、 且靠近排风通道 15的内壁另一端, 设置有第七风阔 26以及第八风阔 27; 在第二风室 18内, 设置有第二四通 换向阔 32、 第二电子膨胀阔 34以及第三换热器 35 ;
在第一风室 17与第二风室 18的连接处, 设置有将第四风阔 23连接至 第一风室 17的第二风管 29、 以及, 将第七风阔 26连接至第一风室 17的第 四风管 31。
第三风室单元进一步包括: 第三电子膨胀阔 36,
第三风室 19与第二风室 18间不透风;
第三风室 19与第一风室 17同向的内壁一端开设有第二回风通道 13 , 内壁另一端开设有第二送风通道 16, 在第三风室 19内, 设置有第三电子膨 胀阔 36以及第四换热器 37;
室内机 02的第一端与第二四通换向阔 32第二端相连, 第二四通换向 阔 32的第一端与第二换热器 33的一端相连, 第二换热器 33的另一端与第 二电子膨胀阔 34的一端相连, 第二电子膨胀阔 34的另一端与第三换热器 35的一端相连, 第三换热器 35的另一端与第二四通换向阔 32的第三端相 连, 第二四通换向阔 32的第四端与室内机 02的第三端相连;
室内机 02的第二端与第四换热器 37的一端相连, 第四换热器 37的另 一端与第三电子膨胀阔 36的一端相连, 第三电子膨胀阔 36的另一端与室 内机 02的第四端相连。
较佳地, 本发明实施例中, 第一换热器 4、 第二换热器 33、 第三换热 器 35及第四换热器 37为铝箔翅片铜管换热器或铝制翅片式微通道换热器, 第二换热器 33和第三换热器 35的翅片上涂有吸湿材料。
本发明实施例中, 当多联机系统处于制冷工况时, 室内机 02控制第二 换热器 33以及第三换热器 35在第一循环周期以及第二循环周期执行循环 切换。
图 3 为本发明实施例三管制全热处理多联机系统制冷工况下制冷剂的 流路示意图。 参见图 3:
本发明实施例中, 当多联机空调系统处于制冷工况时, 第一四通换向 阔 3的第一端与第二端连通, 第三端与第四端连通, 第一电磁阔 60和第三 电磁阔 66关闭, 第二电磁阔 65打开, 按照预设程序调节蒸发器供液量的 第一电子膨胀阔 5全开, 第二电子膨胀阔 34和第三电子膨胀阔 36分别起 节流作用, 调节流经的制冷剂流量;
制冷剂由压缩机 1排气口 (输出端)排出进入单向阔 2, 由单向阔 2出 来的高压制冷剂气体被分为两部分, 一部分制冷剂 (第一股制冷剂) 进入 第一四通换向阔 3 的第一端, 另一部分制冷剂 (第二股制冷剂) 进入第一 截止阔 7;
第一股制冷剂由第一四通换向阔 3的第一端流经第一四通换向阔 3的 第二端, 依次进入第一换热器 4、 第一电子膨胀阔 5、 第四截止阔 10、 高压 液管 64、 室内机 02的第四端、 第三电子膨胀阔 36、 第四换热器 37、 室内 机 02的第二端、 第二电磁阔 65、 低压气管 63和第三截止阔 9, 再回流到 气液分离器 6, 最后由压缩机吸气口 (输入端) 进入压缩机 1 ;
第二股制冷剂由第一截止阔 7的出口 (输出端)经高压气管 62和室内 机 02的第一端, 进入第二四通换向阔 32的第二端, 并经室内机 01的第三 端、 低压气管 63、 和第三截止阔 9, 再回流到气液分离器 6, 最后由压缩机 吸气口进入压缩机 1 ;
作为冷凝器的第一换热器 4, 将热量排入大气; 作为蒸发器的第四换热 器 37 ,室内回风由第二回风通道 13进入第三风室 19并与第四换热器 37进 行热量交换, 回风的热量被蒸发器 (第四换热器 37 ) 中低温制冷剂带走, 空气被降温进而由第二送风通道 16送入室内。
图 4 为本发明实施例三管制全热处理多联机系统制冷工况下第一循环 周期制冷剂的流路示意图。 参见图 4,
在第一循环周期, 第二换热器 33作为蒸发器且第三换热器 35作为冷 凝器, 则第二四通换向阔 32 的第一端与第四端连通且第二四通换向阔 32 的第二端与第三端连通, 第一风阔 20、 第三风阔 22、 第六风阔 25、 及第八 风阔 27开启, 第二风阔 21、 第四风阔 23、 第五风阔 24及第七风阔 26关 闭;
进入第二四通换向阀 32的第二端的第二股制冷剂, 切换到第二四通换 向阔 32的第三端, 依次进入第三换热器 35、 第二电子膨胀阔 34、 第二换 热器 33、 第二四通换向阔 32的第一端、 第二四通换向阔 32的第四端、 室 内机 02的第三端、 低压气管 63以及第三截止阔 9, 回到气液分离器 6, 最 后由压缩机吸气口 (输入端 ) 进入压缩机 1 ;
新风由新风通道 11进入第一风室 17 , 与第二换热器 33进行传热传质 交换, 高温高湿的新风通过第二换热器 33降温冷却, 且新风中的水蒸汽被 第二换热器 33的翅片上的吸湿材料吸收, 新风被降温除湿后由第一送风通 道 14送入室内;
室内回风由第一回风通道 12进入第二风室 18 , 与第三换热器 35进行 传热传质交换, 低温低湿的回风吸收第三换热器 35的排热, 回风中的冷量 被回收, 且回风带走第三换热器 35的翅片上的吸湿材料在第二循环周期中 吸收的水分, 使得该部分吸湿材料中的水分被吸走, 从而实现再生, 被加 热加湿的空气经由排风通道 15排入大气。
图 5 为本发明实施例三管制全热处理多联机系统制冷工况下第二循环 周期制冷剂的流路示意图。 参见图 5 ,
在第二循环周期, 第二换热器 33作为冷凝器且第三换热器 35作为蒸 发器, 则第二四通换向阔 32 的第一端与第二端连通且第二四通换向阔 32 的第三端与第四端连通, 第一风阔 20、 第三风阔 22、 第六风阔 25、 及第八 风阔 27关闭, 第二风阔 21、 第四风阔 23、 第五风阔 24及第七风阔 26开 启;
进入第二四通换向阀 32的第二端的第二股制冷剂, 切换到第二四通换 向阔 32的第一端, 依次进入第二换热器 33、 第二电子膨胀阔 34、 第三换 热器 35、 第二四通换向阔 32的第三端、 第二四通换向阔 32的第四端、 室 内机 02的第三端、 低压气管 63以及第三截止阔 9, 回到气液分离器 6, 最 后由压缩机吸气口 (输入端 ) 进入压缩机 1 ;
新风由新风通道 11进入第二风室 18 , 与第三换热器 35进行传热传质 交换, 高温高湿的新风通过第三换热器 35降温冷却, 且新风中的水蒸汽被 第三换热器 35的翅片上的吸湿材料吸收,新风被降温除湿后经第二风室 18 , 最后由第一送风通道 14送入室内;
室内回风由第一回风通道 12进入第一风室 17 , 与第二换热器 33进行 传热传质交换, 低温低湿的回风吸收第二换热器 33的排热, 回风中的冷量 被回收, 且回风带走第二换热器 33的翅片上的吸湿材料在第一循环周期中 吸收的水分, 使得该部分吸湿材料再生, 被加热加湿的空气经由排风通道 15排入大气, 在第二循环周期设定的时间到时, 触发进入第一循环周期, 如此循环, 从而实现降温与除湿的独立控制。
当多联机系统处于制热工况时, 室内机 02控制第二换热器 33以及第 三换热器 35在第三循环周期以及第四循环周期执行循环切换。
图 6 为本发明实施例三管制全热处理多联机系统制热工况下制冷剂的 流路示意图。 参见图 6,
本发明实施例中, 当多联机系统处于制热工况时, 第一四通换向阔 3 的第一端与第四端连通, 第二端与第三端连通, 第一电磁阔 60和第二电磁 阔 65关闭, 第三电磁阔 66打开, 第一电子膨胀阔 5、 第二电子膨胀阔 34 和第三电子膨胀阔 36均起节流作用, 调节流经的制冷剂流量;
制冷剂由压缩机 1排气口 (输出端)排出进入单向阔 2, 由单向阔 2出 来的高压制冷剂气体被分为两部分, 一部分制冷剂 (第一股制冷剂) 进入 第一四通换向阔 3 的第一端, 另一部分制冷剂 (第二股制冷剂) 进入第一 截止阔 7;
第一股制冷剂经由第一四通换向阔 3的第一端切换到第一四通换向阔 3 的第四端, 进入第一电磁阔 60, 由于第一电磁阔 60关闭, 因此, 第一股制 冷剂处于滞止状态;
实际应用中, 通过在制热工况下定期打开第一电磁阔 60, 使得第一股 制冷剂与从第三截止阔 9流入室外机 01的第二股制冷剂汇合, 回到气液分 离器 6, 最后由压缩机吸气口 (输入端) 进入压缩机 1 ;
进入第一截止阔 7的第二股制冷剂由第一截止阔 7的出口 (输出端) 进入高压气管 62, 分为两部分, 其中,
一部分的第二股制冷剂输入第三电磁阔 66,进入到室内机 02的第二端, 流经第四换热器 37、 第三电子膨胀阔 36、 室内机 02的第四端、 高压液管 64, 流入室外机 01的第三端(第四截止阔 10 ) , 再依次流经第一电子膨胀 阔 5、 第一换热器 4, 从切换单元的第二端切换到切换单元的第三端, 回到 气液分离器 6, 最后由由压缩机吸气口 (输入端) 进入压缩机 1 ;
另一部分第二股制冷剂输入室内机 02的第一端, 进入第二四通换向阔 32的第二端, 并经室内机 01的第三端、 低压气管 63、 和第三截止阔 9, 再 回流到气液分离器 6 , 最后由压缩机吸气口进入压缩机 1 ;
作为蒸发器的第一换热器 4, 从大气吸收热量; 作为冷凝器的第四换热 器 37 ,室内回风由第二回风通道 13进入第三风室 19并与第四换热器 37进 行热量交换, 冷凝器(第四换热器 37 )将热量排入回风中, 空气被加热后, 进而由第二送风通道 16送入室内。
图 7 为本发明实施例三管制全热处理多联机系统制热工况下第三循环 周期制冷剂的流路示意图。 参见图 7 ,
在第三循环周期, 第二换热器 33作为蒸发器且第三换热器 35作为冷 凝器, 则第二四通换向阔 32 的第一端与第四端连通且第二四通换向阔 32 的第二端与第三端连通, 第一风阔 20、 第三风阔 22、 第六风阔 25、 及第八 风阔 27关闭, 第二风阔 21、 第四风阔 23、 第五风阔 24及第七风阔 26开 启;
进入第二四通换向阔 32的第二端的制冷剂,切换到第二四通换向阔 32 的第三端, 依次进入第三换热器 35、 第二电子膨胀阔 34、 第二换热器 33、 第二四通换向阔 32的第一端、 第二四通换向阔 32的第四端、 室内机 02的 第三端、 低压气管 63 以及第三截止阔 9, 回到气液分离器 6, 最后由压缩 机吸气口 (输入端 ) 进入压缩机 1 ;
新风由新风通道 11进入第二风室 18 , 与第三换热器 35进行传热传质 交换, 低温低湿的新风通过第三换热器 35的排热加热, 且干燥的新风吸收 第三换热器 35的翅片上的吸湿材料在第四循环周期吸收的水分, 使得该部 分吸湿材料干燥并得以再生, 新风被加热加湿后, 经由第一送风通道 14送 入室内;
室内回风由第一回风通道 12进入第一风室 17 , 与第二换热器 33进行 传热传质交换, 高温高湿的回风被第二换热器 33中的低温冷媒降温, 回风 中的热量被回收, 且回风中的水蒸汽被第二换热器 33的翅片上的吸湿材料 吸收, 被降温降湿的空气经由排风通道 15排入大气。
图 8 为本发明实施例三管制全热处理多联机系统制热工况下第四循环 周期制冷剂的流路示意图。 参见图 8 ,
在第四循环周期, 第二换热器 33作为冷凝器且第三换热器 35作为蒸 发器, 则第二四通换向阔 32 的第一端与第二端连通且第二四通换向阔 32 的第三端与第四端连通, 第一风阔 20、 第三风阔 22、 第六风阔 25、 及第八 风阔 27开启, 第二风阔 21、 第四风阔 23、 第五风阔 24及第七风阔 26关 闭;
进入第二四通换向阔 32的第二端的制冷剂,切换到第二四通换向阔 32 的第一端, 依次进入第二换热器 33、 第二电子膨胀阔 34、 第三换热器 35、 第二四通换向阔 32的第三端、 第二四通换向阔 32的第四端、 室内机 02的 第三端、 低压气管 63以及第三截止阔 9, 回到气液分离器 6, 最后由压缩 机吸气口 (输入端 ) 进入压缩机 1 ;
室外新风由新风通道 11进入第一风室 17 , 与第二换热器 33进行传热 传质交换, 低温低湿的新风通过第二换热器 33的排热加热, 且干燥的新风 吸收第二换热器 33的翅片上的吸湿材料在第三循环周期吸收的水分, 使得 该部分吸湿材料再生,新风被加热加湿后,经由第一送风通道 14送入室内; 室内回风由第一回风通道 12进入第二风室 18 , 与第三换热器 35进行 传热传质交换, 高温高湿的回风被第三换热器 35中的低温冷媒降温, 回风 中的热量被回收, 且回风中的水蒸汽被第三换热器 35的翅片上的吸湿材料 吸收, 被降温降湿的空气经由排风通道 15排入大气, 在第四循环周期设定 的时间到时, 触发进入第三循环周期, 如此循环, 从而实现加湿及供暖的 独立控制。
下面再分别对夏季室内降温与除湿 (制冷) 的独立控制以及冬季室内 加热与加湿 (制热) 的独立控制进行详细说明。
对于夏季室内降温与除湿的独立控制:
对于室内温度控制, 此时多联机空调系统处于制冷工况, 第一换热器 4 作为冷凝器, 将热量排入大气; 第四换热器 37作为蒸发器, 室内回风由第 二回风通道 13进入第三风室 19并与第四换热器 37进行热量交换, 回风的 热量被蒸发器 (第四换热器 37 ) 中低温制冷剂带走, 空气被降温进而由第 二送风通道 16送入室内;
该制冷工况下, 第四换热器 37承担大部分室内显热负荷, 起到降温的 功能;
对于室内湿度控制, 初始时刻 (第一循环周期) , 第二换热器 33作为 蒸发器且第三换热器 35作为冷凝器; 此时, 第一风阔 20、 第三风阔 22、 第六风阔 25及第八风阔 27开启, 第二风阔 21、 第四风阔 23、 第五风阔 24 及第七风阔 26关闭, 室外新风由新风通道 11经第一风阔 20进入第一风室 17 , 与第二换热器 33进行传热传质交换, 高温高湿的新风通过第二换热器 33降温冷却,且新风中的水蒸汽被第二换热器 33的翅片上的吸湿材料吸收, 新风被降温除湿后经第六风阔 25 , 并由第一送风通道 14送入室内;
室内回风由第一回风通道 12, 经第三风阔 22进入第二风室 18 , 与第 三换热器 35进行传热传质交换, 低温低湿的回风吸收第三换热器 35的排 热, 回风中的冷量被回收, 且回风带走第三换热器 35的翅片上的吸湿材料 在上一循环中吸收的水分, 使得该部分吸湿材料中的水分被吸走, 从而实 现再生, 被加热加湿的空气经第八风阔 27由排风通道 15排入大气;
经过预先设置的时间后, 第二换热器 33的翅片上的吸水质量增加, 且 第三换热器 35的翅片上的吸湿材料得以再生 (干燥) , 触发控制第二四通 换向阔 32换向, 进入第二循环周期, 第二换热器 33作为冷凝器且第三换 热器 35作为蒸发器, 此时, 第一风阔 20、 第三风阔 22、 第六风阔 25及第 八风阔 27关闭, 第二风阔 21、 第四风阔 23、 第五风阔 24及第七风阔 26 开启, 新风由新风通道 11经第二风阔 21进入第一风管 28 , 再进入第二风 室 18 , 与第三换热器 35进行传热传质交换, 高温高湿的新风通过第三换热 器 35降温冷却, 且新风中的水蒸汽被第三换热器 35的翅片上的吸湿材料 吸收, 新风被降温除湿后经第三风管 30, 再经第五风阔 24, 最后由第一送 风通道 14送入室内;
室内回风由第一回风通道 12经第四风阔 23进入第二风管 29, 再进入 第一风室 17 , 与第二换热器 33进行传热传质交换, 低温低湿的回风吸收第 二换热器 33的排热, 回风中的冷量被回收, 且回风带走第二换热器 33的 翅片上的吸湿材料在上一循环中吸收的水分, 使得该部分吸湿材料再生, 被加热加湿的空气经第四风管 31 , 再经第七风阔 26由排风通道 15排入大 气, 在第二循环周期设定的时间到时, 触发进入第一循环周期, 如此循环, 从而实现降温与除湿的独立控制;
该制冷工况下, 第二换热器 33与第三换热器 35通过第二四通换向阔 32 的切换, 实现在蒸发器与冷凝器之间定时切换, 该两换热器承担室内潜 热负荷及部分显热负荷, 起到除湿及降温的功能。
对于冬季室内加热与加湿的独立控制:
对于室内温度控制, 此时多联机空调系统处于制热工况, 包括交替的 第三循环周期以及第四循环周期, 在整个循环周期内, 第一换热器 4作为 蒸发器, 从大气吸收热量; 第四换热器 37作为冷凝器, 室内回风由第二回 风通道 13进入第三风室 19并与第四换热器 37进行热量交换, 冷凝器(第 四换热器 37 )将热量排入回风中, 空气被加热后, 进而由第二送风通道 16 送入室内;
该制热工况下, 第四换热器 37承担大部分室内显热负荷, 起到供暖的 功能; 对于室内湿度控制, 初始时刻 (第三循环周期) , 第二换热器 33作为 蒸发器且第三换热器 35作为冷凝器, 此时, 第一风阔 20、 第三风阔 22、 第六风阔 25及第八风阔 27关闭, 第二风阔 21、 第四风阔 23、 第五风阔 24 及第七风阔 26开启, 新风由新风通道 11经第二风阔 21进入第一风管 28 , 再进入第二风室 18 , 与第三换热器 35进行传热传质交换, 低温低湿的新风 通过第三换热器 35的排热加热, 且干燥的新风吸收第三换热器 35的翅片 上的吸湿材料在上一循环吸收的水分, 使得该部分吸湿材料干燥并得以再 生, 新风被加热加湿后, 经第三风管 30, 再经第五风阔 24, 最后由第一送 风通道 14送入室内;
室内回风由第一回风通道 12经第四风阔 23进入第二风管 29, 再进入 第一风室 17 , 与第二换热器 33进行传热传质交换, 高温高湿的回风被第二 换热器 33中的低温冷媒降温, 回风中的热量被回收, 且回风中的水蒸汽被 第二换热器 33的翅片上的吸湿材料吸收,被降温降湿的空气经第四风管 31 , 再经第七风阔 26由排风通道 15排入大气;
经过预先设置的时间后, 第二换热器 33的翅片上的吸湿材料, 通过吸 附回风中的水蒸汽, 质量增加, 且第三换热器 35的翅片上的吸湿材料得以 再生, 第二四通换向阔 32换向, 触发进入第四循环周期, 第二换热器 33 作为冷凝器且第三换热器 35 作为蒸发器, 此时, 第一风阔 20、 第三风阔 22、 第六风阔 25及第八风阔 27开启, 第二风阔 21、 第四风阔 23、 第五风 阔 24及第七风阔 26关闭, 室外新风由新风通道 11经第一风阔 20进入第 一风室 17 , 与第二换热器 33进行传热传质交换, 低温低湿的新风通过第二 换热器 33的排热加热, 且干燥的新风吸收第二换热器 33的翅片上的吸湿 材料在上一循环吸收的水分, 使得该部分吸湿材料再生, 新风被加热加湿 后, 经第六风阔 25 , 并由第一送风通道 14送入室内;
室内回风由第一回风通道 12经第三风阔 22进入第二风室 18 , 与第三 换热器 35进行传热传质交换, 高温高湿的回风被第三换热器 35 中的低温 冷媒降温, 回风中的热量被回收, 且回风中的水蒸汽被第三换热器 35的翅 片上的吸湿材料吸收, 被降温降湿的空气经第八风阔 27 由排风通道 15排 入大气, 在第四循环周期设定的时间到时, 触发进入第三循环周期, 如此 循环, 从而实现加湿及供暖的独立控制;
该制热工况下, 第二换热器 33与第三换热器 35通过第二四通换向阔 32的切换, 从而实现在蒸发器与冷凝器之间定时切换, 使得第二换热器 33 与第三换热器 35能够承担室内潜热负荷及部分显热负荷, 起到加湿及供暖 的功能。
图 9 为本发明实施例三管制全热处理多联机空调系统温湿度独立控制 方法流程示意图。 参见图 9, 该流程包括:
步骤 901 , 将室外机接收的制冷剂经分流单元压缩后, 进行分流, 分别 输出第一股制冷剂以及第二股制冷剂;
本步骤中, 室外机接收的制冷剂包括:
当多联机空调系统处于制冷工况时, 从室内机第二端流出的经由第二 电磁阔、 低压气管及第二端的第一股制冷剂, 以及, 从室内机第三端流出 的经由低压气管, 及第三截止阔的第二股制冷剂;
当多联机空调系统处于制热工况时, 从室内机的第三端流出经由氐压 气管及第三截止阔的第二股制冷剂, 以及, 从室内机的第四端流出的经由 高压液管、 第三端、 第一电子膨胀阔、 第一换热器、 由切换单元第二端切 换到切换单元的第三端的第二股制冷剂;
本发明实施例中, 室外机包括: 压缩机、 单向阔、 第一四通换向阔、 第一换热器、 第一电子膨胀阔、 气液分离器、 第一截止阔、 第三截止阔、 第四截止阔、 第一电磁阔和毛细管; 其中, 第一截止阔为室外机第一端, 第三截止阔为室外机第二端, 第四截止阔为室外机第三端;
室内机包括: 新风通道、 第一回风通道、 第二回风通道、 第一送风通 道、 排风通道、 第二送风通道、 第一风室、 第二风室、 第三风室、 第一风 阔、 第二风阔、 第三风阔、 第四风阔、 第五风阔、 第六风阔、 第七风阔、 第八风阔、 第一风管、 第二风管、 第三风管、 第四风管、 第二四通换向阔、 第二换热器、 第二电子膨胀阔、 第三换热器、 第三电子膨胀阔以及第四换 热器;
所述分流单元包括压缩机、 单向阔以及气液分离器, 其中, 压缩机的 输出端与单向阔的输入端相连, 单向阔的输出端分别与切换单元以及第一 端相连, 气液分离器的输入端与切换单元的输出端、 毛细管的输出端以及 室外机的第二端相连, 气液分离器的输出端与压缩机的输入端相连;
制冷剂由压缩机排气口排出进入单向阔, 由单向阔出来的高压制冷剂 气体被分为第一股制冷剂以及第二股制冷剂, 分别进入第一四通换向阔的 第一端以及第一截止阔。
步骤 902, 判断多联机空调系统处于制冷工况还是制热工况; 如果是制 冷工况, 执行步骤 903 , 否则, 执行步骤 904;
步骤 903 , 多联机空调系统处于制冷工况时, 将分流单元输出的第一股 制冷剂由第一四通换向阔的第一端流经室外机第四截止阔、 高压液管、 第 四换热器、 低压气管和第三截止阔, 回到分流单元;
第二股制冷剂由第一截止阔的出口经高压气管和室内机的第一端, 进 入第二四通换向阔的第二端, 并经室内机的第三端、 低压气管和第三截止 阔, 回到分流单元;
本步骤中, 当多联机空调系统处于制冷工况时, 第一四通换向阔的第 一端与第二端连通, 第三端与第四端连通, 第一电磁阔和第三电磁阔关闭, 第二电磁阔打开, 按照预设程序调节蒸发器供液量的第一电子膨胀阔全开, 第二电子膨胀阔和第三电子膨胀阔分别起节流作用, 调节流经的制冷剂流 量;
第一股制冷剂由第一四通换向阔的第一端流经第一四通换向阔的第二 端, 依次进入第一换热器、 第一电子膨胀阔、 第四截止阔、 高压液管、 室 内机的第四端、 第三电子膨胀阔、 第四换热器、 室内机的第二端、 第二电 磁阔、 低压气管和第三截止阔, 再回流到气液分离器, 最后由压缩机吸气 口进入压缩机;
第二股制冷剂由第一截止阔的出口经高压气管和室内机的第一端, 进 入第二四通换向阔的第二端, 并经室内机的第三端、 低压气管、 和第三截 止阔, 再回流到气液分离器, 最后由压缩机吸气口进入压缩机;
作为冷凝器的第一换热器将热量排入大气; 室内回风由第二回风通道 进入第三风室并与作为蒸发器的第四换热器进行热量交换, 回风的热量被 第四换热器中低温制冷剂带走, 空气被降温进而由第二送风通道送入室内。
本发明实施例中, 所述制冷工况包括循环切换的第一循环周期以及第 二循环周期,
在第一循环周期, 第二换热器作为第二蒸发器且第三换热器作为第二 冷凝器, 第二四通换向阔的第一端与第四端连通且第二四通换向阔的第二 端与第三端连通, 第一风阔、 第三风阔、 第六风阔、 及第八风阔开启, 第 二风阔、 第四风阔、 第五风阔及第七风阔关闭;
进入室内机第一端的第二股制冷剂由第二四通换向阔的第二端, 流经 第二四通换向阔的第三端, 依次进入第三换热器、 第二电子膨胀阔、 第二 换热器、 第二四通换向阔的第一端、 第二四通换向阔的第四端, 流入室内 机的第三端, 并经室内机的第三端、 低压气管、 和第三截止阔, 再回流到 气液分离器, 最后由压缩机吸气口进入压缩机;
新风由新风通道进入第一风室, 与第二换热器进行传热传质交换, 高 温高湿的新风通过第二换热器降温冷却, 且新风中的水蒸汽被第二换热器 的翅片上的吸湿材料吸收, 新风被降温除湿后由第一送风通道送入室内; 室内回风由第一回风通道进入第二风室, 与第三换热器进行传热传质 交换, 低温低湿的回风吸收第三换热器的排热, 回风中的冷量被回收, 且 回风带走第三换热器的翅片上的吸湿材料在第二循环周期中吸收的水分, 使得该部分吸湿材料中的水分被吸走, 从而实现再生, 被加热加湿的空气 经由排风通道排入大气;
在第二循环周期, 第二换热器作为第二冷凝器且第三换热器作为第二 蒸发器, 第二四通换向阔的第一端与第二端连通且第二四通换向阔的第三 端与第四端连通, 第一风阔、 第三风阔、 第六风阔、 及第八风阔关闭, 第 二风阔、 第四风阔、 第五风阔及第七风阔开启;
进入室内机第一端的第二股制冷剂由第二四通换向阔的第二端, 流经 第二四通换向阔的第一端, 依次进入第二换热器、 第二电子膨胀阔、 第三 换热器、 第二四通换向阔的第三端、 第二四通换向阔的第四端, 流入室内 机的第三端, 并经室内机的第三端、 低压气管、 和第三截止阔, 再回流到 气液分离器, 最后由压缩机吸气口进入压缩机;
新风由新风通道进入第二风室, 与第三换热器进行传热传质交换, 高 温高湿的新风通过第三换热器降温冷却, 且新风中的水蒸汽被第三换热器 的翅片上的吸湿材料吸收, 新风被降温除湿后经第二风室, 最后由第一送 风通道送入室内;
室内回风由第一回风通道进入第一风室, 与第二换热器进行传热传质 交换, 低温低湿的回风吸收第二换热器的排热, 回风中的冷量被回收, 且 回风带走第二换热器的翅片上的吸湿材料在第一循环周期中吸收的水分, 使得该部分吸湿材料再生, 被加热加湿的空气经由排风通道排入大气, 在 第二循环周期设定的时间到时, 触发进入第一循环周期, 如此循环, 从而 实现降温与除湿的独立控制。
步骤 904, 多联机空调系统处于制热工况时, 将分流单元输出的第一股 制冷剂由第一四通换向阔的第一端, 流经第一四通换向阔的第四端, 进入 第一电磁阔及毛细管, 回流到分流单元; 第二股制冷剂由第一截止阔的输出端进入高压气管, 分为两部分, 其 中, 一部分的第二股制冷剂输入第三电磁阔, 经第四换热器、 高压液管, 流入第四截止阔, 从切换单元的第二端流入切换单元的第三端, 回流到分 流单元; 另一部分第二股制冷剂输入室内机的第一端, 经第二四通换向阔 的第二端、 室内机的第三端、 低压气管和第三截止阔, 回流到分流单元。
本步骤中, 当多联机空调系统处于制热工况时, 第一四通换向阔的第 一端与第四端连通, 第二端与第三端连通, 第一电磁阔和第二电磁阔关闭, 第三电磁阔打开, 第一电子膨胀阔、 第二电子膨胀阔和第三电子膨胀阔均 起节流作用, 调节流经的制冷剂流量;
第一股制冷剂经由第一四通换向阔的第一端, 流经第一四通换向阔的 第四端, 进入第一电磁阔后处于滞止状态;
实际应用中, 通过在制热工况下定期打开第一电磁阔, 使得第一股制 冷剂与从室外机第二端流入的第二股制冷剂汇合, 回流到分流单元;
进入第一截止阔的第二股制冷剂由第一截止阔的输出端进入高压气 管, 分为两部分, 其中,
一部分的第二股制冷剂输入第三电磁阔, 进入到室内机的第二端, 流 经第四换热器、 第三电子膨胀阔、 室内机的第四端、 高压液管, 流入第四 截止阔, 再依次流经第一电子膨胀阔、 第一换热器, 从切换单元的第二端 流入切换单元的第三端, 回到气液分离器, 最后由由压缩机吸气口进入压 缩机; 另一部分第二股制冷剂输入室内机的第一端, 进入第二四通换向阔 的第二端, 并经室内机的第三端、 低压气管、 和第三截止阔, 再回流到气 液分离器, 最后由压缩机吸气口进入压缩机;
作为蒸发器的第一换热器, 从大气吸收热量; 室内回风由第二回风通 道进入第三风室, 并与作为冷凝器的第四换热器进行热量交换, 第四换热 器将热量排入回风中, 空气被加热后, 进而由第二送风通道送入室内。
本发明实施例中, 所述制热工况包括循环切换的第三循环周期以及第 四循环周期, 在第三循环周期, 第二换热器作为第二蒸发器且第三换热器 作为第二冷凝器, 第二四通换向阔的第一端与第四端连通且第二四通换向 阔的第二端与第三端连通, 第一风阔、 第三风阔、 第六风阔、 及第八风阔 关闭, 第二风阔、 第四风阔、 第五风阔及第七风阔开启;
进入室内机第一端的制冷剂由第二四通换向阔的第二端, 流经第二四 通换向阔的第三端, 依次进入第三换热器、 第二电子膨胀阔、 第二换热器、 第二四通换向阔的第一端、 第二四通换向阔的第四端, 流入室内机的第三 端, 经低压气管、 和第三截止阔, 再回流到气液分离器, 最后由压缩机吸 气口进入压缩机;
新风由新风通道进入第二风室, 与第三换热器进行传热传质交换, 低 温低湿的新风通过第三换热器的排热加热, 且干燥的新风吸收第三换热器 的翅片上的吸湿材料在第四循环周期吸收的水分, 使得该部分吸湿材料干 燥并得以再生, 新风被加热加湿后, 经由第一送风通道送入室内;
室内回风由第一回风通道进入第一风室, 与第二换热器进行传热传质 交换, 高温高湿的回风被第二换热器中的低温冷媒降温, 回风中的热量被 回收, 且回风中的水蒸汽被第二换热器的翅片上的吸湿材料吸收, 被降温 降湿的空气经由排风通道排入大气;
在第四循环周期, 第二换热器作为第二冷凝器且第三换热器作为第二 蒸发器, 第二四通换向阔的第一端与第二端连通且第二四通换向阔的第三 端与第四端连通, 第一风阔、 第三风阔、 第六风阔、 及第八风阔开启, 第 二风阔、 第四风阔、 第五风阔及第七风阔关闭;
进入室内机第一端的制冷剂由第二四通换向阔的第二端, 流经第二四 通换向阔的第一端, 依次进入第二换热器、 第二电子膨胀阔、 第三换热器、 第二四通换向阔的第三端、 第二四通换向阔的第四端, 流入室内机的第三 端, 经低压气管、 和第三截止阔, 再回流到气液分离器, 最后由压缩机吸 气口进入压缩机;
室外新风由新风通道进入第一风室, 与第二换热器进行传热传质交换, 低温低湿的新风通过第二换热器的排热加热, 且干燥的新风吸收第二换热 器的翅片上的吸湿材料在第三循环周期吸收的水分, 使得该部分吸湿材料 再生, 新风被加热加湿后, 经由第一送风通道送入室内;
室内回风由第一回风通道进入第二风室, 与第三换热器进行传热传质 交换, 高温高湿的回风被第三换热器中的低温冷媒降温, 回风中的热量被 回收, 且回风中的水蒸汽被第三换热器的翅片上的吸湿材料吸收, 被降温 降湿的空气经由排风通道排入大气, 在第四循环周期设定的时间到时, 触 发进入第三循环周期, 如此循环, 从而实现加湿及供暖的独立控制。 发明的精神和范围。 这样, 倘若对本发明的这些修改和变型属于本发明权 利要求及其等同技术的范围之内, 则本发明也包含这些改动和变型在内。

Claims

权 利 要 求 书
1. 一种三管制全热处理多联机空调系统, 该系统包括: 室内机, 其特 征在于, 还包括: 室外机、 高压气管、 低压气管、 高压液管、 第二电磁阔 以及第三电磁阔, 其中,
室外机包括: 控制单元、 切换单元、 分流单元、 第一换热器、 第一电 子膨胀阔、 第一电磁阔以及毛细管;
切换单元的第一端与分流单元的输出端相连, 分流单元的输出端还与 室外机的第一端相连;
切换单元的第二端与第一换热器的一端相连, 第一换热器的另一端与 第一电子膨胀阔的一端相连, 第一电子膨胀阔的另一端与室外机的第三端 相连;
切换单元的第四端与第一电磁阔的一端相连, 第一电磁阔的另一端与 毛细管的一端相连, 毛细管的另一端分别与切换单元的第三端、 分流单元 的输入端以及室外机的第二端相连;
室外机的第一端与高压气管的一端相连, 高压气管的另一端分别与室 内机的第一端以及第三电磁阔的一端相连, 第三电磁阔的另一端与室内机 的第二端相连; 室外机的第二端与低压气管的一端相连, 低压气管的另一 端与室内机的第三端以及第二电磁阔的一端相连, 第二电磁阔的另一端与 室内机的第二端相连; 室外机的第三端与高压液管的一端相连, 高压液管 的另一端与室内机的第四端相连;
控制单元, 用于当多联机空调系统处于制冷工况时, 控制第一换热器 作为冷凝器、 室内机中的第四换热器作为蒸发器; 第三电磁阔关闭, 将切 换单元的第一端与第二端连通;
当多联机空调系统处于制热工况时, 控制第一换热器作为蒸发器、 第 四换热器作为冷凝器; 第一电磁阔关闭, 将切换单元的第二端与第三端连 通;
分流单元, 用于将切换单元、 毛细管以及室外机的第二端输入的高压 制冷剂汇流, 经压缩后, 进行分流, 分别输出第一股制冷剂以及第二股制 冷剂, 其中, 第一股制冷剂进入切换单元的第一端, 第二股制冷剂进入室 外机的第一端。
2. 根据权利要求 1所述的系统, 其特征在于, 所述室内机包括: 第一 风室单元、 第二风室单元以及第三风室单元, 其中, 第一风室单元中设置 有第二换热器、 新风通道、 第一送风通道以及第一风室, 新风通道以及第 一送风通道分别位于第一风室单元两侧; 第二风室单元中设置有第三换热 器、 第一回风通道、 排风通道、 第二风室、 室内机的第一端以及室内机的 第三端, 第一回风通道以及排风通道分别位于第二风室单元两侧; 第三风 室单元中, 设置有室内机的第二端、 室内机的第四端、 第四换热器、 第二 回风通道、 第二送风通道以及第三风室, 第二回风通道以及第二送风通道 分别位于第三风室单元两侧。
3. 根据权利要求 2所述的系统, 其特征在于, 所述第一风室单元进一 步包括: 第一风阔、 第二风阔、 第五风阔、 第六风阔、 第一风管以及第三 风管, 其中,
第一风室的内壁一端开设有新风通道, 内壁另一端开设有第一送风通 道, 在新风通道通往第一送风通道、 且靠近新风通道的内壁一端, 设置有 第一风以及第二风阀, 在第一送风通道通往新风通道、 且靠近第一送风通 道的内壁另一端, 设置有第五风阔以及第六风阔; 在第一风室内, 设置有 第二换热器;
在第一风室与第二风室的连接处, 设置有将第二风阔连接至第二风室 单元的第一风管、 以及, 将第五风阔连接至第二风室单元的第三风管。
4. 根据权利要求 3所述的系统, 其特征在于, 所述第二风室单元进一 步包括: 第三风阔、 第四风阔、 第七风阔、 第八风阔、 第二风管、 第四风 管、 第二四通换向阔以及第二电子膨胀阔, 其中,
第二风室与第一风室同向的内壁一端开设有第一回风通道, 内壁另一 端开设有排风通道, 在第一回风通道通往排风通道、 且靠近第一回风通道 的内壁一端, 设置有第三风阔以及第四风阔, 在排风通道通往第一回风通 道、 且靠近排风通道的内壁另一端, 设置有第七风阔以及第八风阔; 在第 二风室内, 设置有第二四通换向阔、 第二电子膨胀阔以及第三换热器; 在第一风室与第二风室的连接处, 设置有将第四风阔连接至第一风室 的第二风管、 以及, 将第七风阔连接至第一风室的第四风管;
所述第三风室单元进一步包括: 第三电子膨胀阔, 第三风室与第二风室间不透风;
第三风室与第一风室同向的内壁一端开设有第二回风通道, 内壁另一 端开设有第二送风通道, 在第三风室内, 设置有第三电子膨胀阔以及第四 换热器;
室内机的第一端与第二四通换向阔第二端相连, 第二四通换向阔的第 一端与第二换热器的一端相连, 第二换热器的另一端与第二电子膨胀阔的 一端相连, 第二电子膨胀阔的另一端与第三换热器的一端相连, 第三换热 器的另一端与第二四通换向阔的第三端相连, 第二四通换向阔的第四端与 室内机的第三端相连;
室内机的第二端与第四换热器的一端相连, 第四换热器的另一端与第 三电子膨胀阔的一端相连, 第三电子膨胀阔的另一端与室内机的第四端相 连。
5. 根据权利要求 4所述的系统, 其特征在于, 所述分流单元包括: 压 缩机、 单向阔以及气液分离器, 压缩机的输出端与单向阔的输入端相连, 单向阔的输出端分别与切换单元以及第一端相连, 气液分离器的输入端与 切换单元的输出端以及第二端相连, 气液分离器的输出端与压缩机的输入 端相连;
切换单元为第一四通换向阔, 第一四通换向阔的第一端与单向阔的输 出端相连, 第一四通换向阔的第二端与第一换热器的输入端相连, 第一四 通换向阔的第三端与气液分离器的输入端及第二端相连, 第一四通换向阔 的第四端与第一电磁阔输入端相连;
室外机的第一端为第一截止阔, 室外机的第二端为第三截止阔, 室外 机的第三端为第四截止阔。
6. 根据权利要求 5所述的系统, 其特征在于, 所述第一换热器、 第二 换热器、 第三换热器及第四换热器为铝箔翅片铜管换热器或铝制翅片式微 通道换热器, 第二换热器和第三换热器的翅片上涂有吸湿材料。
7. 根据权利要求 6所述的系统, 其特征在于,
当多联机空调系统处于制冷工况时, 第一四通换向阔的第一端与第二 端连通, 第三端与第四端连通, 第一电磁阔和第三电磁阔关闭, 第二电磁 阔打开, 按照预设程序调节蒸发器供液量的第一电子膨胀阔全开, 第二电 子膨胀阔和第三电子膨胀阔分别起节流作用, 调节流经的制冷剂流量; 制冷剂由压缩机排气口排出进入单向阔, 由单向阔出来的高压制冷剂 气体被分为第一股制冷剂以及第二股制冷剂, 分别进入第一四通换向阔的 第一端以及第一截止阔;
第一股制冷剂由第一四通换向阔的第一端流经第一四通换向阔的第二 端, 依次进入第一换热器、 第一电子膨胀阔、 第四截止阔、 高压液管、 室 内机的第四端、 第三电子膨胀阔、 第四换热器、 室内机的第二端、 第二电 磁阔、 低压气管和第三截止阔, 再回流到气液分离器, 最后由压缩机吸气 口进入压缩机;
第二股制冷剂由第一截止阔的出口经高压气管和室内机的第一端, 进 入第二四通换向阔的第二端, 并经室内机的第三端、 低压气管、 和第三截 止阔, 再回流到气液分离器, 最后由压缩机吸气口进入压缩机;
作为冷凝器的第一换热器将热量排入大气; 室内回风由第二回风通道 进入第三风室并与作为蒸发器的第四换热器进行热量交换, 回风的热量被 第四换热器中低温制冷剂带走, 空气被降温进而由第二送风通道送入室内。
8. 根据权利要求 7所述的系统, 其特征在于, 所述制冷工况包括循环 切换的第一循环周期以及第二循环周期,
在第一循环周期, 第二换热器作为蒸发器且第三换热器作为冷凝器, 第二四通换向阔的第一端与第四端连通且第二四通换向阔的第二端与第三 端连通, 第一风阔、 第三风阔、 第六风阔、 及第八风阔开启, 第二风阔、 第四风阔、 第五风阔及第七风阔关闭;
进入第二四通换向阔的第二端的第二股制冷剂, 流经第二四通换向阔 的第三端, 依次进入第三换热器、 第二电子膨胀阔、 第二换热器、 第二四 通换向阔的第一端、 第二四通换向阔的第四端, 流入室内机的第三端; 新风由新风通道进入第一风室, 与第二换热器进行传热传质交换, 高 温高湿的新风通过第二换热器降温冷却, 且新风中的水蒸汽被第二换热器 的翅片上的吸湿材料吸收, 新风被降温除湿后由第一送风通道送入室内; 室内回风由第一回风通道进入第二风室, 与第三换热器进行传热传质 交换, 低温低湿的回风吸收第三换热器的排热, 回风中的冷量被回收, 且 回风带走第三换热器的翅片上的吸湿材料在第二循环周期中吸收的水分, 使得该部分吸湿材料中的水分被吸走, 从而实现再生, 被加热加湿的空气 经由排风通道排入大气;
在第二循环周期, 第二换热器作为冷凝器且第三换热器作为蒸发器, 第二四通换向阔的第一端与第二端连通且第二四通换向阔的第三端与第四 端连通, 第一风阔、 第三风阔、 第六风阔、 及第八风阔关闭, 第二风阔、 第四风阔、 第五风阔及第七风阔开启;
进入第二四通换向阔的第二端的第二股制冷剂, 流经第二四通换向阔 的第一端, 依次进入第二换热器、 第二电子膨胀阔、 第三换热器、 第二四 通换向阔的第三端、 第二四通换向阔的第四端, 流入室内机的第三端; 新风由新风通道进入第二风室, 与第三换热器进行传热传质交换, 高 温高湿的新风通过第三换热器降温冷却, 且新风中的水蒸汽被第三换热器 的翅片上的吸湿材料吸收, 新风被降温除湿后经第二风室, 最后由第一送 风通道送入室内;
室内回风由第一回风通道进入第一风室, 与第二换热器进行传热传质 交换, 低温低湿的回风吸收第二换热器的排热, 回风中的冷量被回收, 且 回风带走第二换热器的翅片上的吸湿材料在第一循环周期中吸收的水分, 被加热加湿的空气经由排风通道排入大气, 在第二循环周期设定的时间到 时, 触发进入第一循环周期, 如此循环。
9. 根据权利要求 6所述的系统, 其特征在于,
当多联机空调系统处于制热工况时, 第一四通换向阔的第一端与第四 端连通, 第二端与第三端连通, 第一电磁阔和第二电磁阔关闭, 第三电磁 阔打开, 第一电子膨胀阔、 第二电子膨胀阔和第三电子膨胀阔均起节流作 用, 调节流经的制冷剂流量;
制冷剂由压缩机排气口排出进入单向阔, 由单向阔出来的高压制冷剂 气体被分为第一股制冷剂以及第二股制冷剂, 分别进入第一四通换向阔的 第一端以及第一截止阔;
第一股制冷剂经由第一四通换向阔的第一端, 流经第一四通换向阔的 第四端, 进入第一电磁阔后处于滞止状态;
进入第一截止阔的第二股制冷剂由第一截止阔的出口进入高压气管, 分为两部分, 其中,
一部分的第二股制冷剂输入第三电磁阔, 进入到室内机的第二端, 流 经第四换热器、 第三电子膨胀阔、 室内机的第四端、 高压液管, 流入第四 截止阔, 再依次流经第一电子膨胀阔、 第一换热器, 从切换单元的第二端 流入切换单元的第三端, 回到气液分离器, 最后由由压缩机吸气口进入压 缩机; 另一部分第二股制冷剂输入室内机的第一端, 进入第二四通换向阔 的第二端, 并经室内机的第三端、 低压气管、 和第三截止阔, 再回流到气 液分离器, 最后由压缩机吸气口进入压缩机;
作为蒸发器的第一换热器, 从大气吸收热量; 室内回风由第二回风通 道进入第三风室, 并与作为冷凝器的第四换热器进行热量交换, 第四换热 器将热量排入回风中, 空气被加热后, 进而由第二送风通道送入室内。
10. 根据权利要求 9 所述的系统, 其特征在于, 所述制热工况包括循 环切换的第三循环周期以及第四循环周期,
在第三循环周期, 第二换热器作为蒸发器且第三换热器作为冷凝器, 第二四通换向阔的第一端与第四端连通且第二四通换向阔的第二端与第三 端连通, 第一风阔、 第三风阔、 第六风阔、 及第八风阔关闭, 第二风阔、 第四风阔、 第五风阔及第七风阔开启;
进入第二四通换向阔的第二端的制冷剂, 流经第二四通换向阔的第三 端, 依次进入第三换热器、 第二电子膨胀阔、 第二换热器、 第二四通换向 阔的第一端、 第二四通换向阔的第四端, 流入室内机的第三端;
新风由新风通道进入第二风室, 与第三换热器进行传热传质交换, 低 温低湿的新风通过第三换热器的排热加热, 且干燥的新风吸收第三换热器 的翅片上的吸湿材料在第四循环周期吸收的水分, 新风被加热加湿后, 经 由第一送风通道送入室内;
室内回风由第一回风通道进入第一风室, 与第二换热器进行传热传质 交换, 高温高湿的回风被第二换热器中的低温冷媒降温, 回风中的热量被 回收, 且回风中的水蒸汽被第二换热器的翅片上的吸湿材料吸收, 被降温 降湿的空气经由排风通道排入大气;
在第四循环周期, 第二换热器作为冷凝器且第三换热器作为蒸发器, 第二四通换向阔的第一端与第二端连通且第二四通换向阔的第三端与第四 端连通, 第一风阔、 第三风阔、 第六风阔、 及第八风阔开启, 第二风阔、 第四风阔、 第五风阔及第七风阔关闭;
进入第二四通换向阔的第二端的制冷剂, 流经第二四通换向阔的第一 端, 依次进入第二换热器、 第二电子膨胀阔、 第三换热器、 第二四通换向 阔的第三端、 第二四通换向阔的第四端, 流入室内机的第三端;
室外新风由新风通道进入第一风室, 与第二换热器进行传热传质交换, 低温低湿的新风通过第二换热器的排热加热, 且干燥的新风吸收第二换热 器的翅片上的吸湿材料在第三循环周期吸收的水分, 新风被加热加湿后, 经由第一送风通道送入室内;
室内回风由第一回风通道进入第二风室, 与第三换热器进行传热传质 交换, 高温高湿的回风被第三换热器中的低温冷媒降温, 回风中的热量被 回收, 且回风中的水蒸汽被第三换热器的翅片上的吸湿材料吸收, 被降温 降湿的空气经由排风通道排入大气, 在第四循环周期设定的时间到时, 触 发进入第三循环周期, 如此循环。
11. 一种温湿度独立控制方法, 该方法包括:
将室外机接收的制冷剂经分流单元压缩后, 进行分流, 分别输出第一 股制冷剂以及第二股制冷剂;
判断多联机空调系统处于制冷工况还是制热工况;
多联机空调系统处于制冷工况时, 将分流单元输出的第一股制冷剂由 第一四通换向阔的第一端流经室外机第四截止阔、 高压液管、 第四换热器、 低压气管和第三截止阔, 回到分流单元;
第二股制冷剂由第一截止阔的出口经高压气管和室内机的第一端, 进 入第二四通换向阔的第二端, 并经室内机的第三端、 低压气管和第三截止 阔, 回到分流单元;
多联机空调系统处于制热工况时, 将分流单元输出的第一股制冷剂由 第一四通换向阔的第一端, 流经第一四通换向阔的第四端, 进入第一电磁 阔及毛细管, 回流到分流单元;
第二股制冷剂由第一截止阔的输出端进入高压气管, 分为两部分, 其 中, 一部分的第二股制冷剂输入第三电磁阔, 经第四换热器、 高压液管, 流入第四截止阔, 从切换单元的第二端流入切换单元的第三端, 回流到分 流单元; 另一部分第二股制冷剂输入室内机的第一端, 经第二四通换向阔 的第二端、 室内机的第三端、 低压气管和第三截止阔, 回流到分流单元。
12. 根据权利要求 11所述的方法, 其中, 所述室外机包括: 压缩机、 单向阔、 第一四通换向阔、 第一换热器、 第一电子膨胀阔、 气液分离器、 第一截止阔、 第三截止阔、 第四截止阔、 第一电磁阔和毛细管;
所述室内机包括: 新风通道、 第一回风通道、 第二回风通道、 第一送 风通道、 排风通道、 第二送风通道、 第一风室、 第二风室、 第三风室、 第 一风阔、 第二风阔、 第三风阔、 第四风阔、 第五风阔、 第六风阔、 第七风 阔、 第八风阔、 第一风管、 第二风管、 第三风管、 第四风管、 第二四通换 向阔、 第二换热器、 第二电子膨胀阔、 第三换热器、 第三电子膨胀阔以及 第四换热器;
所述分流单元包括: 压缩机、 单向阔以及气液分离器, 压缩机的输出 端与单向阔的输入端相连, 单向阔的输出端分别与切换单元以及第一端相 连, 气液分离器的输入端与切换单元的输出端以及第二端相连, 气液分离 器的输出端与压缩机的输入端相连;
制冷剂由压缩机排气口排出进入单向阔, 由单向阔出来的高压制冷剂 气体被分为第一股制冷剂以及第二股制冷剂, 分别进入第一四通换向阔的 第一端以及第一截止阔;
当多联机空调系统处于制冷工况时, 第一四通换向阔的第一端与第二 端连通, 第三端与第四端连通, 第一电磁阔和第三电磁阔关闭, 第二电磁 阔打开, 按照预设程序调节蒸发器供液量的第一电子膨胀阔全开, 第二电 子膨胀阔和第三电子膨胀阔分别起节流作用, 调节流经的制冷剂流量; 第一股制冷剂由第一四通换向阔的第一端流经第一四通换向阔的第二 端, 依次进入第一换热器、 第一电子膨胀阔、 第四截止阔、 高压液管、 室 内机的第四端、 第三电子膨胀阔、 第四换热器、 室内机的第二端、 第二电 磁阔、 低压气管和第三截止阔, 再回流到气液分离器, 最后由压缩机吸气 口进入压缩机;
第二股制冷剂由第一截止阔的出口经高压气管和室内机的第一端, 进 入第二四通换向阔的第二端, 并经室内机的第三端、 低压气管、 和第三截 止阔, 再回流到气液分离器, 最后由压缩机吸气口进入压缩机;
作为冷凝器的第一换热器将热量排入大气; 室内回风由第二回风通道 进入第三风室并与作为蒸发器的第四换热器进行热量交换, 回风的热量被 第四换热器中低温制冷剂带走, 空气被降温进而由第二送风通道送入室内; 当多联机空调系统处于制热工况时, 第一四通换向阔的第一端与第四 端连通, 第二端与第三端连通, 第一电磁阔和第二电磁阔关闭, 第三电磁 阔打开, 第一电子膨胀阔、 第二电子膨胀阔和第三电子膨胀阔均起节流作 用, 调节流经的制冷剂流量;
第一股制冷剂经由第一四通换向阔的第一端, 流经第一四通换向阔的 第四端, 进入第一电磁阔后处于滞止状态;
进入第一截止阔的第二股制冷剂由第一截止阔的输出端进入高压气 管, 分为两部分, 其中,
一部分的第二股制冷剂输入第三电磁阔, 进入到室内机的第二端, 流 经第四换热器、 第三电子膨胀阔、 室内机的第四端、 高压液管, 流入第四 截止阔, 再依次流经第一电子膨胀阔、 第一换热器, 从切换单元的第二端 流入切换单元的第三端, 回到气液分离器, 最后由由压缩机吸气口进入压 缩机; 另一部分第二股制冷剂输入室内机的第一端, 进入第二四通换向阔 的第二端, 并经室内机的第三端、 低压气管、 和第三截止阔, 再回流到气 液分离器, 最后由压缩机吸气口进入压缩机;
作为蒸发器的第一换热器, 从大气吸收热量; 室内回风由第二回风通 道进入第三风室, 并与作为冷凝器的第四换热器进行热量交换, 第四换热 器将热量排入回风中, 空气被加热后, 进而由第二送风通道送入室内。
13. 根据权利要求 12所述的方法, 其中, 所述制冷工况包括循环切换 的第一循环周期以及第二循环周期,
在第一循环周期, 第二换热器作为第二蒸发器且第三换热器作为第二 冷凝器, 第二四通换向阔的第一端与第四端连通且第二四通换向阔的第二 端与第三端连通, 第一风阔、 第三风阔、 第六风阔、 及第八风阔开启, 第 二风阔、 第四风阔、 第五风阔及第七风阔关闭;
进入室内机第一端的第二股制冷剂由第二四通换向阔的第二端, 流经 第二四通换向阔的第三端, 依次进入第三换热器、 第二电子膨胀阔、 第二 换热器、 第二四通换向阔的第一端、 第二四通换向阔的第四端, 流入室内 机的第三端;
在第二循环周期, 第二换热器作为第二冷凝器且第三换热器作为第二 蒸发器, 第二四通换向阔的第一端与第二端连通且第二四通换向阔的第三 端与第四端连通, 第一风阔、 第三风阔、 第六风阔、 及第八风阔关闭, 第 二风阔、 第四风阔、 第五风阔及第七风阔开启;
进入室内机第一端的第二股制冷剂由第二四通换向阔的第二端, 流经 第二四通换向阔的第一端, 依次进入第二换热器、 第二电子膨胀阔、 第三 换热器、 第二四通换向阔的第三端、 第二四通换向阔的第四端, 流入室内 机的第三端。
14. 根据权利要求 13所述的方法, 其中, 所述制热工况包括循环切换 的第三循环周期以及第四循环周期,
在第三循环周期, 第二换热器作为第二蒸发器且第三换热器作为第二 冷凝器, 第二四通换向阔的第一端与第四端连通且第二四通换向阔的第二 端与第三端连通, 第一风阔、 第三风阔、 第六风阔、 及第八风阔关闭, 第 二风阔、 第四风阔、 第五风阔及第七风阔开启;
进入室内机第一端的制冷剂由第二四通换向阔的第二端, 流经第二四 通换向阔的第三端, 依次进入第三换热器、 第二电子膨胀阔、 第二换热器、 第二四通换向阔的第一端、 第二四通换向阔的第四端, 流入室内机的第三 端;
在第四循环周期, 第二换热器作为第二冷凝器且第三换热器作为第二 蒸发器, 第二四通换向阔的第一端与第二端连通且第二四通换向阔的第三 端与第四端连通, 第一风阔、 第三风阔、 第六风阔、 及第八风阔开启, 第 二风阔、 第四风阔、 第五风阔及第七风阔关闭;
进入室内机第一端的制冷剂由第二四通换向阔的第二端, 流经第二四 通换向阔的第一端, 依次进入第二换热器、 第二电子膨胀阔、 第三换热器、 第二四通换向阔的第三端、 第二四通换向阔的第四端, 流入室内机的第三 端。
PCT/CN2013/088536 2013-06-28 2013-12-04 三管制全热处理多联机空调系统及温湿度独立控制方法 WO2014206012A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310269490.0A CN103353147B (zh) 2013-06-28 2013-06-28 三管制全热处理多联机空调系统及温湿度独立控制方法
CN201310269490.0 2013-06-28

Publications (1)

Publication Number Publication Date
WO2014206012A1 true WO2014206012A1 (zh) 2014-12-31

Family

ID=49309543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088536 WO2014206012A1 (zh) 2013-06-28 2013-12-04 三管制全热处理多联机空调系统及温湿度独立控制方法

Country Status (2)

Country Link
CN (1) CN103353147B (zh)
WO (1) WO2014206012A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111140976A (zh) * 2020-01-17 2020-05-12 珠海格力电器股份有限公司 新风空调系统及其控制方法
WO2021154047A1 (en) * 2020-01-31 2021-08-05 Lg Electronics Inc. Air conditioner
CN113834125A (zh) * 2021-09-08 2021-12-24 众森绿建国际科技股份公司 户式新风空调一体系统
EP3770519A4 (en) * 2018-03-21 2021-12-29 Qingdao Hisense Hitachi Air-Conditioning Systems Co. Ltd. Multi-split system and time-sharing dehumidification method therefor
CN116831843A (zh) * 2023-06-27 2023-10-03 金陵科技学院 一种具有温湿度独立调节功能的微高压氧舱

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103353147B (zh) * 2013-06-28 2016-05-25 青岛海信日立空调系统有限公司 三管制全热处理多联机空调系统及温湿度独立控制方法
CN103759455B (zh) * 2014-01-27 2015-08-19 青岛海信日立空调系统有限公司 热回收变频多联式热泵系统及其控制方法
CN104748428B (zh) * 2015-03-31 2017-09-26 广东美的暖通设备有限公司 多联机系统
CN107763737B (zh) * 2017-10-20 2020-03-03 青岛海信日立空调系统有限公司 一种空调室内机及空调
CN108195005B (zh) * 2017-12-28 2020-03-13 青岛海信日立空调系统有限公司 一种三管制水源多联机及其控制方法
CN112797657A (zh) * 2019-10-28 2021-05-14 广东美的制冷设备有限公司 空调器及其控制方法
US11248806B2 (en) 2019-12-30 2022-02-15 Mitsubishi Electric Us, Inc. System and method for operating an air-conditioning unit having a coil with an active portion and an inactive portion
CN113048584B (zh) * 2021-01-20 2022-12-23 广东美的暖通设备有限公司 转轮调湿装置及具有其的空调系统及控制方法和控制器
CN112728661B (zh) * 2021-01-20 2022-12-27 广东美的暖通设备有限公司 双转轮调湿装置及具有其的空调系统及控制方法和控制器

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050022541A1 (en) * 2002-11-08 2005-02-03 York International Corporation System and method for using hot gas re-heat for humidity control
JP2005283064A (ja) * 2004-03-31 2005-10-13 Daikin Ind Ltd 空気調和装置
CN1864035A (zh) * 2003-10-09 2006-11-15 大金工业株式会社 空气调节装置
CN1993587A (zh) * 2004-06-30 2007-07-04 东芝开利株式会社 一拖多型空调装置
CN200943911Y (zh) * 2006-08-25 2007-09-05 珠海格力电器股份有限公司 空调器用室外机
JP2010175108A (ja) * 2009-01-28 2010-08-12 Daikin Ind Ltd 調湿装置
JP2010255970A (ja) * 2009-04-28 2010-11-11 Sanyo Electric Co Ltd 外調機および外調システム
JP2011017515A (ja) * 2009-07-10 2011-01-27 Daikin Industries Ltd 空調システム
CN102878613A (zh) * 2012-09-20 2013-01-16 青岛海信日立空调系统有限公司 控制多联机空调系统中温湿度的方法及多联机空调系统
CN103353147A (zh) * 2013-06-28 2013-10-16 青岛海信日立空调系统有限公司 三管制全热处理多联机空调系统及温湿度独立控制方法
CN203413735U (zh) * 2013-06-28 2014-01-29 青岛海信日立空调系统有限公司 三管制全热处理多联机空调系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100459137B1 (ko) * 2002-08-24 2004-12-03 엘지전자 주식회사 냉난방 동시형 멀티공기조화기
JP2006343052A (ja) * 2005-06-10 2006-12-21 Hitachi Ltd 冷暖同時マルチ空気調和機
CN200979258Y (zh) * 2006-04-12 2007-11-21 广东美的电器股份有限公司 三管制热回收空调系统
CN2901181Y (zh) * 2006-04-14 2007-05-16 广东美的电器股份有限公司 三管制热回收空调系统的内机切换装置
CN101691960B (zh) * 2009-09-30 2012-10-10 广东美的电器股份有限公司 三管制热回收空调系统
CN102109203A (zh) * 2011-03-15 2011-06-29 广东美的电器股份有限公司 水源热泵三管式热回收多联机空调系统
CN102109204B (zh) * 2011-03-23 2012-10-10 广东美的暖通设备有限公司 三管制热回收空调系统及其控制方法
CN102384538B (zh) * 2011-07-05 2013-10-09 广东美的暖通设备限公司 三管制热回收多联机及其控制方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050022541A1 (en) * 2002-11-08 2005-02-03 York International Corporation System and method for using hot gas re-heat for humidity control
CN1864035A (zh) * 2003-10-09 2006-11-15 大金工业株式会社 空气调节装置
JP2005283064A (ja) * 2004-03-31 2005-10-13 Daikin Ind Ltd 空気調和装置
CN1993587A (zh) * 2004-06-30 2007-07-04 东芝开利株式会社 一拖多型空调装置
CN200943911Y (zh) * 2006-08-25 2007-09-05 珠海格力电器股份有限公司 空调器用室外机
JP2010175108A (ja) * 2009-01-28 2010-08-12 Daikin Ind Ltd 調湿装置
JP2010255970A (ja) * 2009-04-28 2010-11-11 Sanyo Electric Co Ltd 外調機および外調システム
JP2011017515A (ja) * 2009-07-10 2011-01-27 Daikin Industries Ltd 空調システム
CN102878613A (zh) * 2012-09-20 2013-01-16 青岛海信日立空调系统有限公司 控制多联机空调系统中温湿度的方法及多联机空调系统
CN103353147A (zh) * 2013-06-28 2013-10-16 青岛海信日立空调系统有限公司 三管制全热处理多联机空调系统及温湿度独立控制方法
CN203413735U (zh) * 2013-06-28 2014-01-29 青岛海信日立空调系统有限公司 三管制全热处理多联机空调系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3770519A4 (en) * 2018-03-21 2021-12-29 Qingdao Hisense Hitachi Air-Conditioning Systems Co. Ltd. Multi-split system and time-sharing dehumidification method therefor
CN111140976A (zh) * 2020-01-17 2020-05-12 珠海格力电器股份有限公司 新风空调系统及其控制方法
WO2021154047A1 (en) * 2020-01-31 2021-08-05 Lg Electronics Inc. Air conditioner
CN113834125A (zh) * 2021-09-08 2021-12-24 众森绿建国际科技股份公司 户式新风空调一体系统
CN116831843A (zh) * 2023-06-27 2023-10-03 金陵科技学院 一种具有温湿度独立调节功能的微高压氧舱
CN116831843B (zh) * 2023-06-27 2024-04-05 金陵科技学院 一种具有温湿度独立调节功能的微高压氧舱

Also Published As

Publication number Publication date
CN103353147B (zh) 2016-05-25
CN103353147A (zh) 2013-10-16

Similar Documents

Publication Publication Date Title
WO2014206012A1 (zh) 三管制全热处理多联机空调系统及温湿度独立控制方法
WO2014043951A1 (zh) 控制多联机空调系统中温湿度的方法及多联机空调系统
US9885486B2 (en) Heat pump humidifier and dehumidifier system and method
CN104329759A (zh) 一种辐射空调用新风控温除湿系统及控温除湿方法
CN108679870A (zh) 一种带新风处理功能的温湿分控空调系统
CN109186015A (zh) 空调系统及空调系统的控制方法
WO2014067129A1 (zh) 多联机热泵空调系统及控制多联机热泵空调系统的方法
CN201582927U (zh) 热泵耦合逆流型溶液除湿新风系统
KR101702884B1 (ko) 히트 펌프형 냉난방 시스템
CN101876469A (zh) 热泵耦合逆流型溶液除湿新风系统及其控制方法
CN108167990A (zh) 被动房用整体式新风空调除湿一体机
CN108168016A (zh) 除湿新风预处理一体机
CN102506475A (zh) 冷凝废热驱动的基于固体除湿的热湿独立控制的热泵系统
CN107178836A (zh) 一种设有双热交换芯的新风除湿系统
US10274210B2 (en) Heat pump humidifier and dehumidifier system and method
CN105823171B (zh) 一种增强除湿功能的空调系统
CN216281897U (zh) 新风设备
CN108826541A (zh) 一种带回热器的除湿换热器热泵空调系统及其运行方法
CN203413735U (zh) 三管制全热处理多联机空调系统
CN107575967A (zh) 一种适用于全年工况的热泵空调系统及其运行方法
CN100451467C (zh) 一种组合式空气处理方法和装置
JP2013190177A (ja) 調湿装置
CN207881092U (zh) 除湿新风预处理一体机
CN203036900U (zh) 一种热泵除湿机
CN205957318U (zh) 多功能型列间空调装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13888127

Country of ref document: EP

Kind code of ref document: A1