WO2014205705A1 - 光传感器阵列装置 - Google Patents

光传感器阵列装置 Download PDF

Info

Publication number
WO2014205705A1
WO2014205705A1 PCT/CN2013/078086 CN2013078086W WO2014205705A1 WO 2014205705 A1 WO2014205705 A1 WO 2014205705A1 CN 2013078086 W CN2013078086 W CN 2013078086W WO 2014205705 A1 WO2014205705 A1 WO 2014205705A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing elements
light
light source
energy
array device
Prior art date
Application number
PCT/CN2013/078086
Other languages
English (en)
French (fr)
Inventor
张云山
Original Assignee
林大伟
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 林大伟 filed Critical 林大伟
Priority to ES13888347.5T priority Critical patent/ES2694689T3/es
Priority to PCT/CN2013/078086 priority patent/WO2014205705A1/zh
Priority to EP13888347.5A priority patent/EP3015958B1/en
Priority to JP2016522161A priority patent/JP6326488B2/ja
Publication of WO2014205705A1 publication Critical patent/WO2014205705A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03543Mice or pucks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means
    • G06F3/0317Detection arrangements using opto-electronic means in co-operation with a patterned surface, e.g. absolute position or relative movement detection for an optical mouse or pen positioned with respect to a coded surface
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/038Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry
    • G06F3/0383Signal control means within the pointing device

Definitions

  • the present invention relates to a photosensor array device, and more particularly to a sensor array device comprising a plurality of sensing chips arranged in an array. Background technique
  • the light sensor converts the received light into an electrical signal through a sensing component such as a CMOS (Complementary Metal Oxide Semiconductor), CCD (Charge Coupled Component), etc., and the general technique can obtain the intensity (energy) of a specific light source through such a component. From this, it is possible to judge the distance (as a distance sensor), the change in energy over time, and even as a component of image capture.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge Coupled Component
  • An optical pointing device such as a computer mouse, can use the light sensor as a judgment of the trajectory movement.
  • a motion vector can be determined by the energy change and image processing received before and after.
  • the optical mouse 10 is moved on a surface 11 .
  • the main components of the internal circuit of the mouse casing 12 are provided with a circuit board 14 on the circuit board 14 except for some optical components.
  • a controller 18 for controlling and computing the emitted light and the sensed light is provided, as well as a light source 16 and a sensor 19.
  • the outer casing 12 of the optical mouse 10 has a slot 17 facing the outer surface 11.
  • the circuit board 14 is disposed near the aperture 17, and the circuit board 14 is provided with a laser or a light emitting diode (LED).
  • Light source 16 When the optical mouse 10 is in operation, the light source 16 continuously generates the emitted light, and is directed toward the surface 11 at a specific angle, as indicated by a broken line in the figure, the signal of the reflected light is obtained by the sensor 19, or the image distribution of the reflected light intensity is obtained (for example, the sensor 19)
  • the controller 18 can analyze the moving direction of the optical mouse 10, which can be a CMOS or CCD image sensor.
  • the signal of the reflected light obtained by the surface 11 is considerably dependent, and therefore the function of the optical mouse 10 will generally behave differently depending on the form of the surface 11.
  • the general technique will cause a problem of failure of judgment due to a material whose surface structure is transparent or not easily reflective, which may cause tracking, and may cause the related device (such as an optical mouse) to operate smoothly.
  • the device for ray tracing still has a certain tracing function on different planes
  • the method of obtaining the ray moving path often uses additional external positioning sensing or some complicated operations, but these positioning sensing Or the operation is only applicable to a limited plane state because of sensitivity limitations, high energy consumption, and complicated algorithms.
  • These well-known light sensors are not suitable for use on all highly reflective or very low reflectivity planes. Summary of the invention
  • An object of the present invention is to provide a ray tracing method and apparatus which solves the problem that the conventional ray tracing apparatus cannot maintain the tracing function on different planes and cannot be applied to all planes with high reflection or low reflectivity.
  • a photosensor array device includes:
  • a plurality of arrays of sensing elements constituting a sensor array, wherein a plurality of ⁇ sensing elements are disposed, the sensor arrays for receiving light reflected from a surface;
  • each comparator is connected to a sensing element for comparing two input energy signals, one of which is an energy signal generated by the sensing element, and an average value;
  • a light source device for generating light incident on the surface
  • control circuit electrically connecting the plurality of sensing elements, the plurality of comparators and the light source device, for controlling the light source device to generate the light, and obtaining an energy signal of the plurality of sensing elements, and determining the reflection by the surface The energy difference formed by the spatial interference.
  • the plurality of sensing elements have a fixed pitch and an average relative position therebetween.
  • the plurality of sensing elements arranged in the array form are packaged in an integrated circuit.
  • control circuit dynamically adjusts the exposure time of the light source device.
  • the light source device is a light source with good spatial coherence.
  • the light source device is a laser light device.
  • control circuit controls the illumination period of the light source device by controlling the duty cycle of a pulse width modulation control signal.
  • control circuit also dynamically adjusts the gain of the energy signal output by the plurality of sensing elements. Specifically, the control circuit controls the signal gain of each of the sensing elements based on an energy signal fed back by the sensor array composed of the plurality of sensing elements.
  • the control circuit after receiving the energy signals of the plurality of sensing elements, the control circuit only captures all of them Or an energy signal of a portion of the non- ⁇ sensing element, and the average value is calculated.
  • control circuit adjusts the light intensity generated by the light source device.
  • control circuit adjusts a driving current of the light source device according to a light intensity signal obtained by the plurality of ⁇ sensing elements to adjust a light intensity generated by the light source device.
  • the ⁇ sensing element is disposed around the sensor array.
  • the image of the constructive and destructive interference between the light reflected by the surface and the original emitted light, as the basis of the tracking identification, can still have the function of tracing on various planes, and is suitable for all high reflections. Or on a plane with very low reflectivity.
  • FIG. 1 is a schematic diagram of an internal circuit of an optical mouse in the prior art
  • FIG. 2 is a schematic view showing a reflected light path of an incident plane and reflected light according to the present invention
  • FIG. 3 is a schematic diagram of a sensor array packaged in an integrated circuit in the photosensor array device of the present invention.
  • FIG. 4 is a schematic view showing an embodiment of a sensor array used in the device of the present invention.
  • FIG. 5 is a schematic diagram showing the layout of a sensing element of the photosensor array device of the present invention.
  • FIG. 6 is a block diagram showing a gain control and a noise reduction circuit of a light source in the photosensor array device of the present invention
  • FIG. 7 is a schematic diagram showing a method of performing light tracing by each sensor element of the photosensor array device of the present invention
  • Fig. 8 is a schematic view showing the second embodiment of the method for performing ray tracing by each of the sensing elements in the photosensor array device of the present invention.
  • Controller 18 light source 16
  • Analog to digital converter 605 second gain controller 608
  • Light intensity signal 60 signal line 611, 612, 613, 614
  • the present invention describes a photosensor array device, that is, a sensor array having sensor chips arranged in an array, one of the embodiments for receiving light reflected from a surface, and then receiving according to a plurality of sensing chips.
  • the reflected light energy determines a constructive or destructive interference image in the reflected light, and determines a motion vector by judging the energy change before and after the time. If applied to the light indicating device, the moving direction of the opposite surface can be determined.
  • the light source uses a coherent light or a spatial coherence light as a light source
  • the direction of movement can be detected and combined.
  • Sensitivity compensation method using a ray tracing algorithm can reduce noise, so the device related to this technology can be applied to various aspects of the plane.
  • a coherent light source package integration can be used, and a device using J3 ⁇ 4 technology, such as an optical indicating device, can be used.
  • a device using J3 ⁇ 4 technology such as an optical indicating device.
  • CIS complementary CMOS image sensor
  • the present invention proposes a light sensor array device through which a plurality of The sensing chip arranged in the array form and the corresponding tracing algorithm achieve the purpose of effective tracing.
  • the embodiment can also be used with a light source having good spatial coherence such as laser light, thereby providing a good tracking capability for devices such as an optical mouse.
  • the present invention applies an image of constructive and destructive interference to the light reflected by the surface as a basis for tracking recognition.
  • a specific light source device (not shown in FIG. 2) is used to generate incident light 201 to be reflected toward a plane and then reflected to form a plurality of reflected lights 203.
  • the light source is particularly used in the same manner as a laser.
  • Coherent light as used herein refers to a light with good spatial homology.
  • the plurality of optical paths shown in this Figure 2 include incident light 201 directed toward a plane having a surface structure 205 which is then reflected to form reflected light 203. Since the microscopic upper surface structure 205 is an irregular structure, the reflected light 203 forms light having different directions as shown in FIG.
  • the light source device continuously generates incident light 201 to a plane, and reflects to form reflected light 203.
  • the reflected light 203 is received through a sensor (not shown in FIG. 2), and light constructive and destructive interference occurs in various optical paths.
  • a pattern, in which incident light of a coherent light source is used in particular, can enhance this interference effect.
  • the light sensor When the device carrying the relevant circuit for performing the tracking method moves relative to the sensing plane (XY plane), the light sensor receives the information of the reflected light 203, and then according to the time slot (sampling) The information data, and the average energy value of the reflected light 203 are obtained, and the energy difference of the reflected light 203 at different times and at different positions is calculated.
  • the photosensor array device disclosed in the present invention uses a sensor array to obtain energy at different positions of the reflected light 203 and a difference from the average energy value, that is, the movement trajectory can be determined.
  • the average value of the reflected light 203 can be calculated by using the average of the energy obtained by all the sensing elements, or the average value of the energy obtained by the partial sensing elements, such as The average value of the X direction in Fig. 5 or the average value of the column (in the Y direction of Fig. 5) is a calculation reference of the average value; it is also possible to take the average value of the energy of the peripheral or intermediate portion as a reference average value.
  • the same dimming is used as the light source, the interference effect of the reflected light can be enhanced.
  • the same dimming is a kind of light source with a very small phase delay in a wave envelope, wherein the laser light is a kind of dimming, which is different from the dimming of sunlight or LED light. .
  • the same dimming can improve the sensitivity of the optical sensor that senses the reflected light interference. Because the same dimming has a small phase difference, the same dimming will have a smaller phase delay than the spatial interference caused by the non-coherent reflected light. . Therefore, the same dimming can enhance the spatial interference of the reflected light, and the aforementioned sensor array (for the light) can obtain the spatial interference difference of the reflected light through a plane.
  • the sensor array 32 on the circuit board 30 in the photosensor array device is shown in FIG. 3.
  • the photosensor array device can be applied to an optical mouse or a specific pointing device.
  • the sensor array 32 includes a plurality of sensing elements 301 arranged in an array.
  • the integrated package technology is packaged in an integrated circuit (integrated optical sensor array on IC), including an embodiment in which a sensor array 32 and a circuit integrated control circuit 36 are fabricated, and a plurality of sensing elements 301 on the sensor array 32. (especially non- ⁇ sensing elements, as shown in Figure 5) have a fixed spacing and a uniform relative position to receive light reflected through a particular surface/plane on average. As shown in FIG.
  • a light source device 34 emits light to an illumination range 303 on a plane, and then the light is reflected by the plane and then directed to the sensor array 32, wherein each of the sensing elements 301 receives reflected light in different directions, respectively.
  • the control circuit 36 and the related circuit in the device obtain the signal, the average value of the energy received by each of the sensing elements 301 can be calculated, and then the difference between each sensing element 301 and the average value is calculated, and the correlation control circuit is calculated.
  • the spatial interference difference caused by the reflection of a surface or a plane is judged, and the control circuit 36 determines the moving direction based on the accumulated energy difference before and after each time slot.
  • the so-called spatial interference when the light (especially the same dimming, but the invention is not limited to the same dimming) is directed to the surface having the irregular surface structure and then reflected Light interference caused by reflected light in different directions, the light is reflected to produce a constructive or destructive interference pattern, and then the space of the plane reflection due to relative motion (relative motion of the device and the plane) is obtained by the sensor array. After the information, the movement data is established on the XY plane.
  • the carrier for applying the photosensor array device disclosed in the present invention may be an optical indicating device using laser light as a light source, such as an optical mouse, wherein the main circuit component is disposed on a circuit board.
  • the light source device 34 on 30, for generating light of an incident surface comprises a sensor array 32, wherein a plurality of sensing elements 301 arranged in an array form, and a control circuit 36 including the foregoing, the control circuit 36 coupled to the light source
  • the device 34 and the sensor array 32 are configured to obtain optical signals received by the plurality of sensing pixels in the plurality of sensing elements 301, calculate energy states, and calculate energy state changes of the time intervals.
  • Figure 4 shows a schematic diagram of an embodiment of the calculated energy distribution of the sensor array operation employed by the photosensor array device.
  • Figure 4 shows the layout of the sensor array. Multiple sensing elements are distributed on the XY plane to form an NxM sensor array.
  • the form of the sensor array is not limited to symmetrical rectangular, square, circular, elliptical and other geometric shapes.
  • the sensor array includes a plurality of sensing elements 401, 402, 403, 404, 405 arranged in an array, respectively arranged along the X, Y directions, and the actual number is not limited to this schematic.
  • the main components on the circuit board on which these sensing elements 401, 402, 403, 404, 405 are laid are also a plurality of comparators 421, 422, 423, 424, 425. Each comparator is connected with a sensing element, and the input values are the respective sensing elements.
  • the average voltage signal Vavg of the generated energy is used to compare the voltage signals obtained after the sensing element senses the light, and the signal values of the high and low voltages can be compared. Finally, the control circuit obtains the result of the comparison of the two adjacent sensor values and makes a judgment of the moving direction.
  • the comparator 421 of FIG. 4 is coupled to the sensing element 401.
  • One of the input signals that is, the energy signal sensed by the sensing element 401, can be represented by a voltage signal, and the other input terminal is an average voltage signal Vavg, so the comparator 421 Comparing the two input signals, a comparison result can be output.
  • the present invention preferably expresses the J3 ⁇ 4 comparison result by a binary characteristic value, and the high and low voltages respectively indicated by H or L shown in FIG. signal.
  • the method of tracking by the sensor array is characterized by the energy distribution displayed in the constructive and destructive interference pattern formed by the light reflection (preferably the same dimming) through the plane reflection (energy) Pattern ), the motion vector is judged by the change of the energy distribution at different times.
  • the implementation method is, for example, using a non-relative viewpoint for motion determination (non-relative view)
  • the way to point to do movement judgment that is, the energy information of the surrounding sensor element, is compared with the average induction energy to determine the moving direction. It is worth mentioning that this is different from the general method of judging the motion vector by using pixel information.
  • the present invention determines the movement trajectory by using the time and calculating the energy change.
  • the sensor chip includes sensing elements arranged in an array, and the sensing elements may include sensing elements disposed outside of the sensing element.
  • the control circuit or the related calculation circuit in the photosensor array device obtains the energy signal of all the sensing elements, and only captures the non- ⁇ sensing The energy signal of the element continues to be used subsequently. See the schematic diagram of the sensor layout shown in Figure 5.
  • FIG. 5 shows a sensing chip having a plurality of sensing elements arranged in an array, and a dummy sensor is disposed on the periphery of the sensing element in the central portion, so as to make the entire sensing chip process more uniform, and thus Sensitive energy is measured more evenly.
  • Figure 5 shows that the surrounding sensing elements 511, 512, 513, 514, 515, 516 are set to inactive sensing elements, while the sensing elements 521, 522, 523, 524 located near the middle portion are the primary sensing light. Inductive component of energy.
  • the sensing element capable of uniformly sensing the light is a sensing component that is more biased toward the central portion, and the surrounding sensing elements may have the possibility of receiving uneven energy. Therefore, when summing the total energy received by the entire sensor chip, the energy values of the signal instability may be eliminated by setting the ⁇ sensing elements (511, 512, 513, 514, 515, 516), and The reference energy value of the reference value.
  • the circuit is provided with an adder 501 electrically connected to each of the sensing elements in the sensing chip, and can obtain the photocurrent signals of the respective sensing elements, and can be converted into voltage values by analog digital conversion, but
  • the photocurrent of each of the sensing elements in the chip receiving the optical signal is extremely small, and it is necessary to pass the stage of gain amplification to obtain an effective reference value, and then to calculate the energy change obtained before and after the time interval.
  • the photocurrent signals are processed by the gain amplifier 502 to form an output signal, such as a signal represented by the output voltage Vout; and further, a calculator 503 calculates an average output based on the effectively obtained energy signal, and outputs Average voltage signal Vavg.
  • the aforementioned output signal (such as the output voltage Vout) and the average value (such as the average voltage signal Vavg) will be output to the comparator as shown in FIG. 4, allowing the comparator to compare the energy signal of the sensing element with a reference value (eg, The energy average of all or part of the sensing element), thereby obtaining the energy state of the sensing element, actually
  • a reference value eg, The energy average of all or part of the sensing element
  • the main components in the photosensor array device in addition to the aforementioned sensing elements, light sources and control circuits arranged in an array, also integrate a gain amplifying circuit (such as the gain amplifier 502) for amplifying the signal with a possible drop in an embodiment.
  • a gain amplifying circuit such as the gain amplifier 502 for amplifying the signal with a possible drop in an embodiment.
  • FIG. 6 For the embodiment, reference may be made to the block diagram of the gain control and noise reduction circuit of the light source in the photosensor array device of the present invention shown in FIG. 6.
  • the circuit shown in FIG. 6 is an embodiment of the control circuit (such as the control circuit 36 of FIG. 3) in the light sensing array device of the present invention.
  • the control circuit is provided with a voltage source Vsupply, and the light source device 601 is operated in the light sensor array device.
  • the required power is supplied to the light source device 601 to drive the illumination, and is not limited to a laser or a light emitting diode (LED).
  • the laser is a preferred light source, and because of its good spatial coherence, the interference effect can be enhanced.
  • a current limiter 602 can be disposed on the circuit, and the related electrical signal can control the power supplied to the light source device 601 through a certain process, or can feed back related electrical signals (such as filtering a specific voltage or current signal) to the current controller 603.
  • the current controller 603 manages the voltage and current of the light source device 601, including limiting the current driven by the light source device 601.
  • the light When the light is directed from the light source device 601 to a surface, the light reflected from the surface is received by the sensor array disclosed in the present invention, and is received by the sensing element in the photosensor array device as disclosed in FIG. 4 or FIG. 5 and then converted into an energy signal.
  • ⁇ sensing elements which do not provide an energy signal judged as a motion vector, including an energy state and a changed signal, but can be used as a pure judgment optical signal.
  • the function is the light intensity signal 60 generated by the receiving element receiving the reflected light, and the signal strength is adjusted by the first gain controller 604 in the circuit for reference by the internal microprocessor 607. .
  • the signal can be processed by an appropriate analog-to-digital converter 605, and the electrical signal is converted into a digital signal, which is fed back to the microprocessor 607 for the purpose of including the light source.
  • the above-mentioned signal strength is fed back to the microprocessor 607, one of the purposes of which is to automatically adjust the exposure time adjustment of the light source device 601 in the photosensor array device.
  • the microprocessor 607 emits a pulse width modulation (PWM).
  • PWM pulse width modulation
  • the illumination period of the source device 601 is such that the control device is capable of generating an optical signal of an appropriate length of time by exposure time adjustment.
  • the microprocessor 604 in the control circuit can make measures to optimize the light source device 601 according to the light intensity signal obtained by the device, such as transmitting the current control signal to the current controller 603 via the signal line 612, thereby adjusting By driving the current, the light intensity generated by the light source device 601 can be adjusted. Accordingly, by adjusting the intensity/brightness of the light source and the compensation mechanism established by the adjustment of the aforementioned exposure time, the sensor array device can be adapted to a large number of surfaces, such as different surface structures, distances from the surface, and the like.
  • the microprocessor 607 in the control circuit can also control the signal gain output by each sensing element according to the energy signal fed back by the sensor array, such as transmitting the control signal via the signal line 613, and controlling the signal gain of each sensing element through the gain controller 608. And comparing the energy signals received by the sensing elements with a reference average by comparing units 609 electrically connected to the sensing elements.
  • the noise cancellation threshold set in the comparison unit 609 can be adjusted (the control signal via the signal line 614) to dynamically reduce the intrinsic noise of the sensor element. ).
  • the light sensor array device applies different time energy change judgment devices and the relative moving direction of the surface, and the device first obtains the energy received by each sensor element in the front and rear time (t0, tl), and then calculates all or part of the sensor energy receiving energy before and after the time energy.
  • the average value, the energy value obtained by each sensor element at different times (which can be represented by a voltage signal), can be calculated by comparing the average value with the average value. Then, referring to the energy changes of the adjacent sensing elements at different times (to, tl), it is possible to judge the direction of the energy change before and after. Finally, the overall motion vector can be judged by the direction of energy change of multiple sensing elements.
  • Figure 7 shows a plurality of arrays of sensing element combinations 701, 702, 703, 704, 705, 706. This example only illustrates the sense of passing adjacent sensing elements at different times (e.g., first time t0, second time t1).
  • a schematic representation of the motion vector identified by the measured energy changes.
  • t0 and t1 are the two sample times before and after
  • H and L respectively represent the high and low voltage signals output by the aforementioned comparator, that is, can be regarded as the energy state (compared to the average energy as an energy state), mainly through The voltage signal transitions before and after the time determine an overall motion vector.
  • Figure 7 shows the energy changes in the individual sensing elements at two different times before and after.
  • the sensing element combination 701 schematically displays several (at least two) sensing elements, wherein the left side is displayed at the first time t0, and the two sensing elements respectively sense two energy states of L and H; when entering the second time tl At the same time, the energy changes of the two sensing elements are converted to 11 and H.
  • H ( t0 ) When L, H ( t0 ) is transformed into H, H ( tl ), the energy state of the sensing element is changed from L to H, indicating that the right side H is substituted to the left position, so it can be initially judged at this time interval.
  • the direction of effective sensing in the middle is leftward.
  • the other group of sensing elements of the sensing element combination 701 has an energy state of H and L at a first time t0; and a second time t1, the energy state is L and L, wherein there is a sensing element energy state by H
  • the transition to L also indicates that the L substitute on the right is at the left position, so it can be judged that there is a leftward moving direction.
  • the energy states of the two sensing elements on the left side of the sensing element combination 702 are L and H at the first time t0, and the L times to the second time t1 are changed to L and L, and it can be seen that the H direction of the left side is L.
  • the right substitute becomes L, so it is preliminarily judged that there is a rightward moving vector.
  • the right side of the sensing element combination 702 has two sensing elements whose energy states are H and L at the first time t0, and then changes to H and H when the second time t1, where the right L passes to the left.
  • the H substitute is converted to H, so it can be judged that there is a rightward moving vector.
  • the sensing element combinations 705 and 706 do not have an arrow indicating the direction. It is determined that in this example, the plurality of sensing elements have no energy change in the time interval between the first time to and the second time t1, or cannot be determined by the energy change therein.
  • the moving direction for example, the sensing element combination 706 is L and H at the first time t0, and the energy state is changed to H and L by the second time t1, which is impossible to determine the moving direction by the energy state change. Therefore, these two aspects have no valid output signal.
  • FIG. 8 is the second schematic diagram of the ray tracing performed by the inductive chip in the device disclosed in the present invention.
  • a schematic diagram of a method for recognizing a motion vector by different directions of the direction of the induced meta-energy state wherein X is an unintentional value, @ is an alignment of the signals sensed by tl and tl, thereby determining the motion vector.
  • the sensing chip When the sensing chip receives the reflected light, the plurality of sensing elements in the sensing chip generate different high and low voltage signals according to the received signal energy and the average energy at different times, as shown in FIG. 8 , the sensing signal "@ " is generated; In some cases, it is still possible that some of the sensing elements have no energy change, or the voltage signal is irrelevant. At this time, as shown in Fig. 8, the value "X" is not noticed. According to the embodiment shown in FIG.
  • the energy change of the adjacent sensing element is obtained by the comparator at the first time t0, expressed as the state "X@@", where "X" is not In the meaning value, "@” indicates that there is a high and low voltage change; at the second time t1, the energy change of several adjacent sensing elements is obtained, which is expressed as the state "@@X”.
  • the energy state of each sensor element at the first time t0 and the second time t1 changes, and the display state "X@@” is changed to "@@X", and the left shift (shift) can be judged, so the sensor can be judged.
  • the meta-combination 801 has a change to the left, as indicated by the arrow in FIG.
  • the energy change of the adjacent sensing element at the first time t0 is represented as the state "@@X", and at the second time t1, the energy state is represented as "X@@", which is visible After the time transition (tO to tl), the state "@@” shows a tendency to shift to the right. Therefore, the invention disclosed in the present invention can determine the moving direction of the overall device by utilizing the energy change before and after the time.
  • the present invention provides a photosensor array device integrated in a semiconductor package, thereby effectively suppressing internal intrinsic noise, and proposing to dynamically adjust the intensity or brightness of the light source and the exposure time.
  • the adjustment mechanism establishes a compensation mechanism that allows the sensor array device to accommodate more sensing surfaces.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种光传感器阵列装置,包括具有多个阵列形式排列的感应元,组成一传感器阵列,有连接各感应元的比较电路,可以计算各感应元的能量状态,装置设有如镭射的光源与控制电路,控制电路能够取得多个感应元的能量信号,并判断由表面反射形成的空间干扰的能量差异,经调整光源强度以及配合曝光时间的调节所建立的补偿机制,传感器阵列装置可以适应较多情况的表面。

Description

光传感器阵列装置 技术领域
本发明有关一种光传感器阵列装置, 特别是一种釆用多个以阵列形式排列 的感应芯片组成的传感器阵列装置。 背景技术
光传感器为通过如 CMOS (互补式金属氧化物半导体 )、 CCD (电荷耦合组 件)等感测组件将接受的光线转换为电信号, 一般技术可以通过这类组件取得 特定光源的强度(能量), 据此可以判断距离 (作为距离传感器)、 随着时间的 能量变化, 甚至作为影像撷取的组件。
光学指示装置如计算机鼠标, 可利用光传感器作为轨迹移动的判断, 当产 生的光线射向一运作平面, 可以通过前后时间接收的能量变化、 图像处理判断 一个移动向量。 如图 1所示的光学鼠标 10的内部电路示意图, 光学鼠标 10于 一表面 11上移动, 鼠标外壳 12 内部电路的主要组件除了一些光学组件外, 电 路部分设有一电路板 14 ,电路板 14上设有一控制与运算发射光和感测光的控制 器 18 , 以及一光源 16与传感器 19。
于此光学鼠标 10的外壳 12上有一个朝向外部表面 11的开槽 17 ,此电路板 14即设于此开槽(aperture ) 17附近, 电路板 14上设有如镭射或者发光二极管 ( LED ) 的光源 16。 当此光学鼠标 10运作时, 光源 16连续产生发射光, 以特 定角度射向表面 11 , 如图中虚线表示, 经传感器 19取得反射光的信号, 或者取 得反射光强度的影像分布 (如传感器 19可为 CMOS或 CCD影像传感器),控制 器 18即分析出光学鼠标 10的移动方向。
在前述熟知的光学鼠标 10的轨迹判断的技术中, 相当依赖由表面 11取得 的反射光的信号, 因此一般光学鼠标 10的功能将会随着表面 11 的形式而有不 同的表现。
在光线寻迹的目的中, 一般技术将会因为表面结构为透明或者不易反光的 材质产生判断失败的问题, 造成无法寻迹, 也就可能使得相关装置 (如光学鼠 标)无法顺利运作。 现有技术中, 若欲让光线寻迹的装置在不同平面上仍保有一定寻迹的功能, 取得光线移动行径的方式多使用额外的外部定位感测或者一些复杂的运算, 但 这些定位感测或者运算因为灵敏度的限制、 高耗能与复杂的算法等原因而仅适 用于有限的平面样态上。 这些熟知的光传感器并不能适用于所有高反射或者很 低反射率的平面上。 发明内容
本发明的目的在于提供一种光线寻迹方法与装置, 解决了现有光线寻迹装 置无法在不同平面上保有寻迹功能以及无法适用于所有高反射或者很低反射率 的平面上的问题。
本发明是这样实现的, 一种光传感器阵列装置, 包括:
多个阵列形式排列的感应元, 组成一传感器阵列, 其中设有多个傀儡感应 元, 该传感器阵列用于接收自一表面反射的光线;
多个比较器, 各比较器对应连接一个感应元, 用于比对输入的两个能量信 号, 其一为该感应元产生的能量信号, 另为一平均值;
一光源装置, 用于产生入射该表面的光线; 以及
一控制电路, 电性连接该多个感应元、 该多个比较器与该光源装置, 用于 控制该光源装置产生该光线, 以及取得该多个感应元的能量信号, 并判断由该 表面反射形成的空间干扰的能量差异。
具体地, 该多个感应元之间具有固定的间距与平均的相对位置。
具体地, 该阵列形式排列的多个感应元封装于一集成电路内。
具体地, 该控制电路动态调整该光源装置的曝光时间。
具体地, 该光源装置为一空间同调性良好的光源。
具体地, 该光源装置为一镭射光装置。
具体地, 该控制电路通过控制一脉宽调变控制信号的工作周期以控制该光 源装置的发光周期。
进一步地, 该控制电路还动态调节该多个感应元输出的能量信号的增益。 具体地, 该控制电路根据由该多个感应元组成的该传感器阵列反馈的能量 信号控制各感应元的信号增益。
具体地, 该控制电路在接收该多个感应元的能量信号后, 仅撷取其中全部 或部分的非傀儡感应元的能量信号, 计算该平均值。
具体地, 该控制电路调整该光源装置产生的光强度。
具体地, 该控制电路根据由该多个傀儡感应元所取得的光强度信号调节该 光源装置的驱动电流, 以调整该光源装置产生的光强度。
具体地, 该傀儡感应元设于该传感器阵列的周围。 应用表面反射的光与原发射光之间的光建设性与破坏性干涉的图像, 作为寻迹 识别的依据, 可在各种样态的平面上仍具有寻迹的功能, 适用于所有高反射或 者很低反射率的平面上。 附图说明
图 1所示为现有技术中的光学鼠标内部电路示意图;
图 2所示为本发明的入射平面与反射光的反射光径示意图;
图 3 所示为本发明光传感器阵列装置中封装于一集成电路内的传感器阵列 示意图;
图 4所示为本发明装置釆用的传感器阵列的实施例示意图;
图 5所示为本发明光传感器阵列装置的感应元布局示意图;
图 6所示为本发明光传感器阵列装置内光源的增益控制与降噪电路模块图; 图 7 所示为本发明光传感器阵列装置各感应元执行光线寻迹方法的示意图 之一;
图 8 所示为本发明光传感器阵列装置中各感应元执行光线寻迹方法的示意 图之二。
【符号说明】
光学鼠标 10 表面 11
鼠标外壳 12 电路板 14
控制器 18 光源 16
传感器 19 开槽 17
入射光 201 表面结构 205
反射光 203
电路板 30 传感器数组 32 感应元 301 光源装置 34
照射范围 303 控制电路 36
感应元 401, 402, 403, 404, 405
比较器 421, 422, 423, 424, 425
加总器 501 增益放大器 502
计算器 503 输出电压 Vout
傀儡感应元 511, 512, 513, 514, 515, 516
感应元 521, 522, 523, 524
电压源 Vsupply 光源装置 601
限流器 602 电流控制器 603
第一增益控制器 604 微处理器 607
模拟数字转换器 605 第二增益控制器 608
参数 606 比较单元 609
光强度信号 60 信号线 611, 612, 613, 614
感应元组合 701, 702, 703, 704, 705, 706
平均电压信号 Vavg 方向 X, Y
第一时间 to 第二时间 tl
感应元组合 801, 802 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清 楚、 完整地描述。
本发明描述一种光传感器阵列装置, 也就是一种具有以阵列形式排列的感 应芯片组成的传感器阵列, 实施例之一用于接收自一表面反射的光线, 进而根 据多个感应芯片所接收的反射光能量判断反射光中的建设性或破坏性干涉图 像, 通过前后时间判断能量变化来判断一个移动向量, 若应用在光指示装置中, 则可判断其相对表面的移动方向。
举例来说, 若以光学鼠标为例, 如果光源釆用同调光(coherent light )或说 是一种空间同调性( spatial coherence )良好的光线作为光源,藉此侦测移动方向, 并可结合灵敏度补偿 ( sensitivity compensation )的方式, 利用一种光线寻迹算法 ( movement recognition algorithm ), 同时能够降噪, 因此相关釆用此技术的装置 可以适用于各种态样的平面上。
值得一提的是, 本发明所提出的光传感器阵列装置内可以釆用一种同调光 源整合型去†装技术 ( coherent light source package integration ), 釆用 J¾类技术的 装置, 如光学指示装置, 无须安装额外的光学透镜或特定影像传感器, 如一种 互补式金属氧化物半导体影像传感器 ( CMOS image sensor, CIS )。
有鉴于现有技术釆用一般光传感器的装置 (如光学鼠标) 并不能适用于所 有高反射或者很低反射率的平面上, 本发明则提出一种光传感器阵列装置, 通 过其中包括多个以阵列形式排列的感应芯片以及对应的寻迹算法, 达到有效寻 迹的目的。 其中实施例还可搭配镭射光等空间同调性( spatial coherence )良好的 光源, 据此提供如光学鼠标等装置良好的寻迹能力。 本发明将应用表面反射的 光产生建设性与破坏性干涉的图像, 作为寻迹识别的依据。
请先参看图 2所示由一特定光源装置 (未显示于图 2中)产生入射光 201 射向一平面再反射形成多个反射光 203 的示意图, 光源特别是釆用一种如镭射 的同调光(coherent light ), 此处所描述的 "同调光" 是指一种空间同调性良好 的光线。
此图 2显示的多个光径包括入射光 201射向一个具有表面结构 205的平面, 再反射形成反射光 203。 由于微观上表面结构 205为不规则的结构, 因此反射光 203形成如图 2所示有不同射向的光线。
光源装置连续产生入射光 201射向平面, 并反射形成反射光 203 , 过程中反 射光 203经由传感器(未显示于图 2中)接收, 各种光径中产生了光建设性与 破坏性干涉的图像(pattern ), 此处特别使用同调光源的入射光可以增强此干涉 效应 ( interference effect )。
当载有执行此寻迹方法的相关电路的装置相对于感测平面 (X-Y平面)进 行移动时, 其中光传感器接收到反射光 203的信息,再依据时间间隔(time slot ) 釆样(sampling )其中信息数据, 以及取得反射光 203的平均能量值, 并计算反 射光 203 不同时间、 不同位置的能量差异。 本发明所揭示的光传感器阵列装置 釆用传感器阵列(sensor array )以取得反射光 203不同位置能量, 以及与平均能 量值的差异, 即能判断出移动轨迹。 其中反射光 203 平均值的计算可以釆用全 部感应元取得的能量的平均, 或者部分感应元取得的能量平均值, 比如以行(如 图 5的 X方向)平均值或列 (如图 5的 Y方向)平均值为平均值的计算参考; 亦可能釆取外围或中间部分的能量平均值作为参考平均值。
根据釆用上述传感器阵列的实施例之一, 若以同调光为光源, 可以增强反 射光线的干涉效应。 同调光为一种在一波包(wave envelope ) 中具有非常小相 位延迟(phase delay ) 的光源, 其中镭射光即是一种同调光, 不同于太阳光或 LED光等非同调光。
应用同调光于本发明揭示的光传感器阵列装置中, 同调光可以改善感测反 射光干扰的光学传感器的灵敏度。 因为同调光有很小相位差 ( phase difference ) 的特性, 相对于非同调光的反射光所产生的空间干扰(spatial interference ), 同 调光会有较小的相位延迟(phase delay )现象。 因此, 釆用同调光可以加强反射 光空间干扰的优点, 前述传感器阵列 (针对光线)可以取得经一个平面反射光 的空间干扰差异。
传感器阵列可参阅图 3 所示本发明光传感器阵列装置中封装于一集成电路 ( IC ) 内的传感器阵列的示意图。
图 3中显示在光传感器阵列装置内电路板 30上的传感器阵列 32,光传感器 阵列装置可应用于光学鼠标或特定指示装置上, 传感器阵列 32包括有阵列形式 排列的多个感应元 301 , 通过这个整合型封装的技术封装于一集成电路内 ( integrated optical sensor array on IC ), 包括在一实施例中, 同时制作传感器阵 列 32与电路集成的控制电路 36, 传感器阵列 32上多个感应元 301 (特别是非 傀儡感应元, 如图 5 所示)之间具有固定的间距与均匀的相对位置, 以平均接 收经特定表面 /平面反射的光线。如图 3所示, 由一光源装置 34发射光线到一个 平面上的照射范围 303 , 之后光线经平面反射后射向传感器阵列 32, 其中各感 应元 301 分别接收到不同方向的反射光, 通过适当光电信号转换, 装置内的控 制电路 36与相关电路取得信号后可以计算出加总每个感应元 301接收到的能量 的平均值, 再接着计算各个感应元 301 与平均值的差异, 相关控制电路将据以 判断得出由一表面或平面反射形成的空间干扰的能量差异(spatial interference difference ), 控制电路 36根据每个时间间隔(time slot )前后累积计算的能量差 异判断出移动方向。
上述实施例所揭示的光传感器阵列装置, 所谓的空间干扰, 当光线 (特别 是同调光, 但发明不限于同调光)射向有不规则表面结构的表面后又反射产生 不同方向的反射光而产生的光线干扰(interference ), 此光线经反射后产生建设 性或破坏性的干扰图案, 之后, 由传感器阵列取得因为相对运动 (装置与平面 的相对运动)平面反射的空间信息后, 建立在 X-Y平面上的移动数据。
如图 3 所示, 特别于一实施例中, 发明所揭示应用光传感器阵列装置的载 体可为一以镭射光为光源的光学指示装置, 如光学鼠标, 其中主要电路组件包 括设于一电路板 30上的光源装置 34, 用于产生一入射表面的光线, 包括有传感 器阵列 32, 其中有以阵列形式排列的多个感应元 301 , 以及包括有前述的控制 电路 36, 控制电路 36耦接光源装置 34与传感器阵列 32, 用于取得多个感应元 301内多个感应像素所接收的光信号, 并计算能量状态, 以及计算时间间隔的能 量状态变化。
图 4接着显示光传感器阵列装置所釆用的传感器阵列运作计算能量分布的 实施例示意图。
图 4显示了传感器阵列的布局, 多个感应元分布于 X-Y平面上, 形成 NxM 的传感器阵列, 传感器阵列的形式不限于对称的矩形、 正方形、 圓形、 椭圓形 等几何形状, 可以依照实际应用而定。 传感器阵列包括阵列形式排列的多个感 应元 401 , 402, 403 , 404, 405 , 分别沿着 X, Y方向设置, 实际数量并不 限于此示意图。 铺设这些感应元 401 , 402, 403 , 404, 405 的电路板上主要 组件还有多个比较器 421 , 422, 423 , 424, 425 , 各个比较器对应连接一个感应 元, 输入值为各个感应元产生的能量的平均电压信号 Vavg, 用于比较感应元感 测到光线后所得到的电压信号, 可以比较得到高低电压的信号值。 最后, 控制 电路即取得相邻两个传感器值比对结果, 作出移动方向的判断。
比如图 4中比较器 421耦接于感应元 401 , 其中一个输入信号即感应元 401 所感测产生的能量信号, 可以用电压信号表示, 另一输入端则为平均电压信号 Vavg, 因此比较器 421 比对这两个输入信号, 可以输出一个比较结果, 本发明 较佳地以一二元特征值 ( binary characteristic value )表示 J¾比较结果, 比 ^口图 7 所示 H或 L分别表示的高低电压信号。
根据发明所记载的光传感器阵列装置中, 利用传感器阵列寻迹的方式特征 在于利用光线 (较佳为同调光) 经平面反射后形成的建设性与破坏性干扰图案 中显示的能量分布(energy pattern ), 通过不同时间的能量分布变化判断移动向 量。 其中实施方式比如釆用一种非相关视点进行移动判断 (non-relative view points to do movement judgment ) 的方式, 也就是弓 I入周围感应元的能量信息, 与平均感应能量进行比对判断移动方向。 值得一提的是, 这不同于一般利用影 像像素 (pixel )信息判断移动向量的方式, 本发明是通过釆用时间与计算能量 变化而判断出移动轨迹。
对于光传感器阵列装置本身, 根据实施例之一, 本发明光传感器阵列装置 的感应芯片布局中, 感应芯片包括以阵列排列的感应元, 这些感应元可以包括 设于周围不作用的感应元(称为傀儡感应元), 以及设于中央部分的负责接收光 线的工作感应元, 因此光传感器阵列装置内的控制电路或相关计算电路经取得 所有感应元的能量信号后, 仅撷取其中非傀儡感应元的能量信号继续后续运用。 参阅图 5所示的感应元布局示意图。
图 5显示一个感应芯片中设有以阵列形式排列的多个感应元, 在中央部分 的感应元的外围设有傀儡传感器( dummy sensor ), 目的是使得整个感应芯片制 程更均匀,也能因此使得更均匀感测能量。图 5显示设于周围的傀儡感应元 511, 512, 513, 514, 515, 516设为不工作的感应元,而设于靠近中间部分的感应元 521, 522, 523, 524则为主要感应光线能量的感应组件。
当一个阵列形式排列的感应元同时曝光在一个反射光中, 其中能够均匀感 应到光线的感应元为较偏向中央部分的感应组件, 而周围的感应元则可能有接 收不均勾能量的可能, 因此在加总整个感应芯片所接收的总能量时, 可以通过 设定傀儡感应元 ( 511, 512, 513, 514, 515, 516 )排除这些可能发生信号不稳定的 能量值, 而可以取得比较具有参考价值的参考能量值。
如图 5所示,电路设有一个加总器 501 ,电性连接到感应芯片中每个感应元, 能够取得各个感应元的光电流信号, 并能够通过模拟数字转换成为电压值, 但 由于感应芯片中各感应元接收光信号的光电流极小, 需要通过增益放大的阶段 才能取得有效的参考数值, 而能够接着计算时间间隔前后所取得的能量变化。 根据该实施例, 这些光电流信号经增益放大器 502处理后, 形成输出一个输出 信号, 如以输出电压 Vout表示的信号; 另外经一计算器 503根据有效取得的能 量信号计算平均值输出, 输出如平均电压信号 Vavg。
之后, 前述输出信号(如输出电压 Vout )与平均值(如平均电压信号 Vavg ) 将输出至如图 4 所示的比较器, 让比较器能够比对感应元的能量信号与一参考 值(如全部或部分感应元的能量平均值), 藉此取得该感应元的能量状态, 实际 上每一个感应元都可以以数字方式高 (H ) 与低(L ) 来表示能量状态。
光传感器阵列装置中的主要组件除了前述以阵列形式排列的感应元、 光源 与控制电路外, 还于一实施例中整合了将信号放大的增益放大电路(如增益放 大器 502 )与可能需要的降噪电路等, 实施例可参阅图 6所示本发明光传感器阵 列装置内光源的增益控制与降噪电路模块图。
图 6显示的电路为实现本发明光感测阵列装置内控制电路(如图 3的控制 电路 36 )的一种实施例, 控制电路设有一电压源 Vsupply, 供应光传感器阵列装 置中光源装置 601运作所需的电力, 供电于光源装置 601驱动发光, 不限于镭 射或发光二极管 (LED ), 其中镭射为较佳光源, 因其具有良好的空间同调性, 可以增强干涉效应。
电路上可设有限流器 602,相关的电气信号可以经过一定的处理控制供应给 光源装置 601的电力, 或可回馈相关电气信号(比如过滤特定电压或电流信号) 至电流控制器 603 ,由此电流控制器 603对光源装置 601的电压和电流进行管理, 包括对光源装置 601驱动的电流进行限制。
当光线自光源装置 601 射向一个表面, 自表面反射的光受到本发明揭示的 传感器阵列接收, 通过如图 4或图 5揭示的光传感器阵列装置中的感应元接收 后转为能量信号。
可再参阅前述图 5 所示的传感器阵列, 其中设有一些傀儡感应元, 这些傀 儡感应元并不提供作为移动向量判断的能量信号, 包括能量状态与变化的信号, 但可以作为纯粹判断光信号的功能, 如图 6 所示的实施例, 由傀儡感应元接收 到反射光而产生的光强度信号 60 , 由电路中的第一增益控制器 604调节信号强 度, 以供内部微处理器 607参考。 当取得由傀儡感应元产生的光强度信号 60而 输出电压 Vout外, 信号可经适当的模拟数字转换器 605处理, 将电气信号转换 为数字信号, 反馈至微处理器 607 , 其目的可包括光源装置 601 的曝光时间 ( exposure time )、 多个感应元输出的能量信号的信号增益调节 ( signal gain adjustment ) 与噪声消除等。
上述将信号强度反馈至微处理器 607 ,其目的之一藉此自动调节光传感器阵 列装置中光源装置 601的曝光时间 (exposure time adjustment )„ 比如微处理器 607发出一脉宽调变(PWM )控制信号至前述电流控制器 603 , 比如经由信号线 611传递控制信号, 由控制此脉宽调变控制信号的工作周期 ( duty cycle )控制光 源装置 601 的发光周期, 以通过曝光时间调整而控制装置能够产生适当时间长 度的光信号。
在另一实施例中, 控制电路中的微处理器 604可根据装置所取得的光强度 信号作出优化光源装置 601 的措施, 比如经由信号线 612传送电流控制信号到 电流控制器 603 , 藉此调节驱动电流, 可以调整光源装置 601产生的光强度。 据 此, 调整光源强度 /亮度以及配合前述曝光时间的调节所建立的补偿机制, 传感 器阵列装置可以适应较多情况的表面, 比如不同的表面结构、 与该表面的距离 等。
另外, 控制电路中的微处理器 607还可以根据由传感器阵列反馈的能量信 号控制各感应元输出的信号增益, 如经信号线 613传递控制信号, 通过增益控 制器 608控制各感应元的信号增益,并能通过电性连接各感应元的比较单元 609 比对各感应元接收的能量信号与一参考平均值。
当微处理器 607取得由傀儡感应元取得的光强度信号后, 可以通过(控制 信号经由信号线 614 )调整比较单元 609中设定的噪声消除门坎, 以动态降低感 应元的内在噪声 ( noise reduction )。
光传感器阵列装置应用不同时间能量变化判断装置与表面的相对移动方 向, 装置先取得各感应元于前后时间 (t0, tl )接收的能量, 再计算前后时间能 量的全部或部分感应元接收能量的平均值, 各感应元不同时间所取得的能量数 值(可以电压信号表示) 与平均数值比对后, 可以计算前后时间的能量变化。 之后参考在不同时间 (to, tl ) 的邻近感应元的能量变化, 可以判断前后时间能 量变化的方向。 最后可以通过多个感应元的能量变化方向来判断整体移动向量。
移动向量的判断可以参考图 7 所示本发明所揭示装置中多个感应元执行光 线寻迹的示意图之一。
图 7显示有多个阵列排列的感应元组合 701, 702, 703, 704, 705, 706,此例仅 示意列举通过相邻感应元在不同时间 (如第一时间 t0 , 第二时间 tl )感测到的 能量变化而辨识移动向量的示意图。
其中 t0与 tl为前后两个釆样时间, H与 L分别表示由前述比较器所输出的 高低电压信号, 也就是可视为能量状态(相较于平均能量为一个能量状态), 主 要是通过前后时间的电压信号转变判断出一个整体的移动向量。 图 7显示为个 别感应元中在前后两个不同时间的能量变化。 比如感应元组合 701 中示意显示几个(至少两个)感应元, 其中左方显示 在第一时间 t0时, 两个感应元分别感应到 L与 H两个能量状态; 当进入第二时 间 tl时, 两个感应元的能量变化则转变为 11与 H。 当 L、 H ( t0 )转变为 H、 H ( tl ) 时, 其中感应元的能量状态由 L转变为 H, 表示由右方的 H替补到左方 的位置, 因此可以初步判断在此时间间隔中有效感应的移动方向为向左。
而此感应元组合 701的另一组感应元在第一时间 t0时,能量状态为 H与 L; 到了第二时间 tl , 能量状态则为 L与 L, 其中有个感应元能量状态的由 H转变 为 L, 也是表示右方的 L替补到左方的位置, 因此可以判断有个向左的移动方 向。
再如感应元组合 702内左方的两个感应元在第一时间 t0的能量状态为 L与 H, 到了第二时间 tl改变为 L与 L, 可以看出其中的 H经左方的 L向右替补成 为 L, 因此初步判断有个向右的移动向量。
同理, 感应元组合 702内的右方有两个感应元在第一时间 t0的能量状态为 H与 L, 之后到了第二时间 tl时变化成为 H与 H, 其中右方的 L经左方的 H替 补转变为 H, 因此可以判断出有个向右的移动向量。
图中感应元组合 705与 706并没有箭头标示方向, 经判断为此例中多个感 应元在第一时间 to与第二时间 tl的时间间隔中没有能量变化, 或者无法通过其 中能量变化判断出移动方向, 比如感应元组合 706在第一时间 t0能量状态为 L 与 H, 到了第二时间 tl , 能量状态转变为 H与 L, 这是无法通过能量状态变化 来判断移动方向的。 因此, 这两种态样是没有有效输出信号的。
当前后两个时间的全部感应元都判断了各自能量变化的方向时, 可以整体 判断出一个总体的移动向量。
另一个移动方向判断的方式如图 8 所示为本发明所揭示装置中感应芯片执 行光线寻迹的示意图之二。 此例通过不同时间的感应元能量状态的转换方向以 辨识移动向量的方法示意图, 其中 X为不在意的值, @为 to与 tl所感应信号的 比对, 藉此判断移动向量。
经感应芯片接收到反射光时, 感应芯片内的多个感应元在不同时间根据接 收的信号能量与平均能量比较时, 产生有高低不同电压信号, 如图 8显示产生 有感应信号 "@ "; 在一些情况下, 仍有可能部分的感应元并没有能量变化, 或 者无关电压信号的高低, 此时如图 8显示为不在意的值 "X"。 根据图 8所示的实施态样, 在感应元组合 801 中, 经前述比较器于第一时 间 tO取得相邻感应元的能量变化, 表示为状态 "X@@" , 其中 "X" 为不在意 值, "@"表示有高低电压变化;在第二时间 tl取得几个相邻感应元的能量变化, 表示为状态 "@@X"。经第一时间 tO与第二时间 tl的各感应元的能量状态变化, 此例显示状态 "X@@" 转变为 "@@X" , 可以判断 向左位移 (shift ), 因此可以判断这个感应元组合 801有一个向左移动的变化, 如图 8中箭头所示。
在感应元组合 802中, 其中相邻的感应元在第一时间 tO的能量变化表示为 状态 "@@X" , 在第二时间 tl时, 能量状态表示为 "X@@" , 此时可见经时间 转变(tO到 tl )后, 其中状态 "@@" 显示有向右位移的趋势。 因此, 本发明所 揭示的发明可利用此前后时间的能量变化判断整体装置的移动方向。
值得一提的是, 在判断移动方向时, 由于发明釆取了传感器阵列, 因此微 小的误差并不会影响整体判断的结果。 若寻迹方法应用于计算机光学鼠标上, 一般用户操作鼠标的移动频率远低于其中如控制电路的处理速度, 一些緩慢改 变的参考数值并不会影响整体判断。
综上所述, 本发明提供的一种光传感器阵列装置, 整合于一半导体封装内, 藉此可以有效压抑内部固有的噪声 (intrinsic noise ), 并提出可以动态调整光源 强度或亮度以及配合曝光时间的调节建立的补偿机制, 使得传感器阵列装置可 以适应较多的感应表面。
以上所述是本发明的优选实施方式, 应当指出, 对于本技术领域的普通技 术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这 些改进和润饰也视为本发明的保护范围。

Claims

权利要求书
1.一种光传感器阵列装置, 其特征在于, 包括:
多个阵列形式排列的感应元, 组成一传感器阵列, 其中设有多个傀儡感应 元, 该传感器阵列用于接收自一表面反射的光线;
多个比较器, 各比较器对应连接一个感应元, 用于比对输入的两个能量信 号, 其一为该感应元产生的能量信号, 另为一平均值;
一光源装置, 用于产生入射该表面的光线; 以及
一控制电路, 电性连接该多个感应元、 该多个比较器与该光源装置, 用于 控制该光源装置产生该光线, 以及取得该多个感应元的能量信号, 并判断由该 表面反射形成的空间干扰的能量差异。
2.如权利要求 1 所述的光传感器阵列装置, 其特征在于, 该多个感应元之 间具有固定的间距与平均的相对位置。
3.如权利要求 2所述的光传感器阵列装置, 其特征在于, 该阵列形式排列 的多个感应元封装于一集成电路内。
4.如权利要求 1 所述的光传感器阵列装置, 其特征在于, 该控制电路动态 调整该光源装置的曝光时间。
5.如权利要求 4所述的光传感器阵列装置, 其特征在于, 该光源装置为一 空间同调性良好的光源。
6.如权利要求 4所述的光传感器阵列装置, 其特征在于, 该光源装置为一 镭射光装置。
7.如权利要求 5 所述的光传感器阵列装置, 其特征在于, 该控制电路通过 控制一脉宽调变控制信号的工作周期以控制该光源装置的发光周期。
8.如权利要求 1 所述的光传感器阵列装置, 其特征在于, 该控制电路还动 态调节该多个感应元输出的能量信号的增益。
9.如权利要求 8项所述的光传感器阵列装置, 其特征在于, 该控制电路根 据由该多个感应元组成的该传感器阵列反馈的能量信号控制各感应元的信号增 益。
10. 如权利要求 8所述的光传感器阵列装置, 其特征在于, 该控制电路在接 收该多个感应元的能量信号后, 仅撷取其中全部或部分的非傀儡感应元的能量 信号, 计算该平均值。
11. 如权利要求 1所述的光传感器阵列装置, 其特征在于, 该控制电路调整 该光源装置产生的光强度。
12. 如权利要求 11所述的光传感器阵列装置, 其特征在于, 该控制电路根 据由该多个傀儡感应元所取得的光强度信号调节该光源装置的驱动电流, 以调 整该光源装置产生的光强度。
13. 如权利要求 12所述的光传感器阵列装置, 其特征在于, 该傀儡感应元 设于该传感器阵列的周围。
PCT/CN2013/078086 2013-06-26 2013-06-26 光传感器阵列装置 WO2014205705A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES13888347.5T ES2694689T3 (es) 2013-06-26 2013-06-26 Dispositivo de matriz de sensores de luz
PCT/CN2013/078086 WO2014205705A1 (zh) 2013-06-26 2013-06-26 光传感器阵列装置
EP13888347.5A EP3015958B1 (en) 2013-06-26 2013-06-26 Light sensor array device
JP2016522161A JP6326488B2 (ja) 2013-06-26 2013-06-26 光センサーアレー装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/078086 WO2014205705A1 (zh) 2013-06-26 2013-06-26 光传感器阵列装置

Publications (1)

Publication Number Publication Date
WO2014205705A1 true WO2014205705A1 (zh) 2014-12-31

Family

ID=52140808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078086 WO2014205705A1 (zh) 2013-06-26 2013-06-26 光传感器阵列装置

Country Status (4)

Country Link
EP (1) EP3015958B1 (zh)
JP (1) JP6326488B2 (zh)
ES (1) ES2694689T3 (zh)
WO (1) WO2014205705A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111694447A (zh) * 2019-03-11 2020-09-22 原相科技股份有限公司 多模光学导航装置及方法
CN116193681A (zh) * 2023-04-24 2023-05-30 聊城市敏锐信息科技有限公司 电照明光源的光照调节电路装置及鱼缸照明系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI684268B (zh) * 2017-04-20 2020-02-01 億光電子工業股份有限公司 感測模組及其製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030102425A1 (en) * 2001-12-05 2003-06-05 Em Microelectronic-Marin Sa Method, sensing device and optical pointing device including a sensing device for comparing light intensity between pixels
CN1674040A (zh) * 2004-03-22 2005-09-28 安捷伦科技公司 对微粒污染具有低敏感性的屏幕指针位置控制装置及方法
US20060226346A1 (en) * 2005-04-11 2006-10-12 Em Microelectronic - Marin Sa Motion detection mechanism for laser illuminated optical mouse sensor
CN101111881A (zh) * 2004-05-21 2008-01-23 硅光机器公司 抗斑点衰落的光学定位装置
CN103324304A (zh) * 2013-06-26 2013-09-25 林大伟 光传感器阵列装置
CN203376690U (zh) * 2013-06-26 2014-01-01 林大伟 光传感器阵列装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03111925A (ja) * 1989-09-26 1991-05-13 Fuji Xerox Co Ltd スペックルパターンの移動検出方法及びこれを用いた位置指定装置
JPH09190277A (ja) * 1996-01-12 1997-07-22 Sony Corp 入力装置
US6344877B1 (en) * 1997-06-12 2002-02-05 International Business Machines Corporation Image sensor with dummy pixel or dummy pixel array
JP3087637U (ja) * 2002-01-30 2002-08-16 東貝光電科技股▲ふん▼有限公司 整合式光学マウス用のチップモジュール
KR100494469B1 (ko) * 2002-10-02 2005-06-13 삼성전기주식회사 광 마우스용 단일 집적회로
EP1605342A3 (en) * 2004-06-10 2010-01-20 Samsung Electronics Co, Ltd Display device and driving method thereof
JP2007080981A (ja) * 2005-09-13 2007-03-29 Kaitokui Denshi Kogyo Kofun Yugenkoshi 光学式マウス用自動光出力制御付き光出力システム
US20070242709A1 (en) * 2006-04-18 2007-10-18 Tan Shan C Laser pulse fault detection method and system
US8604406B2 (en) * 2006-11-17 2013-12-10 Silicon Communications Technology Co., Ltd Low power image sensor adjusting reference voltage automatically and optical pointing device comprising the same
US9052759B2 (en) * 2007-04-11 2015-06-09 Avago Technologies General Ip (Singapore) Pte. Ltd. Dynamically reconfigurable pixel array for optical navigation
KR100873985B1 (ko) * 2007-07-18 2008-12-17 주식회사 애트랩 광 포인팅 장치 및 이 장치의 자동 이득 제어 방법
US8031176B1 (en) * 2008-01-22 2011-10-04 Cypress Semiconductor Corporation Optical navigation system using a single-package motion sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030102425A1 (en) * 2001-12-05 2003-06-05 Em Microelectronic-Marin Sa Method, sensing device and optical pointing device including a sensing device for comparing light intensity between pixels
CN1674040A (zh) * 2004-03-22 2005-09-28 安捷伦科技公司 对微粒污染具有低敏感性的屏幕指针位置控制装置及方法
CN101111881A (zh) * 2004-05-21 2008-01-23 硅光机器公司 抗斑点衰落的光学定位装置
US20060226346A1 (en) * 2005-04-11 2006-10-12 Em Microelectronic - Marin Sa Motion detection mechanism for laser illuminated optical mouse sensor
CN103324304A (zh) * 2013-06-26 2013-09-25 林大伟 光传感器阵列装置
CN203376690U (zh) * 2013-06-26 2014-01-01 林大伟 光传感器阵列装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111694447A (zh) * 2019-03-11 2020-09-22 原相科技股份有限公司 多模光学导航装置及方法
CN116193681A (zh) * 2023-04-24 2023-05-30 聊城市敏锐信息科技有限公司 电照明光源的光照调节电路装置及鱼缸照明系统
CN116193681B (zh) * 2023-04-24 2023-06-27 聊城市敏锐信息科技有限公司 电照明光源的光照调节电路装置及鱼缸照明系统

Also Published As

Publication number Publication date
EP3015958A4 (en) 2017-04-26
JP6326488B2 (ja) 2018-05-16
EP3015958B1 (en) 2018-08-08
ES2694689T3 (es) 2018-12-26
EP3015958A1 (en) 2016-05-04
JP2016523414A (ja) 2016-08-08

Similar Documents

Publication Publication Date Title
JP6270813B2 (ja) 複数の光源を有するモーションセンサ装置
TWI651516B (zh) 光電感測器、光電檢測方法以及應用其的心率檢測設備
US9223407B2 (en) Gesture recognition apparatus and complex optical apparatus
US8928626B2 (en) Optical navigation system with object detection
WO2014205705A1 (zh) 光传感器阵列装置
TWI530828B (zh) 具有熱感應器之光學滑鼠
JP2011138503A (ja) 物体検出装置
CN203376690U (zh) 光传感器阵列装置
US20150261329A1 (en) Electronic device having optical indexing module
US8519958B2 (en) Optical sensor and operating method thereof
CN103324304B (zh) 光传感器阵列装置
US20130229349A1 (en) Optical touch input by gesture detection from varying images
US9804000B2 (en) Optical sensor array apparatus
US9804695B2 (en) Cursor control apparatus and method for the same
US20150293612A1 (en) Pen-type optical indexing apparatus and method for controlling the same
TW201500985A (zh) 光感測器陣列裝置
US20150193019A1 (en) Mobile apparatus with optical indexer, and method for indexing using the same
TWI476646B (zh) 游標控制裝置與控制方法
TWI497036B (zh) 光線尋跡方法與裝置
TWI592852B (zh) 觸控裝置
TW201519051A (zh) 具光學指示器的行動裝置與指示方法
TW201519014A (zh) 具光學指示模組的電子裝置
WO2016063911A1 (ja) 物体検出装置および情報処理装置
US9791945B2 (en) Optical mouse and method for performing configured function thereof
JP6236150B2 (ja) 光線追跡方法及びその装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888347

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016522161

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013888347

Country of ref document: EP