WO2014203615A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2014203615A1
WO2014203615A1 PCT/JP2014/061421 JP2014061421W WO2014203615A1 WO 2014203615 A1 WO2014203615 A1 WO 2014203615A1 JP 2014061421 W JP2014061421 W JP 2014061421W WO 2014203615 A1 WO2014203615 A1 WO 2014203615A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
expansion valve
electronic expansion
outdoor
air conditioner
Prior art date
Application number
PCT/JP2014/061421
Other languages
French (fr)
Japanese (ja)
Inventor
裕一 田井
Original Assignee
株式会社 東芝
東芝ライフスタイル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝ライフスタイル株式会社 filed Critical 株式会社 東芝
Priority to CN201480034236.5A priority Critical patent/CN105308401A/en
Publication of WO2014203615A1 publication Critical patent/WO2014203615A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • Embodiments of the present invention relate to an air conditioner.
  • the refrigerant flow rate (circulation amount) required for producing the same cooling capacity or heating capacity is small. Become. For this reason, it is important to control the opening of the electronic expansion valve that adjusts the flow rate of the refrigerant in accordance with the characteristics of the R32 single refrigerant.
  • This embodiment provides an air conditioner capable of stably circulating a refrigerant in a low-capacity range even when an R32 single refrigerant is used as the refrigerant.
  • An air conditioner includes a compressor, an outdoor heat exchanger, an outdoor unit having an electronic expansion valve, an indoor unit having an indoor heat exchanger and a blower, and a refrigerant pipe connecting between the outdoor unit and the indoor unit.
  • the figure which shows the structure of the air conditioner of one Embodiment typically The figure which shows the structure of the electronic expansion valve of one Embodiment typically The figure which shows typically the relationship between the flow volume of the refrigerant
  • the air conditioner 1 includes an outdoor unit 2, an indoor unit 3, an outdoor unit 2, and a refrigerant pipe 4 that connects the indoor unit 3.
  • the outdoor unit 2 includes a compressor 5, an outdoor heat exchanger 6, an outdoor temperature sensor 7, a cooling fan 8, a four-way valve 9, an electronic expansion valve 10, an outdoor control unit 11, and the like.
  • the outdoor unit 2 is basically the same as a known configuration, detailed description thereof is omitted, but the four-way valve 9 is controlled to control the flow of the refrigerant during the cooling operation (the direction indicated by the solid arrow in FIG. 1).
  • the indoor unit 3 has a known configuration including an indoor heat exchanger 12, an indoor temperature sensor 13, a blower fan 14 as a blower, and an indoor control unit 15 that controls them.
  • the indoor control unit 15 receives, for example, setting information from a remote controller (not shown) and controls the air volume and direction of the blower fan 14.
  • the indoor unit 3 is connected to the outdoor unit 2 side by electric wiring (not shown), and transmits the received setting information to the outdoor control unit 11.
  • the outdoor control unit 11 then performs a cooling operation, a heating operation, a dehumidifying operation, or the like based on the outside air temperature acquired by the outdoor temperature sensor 7 or the room temperature acquired by the indoor temperature sensor 13 so that the set temperature is set by the user. Air conditioning control is performed.
  • the outdoor unit 2 and the indoor unit 3 constitute a known refrigeration cycle.
  • R32 single refrigerant is sealed in the refrigerant pipe 4 connecting the outdoor unit 2 and the indoor unit 3 as the refrigerant.
  • This R32 single refrigerant is also referred to as an HFC (Hydro Fluoro) Carbon) single refrigerant, and has a characteristic that the latent heat is larger than that of the widely used R410A mixed refrigerant. For this reason, it is possible to reduce the flow rate for obtaining the air conditioning capability equivalent to the case where the conventional mixed refrigerant is used.
  • the flow rate of the refrigerant is controlled by adjusting the opening of the electronic expansion valve 10.
  • the electronic expansion valve 10 includes a pipe part 20 set to a diameter ⁇ D that forms a refrigerant passage R through which a refrigerant flows, and a valve seat 21 (opening part) of the pipe part 20. And a valve body 22 that opens and closes.
  • the outdoor control unit 11 described above controls the opening degree of the electronic expansion valve 10 by changing the distance between the valve seat 21 and the valve body 22 and adjusts the flow rate of the refrigerant.
  • the diameter ⁇ D of the electronic expansion valve 10 is set in the range of 1.2 mm to 1.4 mm.
  • the opening degree of the electronic expansion valve 10 is pulse-controlled as is well known, and the opening degree increases as the number of pulses increases.
  • the air conditioner 1 is operated in a stable flow rate range where the opening degree and the flow rate are in a stable and proportional relationship.
  • the air conditioner 1 can be operated from a low capacity range where the cooling capacity or heating capacity is 1 kW or less to a high capacity range where the cooling capacity or heating capacity is, for example, 2.2 kW.
  • the operation and effect of the air conditioner 1 having the above-described configuration will be described.
  • the amount of refrigerant required is small, so that the electronic expansion valve 10 is operated in a small range.
  • the opening degree of the electronic expansion valve 10 is reduced, the flow rate of the refrigerant can be reduced.
  • the opening degree is reduced, it becomes difficult to adjust the flow rate.
  • the proportional relationship between the flow rate and the opening degree is broken.
  • the refrigerant flow rate (circulation amount) required for providing the same cooling capacity or heating capacity is high. Less. For this reason, when the same control as that of the R410A mixed refrigerant is performed, the lower limit of the stable flow rate region moves further in the direction in which the opening degree is larger than P0, and stable operation in the low capacity region is further difficult. It becomes.
  • the diameter of the electronic expansion valve 10 is set in the range of 1.2 mm to 1.4 mm (excluding tolerances). That is, the aperture ⁇ D of the electronic expansion valve 10 is set so that the amount of change in the refrigerant flow rate per pulse of the opening is smaller than that in the conventional configuration.
  • the lower limit of the stable flow region when the R32 single refrigerant is used is a position corresponding to the opening P1. In other words, the lower limit of the stable flow region is moved to the side where the opening degree of the electronic expansion valve 10 becomes smaller than when the R410A mixed refrigerant is used.
  • coolant can be stably controlled to the range where a flow volume is smaller. That is, even when the R32 single refrigerant is used as the refrigerant, the refrigerant can be circulated stably in the low capacity range.
  • the refrigeration cycle can be stably operated up to the low capacity range. Therefore, the range in which air conditioning can be performed stably can be widened, and the performance of the air conditioner 1 can be improved.
  • the diameter ⁇ D of the electronic expansion valve 10 is set to 1.2 mm to 1.4 mm in order to stabilize the flow rate in the low capacity range, but the opening degree is maximized even with the diameter. Even in such an operating state, a sufficient refrigerant flow rate can be ensured.
  • 1 is an air conditioner
  • 2 is an outdoor unit
  • 3 is an indoor unit
  • 4 is a refrigerant pipe
  • 5 is a compressor
  • 6 is an outdoor heat exchanger
  • 9 is a four-way valve
  • 10 is an electronic expansion valve
  • 11 is an outdoor unit.
  • 12 is an indoor heat exchanger
  • 14 is a blower fan (blower means).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This air conditioner comprises: an outdoor unit that has a compressor, an outdoor heat exchanger, and an electronic expansion valve; an indoor unit that has an indoor heat exchanger and a blower fan (blower means); a refrigerant pipe that connects between the outdoor unit and the indoor unit; and an outdoor control unit (control means) that controls the flow of refrigerant flowing in the refrigerant pipe by way of controlling the opening of the electronic expansion valve. Pure R32 refrigerant is used as the refrigerant, operation is possible when the minimum capacity during cooling operation or heating operation is at most 1 kW, and the electronic expansion valve (10) diameter is set in a range from 1.2 to 1.4 mm.

Description

空気調和機Air conditioner
 本発明の実施形態は、空気調和機に関する。 Embodiments of the present invention relate to an air conditioner.
 近年、冷凍サイクルで一般的に用いられている冷媒であるR410A混合冷媒に代えて、R32単一冷媒を用いる冷凍サイクルを採用したものが知られている(例えば、特許文献1参照)。 In recent years, a refrigerant that employs a refrigeration cycle using a single R32 refrigerant instead of the R410A mixed refrigerant, which is a refrigerant generally used in the refrigeration cycle, is known (see, for example, Patent Document 1).
特開2001-27458号公報Japanese Patent Laid-Open No. 2001-27458
 さて、従来のR410A混合冷媒と比較して相対的に体積当たりの冷媒能力が高いR32単一冷媒では、同一の冷房能力あるいは暖房能力を出すために必要となる冷媒の流量(循環量)が少なくなる。このため、冷媒の流量を調整する電子膨張弁の開度をR32単一冷媒の特性に合わせて制御することが重要となる。 Now, with the R32 single refrigerant having a relatively high refrigerant capacity per volume compared to the conventional R410A mixed refrigerant, the refrigerant flow rate (circulation amount) required for producing the same cooling capacity or heating capacity is small. Become. For this reason, it is important to control the opening of the electronic expansion valve that adjusts the flow rate of the refrigerant in accordance with the characteristics of the R32 single refrigerant.
 しかしながら、例えば動作能力が1kW以下となるような低能力域では、運転に必要な冷媒の流量がそもそも少ないこと、また、R32単一冷媒を用いる場合にはさらに流量が少なくなることから、流量の調整が困難になる。その結果、低能力域における冷媒の循環が不安定となり、結果として、冷凍サイクルの作動が不安定になる問題がある。そして、冷凍サイクルの作動が不安定になると、十分な冷房能力や暖房能力を得ることができないという問題が発生する。 However, for example, in a low capacity range where the operating capacity is 1 kW or less, the flow rate of the refrigerant necessary for operation is originally small, and when the R32 single refrigerant is used, the flow rate is further reduced. Adjustment becomes difficult. As a result, the refrigerant circulation in the low capacity region becomes unstable, and as a result, there is a problem that the operation of the refrigeration cycle becomes unstable. When the operation of the refrigeration cycle becomes unstable, there arises a problem that sufficient cooling capacity and heating capacity cannot be obtained.
 本実施形態は、冷媒としてR32単一冷媒を用いる場合であっても、低能力域において安定的に冷媒を循環させることができる空気調和機を提供する。 This embodiment provides an air conditioner capable of stably circulating a refrigerant in a low-capacity range even when an R32 single refrigerant is used as the refrigerant.
 実施形態の空気調和機は、圧縮機、室外熱交換器および電子膨張弁を有する室外機と、室内熱交換器および送風手段を有する室内機と、室外機および室内機の間を接続する冷媒配管と、電子膨張弁の開度を制御することにより冷媒配管を流れる冷媒の流量を制御する制御手段とを備え、冷媒としてR32単一冷媒を採用し、冷房運転時または暖房運転時の最小能力が1kW以下での動作が可能であり、電子膨張弁の口径を1.2から1.4mmの範囲に設定したことを特徴とする。 An air conditioner according to an embodiment includes a compressor, an outdoor heat exchanger, an outdoor unit having an electronic expansion valve, an indoor unit having an indoor heat exchanger and a blower, and a refrigerant pipe connecting between the outdoor unit and the indoor unit. And a control means for controlling the flow rate of the refrigerant flowing through the refrigerant pipe by controlling the opening of the electronic expansion valve, adopting an R32 single refrigerant as the refrigerant, and having a minimum capacity during cooling operation or heating operation Operation at 1 kW or less is possible, and the diameter of the electronic expansion valve is set in the range of 1.2 to 1.4 mm.
一実施形態の空気調和機の構成を模式的に示す図The figure which shows the structure of the air conditioner of one Embodiment typically 一実施形態の電子膨張弁の構成を模式的に示す図The figure which shows the structure of the electronic expansion valve of one Embodiment typically 一実施形態の冷媒の流量と電子膨張弁の開度との関係を模式的に示す図The figure which shows typically the relationship between the flow volume of the refrigerant | coolant of one Embodiment, and the opening degree of an electronic expansion valve.
 以下、一実施形態による空気調和機について、図1から図3を参照しながら説明する。図1に示すように、実施形態の空気調和機1は、室外機2、室内機3、室外機2および室内機3の間を接続する冷媒配管4等から構成されている。室外機2は、圧縮機5、室外熱交換器6、室外温度センサ7、冷却ファン8、四方弁9、電子膨張弁10および室外制御部11等を備えている。この室外機2は、基本的には周知の構成と共通するため詳細な説明は省略するが、四方弁9を制御して冷媒の流れを冷房運転時(図1に実線の矢印にて示す向き)と暖房運転時(図1に破線の矢印にて示す向き)とで切り替えるとともに、室外温度センサ7により取得した外気温等に基づいて圧縮機5の運転周波数や電子膨張弁10の開度等を室外制御部11により制御している。 Hereinafter, an air conditioner according to an embodiment will be described with reference to FIGS. 1 to 3. As shown in FIG. 1, the air conditioner 1 according to the embodiment includes an outdoor unit 2, an indoor unit 3, an outdoor unit 2, and a refrigerant pipe 4 that connects the indoor unit 3. The outdoor unit 2 includes a compressor 5, an outdoor heat exchanger 6, an outdoor temperature sensor 7, a cooling fan 8, a four-way valve 9, an electronic expansion valve 10, an outdoor control unit 11, and the like. Although the outdoor unit 2 is basically the same as a known configuration, detailed description thereof is omitted, but the four-way valve 9 is controlled to control the flow of the refrigerant during the cooling operation (the direction indicated by the solid arrow in FIG. 1). ) And during heating operation (in the direction indicated by the dashed arrow in FIG. 1), the operating frequency of the compressor 5, the opening of the electronic expansion valve 10 and the like based on the outside air temperature obtained by the outdoor temperature sensor 7 Is controlled by the outdoor control unit 11.
 室内機3は、室内熱交換器12、室内温度センサ13、送風手段としての送風ファン14、およびそれらを制御する室内制御部15等を有する周知の構成のものである。室内制御部15は、例えば図示しないリモコン等からの設定情報の受信や送風ファン14の風量や風向の制御等を行っている。また、室内機3は、図示しない電気配線により室外機2側と接続されており、受信した設定情報を室外制御部11に送信する。そして、室外制御部11は、ユーザにより設定された設定温度となるように、室外温度センサ7により取得した外気温や室内温度センサ13により取得した室温に基づいて冷房運転、暖房運転あるいは除湿運転等の空調制御を行っている。このように、室外機2および室内機3によって、周知の冷凍サイクルが構成されている。 The indoor unit 3 has a known configuration including an indoor heat exchanger 12, an indoor temperature sensor 13, a blower fan 14 as a blower, and an indoor control unit 15 that controls them. The indoor control unit 15 receives, for example, setting information from a remote controller (not shown) and controls the air volume and direction of the blower fan 14. In addition, the indoor unit 3 is connected to the outdoor unit 2 side by electric wiring (not shown), and transmits the received setting information to the outdoor control unit 11. The outdoor control unit 11 then performs a cooling operation, a heating operation, a dehumidifying operation, or the like based on the outside air temperature acquired by the outdoor temperature sensor 7 or the room temperature acquired by the indoor temperature sensor 13 so that the set temperature is set by the user. Air conditioning control is performed. As described above, the outdoor unit 2 and the indoor unit 3 constitute a known refrigeration cycle.
 室外機2と室内機3との間を接続する冷媒配管4には、冷媒としてR32単一冷媒が封入されている。このR32単一冷媒は、HFC(Hydro Fluoro Carbon)単一冷媒とも称されており、広く採用されてきたR410A混合冷媒に対して潜熱が大きいという特性を備えている。このため、従来の混合冷媒を使用した場合と同等の空調能力を得るための流量を少なくすることが可能である。 R32 single refrigerant is sealed in the refrigerant pipe 4 connecting the outdoor unit 2 and the indoor unit 3 as the refrigerant. This R32 single refrigerant is also referred to as an HFC (Hydro Fluoro) Carbon) single refrigerant, and has a characteristic that the latent heat is larger than that of the widely used R410A mixed refrigerant. For this reason, it is possible to reduce the flow rate for obtaining the air conditioning capability equivalent to the case where the conventional mixed refrigerant is used.
 さて、冷媒の流量は、電子膨張弁10の開度を調整することにより制御されている。具体的には、図2に示すように、電子膨張弁10は、冷媒が流れる冷媒通路Rを形成する口径φDに設定された配管部20と、その配管部20の弁座21(開口部)を開閉する弁体22とを有している。上記した室外制御部11は、この弁座21と弁体22との間の距離を変化させることで電子膨張弁10の開度を制御し、冷媒の流量を調整する。本実施形態では、電子膨張弁10の口径φDは、1.2mm~1.4mmの範囲に設定されている。また、電子膨張弁10の開度は、周知のようにパルス制御されており、パルス個数が大になると開度も大になる。そして、空気調和機1では、開度と流量とが安定して比例関係となる安定流量域で運転が行われている。なお、空気調和機1は、冷房能力または暖房能力が1kW以下のような低能力域から、冷房能力または暖房能力が例えば一例として2.2kW等の高能力域まで運転可能である。 Now, the flow rate of the refrigerant is controlled by adjusting the opening of the electronic expansion valve 10. Specifically, as shown in FIG. 2, the electronic expansion valve 10 includes a pipe part 20 set to a diameter φD that forms a refrigerant passage R through which a refrigerant flows, and a valve seat 21 (opening part) of the pipe part 20. And a valve body 22 that opens and closes. The outdoor control unit 11 described above controls the opening degree of the electronic expansion valve 10 by changing the distance between the valve seat 21 and the valve body 22 and adjusts the flow rate of the refrigerant. In the present embodiment, the diameter φD of the electronic expansion valve 10 is set in the range of 1.2 mm to 1.4 mm. The opening degree of the electronic expansion valve 10 is pulse-controlled as is well known, and the opening degree increases as the number of pulses increases. The air conditioner 1 is operated in a stable flow rate range where the opening degree and the flow rate are in a stable and proportional relationship. The air conditioner 1 can be operated from a low capacity range where the cooling capacity or heating capacity is 1 kW or less to a high capacity range where the cooling capacity or heating capacity is, for example, 2.2 kW.
 次に、上記構成の空気調和機1の作用および効果について説明する。
 冷房能力または暖房能力が1kW以下のような低能力域では、必要とされる冷媒の量も少ないことから、電子膨張弁10の開度が小さい範囲で運転されることになる。このとき、電子膨張弁10の開度を小さくすれば冷媒の流量を少なくすることはできるものの、開度が小さくなると流量の調整が難しくなる。具体的には、図3に比較例として破線にて示すR410A混合冷媒の場合、開度がP0よりも小さくなると、流量と開度との比例関係が崩れていく。なお、図3に示すR410A混合冷媒のグラフは、電子膨張弁の口径φDを1.6mm~1.8mm程度に設定した従来構成によるものである。このため、従来構成の場合、電子膨張弁10の開度がP0以下の範囲では開度1パルスに対する流量の変化量が一定とならず、安定流領域と同様に制御を行ったとしても、冷凍サイクルの作動が不安定となってしまう。
Next, the operation and effect of the air conditioner 1 having the above-described configuration will be described.
In a low capacity range where the cooling capacity or the heating capacity is 1 kW or less, the amount of refrigerant required is small, so that the electronic expansion valve 10 is operated in a small range. At this time, if the opening degree of the electronic expansion valve 10 is reduced, the flow rate of the refrigerant can be reduced. However, if the opening degree is reduced, it becomes difficult to adjust the flow rate. Specifically, in the case of the R410A mixed refrigerant indicated by a broken line as a comparative example in FIG. 3, when the opening degree becomes smaller than P0, the proportional relationship between the flow rate and the opening degree is broken. The graph of the R410A mixed refrigerant shown in FIG. 3 is based on a conventional configuration in which the diameter φD of the electronic expansion valve is set to about 1.6 mm to 1.8 mm. For this reason, in the case of the conventional configuration, when the opening degree of the electronic expansion valve 10 is within the range of P0 or less, the amount of change in the flow rate with respect to one pulse of the opening degree is not constant. The operation of the cycle becomes unstable.
 また、上記したようにR410A混合冷媒に比べて相対的に体積当たりの冷媒能力が高いR32単一冷媒では、同一の冷房能力あるいは暖房能力を出すために必要となる冷媒の流量(循環量)が少なくなる。このため、R410A混合冷媒と同様の制御を行った場合には、安定流量域の下限がP0よりも開度が大の方向にさらに移動してしまい、低能力域での安定した運転が一層困難となる。 Further, as described above, in the R32 single refrigerant having a relatively high refrigerant capacity per volume as compared with the R410A mixed refrigerant, the refrigerant flow rate (circulation amount) required for providing the same cooling capacity or heating capacity is high. Less. For this reason, when the same control as that of the R410A mixed refrigerant is performed, the lower limit of the stable flow rate region moves further in the direction in which the opening degree is larger than P0, and stable operation in the low capacity region is further difficult. It becomes.
 そこで、本実施形態では、電子膨張弁10の口径を1.2mm~1.4mmの範囲(但し、公差を除く)に設定している。つまり、開度1パルス当たりの冷媒の流量の変化量が従来構成に比べて小さくなるように、電子膨張弁10の口径φDを設定している。その結果、図3に実線にて示すように、R32単一冷媒を用いた場合の安定流領域の下限が開度P1に対応する位置となる。換言すると、安定流領域の下限を、R410A混合冷媒を用いる場合に比べて電子膨張弁10の開度が小となる側に移動させている。これにより、より流量が小さい範囲まで、冷媒の流量を安定して制御することができる。すなわち、冷媒としてR32単一冷媒を用いた場合であっても、低能力域において安定的に冷媒を循環させることができる。 Therefore, in the present embodiment, the diameter of the electronic expansion valve 10 is set in the range of 1.2 mm to 1.4 mm (excluding tolerances). That is, the aperture φD of the electronic expansion valve 10 is set so that the amount of change in the refrigerant flow rate per pulse of the opening is smaller than that in the conventional configuration. As a result, as indicated by a solid line in FIG. 3, the lower limit of the stable flow region when the R32 single refrigerant is used is a position corresponding to the opening P1. In other words, the lower limit of the stable flow region is moved to the side where the opening degree of the electronic expansion valve 10 becomes smaller than when the R410A mixed refrigerant is used. Thereby, the flow volume of a refrigerant | coolant can be stably controlled to the range where a flow volume is smaller. That is, even when the R32 single refrigerant is used as the refrigerant, the refrigerant can be circulated stably in the low capacity range.
 また、冷媒を安定的に循環させることができるため、低能力域まで冷凍サイクルを安定的に運転させることができる。したがって、空調を安定的に行うことができる範囲を広くすることができ、空気調和機1の性能改善を図ることができる。 Also, since the refrigerant can be circulated stably, the refrigeration cycle can be stably operated up to the low capacity range. Therefore, the range in which air conditioning can be performed stably can be widened, and the performance of the air conditioner 1 can be improved.
 なお、低能力域での流量の安定化を図るために電子膨張弁10の口径φDを1.2mm~1.4mmに設定しているが、その口径であっても、開度が最大となるような運転状態においても十分な冷媒の流量を確保することができている。 Note that the diameter φD of the electronic expansion valve 10 is set to 1.2 mm to 1.4 mm in order to stabilize the flow rate in the low capacity range, but the opening degree is maximized even with the diameter. Even in such an operating state, a sufficient refrigerant flow rate can be ensured.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
 図面中、1は空気調和機、2は室外機、3は室内機、4は冷媒配管、5は圧縮機、6は室外熱交換器、9は四方弁、10は電子膨張弁、11は室外制御部(制御手段)、12は室内熱交換器、14は送風ファン(送風手段)、を示す。 In the drawings, 1 is an air conditioner, 2 is an outdoor unit, 3 is an indoor unit, 4 is a refrigerant pipe, 5 is a compressor, 6 is an outdoor heat exchanger, 9 is a four-way valve, 10 is an electronic expansion valve, and 11 is an outdoor unit. A control unit (control means), 12 is an indoor heat exchanger, and 14 is a blower fan (blower means).

Claims (1)

  1.  圧縮機、室外熱交換器、四方弁および電子膨張弁を有する室外機と、室内熱交換器および送風手段を有する室内機と、前記室外機および前記室内機の間を接続する冷媒配管と、前記電子膨張弁の開度を制御することにより前記冷媒配管を流れる冷媒の流量を制御する制御手段と、を備え、
     前記冷媒としてR32単一冷媒を採用し、冷房運転時または暖房運転時の最小能力が1kW以下での動作が可能な空気調和機において、
     前記電子膨張弁の口径を、1.2から1.4mmの範囲に設定したことを特徴とする空気調和機。
    A compressor, an outdoor heat exchanger, an outdoor unit having a four-way valve and an electronic expansion valve, an indoor unit having an indoor heat exchanger and a blowing means, a refrigerant pipe connecting between the outdoor unit and the indoor unit, Control means for controlling the flow rate of the refrigerant flowing through the refrigerant pipe by controlling the opening of the electronic expansion valve,
    In an air conditioner that employs an R32 single refrigerant as the refrigerant and can operate with a minimum capacity of 1 kW or less during cooling operation or heating operation,
    An air conditioner in which the diameter of the electronic expansion valve is set in a range of 1.2 to 1.4 mm.
PCT/JP2014/061421 2013-06-21 2014-04-23 Air conditioner WO2014203615A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480034236.5A CN105308401A (en) 2013-06-21 2014-04-23 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013130557A JP2015004486A (en) 2013-06-21 2013-06-21 Air conditioner
JP2013-130557 2013-06-21

Publications (1)

Publication Number Publication Date
WO2014203615A1 true WO2014203615A1 (en) 2014-12-24

Family

ID=52104358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061421 WO2014203615A1 (en) 2013-06-21 2014-04-23 Air conditioner

Country Status (3)

Country Link
JP (1) JP2015004486A (en)
CN (1) CN105308401A (en)
WO (1) WO2014203615A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6566693B2 (en) * 2015-04-03 2019-08-28 日立ジョンソンコントロールズ空調株式会社 Refrigeration cycle equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821554A (en) * 1995-06-29 1996-01-23 Fuji Koki Seisakusho:Kk Motor-driven flow control valve
JPH10148420A (en) * 1996-11-18 1998-06-02 Toshiba Corp Air-conditioning equipment
JP2001066020A (en) * 1999-08-24 2001-03-16 Denso Corp Electromagnetic flow rate control valve
JP2001304699A (en) * 2000-04-26 2001-10-31 Daikin Ind Ltd Refrigerating apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821554A (en) * 1995-06-29 1996-01-23 Fuji Koki Seisakusho:Kk Motor-driven flow control valve
JPH10148420A (en) * 1996-11-18 1998-06-02 Toshiba Corp Air-conditioning equipment
JP2001066020A (en) * 1999-08-24 2001-03-16 Denso Corp Electromagnetic flow rate control valve
JP2001304699A (en) * 2000-04-26 2001-10-31 Daikin Ind Ltd Refrigerating apparatus

Also Published As

Publication number Publication date
CN105308401A (en) 2016-02-03
JP2015004486A (en) 2015-01-08

Similar Documents

Publication Publication Date Title
JP6642379B2 (en) air conditioner
US10371407B2 (en) Air conditioning apparatus
JP5182358B2 (en) Refrigeration equipment
JP6657613B2 (en) Air conditioner
US9410715B2 (en) Air conditioning apparatus
KR101822287B1 (en) Air conditioning system for vehicle
JP6355325B2 (en) Refrigerator and control method of refrigerator
WO2018164253A1 (en) Air-conditioning device
US9732998B2 (en) Method and system of using a reversing valve to control at least two HVAC systems
JP6918221B2 (en) Air conditioner
JP2015083894A (en) Refrigeration unit
WO2014203615A1 (en) Air conditioner
WO2018066089A1 (en) Refrigeration machine and air conditioning system
JP6545378B2 (en) Air conditioning system and relay unit
KR101755929B1 (en) Air conditioning system for vehicle
JP2008138958A (en) Air conditioner
JP6401054B2 (en) Information processing system and information processing system program
JP6275015B2 (en) Air conditioner for railway vehicles
JP2009008282A (en) Heat exchanging system
JP2016038184A (en) Air conditioner
JP7357673B2 (en) Control device, air environment adjustment system, air environment adjustment method, program, and recording medium
JPWO2020016912A1 (en) Air conditioner
JP2017044382A (en) Operation control device for air conditioner and air conditioner with the operation control device
JP2015017764A (en) Refrigerant pressure control valve and refrigerating cycle device
JP2011063084A (en) Heat exchanger used for air conditioner for automobile

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480034236.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14813933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201600374

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 14813933

Country of ref document: EP

Kind code of ref document: A1