JPH0821554A - Motor-driven flow control valve - Google Patents
Motor-driven flow control valveInfo
- Publication number
- JPH0821554A JPH0821554A JP7163162A JP16316295A JPH0821554A JP H0821554 A JPH0821554 A JP H0821554A JP 7163162 A JP7163162 A JP 7163162A JP 16316295 A JP16316295 A JP 16316295A JP H0821554 A JPH0821554 A JP H0821554A
- Authority
- JP
- Japan
- Prior art keywords
- valve
- valve body
- diameter
- opening
- valve element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Landscapes
- Electrically Driven Valve-Operating Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は冷凍サイクルに用いられ
る冷媒のような流体の流量制御に使用する電動流量制御
弁に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric flow control valve used for controlling the flow rate of a fluid such as a refrigerant used in a refrigeration cycle.
【0002】[0002]
【従来の技術】従来の電動流量制御弁は、図3に示すよ
うなものであり、弁室4を有する弁筐3に第1流路1が
接続される流体流入口1aと第2流路2が前記流入口1
aと直交位置で接続される流体流出口1bを開設し該流
体流出口1bの弁筐弁室4と連通する大径弁口5に大径
弁座6を設けた弁本体Aと、この弁本体Aの流体流出口
1bと反対側になる弁筐外側部に固定される非磁性板で
形成された中空筒状のキャン7及び該キャン7の外側に
配置されるステータコイル8を有し前記キャン7の内側
にステータコイル8の通電励磁によって回動されるロー
タ9を設けたパルス制御可能なステッピングモータB
と、前記弁本体Aの大径弁座6に接離し該弁口5を開閉
する弁体10を有し該弁体10を弁筐弁室4内において
前記ステッピングモータBのロータ回転によるネジ送り
作用で弁開閉方向に移動させる弁開閉機構Cとを具備す
る。2. Description of the Related Art A conventional electric flow control valve is as shown in FIG. 3, in which a first casing 1 is connected to a valve casing 3 having a valve chamber 4 and a fluid inlet 1a and a second passage. 2 is the inlet 1
A valve body A having a large-diameter valve seat 6 provided at a large-diameter valve opening 5 which opens a fluid outlet 1b connected at a position orthogonal to a and communicates with a valve housing valve chamber 4 of the fluid outlet 1b, and this valve. It has a hollow cylindrical can 7 formed of a non-magnetic plate fixed to the outer side of the valve casing on the side opposite to the fluid outlet 1b of the main body A, and a stator coil 8 arranged outside the can 7. A pulse controllable stepping motor B provided with a rotor 9 which is rotated by energization excitation of a stator coil 8 inside a can 7.
And a valve body 10 that opens and closes the valve opening 5 by contacting and separating from the large-diameter valve seat 6 of the valve body A, and the valve body 10 is screw-fed in the valve housing valve chamber 4 by rotation of the rotor of the stepping motor B. And a valve opening / closing mechanism C that moves in the valve opening / closing direction by an action.
【0003】前記弁開閉機構Cは、ロータ9の内周雌ネ
ジ部に螺合される雄ネジ部を有し前記弁本体Aの弁筐突
出口3aに螺合固着(螺合ネジ部をカシメで固着)され
る管状の固定ガイド11と、この固定ガイド11内に挿
入され上端軸部12aをロータ上部の中心孔に挿入して
C形リングのような係止具13でロータ9と一体に移動
するように係止される弁棒12と、この弁棒上端軸部1
2aの根元段部とロータ上部ワッシャ14との間に介装
され前記弁棒12を閉弁方向(図3において下方向)に
付勢する閉弁緩衝ばね15とを具備し、前記ロータ9が
固定ガイド11のネジ送り作用で回転しながら軸心方向
に移動し、このロータ9の回転移動によって前記弁棒1
2を弁開閉方向に移動させることにより、この弁棒下端
の弁体10(大径弁座6に接離する大径弁体)を開閉作
動させて流体の流量を制御するようになっている。The valve opening / closing mechanism C has a male screw portion which is screwed into an inner peripheral female screw portion of the rotor 9, and is screwed and fixed to the valve casing projecting port 3a of the valve body A (the screwing screw portion is caulked). Tubular fixed guide 11 fixed to the rotor 9 and the upper end shaft portion 12a inserted into the fixed guide 11 into the center hole of the upper portion of the rotor and integrated with the rotor 9 by a locking tool 13 such as a C-shaped ring. A valve rod 12 that is locked so as to move, and the valve rod upper end shaft portion 1
The rotor 9 is provided with a valve closing buffer spring 15 which is interposed between the root step portion of 2a and the rotor upper washer 14 and biases the valve rod 12 in the valve closing direction (downward in FIG. 3). The fixed guide 11 moves in the axial direction while rotating by the screw feed action, and the rotor 9 rotates to move the valve rod 1
By moving 2 in the valve opening / closing direction, the valve body 10 (the large-diameter valve body that contacts and separates from the large-diameter valve seat 6) at the lower end of the valve rod is opened / closed to control the flow rate of the fluid. .
【0004】なお、図中16は前記ロータ9の下端部に
突出量の調整ができるように螺装され、前記弁体10の
閉弁時にキャン下側ストッパ17に図示の如く当接して
前記ロータ9の閉弁下降限を規制する閉弁規制杆を示
し、また図中18は前記ロータ9の上端部に突出量の調
整ができるように螺装され、前記弁体10の全開時(弁
体10の上面部が弁筐弁室4の上面部に当たる直前)に
キャン上側ストッパ19に当接して前記ロータ9の開弁
上昇限を規制する開弁規制杆を示す。Reference numeral 16 in the drawing is screwed to the lower end of the rotor 9 so that the amount of protrusion can be adjusted, and when the valve body 10 is closed, it abuts against the can lower stopper 17 as shown in the drawing. 9 shows a valve closing rod for restricting the valve closing lower limit of the valve 9, and 18 in the figure is screwed to the upper end of the rotor 9 so that the protrusion amount can be adjusted, and the valve body 10 is fully opened (valve body). The valve-opening control rod for contacting the can upper stopper 19 and restricting the valve-opening rising limit of the rotor 9 immediately before the upper surface of 10 hits the upper surface of the valve housing valve chamber 4 is shown.
【0005】而して、前記のように構成された電動流量
制御弁は、前記ステータコイル8に与えられるパルスに
よって図2に示すような2段階の流体流量制御特性が得
られるように作動されるもので、この流体の流量制御特
性は例えば図2に示す如く、0〜250パルス間で低流
量域(図中L部)を制御し、250〜500パルス間で
大流量域(図中H部)を制御する2段階の特性となって
いる。Thus, the electric flow rate control valve constructed as described above is operated so that the pulse applied to the stator coil 8 can obtain a two-stage fluid flow rate control characteristic as shown in FIG. For example, as shown in FIG. 2, the flow rate control characteristic of this fluid controls a low flow rate range (L part in the figure) between 0 and 250 pulses, and a large flow rate range (H part in the figure) between 250 and 500 pulses. ) Is controlled in two steps.
【0006】[0006]
【発明が解決しようとする課題】然し乍ら、一個の弁体
10と弁座6により図2の如き流量制御特性を満足させ
るためには、前記弁口5の口径を最大流量(500パル
スの時の流量)に合わせて大きくする必要(大径弁口と
する必要)がある。従って、図2における大流量域(図
中H部)の制御は精密に行い得るが、図2における低流
量域(図中L部)は弁体10のストロークの僅かな変動
によって、流量が大幅に変化してしまうために、低流量
域(L部)の流量制御にバラツキが生じ、精密な流量制
御が行えないという欠点があった。However, in order to satisfy the flow rate control characteristic as shown in FIG. 2 by one valve body 10 and valve seat 6, the diameter of the valve port 5 is set to the maximum flow rate (at the time of 500 pulses). It is necessary to increase according to the flow rate) (large diameter valve opening is required). Therefore, the control of the large flow rate region (H portion in the figure) in FIG. 2 can be precisely performed, but the low flow rate region (L portion in the diagram) in FIG. 2 has a large flow rate due to a slight fluctuation of the stroke of the valve body 10. Therefore, there is a drawback that the flow rate control in the low flow rate region (L portion) varies, and precise flow rate control cannot be performed.
【0007】また前記従来の流量制御弁は、その開弁時
に流体圧力が前記弁体10を弁座6に押付ける方向に作
用するので、即ち前記弁体10に(弁体前後の圧力差
P)×(弁体口径D2×π/4)の荷重が作用するの
で、前記弁体10を開弁させるのに大きなトルクが必要
となることから、ステータコイル8の巻線仕様を増加さ
せたり、ロータマグネットの磁束密度を増加させたりす
る等の対策が必要となり、弁全体が大型化し高価なもの
になってしまうという問題があった。Further, in the conventional flow rate control valve, when the valve is opened, the fluid pressure acts in the direction of pressing the valve body 10 against the valve seat 6, that is, the valve body 10 (pressure difference P before and after the valve body P ) × (valve body diameter D 2 × π / 4), a large torque is required to open the valve body 10, so that the winding specification of the stator coil 8 may be increased. However, it is necessary to take measures such as increasing the magnetic flux density of the rotor magnet, which causes a problem that the entire valve becomes large and expensive.
【0008】この発明は前記従来の問題を解消するため
に案出されたもので、その目的は低流量域から大量領域
まで精密な流量制御を行うことができ、また流体圧力に
対する開弁に必要なトルクが小さくて良く弁全体の小型
化を図ることができる電動流量制御弁を提供することに
ある。The present invention was devised in order to solve the above-mentioned conventional problems, and its purpose is to enable precise flow rate control from a low flow rate region to a large amount region, and to open the valve for fluid pressure. Another object of the present invention is to provide an electric flow rate control valve that has a small torque and can be downsized as a whole.
【0009】[0009]
【課題を解決するための手段】前記の目的を達成するた
めに、本発明においては図3に示す従来公知の電動流量
制御弁における弁体10に代えて、弁開閉機構Cで作動
される小径の第1弁体21と、この第1弁体21の動き
に連動し前記第1弁体21の開弁後に時間差をもって開
弁される大径の第2弁体22とからなる二段弁を適用
し、前記第2弁体22を弁本体Aの大径弁座6に接離す
る弁座当接面23と、弁本体Aの弁筐弁室4に連通穴2
5を介して連通する第1弁室24と、この第1弁室24
と第2流路2を連通する小径弁口27と、この小径弁口
27の弁室開口部に形成され前記第1弁体21が接離す
る小径弁座26と、前記第1弁体21との係合手段30
とを有し、前記弁座当接面23が弁本体Aの大径弁座6
に押付けられる方向にスプリング31で付勢され、前記
第1弁体21の開弁時に前記係合手段30の係合作用で
引上げられて開弁される構成としたことを特徴とする。In order to achieve the above object, in the present invention, a small diameter operated by a valve opening / closing mechanism C is used instead of the valve body 10 in the conventionally known electric flow control valve shown in FIG. A two-stage valve consisting of a first valve body 21 and a large-diameter second valve body 22 that is interlocked with the movement of the first valve body 21 and is opened with a time lag after the opening of the first valve body 21. The valve seat abutment surface 23 for contacting and separating the second valve body 22 with the large-diameter valve seat 6 of the valve body A and the communication hole 2 for the valve housing valve chamber 4 of the valve body A
And a first valve chamber 24 communicating with the first valve chamber 24.
And a small diameter valve opening 27 that communicates the second flow path 2, a small diameter valve seat 26 formed in the valve chamber opening of the small diameter valve opening 27 to and from the first valve body 21, and the first valve body 21. Engaging means 30 with
And the valve seat abutting surface 23 has a large diameter valve seat 6 of the valve body A.
It is characterized in that it is biased by a spring 31 in the direction of being pressed by the valve, and is pulled up by the engaging action of the engaging means 30 when the first valve body 21 is opened to open the valve.
【0010】[0010]
【作用】前記構成の電動流量制御弁によれば、ステッピ
ングモータBの作動(ロータ回転によるネジ送り作用)
によって、先ず第1弁体21が第2弁体22の小径弁座
26から離れる方向に移動して、第2弁体22の小径弁
口27を開放する。According to the electric flow rate control valve having the above-described structure, the operation of the stepping motor B (screw feeding operation by rotor rotation)
Thus, the first valve body 21 first moves in the direction away from the small-diameter valve seat 26 of the second valve body 22 to open the small-diameter valve port 27 of the second valve body 22.
【0011】この時、第2弁体22はスプリング31の
バネ力で弁本体Aの大径弁座6に押圧されて弁本体Aの
大径弁口5を閉塞しているので、第1流路1から弁筐弁
室4に流入された流体が第2弁体22の連通穴25→第
1弁室24→小径弁口27という経路を経て第2流路2
に流出される。この時の流量は小流量(低流量)であ
り、この低流量域の制御は小径な第1弁体21の小径弁
口27に対する開度(小径弁座26と第1弁体21の開
口面積)で決定され、第1弁体21の開弁ストロークの
僅かな変動に対しての流量変化を僅少にすることができ
るので、低流量域(図2のL部)のバラツキがない精密
な流量制御を行うことが可能となる。At this time, the second valve body 22 is pressed by the large-diameter valve seat 6 of the valve body A by the spring force of the spring 31 to close the large-diameter valve opening 5 of the valve body A. The fluid flowing from the passage 1 into the valve casing valve chamber 4 passes through the passage of the communication hole 25 of the second valve body 22 → the first valve chamber 24 → the small diameter valve port 27 and the second passage 2
Be leaked to. The flow rate at this time is a small flow rate (low flow rate), and the control of this low flow rate region is performed by opening the small diameter first valve body 21 with respect to the small diameter valve opening 27 (the opening area of the small diameter valve seat 26 and the first valve body 21). ), It is possible to make a slight change in the flow rate with respect to a slight change in the opening stroke of the first valve body 21, so that a precise flow rate that does not vary in the low flow rate region (L part in FIG. 2). It becomes possible to control.
【0012】また、前記第1弁体21が前記のように開
弁されると、この第1弁体21の開弁移動によって第1
弁体21と第2弁体22が係合手段30で係合し、この
第1弁体21の動きに連動して第2弁体22が弁本体A
の大径弁座6から離れる方向に移動して弁本体Aの大径
弁口5を開放するので、第1流路1から弁筐弁室4に流
入された流体が弁本体Aの大径弁口5から第2流路2に
流出され、また前記流体(弁筐弁室4に流入された流
体)の一部は第2弁体22の連通穴25→第1弁室24
→小径弁口27という経路を経て第2流路2に流出され
る。When the first valve body 21 is opened as described above, the opening movement of the first valve body 21 causes the first valve body 21 to move to the first position.
The valve body 21 and the second valve body 22 are engaged with each other by the engaging means 30, and the second valve body 22 is linked to the movement of the first valve body 21 so that the second valve body 22 is moved to the valve body A.
The large-diameter valve opening 5 of the valve main body A is opened by moving in the direction away from the large-diameter valve seat 6 of the valve main body A, so that the fluid flowing from the first flow path 1 into the valve housing valve chamber 4 has a large diameter of the valve main body A. A part of the fluid (fluid that has flowed into the valve housing valve chamber 4) that flows out from the valve opening 5 to the second flow path 2 communicates with the communication hole 25 of the second valve body 22 → the first valve chamber 24.
-> It flows out into the 2nd flow path 2 via the path | route of the small diameter valve opening 27.
【0013】この時の流量は大流量であり、この大流量
域の制御は大径な第2弁体22の大径弁口6に対する開
度で決定されるので、大流量域(図2のH部)の精密な
流量制御を従来と同様に行うことができる。The flow rate at this time is a large flow rate, and since the control of this large flow rate area is determined by the opening degree of the large diameter second valve body 22 with respect to the large diameter valve opening 6, the large flow rate area (see FIG. 2). The precise flow rate control of the (H portion) can be performed as in the conventional case.
【0014】[0014]
【実施例】以下、本発明の一実施例を図1に従い具体的
に説明すると、この電動流量制御弁は従来のものと同様
な弁本体AとステッピングモータB及び弁開閉機構Cを
具備するが、この弁本体AとステッピングモータB及び
弁開閉機構Cの構成は従来のものと同様であるので、同
一部分に同符号を付して詳細な説明は省略する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be specifically described below with reference to FIG. 1. This electric flow rate control valve has a valve body A, a stepping motor B, and a valve opening / closing mechanism C similar to the conventional one. Since the configurations of the valve body A, the stepping motor B, and the valve opening / closing mechanism C are similar to those of the conventional ones, the same parts are designated by the same reference numerals and detailed description thereof will be omitted.
【0015】而して、本発明においては、弁本体Aの弁
筐弁室4を図1のように縦長とし、図3に示す従来公知
の電動流量制御弁における弁体10に代えて、弁開閉機
構Cで直接作動される小径の第1弁体21と、この第1
弁体21の動きに連動し該第1弁体21の開弁後に時間
差をもって開弁される大径の第2弁体22とからなる二
段弁(複数弁)の構造としたものである。Therefore, in the present invention, the valve housing valve chamber 4 of the valve body A is vertically elongated as shown in FIG. 1, and the valve body 10 is replaced with the valve body 10 in the conventionally known electric flow control valve shown in FIG. The small-diameter first valve body 21 directly operated by the opening / closing mechanism C and the first valve body 21
The structure is a two-stage valve (a plurality of valves) including a large-diameter second valve body 22 that is opened with a time lag after the opening of the first valve body 21 in conjunction with the movement of the valve body 21.
【0016】前記第2弁体22は弁本体Aの大径弁座6
に接離する円錐状の弁座当接面23と、弁本体Aの弁筐
弁室4に連通穴25を介して連通する第1弁室24と、
この第1弁室24と第2流路2を連通する小径弁口27
と、この小径弁口27の弁室開口部に形成され前記第1
弁体21の先端円錐面が接離する小径弁座26と、前記
第1弁体21との係合手段30とを有し、前記弁座当接
面23が弁本体Aの大径弁座6に押付けられる方向に圧
縮スプリング31で付勢されている。The second valve body 22 is the large-diameter valve seat 6 of the valve body A.
A conical valve seat abutment surface 23 that comes into contact with and separates from the first valve chamber 24 that communicates with the valve housing valve chamber 4 of the valve body A via a communication hole 25,
A small-diameter valve port 27 that connects the first valve chamber 24 and the second flow path 2 with each other.
And the first portion formed in the valve chamber opening of the small diameter valve port 27.
It has a small-diameter valve seat 26 with which the conical surface of the tip of the valve body 21 comes into contact with and separates from it, and an engaging means 30 with the first valve body 21, and the valve seat contact surface 23 is a large-diameter valve seat of the valve body A. It is biased by the compression spring 31 in the direction in which it is pressed against 6.
【0017】なお、前記第2弁体22はスプリング付勢
の弁ホルダ28に図示の如く保持され、この弁ホルダ2
8の第1弁室24内へ突出する内周フランジ部29を第
1弁体21の上部突起20(鍔状突起)が係合可能な係
合手段30として形成し、前記第1弁体21の開弁時に
該弁体上部突起20が前記係合手段30(弁ホルダ28
のフランジ部29)に係合して、第2弁体22が引上げ
開弁される構成となっている。The second valve body 22 is held by a spring-biased valve holder 28 as shown in the drawing.
The inner peripheral flange portion 29 protruding into the first valve chamber 24 of No. 8 is formed as the engaging means 30 with which the upper protrusion 20 (collar-shaped protrusion) of the first valve body 21 can be engaged, and the first valve body 21 When the valve is opened, the valve body upper protrusion 20 causes the engagement means 30 (valve holder 28
The second valve body 22 is pulled up and opened by engaging with the flange portion 29) of the second valve body 22.
【0018】而して、前記構成の電動流量制御弁は、ス
テッピングモータが作動すると、ロータ回転によるネジ
送り作用によって、先ず第1弁体21が第2弁体22の
小径弁座26から離れる方向に移動して第2弁体22の
小径弁口27を開放する。When the stepping motor is operated, the electric flow rate control valve having the above-described structure is so arranged that the first valve body 21 is separated from the small-diameter valve seat 26 of the second valve body 22 by the screw feeding action of the rotor rotation. To open the small-diameter valve opening 27 of the second valve body 22.
【0019】この時、第2弁体22はスプリング31の
バネ力で弁本体Aの大径弁座6に押圧されて弁本体Aの
大径弁口5を閉塞しているので、第1流路1から弁筐弁
室4に流入された流体が第2弁体22の連通穴25→第
1弁室24→小径弁口27という経路を経て第2流路2
に流出される。この時の流量は小流量(低流量)であ
り、この低流量域の制御は小径な第1弁体21の小径弁
口27に対する開度(小径弁座26と第1弁体21の開
口面積)で決定され、第1弁体21の開弁ストロークの
僅かな変動に対しての流量変化を僅少にすることができ
るので、低流量域(図2のL部)のバラツキがない精密
な流量制御を行うことが可能となる。At this time, the second valve body 22 is pressed by the large-diameter valve seat 6 of the valve body A by the spring force of the spring 31 to close the large-diameter valve opening 5 of the valve body A, so that the first flow The fluid flowing from the passage 1 into the valve casing valve chamber 4 passes through the passage of the communication hole 25 of the second valve body 22 → the first valve chamber 24 → the small diameter valve port 27 and the second passage 2
Be leaked to. The flow rate at this time is a small flow rate (low flow rate), and the control of this low flow rate region is performed by opening the small diameter first valve body 21 with respect to the small diameter valve opening 27 (the opening area of the small diameter valve seat 26 and the first valve body 21). ), It is possible to make a slight change in the flow rate with respect to a slight change in the opening stroke of the first valve body 21, so that a precise flow rate that does not vary in the low flow rate region (L part in FIG. 2). It becomes possible to control.
【0020】また、前記第1弁体21が前記のように開
弁されると、この第1弁体21の開弁移動によって第1
弁体21と第2弁体22が係合手段30で係合し、この
第1弁体21の動きに連動して第2弁体22が弁本体A
の大径弁座6から離れる方向に移動して弁本体Aの大径
弁口5を開放するので、第1流路1から弁筐弁室4に流
入された流体が弁本体Aの大径弁口5から第2流路2に
流出され、また前記流体(弁筐弁室4に流入された流
体)の一部は第2弁体22の連通穴25→第1弁室24
→小径弁口27という経路を経て第2流路2に流出され
る。When the first valve body 21 is opened as described above, the first valve body 21 moves to open the first valve body.
The valve body 21 and the second valve body 22 are engaged with each other by the engaging means 30, and the second valve body 22 is linked to the movement of the first valve body 21 so that the second valve body 22 is moved to the valve body A.
The large-diameter valve opening 5 of the valve main body A is opened by moving in the direction away from the large-diameter valve seat 6 of the valve main body A, so that the fluid flowing from the first flow path 1 into the valve housing valve chamber 4 has a large diameter of the valve main body A. A part of the fluid (fluid that has flowed into the valve housing valve chamber 4) that flows out from the valve opening 5 to the second flow path 2 communicates with the communication hole 25 of the second valve body 22 → the first valve chamber 24.
-> It flows out into the 2nd flow path 2 via the path | route of the small diameter valve opening 27.
【0021】以上のように、弁部構成を小径な第1弁体
21と大径な第2弁体22による二段弁(複数弁)とす
ることで、低流量域(図2L部)から大流量域(図2H
部)まで精密な流量制御ができる。ここで、従来の一段
弁の場合と、本発明の二段弁の場合を比較してみる。As described above, by making the valve portion structure a two-stage valve (a plurality of valves) by the first valve body 21 having a small diameter and the second valve body 22 having a large diameter, the low flow rate region (L part in FIG. 2) can be obtained. Large flow range (Fig. 2H
The flow rate can be controlled precisely up to the part. Here, the case of the conventional one-stage valve and the case of the two-stage valve of the present invention will be compared.
【0022】弁の開口面積Sは弁体ストロークをLX、
弁体口径をD、弁体の円錐半角(弁座当接面の円錐半
角)をθとすると、 S=π・LX・sinθ(D−LX・sinθ・cosθ)The opening area S of the valve is defined by the valve stroke L X ,
Letting the valve body diameter be D and the cone half angle of the valve body (cone half angle of the valve seat contact surface) be θ, S = π · L X · sin θ (D-L X · sin θ · cos θ)
【0023】図2のL部の流量を得るための弁開口面積
を0〜0.72mm2、同図H部の流量を得るための弁開
口面積を0.72mm2〜21mm2とすると、必要な弁の諸
元は 従来の一段弁の場合 D=5.0mm 本案の二段弁の場合 D=1.3mm(第1弁体) D=5.0mm(第2弁体)[0023] 0~0.72Mm 2 the valve opening area for obtaining the flow rate of the L portion of Figure 2, when the valve opening area for obtaining the flow rate of the drawing portion H and 0.72 mm 2 ~21Mm 2, need The specifications of such a valve are as follows: In the case of the conventional one-stage valve D = 5.0mm In the case of the proposed two-stage valve D = 1.3mm (first valve body) D = 5.0mm (second valve body)
【0024】前記L部の最大開口面積0.72mm2を2
50パルスの点で得るためには、 従来の一段弁の場合 θ=1.7度 本案の二段弁の場合 θ=7.7度The maximum opening area of 0.72 mm 2 of the L part is 2
In order to obtain at 50 pulse points, in the case of the conventional one-stage valve θ = 1.7 degrees In the case of the two-stage valve of the present proposal θ = 7.7 degrees
【0025】ここで、弁体口径Dと弁体の円錐半角θの
加工公差を考慮すると、 従来の一段弁の場合 S=0.72〜0.81mm2(弁開口面積公差幅=0.
09mm2) 本案の二段弁の場合 S=0.72〜0.75mm2(弁開口面積公差幅=0.
03mm2) 以上のように、前記弁開口面積公差幅から見て同じ加工
精度で比較すると、二段弁にした方(本発明)が一段面
(従来)に比べて3倍の精度が得られる。Here, considering the machining tolerance of the valve body diameter D and the conical half angle θ of the valve body, in the case of the conventional one-stage valve, S = 0.72 to 0.81 mm 2 (valve opening area tolerance width = 0.
09 mm 2 ) In the case of the two-stage valve of the present invention S = 0.72 to 0.75 mm 2 (valve opening area tolerance width = 0.
03 mm 2 ) As described above, when compared with the same machining accuracy in view of the valve opening area tolerance width, the two-stage valve (invention) is three times more accurate than the one-stage surface (conventional). .
【0026】[0026]
【発明の効果】以上説明したように、本発明の電動流量
制御弁によれば、弁部構成を小径な第1弁体21と大径
な第2弁体22による二段弁(複数弁)とすることで、
低流量域(図2L部)から大流量域(図2H部)まで精
密な流量制御を行うことができる。また、第1弁体21
の弁口径が小さいことから、流体圧力に対する開弁に必
要なトルクが小さくて良いので、弁全体を小形化するこ
とができる等の優れた発明上の効果を奏する。As described above, according to the electric flow rate control valve of the present invention, the valve section is a two-stage valve (a plurality of valves) having a first valve body 21 having a small diameter and a second valve body 22 having a large diameter. By doing,
Precise flow rate control can be performed from the low flow rate range (FIG. 2L part) to the large flow rate range (FIG. 2H part). In addition, the first valve body 21
Since the valve opening is small, the torque required to open the valve with respect to the fluid pressure can be small, so that an excellent effect of the invention such as miniaturization of the entire valve can be obtained.
【図1】本発明の一実施例による電動流量制御弁の中央
縦断面図。FIG. 1 is a central longitudinal sectional view of an electric flow control valve according to an embodiment of the present invention.
【図2】前記制御弁による流体の流量制御特性を示した
説明図。FIG. 2 is an explanatory diagram showing a flow rate control characteristic of a fluid by the control valve.
【図3】従来の電動流量制御弁の中央縦断面図。FIG. 3 is a central longitudinal sectional view of a conventional electric flow control valve.
A…弁本体、1…第1流路、1a…流体流入口、2…第
2流路、2a…流体流出口、3…弁筐、4…弁筐弁室、
5…大径弁口、6…大径弁座、B…ステッピングモー
タ、7…キャン、8…ステータコイル、9…ロータ、1
0…弁体、C…ベン開閉機構、11…固定ガイド、12
…弁棒、13…係止具、21…第1弁体、22…第2弁
体、23…弁座当接面、24…第1弁室、25…連通
穴、26…小径弁座、27…小径弁口、28…弁ホル
ダ、29…弁ホルダの内周フランジ部、30…係合手
段、31…圧縮スプリング。A ... Valve body, 1 ... 1st flow path, 1a ... Fluid inflow port, 2 ... 2nd flow path, 2a ... Fluid outflow port, 3 ... Valve casing, 4 ... Valve casing valve chamber,
5 ... Large-diameter valve port, 6 ... Large-diameter valve seat, B ... Stepping motor, 7 ... Can, 8 ... Stator coil, 9 ... Rotor, 1
0 ... Valve body, C ... Ben opening / closing mechanism, 11 ... Fixed guide, 12
... valve rod, 13 ... locking tool, 21 ... first valve body, 22 ... second valve body, 23 ... valve seat abutment surface, 24 ... first valve chamber, 25 ... communication hole, 26 ... small diameter valve seat, 27 ... Small-diameter valve port, 28 ... Valve holder, 29 ... Inner peripheral flange portion of valve holder, 30 ... Engaging means, 31 ... Compression spring.
Claims (2)
る流体流入口と第2流路が前記流入口と直交位置で接続
される流体流出口を開設し該流体流出口の弁筐弁室と連
通する大径弁口に大径弁座を設けた弁本体と、この弁本
体の流体流出口と反対側になる弁筐外側部に固定される
キャン及び該キャンの外側に配置されるステータコイル
を有し前記キャンの内側にステータコイルの通電励磁に
よって回動されるロータを設けたパルス制御可能なステ
ッピングモータと、前記弁本体の大径弁座に接離し該弁
口を開閉する弁体を有し該弁体を弁筐弁室内において前
記ステッピングモータのロータ回転によるネジ送り作用
で弁開閉方向に移動させる弁開閉機構とを具備した電動
流量制御弁において、 前記弁体に代えて、弁開閉機構で作動される小径の第1
弁体と、この第1弁体の動きに連動し前記第1弁体の開
弁後に時間差をもって開弁される大径の第2弁体とから
なる二段弁を適用し、前記第2弁体を弁本体の大径弁座
に接離する弁座当接面と、弁本体の弁筐弁室に連通穴を
介して連通する第1弁室と、この第1弁室と第2流路を
連通する小径弁口と、この小径弁口の弁室開口部に形成
され前記第1弁体が接離する小径弁座と、前記第1弁体
との係合手段とを有し、前記弁座当接面が弁本体の大径
弁座に押付けられる方向にスプリングで付勢され、前記
第1弁体の開弁時に前記係合手段の係合作用で引上げら
れて開弁される構成としたことを特徴とする電動流量制
御弁。1. A valve housing having a valve chamber is provided with a fluid inflow port to which a first flow path is connected and a second flow path to which a fluid outflow port is connected in a position orthogonal to the inflow port, and the fluid outflow port A valve body having a large-diameter valve seat in a large-diameter valve port communicating with the valve housing valve chamber, a can fixed to the outside of the valve housing on the opposite side of the fluid outlet of the valve body, and the outside of the can. A pulse controllable stepping motor having a stator coil arranged therein and having a rotor which is rotated by energization and excitation of the stator coil inside the can, and a stepping motor which comes in contact with and separates from a large-diameter valve seat of the valve body. An electric flow control valve having a valve body that opens and closes, and a valve opening and closing mechanism that moves the valve body in a valve housing valve chamber in a valve opening and closing direction by a screw feed action by rotation of a rotor of the stepping motor, Instead, a small-diameter valve operated by a valve opening / closing mechanism 1
A two-stage valve composed of a valve body and a large-diameter second valve body that is interlocked with the movement of the first valve body and opens with a time lag after the opening of the first valve body is applied. A valve seat abutment surface that contacts and separates the body from a large-diameter valve seat of the valve body, a first valve chamber that communicates with a valve housing valve chamber of the valve body through a communication hole, and the first valve chamber and the second flow A small-diameter valve opening communicating with the passage; a small-diameter valve seat formed in the valve chamber opening of the small-diameter valve opening to contact and separate from the first valve body; and an engaging means for engaging the first valve body, The valve seat abutment surface is biased by a spring in a direction to be pressed against the large-diameter valve seat of the valve body, and is pulled up by the engaging action of the engaging means to open the valve when the first valve body is opened. An electric flow control valve having a configuration.
ダに保持され、該弁ホルダの第1弁室内へ突出する内周
フランジ部を第1弁体の上部突起が係合可能な係合手段
としていることを特徴とする請求項1に記載の電動流量
制御弁。2. The second valve body is held by a spring-biased valve holder, and an inner peripheral flange portion of the valve holder protruding into the first valve chamber is engageable with an upper protrusion of the first valve body. The electric flow control valve according to claim 1, wherein the electric flow control valve is a combination means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7163162A JP2898906B2 (en) | 1995-06-29 | 1995-06-29 | Electric flow control valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7163162A JP2898906B2 (en) | 1995-06-29 | 1995-06-29 | Electric flow control valve |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0821554A true JPH0821554A (en) | 1996-01-23 |
JP2898906B2 JP2898906B2 (en) | 1999-06-02 |
Family
ID=15768418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7163162A Expired - Fee Related JP2898906B2 (en) | 1995-06-29 | 1995-06-29 | Electric flow control valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2898906B2 (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11294618A (en) * | 1998-04-08 | 1999-10-29 | Fujikoki Corp | Motor driven flow control valve |
JP2002310541A (en) * | 2001-04-13 | 2002-10-23 | Saginomiya Seisakusho Inc | Flow control valve and its controller |
JP2008064301A (en) * | 2006-08-07 | 2008-03-21 | Fuji Koki Corp | Pilot type control valve |
CN101338835A (en) * | 2007-07-03 | 2009-01-07 | 株式会社不二工机 | Electric valve and cooling/warming system |
JP2011094788A (en) * | 2009-11-01 | 2011-05-12 | Zhejiang Sanhua Climate & Appliance Controls Group Co Ltd | Flow path switch control device |
WO2012066718A1 (en) | 2010-11-18 | 2012-05-24 | 株式会社テージーケー | Stepping motor-driven control valve |
JP2012132498A (en) * | 2010-12-21 | 2012-07-12 | Fuji Koki Corp | Electric pilot type control valve |
WO2013073531A1 (en) * | 2011-11-18 | 2013-05-23 | ダイキン工業 株式会社 | Electronic expansion valve, and air conditioner |
WO2014203615A1 (en) * | 2013-06-21 | 2014-12-24 | 株式会社 東芝 | Air conditioner |
JP2015212553A (en) * | 2014-05-01 | 2015-11-26 | 日本電産トーソク株式会社 | Solenoid valve device |
CN107435757A (en) * | 2016-05-26 | 2017-12-05 | 株式会社不二工机 | Flow control valve |
KR20190037079A (en) | 2017-09-28 | 2019-04-05 | 가부시기가이샤 후지고오키 | Electric valve |
JP2019132347A (en) * | 2018-01-31 | 2019-08-08 | 株式会社鷺宮製作所 | Motor-operated valve and refrigeration cycle system |
EP3620728A1 (en) | 2018-09-10 | 2020-03-11 | TGK CO., Ltd. | Motor operated valve |
JP2021001687A (en) * | 2020-09-04 | 2021-01-07 | 株式会社テージーケー | Motor-operated valve |
EP3845789A1 (en) * | 2019-12-31 | 2021-07-07 | Kyungdong Navien Co., Ltd. | Valve for water flow control |
CN113108072A (en) * | 2020-01-10 | 2021-07-13 | 株式会社不二工机 | Electric valve |
CN113108071A (en) * | 2020-01-10 | 2021-07-13 | 株式会社不二工机 | Electric valve |
CN113915339A (en) * | 2020-07-09 | 2022-01-11 | 株式会社鹭宫制作所 | Two-stage electric valve and refrigeration cycle system |
KR20220088989A (en) * | 2020-12-21 | 2022-06-28 | 주식회사 현대케피코 | Fuel tank isolation valve for vehicle |
EP4063765A1 (en) * | 2021-03-22 | 2022-09-28 | TGK CO., Ltd. | Control valve |
WO2023276627A1 (en) * | 2021-06-29 | 2023-01-05 | 株式会社デンソー | Evaporation pressure regulating valve |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3997077B2 (en) * | 2001-11-14 | 2007-10-24 | 株式会社鷺宮製作所 | Motorized valve |
JP5601217B2 (en) * | 2011-01-24 | 2014-10-08 | 株式会社デンソー | Expansion valve device |
CN106855128A (en) * | 2015-12-09 | 2017-06-16 | 浙江三花智能控制股份有限公司 | Two-period form electric expansion valve |
JP7145134B2 (en) * | 2019-09-27 | 2022-09-30 | 株式会社鷺宮製作所 | Electric valve and refrigeration cycle system |
KR102573761B1 (en) * | 2021-09-08 | 2023-08-31 | 주식회사 현대케피코 | Fuel tank isolation valve |
KR102585781B1 (en) | 2021-09-08 | 2023-10-05 | 주식회사 현대케피코 | Fuel tank isolation valve of vehicle |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61290281A (en) * | 1985-06-19 | 1986-12-20 | Osaka Gas Co Ltd | Shut-off valve |
JPH02116074U (en) * | 1989-03-06 | 1990-09-17 | ||
JPH0351574U (en) * | 1989-09-21 | 1991-05-20 | ||
JPH05965U (en) * | 1991-06-26 | 1993-01-08 | 株式会社アツギユニシア | Flow control valve |
-
1995
- 1995-06-29 JP JP7163162A patent/JP2898906B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61290281A (en) * | 1985-06-19 | 1986-12-20 | Osaka Gas Co Ltd | Shut-off valve |
JPH02116074U (en) * | 1989-03-06 | 1990-09-17 | ||
JPH0351574U (en) * | 1989-09-21 | 1991-05-20 | ||
JPH05965U (en) * | 1991-06-26 | 1993-01-08 | 株式会社アツギユニシア | Flow control valve |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11294618A (en) * | 1998-04-08 | 1999-10-29 | Fujikoki Corp | Motor driven flow control valve |
JP2002310541A (en) * | 2001-04-13 | 2002-10-23 | Saginomiya Seisakusho Inc | Flow control valve and its controller |
JP2008064301A (en) * | 2006-08-07 | 2008-03-21 | Fuji Koki Corp | Pilot type control valve |
CN101338835A (en) * | 2007-07-03 | 2009-01-07 | 株式会社不二工机 | Electric valve and cooling/warming system |
JP2009014056A (en) * | 2007-07-03 | 2009-01-22 | Fuji Koki Corp | Motor-operated valve and air conditioning system |
JP2011094788A (en) * | 2009-11-01 | 2011-05-12 | Zhejiang Sanhua Climate & Appliance Controls Group Co Ltd | Flow path switch control device |
KR20130114674A (en) | 2010-11-18 | 2013-10-17 | 가부시키가이샤 테지케 | Stepping motor-driven control valve |
WO2012066718A1 (en) | 2010-11-18 | 2012-05-24 | 株式会社テージーケー | Stepping motor-driven control valve |
US9285051B2 (en) | 2010-11-18 | 2016-03-15 | Tgk Co., Ltd. | Control valve driven by stepping motor |
JP2012132498A (en) * | 2010-12-21 | 2012-07-12 | Fuji Koki Corp | Electric pilot type control valve |
US9513040B2 (en) | 2011-11-18 | 2016-12-06 | Daikin Industries, Ltd. | Electronic expansion valve, and air conditioner |
WO2013073531A1 (en) * | 2011-11-18 | 2013-05-23 | ダイキン工業 株式会社 | Electronic expansion valve, and air conditioner |
JP2013108647A (en) * | 2011-11-18 | 2013-06-06 | Daikin Industries Ltd | Electronic expansion valve and air conditioner |
AU2012337824B2 (en) * | 2011-11-18 | 2015-11-26 | Daikin Industries, Ltd. | Electronic expansion valve, and air conditioner |
WO2014203615A1 (en) * | 2013-06-21 | 2014-12-24 | 株式会社 東芝 | Air conditioner |
CN105308401A (en) * | 2013-06-21 | 2016-02-03 | 株式会社东芝 | Air conditioner |
JP2015212553A (en) * | 2014-05-01 | 2015-11-26 | 日本電産トーソク株式会社 | Solenoid valve device |
CN107435757A (en) * | 2016-05-26 | 2017-12-05 | 株式会社不二工机 | Flow control valve |
CN107435757B (en) * | 2016-05-26 | 2020-12-15 | 株式会社不二工机 | Flow regulating valve |
KR20190037079A (en) | 2017-09-28 | 2019-04-05 | 가부시기가이샤 후지고오키 | Electric valve |
CN114458782A (en) * | 2018-01-31 | 2022-05-10 | 株式会社鹭宫制作所 | Electric valve and refrigeration cycle system |
CN114458781A (en) * | 2018-01-31 | 2022-05-10 | 株式会社鹭宫制作所 | Electric valve and refrigeration cycle system |
CN114483980B (en) * | 2018-01-31 | 2024-06-11 | 株式会社鹭宫制作所 | Electric valve and refrigeration cycle system |
CN114458782B (en) * | 2018-01-31 | 2024-05-24 | 株式会社鹭宫制作所 | Electric valve and refrigeration cycle system |
CN114458781B (en) * | 2018-01-31 | 2024-05-24 | 株式会社鹭宫制作所 | Electric valve and refrigeration cycle system |
CN114483980A (en) * | 2018-01-31 | 2022-05-13 | 株式会社鹭宫制作所 | Electric valve and refrigeration cycle system |
JP2019132347A (en) * | 2018-01-31 | 2019-08-08 | 株式会社鷺宮製作所 | Motor-operated valve and refrigeration cycle system |
EP3620728A1 (en) | 2018-09-10 | 2020-03-11 | TGK CO., Ltd. | Motor operated valve |
JP2020041596A (en) * | 2018-09-10 | 2020-03-19 | 株式会社テージーケー | Motor-operated valve |
CN113154051B (en) * | 2019-12-31 | 2023-07-21 | 庆东纳碧安株式会社 | Valve for controlling water flow |
CN113154051A (en) * | 2019-12-31 | 2021-07-23 | 庆东纳碧安株式会社 | Valve for water flow control |
US11549590B2 (en) | 2019-12-31 | 2023-01-10 | Kyungdong Navien Co., Ltd | Valve for water flow control |
EP3845789A1 (en) * | 2019-12-31 | 2021-07-07 | Kyungdong Navien Co., Ltd. | Valve for water flow control |
CN113108071A (en) * | 2020-01-10 | 2021-07-13 | 株式会社不二工机 | Electric valve |
CN113108072A (en) * | 2020-01-10 | 2021-07-13 | 株式会社不二工机 | Electric valve |
CN113915339A (en) * | 2020-07-09 | 2022-01-11 | 株式会社鹭宫制作所 | Two-stage electric valve and refrigeration cycle system |
CN113915339B (en) * | 2020-07-09 | 2024-04-02 | 株式会社鹭宫制作所 | Two-stage electric valve and refrigeration cycle system |
JP2021001687A (en) * | 2020-09-04 | 2021-01-07 | 株式会社テージーケー | Motor-operated valve |
KR20220088989A (en) * | 2020-12-21 | 2022-06-28 | 주식회사 현대케피코 | Fuel tank isolation valve for vehicle |
EP4063765A1 (en) * | 2021-03-22 | 2022-09-28 | TGK CO., Ltd. | Control valve |
WO2023276627A1 (en) * | 2021-06-29 | 2023-01-05 | 株式会社デンソー | Evaporation pressure regulating valve |
Also Published As
Publication number | Publication date |
---|---|
JP2898906B2 (en) | 1999-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0821554A (en) | Motor-driven flow control valve | |
JP4812601B2 (en) | Motorized valve | |
KR101161719B1 (en) | Motor-operated valve | |
JP6709926B1 (en) | Motorized valve | |
JP2005030586A (en) | Electromagnetic fluid control valve | |
JP4659514B2 (en) | Electric control valve | |
JP2003148642A (en) | Electric valve | |
JP4762018B2 (en) | Motorized valve | |
JP2018003899A (en) | Motor-operated valve | |
JP3672380B2 (en) | Electric control valve | |
JPH0624282U (en) | Electric flow control valve | |
JP4416528B2 (en) | Flow control valve | |
JP4230806B2 (en) | Motorized valve | |
CN212536667U (en) | Flow control valve | |
JP2000193101A (en) | Flow control valve | |
JP2005221115A5 (en) | ||
JP2000179731A (en) | Electrically driven valve | |
JPH0351574Y2 (en) | ||
JPH1030744A (en) | Electric flow control valve | |
CN113446414A (en) | Flow path switching valve | |
JP2848812B2 (en) | Electric expansion valve | |
JP4633943B2 (en) | Electric switching valve | |
JP2000356278A (en) | Motor-driven flow control valve | |
JPH0422231Y2 (en) | ||
JPH10227369A (en) | Electrically-driven flow control valve |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080312 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090312 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090312 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100312 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |