JP2001304699A - Refrigerating apparatus - Google Patents

Refrigerating apparatus

Info

Publication number
JP2001304699A
JP2001304699A JP2000125424A JP2000125424A JP2001304699A JP 2001304699 A JP2001304699 A JP 2001304699A JP 2000125424 A JP2000125424 A JP 2000125424A JP 2000125424 A JP2000125424 A JP 2000125424A JP 2001304699 A JP2001304699 A JP 2001304699A
Authority
JP
Japan
Prior art keywords
refrigerant
expansion valve
compressor
circuit
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000125424A
Other languages
Japanese (ja)
Inventor
Koichi Kita
宏一 北
Ryuzaburo Yajima
龍三郎 矢嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2000125424A priority Critical patent/JP2001304699A/en
Publication of JP2001304699A publication Critical patent/JP2001304699A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce development cost by shortening the period required in selection of an electric expansion valve at design of an air conditioner. SOLUTION: In an air conditioner (10) for object of design, filling quantity ratio X is obtained by dividing the refrigerant filling quantity of a refrigerant circuit (20) by the specified reference quantity of a refrigerant. A motor-operated expansion valve (36) of a flow coefficient larger than the value being obtained by multiplying an operation value, which is obtained by performing specified operation, using this filling quantity ratio X, by rated cooling capacity (kW) is selected. Hereby, the quantity of a circulating refrigerant in the refrigerant circuit (20) is secured, and the temperature of a refrigerant discharged from a compressor (30) is kept at a prescribed upper limit value or below even under heating overload conditions.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷媒回路を有する
冷凍装置に関し、特に冷媒回路における膨張弁の選定に
係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration system having a refrigerant circuit, and more particularly to a selection of an expansion valve in the refrigerant circuit.

【0002】[0002]

【従来の技術】従来より、冷媒回路で冷媒を循環させて
蒸気圧縮式の冷凍サイクルを行う冷凍装置が知られてお
り、空調機等として広く利用されている。この冷媒回路
には、圧縮機、凝縮器、冷媒の膨張機構、及び蒸発器が
設けられる。また、膨張機構としては、キャピラリチュ
ーブや開度可変の膨張弁などが用いられる。
2. Description of the Related Art Heretofore, a refrigerating apparatus that circulates a refrigerant in a refrigerant circuit to perform a vapor compression refrigeration cycle has been known and is widely used as an air conditioner or the like. The refrigerant circuit includes a compressor, a condenser, a refrigerant expansion mechanism, and an evaporator. As the expansion mechanism, a capillary tube, an expansion valve with a variable opening, or the like is used.

【0003】上記冷凍装置において膨張弁を選定する場
合、従来は次のようにして膨張弁の選定を行っていた。
即ち、はじめに冷凍装置の定格能力と運転状態(膨張弁
前後の差圧、膨張弁入口での冷媒密度)に基づいて流量
係数Cvの値を導出し、この値の流量係数をもつ膨張弁
を仮に選定する。そして、この仮決めした膨張弁を用い
た冷媒回路を構成して実機試験を行い、各種の条件で運
転を行って問題が生じない仕様の膨張弁を最終的に決定
していた。
[0003] When selecting an expansion valve in the above-mentioned refrigerating apparatus, conventionally, an expansion valve is selected as follows.
That is, initially the refrigeration system and the operating state rated capacity (the expansion valve differential pressure across the refrigerant density at the expansion valve inlet) on the basis of the derived values of the flow coefficient C v, the expansion valve having a flow coefficient of this value Choose temporarily. Then, a refrigerant circuit using the provisionally determined expansion valve is configured and an actual machine test is performed, and operation is performed under various conditions to finally determine an expansion valve having a specification that does not cause a problem.

【0004】尚、一般的なバルブ(弁)の流量係数につい
ては、「JIS工業用語大辞典 第4版 (財)日本規格
協会 編」2006ページに示されているように、対象
となるバルブを取り付けた管路に非圧縮性流体を流して
実験を行い、次式によって求められる。 Cv=qV/(A(2Δp/ρ)1/2) ここに、qVは体積流量(m3/s)、Aはバルブの開口面積
(m2)、Δpは差圧(Pa)、ρは流体の密度(kg/m3)を表し
ている。ただし、上記の定義式とは異なり、膨張弁の流
量係数については、膨張弁の開口面積をも含めた数値で
示されるのが一般的である。これは、膨張弁の開口面積
の厳密な定量化が困難なためである。
[0004] As for the flow coefficient of a general valve (valve), as shown on page 2006 of “JIS Industrial Dictionary, 4th Edition, edited by the Japan Standards Association,” An experiment is performed by flowing an incompressible fluid through the installed pipe line, and the value is obtained by the following equation. C v = q V / (A (2Δp / ρ) 1/2 ) where q V is the volume flow rate (m 3 / s), and A is the opening area of the valve
(m 2 ), Δp represents the differential pressure (Pa), and ρ represents the density of the fluid (kg / m 3 ). However, unlike the above-described definition formula, the flow coefficient of the expansion valve is generally indicated by a numerical value including the opening area of the expansion valve. This is because it is difficult to strictly quantify the opening area of the expansion valve.

【0005】[0005]

【発明が解決しようとする課題】上述のように、従来に
おける膨張弁の選定は、定格能力等を考慮した仮決めの
後に実機試験を行っているため、例えば暖房過負荷条件
(空調機における暖房運転時に室温及び外気温が共に高
い状態)において圧縮機の吐出冷媒温度が高くなりすぎ
る場合も多く、実機試験での試行錯誤に多くの労力を要
する場合が多かった。このため、冷凍装置の開発に長期
間を要し、開発コストの上昇を招くという問題があっ
た。
As described above, in the conventional selection of the expansion valve, the actual machine test is performed after tentatively determining the rated capacity and the like. In the state where both the room temperature and the outside air temperature are high during operation), the refrigerant discharge temperature of the compressor is often too high, and much effort is often required for trial and error in actual machine tests. For this reason, there has been a problem that it takes a long time to develop a refrigeration apparatus, which causes an increase in development cost.

【0006】一方、近年、地球温暖化防止の観点から、
冷媒回路の冷媒としてR32が注目されている。このR
32は、微燃性はあるものの、R22やR407C、R
410Aと比べてGWP(地球温暖化係数)が低く、更
には、蒸発潜熱が大きいことから冷媒充填量が少なくて
すみ、冷凍装置のCOP(成績係数)の向上も図れると
いった多くの利点を有する。
On the other hand, in recent years, from the viewpoint of preventing global warming,
R32 has attracted attention as a refrigerant in the refrigerant circuit. This R
32 has a slight flammability, but R22, R407C, R
Compared with 410A, it has many advantages such as a lower GWP (global warming potential) and a large refrigerant latent heat due to a large latent heat of vaporization, and an improvement in the COP (coefficient of performance) of the refrigeration system.

【0007】ところが、R32の比熱比は、従来のR2
2やR407C、R410Aといった冷媒よりも大きな
値となる。ちなみに、各冷媒の比熱比は、R32が1.
51、R22が1.31、R407Cが1.24、R4
10Aが1.36となっている。尚、これらの冷媒物性
は、NIST Refprop Ver.5 による値である。
However, the specific heat ratio of R32 is smaller than that of the conventional R2.
2, R407C, and R410A. By the way, the specific heat ratio of each refrigerant is 1.
51, R22 1.31, R407C 1.24, R4
10A is 1.36. The physical properties of these refrigerants are based on NIST Refprop Ver.5.

【0008】そして、冷媒の比熱比が大きくなると、圧
縮機における圧縮比が同じであっても、圧縮機の前後に
おける冷媒の昇温幅が大きくなる。このため、R32の
ように、従来のR22やR407C、R410Aよりも
比熱比の大きな冷媒を用いる場合、従来の方法で仮決め
した膨張弁で実機試験を行うと、ほとんどの場合に問題
が生じてしまう。従って、膨張弁の選定に要する工数が
増大して開発コストの上昇を招くといった問題が一層深
刻化ていた。
[0008] When the specific heat ratio of the refrigerant increases, the temperature rise width of the refrigerant before and after the compressor increases even if the compression ratio in the compressor is the same. For this reason, when a refrigerant having a specific heat ratio larger than that of the conventional R22, R407C, or R410A, such as R32, is used, in most cases, a problem occurs when an actual machine test is performed using an expansion valve provisionally determined by the conventional method. I will. Therefore, the problem that the man-hour required for selecting the expansion valve is increased and the development cost is increased has been more serious.

【0009】本発明は、かかる点に鑑みてなされたもの
であり、その目的とするところは、膨張弁の選定に要す
る期間の短縮を図り、開発コストの低減を図ることにあ
る。
The present invention has been made in view of the above points, and has as its object to shorten the period required for selecting an expansion valve and to reduce development costs.

【0010】[0010]

【課題を解決するための手段】本発明が講じた第1の解
決手段は、室内側ユニット(13)と室外側ユニット(1
1)を冷媒回路(20)の連絡配管(23,24)により接続
し、上記冷媒回路(20)に充填された冷媒が圧縮機(3
0)、凝縮器、膨張弁(36)、蒸発器の順で循環する冷
凍装置を対象とする。そして、上記連絡配管(23,24)
の長さが30m、上記蒸発器で冷媒と熱交換する第1空
気の乾球温度が21℃で湿球温度が15℃、上記凝縮器
で冷媒と熱交換する第2空気の乾球温度が28℃、上記
圧縮機(30)の容量が最大容量である限界運転条件にお
いて上記圧縮機(30)の吐出冷媒温度が145℃以下に
維持される膨張弁流量係数を有するように、上記冷媒回
路(20)の膨張弁(36)が構成されるものである。即
ち、上記限界運転条件において圧縮機(30)の吐出冷媒
温度が145℃以下に維持される膨張弁流量係数を基準
に、上記冷媒回路(20)における膨張弁(36)の流量係
数が設定されるものである。
A first solution of the present invention is to provide an indoor unit (13) and an outdoor unit (1).
1) is connected by connecting pipes (23, 24) of the refrigerant circuit (20), and the refrigerant charged in the refrigerant circuit (20) is supplied to the compressor (3).
0), a refrigeration system that circulates in the order of condenser, expansion valve (36), and evaporator. And the above connection pipe (23,24)
Is 30 m, the dry bulb temperature of the first air that exchanges heat with the refrigerant in the evaporator is 21 ° C., the wet bulb temperature is 15 ° C., and the dry bulb temperature of the second air that exchanges heat with the refrigerant in the condenser is The refrigerant circuit is designed to have an expansion valve flow coefficient at 28 ° C. and a refrigerant discharge temperature of the compressor (30) maintained at 145 ° C. or less under the limit operation condition where the capacity of the compressor (30) is the maximum capacity. The expansion valve (36) of (20) is configured. That is, the flow coefficient of the expansion valve (36) in the refrigerant circuit (20) is set on the basis of the expansion valve flow coefficient at which the discharge refrigerant temperature of the compressor (30) is maintained at 145 ° C. or lower under the above-mentioned limit operation conditions. Things.

【0011】本発明が講じた第2の解決手段は、室内側
ユニット(13)と室外側ユニット(11)を冷媒回路(2
0)の連絡配管(23,24)により接続し、上記冷媒回路
(20)に充填された冷媒が圧縮機(30)、凝縮器、膨張
弁(36)、蒸発器の順で循環する冷凍装置を対象とす
る。そして、上記連絡配管(23,24)の長さが30m、
上記蒸発器で冷媒と熱交換する第1空気の乾球温度が2
1℃で湿球温度が15℃、上記凝縮器で冷媒と熱交換す
る第2空気の乾球温度が28℃、上記圧縮機(30)の容
量が最大容量である限界運転条件において上記圧縮機
(30)の吐出冷媒温度が135℃以下に維持される膨張
弁流量係数を有するように、上記冷媒回路(20)の膨張
弁(36)が構成されるものである。即ち、上記限界運転
条件において圧縮機(30)の吐出冷媒温度が135℃以
下に維持される膨張弁流量係数を基準に、上記冷媒回路
(20)における膨張弁(36)の流量係数が設定されるも
のである。
A second solution taken by the present invention is that an indoor unit (13) and an outdoor unit (11) are connected to a refrigerant circuit (2).
A refrigeration unit connected by the communication pipes (23, 24) of (0) and the refrigerant charged in the refrigerant circuit (20) circulates in the order of the compressor (30), the condenser, the expansion valve (36), and the evaporator. Target. And the length of the connecting pipe (23, 24) is 30 m,
The dry bulb temperature of the first air that exchanges heat with the refrigerant in the evaporator is 2
The wet-bulb temperature is 1 ° C., the dry-bulb temperature of the second air that exchanges heat with the refrigerant in the condenser is 15 ° C., the dry-bulb temperature is 28 ° C., and the capacity of the compressor (30) is the maximum capacity. The expansion valve (36) of the refrigerant circuit (20) is configured so as to have an expansion valve flow coefficient at which the discharged refrigerant temperature of (30) is maintained at 135 ° C or lower. That is, the flow coefficient of the expansion valve (36) in the refrigerant circuit (20) is set on the basis of the expansion valve flow coefficient at which the discharge refrigerant temperature of the compressor (30) is maintained at 135 ° C. or lower under the above limit operation conditions. Things.

【0012】本発明が講じた第3の解決手段は、室内側
ユニット(13)と室外側ユニット(11)を冷媒回路(2
0)の連絡配管(23,24)により接続し、上記冷媒回路
(20)に充填された冷媒が圧縮機(30)、凝縮器、膨張
弁(36)、蒸発器の順で循環する冷凍装置を対象とす
る。そして、上記連絡配管(23,24)の長さが30m、
上記蒸発器で冷媒と熱交換する第1空気の乾球温度が2
1℃で湿球温度が15℃、上記凝縮器で冷媒と熱交換す
る第2空気の乾球温度が28℃、上記圧縮機(30)の容
量が最大容量である限界運転条件において上記圧縮機
(30)の吐出冷媒温度が125℃以下に維持される膨張
弁流量係数を有するように、上記冷媒回路(20)の膨張
弁(36)が構成されるものである。即ち、上記限界運転
条件において圧縮機(30)の吐出冷媒温度が125℃以
下に維持される膨張弁流量係数を基準に、上記冷媒回路
(20)における膨張弁(36)の流量係数が設定されるも
のである。
A third solution taken by the present invention is that an indoor unit (13) and an outdoor unit (11) are connected to a refrigerant circuit (2).
A refrigeration unit connected by the communication pipes (23, 24) of (0) and the refrigerant charged in the refrigerant circuit (20) circulates in the order of the compressor (30), the condenser, the expansion valve (36), and the evaporator. Target. And the length of the connecting pipe (23, 24) is 30 m,
The dry bulb temperature of the first air that exchanges heat with the refrigerant in the evaporator is 2
The wet-bulb temperature is 1 ° C., the dry-bulb temperature of the second air that exchanges heat with the refrigerant in the condenser is 15 ° C., the dry-bulb temperature is 28 ° C., and the capacity of the compressor (30) is the maximum capacity. The expansion valve (36) of the refrigerant circuit (20) is configured to have an expansion valve flow coefficient that maintains the discharged refrigerant temperature of (30) at 125 ° C. or lower. That is, the flow coefficient of the expansion valve (36) in the refrigerant circuit (20) is set on the basis of the expansion valve flow coefficient at which the discharge refrigerant temperature of the compressor (30) is maintained at 125 ° C. or lower under the above-mentioned limit operating conditions. Things.

【0013】本発明が講じた第4の解決手段は、冷媒回
路(20)に充填された冷媒が圧縮機(30)、凝縮器、膨
張弁(36)、蒸発器の順で循環する冷凍装置を対象とす
る。そして、上記冷媒回路(20)の冷媒充填量を予め設
定された基準冷媒量で除して得られる充填量比率と、膨
張弁流量係数と、上記圧縮機(30)の吐出冷媒温度との
相関に基づいて導出される膨張弁流量係数の値以上の流
量係数を有するように、上記冷媒回路(20)の膨張弁
(36)が構成されるものである。即ち、上記充填量比率
と、膨張弁流量係数と、上記圧縮機(30)の吐出冷媒温
度との相関に基づいて導出される膨張弁流量係数を基準
に、上記冷媒回路(20)における膨張弁(36)の流量係
数が設定されるものである。
A fourth solution taken by the present invention is a refrigeration system in which a refrigerant charged in a refrigerant circuit (20) circulates in the order of a compressor (30), a condenser, an expansion valve (36), and an evaporator. Target. Then, a correlation between a charging ratio obtained by dividing the refrigerant charging amount of the refrigerant circuit (20) by a preset reference refrigerant amount, an expansion valve flow coefficient, and a refrigerant discharge temperature of the compressor (30). The expansion valve (36) of the refrigerant circuit (20) is configured to have a flow coefficient equal to or larger than the value of the expansion valve flow coefficient derived based on the above. That is, the expansion valve in the refrigerant circuit (20) is referred to based on the expansion valve flow coefficient derived based on the correlation between the filling ratio, the expansion valve flow coefficient, and the refrigerant discharge temperature of the compressor (30). The flow coefficient of (36) is set.

【0014】本発明が講じた第5の解決手段は、室内側
ユニット(13)と室外側ユニット(11)を冷媒回路(2
0)の連絡配管(23,24)により接続し、上記冷媒回路
(20)に充填された冷媒が圧縮機(30)、凝縮器、膨張
弁(36)、蒸発器の順で循環する冷凍装置を対象とす
る。そして、上記連絡配管(23,24)の長さが30m、
上記蒸発器で冷媒と熱交換する第1空気の乾球温度が2
1℃で湿球温度が15℃、上記凝縮器で冷媒と熱交換す
る第2空気の乾球温度が28℃、上記圧縮機(30)の容
量が最大容量である運転条件を限界運転条件とし、上記
冷媒回路(20)の冷媒充填量を予め設定された基準冷媒
量で除して得られる充填量比率と、膨張弁流量係数と、
上記限界運転条件における圧縮機(30)の吐出冷媒温度
との相関に基づいて導出される膨張弁流量係数の値以上
の流量係数を有するように、上記冷媒回路(20)の膨張
弁(36)が構成されるものである。即ち、上記充填量比
率と、膨張弁流量係数と、上記限界運転条件における圧
縮機(30)の吐出冷媒温度との相関に基づいて導出され
る膨張弁流量係数を基準に、上記冷媒回路(20)におけ
る膨張弁(36)の流量係数が設定されるものである。
A fifth solution taken by the present invention is that an indoor unit (13) and an outdoor unit (11) are connected to a refrigerant circuit (2).
A refrigeration unit connected by the communication pipes (23, 24) of (0) and the refrigerant charged in the refrigerant circuit (20) circulates in the order of the compressor (30), the condenser, the expansion valve (36), and the evaporator. Target. And the length of the connecting pipe (23, 24) is 30 m,
The dry bulb temperature of the first air that exchanges heat with the refrigerant in the evaporator is 2
The operating conditions at which the wet-bulb temperature is 1 ° C., the wet-bulb temperature is 15 ° C., the dry-bulb temperature of the second air that exchanges heat with the refrigerant in the condenser is 28 ° C., and the capacity of the compressor (30) is the maximum capacity are defined as the critical operating conditions. A charge ratio obtained by dividing the refrigerant charge of the refrigerant circuit (20) by a preset reference refrigerant amount, an expansion valve flow coefficient,
The expansion valve (36) of the refrigerant circuit (20) has a flow coefficient that is equal to or greater than the value of the expansion valve flow coefficient derived based on the correlation with the refrigerant temperature discharged from the compressor (30) under the above-mentioned limit operating conditions. Is constituted. That is, the refrigerant circuit (20) is determined based on the expansion valve flow coefficient derived based on the correlation between the filling ratio, the expansion valve flow coefficient, and the refrigerant temperature discharged from the compressor (30) under the limit operating conditions. ), The flow coefficient of the expansion valve (36) is set.

【0015】本発明が講じた第6の解決手段は、室内側
ユニット(13)と室外側ユニット(11)を冷媒回路(2
0)の連絡配管(23,24)により接続し、上記冷媒回路
(20)に充填された冷媒が圧縮機(30)、凝縮器、膨張
弁(36)、蒸発器の順で循環する冷凍装置を対象とす
る。そして、上記蒸発器で冷媒と熱交換する第1空気の
乾球温度が27℃で湿球温度が19℃、上記凝縮器で冷
媒と熱交換する第2空気の乾球温度が35℃、圧縮機
(30)の容量が所定の定格容量である運転条件を標準運
転条件とし、上記連絡配管(23,24)の長さを5mとし
た冷媒回路(20)である基準回路で上記標準運転条件に
おける冷凍サイクルを行う際に、上記基準回路の膨張弁
(36)入口において冷媒を完全に液相とするために該基
準回路へ充填しなければならない冷媒量を予め基準冷媒
量として設定し、上記連絡配管(23,24)の長さが30
m、上記蒸発器で冷媒と熱交換する第1空気の乾球温度
が21℃で湿球温度が15℃、上記凝縮器で冷媒と熱交
換する第2空気の乾球温度が28℃、上記圧縮機(30)
の容量が最大容量である運転条件を限界運転条件とし、
上記冷媒回路(20)の冷媒充填量を上記基準冷媒量で除
して得られる充填量比率と、膨張弁流量係数と、上記限
界運転条件における圧縮機(30)の吐出冷媒温度との相
関に基づいて導出される膨張弁流量係数の値以上の流量
係数を有するように、上記冷媒回路(20)の膨張弁(3
6)が構成されるものである。即ち、上記充填量比率
と、膨張弁流量係数と、上記限界運転条件における圧縮
機(30)の吐出冷媒温度との相関に基づいて導出される
膨張弁流量係数を基準に、上記冷媒回路(20)における
膨張弁(36)の流量係数が設定されるものである。
A sixth solution taken by the present invention is that an indoor unit (13) and an outdoor unit (11) are connected to a refrigerant circuit (2).
A refrigeration unit connected by the communication pipes (23, 24) of (0) and the refrigerant charged in the refrigerant circuit (20) circulates in the order of the compressor (30), the condenser, the expansion valve (36), and the evaporator. Target. The first air that exchanges heat with the refrigerant in the evaporator has a dry bulb temperature of 27 ° C. and a wet bulb temperature of 19 ° C. The second air that exchanges heat with the refrigerant in the condenser has a dry bulb temperature of 35 ° C. The operating conditions in which the capacity of the machine (30) is a predetermined rated capacity are the standard operating conditions, and the standard operating conditions in the reference circuit, which is a refrigerant circuit (20) in which the length of the connecting pipes (23, 24) is 5 m, are used. When the refrigeration cycle is performed, the amount of refrigerant that must be charged into the reference circuit to completely convert the refrigerant into a liquid phase at the inlet of the expansion valve (36) of the reference circuit is set in advance as the reference refrigerant amount. The length of the connecting pipe (23, 24) is 30
m, the dry bulb temperature of the first air that exchanges heat with the refrigerant in the evaporator is 21 ° C., the wet bulb temperature is 15 ° C., the dry bulb temperature of the second air that exchanges heat with the refrigerant in the condenser is 28 ° C., Compressor (30)
The operating condition where the capacity of the
The correlation between the charging ratio obtained by dividing the refrigerant charging amount of the refrigerant circuit (20) by the reference refrigerant amount, the flow coefficient of the expansion valve, and the refrigerant temperature discharged from the compressor (30) under the above-mentioned limit operating conditions is shown. The expansion valve (3) of the refrigerant circuit (20) has a flow coefficient equal to or greater than the value of the expansion valve flow coefficient derived based on the
6) is configured. That is, the refrigerant circuit (20) is determined based on the expansion valve flow coefficient derived based on the correlation between the filling ratio, the expansion valve flow coefficient, and the refrigerant temperature discharged from the compressor (30) under the limit operating conditions. ), The flow coefficient of the expansion valve (36) is set.

【0016】本発明が講じた第7の解決手段は、上記第
1から第6までの何れか1つの解決手段において、冷媒
回路(20)に充填される冷媒が、R22よりも比熱比の
大きな物質により構成されるものである。
According to a seventh aspect of the present invention, in any one of the first to sixth aspects, the refrigerant filled in the refrigerant circuit (20) has a larger specific heat ratio than R22. It is composed of substances.

【0017】本発明が講じた第8の解決手段は、上記第
1から第6までの何れか1つの解決手段において、冷媒
回路(20)の充填される冷媒が、R32の単一冷媒によ
り構成されるものである。
According to an eighth aspect of the present invention, in any one of the first to sixth aspects, the refrigerant filled in the refrigerant circuit (20) is constituted by a single refrigerant of R32. Is what is done.

【0018】本発明が講じた第9の解決手段は、室内側
ユニット(13)と室外側ユニット(11)を冷媒回路(2
0)の連絡配管(23,24)により接続し、上記冷媒回路
(20)に充填された冷媒が圧縮機(30)、凝縮器、膨張
弁(36)、蒸発器の順で循環する冷凍装置であって、上
記冷媒回路(20)に充填される冷媒が、R32の単一冷
媒により構成されるものを対象とする。そして、上記蒸
発器で冷媒と熱交換する第1空気の乾球温度が27℃で
湿球温度が19℃、上記凝縮器で冷媒と熱交換する第2
空気の乾球温度が35℃、圧縮機(30)の容量が所定の
定格容量である運転条件を標準運転条件とし、上記連絡
配管(23,24)の長さを5mとした冷媒回路(20)であ
る基準回路で上記標準運転条件における冷凍サイクルを
行う際に、上記基準回路の膨張弁(36)入口において冷
媒を完全に液相とするために該基準回路へ充填しなけれ
ばならない冷媒量を予め基準冷媒量として設定し、上記
冷媒回路(20)における上記標準運転条件での運転によ
り発揮される冷凍能力を定格冷凍能力(kW)とし、上記
膨張弁の流量係数が、上記冷媒回路の冷媒充填量を上記
基準冷媒量で除して得られる値をXとして表された式
(1.02443・X2−3.79638・X+3.88706)・10-2に基づいて
導出される演算値に上記定格冷凍能力を乗じて得られる
値以上の値とされるものである。
According to a ninth solution of the present invention, an indoor unit (13) and an outdoor unit (11) are connected to a refrigerant circuit (2).
A refrigeration unit connected by the communication pipes (23, 24) of (0) and the refrigerant charged in the refrigerant circuit (20) circulates in the order of the compressor (30), the condenser, the expansion valve (36), and the evaporator. The refrigerant filled in the refrigerant circuit (20) is a refrigerant composed of a single R32 refrigerant. The first air that exchanges heat with the refrigerant in the evaporator has a dry bulb temperature of 27 ° C., the wet bulb temperature is 19 ° C., and the second air that exchanges heat with the refrigerant in the condenser.
Refrigerant circuit (20) in which the operating condition that the dry bulb temperature of the air is 35 ° C. and the capacity of the compressor (30) is a predetermined rated capacity is set as the standard operating condition, and the length of the connecting pipe (23, 24) is 5 m. When the refrigeration cycle under the standard operating conditions is performed in the reference circuit, the amount of refrigerant that must be charged into the reference circuit in order to completely convert the refrigerant into a liquid phase at the inlet of the expansion valve (36) of the reference circuit. Is set in advance as a reference refrigerant amount, the refrigeration capacity exhibited by the operation under the standard operation conditions in the refrigerant circuit (20) is defined as a rated refrigeration capacity (kW), and the flow coefficient of the expansion valve is An expression in which a value obtained by dividing the refrigerant charge amount by the reference refrigerant amount is expressed as X
(1.02443 · X 2 −3.79638 · X + 3.88706) · 10 -2 The calculated value is multiplied by the rated refrigeration capacity and is equal to or greater than the value obtained.

【0019】本発明が講じた第10の解決手段は、室内
側ユニット(13)と室外側ユニット(11)を冷媒回路
(20)の連絡配管(23,24)により接続し、上記冷媒回
路(20)に充填された冷媒が圧縮機(30)、凝縮器、膨
張弁(36)、蒸発器の順で循環する冷凍装置であって、
上記冷媒回路(20)に充填される冷媒は、R32の単一
冷媒により構成されるものを対象とする。そして、上記
蒸発器で冷媒と熱交換する第1空気の乾球温度が27℃
で湿球温度が19℃、上記凝縮器で冷媒と熱交換する第
2空気の乾球温度が35℃、圧縮機(30)の容量が所定
の定格容量である運転条件を標準運転条件とし、上記連
絡配管(23,24)の長さを5mとした冷媒回路(20)で
ある基準回路で上記標準運転条件における冷凍サイクル
を行う際に、上記基準回路の膨張弁(36)入口において
冷媒を完全に液相とするために該基準回路へ充填しなけ
ればならない冷媒量を予め基準冷媒量として設定し、上
記冷媒回路(20)における上記標準運転条件での運転に
より発揮される冷凍能力を定格冷凍能力(kW)とし、上
記膨張弁の流量係数が、上記冷媒回路の冷媒充填量を上
記基準冷媒量で除して得られる値をXとして表された式
(1.20720・X2−4.21152・X+4.17078)・10-2に基づいて
導出される演算値に上記定格冷凍能力を乗じて得られる
値以上の値とされるものである。
The tenth solution taken by the present invention is that the indoor unit (13) and the outdoor unit (11) are connected by connecting pipes (23, 24) of a refrigerant circuit (20), and the refrigerant circuit ( 20) A refrigeration system in which the refrigerant filled in the compressor circulates in the order of a compressor (30), a condenser, an expansion valve (36), and an evaporator,
The refrigerant to be filled in the refrigerant circuit (20) is intended to be composed of a single refrigerant of R32. The dry air temperature of the first air that exchanges heat with the refrigerant in the evaporator is 27 ° C.
Operating conditions in which the wet bulb temperature is 19 ° C., the dry bulb temperature of the second air that exchanges heat with the refrigerant in the condenser is 35 ° C., and the capacity of the compressor (30) is a predetermined rated capacity, When performing a refrigeration cycle under the standard operating conditions in a reference circuit which is a refrigerant circuit (20) having a length of the communication pipes (23, 24) of 5 m, refrigerant is supplied to an inlet of an expansion valve (36) of the reference circuit. The amount of refrigerant that must be charged into the reference circuit in order to completely make it into a liquid phase is set in advance as a reference refrigerant amount, and the refrigeration capacity exhibited by the refrigerant circuit (20) operating under the standard operating conditions is rated. The refrigerating capacity (kW), the flow coefficient of the expansion valve, a value obtained by dividing the refrigerant charge of the refrigerant circuit by the reference refrigerant amount is represented by X
(1.20720 · X 2 −4.21152 · X + 4.17078) · 10 -2 The calculated value is multiplied by the rated refrigeration capacity and is equal to or greater than the value obtained.

【0020】本発明が講じた第11の解決手段は、室内
側ユニット(13)と室外側ユニット(11)を冷媒回路
(20)の連絡配管(23,24)により接続し、上記冷媒回
路(20)に充填された冷媒が圧縮機(30)、凝縮器、膨
張弁(36)、蒸発器の順で循環する冷凍装置であって、
上記冷媒回路(20)に充填される冷媒は、R32の単一
冷媒により構成されるものを対象とする。そして、上記
蒸発器で冷媒と熱交換する第1空気の乾球温度が27℃
で湿球温度が19℃、上記凝縮器で冷媒と熱交換する第
2空気の乾球温度が35℃、圧縮機(30)の容量が所定
の定格容量である運転条件を標準運転条件とし、上記連
絡配管(23,24)の長さを5mとした冷媒回路(20)で
ある基準回路で上記標準運転条件における冷凍サイクル
を行う際に、上記基準回路の膨張弁(36)入口において
冷媒を完全に液相とするために該基準回路へ充填しなけ
ればならない冷媒量を予め基準冷媒量として設定し、上
記冷媒回路(20)における上記標準運転条件での運転に
より発揮される冷凍能力を定格冷凍能力(kW)とし、上
記膨張弁の流量係数が、上記冷媒回路の冷媒充填量を上
記基準冷媒量で除して得られる値をXとして表された式
(1.39816・X2−4.66544・X+4.48651)・10-2に基づいて
導出される演算値に上記定格冷凍能力を乗じて得られる
値以上の値とされるものである。
An eleventh solution taken by the present invention is that an indoor unit (13) and an outdoor unit (11) are connected by connecting pipes (23, 24) of a refrigerant circuit (20), and the refrigerant circuit ( 20) A refrigeration system in which the refrigerant filled in the compressor circulates in the order of a compressor (30), a condenser, an expansion valve (36), and an evaporator,
The refrigerant to be filled in the refrigerant circuit (20) is intended to be composed of a single refrigerant of R32. The dry air temperature of the first air that exchanges heat with the refrigerant in the evaporator is 27 ° C.
Operating conditions in which the wet bulb temperature is 19 ° C., the dry bulb temperature of the second air that exchanges heat with the refrigerant in the condenser is 35 ° C., and the capacity of the compressor (30) is a predetermined rated capacity, When performing a refrigeration cycle under the standard operating conditions in a reference circuit which is a refrigerant circuit (20) having a length of the communication pipes (23, 24) of 5 m, refrigerant is supplied to an inlet of an expansion valve (36) of the reference circuit. The amount of refrigerant that must be charged into the reference circuit in order to completely make it into a liquid phase is set in advance as a reference refrigerant amount, and the refrigeration capacity exhibited by the refrigerant circuit (20) operating under the standard operating conditions is rated. The refrigerating capacity (kW), the flow coefficient of the expansion valve, a value obtained by dividing the refrigerant charge of the refrigerant circuit by the reference refrigerant amount is represented by X
(1.39816 · X 2 −4.66544 · X + 4.48651) · 10 -2 The calculated value is multiplied by the rated refrigeration capacity and is equal to or larger than the value obtained by multiplying the calculated value.

【0021】本発明が講じた第12の解決手段は、上記
第8,第9,第10又は第11の解決手段において、冷
媒回路(20)に充填される冷媒は、R32の単一冷媒に
代えて、R32を75質量%以上含む混合冷媒により構
成されるものである。
According to a twelfth solution of the present invention, in the eighth, ninth, tenth or eleventh solution, the refrigerant filled in the refrigerant circuit (20) is a single refrigerant of R32. Instead, it is composed of a mixed refrigerant containing 75% by mass or more of R32.

【0022】−作用− 上記の各解決手段では、冷凍装置(10)に冷媒回路(2
0)が設けられる。冷媒回路(20)は、閉回路に構成さ
れて冷媒が充填されている。この冷媒回路(20)には、
圧縮機(30)、凝縮器、膨張弁(36)、及び蒸発器が設
けられる。圧縮機(30)を駆動すると、圧縮機(30)、
凝縮器、膨張弁(36)、蒸発器の順で冷媒が相変化しつ
つ循環し、蒸気圧縮式の冷凍サイクルが行われる。
-Operation- In each of the above solutions, the refrigeration system (10) is connected to the refrigerant circuit (2).
0) is provided. The refrigerant circuit (20) is configured as a closed circuit and is filled with refrigerant. In this refrigerant circuit (20),
A compressor (30), a condenser, an expansion valve (36), and an evaporator are provided. When the compressor (30) is driven, the compressor (30)
Refrigerant circulates in the order of the condenser, the expansion valve (36), and the evaporator while changing phase, and a vapor compression refrigeration cycle is performed.

【0023】特に、上記第1〜第3,第5,第6,第9
〜第11の各解決手段では、冷凍装置(10)に室内側ユ
ニット(13)及び室外側ユニット(11)が設けられる。
室内側ユニット(13)と室外側ユニット(11)は、冷媒
回路(20)の連絡配管(23,24)により接続される。
In particular, the first to third, fifth, sixth, and ninth embodiments
In each of the eleventh to eleventh solving means, the indoor unit (13) and the outdoor unit (11) are provided in the refrigeration system (10).
The indoor unit (13) and the outdoor unit (11) are connected by communication pipes (23, 24) of the refrigerant circuit (20).

【0024】上記冷凍装置(10)により対象物を冷却す
る場合には、蒸発器における冷媒の吸熱を利用する。例
えば、室内側ユニット(13)に蒸発器が設けられ、この
蒸発器において冷媒が対象物から吸熱する。一方、室外
側ユニット(11)には、圧縮機(30)や凝縮器が設けら
れる。膨張弁(36)は、室内側ユニット(13)又は室外
側ユニット(11)の何れに設けてもよい。
When the object is cooled by the refrigerating device (10), the heat absorption of the refrigerant in the evaporator is used. For example, an evaporator is provided in the indoor unit (13), and the refrigerant absorbs heat from the object in the evaporator. On the other hand, the outdoor unit (11) is provided with a compressor (30) and a condenser. The expansion valve (36) may be provided in either the indoor unit (13) or the outdoor unit (11).

【0025】上記冷凍装置(10)により対象物を加熱す
る場合、即ち該冷凍装置(10)をヒートポンプとして用
いる場合には、凝縮器における冷媒の放熱を利用する。
例えば、室内側ユニット(13)に凝縮器が設けられ、こ
の凝縮器において冷媒が対象物に対して放熱する。一
方、室外側ユニット(11)には、圧縮機(30)や蒸発器
が設けられる。膨張弁(36)は、室内側ユニット(13)
又は室外側ユニット(11)の何れに設けてもよい。
When the object is heated by the refrigerating device (10), that is, when the refrigerating device (10) is used as a heat pump, the heat radiation of the refrigerant in the condenser is used.
For example, a condenser is provided in the indoor unit (13), and the refrigerant radiates heat to the object in the condenser. On the other hand, the outdoor unit (11) is provided with a compressor (30) and an evaporator. The expansion valve (36) is the indoor unit (13)
Alternatively, it may be provided in any of the outdoor unit (11).

【0026】上記第1,第2,第3の解決手段では、所
定の運転条件を限界運転条件と定める。この限界運転条
件は、連絡配管(23,24)の長さが比較的長い上に、蒸
発器で冷媒と熱交換する第1空気、及び凝縮器で冷媒と
熱交換する第2空気の何れもが比較的高い温度であり、
更には圧縮機(30)が最大容量で運転される運転条件で
ある。即ち、限界運転条件は、圧縮機(30)から吐出さ
れる冷媒の温度が最も高くなり易い運転条件である。
In the first, second, and third solving means, the predetermined operating condition is determined as the limit operating condition. The limit operating conditions are that the connection pipes (23, 24) are relatively long and the first air that exchanges heat with the refrigerant in the evaporator and the second air that exchanges heat with the refrigerant in the condenser. Is a relatively high temperature,
Further, the operating condition is such that the compressor (30) is operated at the maximum capacity. That is, the limit operating condition is an operating condition in which the temperature of the refrigerant discharged from the compressor (30) tends to be the highest.

【0027】特に、冷凍装置(10)を空調機に構成した
場合、この限界運転条件は、いわゆる暖房過負荷条件に
対応し、想定される運転条件のうちで最も圧縮機(30)
の吐出冷媒温度が高くなる運転条件となる。つまり、凝
縮器における冷媒の凝縮温度が高い上に、蒸発器の出口
における冷媒の過熱度が高くなることから、圧縮機(3
0)から吐出される冷媒の温度が高くなる。
In particular, when the refrigeration system (10) is configured as an air conditioner, this limit operation condition corresponds to a so-called heating overload condition, and the compressor (30) is the most conceivable operation condition.
This is an operating condition in which the discharged refrigerant temperature becomes higher. That is, since the condensation temperature of the refrigerant in the condenser is high and the degree of superheat of the refrigerant at the outlet of the evaporator is high, the compressor (3
The temperature of the refrigerant discharged from 0) increases.

【0028】上記限界運転条件では、冷媒回路(20)に
おける冷媒の循環量を最大限確保する必要があり、この
ため膨張弁(36)の開度が最大とされる。従って、膨張
弁(36)の流量係数が小さすぎると、膨張弁(36)を全
開としても冷媒循環量が不足し、圧縮機(30)の吐出冷
媒温度が上昇しすぎるおそれがある。そして、この吐出
冷媒温度が過上昇すると、冷媒や冷凍機油の変質、圧縮
機モータの損傷などのトラブルを招く。
Under the above limit operating conditions, it is necessary to ensure the maximum amount of refrigerant circulating in the refrigerant circuit (20), and therefore the opening of the expansion valve (36) is maximized. Therefore, if the flow coefficient of the expansion valve (36) is too small, the refrigerant circulation amount will be insufficient even when the expansion valve (36) is fully opened, and the temperature of the refrigerant discharged from the compressor (30) may be too high. If the temperature of the discharged refrigerant is excessively raised, troubles such as deterioration of the refrigerant and refrigerating machine oil and damage to the compressor motor are caused.

【0029】そこで、上記第1の解決手段では、上記限
界運転条件においても圧縮機(30)からの吐出冷媒温度
が145℃を超えないように、膨張弁(36)の流量係数
を定める。言い換えると、膨張弁(36)には、限界運転
条件における圧縮機(30)の吐出冷媒温度が145℃以
下に維持されるような流量係数のものが採用される。こ
のため、限界運転条件において冷凍サイクルを行った場
合にも、冷媒回路(20)における冷媒循環量が充分に確
保され、圧縮から吐出される冷媒の温度が145℃を超
えることはない。
Therefore, in the first solving means, the flow coefficient of the expansion valve (36) is determined so that the temperature of the refrigerant discharged from the compressor (30) does not exceed 145 ° C. even under the above-mentioned limit operating conditions. In other words, the expansion valve (36) having a flow coefficient that maintains the refrigerant discharge temperature of the compressor (30) at 145 ° C. or lower under the limit operation condition is adopted. Therefore, even when the refrigeration cycle is performed under the limit operation condition, the circulation amount of the refrigerant in the refrigerant circuit (20) is sufficiently ensured, and the temperature of the refrigerant discharged from the compression does not exceed 145 ° C.

【0030】また、上記第2の解決手段では、上記限界
運転条件においても圧縮機(30)からの吐出冷媒温度が
135℃を超えないように、膨張弁(36)の流量係数を
定める。言い換えると、膨張弁(36)には、限界運転条
件における圧縮機(30)の吐出冷媒温度が135℃以下
に維持されるような流量係数のものが採用される。この
ため、限界運転条件において冷凍サイクルを行った場合
にも、冷媒回路(20)における冷媒循環量が充分に確保
され、圧縮から吐出される冷媒の温度が135℃を超え
ることはない。
In the second solution, the flow coefficient of the expansion valve (36) is determined so that the temperature of the refrigerant discharged from the compressor (30) does not exceed 135 ° C. even under the above-mentioned limit operating conditions. In other words, the expansion valve (36) having a flow coefficient that ensures that the refrigerant discharged from the compressor (30) under the limit operating conditions is maintained at 135 ° C or lower. For this reason, even when the refrigeration cycle is performed under the limit operation condition, the refrigerant circulation amount in the refrigerant circuit (20) is sufficiently ensured, and the temperature of the refrigerant discharged from the compression does not exceed 135 ° C.

【0031】また、上記第3の解決手段では、上記限界
運転条件においても圧縮機(30)からの吐出冷媒温度が
125℃を超えないように、膨張弁(36)の流量係数を
定める。言い換えると、膨張弁(36)には、限界運転条
件における圧縮機(30)の吐出冷媒温度が125℃以下
に維持されるような流量係数のものが採用される。この
ため、限界運転条件において冷凍サイクルを行った場合
にも、冷媒回路(20)における冷媒循環量が充分に確保
され、圧縮から吐出される冷媒の温度が125℃を超え
ることはない。
In the third solution, the flow coefficient of the expansion valve (36) is determined so that the temperature of the refrigerant discharged from the compressor (30) does not exceed 125 ° C. even under the above-mentioned limit operating conditions. In other words, the expansion valve (36) having a flow coefficient that allows the refrigerant discharged from the compressor (30) to maintain the temperature of the refrigerant at 125 ° C. or lower under the limit operation condition is adopted. For this reason, even when the refrigeration cycle is performed under the limit operation condition, the refrigerant circulation amount in the refrigerant circuit (20) is sufficiently ensured, and the temperature of the refrigerant discharged from the compression does not exceed 125 ° C.

【0032】上記第4,第5,第6の解決手段では、充
填量比率と、膨張弁流量係数と、圧縮機(30)の吐出冷
媒温度との相関関係を予め求めておき、これら三者の関
係に基づいて導出される膨張弁流量係数に基づいて、冷
媒回路(20)における膨張弁(36)の膨張係数が定めら
れる。例えば、膨張弁(36)の膨張係数が、導出された
膨張弁流量係数の値以上の値となるように、冷媒回路
(20)の膨張弁(36)を選定する。尚、充填量比率は、
冷媒回路(20)に充填された冷媒量を所定の基準冷媒量
で除して得られる値である。
In the fourth, fifth, and sixth solving means, the correlation between the filling ratio, the expansion valve flow coefficient, and the refrigerant temperature discharged from the compressor (30) is obtained in advance, and the correlation is determined. The expansion coefficient of the expansion valve (36) in the refrigerant circuit (20) is determined based on the expansion valve flow coefficient derived based on the relationship. For example, the expansion valve (36) of the refrigerant circuit (20) is selected such that the expansion coefficient of the expansion valve (36) is equal to or greater than the value of the derived expansion valve flow coefficient. The filling ratio is
This is a value obtained by dividing the amount of refrigerant charged in the refrigerant circuit (20) by a predetermined reference refrigerant amount.

【0033】特に、上記第5,第6の解決手段では、充
填量比率と、膨張弁流量係数と、上述の限界運転条件に
おける圧縮機(30)の吐出冷媒温度との相関関係を予め
定量化する。そして、これら三者の関係に基づいて導出
される膨張弁流量係数に基づいて膨張弁(36)の膨張係
数を定めることにより、上記限界運転条件においても圧
縮機(30)の吐出冷媒温度を所定値以下に維持できるよ
うな膨張弁(36)が選定される。
In particular, in the fifth and sixth solving means, the correlation between the filling ratio, the expansion valve flow coefficient, and the refrigerant temperature discharged from the compressor (30) under the above-mentioned limit operating conditions is quantified in advance. I do. By determining the expansion coefficient of the expansion valve (36) based on the expansion valve flow coefficient derived on the basis of the relationship between the three, the discharge refrigerant temperature of the compressor (30) can be set to a predetermined value even under the above-mentioned limit operating conditions. The expansion valve (36) that can be maintained below the value is selected.

【0034】更に、上記第6の解決手段では、充填量比
率を求めるための基準冷媒量の内容が具体化される。先
ず、所定の運転条件を標準運転条件とする。この標準運
転条件は、冷凍装置(10)により第1空気の冷却を行う
場合に、標準的な運転状態である。例えば、冷凍装置
(10)を空調機に構成した場合、この標準運転条件にお
ける第1空気及び第2空気の条件は、JIS B 8615-1:199
9 に規定された冷房標準条件に対応する。
Further, in the sixth solution, the contents of the reference refrigerant amount for obtaining the filling ratio are embodied. First, predetermined operating conditions are set as standard operating conditions. These standard operating conditions are the standard operating conditions when the first air is cooled by the refrigerating device (10). For example, when the refrigerating device (10) is configured as an air conditioner, the conditions of the first air and the second air under the standard operating conditions are JIS B 8615-1: 199.
It corresponds to the standard cooling condition specified in 9.

【0035】上記基準冷媒量は、以下のように規定され
る。即ち、この基準冷媒量は、連絡配管(23,24)の長
さを5mとした冷媒回路(20)を基準回路として予め設
定し、この基準回路で冷媒を循環させて冷凍サイクルを
行うことにより、実験的に定められる。そして、上記標
準運転条件において基準回路で冷凍サイクルを行った場
合に、膨張弁(36)の入口で冷媒が全て液相となるため
に該基準回路へ充填しなければならない最小限の冷媒量
が、基準冷媒量として予め定められる。
The reference refrigerant amount is defined as follows. That is, the reference refrigerant amount is set in advance by setting a refrigerant circuit (20) having a connecting pipe (23, 24) having a length of 5 m as a reference circuit, and circulating the refrigerant in the reference circuit to perform a refrigeration cycle. , Determined experimentally. Then, when the refrigeration cycle is performed in the reference circuit under the standard operating conditions, the minimum amount of refrigerant that must be charged into the reference circuit because all of the refrigerant becomes a liquid phase at the inlet of the expansion valve (36). , A reference refrigerant amount.

【0036】上記第7,第8の解決手段では、R22よ
りも比熱比の大きな冷媒が冷媒回路(20)に充填され
る。具体的に、第8の解決手段では、R32のみからな
る単一成分の冷媒が冷媒回路(20)に充填される。ここ
で、比熱比の大きな冷媒を用いると、圧縮機(30)にお
ける圧縮比が同じでも、圧縮に伴う温度上昇幅が大きく
なる。つまり、冷媒の比熱比が大きくなるに従って、圧
縮機(30)の吐出冷媒温度が上昇することとなる。これ
に対し、上記第1〜第6の解決手段のように所定の流量
係数の膨張弁(36)を用いることにより、R22よりも
比熱比の大きな冷媒を用いた場合であっても、圧縮機
(30)の吐出冷媒温度を所定値以下に維持し得ることと
なる。
In the seventh and eighth solutions, the refrigerant circuit (20) is filled with a refrigerant having a specific heat ratio higher than R22. Specifically, in the eighth solution, a refrigerant of a single component consisting only of R32 is charged into the refrigerant circuit (20). Here, when a refrigerant having a large specific heat ratio is used, even if the compression ratio in the compressor (30) is the same, the width of temperature rise accompanying compression becomes large. That is, as the specific heat ratio of the refrigerant increases, the temperature of the refrigerant discharged from the compressor (30) increases. On the other hand, by using the expansion valve (36) having a predetermined flow coefficient as in the first to sixth solving means, even if a refrigerant having a specific heat ratio larger than R22 is used, the compressor can be used. The temperature of the discharged refrigerant of (30) can be maintained at a predetermined value or less.

【0037】上記第9,第10,第11の解決手段で
は、冷媒回路(20)に充填される冷媒をR32の単一冷
媒とした場合において、充填量比率と、膨張弁流量係数
と、上述の限界運転条件における圧縮機(30)の吐出冷
媒温度との相関関係が具体的に数式で表示される。その
際、これらの各解決手段では、所定の定格冷凍能力が定
められる。この定格冷凍能力は、設計対象である冷凍装
置(10)の冷媒回路(20)において、上記標準運転条件
で冷凍サイクルを行った場合に発揮される冷凍能力を単
位kW(キロワット)で表示したものである。
In the ninth, tenth, and eleventh means, when the refrigerant to be charged into the refrigerant circuit (20) is a single refrigerant of R32, the filling ratio, the expansion valve flow coefficient, The correlation with the refrigerant temperature discharged from the compressor (30) under the above limit operation condition is specifically expressed by a mathematical expression. At that time, in each of these solutions, a predetermined rated refrigeration capacity is determined. This rated refrigeration capacity is obtained by expressing the refrigeration capacity that is exhibited when the refrigeration cycle is performed under the standard operating conditions in the refrigeration circuit (20) of the refrigeration system (10) to be designed in kW (kilowatt). It is.

【0038】具体的に、これら第9〜第11の解決手段
では、上記の標準運転条件、基準冷媒量、及び定格冷凍
能力を定めた上で、必要な条件を満たし得る膨張弁(3
6)の流量係数が次のようにして導出される。先ず、設
計目標の冷凍能力は予め設定されており、その値は定格
冷凍能力と一致する。更に、冷媒回路(20)に充填する
冷媒量も、設計段階で予め定められている。この冷媒充
填量を上記基準冷媒量で割った値をXとし、この値Xを
所定の数式に代入して演算値を得る。この演算値に上記
定格冷凍能力を乗ずることにより、冷媒回路(20)にお
いて必要とされる膨張弁流量係数が得られる。そして、
導出された膨張弁流量係数の値以上の流量係数をもつ膨
張弁(36)を採用することにより、適切な仕様の膨張弁
(36)が選定される。
More specifically, in the ninth to eleventh solutions, the above-mentioned standard operating conditions, the reference refrigerant amount, and the rated refrigeration capacity are determined, and then the expansion valve (3
The flow coefficient of 6) is derived as follows. First, the refrigeration capacity of the design target is set in advance, and its value matches the rated refrigeration capacity. Further, the amount of refrigerant to be charged into the refrigerant circuit (20) is also predetermined in the design stage. A value obtained by dividing the refrigerant charge amount by the reference refrigerant amount is defined as X, and the calculated value is obtained by substituting the value X into a predetermined mathematical formula. By multiplying the calculated value by the rated refrigeration capacity, an expansion valve flow coefficient required in the refrigerant circuit (20) is obtained. And
By adopting an expansion valve (36) having a flow coefficient equal to or greater than the derived expansion valve flow coefficient, an expansion valve (36) having appropriate specifications is selected.

【0039】上記第9の解決手段では、上述の限界運転
条件における圧縮機(30)の吐出冷媒温度を145℃と
した場合における充填量比率と膨張弁流量係数との相関
関係を、充填量比率をXとして次の数式により表示す
る。 (1.02443・X2−3.79638・X+3.88706)・10-2 この数式に、既知の充填量比率Xの値を代入して演算値
を導出する。この数式に基づき導出される演算値は、膨
張弁流量係数を上記定格冷房能力で除した値、即ち定格
冷房能力1kW当たりの膨張弁流量係数を表している。
そして、導出した演算値に定格冷房能力を乗じ、得られ
た値以上の流量係数をもつ膨張弁を、上記冷媒回路(2
0)の膨張弁(36)とする。このような仕様の膨張弁(3
6)を採用することにより、上記限界運転条件において
も、圧縮機(30)から吐出される冷媒の温度が145℃
以下に維持される。
In the ninth solution, the correlation between the filling ratio and the expansion valve flow coefficient when the discharge refrigerant temperature of the compressor (30) is set to 145 ° C. under the above-mentioned limit operating conditions is determined by the filling ratio. Is represented as X by the following formula. (1.02443 · X 2 −3.79638 · X + 3.88706) · 10 -2 The calculated value is derived by substituting the value of the known filling ratio X into this equation. The calculated value derived based on this formula represents a value obtained by dividing the expansion valve flow coefficient by the rated cooling capacity, that is, the expansion valve flow coefficient per 1 kW of the rated cooling capacity.
Then, the derived operation value is multiplied by the rated cooling capacity, and an expansion valve having a flow coefficient equal to or higher than the obtained value is connected to the refrigerant circuit (2).
0) The expansion valve (36). An expansion valve with this specification (3
By adopting 6), the temperature of the refrigerant discharged from the compressor (30) is 145 ° C. even under the above-mentioned limit operating conditions.
It is kept below.

【0040】上記第10の解決手段では、上述の限界運
転条件における圧縮機(30)の吐出冷媒温度を135℃
とした場合における充填量比率と膨張弁流量係数との相
関関係を、充填量比率をXとして次の数式により表示す
る。 (1.20720・X2−4.21152・X+4.17078)・10-2 この数式に、既知の充填量比率Xの値を代入して演算値
を導出する。この数式に基づき導出される演算値は、膨
張弁流量係数を上記定格冷房能力で除した値、即ち定格
冷房能力1kW当たりの膨張弁流量係数を表している。
そして、導出した演算値に定格冷房能力を乗じ、得られ
た値以上の流量係数をもつ膨張弁を、上記冷媒回路(2
0)の膨張弁(36)とする。このような仕様の膨張弁(3
6)を採用することにより、上記限界運転条件において
も、圧縮機(30)から吐出される冷媒の温度が135℃
以下に維持される。
[0040] In the tenth solution, the discharge refrigerant temperature of the compressor (30) under the above-mentioned limit operating condition is set to 135 ° C.
The correlation between the filling ratio and the expansion valve flow coefficient in the case of と し た is expressed by the following formula, where X is the filling ratio. (1.20720 · X 2 −4.21152 · X + 4.17078) · 10 −2 The calculated value is derived by substituting the value of the known filling ratio X into this equation. The calculated value derived based on this formula represents a value obtained by dividing the expansion valve flow coefficient by the rated cooling capacity, that is, the expansion valve flow coefficient per 1 kW of the rated cooling capacity.
Then, the derived operation value is multiplied by the rated cooling capacity, and an expansion valve having a flow coefficient equal to or higher than the obtained value is connected to the refrigerant circuit (2).
0) The expansion valve (36). An expansion valve with this specification (3
By adopting 6), the temperature of the refrigerant discharged from the compressor (30) is 135 ° C. even under the above-mentioned limit operating conditions.
It is kept below.

【0041】上記第11の解決手段では、上述の限界運
転条件における圧縮機(30)の吐出冷媒温度を125℃
とした場合における充填量比率と膨張弁流量係数との相
関関係を、充填量比率をXとして次の数式により表示す
る。 (1.39816・X2−4.66544・X+4.48651)・10-2 この数式に、既知の充填量比率Xの値を代入して演算値
を導出する。この数式に基づき導出される演算値は、膨
張弁流量係数を上記定格冷房能力で除した値、即ち定格
冷房能力1kW当たりの膨張弁流量係数を表している。
そして、導出した演算値に定格冷房能力を乗じ、得られ
た値以上の流量係数をもつ膨張弁を、上記冷媒回路(2
0)の膨張弁(36)とする。このような仕様の膨張弁(3
6)を採用することにより、上記限界運転条件において
も、圧縮機(30)から吐出される冷媒の温度が125℃
以下に維持される。
In the eleventh solution, the refrigerant discharged from the compressor (30) under the above-mentioned limit operating condition is set to a temperature of 125 ° C.
The correlation between the filling ratio and the expansion valve flow coefficient in the case of と し た is expressed by the following formula, where X is the filling ratio. (1.39816 · X 2 −4.66544 · X + 4.48651) · 10 -2 The calculated value is derived by substituting the value of the known filling ratio X into this equation. The calculated value derived based on this formula represents a value obtained by dividing the expansion valve flow coefficient by the rated cooling capacity, that is, the expansion valve flow coefficient per 1 kW of the rated cooling capacity.
Then, the derived operation value is multiplied by the rated cooling capacity, and an expansion valve having a flow coefficient equal to or higher than the obtained value is connected to the refrigerant circuit (2).
0) The expansion valve (36). An expansion valve with this specification (3
By adopting 6), the temperature of the refrigerant discharged from the compressor (30) is 125 ° C. even under the above-mentioned limit operating conditions.
It is kept below.

【0042】上記第12の解決手段では、冷媒回路(2
0)に充填される冷媒が、R32を75質量%以上含む
混合冷媒によって構成される。即ち、冷媒回路(20)に
は、R32の濃度が75質量%以上100質量%未満の
混合冷媒が充填される。そして、上記第9,10,11
の解決手段に示した数式は、冷媒回路(20)の冷媒をR
32の単一冷媒とした場合だけでなく、R32を75質
量%以上含む混合冷媒とした場合にも適用される。
In the twelfth solution, the refrigerant circuit (2
The refrigerant charged in 0) is constituted by a mixed refrigerant containing 75% by mass or more of R32. That is, the refrigerant circuit (20) is filled with a mixed refrigerant having a concentration of R32 of 75% by mass or more and less than 100% by mass. And the ninth, tenth, and eleventh
The equation shown in the solution means is that the refrigerant in the refrigerant circuit (20) is R
The present invention is applicable not only to the case of using a single refrigerant of 32 but also to the case of using a mixed refrigerant containing 75% by mass or more of R32.

【0043】[0043]

【発明の効果】本発明では、上記限界運転条件における
圧縮機(30)の吐出冷媒温度を考慮して、膨張弁(36)
の流量係数を定めている。つまり、従来のように定格能
力を考慮して膨張弁(36)を選定するのではなく、圧縮
機(30)の吐出冷媒温度が過上昇する危険の大きい限界
運転条件での運転を考慮して膨張弁(36)を選定してい
る。
According to the present invention, the expansion valve (36) is taken into consideration in consideration of the refrigerant temperature discharged from the compressor (30) under the above-mentioned limit operating conditions.
Is determined. In other words, instead of selecting the expansion valve (36) in consideration of the rated capacity as in the past, consideration is given to operation under critical operating conditions where there is a great risk that the refrigerant discharged from the compressor (30) will excessively rise. The expansion valve (36) is selected.

【0044】従って、限界運転条件においても充分な冷
媒循環量を確保しうる流量係数の膨張弁(36)を、開発
当初から的確に選定できるようになる。このため、その
後に実機試験を行うとしても、単に問題がないことの確
認のために行えばよく、試行錯誤により膨張弁(36)を
選定するための工数は、ほとんど不要となる。この結
果、膨張弁(36)の選定に要する時間を著しく短縮で
き、開発コストの低減を図ることが可能となる。
Therefore, the expansion valve (36) having a flow coefficient capable of securing a sufficient amount of the circulating refrigerant even under the limit operation condition can be accurately selected from the beginning of the development. Therefore, even if the actual machine test is performed thereafter, it is sufficient to simply confirm that there is no problem, and the man-hour for selecting the expansion valve (36) by trial and error becomes almost unnecessary. As a result, the time required for selecting the expansion valve (36) can be significantly reduced, and the development cost can be reduced.

【0045】特に、上記第9,第10,第11の解決手
段によれば、上記限界運転条件でも圧縮機(30)の吐出
冷媒温度が所定値以下に維持され得る流量係数の膨張弁
(36)を、設計段階で既知の値を用いた演算を行うこと
によって、的確に選定することが可能となる。このた
め、冷凍装置(10)の開発工数を一層削減でき、開発コ
ストの低減をより確実に図ることができる。
In particular, according to the ninth, tenth, and eleventh means for solving the problems, the expansion valve (36) having a flow coefficient capable of maintaining the temperature of the refrigerant discharged from the compressor (30) at a predetermined value or less even under the above-mentioned limit operating conditions. ) Can be accurately selected by performing an operation using a known value at the design stage. For this reason, the development man-hour of the refrigeration system (10) can be further reduced, and the development cost can be more reliably reduced.

【0046】[0046]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて詳細に説明する。本実施形態は、本発明に係る
冷凍装置を空調機(10)に適用したものである。この空
調機(10)は、冷房運転と暖房運転とを切り換えて行
う。
Embodiments of the present invention will be described below in detail with reference to the drawings. In the present embodiment, the refrigeration apparatus according to the present invention is applied to an air conditioner (10). The air conditioner (10) switches between a cooling operation and a heating operation.

【0047】図1に示すように、上記空調機(10)は、
冷媒回路(20)を備えている。この冷媒回路(20)は、
閉回路に構成され、R32からなる単一成分の冷媒が充
填されている。尚、冷媒回路(20)に対し、R32が7
5質量%以上含まれる混合冷媒を充填するようにしても
よい。
As shown in FIG. 1, the air conditioner (10)
A refrigerant circuit (20) is provided. This refrigerant circuit (20)
It is configured as a closed circuit and is filled with a single-component refrigerant composed of R32. Note that R32 is 7 for the refrigerant circuit (20).
A mixed refrigerant containing 5% by mass or more may be charged.

【0048】上記冷媒回路(20)は、室外回路(21)、
室内回路(22)、液側連絡管(23)、及びガス側連絡管
(24)により構成されている。室外回路(21)は、室外
側ユニットである室外機(11)に設けられている。この
室外機(11)には、室外ファン(12)が設けられてい
る。一方、室内回路(22)は、室内側ユニットである室
内機(13)に設けられている。この室内機(13)には、
室内ファン(14)が設けられている。また、液側連絡管
(23)及びガス側連絡管(24)は、連絡配管を構成して
いる。
The refrigerant circuit (20) comprises an outdoor circuit (21),
It is composed of an indoor circuit (22), a liquid side communication pipe (23), and a gas side communication pipe (24). The outdoor circuit (21) is provided in an outdoor unit (11) that is an outdoor unit. This outdoor unit (11) is provided with an outdoor fan (12). On the other hand, the indoor circuit (22) is provided in an indoor unit (13) that is an indoor unit. This indoor unit (13)
An indoor fan (14) is provided. The liquid side communication pipe (23) and the gas side communication pipe (24) constitute a communication pipe.

【0049】上記室外回路(21)には、圧縮機(30)、
四路切換弁(33)、室外熱交換器(34)、レシーバ(3
5)、及び電動膨張弁(36)が設けられている。また、
室外回路(21)には、ブリッジ回路(40)、液側閉鎖弁
(25)、及びガス側閉鎖弁(26)が設けられている。
The outdoor circuit (21) includes a compressor (30),
Four-way switching valve (33), outdoor heat exchanger (34), receiver (3
5) and an electric expansion valve (36) are provided. Also,
The outdoor circuit (21) includes a bridge circuit (40), a liquid-side stop valve (25), and a gas-side stop valve (26).

【0050】上記室外回路(21)において、圧縮機(3
0)の吐出ポート(32)は、四路切換弁(33)の第1の
ポートに接続されている。四路切換弁(33)の第2のポ
ートは、室外熱交換器(34)の一端に接続されている。
室外熱交換器(34)の他端は、ブリッジ回路(40)に接
続されている。また、このブリッジ回路(40)には、レ
シーバ(35)と、電動膨張弁(36)と、液側閉鎖弁(2
5)とが接続されている。この点については、後述す
る。圧縮機(30)の吸入ポート(31)は、四路切換弁
(33)の第3のポートに接続されている。四路切換弁
(33)の第4のポートは、ガス側閉鎖弁(26)に接続さ
れている。
In the outdoor circuit (21), the compressor (3
The discharge port (32) of (0) is connected to the first port of the four-way switching valve (33). The second port of the four-way switching valve (33) is connected to one end of the outdoor heat exchanger (34).
The other end of the outdoor heat exchanger (34) is connected to a bridge circuit (40). The bridge circuit (40) includes a receiver (35), an electric expansion valve (36), and a liquid-side shutoff valve (2
5) and are connected. This will be described later. The suction port (31) of the compressor (30) is connected to the third port of the four-way switching valve (33). The fourth port of the four-way switching valve (33) is connected to the gas side shut-off valve (26).

【0051】上記ブリッジ回路(40)は、第1管路(4
1)、第2管路(42)、第3管路(43)、及び第4管路
(44)をブリッジ状に接続して構成されている。このブ
リッジ回路(40)において、第1管路(41)の出口端が
第2管路(42)の出口端と接続し、第2管路(42)の入
口端が第3管路(43)の出口端と接続し、第3管路(4
3)の入口端が第4管路(44)の入口端と接続し、第4
管路(44)の出口端が第1管路(41)の入口端と接続し
ている。
The bridge circuit (40) is connected to the first conduit (4
1), the second pipe (42), the third pipe (43), and the fourth pipe (44) are connected in a bridge shape. In this bridge circuit (40), the outlet end of the first pipe (41) is connected to the outlet end of the second pipe (42), and the inlet end of the second pipe (42) is connected to the third pipe (43). ), And connected to the third pipe (4
The inlet end of 3) is connected to the inlet end of the fourth conduit (44),
The outlet end of the pipe (44) is connected to the inlet end of the first pipe (41).

【0052】第1〜第4の各管路(41〜44)には、逆止
弁が1つずつ設けられている。第1管路(41)には、そ
の入口端から出口端に向かう冷媒の流通のみを許容する
逆止弁(CV-1)が設けられている。第2管路(42)に
は、その入口端から出口端に向かう冷媒の流通のみを許
容する逆止弁(CV-2)が設けられている。第3管路(4
3)には、その入口端から出口端に向かう冷媒の流通の
みを許容する逆止弁(CV-3)が設けられている。第4管
路(44)には、その入口端から出口端に向かう冷媒の流
通のみを許容する逆止弁(CV-4)が設けられている。
Each of the first to fourth conduits (41 to 44) is provided with one check valve. The first conduit (41) is provided with a check valve (CV-1) that allows only the flow of the refrigerant from the inlet end to the outlet end. The second pipe (42) is provided with a check valve (CV-2) that allows only the flow of the refrigerant from the inlet end to the outlet end. Third pipe (4
3) is provided with a check valve (CV-3) that allows only the flow of the refrigerant from the inlet end to the outlet end. The fourth pipe (44) is provided with a check valve (CV-4) that allows only the flow of the refrigerant from the inlet end to the outlet end.

【0053】上記室外熱交換器(34)の他端は、ブリッ
ジ回路(40)における第1管路(41)の入口端及び第4
管路(44)の出口端に接続されている。ブリッジ回路
(40)における第1管路(41)の出口端及び第2管路
(42)の出口端は、円筒容器状に形成されたレシーバ
(35)の上端部に接続されている。レシーバ(35)の下
端部は、電動膨張弁(36)を介して、ブリッジ回路(4
0)における第3管路(43)の入口端及び第4管路(4
4)の入口端に接続されている。ブリッジ回路(40)に
おける第2管路(42)の入口端及び第3管路(43)の出
口端は、液側閉鎖弁(25)に接続されている。
The other end of the outdoor heat exchanger (34) is connected to the inlet end of the first conduit (41) in the bridge circuit (40) and to the fourth end.
It is connected to the outlet end of the pipe (44). The outlet end of the first conduit (41) and the outlet end of the second conduit (42) in the bridge circuit (40) are connected to the upper end of a receiver (35) formed in a cylindrical container shape. The lower end of the receiver (35) is connected to a bridge circuit (4) via an electric expansion valve (36).
0) at the inlet end of the third conduit (43) and the fourth conduit (4
4) Connected to the inlet end. The inlet end of the second pipe (42) and the outlet end of the third pipe (43) in the bridge circuit (40) are connected to the liquid-side shutoff valve (25).

【0054】上記室内回路(22)には、室内熱交換器
(37)が設けられている。室内回路(22)の一端は、液
側連絡管(23)を介して液側閉鎖弁(25)に接続されて
いる。室内回路(22)の他端は、ガス側連絡管(24)を
介してガス側閉鎖弁(26)に接続されている。つまり、
液側連絡管(23)及びガス側連絡管(24)は、室外機
(11)から室内機(13)に亘って設けられている。ま
た、上記空調機(10)の設置後において、液側閉鎖弁
(25)及びガス側閉鎖弁(26)は、常に開放状態とされ
る。
The indoor circuit (22) is provided with an indoor heat exchanger (37). One end of the indoor circuit (22) is connected to a liquid side closing valve (25) via a liquid side communication pipe (23). The other end of the indoor circuit (22) is connected to a gas-side shut-off valve (26) via a gas-side communication pipe (24). That is,
The liquid side communication pipe (23) and the gas side communication pipe (24) are provided from the outdoor unit (11) to the indoor unit (13). After the installation of the air conditioner (10), the liquid-side stop valve (25) and the gas-side stop valve (26) are always kept open.

【0055】上記圧縮機(30)は、密閉型に構成されて
いる。具体的に、この圧縮機(30)は、ローリングピス
トン型の圧縮機構と、該圧縮機構を駆動する電動機と
を、円筒状のハウジングに収納して構成されている。吸
入ポート(31)から吸い込まれた冷媒は、圧縮機構へ直
接導入される。圧縮機構で圧縮された冷媒は、一旦ハウ
ジング内に吐出された後に吐出ポート(32)から送り出
される。尚、圧縮機構及び電動機は、図示を省略する。
The compressor (30) is of a closed type. Specifically, the compressor (30) includes a rolling piston-type compression mechanism and an electric motor that drives the compression mechanism housed in a cylindrical housing. The refrigerant sucked from the suction port (31) is directly introduced into the compression mechanism. The refrigerant compressed by the compression mechanism is once discharged into the housing and then sent out from the discharge port (32). The illustration of the compression mechanism and the electric motor is omitted.

【0056】上記圧縮機(30)の電動機には、図外のイ
ンバータを通じて電力が供給される。このインバータの
出力周波数を変更すると、電動機の回転数が変化して圧
縮機容量が変化する。つまり、上記圧縮機(30)は、そ
の容量が可変に構成されている。
Electric power is supplied to the electric motor of the compressor (30) through an inverter (not shown). When the output frequency of the inverter is changed, the number of revolutions of the motor changes, and the capacity of the compressor changes. That is, the compressor (30) has a variable capacity.

【0057】上記室外熱交換器(34)は、クロスフィン
式のフィン・アンド・チューブ型熱交換器により構成さ
れている。室外熱交換器(34)には、室外ファン(12)
によって室外空気が供給される。この室外熱交換器(3
4)は、冷媒回路(20)の冷媒と室外空気とを熱交換さ
せる。また、室外熱交換器(34)は、冷房運転時に凝縮
器として機能し、暖房運転時に蒸発器として機能する。
The outdoor heat exchanger (34) is composed of a cross-fin type fin-and-tube heat exchanger. The outdoor heat exchanger (34) has an outdoor fan (12)
Supplies outdoor air. This outdoor heat exchanger (3
4) heat exchange between the refrigerant in the refrigerant circuit (20) and the outdoor air. The outdoor heat exchanger (34) functions as a condenser during the cooling operation, and functions as an evaporator during the heating operation.

【0058】上記室内熱交換器(37)は、クロスフィン
式のフィン・アンド・チューブ型熱交換器により構成さ
れている。室内熱交換器(37)には、室内ファン(14)
によって室内空気が供給される。この室内熱交換器(3
7)は、冷媒回路(20)の冷媒と室内空気とを熱交換さ
せる。また、室外熱交換器(34)は、冷房運転時に蒸発
器として機能し、暖房運転時に凝縮器として機能する。
The indoor heat exchanger (37) is constituted by a cross-fin type fin-and-tube heat exchanger. The indoor heat exchanger (37) includes an indoor fan (14).
Supplies indoor air. This indoor heat exchanger (3
7) heat exchange between the refrigerant in the refrigerant circuit (20) and the indoor air. Further, the outdoor heat exchanger (34) functions as an evaporator during the cooling operation and functions as a condenser during the heating operation.

【0059】上記四路切換弁(33)は、第1のポートと
第2のポートが連通し且つ第3のポートと第4のポート
が連通する状態(図1に実線で示す状態)と、第1のポ
ートと第4のポートが連通し且つ第2のポートと第3の
ポートが連通する状態(図1に破線で示す状態)とに切
り換わる。この四路切換弁(33)の切換動作によって、
冷媒回路(20)における冷媒の循環方向が反転する。
The four-way switching valve (33) has a state where the first port and the second port communicate with each other and the third port and the fourth port communicate with each other (a state shown by a solid line in FIG. 1). The state is switched to a state in which the first port and the fourth port communicate with each other and the second port and the third port communicate with each other (a state shown by a broken line in FIG. 1). By the switching operation of the four-way switching valve (33),
The direction of circulation of the refrigerant in the refrigerant circuit (20) is reversed.

【0060】−運転動作− 上記空調機(10)の運転動作について説明する。この空
調機(10)は、冷媒回路(20)における冷媒の循環方向
を反転することにより、冷房運転と暖房運転とを切り換
えて行う。
-Operation-The operation of the air conditioner (10) will be described. The air conditioner (10) switches between the cooling operation and the heating operation by reversing the circulation direction of the refrigerant in the refrigerant circuit (20).

【0061】《冷房運転》冷房運転時には、四路切換弁
(33)が図1に実線で示す状態に切り換えられると共
に、電動膨張弁(36)が所定開度に調節され、室外ファ
ン(12)及び室内ファン(14)が運転される。この状態
で冷媒回路(20)において冷媒が循環し、室外熱交換器
(34)を凝縮器とし且つ室内熱交換器(37)を蒸発器と
して冷凍サイクルが行われる。
<< Cooling operation >> During the cooling operation, the four-way switching valve (33) is switched to the state shown by the solid line in FIG. 1, the electric expansion valve (36) is adjusted to a predetermined opening, and the outdoor fan (12) And the indoor fan (14) is operated. In this state, the refrigerant circulates in the refrigerant circuit (20), and the refrigeration cycle is performed using the outdoor heat exchanger (34) as a condenser and the indoor heat exchanger (37) as an evaporator.

【0062】具体的に、圧縮機(30)の吐出ポート(3
2)から吐出された冷媒は、四路切換弁(33)を通って
室外熱交換器(34)へ送られる。室外熱交換器(34)で
は、冷媒が室外空気に対して放熱して凝縮する。凝縮し
た冷媒は、ブリッジ回路(40)の第1管路(41)を通っ
てレシーバ(35)に流入する。レシーバ(35)から流出
した冷媒は、電動膨張弁(36)で減圧され、その後にブ
リッジ回路(40)の第3管路(43)から液側連絡管(2
3)を通って室内熱交換器(37)へ送られる。
Specifically, the discharge port (3) of the compressor (30)
The refrigerant discharged from 2) is sent to the outdoor heat exchanger (34) through the four-way switching valve (33). In the outdoor heat exchanger (34), the refrigerant radiates heat to outdoor air and condenses. The condensed refrigerant flows into the receiver (35) through the first pipe (41) of the bridge circuit (40). The refrigerant flowing out of the receiver (35) is decompressed by the electric expansion valve (36), and then flows from the third pipe (43) of the bridge circuit (40) to the liquid-side communication pipe (2).
It is sent to the indoor heat exchanger (37) through 3).

【0063】室内熱交換器(37)では、冷媒が室内空気
から吸熱して蒸発する。つまり、室内熱交換器(37)で
は、室内機(13)に取り込まれた室内空気が冷媒に対し
て放熱する。この放熱によって室内空気の温度が低下
し、低温の調和空気が生成する。生成した調和空気は、
室内機(13)から室内へ供給されて冷房に利用される。
In the indoor heat exchanger (37), the refrigerant absorbs heat from indoor air and evaporates. That is, in the indoor heat exchanger (37), the indoor air taken into the indoor unit (13) radiates heat to the refrigerant. Due to this heat radiation, the temperature of the indoor air decreases, and low-temperature conditioned air is generated. The generated conditioned air is
The air is supplied from the indoor unit (13) to the room and used for cooling.

【0064】室内熱交換器(37)で蒸発した冷媒は、ガ
ス側連絡管(24)及び四路切換弁(33)を流れ、吸入ポ
ート(31)から圧縮機(30)に吸入される。圧縮機(3
0)は、吸入した冷媒を圧縮して再び吐出ポート(32)
から吐出する。
The refrigerant evaporated in the indoor heat exchanger (37) flows through the gas side communication pipe (24) and the four-way switching valve (33), and is sucked into the compressor (30) from the suction port (31). Compressor (3
0) compresses the sucked refrigerant and discharges it again (32)
Discharge from.

【0065】《暖房運転》暖房運転時には、四路切換弁
(33)が図1に破線で示す状態に切り換えられると共
に、電動膨張弁(36)が所定開度に調節され、室外ファ
ン(12)及び室内ファン(14)が運転される。この状態
で冷媒回路(20)において冷媒が循環し、室内熱交換器
(37)を凝縮器とし且つ室外熱交換器(34)を蒸発器と
して冷凍サイクルが行われる。
<< Heating Operation >> During the heating operation, the four-way switching valve (33) is switched to the state shown by the broken line in FIG. 1, the electric expansion valve (36) is adjusted to a predetermined opening, and the outdoor fan (12) And the indoor fan (14) is operated. In this state, the refrigerant circulates in the refrigerant circuit (20), and a refrigeration cycle is performed using the indoor heat exchanger (37) as a condenser and the outdoor heat exchanger (34) as an evaporator.

【0066】具体的に、圧縮機(30)の吐出ポート(3
2)から吐出された冷媒は、四路切換弁(33)からガス
側連絡管(24)を通って室内熱交換器(37)へ送られ
る。室内熱交換器(37)では、冷媒が室内空気に対して
放熱して凝縮する。つまり、室内熱交換器(37)では、
室内機(13)に取り込まれた室内空気が冷媒によって加
熱される。この加熱によって室内空気の温度が上昇し、
暖かい調和空気が生成する。生成した調和空気は、室内
機(13)から室内へ供給されて暖房に利用される。
Specifically, the discharge port (3) of the compressor (30)
The refrigerant discharged from 2) is sent from the four-way switching valve (33) to the indoor heat exchanger (37) through the gas side communication pipe (24). In the indoor heat exchanger (37), the refrigerant radiates heat to the indoor air and condenses. In other words, in the indoor heat exchanger (37),
Indoor air taken into the indoor unit (13) is heated by the refrigerant. This heating raises the temperature of the indoor air,
Warm conditioned air is produced. The generated conditioned air is supplied indoors from the indoor unit (13) and used for heating.

【0067】室内熱交換器(37)で凝縮した冷媒は、液
側連絡管(23)とブリッジ回路(40)の第2管路(42)
とを通ってレシーバ(35)に流入する。レシーバ(35)
から流出した冷媒は、電動膨張弁(36)で減圧され、そ
の後にブリッジ回路(40)の第4管路(44)を通って室
外熱交換器(34)へ送られる。室外熱交換器(34)で
は、冷媒が室外空気から吸熱して蒸発する。
The refrigerant condensed in the indoor heat exchanger (37) is transferred to the liquid side communication pipe (23) and the second pipe (42) of the bridge circuit (40).
And flows into the receiver (35). Receiver (35)
The refrigerant flowing out of the outlet is depressurized by the electric expansion valve (36), and then sent to the outdoor heat exchanger (34) through the fourth pipe (44) of the bridge circuit (40). In the outdoor heat exchanger (34), the refrigerant absorbs heat from outdoor air and evaporates.

【0068】室外熱交換器(34)で蒸発した冷媒は、四
路切換弁(33)を通って吸入ポート(31)から圧縮機
(30)に吸入される。圧縮機(30)は、吸入した冷媒を
圧縮して再び吐出ポート(32)から吐出する。
The refrigerant evaporated in the outdoor heat exchanger (34) passes through the four-way switching valve (33) and is drawn into the compressor (30) from the suction port (31). The compressor (30) compresses the sucked refrigerant and discharges the refrigerant again from the discharge port (32).

【0069】−電動膨張弁の選定− 上記空調機(10)における、冷媒回路(20)の電動膨張
弁(36)を選定するための基本的原理について説明す
る。本実施形態においては、従来のように定格冷房能力
(定格冷凍能力)に基づいて電動膨張弁(36)の流量係
数を定めるのではなく、圧縮機(30)の吐出冷媒温度が
最も高くなる限界運転条件においても吐出冷媒温度が所
定の上限値以下となるような流量係数を求めて電動膨張
弁(36)を選定する。
-Selection of Electric Expansion Valve-The basic principle for selecting the electric expansion valve (36) of the refrigerant circuit (20) in the air conditioner (10) will be described. In the present embodiment, instead of determining the flow coefficient of the electric expansion valve (36) based on the rated cooling capacity (rated refrigeration capacity) as in the related art, the limit at which the discharged refrigerant temperature of the compressor (30) becomes the highest is set. The electric expansion valve (36) is selected by obtaining a flow coefficient such that the discharged refrigerant temperature is equal to or lower than the predetermined upper limit value even under the operating conditions.

【0070】基本的な考え方を説明する。先ず、冷媒
回路(20)における冷媒充填量と限界運転条件での電動
膨張弁(36)入口における冷媒の乾き度との関係、限
界運転条件での電動膨張弁(36)入口における冷媒の乾
き度と冷媒回路(20)における冷媒循環量との関係、
冷媒回路(20)における冷媒循環量と圧縮機(30)の吐
出冷媒温度との関係をそれぞれ定量化する。そして、こ
れらの関係に基づき、限界運転条件においても圧縮機
(30)の吐出冷媒温度が上限値以下に維持されるよう
に、充分な冷媒循環量を確保し得る膨張弁流量係数を定
め、その値に基づいて電動膨張弁(36)を選定する。
The basic concept will be described. First, the relationship between the amount of refrigerant charged in the refrigerant circuit (20) and the dryness of the refrigerant at the inlet of the electric expansion valve (36) under marginal operation conditions, and the dryness of the refrigerant at the entrance of the electric expansion valve (36) under marginal operation conditions And the relationship between the refrigerant circulation amount in the refrigerant circuit (20),
The relationship between the refrigerant circulation amount in the refrigerant circuit (20) and the refrigerant temperature discharged from the compressor (30) is quantified. Then, based on these relationships, an expansion valve flow coefficient that can ensure a sufficient amount of refrigerant circulation is determined so that the discharge refrigerant temperature of the compressor (30) is maintained at or below the upper limit value even under the limit operating conditions. The electric expansion valve (36) is selected based on the value.

【0071】ここで、上記限界運転条件は、次のような
運転条件である。即ち、上記液側及びガス側連絡管(2
3,24)の長さが30mに設定されると共に、暖房運転時
において、室外空気の乾球温度が21℃で湿球温度が1
5℃、室内空気の乾球温度が28℃となり、上記圧縮機
(30)の運転周波数が最大周波数とされる運転条件であ
る。この限界運転条件における室内外の空気条件は、暖
房運転時に室内空気及び室外空気が共に比較的温度の高
い状態となる、いわゆる暖房過負荷条件に相当する。こ
の限界運転条件は、圧縮機(30)の吐出冷媒温度が最も
高温となる運転条件であり、冷媒回路(20)における冷
媒循環量を最も多くしなければならない運転条件であ
る。
Here, the above-mentioned limit operation conditions are the following operation conditions. That is, the liquid side and gas side communication pipes (2
3, 24) is set to 30 m, and during the heating operation, the dry bulb temperature of the outdoor air is 21 ° C and the wet bulb temperature is 1
The operating conditions are such that the operating frequency of the compressor (30) is 5 ° C., the dry-bulb temperature of the indoor air is 28 ° C., and the operating frequency of the compressor (30) is the maximum frequency. The indoor and outdoor air conditions in the limit operation condition correspond to a so-called heating overload condition in which both the indoor air and the outdoor air have a relatively high temperature during the heating operation. The limit operating condition is an operating condition in which the temperature of the refrigerant discharged from the compressor (30) is the highest, and is an operating condition in which the refrigerant circulation amount in the refrigerant circuit (20) must be maximized.

【0072】上記“冷媒回路(20)における冷媒充填
量と限界運転条件での電動膨張弁(36)入口における冷
媒の乾き度との関係”は、図3に示すグラフとして表さ
れる。この図3が如何にして得られるかを説明する。
The “relationship between the amount of refrigerant charged in the refrigerant circuit (20) and the dryness of the refrigerant at the inlet of the electric expansion valve (36) under the limit operating conditions” is represented as a graph shown in FIG. How FIG. 3 is obtained will be described.

【0073】冷媒回路(20)の冷媒充填量は、所定の基
準冷媒量で除して一般化する。この冷媒充填量を基準冷
媒量で除した値を、充填量比率とする。この充填量比率
を用いるのは、空調機(10)の能力に拘わらず適用可能
な関係を得るためである。
The refrigerant charge in the refrigerant circuit (20) is divided by a predetermined reference refrigerant amount and generalized. The value obtained by dividing the refrigerant charge amount by the reference refrigerant amount is defined as a charge amount ratio. The reason why this filling ratio is used is to obtain an applicable relationship regardless of the capacity of the air conditioner (10).

【0074】ここで、上記基準冷媒量は、次のようなも
のである。即ち、上記液側及びガス側連絡管(23,24)
の長さを5mと仮定した冷媒回路を考え、これを基準回
路とする。そして、この基準回路において所定の標準運
転条件で冷凍サイクルを行った場合に、電動膨張弁(3
6)入口において冷媒が全て液相となるために上記基準
回路に充填しなければならない最小限の冷媒量を基準冷
媒量と規定する。この基準冷媒量は、試験により予め求
めておく。
Here, the reference refrigerant amount is as follows. That is, the liquid side and gas side communication pipes (23, 24)
Consider a refrigerant circuit assuming a length of 5 m, and use this as a reference circuit. When a refrigeration cycle is performed under predetermined standard operating conditions in this reference circuit, the electric expansion valve (3
6) The minimum amount of refrigerant that must be charged into the reference circuit in order for all the refrigerant to be in the liquid phase at the inlet is defined as the reference refrigerant amount. This reference refrigerant amount is obtained in advance by a test.

【0075】尚、上記標準運転条件とは、JIS B 8615-
1:1999 に規定された冷房標準条件に対応したものであ
る。具体的には、冷房運転時において、室内空気の乾球
温度が27℃で湿球温度が19℃、室外空気の乾球温度
が35℃、上記圧縮機(30)の運転周波数が定格周波数
である運転条件である。
The above standard operating conditions are defined in JIS B 8615-
This corresponds to the standard cooling condition specified in 1: 1999. Specifically, during the cooling operation, the dry bulb temperature of the indoor air is 27 ° C., the wet bulb temperature is 19 ° C., the dry bulb temperature of the outdoor air is 35 ° C., and the operating frequency of the compressor (30) is the rated frequency. There are certain operating conditions.

【0076】一方、上記限界運転条件での電動膨張弁
(36)入口における冷媒乾き度は、実測するのが極めて
困難であるため、次のようにして定量化する。
On the other hand, the dryness of the refrigerant at the inlet of the electric expansion valve (36) under the above-mentioned limit operation conditions is extremely difficult to measure, and is quantified as follows.

【0077】電動膨張弁(36)を流れる冷媒が完全に液
相(つまり、乾き度がゼロ)である場合に、電動膨張弁
(36)を通過する液冷媒の体積流量をQL(m3/h)とす
る。この液冷媒量QLは、式(1)により求められる。 QL=2.736・CV(ΔP/G)1/2 … 式(1) CV :電動膨張弁の流量係数 ΔP:電動膨張弁の前後における差圧(kPa) G :電動膨張弁の入口における液冷媒の比重(-) また、ある運転状態において電動膨張弁(36)を通過す
る冷媒の体積流量をQF(m3/h)とする。この液冷媒量QF
は、式(2)により求められる。 QF=3600・V・x・ηV・ρS・ρL … 式(2) V :圧縮機における圧縮機構のシリンダ容積(m3) x :圧縮機の運転周波数(1/s) ηV:圧縮機構の体積効率(-) ρS:圧縮機の吸入冷媒の密度(kg/m3) ρL:電動膨張弁入口における冷媒の密度(kg/m3
When the refrigerant flowing through the electric expansion valve (36) is completely in a liquid phase (that is, the dryness is zero), the volume flow rate of the liquid refrigerant passing through the electric expansion valve (36) is represented by Q L (m 3 / h). The liquid refrigerant quantity Q L is calculated by Equation (1). Q L = 2.736 · C V (ΔP / G) 1/2 Equation (1) C V : Flow coefficient of electric expansion valve ΔP: Differential pressure before and after electric expansion valve (kPa) G: At inlet of electric expansion valve liquid refrigerant density (-) Further, the volume flow rate of refrigerant passing through the motor-operated expansion valve (36) and Q F (m 3 / h) in certain operating conditions. This liquid refrigerant amount Q F
Is determined by equation (2). Q F = 3600 · V · x · η V · ρ S · ρ L Equation (2) V: Cylinder volume of the compression mechanism in the compressor (m 3 ) x: Operating frequency of the compressor (1 / s) η V : Volumetric efficiency of compression mechanism (-) ρ S : Density of refrigerant sucked into compressor (kg / m 3 ) ρ L : Density of refrigerant at inlet of electric expansion valve (kg / m 3 )

【0078】上記限界運転条件において冷媒回路(20)
で冷凍サイクルを行わせる実験を、冷媒回路(20)の冷
媒充填量をパラメータとして変化させて行う。この実験
により、各冷媒充填量ごとのΔP,G,ρS,ρLの値
を、実測し、あるいは実測値及び冷媒物性に基づき計算
する。そして、QFをQLで除して得られる値、即ち電動
膨張弁(36)入口における冷媒体積流量比率QF/Q
Lを、各冷媒充填量ごとに求める。
Under the above-mentioned limit operating conditions, the refrigerant circuit (20)
The experiment for performing the refrigeration cycle is performed by changing the refrigerant charge of the refrigerant circuit (20) as a parameter. Through this experiment, the values of ΔP, G, ρ S , and ρ L for each refrigerant charge amount are measured or calculated based on the measured values and the physical properties of the refrigerant. Then, the value obtained by dividing the Q F in Q L, i.e. the electric expansion valve (36) coolant volume flow at the inlet ratio Q F / Q
L is determined for each refrigerant charge.

【0079】一方、図2に示すように、気液二相冷媒に
おける液体積比率は、冷媒体積流量比率QF/QLと一致
する。この点は、朝倉書店発行の「冷凍機械工学ハンド
ブック」(第5版)405ページ表5.11に開示され
ている。この関係を用いることにより、上記実験パラメ
ータである各冷媒充填量に対応する液体積比率が得られ
る。尚、気液二相冷媒の液体積比率とは、“気液二相冷
媒に含まれる液冷媒の体積”を“気液二相冷媒の全体
積”で除して得られる値である。従って、液体積比率が
1.0ということは全冷媒が液相であることを意味し、
液体積比率がゼロということは全冷媒がガス相であるこ
とを意味している。
[0079] On the other hand, as shown in FIG. 2, the liquid product ratio in the gas-liquid two-phase refrigerant is consistent with the refrigerant volumetric flow ratio Q F / Q L. This point is disclosed in “Refrigeration Mechanical Engineering Handbook” (5th edition), page 405, table 5.11, issued by Asakura Shoten. By using this relationship, a liquid volume ratio corresponding to each refrigerant charge, which is the above-mentioned experimental parameter, can be obtained. The liquid volume ratio of the gas-liquid two-phase refrigerant is a value obtained by dividing “the volume of the liquid refrigerant contained in the gas-liquid two-phase refrigerant” by “the total volume of the gas-liquid two-phase refrigerant”. Therefore, a liquid volume ratio of 1.0 means that all refrigerants are in a liquid phase,
A liquid volume ratio of zero means that all the refrigerant is in the gas phase.

【0080】気液二相冷媒の液体積比率が得られれば、
式(3)を用いて当該気液二相冷媒の乾き度を計算でき
る。 乾き度=(1−α)ρg/[α・ρl+(1−α)ρg] … 式(3) α :液体積比率 ρl:飽和液の密度(kg/m3) ρg:飽和ガスの密度(kg/m3
If the liquid volume ratio of the gas-liquid two-phase refrigerant is obtained,
The dryness of the gas-liquid two-phase refrigerant can be calculated using equation (3). Dryness fraction = (1-α) ρ g / [α · ρ l + (1-α) ρ g] ... Equation (3) alpha: Liquid product ratio [rho l: Density of saturated liquid (kg / m 3) ρ g : Density of saturated gas (kg / m 3 )

【0081】以上より、上記実験パラメータである各冷
媒充填量に対応する冷媒乾き度を求めることができる。
そして、図3に示すように、充填量比率と電動膨張弁
(36)入口における冷媒乾き度との関係が得られる。
From the above, it is possible to determine the dryness of the refrigerant corresponding to each of the refrigerant filling amounts, which are the above experimental parameters.
Then, as shown in FIG. 3, a relationship between the filling amount ratio and the dryness of the refrigerant at the inlet of the electric expansion valve (36) is obtained.

【0082】上記“限界運転条件での電動膨張弁(3
6)入口における冷媒の乾き度と冷媒回路(20)におけ
る冷媒循環量との関係”は、図4に示すグラフとして表
される。この図4が如何にして得られるかを説明する。
The above-mentioned “Electric expansion valve (3
6) The relationship between the dryness of the refrigerant at the inlet and the amount of refrigerant circulated in the refrigerant circuit (20) "is shown as a graph shown in FIG. 4. How FIG. 4 is obtained will be described.

【0083】上記限界運転条件での電動膨張弁(36)入
口における冷媒乾き度は、上述のように、上記限界運転
条件における実験、式(1)〜式(3)、及び図2に示す関
係に基づいて定量化される。
As described above, the degree of dryness of the refrigerant at the inlet of the electric expansion valve (36) under the above-mentioned limit operation conditions is determined by the experiment under the above-mentioned limit operation conditions, the equations (1) to (3), and the relationship shown in FIG. Quantified based on

【0084】一方、上記冷媒回路(20)における冷媒循
環量は、電動膨張弁(36)入口で全冷媒が液相であると
仮定し、上記式(1)において、CV、ΔP、及びGの各
値を設定することにより計算される。ここでは、冷媒循
環量を、1時間あたりの質量流量として表している。ま
た、空調機(10)の能力によらず一般化するため、冷媒
循環量を定格冷房能力で除した値を用いる。尚、定格冷
房能力とは、上記冷房標準条件において圧縮機(30)を
定格周波数で運転した場合に得られる冷房能力を、単位
kW(キロワット)で表示したものである。
[0084] On the other hand, the refrigerant circulation amount in the refrigerant circuit (20) includes an electric expansion valve (36) all the refrigerant at the inlet is assumed to be a liquid phase, in the formula (1), C V, [Delta] P, and G Is calculated by setting each value of. Here, the refrigerant circulation amount is expressed as a mass flow rate per hour. Also, in order to generalize regardless of the capacity of the air conditioner (10), a value obtained by dividing the refrigerant circulation amount by the rated cooling capacity is used. The rated cooling capacity is the cooling capacity obtained when the compressor (30) is operated at the rated frequency under the above-described standard cooling conditions, expressed in kW (kilowatt).

【0085】そして、図4に示すように、流量係数CV
をパラメータとして、電動膨張弁(36)入口における冷
媒乾き度と定格冷房能力1kW当たりの冷媒循環量との
関係が得られる。尚、ここでは、流量係数CVの値も、
上記定格冷房能力で除することにより一般化している。
Then, as shown in FIG. 4, the flow coefficient C V
Is used as a parameter to obtain the relationship between the dryness of the refrigerant at the inlet of the electric expansion valve (36) and the amount of refrigerant circulated per 1 kW of the rated cooling capacity. Here, the value of the flow coefficient C V is also
It is generalized by dividing by the rated cooling capacity.

【0086】上記“冷媒回路(20)における冷媒循環
量と圧縮機(30)の吐出冷媒温度との関係”は、図5に
示すグラフとして表される。この図5が如何にして得ら
れるかを説明する。
The “relationship between the amount of circulating refrigerant in the refrigerant circuit (20) and the temperature of refrigerant discharged from the compressor (30)” is represented by a graph shown in FIG. How FIG. 5 is obtained will be described.

【0087】上記冷媒回路(20)における冷媒循環量
は、上記限界運転条件における実験、及び式(1)に基づ
いて計算される。尚、ここでも、冷媒循環量を定格冷房
能力で除して一般化している。一方、上記圧縮機(30)
の吐出冷媒温度は、上記限界運転条件での実験により得
られた実測値や、圧縮比等の圧縮機(30)の運転特性を
考慮し、既知の冷媒物性に基づいて導出される。そし
て、図5に示すように、定格冷房能力1kW当たりの冷
媒循環量と圧縮機(30)の吐出冷媒温度との関係が得ら
れる。
The amount of circulating refrigerant in the refrigerant circuit (20) is calculated based on experiments under the above-mentioned limit operating conditions and on the basis of equation (1). Note that, also here, the refrigerant circulation amount is generalized by dividing by the rated cooling capacity. Meanwhile, the compressor (30)
Is derived based on known refrigerant physical properties in consideration of actual measured values obtained by experiments under the above-mentioned limit operating conditions and operating characteristics of the compressor (30) such as a compression ratio. Then, as shown in FIG. 5, the relationship between the refrigerant circulation amount per 1 kW of the rated cooling capacity and the temperature of the refrigerant discharged from the compressor (30) is obtained.

【0088】以上説明したように、図3,図4,図5に
示すように、上記,,の関係が定量化できる。そ
して、これらの関係を用いることにより、図6に示すよ
うに、定格冷房能力1kW当たりの流量係数CVをパラ
メータとして、充填量比率と圧縮機(30)の吐出冷媒温
度との関係が定量化できる。
As described above, as shown in FIG. 3, FIG. 4, and FIG. 5, the above relation can be quantified. By using these relationships, as shown in FIG. 6, the relationship between the filling ratio and the refrigerant temperature discharged from the compressor (30) is quantified using the flow coefficient C V per 1 kW of the rated cooling capacity as a parameter. it can.

【0089】更に、ここでは、電動膨張弁(36)の流量
係数CVを定める際の便宜を図るため、図6の関係を図
7に示すように書き換えている。即ち、圧縮機(30)の
吐出冷媒温度をパラメータにした上で、充填量比率Xと
定格冷房能力1kW当たりの流量係数CVとの関係とし
て表示した。
Further, here, for the sake of convenience in determining the flow coefficient C V of the electric expansion valve (36), the relationship of FIG. 6 is rewritten as shown in FIG. That is, the relationship is shown between the filling ratio X and the flow coefficient C V per 1 kW of the rated cooling capacity, with the temperature of the refrigerant discharged from the compressor (30) as a parameter.

【0090】圧縮機(30)の吐出冷媒温度が125℃の
場合の関係は、図7において一点鎖線のように示され、
この場合における定格冷房能力1kW当たりの流量係数
Vは、充填量比率Xを用いて(1.39816・X2−4.66544・
X+4.48651)・10-2と表される。そして、ある充填量比
率Xが定まると、この充填量比率Xの値を上式に代入し
て得られた演算値に上記空調機(10)の冷房定格能力を
乗じて得られた値以上の流量係数をもつ電動膨張弁(3
6)を選定することにより、上記限界運転条件において
も圧縮機(30)の吐出冷媒温度が125℃以下に維持さ
れる。
The relationship when the temperature of the refrigerant discharged from the compressor (30) is 125 ° C. is shown as a dashed line in FIG.
The flow coefficient C V per 1 kW of the rated cooling capacity in this case is calculated by using the filling amount ratio X as (1.39816 · X 2 −4.66544 ·
X + 4.48651) · 10 -2 Then, when a certain filling rate X is determined, a value obtained by multiplying the calculated value obtained by substituting the value of the filling rate X into the above equation by the cooling rated capacity of the air conditioner (10) is equal to or more than the value obtained. Electric expansion valve with flow coefficient (3
By selecting 6), the discharge refrigerant temperature of the compressor (30) is maintained at 125 ° C. or less even under the above-mentioned limit operating conditions.

【0091】圧縮機(30)の吐出冷媒温度が135℃の
場合の関係は、図7において実線のように示され、この
場合における定格冷房能力1kW当たりの流量係数CV
は、充填量比率Xを用いて(1.20720・X2−4.21152・X+
4.17078)・10-2と表される。そして、ある充填量比率X
が定まると、この充填量比率Xの値を上式に代入して得
られた演算値に上記空調機(10)の冷房定格能力を乗じ
て得られた値以上の流量係数をもつ電動膨張弁(36)を
選定することにより、上記限界運転条件においても圧縮
機(30)の吐出冷媒温度が135℃以下に維持される。
The relationship when the discharge refrigerant temperature of the compressor (30) is 135 ° C. is shown as a solid line in FIG. 7, and in this case, the flow coefficient C V per 1 kW of the rated cooling capacity.
Is calculated using the filling ratio X (1.20720 · X 2 −4.21152 · X +
4.17078) · 10 -2 . Then, a certain filling amount ratio X
Is determined, the electric expansion valve having a flow coefficient equal to or greater than the value obtained by multiplying the calculated value obtained by substituting the value of the filling amount ratio X into the above equation and the rated cooling capacity of the air conditioner (10). By selecting (36), the temperature of the refrigerant discharged from the compressor (30) is maintained at 135 ° C. or less even under the above-mentioned limit operating conditions.

【0092】圧縮機(30)の吐出冷媒温度が145℃の
場合の関係は、図7において破線のように示され、この
場合における定格冷房能力1kW当たりの流量係数CV
は、充填量比率Xを用いて(1.02443・X2−3.79638・X+
3.88706)・10-2と表される。そして、ある充填量比率X
が定まると、この充填量比率Xの値を上式に代入して得
られた演算値に上記空調機(10)の冷房定格能力値を乗
じて得られた値以上の流量係数をもつ電動膨張弁(36)
を選定することにより、上記限界運転条件においても圧
縮機(30)の吐出冷媒温度が145℃以下に維持され
る。
The relationship when the refrigerant temperature discharged from the compressor (30) is 145 ° C. is shown as a broken line in FIG. 7, and in this case, the flow coefficient C V per 1 kW of the rated cooling capacity.
Is calculated using the filling ratio X (1.02443 · X 2 −3.79638 · X +
3.88706) · 10 -2 Then, a certain filling amount ratio X
Is determined, the electric expansion having a flow coefficient equal to or higher than the value obtained by multiplying the calculated value obtained by substituting the value of the filling amount ratio X into the above equation by the rated cooling capacity value of the air conditioner (10). Valve (36)
Is selected, the temperature of the refrigerant discharged from the compressor (30) is maintained at 145 ° C. or lower even under the above-mentioned limit operating conditions.

【0093】図7を用いた電動膨張弁(36)の選定につ
いて、一例を挙げて説明する。例えば、定格冷房能力が
14kW、上記基準冷媒量が2.4kg、上記液側及び
ガス側連絡管(23,24)の長さが30mの場合の冷媒の
追加充填量が0.24kgの空調機(10)において、電
動膨張弁(36)を選定する場合を考える。この場合にお
いて、冷媒回路(20)に充填された冷媒の15%が漏洩
したとしても、上記限界運転条件における圧縮機(30)
の吐出冷媒温度を135℃以下に維持することが要求さ
れているとする。
The selection of the electric expansion valve (36) with reference to FIG. 7 will be described by way of an example. For example, an air conditioner having a rated cooling capacity of 14 kW, the reference refrigerant amount of 2.4 kg, and an additional charging amount of refrigerant of 0.24 kg when the length of the liquid side and gas side communication pipes (23, 24) is 30 m. In (10), consider the case where the electric expansion valve (36) is selected. In this case, even if 15% of the refrigerant charged in the refrigerant circuit (20) leaks, the compressor (30) under the above-mentioned limit operating conditions
Is required to be maintained at 135 ° C. or lower.

【0094】この場合、充填量比率Xは、(2.4+0.24)・
(1-0.15)/2.4 = 0.94 となる。図7において実線で示し
た関係から充填量比率Xが0.94のときの縦軸の値、
即ち定格冷房能力1kW当たりの流量係数CVを読みと
ると、0.0128である。そして、この読みとった値
に上記定格冷房能力を乗ずると、0.0128×14 = 0.18と
なる。従って、電動膨張弁(36)として0.18以上の
流量係数CVをもつものを選べば、上記の要求を満たす
こととなる。
In this case, the filling ratio X is (2.4 + 0.24) ·
(1-0.15) /2.4 = 0.94. From the relationship shown by the solid line in FIG. 7, the value on the vertical axis when the filling ratio X is 0.94,
That is, when the flow coefficient C V per 1 kW of the rated cooling capacity is read, it is 0.0128. Then, when this read value is multiplied by the rated cooling capacity, it becomes 0.0128 × 14 = 0.18. Therefore, if the motor-operated expansion valve (36) having a flow coefficient C V of 0.18 or more is selected, the above-mentioned requirement is satisfied.

【0095】−実施形態の効果− 本実施形態では、上記限界運転条件における圧縮機(3
0)の吐出冷媒温度を考慮して、電動膨張弁(36)の流
量係数を定めている。つまり、従来のように定格能力を
考慮して電動膨張弁(36)を選定するのではなく、圧縮
機(30)の吐出冷媒温度が過上昇する危険の大きい限界
運転条件での運転を考慮して電動膨張弁(36)を選定し
ている。
-Effects of Embodiment- In this embodiment, the compressor (3
The flow coefficient of the electric expansion valve (36) is determined in consideration of the discharged refrigerant temperature of 0). In other words, instead of selecting the motor-operated expansion valve (36) in consideration of the rated capacity as in the past, consideration is given to operation under critical operating conditions where there is a great danger that the refrigerant refrigerant discharged from the compressor (30) will rise excessively. The electric expansion valve (36) is selected.

【0096】従って、限界運転条件においても充分な冷
媒循環量を確保しうる流量係数の電動膨張弁(36)を、
開発当初から的確に選定できるようになる。このため、
その後に実機試験を行うとしても、単に問題が発生しな
いことを確認するために行えばよく、試行錯誤により電
動膨張弁(36)を選定するための工数は、ほとんど不要
となる。この結果、電動膨張弁(36)の選定に要する時
間を著しく短縮でき、開発コストの低減を図ることが可
能となる。
Therefore, the electric expansion valve (36) having a flow coefficient capable of ensuring a sufficient refrigerant circulation amount even under the limit operation condition is
It will be possible to select accurately from the beginning of development. For this reason,
Even if the actual machine test is performed thereafter, it is sufficient to simply confirm that no problem occurs, and the man-hour for selecting the electric expansion valve (36) by trial and error becomes almost unnecessary. As a result, the time required for selecting the electric expansion valve (36) can be significantly reduced, and the development cost can be reduced.

【0097】特に、本実施形態によれば、図7に示すよ
うな関係を用いることにより、あらゆる冷房定格能力の
空調機(10)について、上記限界運転条件でも圧縮機
(30)の吐出冷媒温度が所定の限界値以下に維持され得
る流量係数の電動膨張弁(36)を、開発の初期段階から
的確に選定することが可能となる。このため、空調機
(10)の開発工数を一層削減でき、開発コストの低減を
より確実に図ることができる。
In particular, according to the present embodiment, by using the relationship as shown in FIG. 7, for the air conditioner (10) having all the rated cooling capacities, the discharge refrigerant temperature of the compressor (30) can be obtained even under the above-mentioned limit operating conditions. It is possible to accurately select an electric expansion valve (36) having a flow coefficient capable of maintaining the pressure at or below a predetermined limit value from an early stage of development. For this reason, the number of development steps of the air conditioner (10) can be further reduced, and the development cost can be more reliably reduced.

【0098】本実施形態では、従来より冷媒として一般
的なR22よりも比熱比が大きく、このため圧縮機(3
0)の吐出冷媒温度が高くなるR32を冷媒として用い
ている。しかしながら、本実施形態によれば、上述のよ
うに、上記限界運転条件における運転状態を考慮した電
動膨張弁(36)の選定が可能となる。従って、このよう
なR32を冷媒として採用した場合であっても、的確な
電動膨張弁(36)の選定が可能となり、空調機(10)の
開発工数の削減や、開発コストの低減を図ることができ
る。
In the present embodiment, the specific heat ratio is higher than that of R22, which has been conventionally used as a refrigerant.
R32 in which the temperature of the discharged refrigerant of 0) becomes high is used as the refrigerant. However, according to the present embodiment, as described above, it is possible to select the electric expansion valve (36) in consideration of the operation state under the above-mentioned limit operation condition. Therefore, even when such R32 is used as a refrigerant, it is possible to select an appropriate electric expansion valve (36), and to reduce the number of development steps and the development cost of the air conditioner (10). Can be.

【0099】更に、本実施形態によれば、設計対象とな
る空調機(10)の定格冷房能力に応じた電動膨張弁(3
6)の流量係数を、予め想定できることとなる。このた
め、空調機(10)の製品ラインアップに対応して、各機
種に適用される電動膨張弁(36)の仕様(流量係数)を
予め想定できる。従って、空調機(10)の製品ラインア
ップに対応した仕様の電動膨張弁(36)を予めラインア
ップしておくことができ、各機種の仕様に最も適した電
動膨張弁(36)を選定できることとなる。
Further, according to the present embodiment, the electric expansion valve (3) according to the rated cooling capacity of the air conditioner (10) to be designed is designed.
The flow coefficient of 6) can be assumed in advance. For this reason, the specification (flow coefficient) of the electric expansion valve (36) applied to each model can be assumed in advance corresponding to the product lineup of the air conditioner (10). Therefore, the electric expansion valve (36) of the specification corresponding to the product lineup of the air conditioner (10) can be preliminarily lined up, and the electric expansion valve (36) most suitable for the specification of each model can be selected. Becomes

【0100】−実施形態の変形例− 尚、本実施形態では、電動膨張弁(36)の選定について
説明したが、上記の選定手法は、電動膨張弁(36)以外
の膨張弁、例えば感温式膨張弁についても適用可能であ
る。
-Modification of Embodiment-In this embodiment, the selection of the motor-operated expansion valve (36) has been described. However, the above-described selection method uses an expansion valve other than the motor-operated expansion valve (36), for example, a thermo-sensitive expansion valve. The present invention is also applicable to a type expansion valve.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態に係る空調機の概略構成図である。FIG. 1 is a schematic configuration diagram of an air conditioner according to an embodiment.

【図2】冷媒体積流量比率と気液二相冷媒の液体積比率
との関係を示す関係図である。
FIG. 2 is a relationship diagram showing a relationship between a refrigerant volume flow rate ratio and a liquid volume ratio of a gas-liquid two-phase refrigerant.

【図3】充填量比率Xと電動膨張弁前における冷媒乾き
度との関係を示す関係図である。
FIG. 3 is a relationship diagram showing a relationship between a filling ratio X and a refrigerant dryness before an electric expansion valve.

【図4】電動膨張弁前における冷媒乾き度、定格冷房能
力1kW当たりの冷媒循環量、及び定格冷房能力1kW
当たりの流量係数の関係を示す関係図である。
FIG. 4 shows the degree of dryness of refrigerant before an electric expansion valve, the amount of refrigerant circulated per 1 kW of rated cooling capacity, and 1 kW of rated cooling capacity.
It is a relationship diagram showing the relationship of the flow coefficient per hit.

【図5】定格冷房能力1kW当たりの冷媒循環量と圧縮
機の吐出冷媒温度との関係を示す関係図である。
FIG. 5 is a relationship diagram showing a relationship between a refrigerant circulation amount per 1 kW of rated cooling capacity and a refrigerant temperature discharged from a compressor.

【図6】充填量比率X、圧縮機の吐出冷媒温度、及び定
格冷房能力1kW当たりの流量係数の関係を示す関係図
である。
FIG. 6 is a relationship diagram showing a relationship between a filling ratio X, a refrigerant discharge temperature of a compressor, and a flow coefficient per 1 kW of rated cooling capacity.

【図7】充填量比率X、圧縮機の吐出冷媒温度、及び定
格冷房能力1kW当たりの流量係数の関係を示す関係図
である。
FIG. 7 is a relationship diagram showing a relationship between a charging rate X, a refrigerant discharge temperature of a compressor, and a flow coefficient per 1 kW of a rated cooling capacity.

【符号の説明】[Explanation of symbols]

(10) 空調機(冷凍装置) (11) 室外機(室外側ユニット) (13) 室内機(室内側ユニット) (20) 冷媒回路 (23) 液側連絡管 (連絡配管) (24) ガス側連絡管(連絡配管) (30) 圧縮機 (36) 電動膨張弁 (10) Air conditioner (refrigerator) (11) Outdoor unit (outdoor unit) (13) Indoor unit (indoor unit) (20) Refrigerant circuit (23) Liquid side communication pipe (communication pipe) (24) Gas side Connecting pipe (connecting pipe) (30) Compressor (36) Electric expansion valve

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 室内側ユニット(13)と室外側ユニット
(11)を冷媒回路(20)の連絡配管(23,24)により接
続し、上記冷媒回路(20)に充填された冷媒が圧縮機
(30)、凝縮器、膨張弁(36)、蒸発器の順で循環する
冷凍装置であって、 上記連絡配管(23,24)の長さが30m、上記蒸発器で
冷媒と熱交換する第1空気の乾球温度が21℃で湿球温
度が15℃、上記凝縮器で冷媒と熱交換する第2空気の
乾球温度が28℃、上記圧縮機(30)の容量が最大容量
である限界運転条件において上記圧縮機(30)の吐出冷
媒温度が145℃以下に維持される膨張弁流量係数を有
するように、上記冷媒回路(20)の膨張弁(36)が構成
されている冷凍装置。
An indoor unit (13) and an outdoor unit (11) are connected by connecting pipes (23, 24) of a refrigerant circuit (20), and a refrigerant filled in the refrigerant circuit (20) is a compressor. (30) A refrigeration apparatus which circulates in the order of a condenser, an expansion valve (36), and an evaporator, wherein the length of the communication pipe (23, 24) is 30 m, and the length of the refrigeration apparatus is 30 m, which exchanges heat with a refrigerant in the evaporator. The dry-bulb temperature of 1 air is 21 ° C, the wet-bulb temperature is 15 ° C, the dry-bulb temperature of the second air that exchanges heat with the refrigerant in the condenser is 28 ° C, and the capacity of the compressor (30) is the maximum capacity. A refrigeration system in which the expansion valve (36) of the refrigerant circuit (20) is configured to have an expansion valve flow coefficient such that the refrigerant discharge temperature of the compressor (30) is maintained at 145 ° C. or less under the limit operation conditions. .
【請求項2】 室内側ユニット(13)と室外側ユニット
(11)を冷媒回路(20)の連絡配管(23,24)により接
続し、上記冷媒回路(20)に充填された冷媒が圧縮機
(30)、凝縮器、膨張弁(36)、蒸発器の順で循環する
冷凍装置であって、 上記連絡配管(23,24)の長さが30m、上記蒸発器で
冷媒と熱交換する第1空気の乾球温度が21℃で湿球温
度が15℃、上記凝縮器で冷媒と熱交換する第2空気の
乾球温度が28℃、上記圧縮機(30)の容量が最大容量
である限界運転条件において上記圧縮機(30)の吐出冷
媒温度が135℃以下に維持される膨張弁流量係数を有
するように、上記冷媒回路(20)の膨張弁(36)が構成
されている冷凍装置。
2. An indoor unit (13) and an outdoor unit (11) are connected by connecting pipes (23, 24) of a refrigerant circuit (20), and a refrigerant filled in the refrigerant circuit (20) is a compressor. (30) A refrigeration apparatus which circulates in the order of a condenser, an expansion valve (36), and an evaporator, wherein the length of the communication pipe (23, 24) is 30 m, and the length of the refrigeration apparatus is 30 m, which exchanges heat with a refrigerant in the evaporator. The dry-bulb temperature of 1 air is 21 ° C, the wet-bulb temperature is 15 ° C, the dry-bulb temperature of the second air that exchanges heat with the refrigerant in the condenser is 28 ° C, and the capacity of the compressor (30) is the maximum capacity. A refrigeration system in which the expansion valve (36) of the refrigerant circuit (20) is configured to have an expansion valve flow coefficient at which the temperature of refrigerant discharged from the compressor (30) is maintained at 135 ° C. or lower under the limit operation conditions. .
【請求項3】 室内側ユニット(13)と室外側ユニット
(11)を冷媒回路(20)の連絡配管(23,24)により接
続し、上記冷媒回路(20)に充填された冷媒が圧縮機
(30)、凝縮器、膨張弁(36)、蒸発器の順で循環する
冷凍装置であって、 上記連絡配管(23,24)の長さが30m、上記蒸発器で
冷媒と熱交換する第1空気の乾球温度が21℃で湿球温
度が15℃、上記凝縮器で冷媒と熱交換する第2空気の
乾球温度が28℃、上記圧縮機(30)の容量が最大容量
である限界運転条件において上記圧縮機(30)の吐出冷
媒温度が125℃以下に維持される膨張弁流量係数を有
するように、上記冷媒回路(20)の膨張弁(36)が構成
されている冷凍装置。
3. An indoor unit (13) and an outdoor unit (11) are connected by connecting pipes (23, 24) of a refrigerant circuit (20), and a refrigerant filled in the refrigerant circuit (20) is a compressor. (30) A refrigeration apparatus which circulates in the order of a condenser, an expansion valve (36), and an evaporator, wherein the length of the communication pipe (23, 24) is 30 m, and the length of the refrigeration apparatus is 30 m, which exchanges heat with a refrigerant in the evaporator. The dry-bulb temperature of 1 air is 21 ° C, the wet-bulb temperature is 15 ° C, the dry-bulb temperature of the second air that exchanges heat with the refrigerant in the condenser is 28 ° C, and the capacity of the compressor (30) is the maximum capacity. A refrigeration system in which the expansion valve (36) of the refrigerant circuit (20) is configured to have an expansion valve flow coefficient at which the refrigerant discharged from the compressor (30) is maintained at 125 ° C. or lower under the limit operation conditions. .
【請求項4】 冷媒回路(20)に充填された冷媒が圧縮
機(30)、凝縮器、膨張弁(36)、蒸発器の順で循環す
る冷凍装置であって、 上記冷媒回路(20)の冷媒充填量を予め設定された基準
冷媒量で除して得られる充填量比率と、膨張弁流量係数
と、上記圧縮機(30)の吐出冷媒温度との相関に基づい
て導出される膨張弁流量係数の値以上の流量係数を有す
るように、上記冷媒回路(20)の膨張弁(36)が構成さ
れている冷凍装置。
4. A refrigeration system in which a refrigerant filled in a refrigerant circuit (20) circulates in the order of a compressor (30), a condenser, an expansion valve (36), and an evaporator, wherein the refrigerant circuit (20) The expansion valve is derived based on a correlation between a charging ratio obtained by dividing a refrigerant charging amount of the compressor by a preset reference refrigerant amount, an expansion valve flow coefficient, and a refrigerant discharge temperature of the compressor (30). A refrigeration apparatus in which the expansion valve (36) of the refrigerant circuit (20) is configured to have a flow coefficient equal to or larger than the value of the flow coefficient.
【請求項5】 室内側ユニット(13)と室外側ユニット
(11)を冷媒回路(20)の連絡配管(23,24)により接
続し、上記冷媒回路(20)に充填された冷媒が圧縮機
(30)、凝縮器、膨張弁(36)、蒸発器の順で循環する
冷凍装置であって、 上記連絡配管(23,24)の長さが30m、上記蒸発器で
冷媒と熱交換する第1空気の乾球温度が21℃で湿球温
度が15℃、上記凝縮器で冷媒と熱交換する第2空気の
乾球温度が28℃、上記圧縮機(30)の容量が最大容量
である運転条件を限界運転条件とし、 上記冷媒回路(20)の冷媒充填量を予め設定された基準
冷媒量で除して得られる充填量比率と、膨張弁流量係数
と、上記限界運転条件における圧縮機(30)の吐出冷媒
温度との相関に基づいて導出される膨張弁流量係数の値
以上の流量係数を有するように、上記冷媒回路(20)の
膨張弁(36)が構成されている冷凍装置。
5. An indoor unit (13) and an outdoor unit (11) are connected by connecting pipes (23, 24) of a refrigerant circuit (20), and a refrigerant charged in the refrigerant circuit (20) is a compressor. (30) A refrigeration apparatus which circulates in the order of a condenser, an expansion valve (36), and an evaporator, wherein the length of the communication pipe (23, 24) is 30 m, and the length of the refrigeration apparatus is 30 m, which exchanges heat with a refrigerant in the evaporator. The dry-bulb temperature of 1 air is 21 ° C, the wet-bulb temperature is 15 ° C, the dry-bulb temperature of the second air that exchanges heat with the refrigerant in the condenser is 28 ° C, and the capacity of the compressor (30) is the maximum capacity. The operating condition is defined as a critical operating condition, a charging ratio obtained by dividing the refrigerant charging amount of the refrigerant circuit (20) by a preset reference refrigerant amount, an expansion valve flow coefficient, and a compressor under the critical operating condition. (30) to have a flow coefficient equal to or greater than the value of the expansion valve flow coefficient derived based on the correlation with the discharged refrigerant temperature And a refrigeration system in which the expansion valve (36) of the refrigerant circuit (20) is configured.
【請求項6】 室内側ユニット(13)と室外側ユニット
(11)を冷媒回路(20)の連絡配管(23,24)により接
続し、上記冷媒回路(20)に充填された冷媒が圧縮機
(30)、凝縮器、膨張弁(36)、蒸発器の順で循環する
冷凍装置であって、 上記蒸発器で冷媒と熱交換する第1空気の乾球温度が2
7℃で湿球温度が19℃、上記凝縮器で冷媒と熱交換す
る第2空気の乾球温度が35℃、圧縮機(30)の容量が
所定の定格容量である運転条件を標準運転条件とし、 上記連絡配管(23,24)の長さを5mとした冷媒回路(2
0)である基準回路で上記標準運転条件における冷凍サ
イクルを行う際に、上記基準回路の膨張弁(36)入口に
おいて冷媒を完全に液相とするために該基準回路へ充填
しなければならない冷媒量を予め基準冷媒量として設定
し、 上記連絡配管(23,24)の長さが30m、上記蒸発器で
冷媒と熱交換する第1空気の乾球温度が21℃で湿球温
度が15℃、上記凝縮器で冷媒と熱交換する第2空気の
乾球温度が28℃、上記圧縮機(30)の容量が最大容量
である運転条件を限界運転条件とし、 上記冷媒回路(20)の冷媒充填量を上記基準冷媒量で除
して得られる充填量比率と、膨張弁流量係数と、上記限
界運転条件における圧縮機(30)の吐出冷媒温度との相
関に基づいて導出される膨張弁流量係数の値以上の流量
係数を有するように、上記冷媒回路(20)の膨張弁(3
6)が構成されている冷凍装置。
6. An indoor unit (13) and an outdoor unit (11) are connected by connecting pipes (23, 24) of a refrigerant circuit (20), and a refrigerant filled in the refrigerant circuit (20) is a compressor. (30) A refrigeration apparatus that circulates in the order of a condenser, an expansion valve (36), and an evaporator, wherein the dry air temperature of the first air that exchanges heat with the refrigerant in the evaporator is 2
The operating conditions in which the wet bulb temperature is 7 ° C., the dry bulb temperature of the second air that exchanges heat with the refrigerant in the condenser is 35 ° C., and the capacity of the compressor (30) is a predetermined rated capacity are standard operating conditions. The refrigerant circuit (2
0) When the refrigeration cycle is performed under the standard operating conditions in the reference circuit, the refrigerant must be charged into the reference circuit in order to completely convert the refrigerant into a liquid phase at the inlet of the expansion valve (36) of the reference circuit. The amount is set in advance as a reference refrigerant amount, the length of the connection pipe (23, 24) is 30 m, the dry bulb temperature of the first air that exchanges heat with the refrigerant in the evaporator is 21 ° C., and the wet bulb temperature is 15 ° C. Operating conditions in which the dry-bulb temperature of the second air that exchanges heat with the refrigerant in the condenser is 28 ° C. and the capacity of the compressor (30) is the maximum capacity are defined as marginal operating conditions, and the refrigerant in the refrigerant circuit (20) An expansion valve flow derived based on a correlation between a charging ratio obtained by dividing the charging amount by the reference refrigerant amount, an expansion valve flow coefficient, and a refrigerant temperature discharged from the compressor (30) under the above-mentioned limit operating conditions. In order to have a flow coefficient equal to or greater than the coefficient value, the refrigerant circuit ( 20) expansion valve (3
6) The refrigeration system that is composed.
【請求項7】 請求項1乃至6の何れか1記載の冷凍装
置において、 冷媒回路(20)に充填される冷媒は、R22よりも比熱
比の大きな物質により構成されている冷凍装置。
7. The refrigerating apparatus according to claim 1, wherein the refrigerant filled in the refrigerant circuit (20) is made of a substance having a specific heat ratio larger than that of R22.
【請求項8】 請求項1乃至6の何れか1記載の冷凍装
置において、 冷媒回路(20)の充填される冷媒は、R32の単一冷媒
により構成されている冷凍装置。
8. The refrigeration apparatus according to claim 1, wherein the refrigerant filled in the refrigerant circuit (20) is a single refrigerant of R32.
【請求項9】 室内側ユニット(13)と室外側ユニット
(11)を冷媒回路(20)の連絡配管(23,24)により接
続し、上記冷媒回路(20)に充填された冷媒が圧縮機
(30)、凝縮器、膨張弁(36)、蒸発器の順で循環する
冷凍装置であって、 上記冷媒回路(20)に充填される冷媒は、R32の単一
冷媒により構成される一方、 上記蒸発器で冷媒と熱交換する第1空気の乾球温度が2
7℃で湿球温度が19℃、上記凝縮器で冷媒と熱交換す
る第2空気の乾球温度が35℃、圧縮機(30)の容量が
所定の定格容量である運転条件を標準運転条件とし、 上記連絡配管(23,24)の長さを5mとした冷媒回路(2
0)である基準回路で上記標準運転条件における冷凍サ
イクルを行う際に、上記基準回路の膨張弁(36)入口に
おいて冷媒を完全に液相とするために該基準回路へ充填
しなければならない冷媒量を予め基準冷媒量として設定
し、 上記冷媒回路(20)における上記標準運転条件での運転
により発揮される冷凍能力を定格冷凍能力(kW)とし、 上記膨張弁の流量係数が、上記冷媒回路の冷媒充填量を
上記基準冷媒量で除して得られる値をXとして表された
式(1.02443・X2−3.79638・X+3.88706)・10-2に基づい
て導出される演算値に上記定格冷凍能力を乗じて得られ
る値以上の値とされている冷凍装置。
9. The indoor unit (13) and the outdoor unit (11) are connected by connecting pipes (23, 24) of a refrigerant circuit (20), and the refrigerant filled in the refrigerant circuit (20) is a compressor. (30) A refrigeration apparatus that circulates in the order of a condenser, an expansion valve (36), and an evaporator, wherein the refrigerant filled in the refrigerant circuit (20) is constituted by a single refrigerant of R32, The dry bulb temperature of the first air that exchanges heat with the refrigerant in the evaporator is 2
The operating conditions in which the wet bulb temperature is 7 ° C., the dry bulb temperature of the second air that exchanges heat with the refrigerant in the condenser is 35 ° C., and the capacity of the compressor (30) is a predetermined rated capacity are standard operating conditions. The refrigerant circuit (2
0) When the refrigeration cycle is performed under the standard operating conditions in the reference circuit, the refrigerant must be charged into the reference circuit in order to completely convert the refrigerant into a liquid phase at the inlet of the expansion valve (36) of the reference circuit. The amount is set in advance as a reference refrigerant amount, the refrigeration capacity exhibited by the operation under the standard operating conditions in the refrigerant circuit (20) is defined as a rated refrigeration capacity (kW), and the flow coefficient of the expansion valve is The value obtained by dividing the refrigerant charging amount of the above by the reference refrigerant amount is represented by X, and the calculated value derived based on the equation (1.02443 · X 2 −3.79638 · X + 3.88706) · 10 −2 is the above rating. A refrigeration system that has a value equal to or higher than the value obtained by multiplying the refrigeration capacity.
【請求項10】 室内側ユニット(13)と室外側ユニッ
ト(11)を冷媒回路(20)の連絡配管(23,24)により
接続し、上記冷媒回路(20)に充填された冷媒が圧縮機
(30)、凝縮器、膨張弁(36)、蒸発器の順で循環する
冷凍装置であって、 上記冷媒回路(20)に充填される冷媒は、R32の単一
冷媒により構成される一方、 上記蒸発器で冷媒と熱交換する第1空気の乾球温度が2
7℃で湿球温度が19℃、上記凝縮器で冷媒と熱交換す
る第2空気の乾球温度が35℃、圧縮機(30)の容量が
所定の定格容量である運転条件を標準運転条件とし、 上記連絡配管(23,24)の長さを5mとした冷媒回路(2
0)である基準回路で上記標準運転条件における冷凍サ
イクルを行う際に、上記基準回路の膨張弁(36)入口に
おいて冷媒を完全に液相とするために該基準回路へ充填
しなければならない冷媒量を予め基準冷媒量として設定
し、 上記冷媒回路(20)における上記標準運転条件での運転
により発揮される冷凍能力を定格冷凍能力(kW)とし、 上記膨張弁の流量係数が、上記冷媒回路の冷媒充填量を
上記基準冷媒量で除して得られる値をXとして表された
式(1.20720・X2−4.21152・X+4.17078)・10-2に基づい
て導出される演算値に上記定格冷凍能力を乗じて得られ
る値以上の値とされている冷凍装置。
10. An indoor unit (13) and an outdoor unit (11) are connected by connecting pipes (23, 24) of a refrigerant circuit (20), and a refrigerant filled in the refrigerant circuit (20) is a compressor. (30) A refrigeration apparatus that circulates in the order of a condenser, an expansion valve (36), and an evaporator, wherein the refrigerant filled in the refrigerant circuit (20) is constituted by a single refrigerant of R32, The dry bulb temperature of the first air that exchanges heat with the refrigerant in the evaporator is 2
The operating conditions in which the wet bulb temperature is 7 ° C., the dry bulb temperature of the second air that exchanges heat with the refrigerant in the condenser is 35 ° C., and the capacity of the compressor (30) is a predetermined rated capacity are standard operating conditions. The refrigerant circuit (2
0) When the refrigeration cycle is performed under the standard operating conditions in the reference circuit, the refrigerant must be charged into the reference circuit in order to completely convert the refrigerant into a liquid phase at the inlet of the expansion valve (36) of the reference circuit. The amount is set in advance as a reference refrigerant amount, the refrigeration capacity exhibited by the operation under the standard operating conditions in the refrigerant circuit (20) is defined as a rated refrigeration capacity (kW), and the flow coefficient of the expansion valve is The value obtained by dividing the refrigerant charging amount of the above by the reference refrigerant amount is represented by X, and the calculated value derived based on the expression (1.20720 · X 2 −4.21152 · X + 4.17078) · 10 −2 is the above-mentioned rating. A refrigeration system that has a value equal to or higher than the value obtained by multiplying the refrigeration capacity.
【請求項11】 室内側ユニット(13)と室外側ユニッ
ト(11)を冷媒回路(20)の連絡配管(23,24)により
接続し、上記冷媒回路(20)に充填された冷媒が圧縮機
(30)、凝縮器、膨張弁(36)、蒸発器の順で循環する
冷凍装置であって、 上記冷媒回路(20)に充填される冷媒は、R32の単一
冷媒により構成される一方、 上記蒸発器で冷媒と熱交換する第1空気の乾球温度が2
7℃で湿球温度が19℃、上記凝縮器で冷媒と熱交換す
る第2空気の乾球温度が35℃、圧縮機(30)の容量が
所定の定格容量である運転条件を標準運転条件とし、 上記連絡配管(23,24)の長さを5mとした冷媒回路(2
0)である基準回路で上記標準運転条件における冷凍サ
イクルを行う際に、上記基準回路の膨張弁(36)入口に
おいて冷媒を完全に液相とするために該基準回路へ充填
しなければならない冷媒量を予め基準冷媒量として設定
し、 上記冷媒回路(20)における上記標準運転条件での運転
により発揮される冷凍能力を定格冷凍能力(kW)とし、 上記膨張弁の流量係数が、上記冷媒回路の冷媒充填量を
上記基準冷媒量で除して得られる値をXとして表された
式(1.39816・X2−4.66544・X+4.48651)・10-2に基づい
て導出される演算値に上記定格冷凍能力を乗じて得られ
る値以上の値とされている冷凍装置。
11. An indoor unit (13) and an outdoor unit (11) are connected by connecting pipes (23, 24) of a refrigerant circuit (20), and a refrigerant filled in the refrigerant circuit (20) is a compressor. (30) A refrigeration apparatus that circulates in the order of a condenser, an expansion valve (36), and an evaporator, wherein the refrigerant filled in the refrigerant circuit (20) is constituted by a single refrigerant of R32, The dry bulb temperature of the first air that exchanges heat with the refrigerant in the evaporator is 2
The operating conditions in which the wet bulb temperature is 7 ° C., the dry bulb temperature of the second air that exchanges heat with the refrigerant in the condenser is 35 ° C., and the capacity of the compressor (30) is a predetermined rated capacity are standard operating conditions. The refrigerant circuit (2
0) When the refrigeration cycle is performed under the standard operating conditions in the reference circuit, the refrigerant must be charged into the reference circuit in order to completely convert the refrigerant into a liquid phase at the inlet of the expansion valve (36) of the reference circuit. The amount is set in advance as a reference refrigerant amount, the refrigeration capacity exhibited by the operation under the standard operating conditions in the refrigerant circuit (20) is defined as a rated refrigeration capacity (kW), and the flow coefficient of the expansion valve is The value obtained by dividing the refrigerant charging amount of the above by the reference refrigerant amount is expressed as X, and the calculated value derived based on the expression (1.39816 · X 2 −4.66544 · X + 4.48651) · 10 -2 is the above rating. A refrigeration system that has a value equal to or higher than the value obtained by multiplying the refrigeration capacity.
【請求項12】 請求項8,9,10又は11に記載の
冷凍装置において、 冷媒回路(20)に充填される冷媒は、R32の単一冷媒
に代えて、R32を75質量%以上含む混合冷媒により
構成されている冷凍装置。
12. The refrigeration apparatus according to claim 8, 9, 10 or 11, wherein the refrigerant filled in the refrigerant circuit (20) is a mixture containing 75% by mass or more of R32 instead of a single refrigerant of R32. A refrigeration device composed of a refrigerant.
JP2000125424A 2000-04-26 2000-04-26 Refrigerating apparatus Pending JP2001304699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000125424A JP2001304699A (en) 2000-04-26 2000-04-26 Refrigerating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000125424A JP2001304699A (en) 2000-04-26 2000-04-26 Refrigerating apparatus

Publications (1)

Publication Number Publication Date
JP2001304699A true JP2001304699A (en) 2001-10-31

Family

ID=18635384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000125424A Pending JP2001304699A (en) 2000-04-26 2000-04-26 Refrigerating apparatus

Country Status (1)

Country Link
JP (1) JP2001304699A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012137214A (en) * 2010-12-24 2012-07-19 Mitsubishi Electric Corp Refrigerating device
WO2014118952A1 (en) * 2013-01-31 2014-08-07 三菱電機株式会社 Refrigeration-cycle device and method for controlling refrigeration-cycle device
WO2014203615A1 (en) * 2013-06-21 2014-12-24 株式会社 東芝 Air conditioner
JP2017101918A (en) * 2017-02-01 2017-06-08 三菱電機株式会社 Freezing cycle apparatus and control method for the same
CN107894068A (en) * 2017-11-14 2018-04-10 宁波奥克斯电气股份有限公司 A kind of running state of air conditioner adjusting method and device
JP7398582B1 (en) * 2023-02-16 2023-12-14 東芝キヤリア株式会社 air conditioner

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012137214A (en) * 2010-12-24 2012-07-19 Mitsubishi Electric Corp Refrigerating device
WO2014118952A1 (en) * 2013-01-31 2014-08-07 三菱電機株式会社 Refrigeration-cycle device and method for controlling refrigeration-cycle device
EP2952829A4 (en) * 2013-01-31 2016-12-21 Mitsubishi Electric Corp Refrigeration-cycle device and method for controlling refrigeration-cycle device
JPWO2014118952A1 (en) * 2013-01-31 2017-01-26 三菱電機株式会社 Refrigeration cycle apparatus and control method of refrigeration cycle apparatus
CN104969014B (en) * 2013-01-31 2017-04-05 三菱电机株式会社 Refrigeration cycle apparatus and control method for refrigeration cycle apparatus
WO2014203615A1 (en) * 2013-06-21 2014-12-24 株式会社 東芝 Air conditioner
CN105308401A (en) * 2013-06-21 2016-02-03 株式会社东芝 Air conditioner
JP2017101918A (en) * 2017-02-01 2017-06-08 三菱電機株式会社 Freezing cycle apparatus and control method for the same
CN107894068A (en) * 2017-11-14 2018-04-10 宁波奥克斯电气股份有限公司 A kind of running state of air conditioner adjusting method and device
JP7398582B1 (en) * 2023-02-16 2023-12-14 東芝キヤリア株式会社 air conditioner

Similar Documents

Publication Publication Date Title
EP3683524B1 (en) Refrigeration apparatus
WO2005121664A1 (en) Air conditioner
Tello-Oquendo et al. Comparison of the performance of a vapor-injection scroll compressor and a two-stage scroll compressor working with high pressure ratios
JPWO2012104893A1 (en) Air conditioner
CN110785617B (en) Air conditioner
JP2006058007A (en) Air conditioner
EP3217115B1 (en) Air conditioning apparatus
EP2902726B1 (en) Combined air-conditioning and hot-water supply system
WO2010119705A1 (en) Heat source unit
CN112840164B (en) Air conditioner and management device
EP3467399B1 (en) Heat-pump utilization device
US11280525B2 (en) Refrigeration apparatus
CN103890501B (en) Conditioner
US20220090815A1 (en) Air-conditioning apparatus
JP2000292037A (en) Air conditioner
JP2001304699A (en) Refrigerating apparatus
JP2007155143A (en) Refrigerating device
JP2019020090A (en) Freezing unit
WO2022029845A1 (en) Air conditioner
WO2020008916A1 (en) Refrigeration cycle device and method for controlling same
WO2021024407A1 (en) Refrigeration cycle device
JP6715961B2 (en) Refrigeration cycle equipment
WO2007024068A1 (en) Heat pump
GB2627390A (en) Air conditioner
WO2020100228A1 (en) Air conditioner