WO2014203522A1 - コンテナ用冷凍装置 - Google Patents

コンテナ用冷凍装置 Download PDF

Info

Publication number
WO2014203522A1
WO2014203522A1 PCT/JP2014/003254 JP2014003254W WO2014203522A1 WO 2014203522 A1 WO2014203522 A1 WO 2014203522A1 JP 2014003254 W JP2014003254 W JP 2014003254W WO 2014203522 A1 WO2014203522 A1 WO 2014203522A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase current
negative phase
equivalent negative
generator
container refrigeration
Prior art date
Application number
PCT/JP2014/003254
Other languages
English (en)
French (fr)
Inventor
内田 耕慈
直樹 中谷
修平 山口
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to DK14813447.1T priority Critical patent/DK3012561T3/da
Priority to EP14813447.1A priority patent/EP3012561B1/en
Priority to CN201480032937.5A priority patent/CN105283723B/zh
Priority to US14/891,868 priority patent/US9851136B2/en
Publication of WO2014203522A1 publication Critical patent/WO2014203522A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a container refrigeration apparatus, and more particularly to a refrigeration apparatus that is operated with a generator connected as a power source.
  • Patent Document 1 a technique for variably controlling the refrigeration capacity by controlling the rotation speed of a compressor motor using a power conversion device such as an inverter device is employed. There is a case.
  • the generator is often connected as a power source for operation.
  • the inverter device operates to control the rotation speed of the built-in compressor during the operation of the container refrigeration apparatus
  • the harmonic current is converted due to the conversion of power to the built-in compressor by frequency control such as PWM modulation. Due to this, harmonic currents are induced in the field windings of the connected generator and the rotor etc. is heated, which may cause a rise in the temperature of the generator and lead to burning. .
  • the harmonic current associated with the operation of the inverter device or the like is replaced with an equivalent negative phase current, and the allowable equivalent negative phase current flowing to the generator is used for general purposes.
  • the current is regulated to be 15% or less of the rated current of the AC generator. Therefore, it is necessary to select a generator having a capacity that satisfies the above-mentioned regulations as the generator connected to the container refrigeration apparatus.
  • the generators on the market have various capacities, and therefore, the allowable equivalent reverse phase current is not considered, or a small-capacity generator is mistakenly connected as the power source of the container refrigeration system, In operation, the equivalent reverse phase current generated in the container refrigeration system may exceed the allowable equivalent reverse phase current of the connected generator, leading to abnormal overheating and burning of the generator.
  • the present invention has been made in view of such problems, and an object of the present invention is to erroneously connect a generator that does not satisfy the above standards in a container refrigeration apparatus that is operated with the generator connected as a power source. Even in such a case, the container refrigeration apparatus must take measures to prevent abnormal overheating and burnout of the connected generator.
  • the allowable equivalent negative phase current of the connected generator is grasped on the container refrigeration apparatus side, and the equivalent negative phase current generated during operation is determined. When the phase current is exceeded, control is performed to reduce the generated equivalent negative phase current.
  • the container refrigeration apparatus is a container refrigeration apparatus that operates with a generator (G) connected as a power source and generates an equivalent reverse phase current during the operation, and is connected as described above.
  • second calculation means (81) for calculating the equivalent negative phase current (It) generated during operation When the calculated generated equivalent negative phase current (It) exceeds the allowable equivalent negative phase current (Itg) of the generator (G), the generated equivalent negative phase current (It) is converted into the generator (G).
  • Limiting means (82) for limiting the current to an allowable equivalent negative phase current (Itg) or less.
  • the generated equivalent negative phase current when the calculated generated equivalent negative phase current exceeds the allowable equivalent negative phase current of the generator, the generated equivalent negative phase current is reduced by the limiting means. Since it is limited to the allowable equivalent negative phase current or less, abnormal heating and burning of the generator can be reliably prevented.
  • power conversion means (65) for converting the electric power from the generator (G) and supplying the converted electric power to a predetermined component device (CM);
  • Control means (75) for controlling the frequency of the electric power converted in (5), and the limiting means (82) is configured such that the calculated generated equivalent negative phase current (It) is an allowable equivalent of the generator (G).
  • the control means (75) is controlled so as to reduce the frequency of the power converted by the power converter (65).
  • the frequency of the electric power converted by the power conversion means such as the inverter device is controlled to decrease. Therefore, the harmonic current generated in the generator is reduced, and the generated equivalent negative phase current is reliably reduced to be equal to or less than the allowable equivalent negative phase current of the generator.
  • the second calculation means (81) subtracts the operation power of the component equipment (CFM, EFM) that does not generate harmonics from the operation power of the container refrigeration apparatus.
  • the operation power of the power conversion means (65) is calculated, and the generated equivalent negative phase current (It) is calculated based on the calculated operation power (kWI) of the power conversion means (65). .
  • the equivalent negative phase current is calculated based only on the operating power of the power conversion means that generates the equivalent negative phase current, the equivalent negative phase current to be generated can be accurately calculated. Is possible.
  • the second calculation means (81) has a formula for calculating the generated equivalent reverse phase current (It) corresponding to a plurality of types of container refrigeration apparatuses.
  • the above-described equivalent reverse phase current (It) is calculated using a calculation formula corresponding to its own container refrigeration apparatus.
  • the value of the equivalent negative phase current to be generated varies depending on the presence or absence of a noise reduction device such as a reactor or a noise filter provided in the refrigeration apparatus and the noise reduction effect. Since the calculation formula for the equivalent negative phase current that corresponds well to the container refrigeration system is used, the generated equivalent negative phase current can be calculated with high accuracy.
  • the generated equivalent negative phase current can be reliably limited to be equal to or less than the allowable equivalent negative phase current of the generator. Even if it is forgotten or accidentally selected to have a small capacity, it is possible to reliably prevent abnormal heating and burning of the generator.
  • the generated equivalent reverse phase current can be calculated with high accuracy, so that the generated equivalent reverse phase current is not unnecessarily estimated, and the container refrigeration apparatus It is possible to prevent unnecessarily restricting the operation.
  • FIG. 1 is a figure showing the refrigerant circuit of the refrigeration equipment for containers concerning an embodiment.
  • FIG. 2 is an electric circuit diagram showing an electric control system of the container refrigeration apparatus.
  • FIG. 3 is a flowchart showing protection control of a compressor motor of a controller provided in the electric control system.
  • FIG. 1 is a diagram illustrating a refrigerant circuit of a container refrigeration apparatus according to an embodiment of the present invention.
  • the container refrigeration apparatus (10) cools the inside of a container (not shown) and includes a refrigerant circuit (20).
  • the refrigerant circuit (20) includes a main circuit (21), a defrost hot gas bypass circuit (22), and a supercooling bypass circuit (23) for refrigerant supercooling.
  • the main circuit (21) includes a compressor (30), a condenser (31), an electric main expansion valve (32) as an expansion mechanism, and an evaporator (33) in series by a refrigerant pipe (34) in order. Connected and configured.
  • the condenser (31) is provided with an outside fan (35) and a three-phase motor (CFM) that drives the fan (35), while the evaporator (33)
  • a blower fan (36) and a three-phase motor (EFM) for driving the blower fan (36) are provided.
  • the internal blower fan (36) is configured to supply the cooling air cooled by the evaporator (33) into the internal space.
  • An oil separator (40) is provided on the discharge side of the compressor (30), and between the condenser (31) and the main expansion valve (32), a receiver (41) and an electric device A cooler (42), a dryer (43), and a plate heat exchanger (44) are provided in this order.
  • the oil return pipe (40a) of the oil separator (40) is connected to the supercooling bypass circuit (23).
  • the cooler (42) is configured to cool an electric device such as a power switching element of an inverter device to be described later, and the electric device is cooled by the high-pressure liquid refrigerant flowing through the condenser (31).
  • the dryer (43) is configured to remove moisture from the liquid refrigerant that has flowed through the condenser (31).
  • the plate heat exchanger (44) supercools the liquid refrigerant that has flowed through the condenser (31), and includes a primary side passage (45) and a secondary side passage (46).
  • the primary passage (45) is connected to the main circuit (21), and the secondary passage (46) is connected to the supercooling bypass circuit (23).
  • the inflow end of the supercooling bypass circuit (23) is connected to the refrigerant pipe (34) between the cooler (42) and the dryer (43), and the outflow end of the supercooling bypass circuit (23) is compressed. It is connected to the compression chamber in the intermediate pressure state in the machine (30).
  • a first on-off valve (47) and an electric supercooling expansion valve (48) as an expansion mechanism are provided on the inflow side of the supercooling bypass circuit (23).
  • the main circuit (21) is provided with a second on-off valve (49) between the branch portion of the supercooling bypass circuit (23) and the dryer (43). ing.
  • the plate heat exchanger (44) branches from the main circuit (21) to the supercooling bypass circuit (23) and is decompressed by the supercooling expansion valve (48) and the refrigerant flowing through the main circuit (21). Are configured to supercool the refrigerant flowing through the main circuit (21).
  • the hot gas bypass circuit (22) includes a common path (50), and a first bypass path (51) and a second bypass path (52) branched from the outflow end of the common path (50).
  • the common path (50) has an inflow end connected between the oil separator (40) and the condenser (31), and is provided with a third on-off valve (53).
  • Outflow ends of the first bypass path (51) and the second bypass path (52) are connected between the main expansion valve (32) and the evaporator (33), and the second bypass path (52)
  • a drain pan heater (54) for heating the drain pan disposed at the lower portion of the evaporator (33) is provided.
  • the hot gas bypass circuit (22) is configured to supply high-temperature and high-pressure gas refrigerant discharged from the compressor (30) to the evaporator (33) during the defrost operation when the evaporator (33) is frosted. Has been.
  • the second bypass passage (52) is configured to heat the drain pan during the defrost operation.
  • the first on-off valve (47) and the third on-off valve (53) are closed, and the second on-off valve (49) is open.
  • the refrigerant discharged from the compressor (30) is condensed by the condenser (31), then decompressed by the main expansion valve (32), evaporated by the evaporator (33), and then the compressor (30 Return to).
  • This refrigerant circulation is repeated.
  • the internal air is cooled by the evaporator (33), and the cooling air is supplied into the internal space by the internal blower fan (36).
  • the supercooling bypass circuit (23) branches a part of the high-pressure liquid refrigerant condensed by the condenser (31) into the secondary passage (46), After the pressure is reduced by the supercooling expansion valve (48), the liquid refrigerant flowing through the primary passage (45) is supercooled.
  • the liquid refrigerant supercooled in the primary passage (45) flows to the evaporator (33), while the refrigerant flowing in the secondary passage (46) is in an intermediate pressure state of the compressor (30). Flows into the compression chamber.
  • the liquid refrigerant is in a supercooled state to improve the cooling capacity in the evaporator (33), and the refrigerant in the secondary passage (46) is used as an intermediate pressure of the compressor (30). By flowing into the compression chamber in the state, the refrigerant circulation amount is improved.
  • the defrosting operation is performed to open the third on-off valve (53) and close the main expansion valve (32). During this defrosting operation, the high-temperature refrigerant gas discharged from the compressor (30) is supplied to the evaporator (33), and the frost in the evaporator (33) is removed.
  • (G) is a three-phase generator connected to the container refrigeration system.
  • the three-phase power lines (63u) to (63w) connected to the generator (G) For example, a voltage type inverter device (65) is connected as a power conversion device that converts three-phase AC power supplied from the machine (G), and the three-phase power converted by the inverter device (65) is converted into the compressor. Supplied to a three-phase motor (predetermined component) (CM) that drives (30), the rotational speed of the compressor motor (CM) is controlled.
  • CM three-phase motor (predetermined component)
  • the inverter unit (65) includes a converter unit (66) having six diodes for converting the three-phase voltage from the connected generator (G) into a direct current, and the converter unit (66).
  • the inverter device (65) the three-phase voltage from the connected generator (G) is converted into direct current as a power source for on / off control of each switching element of the inverter unit (67).
  • a plurality of diode bridge sections (68), a smoothing capacitor (C2), and a switching power supply (PS) for on / off control of each switching element of the inverter section (67) are provided.
  • the electric control system of FIG. 2 includes two phases on the three-phase power lines (63u) to (63w) between the generator (G) and the inverter device (65).
  • a total of six AC reactors (L) are arranged, and a noise filter (70) is arranged between the AC reactor (L) and the inverter device (65).
  • the three-phase motors (CFM) and (EFM) for driving the blower fans (35) and (36) for the condenser (31) and the evaporator (33) are generators. It is connected to the three-phase power lines (63u) to (63w) from (G), and the power lines (63u) to (63w) have electromagnetics for running / stopping each motor (CFM) and (EFM). Contactors (71) and (72) are arranged.
  • a voltage sensor (73) for detecting the supply voltage (V) from the generator (G) is arranged on the U-phase power line (63u) connected to the generator (G), for example.
  • a current sensor (74) for detecting the current supplied to the inverter device (65) is arranged between the noise filter (70) of the U-phase power line (63u) and the inverter device (65). Yes.
  • the compressor motor (CM) and the blower fan motors (CFM) and (EFM) for the condenser (31) and the evaporator (33) are controllers that receive power from the switching power supply (PS). (75).
  • the controller (75) controls, for example, pulse width modulation (Pulse Width Modulation) of the voltage value and frequency of the supply voltage to the compressor motor (CM) when controlling the rotation speed of the compressor motor (CM).
  • Pulse Width Modulation pulse width modulation
  • the controller (75) functions as a control means for controlling the frequency of the electric power converted by the inverter device (65).
  • controller (75) when driving the blower fans (35), (36) for the condenser (31) and the evaporator (33), their three-phase motor (CFM), (EFM ) Electromagnetic contactors (71) and (72) are closed and each fan (35) and (36) is operated at the set rotational speed.
  • the electric power (KWt) required for this operation is measured in advance and stored in the controller (75).
  • detection signals of the voltage sensor (73) and the current sensor (74) are input to the controller (75).
  • the device type of the refrigeration apparatus Prior to the protection control performed by the controller (75), the device type of the refrigeration apparatus is set in advance at the time of installation of the refrigeration apparatus such as connecting the generator (G) to the container refrigeration apparatus.
  • the magnitude of the equivalent reverse phase current generated during operation of the refrigeration device varies depending on, for example, the number of AC reactors (L) shown in FIG. 2 or the performance of the noise filter (70). Therefore, the number of these AC reactors (L), the presence or absence of the noise filter (70) and their performance, and the rotation of the blower fans (35) and () 36) for the condenser (31) and evaporator (33)
  • the device type will be described as two types, A type and B type.
  • step S1 the preset device type of the container refrigeration apparatus is read, and in step S2, the set capacity (Gset) of the generator (G) is read.
  • step S3 an allowable equivalent reverse phase current (Itg) of the connected generator (G) is calculated.
  • step S4 the power consumption (operating power) of the inverter device (65) is measured. Specifically, first, the detection signals of the voltage sensor (73) and the current sensor (74) are input, and the operation current I and the operation voltage V of the container refrigeration apparatus obtained from the detection signals are measured.
  • the operating power (I ⁇ V) of the refrigeration apparatus is calculated, and the equipment that is not operated by the inverter device (65), that is, the equipment that does not generate an equivalent negative phase current, specifically, the condenser (31) and Read out the total operating power (kWt) of these blower fans (35), (36) in the operation state (set rotation speed state) of each blower fan (35), (36) of the evaporator (33),
  • Aa and Ba are coefficients specific to the device type A, and are coefficients obtained by operating the container type refrigeration apparatus of the device type A and measuring the equivalent reverse phase current (It) in advance. Further, C and D are correction coefficients for correcting the generated equivalent reverse phase current (It) according to the input power supply voltage V, so that this is corrected.
  • Ab and Bb are coefficients specific to the apparatus type B, and are coefficients obtained by operating the container type refrigeration apparatus of the apparatus type B and measuring the equivalent reverse phase current (It) in advance.
  • step S9 the generated equivalent reverse phase current (It) calculated for each device type of its own container refrigeration system is compared with the calculated allowable equivalent negative phase current Itg of the generator (G), and the generated equivalent reverse current is compared. If the phase current (It) is higher Itg ⁇ It, in step S10, the current output frequency of the inverter device (65) is set to the unit frequency so as to prevent abnormal overheating and burnout of the generator (G). The frequency of power supplied from the inverter device (65) to the compressor motor (CM) is reduced by lowering (for example, 10 Hz), and the process returns to step S1.
  • Step S9 if the generated equivalent negative phase current (It) is equal to the allowable equivalent negative phase current Itg in Step S9, it is determined that there is no abnormal overheating of the generator (G), and the inverter device (65 The current output frequency is maintained as it is, and the process returns to step S1.
  • Step S9 If the generated equivalent negative phase current (It) is smaller than the allowable equivalent negative phase current Itg in Step S9, it is determined that the current output frequency of the inverter device (65) is set in Step S12. Compared with the target frequency set in the capacity control of the container refrigeration system, only when the current output frequency is lower than the target frequency, that is, when the current capacity of the container refrigeration system is lower than the target value In S13, the current output frequency of the inverter device (65) is increased by a unit frequency (for example, 10 Hz), and the frequency of the power supplied from the inverter device (65) to the compressor motor (CM) is increased.
  • a unit frequency for example, 10 Hz
  • the first calculation means (80) for calculating the allowable equivalent reverse phase current (Itg) of the generator (G) from the capacity of the connected generator (G) is configured in step S3. is doing.
  • Steps S4 to S8 constitute second calculating means (81) for calculating the equivalent negative phase current (It) generated due to the operation of the inverter device (65) during operation.
  • the output frequency of the inverter device (65) is lowered.
  • the limiting means (82) for limiting the generated equivalent negative phase current (It) to be equal to or lower than the allowable equivalent negative phase current (Itg) of the generator (G) is configured.
  • the inverter device (65) changes the frequency of the power supplied to the compressor motor (CM) to control the rotation speed of the compressor motor (CM). ), The harmonics are generated and the equivalent negative phase current is generated.
  • the inverter device (65) outputs a high-frequency signal and the compressor motor (CM) has a high rotational speed. At this time, high harmonics are generated and the equivalent reverse phase is generated.
  • the allowable equivalent reverse phase current (Itg) is calculated from the capacity of the connected generator (G), and the power consumption of the inverter device (65) is used in the own container refrigeration system.
  • the generated equivalent negative phase current (It) is calculated, and when the generated equivalent negative phase current (It) is larger than the allowable equivalent negative phase current (Itg) of the generator (G), when Itg ⁇ It,
  • a unit frequency for example, 10 Hz
  • the output frequency of the inverter device (65) is controlled to decrease by a unit frequency (for example, 10 Hz)
  • the operation is continued by decreasing to 90 Hz, and the generated equivalent negative phase current (It) is again reduced.
  • the calculated equivalent negative phase current (It) is still larger after calculation, the operation of continuing the operation at 80 Hz by further reducing the unit frequency (for example, 10 Hz) is repeated.
  • the generated equivalent negative phase current (It) in the container refrigeration system is limited to the allowable equivalent negative phase current (Itg) of the generator (G)
  • the small capacity generator (G) Even if it has been connected, the compressor motor (CM) continues to operate at an appropriate speed according to the small capacity generator (G) connected to the generator (G ) Can be reliably prevented from overheating and burning.
  • the condenser (31) is calculated from the operating power (I ⁇ V) of the container refrigeration apparatus based on the calculation formula (3).
  • the evaporator fan (33), such as the blower fans (35), (36), etc. reduce the operating power (kWt) of the equipment that does not generate harmonics and reduce the power consumption of the inverter device (65) that generates harmonics ( (kWI) only, and the generated equivalent negative phase current (It) is calculated based on the power consumption (kWI) of the inverter device (65), so the magnitude of the generated equivalent negative phase current can be calculated with high accuracy.
  • the generated equivalent negative phase current (It) can be reliably limited to be equal to or less than the allowable equivalent negative phase current (Itg) of the generator (G).
  • the generated equivalent negative phase current (It) is calculated using a calculation formula (the above calculation formula (4) or (5)) that matches the device type taking them into consideration.
  • the magnitude of the generated equivalent negative phase current (It) can be calculated with higher accuracy, and the generated equivalent negative phase current (It) can be reliably calculated for the generator (G). It can be limited to an allowable equivalent negative phase current (Itg) or less.
  • the present invention may be configured as follows with respect to the above embodiment.
  • blower fans (35) and (36) of the condenser (31) and the evaporator (33) are controlled to the set rotation speed during operation is exemplified, but the set high rotation speed and the set low rotation speed are illustrated.
  • the operating power of each fan motor (CFM) and (EFM) at each stage is stored in advance in the controller (75).
  • the operating power (kWt) used in the calculation formula (3) may be selected according to the switching state.
  • the calculation formulas (4) and (5) The coefficients Aa, Ba, Ab, Bb, C, and D may be calculated.
  • the rotation speed of only the compressor motor (CM) is controlled by the inverter device (65), and the blower fans (35) and (36) of the condenser (31) and the evaporator (33) are
  • the frequency of the power supplied to the blower fans (35) and (36) of the condenser (31) and the evaporator (33) is similarly applicable to the case where the rotational speed is controlled by using these air blow fans (35) and (36).
  • harmonics are generated along with the frequency control of the inverter device (65) when controlling the rotational speed of each blower fan (35), (36).
  • the equivalent negative phase current (It) may be calculated.
  • the present invention when calculating the power consumption (kWI) of the inverter device (65), a device that does not generate harmonics from the operating power (I ⁇ V) of the container refrigeration apparatus (the condenser (31) and Although the calculation was performed by reducing the operating power (kWt) of each of the blower fans (35) and (36)) of the evaporator (33), the present invention is not limited to this.
  • the current sensor (74) is connected to the inverter device (65 ) On the generator (G) side, and the power consumption of the inverter device (65) may be directly calculated.
  • the above calculation formula (4) or (5) is used for the calculation of the generated equivalent negative phase current (It), but the power consumption (kWI) and input of the inverter device (65) are input in advance.
  • a map corresponding to the voltage (V) may be prepared, or another calculation formula may be used.
  • the voltage type inverter device (65) is used in the above embodiment, a current type inverter device may be used.
  • the direct current reactor is arranged in the current type inverter device, the magnitude of the generated equivalent negative phase current varies depending on the number of arrangement. Therefore, also in this case, the device type differentiated by the number of DC reactors and the above-described calculation formulas (4) and (5) for this device type are calculated in advance. .
  • container refrigeration apparatus (10) having the configuration shown in FIG. 1 is illustrated, but the present invention may of course be applied to container refrigeration apparatuses having other configurations.
  • the present invention is capable of abnormally overheating a generator while continuing operation at a rotational speed corresponding to the generator with the small capacity even if the generator to be connected has a small capacity. And can be surely prevented from burning, and is useful when applied to a container refrigeration apparatus.
  • Container refrigeration equipment 30 Compressor CM Compressor motor (predetermined components) 31 Condenser 33 Evaporator 35 Outside Blower Fan 36 Inside Blower Fan CFM Condenser Blower Fan Motor EFM Evaporator Blower Motor G Generator 63u to 63W Three-phase Power Line L AC Reactor 65 Inverter Device (Power Converter) ) 66 Converter 67 Inverter C1 Smoothing capacitor 70 Noise filter 73 Voltage sensor 74 Current sensor 75 Controller (control means) 80 First calculation means 81 Second calculation means 82 Limiting means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

 コンテナ用冷凍装置では、ステップS3で、接続される発電機の容量に基づいてその発電機の許容等価逆相電流(Itg)を算出する。ステップS4で、等価逆相電流を発生させるインバータ装置の消費電力を算出し、このインバータ装置の消費電力に基づいてステップS6でコンテナ用冷凍装置で発生する等価逆相電流(It)を算出する。その後、ステップS9で、上記Itを上記Itgと比較し、It>Itgの場合には、インバータ装置の出力周波数を下げることを繰り返して、It≦Itgに制限する。従って、接続される発電機が小容量でもその異常過熱や焼損を招くことなく、その小容量に見合った運転を継続できる。

Description

コンテナ用冷凍装置
 本発明はコンテナ用冷凍装置に関し、特に、発電機が電源として接続されて運転する冷凍装置に関する。
 従来、コンテナ用冷凍装置では、例えば特許文献1に示されるように、インバータ装置などの電力変換装置を用いて圧縮機用のモータを回転数制御して、冷凍能力を可変制御する技術が採用される場合がある。
 このようなコンテナ用冷凍装置では、発電機が電源として接続されて運転する場合が少なくない。この場合に、コンテナ用冷凍装置の運転時にその内蔵圧縮機の回転数制御にインバータ装置が動作すると、内蔵圧縮機への電力を例えばPWM変調などの周波数制御により変換する関係上、高調波電流が発生し、これに起因して、接続された発電機の界磁巻線等に高調波電流が誘起して回転子などが加熱され、発電機の温度上昇を招いて焼損に至る可能性がある。
 そこで、日本電機工業会の規格1354(JEMA-1354)では、インバータ装置などの動作に伴う高調波電流を等価逆相電流に置換し、発電機へ流れる許容等価逆相電流が、一般用途に使用される三相交流発電機の場合にはその交流発電機の定格電流の15%以下になるように規制している。従って、コンテナ用冷凍装置に接続する発電機としては、上記規制を満足するような容量を持つ発電機を選択する必要がある。
特開2011-112270号公報
 しかしながら、市場の発電機には種々の容量のものが存在し、このため、上記許容等価逆相電流を考慮せず、又は誤って小容量の発電機をコンテナ用冷凍装置の電源として接続し、運転した場合には、コンテナ用冷凍装置で発生する等価逆相電流が、接続した発電機の許容等価逆相電流を超える場合があり、発電機の異常過熱や焼損を招くことになる。
 本発明は、このような問題点に鑑みてなされたものであり、その目的は、発電機が電源として接続されて運転するコンテナ用冷凍装置において、上記規格を満たさない発電機が誤って接続された場合にも、コンテナ用冷凍装置側で対策を施して、その接続された発電機の異常過熱や焼損を未然に防止することにある。
 上記目的を達成するため、本発明では、接続される発電機の許容等価逆相電流をコンテナ用冷凍装置側で把握し、運転時に発生する等価逆相電流がこの把握した発電機の許容等価逆相電流を超える場合には、その発生する等価逆相電流を減少させるように制御する。
 具体的に、第1の発明のコンテナ用冷凍装置は、発電機(G)が電源として接続されて運転し、その運転時に等価逆相電流を発生するコンテナ用冷凍装置であって、上記接続された発電機(G)の許容等価逆相電流(Itg)を算出する第1算出手段(80)と、運転時に上記発生する等価逆相電流(It)を算出する第2算出手段(81)と、上記算出された発生等価逆相電流(It)が上記発電機(G)の許容等価逆相電流(Itg)を超えるとき、上記発生する等価逆相電流(It)を上記発電機(G)の許容等価逆相電流(Itg)以下に制限する制限手段(82)とを備えたことを特徴とする。
 従って、上記第1の発明のコンテナ用冷凍装置では、算出された発生等価逆相電流が発電機の許容等価逆相電流を超えるときには、制限手段によって、その発生する等価逆相電流が発電機の許容等価逆相電流以下に制限されるので、発電機の異常加熱や焼損を確実に防止することができる。
 第2の発明は、上記コンテナ用冷凍装置において、上記発電機(G)からの電力を変換して所定の構成機器(CM)に供給する電力変換手段(65)と、上記電力変換装置(65)で変換される電力の周波数を制御する制御手段(75)とを備え、上記制限手段(82)は、上記算出された発生等価逆相電流(It)が上記発電機(G)の許容等価逆相電流(Itg)を超えるとき、上記電力変換装置(65)で変換される電力の周波数を低下させるように上記制御手段(75)を制御することを特徴とする。
 上記第2の発明のコンテナ用冷凍装置では、算出された発生等価逆相電流が発電機の許容等価逆相電流を超えるときには、インバータ装置などの電力変換手段で変換される電力の周波数が低下制御されるので、発電機に発生する高調波電流が減少して、発生等価逆相電流が発電機の許容等価逆相電流以下に確実に減少することになる。
 第3の発明は、上記コンテナ用冷凍装置において、上記第2算出手段(81)は、コンテナ用冷凍装置の運転電力から高調波を発生しない構成機器(CFM,EFM)の運転電力を減じて上記電力変換手段(65)の運転電力を算出し、この算出した電力変換手段(65)の運転電力(kWI)に基づいて、上記発生する等価逆相電流(It)を算出することを特徴とする。
 上記第3の発明のコンテナ用冷凍装置では、等価逆相電流を発生させる電力変換手段の運転電力のみに基づいて等価逆相電流を算出するので、発生する等価逆相電流を精度良く算出することが可能である。
 第4の発明は、上記コンテナ用冷凍装置において、上記第2算出手段(81)は、複数種のコンテナ用冷凍装置に対応して上記発生する等価逆相電流(It)の算出式を有し、自己のコンテナ用冷凍装置に対応する算出式を用いて上記発生する等価逆相電流(It)を算出することを特徴とする。
 上記第4の発明のコンテナ用冷凍装置では、冷凍装置に備える例えばリアクトルやノイズフィルタ等のノイズ低減機器の有無やノイズ低減効果の大小によって、発生する等価逆相電流の値が異なるところ、自己のコンテナ用冷凍装置に良好に対応した等価逆相電流の算出式を用いるので、発生する等価逆相電流を精度良く算出することができる。
 上記第1及び第2の発明のコンテナ用冷凍装置によれば、発生する等価逆相電流を発電機の許容等価逆相電流以下に確実に制限できるので、たとえ接続する発電機の容量の選定を失念し又は誤って小容量のものに選定してしまった場合であっても、発電機の異常加熱や焼損を確実に防止することが可能である。
 また、第3及び第4の発明のコンテナ用冷凍装置によれば、発生する等価逆相電流を精度良く算出できるので、発生する等価逆相電流を不要に多く見積もることがなく、コンテナ用冷凍装置の運転を不要に制限することを防止できる。
図1は実施形態に係るコンテナ用冷凍装置の冷媒回路を示す図である。 図2は同コンテナ用冷凍装置の電気制御系を示す電気回路図である。 図3は同電気制御系に備えるコントローラの圧縮機用モータの保護制御を示すフローチャート図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。尚、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、又はその用途の範囲を制限することを意図するものではない。
 (実施形態)
 図1は、本発明の実施形態に係るコンテナ用冷凍装置の冷媒回路を示す図である。
 図1に示すように、コンテナ用冷凍装置(10)は、図示しないコンテナの庫内を冷却するものであり、冷媒回路(20)を備えている。
 上記冷媒回路(20)は、主回路(21)とデフロスト用のホットガスバイパス回路(22)と冷媒過冷却用の過冷却バイパス回路(23)とを備えている。
 上記主回路(21)は、圧縮機(30)と凝縮器(31)と膨張機構である電動式の主膨張弁(32)と蒸発器(33)とが順に冷媒配管(34)によって直列に接続されて構成されている。また、上記凝縮器(31)には、庫外送風ファン(35)とこの送風ファン(35)を駆動する三相モータ(CFM)とが設けられる一方、蒸発器(33)には、庫内送風ファン(36)とこの送風ファン(36)を駆動する三相モータ(EFM)とが設けられている。上記庫内送風ファン(36)は、蒸発器(33)で冷却された冷却空気を庫内に供給するように構成されている。
 上記圧縮機(30)の吐出側には、油分離器(40)が設けられ、上記凝縮器(31)と主膨張弁(32)との間には、レシーバ(41)と電気機器用の冷却器(42)とドライヤ(43)とプレート熱交換器(44)とが順に設けられている。上記油分離器(40)の油戻し管(40a)は、過冷却バイパス回路(23)に接続されている。上記冷却器(42)は、後述するインバータ装置のパワースイッチング素子などの電気機器を冷却するように構成され、凝縮器(31)を流れた高圧液冷媒によってこの電気機器を冷却している。上記ドライヤ(43)は、凝縮器(31)を流れた液冷媒から水分を除去するように構成されている。
 上記プレート熱交換器(44)は、凝縮器(31)を流れた液冷媒を過冷却するものであり、1次側通路(45)と2次側通路(46)とを備えている。そして、上記1次側通路(45)が主回路(21)に接続され、上記2次側通路(46)が過冷却バイパス回路(23)に接続されている。該過冷却バイパス回路(23)の流入端は、冷却器(42)とドライヤ(43)との間の冷媒配管(34)に接続され、上記過冷却バイパス回路(23)の流出端は、圧縮機(30)における中間圧力状態の圧縮室に接続されている。
 更に、上記過冷却バイパス回路(23)の流入側には、第1開閉弁(47)と膨張機構である電動式の過冷却膨張弁(48)とが設けられている。上記第1開閉弁(47)に対応して、主回路(21)には、過冷却バイパス回路(23)の分岐部とドライヤ(43)との間に第2開閉弁(49)が設けられている。
 そして、上記プレート熱交換器(44)は、主回路(21)から過冷却バイパス回路(23)に分岐され且つ過冷却膨張弁(48)で減圧された冷媒と主回路(21)を流れる冷媒とが熱交換して、主回路(21)を流れる冷媒を過冷却するように構成されている。
 上記ホットガスバイパス回路(22)は、共通路(50)と、該共通路(50)の流出端から分岐された第1バイパス路(51)及び第2バイパス路(52)とを備えている。上記共通路(50)は、流入端が油分離器(40)と凝縮器(31)との間に接続され、第3開閉弁(53)が設けられている。上記第1バイパス路(51)と第2バイパス路(52)の流出端は、主膨張弁(32)と蒸発器(33)との間に接続され、上記第2バイパス路(52)には、蒸発器(33)の下部に配置されたドレンパンを加熱するためのドレンパンヒータ(54)が設けられている。
 上記ホットガスバイパス回路(22)は、蒸発器(33)がフロストした際のデフロスト運転時に、圧縮機(30)から吐出された高温高圧のガス冷媒を蒸発器(33)に供給するように構成されている。上記第2バイパス路(52)は、デフロスト運転時にドレンパンを加熱するように構成されている。
 <運転動作>
 次に、上記コンテナ用冷凍装置(10)の冷却動作について説明する。
 先ず、通常の冷却運転時には、第1開閉弁(47)及び第3開閉弁(53)が閉じられ、第2開閉弁(49)が開いている。この状態において、圧縮機(30)から吐出された冷媒は、凝縮器(31)で凝縮した後、主膨張弁(32)で減圧し、蒸発器(33)で蒸発した後、圧縮機(30)に戻る。この冷媒循環を繰り返す。そして、上記蒸発器(33)で庫内空気を冷却し、庫内送風ファン(36)によって冷却空気が庫内に供給される。
 一方、上記過冷却バイパス回路(23)は、第1開閉弁(47)を開くと、凝縮器(31)で凝縮された高圧液冷媒の一部が2次側通路(46)に分岐され、過冷却膨張弁(48)で減圧された後、1次側通路(45)を流れる液冷媒を過冷却する。そして、該1次側通路(45)で過冷却された液冷媒は、蒸発器(33)に流れる一方、2次側通路(46)を流れる冷媒は、圧縮機(30)の中間圧力状態の圧縮室に流れる。この過冷却バイパス回路(23)により、液冷媒が過冷却状態となって蒸発器(33)における冷却能力が向上すると共に、2次側通路(46)の冷媒が圧縮機(30)の中間圧力状態の圧縮室に流れることにより、冷媒循環量が向上する。
 また、上記蒸発器(33)がフロストすると、デフロスト運転を行い、第3開閉弁(53)を開くと共に、主膨張弁(32)を閉じる。そして、このデフロスト運転時には、圧縮機(30)から吐出された高温の冷媒ガスを蒸発器(33)に供給し、蒸発器(33)のフロストを除去する。
 <電気制御系>
 次に、上記コンテナ用冷凍装置の圧縮機(30)、凝縮器(31)及び蒸発器(33)の各送風ファン(35)、(36)を制御する電気制御系を図2に基づいて説明する。
 同図において、(G)は本コンテナ用冷凍装置に接続される三相発電機であって、この発電機(G)に接続される三相電源線(63u)~(63w)には、発電機(G)から供給される三相交流電力を変換する電力変換装置としての例えば電圧型のインバータ装置(65)が接続され、このインバータ装置(65)で変換された三相電力が上記圧縮機(30)を駆動する三相モータ(所定の構成機器)(CM)に供給されて、該圧縮機用モータ(CM)の回転数が制御される。
 上記インバータ装置(65)の内部には、上記接続された発電機(G)からの三相電圧を直流に変換する6個のダイオードを有するコンバータ部(66)と、このコンバータ部(66)で変換された直流の脈動を平滑する平滑コンデンサ(C1)と、この平滑コンデンサ(C)で平滑された直流を三相交流に変換する6個のパワートランジスタ等のパワースイッチング素子を有するインバータ部(67)とを備え、このインバータ部(67)で変換された三相電力が上記圧縮機用モータ(CM)に供給される。更に、上記インバータ装置(65)内には、上記インバータ部(67)の各スイッチング素子をon/off制御する電源として、上記接続された発電機(G)からの三相電圧を直流に変換する複数個のダイオードブリッジ部(68)と、平滑コンデンサ(C2)と、上記インバータ部(67)の各スイッチング素子のon/off制御用のスイッチング電源(PS)とが備えられる。
 従って、上記インバータ装置(65)の構成では、コンバータ部(66)及びインバータ部(67)の各スイッチング素子(ダイオード及びパワートランジスタ)のon/off動作に伴い高調波が発生する。この高調波を抑制するように、図2の電気制御系には、発電機(G)とインバータ装置(65)との間の三相電源線(63u)~(63w)に、各相2個ずつ合計6個の交流リアクトル(L)が配置されると共に、これ等の交流リアクトル(L)とインバータ装置(65)との間にノイズフィルタ(70)が配置されている。
 更に、図2の電気制御系では、凝縮器(31)用及び蒸発器(33)用の各送風ファン(35)、(36)駆動用の三相モータ(CFM)、(EFM)が発電機(G)からの三相電源線(63u)~(63w)に接続されていて、その電源線(63u)~(63w)には各モータ(CFM)、(EFM)の運転/停止用の電磁接触器(71)、(72)が配置されている。
 加えて、上記発電機(G)に接続された例えばU相の電源線(63u)には、発電機(G)からの供給電圧(V)を検出する電圧センサ(73)が配置されると共に、このU相の電源線(63u)のノイズフィルタ(70)とインバータ装置(65)との間には、インバータ装置(65)へ供給される電流を検出する電流センサ(74)が配置されている。
 そして、上記圧縮機用モータ(CM)並びに凝縮器(31)用及び蒸発器(33)用の各送風ファンモータ(CFM)、(EFM)は、上記スイッチング電源(PS)から電源供給を受けるコントローラ(75)により制御される。このコントローラ(75)は、上記圧縮機用モータ(CM)を回転数制御するに際し、その圧縮機用モータ(CM)への供給電圧の電圧値及び周波数を例えばパルス幅変調(Pulse Width Modulation)制御により変更して、圧縮機用モータ(CM)に供給する電力を変換する。従って、このコントローラ(75)は、インバータ装置(65)で変換される電力の周波数を制御する制御手段として機能する。
 また、コントローラ(75)は、上記凝縮器(31)用及び蒸発器(33)用の各送風ファン(35)、(36)を駆動するに際し、それ等の三相モータ(CFM)、(EFM)の電磁接触器(71)、(72)を閉制御して、各送風ファン(35)、(36)を設定回転数で運転する。この運転に要する電力(KWt)は、予め、測定されてコントローラ(75)内に記憶される。
 また、上記コントローラ(75には、上記電圧センサ(73)及び電流センサ(74)の検出信号が入力される。
 <発電機の保護制御>
 続いて、上記インバータ装置(65)のコンバータ部(66)及びインバータ部(67)のスイッチング動作に伴って発生する等価逆相電流によって上記電源として接続された発電機(G)が異常過熱したり焼損することを防止する保護制御を図3の制御フローチャートに基づいて説明する。この保護制御は上記コントローラ(75)が行う。
 上記コントローラ(75)が行う保護制御に先立ち、予め、本コンテナ用冷凍装置へ発電機(G)を接続するなどの本冷凍装置の設置の時点において、本冷凍装置の装置タイプが設定される。この装置タイプは、冷凍装置の運転時に発生する等価逆相電流の大きさが、例えば上記図2に示した交流リアクトル(L)の個数、又はノイズフィルタ(70)の性能などに応じて変化するため、これ等の交流リアクトル(L)の個数やノイズフィルタ(70)の有無やその性能、及び凝縮器(31)、蒸発器(33)用の送風ファン(35)、()36)の回転数の段階等の組合せを種別化したものである。本実施形態では装置タイプはAタイプ及びBタイプの2種類として説明する。
 また、本コンテナ用冷凍装置の設置の時点等において、上記接続された発電機(G)の容量(Gset)が設定される。この発電機(G)の容量(Gset)は、三相発電機であるので、
  Gset=√3・Vt・Ito …(1)
で表現される。ここに、Vtは接続された発電機(G)の定格電圧、Itoは定格電流である。
 次に、上記コントローラ(75)が行う保護制御を図3の制御フローチャートに基づいて説明する。
 図3では、ステップS1において、上記予め設定された本コンテナ用冷凍装置の装置タイプを読み込むと共に、ステップS2において、上記設定され発電機(G)の容量(Gset)を読み込む。
 続いて、ステップS3において、上記接続された発電機(G)の許容等価逆相電流(Itg)を算出する。この許容等価逆相電流(Itg)は、接続される発電機(G)の規格JEMA-1354では定格電流(Ito)の15%(Itg=Ito・0.15)であるので、次式(2)に基づいて算出される。
  Itg={(Gset÷Vt)÷√3}×0.15 …(2)
 その後は、本コンテナ用冷凍装置の運転時において、以下のステップを実行する。すなわち、ステップS4では、インバータ装置(65)の消費電力(運転電力)を測定する。この測定は、具体的には、先ず上記電圧センサ(73)及び電流センサ(74)の検出信号を入力して、その検出信号から得られたコンテナ用冷凍装置の運転電流I及び運転電圧Vに基づいて本冷凍装置の運転電力(I×V)を演算すると共に、インバータ装置(65)で運転されない機器、すなわち、等価逆相電流を発生しない機器、具体的には、凝縮器(31)及び蒸発器(33)の各送風ファン(35)、(36)の運転状態(設定回転数状態))でのこれ等送風ファン(35)、(36)の全運転電力(kWt)を読み出して、それ等の機器の全運転電力(kWt)を削除するように、インバータ装置(65)の消費電力(kWI)を次式(3)に基づいて算出する。
  kWI=√3・I・V-kWt …(3)
 続いて、ステップS5以降で本コンテナ用冷凍装置の運転時に発生する等価逆相電流(It)を算出する。具体的には、ステップS5において自己のコンテナ用冷凍装置の装置タイプを判断し、装置タイプ=Aの場合には、ステップS6において装置タイプ=Aに対応した次の算出式(4)に基づいて等価逆相電流(It)を算出する。
  It=(Aa×kWI+Ba)×(C×V-D) …(4)
ここに、Aa及びBaは装置タイプA固有の係数であって、予め、装置タイプAのコンテナ用冷凍装置を運転して等価逆相電流(It)を測定して得た係数である。また、C及びDは入力される電源電圧Vに応じて発生等価逆相電流(It)が変化するため、これを補正する補正係数である。
 一方、上記ステップS5において装置タイプ=Aでない場合には、ステップS7で装置タイプ=Bと判断し、ステップS8において装置タイプ=Bに対応した次の算出式(5)に基づいて等価逆相電流(It)を算出する。
  It=(Ab×kWI+Bb)×(C×V-D) …(5)
ここに、Ab及びBbは装置タイプB固有の係数であって、予め、装置タイプBのコンテナ用冷凍装置を運転して等価逆相電流(It)を測定して得た係数である。C及びDは上記装置タイプ=Aと同様に入力される電源電圧Vに応じて発生等価逆相電流(It)が変化するため、これを補正する補正係数である。
 その後は、ステップS9において、自己のコンテナ用冷凍装置の装置タイプ別に算出した発生等価逆相電流(It)を上記算出した発電機(G)の許容等価逆相電流Itgと比較し、発生等価逆相電流(It)の方が高いItg<Itの場合には、ステップS10において、発電機(G)の異常過熱や焼損を防止するように、インバータ装置(65)の現在の出力周波数を単位周波数(例えば10Hz)だけ下げて、インバータ装置(65)から圧縮機用モータ(CM)への供給電力の周波数を低減して、ステップS1に戻る。
 一方、上記ステップS9において、発生等価逆相電流(It)が許容等価逆相電流Itgと等しいItg=Itの場合には、発電機(G)の異常過熱なしと判断して、インバータ装置(65)の現在の出力周波数をそのまま維持して、ステップS1に戻る。
 また、上記ステップS9において、発生等価逆相電流(It)の方が許容等価逆相電流Itgよりも小さいItg>Itの場合には、ステップS12において、インバータ装置(65)の現在の出力周波数を本コンテナ用冷凍装置の能力制御で設定される目標周波数と比較し、現在の出力周波数が上記目標周波数未満の場合、すなわち、本コンテナ用冷凍装置の現在能力が目標値未満の場合に限り、ステップS13において、インバータ装置(65)の現在の出力周波数を単位周波数(例えば10Hz)だけ上げて、インバータ装置(65)から圧縮機用モータ(CM)への供給電力の周波数を高めて、ステップS1に戻る。
 上記図3の制御フローチャートにおいて、ステップS3により、接続された発電機(G)の容量からその発電機(G)の許容等価逆相電流(Itg)を算出する第1算出手段(80)を構成している。また、ステップS4~S8により、運転時にインバータ装置(65)の動作に起因して発生する等価逆相電流(It)を算出する第2算出手段(81)を構成している。更に、ステップS9及びS10により、上記算出された発生等価逆相電流(It)が発電機(G)の許容等価逆相電流(Itg)を超えるとき、インバータ装置(65)の出力周波数を下げて、発生する等価逆相電流(It)が発電機(G)の許容等価逆相電流(Itg)以下になるように制限する制限手段(82)を構成している。
<本実施形態の効果>
 従って、本実施形態では、インバータ装置(65)が圧縮機用モータ(CM)への供給電力の周波数を変更して圧縮機用モータ(CM)の回転数を制御するため、そのインバータ装置(65)の周波数制御に伴い高調波が生じ、等価逆相電流が発生する。特に、プルダウン運転時には、インバータ装置(65)が高周波数信号を出力して圧縮機用モータ(CM)は高回転数となるが、この際には高い高調波が発生して、その等価逆相電流は増大し、この等価逆相電流が発電機(G)の許容等価逆相電流を超えると、発電機(G)の異常過熱や焼損を招く場合がある。

 しかし、本実施形態では、接続される発電機(G)の容量からその許容等価逆相電流(Itg)が算出されると共に、インバータ装置(65)の消費電力から自己のコンテナ用冷凍装置での発生等価逆相電流(It)が算出されて、その発生等価逆相電流(It)の方が発電機(G)の許容等価逆相電流(Itg)よりも大きいItg<Itの際には、インバータ装置(65)の出力周波数が単位周波数(例えば10Hz)だけ低下制御されて、例えば現在周波数が100Hzの場合には90Hzに下げて運転を続行し、再度、発生等価逆相電流(It)を算出して、未だその発生等価逆相電流(It)の方が大きい際には、更に単位周波数(例えば10Hz)だけ低下制御されて80Hzで運転を続行する動作が繰り返される。その結果、自己のコンテナ用冷凍装置での発生等価逆相電流(It)が発電機(G)の許容等価逆相電流(Itg)以下に制限されるので、小容量の発電機(G)が接続されてしまった場合であっても、圧縮機用モータ(CM)を上記接続された小容量の発電機(G)に応じた適切な回転数でもって運転を続行しつつ、発電機(G)の異常過熱や焼損を確実に防止することが可能である。
 また、自己のコンテナ用冷凍装置の発生等価逆相電流(It)の算出に際しては、上記算出式(3)に基づいて、本コンテナ用冷凍装置の運転電力(I×V)から凝縮器(31)及び蒸発器(33)の各送風ファン(35)、(36)などの高調波を発生しない機器の運転電力(kWt)を減じて、高調波を発生するインバータ装置(65)の消費電力(kWI)のみを算出し、このインバータ装置(65)の消費電力(kWI)に基づいて、発生等価逆相電流(It)を算出しているので、発生等価逆相電流の大きさを精度良く算出することが可能であり、その発生等価逆相電流(It)を確実に発電機(G)の許容等価逆相電流(Itg)以下に制限することができる。
 更に、上記インバータ装置(65)の消費電力(kWI)に基づいて発生等価逆相電流(It)を算出するに際しては、インバータ装置(65)の消費電力(kWI)が同一値であっても、自己のコンテナ用冷凍装置に備える交流リアクトル(L)の個数、ノイズフィルタ(70)の有無、凝縮器(31)及び蒸発器(33)の各送風ファン(35)、(36)の運転状態に応じて、発生する等価逆相電流の大きさは異なるが、それ等を考慮した装置タイプに合致した算出式(上記算出式(4)又は(5))を用いて発生等価逆相電流(It)を算出しているので、発生等価逆相電流(It)の大きさをより一層精度良く算出することが可能であり、その発生等価逆相電流(It)を確実に発電機(G)の許容等価逆相電流(Itg)以下に制限することができる。
 (その他の実施形態)
 本発明は、上記実施形態について、以下のような構成としてもよい。
 上記実施形態では、凝縮器(31)や蒸発器(33)の各送風ファン(35)、(36)を運転時に設定回転数に制御する場合を例示したが、設定高回転数と設定低回転数との2段階に切換制御する場合などでは、その各段階での各送風ファン用モータ(CFM)、(EFM)の運転電力の各々を予めコントローラ(75)に記憶しておき、それ等の切換状態に応じて算出式(3)で用いる運転電力(kWt)を選択すれば良い。また、それら送風ファン(35)、(36)の回転数状態に応じて発生等価逆相電流(It)が変化するため、その各回転数状態別に上記算出式(4)及び(5)での係数Aa、Ba、Ab、Bb、C、Dを算出すれば良い。
 また、上記実施形態では、インバータ装置(65)により圧縮機用モータ(CM)のみを回転数制御し、凝縮器(31)や蒸発器(33)の各送風ファン(35)、(36)はインバータ装置(65)で回転数制御しない場合を例示したが、その他、凝縮器(31)や蒸発器(33)の各送風ファン(35)、(36)への供給電力の周波数をインバータ装置を用いて制御して、これ等の送風ファン(35)、(36)をも回転数制御する場合にも、同様に適用可能である。この場合には、各送風ファン(35)、(36)の回転数制御時にインバータ装置(65)の周波数制御に伴い高調波が発生するため、このインバータ装置の消費電力をも加味して、発生等価逆相電流(It)を算出すれば良い。
 また、上記実施形態では、インバータ装置(65)の消費電力(kWI)の算出に際しては、本コンテナ用冷凍装置の運転電力(I×V)から高調波を発生しない機器(凝縮器(31)及び蒸発器(33)の各送風ファン(35)、(36))の運転電力(kWt)を減じて算出したが、本発明はこれに限定されず、例えば電流センサ(74)をインバータ装置(65)の発電機(G)側に配置して、インバータ装置(65)の消費電力を直接算出しても良い。
 更に、上記実施形態では、発生する等価逆相電流(It)の算出について、上記算出式(4)又は(5)を使用したが、予め、インバータ装置(65)の消費電力(kWI)や入力電圧(V)に応じたマップを用意しておいても良いし、他の計算式を用いても良い。
 加えて、上記実施形態では、電圧型のインバータ装置(65)を使用したが、電流型のインバータ装置を使用しても良い。この場合には、電流型インバータ装置に直流リアクトルが配置されるので、その配置個数に応じて発生等価逆相電流の大きさも異なる。従って、この場合にも、直流リアクトルの個数で区別化した装置タイプと、この装置タイプでの上記算出式(4)、(5)同等の発生等価逆相電流の算出式を予め記憶しておく。
 また、上記実施形態では、図1に示した構成のコンテナ用冷凍装置(10)を例示したが、他の構成のコンテナ用冷凍装置に本発明を適用しても良いのは勿論である。
 以上説明したように、本発明は、接続される発電機が小容量のものであっても、その小容量の発電機に応じた回転数でもって運転を続行しつつ、その発電機の異常過熱や焼損を確実に防止することができるので、コンテナ用冷凍装置に適用して有用である。
10   コンテナ用冷凍装置
30   圧縮機
CM   圧縮機用モータ(所定の構成機器)
31   凝縮器
33   蒸発器
35   庫外送風ファン
36   庫内送風ファン
CFM  凝縮器送風ファン用モータ
EFM  蒸発器送風ファン用モータ
G    発電機
63u~63W  三相電源線
L    交流リアクトル
65   インバータ装置(電力変換装置)
66  コンバータ部
67   インバータ部
C1   平滑コンデンサ
70   ノイズフィルタ
73   電圧センサ
74   電流センサ
75   コントローラ(制御手段)
80   第1算出手段
81   第2算出手段
82   制限手段

Claims (4)

  1.  発電機(G)が電源として接続されて運転し、その運転時に等価逆相電流を発生するコンテナ用冷凍装置であって、
     上記接続された発電機(G)の許容等価逆相電流(Itg)を算出する第1算出手段(80)と、
     運転時に上記発生する等価逆相電流(It)を算出する第2算出手段(81)と、
     上記算出された発生等価逆相電流(It)が上記発電機(G)の許容等価逆相電流(Itg)を超えるとき、上記発生する等価逆相電流(It)を上記発電機(G)の許容等価逆相電流(Itg)以下に制限する制限手段(82)とを備えた
     ことを特徴とするコンテナ用冷凍装置。
  2.  上記請求項1記載のコンテナ用冷凍装置において、
     上記発電機(G)からの電力を変換して所定の構成機器(CM)に供給する電力変換手段(65)と、
     上記電力変換装置(65)で変換される電力の周波数を制御する制御手段(75)とを備え、
     上記制限手段(82)は、
     上記算出された発生等価逆相電流(It)が上記発電機(G)の許容等価逆相電流(Itg)を超えるとき、上記電力変換装置(65)で変換される電力の周波数を低下させるように上記制御手段(75)を制御する
     ことを特徴とするコンテナ用冷凍装置。
  3.  上記請求項2記載のコンテナ用冷凍装置において、
     上記第2算出手段(81)は、
     コンテナ用冷凍装置の運転電力から高調波を発生しない構成機器(CFM,EFM)の運転電力を減じて上記電力変換手段(65)の運転電力を算出し、この算出した電力変換手段(65)の運転電力(kWI)に基づいて、上記発生する等価逆相電流(It)を算出する
     ことを特徴とするコンテナ用冷凍装置。
  4.  上記請求項1~3の何れか1項に記載のコンテナ用冷凍装置において、
     上記第2算出手段(81)は、
     複数種のコンテナ用冷凍装置に対応して上記発生する等価逆相電流(It)の算出式を有し、
     自己のコンテナ用冷凍装置に対応する算出式を用いて上記発生する等価逆相電流(It)を算出する
     ことを特徴とするコンテナ用冷凍装置。
PCT/JP2014/003254 2013-06-19 2014-06-17 コンテナ用冷凍装置 WO2014203522A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DK14813447.1T DK3012561T3 (da) 2013-06-19 2014-06-17 Køleindretning til beholdere
EP14813447.1A EP3012561B1 (en) 2013-06-19 2014-06-17 Refrigerating device for containers
CN201480032937.5A CN105283723B (zh) 2013-06-19 2014-06-17 集装箱用冷冻装置
US14/891,868 US9851136B2 (en) 2013-06-19 2014-06-17 Refrigerating device for containers

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013128800 2013-06-19
JP2013-128800 2013-06-19
JP2013247932A JP5796620B2 (ja) 2013-06-19 2013-11-29 コンテナ用冷凍装置
JP2013-247932 2013-11-29

Publications (1)

Publication Number Publication Date
WO2014203522A1 true WO2014203522A1 (ja) 2014-12-24

Family

ID=52104273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003254 WO2014203522A1 (ja) 2013-06-19 2014-06-17 コンテナ用冷凍装置

Country Status (7)

Country Link
US (1) US9851136B2 (ja)
EP (1) EP3012561B1 (ja)
JP (1) JP5796620B2 (ja)
CN (1) CN105283723B (ja)
CL (1) CL2015003669A1 (ja)
DK (1) DK3012561T3 (ja)
WO (1) WO2014203522A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11137179B2 (en) * 2018-06-22 2021-10-05 Daikin Industries, Ltd. Refrigeration apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2011383457B2 (en) * 2011-12-14 2016-01-14 Mitsubishi Electric Corporation Heat pump device, and air conditioner, heat pump/hot-water supply machine, refrigerator, and freezer equipped with same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937835A (ja) * 1982-08-25 1984-03-01 株式会社日立製作所 発電機保護装置
JPH05316797A (ja) * 1992-05-11 1993-11-26 Toshiba Corp 発電機の出力制御装置
JPH0736446Y2 (ja) * 1988-05-23 1995-08-16 株式会社明電舎 自家用発電機の保護装置
JP2005265252A (ja) * 2004-03-17 2005-09-29 Toshiba Kyaria Kk 冷凍装置および冷凍車
JP2011112270A (ja) 2009-11-25 2011-06-09 Daikin Industries Ltd コンテナ用冷凍装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171534A (ja) * 1987-12-28 1989-07-06 Matsushita Electric Ind Co Ltd 血管吻合補助具
US5206776A (en) * 1990-12-17 1993-04-27 B. A. Bodenheimer And Co., Inc. Protection system for ac generators
CN2202315Y (zh) 1993-12-24 1995-06-28 湖南省送变电建设公司 负序电流自动监测装置
JP2005083640A (ja) * 2003-09-08 2005-03-31 Toshiba Kyaria Kk 冷凍車用冷凍装置
JP2005168108A (ja) * 2003-11-28 2005-06-23 Tm T & D Kk 保護継電装置
DE102006054870A1 (de) * 2006-11-20 2008-06-12 Repower Systems Ag Windenergieanlage mit Gegensystemregelung und Betriebsverfahren
US8250872B2 (en) * 2006-12-19 2012-08-28 Daikin Industries, Ltd. Refrigerating apparatus control circuit, refrigerating system, and refrigerating apparatus control method
US20130057236A1 (en) * 2011-09-06 2013-03-07 Che-Wei Hsu Low voltage ride-through control method for grid-connected converter of distributed energy resources

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937835A (ja) * 1982-08-25 1984-03-01 株式会社日立製作所 発電機保護装置
JPH0736446Y2 (ja) * 1988-05-23 1995-08-16 株式会社明電舎 自家用発電機の保護装置
JPH05316797A (ja) * 1992-05-11 1993-11-26 Toshiba Corp 発電機の出力制御装置
JP2005265252A (ja) * 2004-03-17 2005-09-29 Toshiba Kyaria Kk 冷凍装置および冷凍車
JP2011112270A (ja) 2009-11-25 2011-06-09 Daikin Industries Ltd コンテナ用冷凍装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11137179B2 (en) * 2018-06-22 2021-10-05 Daikin Industries, Ltd. Refrigeration apparatus

Also Published As

Publication number Publication date
DK3012561T3 (da) 2017-11-06
CN105283723B (zh) 2017-05-17
CN105283723A (zh) 2016-01-27
EP3012561B1 (en) 2017-09-27
JP2015025647A (ja) 2015-02-05
JP5796620B2 (ja) 2015-10-21
CL2015003669A1 (es) 2016-09-30
EP3012561A4 (en) 2017-02-08
US20160091237A1 (en) 2016-03-31
US9851136B2 (en) 2017-12-26
EP3012561A1 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
AU2011377665B2 (en) Heat pump device, heat pump system, and inverter control method
AU2010362331C1 (en) Heat pump device, heat pump system, and method for controlling three-phase inverter
CN106464172B (zh) 压缩机驱动装置、具有它的压缩机和具有它们的制冷循环装置
AU2011366351B2 (en) Heat pump apparatus, heat pump system and inverter control method
JP5558529B2 (ja) モーター駆動制御装置、圧縮機、送風機、空気調和機及び冷蔵庫又は冷凍庫
CA3021064A1 (en) Buck-converter-based drive circuits for driving motors of compressors and condenser fans
JP5959500B2 (ja) 空気調和機及び空気調和機の制御方法
CN105981277A (zh) 直流电源装置及具备其的电动机驱动装置和具备其的制冷循环应用设备
CN113615025B (zh) 驱动装置以及空气调节装置
JP5796620B2 (ja) コンテナ用冷凍装置
JP2014089024A5 (ja)
JP2014089024A (ja) 冷凍装置
US20240128912A1 (en) Power converter, motor driving apparatus, and air conditioner
JP2015163013A (ja) 圧縮機制御装置、力率改善回路、電装部品の放熱構造、及び電気機器
US11699972B2 (en) Variable speed motor drive with integrated motor heating systems and methods
KR20130043531A (ko) 모터 제어 장치 및 제어 방법
US20230146546A1 (en) Motor Drive Control Including Varying DC Bus Voltages, Converter and Inverter Switching Frequencies, And Motor Speed For Thermal Mitigation
JP2014050165A (ja) インバータ制御回路およびそれを用いた冷凍サイクル装置
JP2015224802A (ja) 冷凍装置
JP2014119166A (ja) 冷凍装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480032937.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14813447

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14891868

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014813447

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014813447

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE