WO2014200250A1 - Procédé pour préparer une pâte conductrice de haute viscosité à base de cuivre pour former une structure 3d - Google Patents

Procédé pour préparer une pâte conductrice de haute viscosité à base de cuivre pour former une structure 3d Download PDF

Info

Publication number
WO2014200250A1
WO2014200250A1 PCT/KR2014/005097 KR2014005097W WO2014200250A1 WO 2014200250 A1 WO2014200250 A1 WO 2014200250A1 KR 2014005097 W KR2014005097 W KR 2014005097W WO 2014200250 A1 WO2014200250 A1 WO 2014200250A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
spherical
paste
present
forming
Prior art date
Application number
PCT/KR2014/005097
Other languages
English (en)
Korean (ko)
Inventor
김남수
홍성익
황세연
정태의
Original Assignee
서경대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서경대학교 산학협력단 filed Critical 서경대학교 산학협력단
Publication of WO2014200250A1 publication Critical patent/WO2014200250A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal

Definitions

  • the present invention relates to a method for producing a high viscosity conductive copper paste for forming a 3D structure. More specifically, the present invention relates to a method of manufacturing a high viscosity conductive copper paste for forming a 3D structure that can be utilized as a conductive material in various industrial fields by maximally suppressing oxidation of copper nanoparticles to maintain high electrical conductivity.
  • silver having high electrical conductivity (0.630x106 ⁇ / cm) and oxidation resistance is mainly used as an electrically conductive material, but silver has a problem of high price ($ 545.6 / lb). Accordingly, studies are actively underway to utilize copper as an electrically conductive material, which is relatively inexpensive ($ 3.72 / lb) and has a level of electrical conductivity (0.596x106 dB / cm) that is almost similar to silver.
  • the present invention has been made to solve the above problems by using a non-spherical copper nanoparticle coating to suppress the oxidation of copper nanoparticles as much as possible and at the same time increase the contact area between the coatings higher electrical conductivity than in the prior art
  • An object of the present invention is to provide a high viscosity conductive copper paste manufacturing method for forming a 3D structure that can be continuously maintained.
  • Method for producing a high viscosity conductive copper paste for forming a 3D structure comprises the steps of (a) injecting a plurality of non-spherical adsorbents, copper precursors, and reducing agents; (b) adsorbing copper nanoparticles separated from the copper precursor by the reducing agent to the plurality of non-spherical adsorbent surfaces to form a plurality of non-spherical copper nanoparticle coatings; And (c) combining the plurality of non-spherical copper nanoparticle coatings with a solvent to form a paste.
  • non-spherical adsorbent in step (a) may be carbon nanotubes, graphene, indium having a predetermined aspect ratio, or silver chloride having a predetermined aspect ratio.
  • the predetermined aspect ratio may be 2: 1 to 4: 1.
  • the pH and temperature of the aqueous solution in the step (a) may be 5 to 12 and 25 ° C to 100 ° C.
  • the solvent may include at least one material selected from the group consisting of water, alcohol, ethylene glycol, polycarbonate, polypropylene, polyethylene, and ABS resin.
  • the content of the plurality of non-spherical copper nanoparticle coatings in the paste may be 5 wt% to 99 wt%.
  • step (c) may further comprise the step of (d) mixing the paste and the ultraviolet curing agent.
  • step (c) may be a step of removing oxygen contained in the solvent by partial sacrificial oxidation in the plurality of non-spherical copper nanoparticle coating.
  • oxidation of the copper nanoparticles is suppressed to the maximum by partial sacrificial oxidation occurring in each of the plurality of non-spherical copper nanoparticle coatings included in the copper paste, it is possible to maintain high electrical conductivity suitable for use as an electrically conductive material. Has an effect.
  • the mutual contact area of the plurality of non-spherical copper nanoparticle coatings included in the copper paste is greatly increased as compared with the prior art, it is possible to reduce the contact resistance to maintain high electrical conductivity suitable for use as an electrically conductive material. Has the effect.
  • 3 and 4 are reference diagrams for applications of the copper paste of the present invention.
  • FIG. 1 is a flow chart of a copper paste manufacturing method according to a preferred embodiment of the present invention. As shown in FIG. 1, a plurality of non-spherical adsorbents, copper precursors, and reducing agents are added to the aqueous solution at S100.
  • the pH and temperature of the aqueous solution may be 5 to 12 and 25 ° C to 100 ° C.
  • the plurality of non-spherical adsorbents are preferably carbon nanotubes in the form of tubes, graphene in the form of hexagons, indium having a predetermined aspect ratio, or silver chloride having a predetermined aspect ratio.
  • the predetermined aspect ratio is preferably 2: 1 to 4: 1
  • the copper precursor may be copper hydroxide or copper oxide.
  • the copper nanoparticles separated from the copper precursor by the reducing agent are adsorbed onto the surfaces of the plurality of non-spherical adsorbents to form a plurality of non-spherical copper nanoparticle coatings.
  • the solvent in S300 may include at least one material selected from the group consisting of water, alcohol, ethylene glycol, polycarbonate, polypropylene, polyethylene, and ABS resin.
  • the content of the plurality of non-spherical copper nanoparticle coatings in the paste is preferably 5% by weight to 99% by weight, and oxygen is introduced into the paste by mixing with the solvent so that the paste is contained in the paste.
  • the plurality of non-spherical copper nanoparticle coatings can be prevented from being oxidized by oxygen introduced from the outside.
  • the present invention may further comprise the step of mixing the UV curing agent in the paste following the S300, which is when using the present invention as a conductive ink material for the 3D printing device to form a 3D structure for the 3D structure In order to be able to apply the ultraviolet curing method in addition to the thermal curing method.
  • the non-spherical copper nanoparticles may be utilized as copper nanoparticles having a non-spherical shape.
  • non-spherical copper nanoparticle coating having the above characteristics has the advantage of maintaining a high electrical conductivity continuously compared to the spherical copper nanoparticles used in the prior art, which will be described in detail as follows. same.
  • the paste in the case of a conventionally manufactured copper paste, the paste includes a plurality of spherical copper nanoparticles.
  • the contact resistance is increased because the contact between the copper nanoparticles is point-to-point, and thus there is a problem that the electrical conductivity decreases to 1/100 even if only 3% of impurities are added from the outside. It was.
  • the contact between each non-spherical copper nanoparticle coating is made of line-to-line or face-to-face, which has the advantage that the contact resistance is greatly reduced. Therefore, in the case of the present invention it is possible to continuously maintain a high electrical conductivity.
  • the corner portion of the non-spherical copper nanoparticle coating is higher in oxidation energy than the other portion, the oxidation reaction is more spontaneous at the corner portion.
  • the oxygen contained in the solvent reacts only at the corners of the non-spherical copper nanoparticle coating, so that partial sacrificial oxidation occurs, thereby minimizing the surface area of oxidation, and thus, line-to-line or surface in the remaining portion where oxidation does not occur. Face-to-face contact ensures high electrical conductivity.
  • 3 and 4 are reference diagrams for practical applications of the copper paste of the present invention.
  • oxidation of the non-spherical copper nanoparticle coatings included in the paste can be suppressed as much as possible, and the contact area between the coatings can be expanded to minimize the contact resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Conductive Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

La présente invention concerne un procédé pour préparer une pâte conductrice de haute viscosité à base de cuivre pour former une structure 3D et plus particulièrement un procédé pour préparer une pâte conductrice de haute viscosité à base de cuivre pour former une structure 3D qui peut être appliquée dans différents domaines industriels en permettant la conservation en continu d'une conductivité électrique élevée grâce à l'inhibition maximale de l'oxydation de nanoparticules de cuivre. La présente invention comprend les étapes consistant à : (a) injecter une pluralité d'adsorbants non sphériques, un précurseur de cuivre et un agent de réduction dans une solution aqueuse ; (b) former une pluralité de corps de revêtement non sphériques à base de nanoparticules de cuivre par l'adsorption des nanoparticules de cuivre qui sont séparées du précurseur de cuivre par l'agent de réduction sur la surface de la pluralité d'adsorbants non sphériques ; et (c) former une pâte par le mélange de la pluralité des corps de revêtement non sphériques à base de nanoparticules de cuivre et d'un solvant. Selon la présente invention, l'oxydation de nanoparticules de cuivre est inhibée au maximum par l'oxydation sacrificielle partielle qui se produit au niveau de chacun de la pluralité de corps de revêtement non sphériques à base de nanoparticules contenus dans la pâte à base de cuivre et il est ainsi possible de conserver une conductivité électrique élevée appropriée pour une application en tant que matériau électriquement conducteur.
PCT/KR2014/005097 2013-06-13 2014-06-11 Procédé pour préparer une pâte conductrice de haute viscosité à base de cuivre pour former une structure 3d WO2014200250A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130067510A KR101538325B1 (ko) 2013-06-13 2013-06-13 3d 구조체 형성용 고점도 전도성 구리 페이스트 제조 방법
KR10-2013-0067510 2013-06-13

Publications (1)

Publication Number Publication Date
WO2014200250A1 true WO2014200250A1 (fr) 2014-12-18

Family

ID=52022480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/005097 WO2014200250A1 (fr) 2013-06-13 2014-06-11 Procédé pour préparer une pâte conductrice de haute viscosité à base de cuivre pour former une structure 3d

Country Status (2)

Country Link
KR (1) KR101538325B1 (fr)
WO (1) WO2014200250A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105108134A (zh) * 2015-08-04 2015-12-02 成都新柯力化工科技有限公司 一种用于3d打印的膏状金属复合材料及其制备方法
CN107247840A (zh) * 2017-06-06 2017-10-13 南京农业大学 一种基于Benbow-Bridgwater模型的三点法表征挤出压力的方法
CN112018031A (zh) * 2020-09-09 2020-12-01 合肥工业大学 一种基于铜纳米粒子填充SiC通孔的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110033652A (ko) * 2009-09-25 2011-03-31 한화나노텍 주식회사 고 전기 전도성 탄소나노튜브-금속 복합체의 제조방법
KR20110115691A (ko) * 2010-04-16 2011-10-24 (주)바이오니아 탄소나노튜브―금속 복합체의 제조방법 및 이를 이용한 전도성 페이스트의 제조방법
JP2012038846A (ja) * 2010-08-05 2012-02-23 Yokohama Rubber Co Ltd:The 太陽電池電極用ペーストおよび太陽電池セル

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110033652A (ko) * 2009-09-25 2011-03-31 한화나노텍 주식회사 고 전기 전도성 탄소나노튜브-금속 복합체의 제조방법
KR20110115691A (ko) * 2010-04-16 2011-10-24 (주)바이오니아 탄소나노튜브―금속 복합체의 제조방법 및 이를 이용한 전도성 페이스트의 제조방법
JP2012038846A (ja) * 2010-08-05 2012-02-23 Yokohama Rubber Co Ltd:The 太陽電池電極用ペーストおよび太陽電池セル

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105108134A (zh) * 2015-08-04 2015-12-02 成都新柯力化工科技有限公司 一种用于3d打印的膏状金属复合材料及其制备方法
CN105108134B (zh) * 2015-08-04 2017-03-08 成都新柯力化工科技有限公司 一种用于3d打印的膏状金属复合材料及其制备方法
CN107247840A (zh) * 2017-06-06 2017-10-13 南京农业大学 一种基于Benbow-Bridgwater模型的三点法表征挤出压力的方法
CN107247840B (zh) * 2017-06-06 2020-05-08 南京农业大学 一种基于Benbow-Bridgwater模型的三点法表征挤出压力的方法
CN112018031A (zh) * 2020-09-09 2020-12-01 合肥工业大学 一种基于铜纳米粒子填充SiC通孔的方法
CN112018031B (zh) * 2020-09-09 2023-12-19 合肥工业大学 一种基于铜纳米粒子填充SiC通孔的方法

Also Published As

Publication number Publication date
KR20140145644A (ko) 2014-12-24
KR101538325B1 (ko) 2015-07-23

Similar Documents

Publication Publication Date Title
TWI518146B (zh) 含有銀奈米顆粒之可印刷組成物,使用其製造導電塗層之方法及其製備之塗層
EP2681745B1 (fr) Encre à base de nanofibres métalliques, conducteur sensiblement transparent et procédé de fabrication
CN103804625B (zh) 一种石墨烯/水性聚氨酯纳米复合材料的制备方法
KR101248447B1 (ko) 스크린 인쇄용 도전성 페이스트
CN107337965B (zh) 一种抗氧化铜系导电油墨的制备方法
CN108117811B (zh) 一种石墨烯-硅电磁屏蔽填料及电磁屏蔽涂料
WO2010067949A1 (fr) Pâte conductrice contenant des nanotubes de carbone décorés d'argent
CN104464883A (zh) 表面吸附分散剂的石墨烯导电浆料、其制备方法及应用
WO2014200250A1 (fr) Procédé pour préparer une pâte conductrice de haute viscosité à base de cuivre pour former une structure 3d
CN103021512A (zh) 用于低温烧结的导电浆料组合物
CN103426497A (zh) 一种触摸屏用导电银浆及其制备方法
US9777171B1 (en) Graphene compositions
WO2013137654A1 (fr) Poudre de métal-graphène en paillettes et composition de revêtement de blindage contre les interférences électromagnétiques la contenant
WO2020181057A1 (fr) Technologies utilisant des composites de pseudo-graphite
CN113744928B (zh) 一种抗氧化透明导电膜及其制备方法和应用
CN109468042A (zh) 一种石墨烯水性自干聚氨酯导电涂料
CN110922812B (zh) 低温高导纳米银导电油墨及其制备方法与应用
KR20140056045A (ko) 인쇄전자용 구리 페이스트 조성물
KR20180016472A (ko) 은 미립자 분산액
KR101761752B1 (ko) 구리-카본계 복합물질 및 그 제조방법
KR102210186B1 (ko) 전도성 은나노잉크, 그를 이용한 전도성 기판 및 그의 제조 방법
CN108369836A (zh) 透明导电体的制造方法及透明导电体
WO2018070817A1 (fr) Poudre d'argent pour frittage à haute température et son procédé de préparation
Huang et al. Preparation of a low temperature sintering silver nanoparticle ink and fabrication of conductive patterns on PET substrate
CN104672991B (zh) 一种铜导电墨水的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14811026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14811026

Country of ref document: EP

Kind code of ref document: A1