WO2014199911A1 - 保護素子、及び保護素子が実装された実装体 - Google Patents

保護素子、及び保護素子が実装された実装体 Download PDF

Info

Publication number
WO2014199911A1
WO2014199911A1 PCT/JP2014/065067 JP2014065067W WO2014199911A1 WO 2014199911 A1 WO2014199911 A1 WO 2014199911A1 JP 2014065067 W JP2014065067 W JP 2014065067W WO 2014199911 A1 WO2014199911 A1 WO 2014199911A1
Authority
WO
WIPO (PCT)
Prior art keywords
external connection
electrode
electrodes
insulating substrate
melting point
Prior art date
Application number
PCT/JP2014/065067
Other languages
English (en)
French (fr)
Inventor
吉弘 米田
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to CN201480033542.7A priority Critical patent/CN105324829B/zh
Priority to KR1020167000147A priority patent/KR102217413B1/ko
Publication of WO2014199911A1 publication Critical patent/WO2014199911A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H37/761Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material with a fusible element forming part of the switched circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/103Fuse
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a protection element that stops charging / discharging of a battery connected on the current path by fusing the current path and suppresses thermal runaway of the battery.
  • a battery pack incorporates a number of protection circuits such as overcharge protection and overdischarge protection, It has a function of shutting off the output of the battery pack in a predetermined case.
  • This type of protection circuit performs overcharge protection or overdischarge protection operation of the battery pack by turning on / off the output using an FET switch built in the battery pack.
  • FET switch When the FET switch is short-circuited for some reason, when a lightning surge or the like is applied and an instantaneous large current flows, the output voltage drops abnormally due to the life of the battery cell, or conversely an excessively abnormal voltage
  • a protection element made of a fuse element having a function of cutting off the current path by an external signal is used.
  • a heat generation resistor is provided inside the protection element, and the heat generation resistor can be used on a current path.
  • a structure that melts a molten conductor is generally used.
  • the protective element 50 includes an insulating substrate 51, a heating resistor 53 laminated on the insulating substrate 51 and covered with an insulating member 52 such as glass, a pair of electrodes 54 and 54 formed on both ends of the insulating substrate 51, A heating element extraction electrode 55 laminated on the insulating member 51 so as to overlap the heating resistor 53, and both ends are connected to a pair of electrodes 54, 54, respectively, and a central portion is connected to the heating element extraction electrode 55.
  • a molten conductor 56 is provided.
  • the heating element extraction electrode 55 is connected to the first heating element electrode 57.
  • the other end of the heating resistor 53 is connected to the second heating element electrode 58.
  • the protective element 50 is coated with a flux 61 on almost the entire surface of the soluble conductor 56 in order to prevent oxidation of the soluble conductor 56. Further, the protection element 50 may place a cover member on the insulating substrate 51 in order to protect the inside.
  • a pair of electrodes 54, 54 formed on the surface of the insulating substrate 51 are formed on the back surface of the insulating substrate 51 through conductive through holes 59 formed on the side surface of the insulating substrate 51.
  • the external connection electrode 60 is electrically connected.
  • the protection element 50 comprises a part of electric current path
  • HEVs Electric Vehicles
  • EVs Electric Vehicles
  • a lithium ion secondary battery has been used from the viewpoint of energy density and output characteristics.
  • the practical use of the lithium ion secondary battery has been started in an aircraft. High voltage and large current are required for automotive and aircraft applications. For this reason, dedicated cells that can withstand high voltages and large currents have been developed, but in many cases due to manufacturing cost problems, it is necessary to connect multiple battery cells in series and in parallel to use general-purpose cells. Secures sufficient voltage and current.
  • the internal conduction resistance between the pair of electrodes 54 and 54 connected by the fusible conductor can be sufficiently lowered to meet the rating improvement (for example, less than 1 m ⁇ ).
  • the pair of electrodes 54 and 54 are respectively provided. Even if the conductive through hole is filled with a conductor, there is a limit to lowering the conductive resistance of the entire protective element even if the conductive resistance between the electrode and the external connection electrode 60 is high (for example, 0.5 to 1.0 m ⁇ ).
  • an object of the present invention is to provide a protection element capable of improving the rating and a mounting body on which the protection element is mounted in response to an increase in voltage and current of a lithium ion secondary battery or the like. To do.
  • a protection element includes an insulating substrate, a heating resistor disposed on the insulating substrate, first and second electrodes stacked on the insulating substrate, and A heating element extraction electrode electrically connected to the heating resistor on a current path between the first and second electrodes, and a heating layer extending from the heating element extraction electrode to the first and second electrodes, and heating
  • the soluble conductor that melts the current path between the first electrode and the second electrode, and the surface of the insulating substrate on which the soluble conductor is provided, are formed on the same surface.
  • the mounting body according to the present invention is a mounting body in which the protective element is mounted on the mounting target, and the protective element is laminated on the insulating substrate, the heating resistor disposed on the insulating substrate, and the insulating substrate.
  • First and second electrodes formed, a heating element extraction electrode electrically connected to the heating resistor on a current path between the first and second electrodes, and the heating element extraction electrode from the heating element extraction electrode
  • a fusible conductor that is laminated over the first and second electrodes and that melts the current path between the first electrode and the second electrode by heating, and the first and second electrodes of the insulating substrate;
  • a first external connection electrode that is formed on the same surface as the surface on which the electrode is formed and that is continuous with the first electrode; and a second external connection electrode that is continuous with the second electrode; Via a first external connection terminal where the electrode is connected to the first external connection electrode Connected to the mounting object, and the second electrode is connected to the mounting object via a second external connection terminal connected on the second external
  • the present invention it is possible to easily reduce the conduction resistance ahead of the first and second external connection electrodes, and in combination with the reduction of the internal conduction resistance between the first and second electrodes, The rating can be dramatically improved.
  • FIG. 1 is a cross-sectional view showing a protection element to which the present invention is applied.
  • FIG. 2 is a plan view showing the protective element to which the present invention is applied, with the cover member omitted.
  • FIG. 3 is a plan view showing another protective element to which the present invention is applied, with the cover member omitted.
  • FIG. 4 is a block diagram showing a configuration of a mounting body on which a protection element to which the present invention is applied is mounted.
  • FIG. 5 is a diagram showing a circuit configuration example of a protection element to which the present invention is applied.
  • FIG. 6 is a cross-sectional view showing a protection element in which a fusible conductor is blown.
  • FIG. 1 is a cross-sectional view showing a protection element to which the present invention is applied.
  • FIG. 2 is a plan view showing the protective element to which the present invention is applied, with the cover member omitted.
  • FIG. 3 is a plan view showing another protective element to which the present invention is
  • FIG. 7 is a cross-sectional view showing a modification of the protection element in which the heating element is built in the insulating substrate.
  • FIG. 8 is a cross-sectional view showing a modification of the protection element in which the heating element is formed on the back surface of the insulating substrate.
  • FIG. 9 is a perspective view showing a modification of the protection element in which the heating element is formed on the surface of the insulating substrate.
  • FIG. 10 is a perspective view showing a modification of the protection element in which the heating element is formed on the surface of the insulating substrate.
  • 11A and 11B are diagrams showing a protection element according to the related art of the protection element to which the present invention is applied, in which FIG. 11A is a plan view and FIG. 11B is a cross-sectional view along AA ′.
  • FIGS. 1 and 2 show a protective element 10 to which the present invention is applied.
  • 1 is a cross-sectional view taken along line AA ′ shown in FIG.
  • the protective element 10 includes an insulating substrate 11, a heating resistor 14 laminated on the insulating substrate 11 and covered with an insulating member 15, and first elements formed at both ends of the insulating substrate 11. 1, a second electrode 12 (A1), 12 (A2), a heating element extraction electrode 16 laminated on the insulating member 15 so as to overlap the heating resistor 14, and both ends of the first and second electrodes 12 (A1), 12 (A2), and a soluble conductor 13 having a central portion connected to the heating element extraction electrode 16.
  • the rectangular insulating substrate 11 is formed of an insulating member such as alumina, glass ceramics, mullite, zirconia, and the like.
  • an insulating member such as alumina, glass ceramics, mullite, zirconia, and the like.
  • the material used for printed wiring boards such as a glass epoxy board
  • the heating resistor 14 is a conductive member that has a relatively high resistance value and generates heat when energized, and is made of, for example, W, Mo, Ru, or the like.
  • the heating resistor 14 is formed by mixing a powdered material of these alloys, compositions or compounds with a resin binder or the like, forming a paste on the insulating substrate 11 using a screen printing technique, and firing the paste. Or the like.
  • the insulating substrate 11 is provided with an insulating member 15 so as to cover the heating resistor 14, and a heating element extraction electrode 16 is provided so as to face the heating resistor 14 through the insulating member 15.
  • an insulating member 15 may be laminated between the heating resistor 14 and the insulating substrate 11 in order to efficiently transfer the heat of the heating resistor 14 to the soluble conductor.
  • heating element extraction electrode 16 is connected to the heating element electrode 18 (P1). Further, one end of the heating resistor 14 is connected to the heating element electrode 18 (P1), and the other end is connected to the other heating element electrode 18 (P2).
  • a heating element connection terminal 18a is provided on the other heating element electrode 18 (P2).
  • the heating element connection terminal 18a is formed using a metal bump or a metal post, and protrudes upward, like the first and second external connection terminals 22 and 24 described later.
  • the soluble conductor 13 is, for example, a single layer structure made of a high melting point metal or a low melting point metal, or a laminated structure having a high melting point metal and a low melting point metal, and preferably has a high melting point metal layer as an inner layer and an outer layer. It is a laminated structure having a low melting point metal layer. In addition, you may make it have a low melting metal layer as an inner layer, and a high melting metal layer as an outer layer.
  • the soluble conductor 13 may be a two-layer laminated structure of an upper layer and a lower layer, and may have a high melting point metal layer as an upper layer and a low melting point metal layer as a lower layer.
  • the high melting point metal is preferably a metal mainly composed of Ag or Cu or any one of them, and has a high melting point that does not melt even when board mounting is performed in a reflow furnace.
  • the low melting point metal is preferably a metal mainly composed of Sn, and is a material generally called “Pb-free solder” (for example, M705 manufactured by Senju Metal Industry).
  • the melting point of the low melting point metal is not necessarily higher than the temperature of the reflow furnace, and may be melted at about 200 ° C.
  • the fusible conductor 13 may form a laminated structure by depositing a low melting point metal layer on the high melting point metal layer using a plating technique, or by using another known lamination technique or film forming technique. A laminated structure in which a low melting point metal layer is laminated on a high melting point metal layer can be formed. Conversely, when the refractory metal layer is an outer layer, it can be formed by the same film formation technique.
  • the connection of the fusible conductor 13 to the heating element extraction electrode 16 and the first and second electrodes 12 (A1) and 12 (A2) can be realized by soldering using a low melting point metal layer. it can.
  • the protective element 10 has a flux 17 coated on almost the entire surface of the soluble conductor 13 in order to prevent oxidation of the soluble conductor 13.
  • the protective element 10 has a cover member 19 placed on the insulating substrate 11 to protect the inside.
  • the cover member 19 may be erected on an insulating layer 20 such as glass formed on the first and second electrodes 12 (A1) and 12 (A2).
  • the protective element 10 includes a first electrode 12 (on the surface of the insulating substrate 11 on which the first and second electrodes 12 (A1) and 12 (A2) are formed.
  • the first and second external connection electrodes 21 and 23 are electrodes that connect the protection element 10 and a protection circuit such as a lithium ion secondary battery in which the protection element 10 is incorporated, and the first external connection electrode 21 is the first external connection electrode 21.
  • One electrode 12 (A1) is continuous, and the second external connection electrode 23 is continuous with the second electrode 12 (A2).
  • the first and second external connection electrodes 21 and 23 are formed using a general electrode material such as Cu or Ag, and the first and second electrodes 12 (A1) and 12 (A2) of the insulating substrate 11 are formed. It is formed on the same surface as the formation surface. That is, in the protection element 10 shown in FIGS. 1 and 2, the surface on which the soluble conductor 13 is provided becomes the mounting surface.
  • the first and second external connection electrodes 21 and 23 can be formed simultaneously with the first and second electrodes 12 (A1) and 12 (A2).
  • a first external connection terminal 22 is provided on the first external connection electrode 21.
  • a second external connection terminal 24 is provided on the second external connection electrode 23.
  • These first and second external connection terminals 22 and 24 are connection terminals for mounting on the protection circuit board, and are formed using, for example, metal bumps or metal posts. Further, as shown in FIG. 1, the first and second external connection terminals 22 and 24 have a height protruding from the cover member 19 provided on the insulating substrate 11, and are mounted on the protection element 10. It can be mounted on the circuit board side that is the object.
  • the protective element 10 is provided with the external connection electrode 60 on the back surface of the insulating substrate 51 like the protective element 50 shown as the related art, and the pair of electrodes 54 and the external connection electrode 60 are connected by the conductive through holes 59.
  • External connection terminals 22, 24 are formed on the same surface as the first and second electrodes 12 (A 1), 12 (A 2) via the external connection electrodes 21, 23 instead of being connected (see FIG. 11). ing.
  • the protective element 10 is connected to the first external connection terminal 22 and the second external connection rather than the conduction resistance between the first and second external connection electrodes 21 and 23 connected via the fusible conductor 13. The combined resistance with the terminal 24 is low.
  • the protection element 10 can improve the rating of the whole element and can cope with a large current. That is, in high current applications such as lithium ion secondary batteries used as power sources such as HEV and EV, further improvement of the rating of the protection element is required. And the internal conduction resistance between the 1st, 2nd external connection electrodes 21 and 23 connected by the soluble conductor 13 can fully be lowered
  • a rating improvement for example, less than 1 m (ohm)
  • the protective element 10 is provided with external connection terminals 22 and 24 on the same surface as the first and second electrodes 12 (A1) and 12 (A2).
  • the external connection terminals 22 and 24 are provided on the external connection electrodes 21 and 23, and a terminal having a high degree of freedom in shape and size and a low conduction resistance can be easily provided.
  • the protection element 10 is configured such that the combined resistance of the first external connection terminal 22 and the second external connection terminal 24 is lower than the internal conduction resistance between the first and second external connection electrodes 21 and 23. Has been.
  • the conduction resistance ahead of the first and second external connection electrodes 21 and 23, which is high in the configuration of the protection element 50, can be easily reduced, and the first and second external connections can be reduced. Coupled with the reduction in internal conduction resistance between the connection electrodes 21 and 23, the overall rating of the element can be dramatically improved.
  • first and second external connection terminals 22 and 24 for example, metal bumps or metal posts made of Pb-free solder whose main component is Sn can be used.
  • the shape of the metal bump or the metal post is not limited.
  • the resistance values of the first and second external connection terminals 22 and 24 can be obtained from the material, shape, and size. As an example, when a rectangular parallelepiped metal post (Cu core: 0.6 mm ⁇ 0.6 mm, cross-sectional area 0.36 mm 2, height 1 mm, specific resistance 17.2 ⁇ ⁇ mm) is used.
  • the resistance value of the Cu core of one terminal is about 0.048 m ⁇ , and the resistance value obtained by connecting the first and second external connection terminals 22 and 24 in series is as low as less than 0.096 m ⁇ in consideration of the solder coating. It can be seen that the overall rating of the protective element 10 can be improved.
  • the protective element 10 obtains the total resistance value of the entire element from the resistance value between the first and second external connection terminals 22 and 24, and the first and second external connections known as the total resistance value. From the difference from the combined resistance of the terminals 22 and 24, the internal conduction resistance between the first and second external connection electrodes 21 and 23 can be obtained. In addition, the protective element 10 measures the internal conduction resistance between the first and second external connection electrodes 21 and 23, and the first and second external connection terminals 22, 24 combined resistances can be obtained.
  • the protection element 10 is widely provided by forming the first and second external connection electrodes 21 and 23 in a rectangular shape or the like, and the first and second external connection terminals 22 and 24 are provided.
  • the conduction resistance may be lowered by providing a plurality.
  • the protection element 10 is configured to lower the conduction resistance by providing the first and second external connection terminals 22 and 24 having large diameters on the first and second external connection electrodes 21 and 23 that are widely provided. May be.
  • the first and second external connection terminals 22 and 24 may be formed by providing low melting point metal layers 22b and 24b on the surfaces of the high melting point metals 22a and 24a serving as cores.
  • the metal constituting the low melting point metal layers 22b and 24b solder such as Pb free solder containing Sn as a main component can be preferably used.
  • the high melting point metals 22a and 24a Cu or Ag is used as a main component. An alloy to be used can be preferably used.
  • the reflow temperature exceeds the melting temperature of the low melting point metal layers 22b and 24b. Even if the metal is melted, it can be prevented from melting as the first and second external connection terminals 22 and 24.
  • the first and second external connection terminals 22 and 24 can be connected to the first and second external connection electrodes 21 and 23 using a low melting point metal constituting the outer layer.
  • the first and second external connection terminals 22 and 24 can be formed by forming a low melting point metal on the high melting point metal 22a and 24a by using a plating technique, and other known lamination techniques and films. It can also be formed by using a forming technique.
  • the first and second external connection terminals 22 and 24 are formed by a conductive plating layer or a conductive layer formed by applying a conductive paste, in addition to using metal bumps or metal posts. May be.
  • first and second external connection terminals 22 and 24 are provided in advance on the mounting object side such as a circuit board on which the protection element 10 is mounted.
  • the two external connection electrodes 21 and 23 may be connected.
  • such a protection element 10 is used by being incorporated in a circuit in a battery pack 30 of a lithium ion secondary battery, for example.
  • the battery pack 30 has a battery stack 35 including battery cells 31 to 34 of a total of four lithium ion secondary batteries, for example.
  • the battery pack 30 includes a battery stack 35, a charge / discharge control circuit 40 that controls charging / discharging of the battery stack 35, a protection element 10 to which the present invention that cuts off charging when the battery stack 35 is abnormal, and each battery cell.
  • a detection circuit 36 for detecting voltages 31 to 34 and a current control element 37 for controlling the operation of the protection element 10 according to the detection result of the detection circuit 36 are provided.
  • the battery stack 35 is a series of battery cells 31 to 34 that need to be controlled to protect against overcharge and overdischarge states, and is detachable via the positive terminal 30a and the negative terminal 30b of the battery pack 30.
  • the electronic device can be operated by connecting the positive electrode terminal 30a and the negative electrode terminal 30b of the battery pack 30 charged by the charging device 45 to an electronic device operating with a battery.
  • the charge / discharge control circuit 40 includes two current control elements 41 and 42 connected in series to a current path flowing from the battery stack 35 to the charging device 45, and a control unit 43 that controls the operation of these current control elements 41 and 42. Is provided.
  • the current control elements 41 and 42 are configured by, for example, field effect transistors (hereinafter referred to as FETs), and control the gate voltage by the control unit 43 to control conduction and interruption of the current path of the battery stack 35.
  • FETs field effect transistors
  • the control unit 43 operates by receiving power supply from the charging device 45, and controls the current so as to cut off the current path when the battery stack 35 is overdischarged or overcharged according to the detection result by the detection circuit 36. The operation of the elements 41 and 42 is controlled.
  • the protection element 10 is connected to, for example, a charge / discharge current path between the battery stack 35 and the charge / discharge control circuit 40, and its operation is controlled by the current control element 37.
  • the detection circuit 36 is connected to the battery cells 31 to 34, detects the voltage values of the battery cells 31 to 34, and supplies the voltage values to the control unit 43 of the charge / discharge control circuit 40.
  • the detection circuit 36 outputs a control signal for controlling the current control element 37 when any one of the battery cells 31 to 34 becomes an overcharge voltage or an overdischarge voltage.
  • the current control element 37 is constituted by, for example, an FET, and when the voltage value of the battery cells 31 to 34 exceeds a predetermined overdischarge or overcharge state by a detection signal output from the detection circuit 36, the current control element 37 is a protection element. 10 is operated to control the charge / discharge current path of the battery stack 35 to be cut off regardless of the switching operation of the current control elements 41 and 42.
  • the protection element 10 to which the present invention is applied has a circuit configuration as shown in FIG.
  • the protection element 10 generates heat by melting the soluble conductor 13 by causing the soluble conductor 13 connected in series via the heating element extraction electrode 16 and the connection point of the soluble conductor 13 to generate heat.
  • This is a circuit configuration including the resistor 14.
  • the fusible conductor 13 is connected in series on the charge / discharge current path, and the heating resistor 14 is connected to the current control element 37.
  • the first electrode is connected to A 1 via the first external connection terminal 22, and the second electrode is connected to A 2 via the second external connection terminal 24. Connected to.
  • the heating element extraction electrode 16 and the heating element electrode 18 connected thereto are connected to P1, and the other heating element electrode 18 is connected to P2.
  • the protective element 10 includes first and second external connection electrodes 21 and 23 connected via a fusible conductor 13.
  • the combined resistance of the first external connection terminal 22 and the second external connection terminal 24 is configured to be lower than the conduction resistance between them.
  • the protection element 10 can reliably cut off the current path by fusing the fusible conductor 13.
  • the protection element of the present invention is not limited to use in a battery pack of a lithium ion secondary battery, and can of course be applied to various uses that require interruption of a current path by an electric signal.
  • FIG. 7 shows a modified example in the case where the heating resistor 14 having a different arrangement position is used.
  • the same reference numerals are given to the same configurations as those of the protection element 10 described above, and the details thereof are omitted.
  • the protection element 70 includes an insulating substrate 11, a heating resistor 14 built in the insulating substrate 11, and electrodes 12 (A 1) and 12 (A 2) formed on both ends of the insulating substrate 11.
  • the heating element extraction electrode 16 laminated on the insulating substrate 11 so as to overlap the heating resistor 14 is connected to the electrodes 12 (A1) and 12 (A2) at both ends, and the central portion is connected to the heating element extraction electrode 16.
  • a soluble conductor 13 connected thereto.
  • the protective element 70 is formed on the surface of the insulating substrate 11 on which the first and second electrodes 12 (A1) and 12 (A2) are formed.
  • the first external connection is continuous with the first electrode 12 (A1).
  • the first external connection terminal 22 provided on the first external connection electrode 21 the second external connection electrode 23 continuous with the second electrode 12 (A2), and the second external connection electrode 23
  • the second external connection terminal 24 provided in the is formed.
  • the protective element 70 is provided with a cover member 19 that protects the surface of the insulating substrate 11. Moreover, the flux 17 is apply
  • the protective element 70 has the same configuration as the protective element 10 described above except that the heating resistor 14 is built in the insulating substrate 11 and the insulating member 15 is not provided.
  • the heating resistor 14 is built in the insulating substrate 11, whereby the surface 11 a of the insulating substrate 11 is flattened, whereby the heating element lead-out electrode 16 is connected to the electrodes 12 (A 1) and 12 (A 2). ) On the same plane.
  • the protective element 70 can connect the flattened soluble conductor 13 by setting the heating element extraction electrode 16 to the same height as the electrodes 12 (A1) and 12 (A2). Therefore, the protective element 70 can improve the fusing characteristics of the soluble conductor 13.
  • the protective element 70 is made of a material having excellent thermal conductivity as the material of the insulating substrate 11, so that the fusible conductor 13 is equivalent to the case where the insulating member 15 such as a glass layer is interposed by the heating resistor 14. Can be heated.
  • the protective element 70 does not require the insulating member 15, and the conductive paste constituting the electrodes 12 (A 1) and 12 (A 2), the heating element extraction electrode 16, and the first and second external connection electrodes 21 and 23. Is applied to the surface 11a of the flat insulating substrate 11 to form the electrodes 12 (A1) and 12 (A2), the heating element extraction electrode 16 and the first and second external connection electrodes 21 and 23 in a lump. Therefore, it is possible to save labor in the manufacturing process. Further, since the protective element 70 has the heat generating resistor 14 built in the insulating substrate 11 and does not overlap the heat generating resistor 14 and the heat generating lead electrode 16 on the surface of 11a, the protective element 70 is low in the thickness direction of the insulating substrate 11. Miniaturization can be achieved by turning back.
  • FIG. 8 is a modified example in the case where the heating resistor 14 having a different arrangement position is used.
  • the protection element 80 is laminated on the insulating substrate 11, the back surface 11 b of the insulating substrate 11, covered with the insulating member 15, and electrodes formed on both ends of the insulating substrate 11.
  • a soluble conductor 13 whose central portion is connected to the heating element extraction electrode 16.
  • the protective element 80 is formed on the surface of the insulating substrate 11 on which the first and second electrodes 12 (A1) and 12 (A2) are formed, and is connected to the first external connection continuous with the first electrode 12 (A1).
  • the first external connection terminal 22 provided on the first external connection electrode 21 the second external connection electrode 23 continuous with the second electrode 12 (A2), and the second external connection electrode 23
  • the second external connection terminal 24 provided in the is formed.
  • the protective element 80 is provided with a cover member 19 that protects the surface of the insulating substrate 11. Moreover, the flux 17 is apply
  • the protection element 80 has the same configuration as that of the protection element 10 described above except that the heating resistor 14 is laminated on the back surface 11b of the insulating substrate 11.
  • the heating resistor 14 is laminated on the back surface 11b of the insulating substrate 11, so that the surface 11a of the insulating substrate 11 is flattened, whereby the heating element extraction electrode 16 is connected to the electrode 12 (A1). , 12 (A2) can be formed on the same plane.
  • the protection element 80 can connect the flattened soluble conductor 13 by setting the heating element extraction electrode 16 to the same height as the electrodes 12 (A1) and 12 (A2). Therefore, the protection element 80 can improve the fusing characteristics of the soluble conductor 13.
  • the protective element 80 uses a material having excellent thermal conductivity as the material of the insulating substrate 11, so that the fusible conductor 13 is formed by the heating resistor 14 in the same manner as when laminated on the surface 11 a of the insulating substrate 11. Can be heated.
  • the protective element 80 is formed by applying a conductive paste constituting the electrodes 12 (A1) and 12 (A2), the heating element extraction electrode 16 and the first and second external connection electrodes 21 and 23 to the surface 11a of the flat insulating substrate 11. Since the electrodes 12 (A1) and 12 (A2), the heating element extraction electrode 16 and the first and second external connection electrodes 21 and 23 can be formed in a lump by applying to the substrate, labor saving in the manufacturing process Can be achieved.
  • FIG. 9 is a modified example in the case where the heating resistor 14 having a different arrangement position is used.
  • the protection element 90 includes an insulating substrate 11, a heating resistor 14 stacked on the surface 11a of the insulating substrate 11, and an electrode 12 (A1) formed on the surface 11a of the insulating substrate 11. , 12 (A2) and the heating element lead electrode 16 laminated between the electrodes 12 (A1) and 12 (A2) on the surface 11a of the insulating substrate 11 and electrically connected to the heating resistor 14, A soluble conductor 13 connected to the electrodes 12 (A1) and 12 (A2) and having a central portion connected to the heating element extraction electrode 16 is provided.
  • the protective element 90 is formed on the surface of the insulating substrate 11 on which the first and second electrodes 12 (A1) and 12 (A2) are formed, and is connected to the first external connection continuous with the first electrode 12 (A1).
  • the electrode 21, the first external connection terminal 22 (not shown) provided on the first external connection electrode 21, the second external connection electrode 23 continuous with the second electrode 12 (A2), the second A second external connection terminal 24 (not shown) provided on the external connection electrode 23 is formed.
  • the heating element extraction electrode 16 is continuously formed from the heating resistor 14.
  • the protective element 90 is provided with a cover member that protects the surface of the insulating substrate 11 (not shown).
  • the soluble conductor 13 is coated with flux (not shown) on the surface.
  • the protection element 90 has the same configuration as that of the protection element 10 described above except that the heating resistor 14 is laminated on the surface 11 a of the insulating substrate 11. Note that the surface of the heating resistor 14 is covered with an insulating layer (not shown).
  • the heating resistor 14 is laminated on the surface 11a of the insulating substrate 11, whereby the surface 11a of the insulating substrate 11 is flattened, whereby the heating element lead-out electrode 16 is connected to the electrode 12 (A1), 12 (A2) can be formed on the same plane.
  • the protective element 90 can connect the flattened soluble conductor 13 by setting the heating element extraction electrode 16 to the same height as the electrodes 12 (A1) and 12 (A2). Therefore, the protection element 90 can improve the fusing characteristics of the soluble conductor 13.
  • the protective element 90 can efficiently transfer the heat generated to the soluble conductor 13 by laminating the heating resistor 14 and the heating element extraction electrode 16 continuously, and the insulating element 15 The soluble conductor 13 can be heated in the same manner as when the heating resistor 14 and the heating element extraction electrode 16 are overlapped.
  • the protective element 90 is formed by applying the conductive paste constituting the electrodes 12 (A 1), 12 (A 2), the first and second external connection electrodes 21, 23, and the heating element extraction electrode 16 to the surface of the flat insulating substrate 11. Since the electrodes 12 (A1) and 12 (A2), the first and second external connection electrodes 21 and 23, and the heating element lead-out electrode 16 can be collectively formed by applying to 11a, the manufacturing process Can be saved. In addition, since the protective element 90 has the heating resistor 14 formed on the surface 11a of the insulating substrate 11 and does not overlap the heating element lead electrode 16, the protective element 90 can be reduced in size by reducing the thickness of the insulating substrate 11 in the thickness direction. Can be planned.
  • the protection element 100 is formed adjacent to the insulating substrate 11, the heating element 101 stacked on the surface 11 a of the insulating substrate 11, and the heating element 101 on the surface 11 a of the insulating substrate 11.
  • the electrodes 12 (A1) and 12 (A2) and the first and second external connection electrodes 21 and 23 and the electrodes 12 (A1) and 12 (A2) on the surface 11a of the insulating substrate 11 are stacked to generate heat.
  • a heating element extraction electrode 16 electrically connected to the element 101, and a fusible conductor 13 having both ends connected to the electrodes 12 (A1) and 12 (A2) and a central portion connected to the heating element extraction electrode 16 Prepare.
  • the protection element 100 is replaced with a heating element 101 in place of the heating resistor 14 except that the heating element 101 is mounted on the surface 11a of the insulating substrate 11 and connected to the heating element lead electrode 16 and to the heating element electrode 102.
  • the configuration is the same as that of the protection element 10 described above.
  • the heating element 101 is mounted on a land portion 103 formed on the surface 11 a of the insulating substrate 11.
  • the heating element electrode 102 and the above-described current control element 37 are connected, and when an abnormal voltage is detected in any of the battery cells 31 to 34, the heating element 101 is operated and the charge / discharge path of the battery stack 35 is detected. Shut off.
  • the heating element 101 is mounted on the surface 11a of the insulating substrate 11 adjacent to the electrode 12 (A1), so that the surface 11a of the insulating substrate 11 is flattened.
  • the extraction electrode 16 can be formed on the same plane as the electrodes 12 (A1) and 12 (A2).
  • the protection element 100 can connect the soluble conductor 13 planarized by making the heat generating body extraction electrode 16 the same height as the electrodes 12 (A1) and 12 (A2). Therefore, the protection element 100 can improve the fusing characteristics of the soluble conductor 13.
  • the protection element 100 can efficiently transmit the generated heat to the soluble conductor 13 by mounting the heating element 101 adjacent to the electrodes 12 (A1) and 12 (A2). It is possible to heat the soluble conductor 13 in the same manner as when the heating resistor 14 and the heating element lead electrode 16 are overlapped with each other (see FIG. 1).
  • the protective element 100 is formed by applying a conductive paste constituting the electrodes 12 (A 1), 12 (A 2), the first and second external connection electrodes 21, 23 and the heating element extraction electrode 16 to the surface 11 a of the flat insulating substrate 11. Since the electrodes 12 (A1) and 12 (A2), the first and second external connection electrodes 21 and 23, and the heating element extraction electrode 16 can be formed in a lump by applying to the substrate, labor saving in the manufacturing process Can be achieved. Further, since the protection element 100 is not formed by superimposing the heating resistor 14 on the surface 11a of the insulating substrate 11 (see FIG. 1) with the heating element extraction electrode 16, the protection element 100 is low in the thickness direction of the insulating substrate 11. Miniaturization can be achieved by turning back.
  • protection element 100 various elements can be selected and mounted as the heating element 101, and an element that generates heat at a high temperature suitable for fusing the soluble conductor 13 can be used.

Abstract

 リチウムイオン二次電池等の高電圧化、大電流化に対応して、定格を向上させることができる保護素子を提供する。絶縁基板(11)と、発熱抵抗体(14)と、第1及び第2の電極(12)(A1)(A2)と、発熱抵抗体(14)に接続された発熱体引出電極(16)と、発熱体引出電極(16)から第1及び第2の電極(12)(A1)(A2)にわたって積層され、加熱により、第1、第2の電極(12)(A1)(A2)間の電流経路を溶断する可溶導体(13)とを備え、絶縁基板(11)には、可溶導体(13)が設けられた面と同一面に、第1、第2の外部接続電極(21),(23)及び1又は複数の第1、第2の外部接続端子(22)、(24)が形成され、第1、第2の外部接続電極(21),(23)間の導通抵抗よりも、第1の外部接続端子(22)と第2の外部接続端子(24)との合成抵抗が低い。

Description

保護素子、及び保護素子が実装された実装体
 本発明は、電流経路を溶断することにより、電流経路上に接続されたバッテリの充放電を停止し、バッテリの熱暴走を抑制する保護素子に関する。本出願は、日本国において2013年6月13日に出願された日本特許出願番号特願2013-125080を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。
 充電して繰り返し利用することのできる二次電池の多くは、バッテリパックに加工されてユーザに提供される。特に重量エネルギー密度の高いリチウムイオン二次電池においては、ユーザ及び電子機器の安全を確保するために、一般的に、過充電保護、過放電保護等のいくつもの保護回路をバッテリパックに内蔵し、所定の場合にバッテリパックの出力を遮断する機能を有している。
 この種の保護回路では、バッテリパックに内蔵されたFETスイッチを用いて出力のON/OFFを行うことにより、バッテリパックの過充電保護又は過放電保護動作を行う。しかしながら、何らかの原因でFETスイッチが短絡破壊した場合、雷サージ等が印加されて瞬間的な大電流が流れた場合、あるいはバッテリセルの寿命によって出力電圧が異常に低下したり、逆に過大異常電圧を出力した場合であっても、バッテリパックや電子機器は、発火等の事故から保護されなければならない。そこで、このような想定し得るいかなる異常状態において、バッテリセルの出力を安全に遮断するために、外部からの信号によって電流経路を遮断する機能を有するヒューズ素子からなる保護素子が用いられる。
 このようなリチウムイオン二次電池等向けの保護回路の保護素子として、特許文献1に記載されているように、保護素子内部に発熱抵抗体を有し、この発熱抵抗体によって電流経路上の可溶導体を溶断する構造が一般的に用いられている。
 本発明の関連技術として、図11(A)(B)に保護素子50を示す。保護素子50は、絶縁基板51と、絶縁基板51に積層され、ガラス等の絶縁部材52に覆われた発熱抵抗体53と、絶縁基板51の両端に形成された一対の電極54,54と、絶縁部材51上に発熱抵抗体53と重畳するように積層された発熱体引出電極55と、両端が一対の電極54,54にそれぞれ接続され、中央部が発熱体引出電極55に接続された可溶導体56とを備える。
 発熱体引出電極55の一端は、第1の発熱体電極57に接続される。また、発熱抵抗体53の他端は、第2の発熱体電極58に接続される。なお、保護素子50は、可溶導体56の酸化防止のために、可溶導体56上のほぼ全面にフラックス61が塗布されている。また、保護素子50は、内部を保護するためにカバー部材を絶縁基板51上に載置してもよい。
 このような保護素子50は、絶縁基板51の表面に形成された一対の電極54,54が、絶縁基板の側面に形成された導電スルーホール59を介して、絶縁基板51の裏面に形成された外部接続電極60と電気的に接続されている。そして、保護素子50は、リチウムイオン二次電池等向け保護回路の基板上に、外部接続電極60が接続されることにより、当該保護回路の電流経路の一部を構成する。
特開2010-003665号公報
 ところで、近年、バッテリとモーターを使用したHEV(Hybrid Electric Vehicle)やEV(Electric Vehicle)が急速に普及している。HEVやEVの動力源としては、エネルギー密度と出力特性からリチウムイオン二次電池が使用されるようになってきている。また、リチウムイオン二次電池は、航空機においても実用が開始されている。自動車用途や航空機用途では、高電圧、大電流が必要とされる。このため、高電圧、大電流に耐えられる専用セルが開発されているが、製造コスト上の問題から多くの場合、複数のバッテリセルを直列、並列に接続することで、汎用セルを用いて必要な電圧、電流を確保している。
 このようなリチウムイオン二次電池等の大電流用途においては、保護素子においても、定格のさらなる向上が求められる。すなわち、リチウムイオン二次電池等が高電圧化、大電流化する一方、保護回路に搭載される保護素子が、当該高電圧化、高電流化に対応した定格を備えていない場合、通常の使用状態において電流経路上の可溶導体が溶断する恐れや、保護素子の発熱により、接続不良や周辺の素子等に悪影響を及ぼす恐れが生じる。
 そして、保護素子50においても、可溶導体によって接続された一対の電極54,54間の内部導通抵抗は定格向上に応えることができる程度に十分下げることができる(例えば1mΩ未満)。
 しかし、絶縁基板51の裏面に外部接続電極60を設け、一対の電極54,54と当該外部接続電極60とを導電スルーホール59によって接続する保護素子50においては、一対の電極54,54のそれぞれと外部接続電極60との間の導通抵抗が高く(例えば0.5~1.0mΩ)、導電スルーホール内に導体を充填したとしても、保護素子全体の導通抵抗を下げるには限界がある。
 そこで、本発明は、リチウムイオン二次電池等の高電圧化、大電流化に対応して、定格を向上させることができる保護素子及び保護素子が実装された実装体を提供することを目的とする。
 上述した課題を解決するために、本発明に係る保護素子は、絶縁基板と、上記絶縁基板に配置された発熱抵抗体と、上記絶縁基板に積層された第1及び第2の電極と、上記第1及び第2の電極の間の電流経路上で該発熱抵抗体に電気的に接続された発熱体引出電極と、上記発熱体引出電極から上記第1及び第2の電極にわたって積層され、加熱により、該第1の電極と該第2の電極との間の電流経路を溶断する可溶導体と、上記絶縁基板の上記可溶導体が設けられた面と同一面に形成され、上記第1の電極と連続する第1の外部接続電極と、上記第1の外部接続電極上に設けられる1又は複数の第1の外部接続端子と、上記第2の電極と連続する第2の外部接続電極と、上記第2の外部接続電極上に設けられる1又は複数の第2の外部接続端子とを備え、上記第1、第2の外部接続電極間の導通抵抗よりも、上記第1の外部接続端子と上記第2の外部接続端子との合成抵抗が低いことを特徴とするものである。
 また、本発明に係る実装体は、保護素子が実装対象物に実装された実装体において、上記保護素子は、絶縁基板と、上記絶縁基板に配置された発熱抵抗体と、上記絶縁基板に積層された第1及び第2の電極と、上記第1及び第2の電極の間の電流経路上で該発熱抵抗体に電気的に接続された発熱体引出電極と、上記発熱体引出電極から上記第1及び第2の電極にわたって積層され、加熱により、該第1の電極と該第2の電極との間の電流経路を溶断する可溶導体と、上記絶縁基板の上記第1、第2の電極が形成された面と同一表面に形成され、上記第1の電極と連続する第1の外部接続電極及び上記第2の電極と連続する第2の外部接続電極とを備え、上記第1の電極が上記第1の外部接続電極上に接続された第1の外部接続端子を介して上記実装対象物と接続され、上記第2の電極が上記第2の外部接続電極上に接続された第2の外部接続端子を介して上記実装対象物と接続され、上記第1、第2の外部接続電極間の導通抵抗よりも、上記第1の外部接続端子と上記第2の外部接続端子との合成抵抗が低いことを特徴とするものである。
 本発明によれば、第1、第2の外部接続電極から先の導通抵抗を容易に下げることができ、第1、第2の電極間の内部導通抵抗の低抵抗化と相まって、素子全体として定格の飛躍的な向上を図ることができる。
図1は、本発明が適用された保護素子を示す断面図である。 図2は、本発明が適用された保護素子を、カバー部材を省略して示す平面図である。 図3は、本発明が適用された他の保護素子を、カバー部材を省略して示す平面図である。 図4は、本発明が適用された保護素子が実装された実装体の構成を示すブロック図である。 図5は、本発明が適用された保護素子の回路構成例を示す図である。 図6は、可溶導体が溶断された保護素子を示す断面図である。 図7は、発熱体を絶縁基板に内蔵した保護素子の変形例を示す断面図である。 図8は、発熱体を絶縁基板の裏面に形成した保護素子の変形例を示す断面図である。 図9は、発熱体を絶縁基板の表面に形成した保護素子の変形例を示す斜視図である。 図10は、発熱素子を絶縁基板の表面に形成した保護素子の変形例を示す斜視図である。 図11は、本発明が適用された保護素子の関連技術に係る保護素子を示す図であり、(A)は平面図、(B)はA-A‘断面図である。
 以下、本発明が適用された保護素子及び保護素子が実装された実装体について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 [保護素子の構成]
 図1、図2に本発明が適用された保護素子10を示す。図1は、図2に示すA-A‘断面図である。図1、図2に示すように、保護素子10は、絶縁基板11と、絶縁基板11に積層され、絶縁部材15に覆われた発熱抵抗体14と、絶縁基板11の両端に形成された第1、第2の電極12(A1),12(A2)と、絶縁部材15上に発熱抵抗体14と重畳するように積層された発熱体引出電極16と、両端が第1、第2の電極12(A1),12(A2)にそれぞれ接続され、中央部が発熱体引出電極16に接続された可溶導体13とを備える。
 方形状の絶縁基板11は、たとえば、アルミナ、ガラスセラミックス、ムライト、ジルコニアなどの絶縁性を有する部材によって形成される。その他、ガラスエポキシ基板、フェノール基板等のプリント配線基板に用いられる材料を用いてもよいが、ヒューズ溶断時の温度に留意する必要がある。
 発熱抵抗体14は、比較的抵抗値が高く通電すると発熱する導電性を有する部材であって、たとえばW、Mo、Ru等からなる。発熱抵抗体14は、これらの合金あるいは組成物、化合物の粉状体を樹脂バインダ等と混合して、ペースト状にしたものを絶縁基板11上にスクリーン印刷技術を用いてパターン形成して、焼成する等によって形成することができる。
 絶縁基板11は、発熱抵抗体14を覆うように絶縁部材15が配置され、この絶縁部材15を介して発熱抵抗体14に対向するように発熱体引出電極16が配置される。なお、発熱抵抗体14の熱を効率良く可溶導体に伝えるために、発熱抵抗体14と絶縁基板11の間に絶縁部材15を積層しても良い。
 発熱体引出電極16の一端は、発熱体電極18(P1)に接続される。また、発熱抵抗体14の一端は発熱体電極18(P1)に接続され、他端は他方の発熱体電極18(P2)に接続される。なお、他方の発熱体電極18(P2)上には、発熱体接続端子18aが設けられている。発熱体接続端子18aは、後述する第1、第2の外部接続端子22,24と同様に、金属バンプや金属ポストを用いて形成され、上方に突出されている。
 可溶導体13は、例えば高融点金属又は低融点金属からなる単層構造体、あるいは高融点金属と低融点金属とを有する積層構造体であり、好ましくは、内層として高融点金属層、外層として低融点金属層を有する積層構造体である。なお、内層として低融点金属層、外層として高融点金属層を有するようにしてもよい。また、可溶導体13は、上層と下層の2層積層構造体としてもよく、上層として高融点金属層、下層として低融点金属層を有するようにしてもよい。
 高融点金属は、好ましくは、Ag若しくはCu又はこれらのうちのいずれかを主成分とする金属であり、リフロー炉によって基板実装を行う場合においても溶融しない高い融点を有する。低融点金属は、好ましくは、Snを主成分とする金属であり、「Pbフリーハンダ」と一般的に呼ばれる材料である(たとえば千住金属工業製、M705等)。低融点金属の融点は、必ずしもリフロー炉の温度よりも高い必要はなく、200℃程度で溶融してもよい。高融点金属層と低融点金属層とを積層することによって、リフロー温度が低融点金属の溶融温度を超えて、低融点金属層が溶融した場合であっても、可溶導体13として溶断するに至らない。可溶導体13は、高融点金属層に低融点金属層をメッキ技術を用いて成膜することによって積層構造体を形成してもよく、他の周知の積層技術、膜形成技術を用いることによって高融点金属層に低融点金属層を積層した積層構造体を形成することができる。また、逆に高融点金属層を外層とする場合も同様の成膜技術で形成することができる。なお、可溶導体13の発熱体引出電極16及び第1、第2の電極12(A1),12(A2)への接続は、低融点金属層を用いてハンダ接合することにより実現することができる。
 また、保護素子10は、可溶導体13の酸化防止のために、可溶導体13上のほぼ全面にフラックス17が塗布されている。また、保護素子10は、内部を保護するためにカバー部材19が絶縁基板11上に載置されている。カバー部材19は、第1、第2の電極12(A1),12(A2)上に形成されたガラス等の絶縁層20上に立設されてもよい。
 [構成]
 また、保護素子10は、図1、図2に示すように、絶縁基板11の第1、第2の電極12(A1),12(A2)が形成された表面に、第1の電極12(A1)と連続する第1の外部接続電極21、第1の外部接続電極21上に設けられた第1の外部接続端子22、第2の電極12(A2)と連続する第2の外部接続電極23、第2の外部接続電極23上に設けられた第2の外部接続端子24が形成されている。
 第1、第2の外部接続電極21,23は、保護素子10と保護素子10が組み込まれるリチウムイオン二次電池等の保護回路とを接続する電極であり、第1の外部接続電極21は第1の電極12(A1)と連続され、第2の外部接続電極23は第2の電極12(A2)と連続されている。
 第1、第2の外部接続電極21,23は、CuやAg等の一般的な電極材料を用いて形成され、絶縁基板11の第1、第2の電極12(A1),12(A2)の形成面と同一面に形成されている。すなわち、図1、図2に示す保護素子10は、可溶導体13が設けられる表面が実装面となる。なお、第1、第2の外部接続電極21,23は、第1、第2の電極12(A1),12(A2)と同時に形成することができる。
 第1の外部接続電極21上には、第1の外部接続端子22が設けられている。同様に、第2の外部接続電極23上には、第2の外部接続端子24が設けられている。これら第1、第2の外部接続端子22,24は、保護回路基板へ実装するための接続端子であり、例えば金属バンプや、金属ポストを用いて形成されている。また、第1、第2の外部接続端子22,24は、図1に示すように、絶縁基板11上に設けられたカバー部材19よりも突出する高さを有し、保護素子10の実装対象物となる回路基板側に実装可能とされている。
 このように、保護素子10は、関連技術として示した保護素子50のように絶縁基板51の裏面に外部接続電極60を設けて一対の電極54と当該外部接続電極60とを導電スルーホール59によって接続するものではなく(図11参照)、第1、第2の電極12(A1),12(A2)と同一表面に、外部接続電極21,23を介して外部接続端子22,24を形成している。そして、保護素子10は、可溶導体13を介して接続されている第1、第2の外部接続電極21,23間の導通抵抗よりも、第1の外部接続端子22と第2の外部接続端子24との合成抵抗が低く構成されている。
 これにより、保護素子10は、素子全体の定格を向上させ、大電流に対応することができる。すなわち、HEVやEV等の動力源等として使用されるリチウムイオン二次電池等の大電流用途においては、保護素子の定格のさらなる向上が求められている。そして、可溶導体13によって接続された第1、第2の外部接続電極21,23間の内部導通抵抗は定格向上に応えることができる程度に十分下げることができる(例えば1mΩ未満)。
 加えて、保護素子10は、第1、第2の電極12(A1),12(A2)と同一表面に外部接続端子22,24を設けている。この外部接続端子22,24は、外部接続電極21,23上に設けるものであり、形状やサイズ等の自由度が高く、導通抵抗の低い端子を容易に設けることができる。これにより、保護素子10は、第1、第2の外部接続電極21,23間の内部導通抵抗よりも、第1の外部接続端子22と第2の外部接続端子24との合成抵抗が低く構成されている。
 したがって、保護素子10によれば、保護素子50の構成においては高くなる第1、第2の外部接続電極21,23から先の導通抵抗を容易に下げることができ、第1、第2の外部接続電極21,23間の内部導通抵抗の低抵抗化と相まって、素子全体として定格の飛躍的な向上を図ることができる。
 第1、第2の外部接続端子22,24としては、例えば、Snを主成分とするPbフリーハンダからなる金属バンプや金属ポストを用いて構成することができる。金属バンプや金属ポストの形状は問わない。第1、第2の外部接続端子22,24の抵抗値は材料や形状、サイズから求めることができる。一例として、Cuコアの表面にハンダをコーティングした直方体の金属ポスト(Cuコア:0.6mm×0.6mm、断面積0.36mm2、高さ1mm、比抵抗17.2μΩ・mm)を用いた場合、その1端子のCuコア部抵抗値は約0.048mΩであり、ハンダコーティング分を考慮すると第1、第2の外部接続端子22,24を直列接続させた抵抗値が0.096mΩ未満と低く、保護素子10全体の定格を向上できることがわかる。
 なお、保護素子10は、第1、第2の外部接続端子22,24間に亘る抵抗値より素子全体の全抵抗値を求め、この全抵抗値と既知である第1、第2の外部接続端子22,24の合成抵抗との差より、第1、第2の外部接続電極21,23間の内部導通抵抗を求めることができる。また、保護素子10は、第1、第2の外部接続電極21,23間の内部導通抵抗を測定し、素子全体の全抵抗値との差より、第1、第2の外部接続端子22,24の合成抵抗を求めることができる。
 また、図3に示すように、保護素子10は、第1、第2の外部接続電極21,23を矩形状に形成する等により広く設け、第1、第2の外部接続端子22,24を複数設けることにより導通抵抗を下げるようにしてもよい。その他にも、保護素子10は、広く設けた第1、第2の外部接続電極21,23に大径の第1、第2の外部接続端子22,24を設けることにより導通抵抗を下げるようにしてもよい。
 また、第1、第2の外部接続端子22,24は、コアとなる高融点金属22a,24aの表面に低融点金属層22b,24bを設けることにより形成してもよい。低融点金属層22b,24bを構成する金属としては、Snを主成分とするPbフリーハンダなどのハンダを好適に用いることができ、高融点金属22a,24aとしては、CuやAgを主成分とする合金などを好適に用いることができる。
 高融点金属22a,24aの表面に低融点金属層22b,24bを設けることにより、保護素子10をリフロー実装する場合に、リフロー温度が低融点金属層22b,24bの溶融温度を超えて、低融点金属が溶融しても、第1、第2の外部接続端子22,24として溶融することを防止することができる。また、第1、第2の外部接続端子22,24は、外層を構成する低融点金属を用いて、第1、第2の外部接続電極21,23へ接続することができる。
 第1、第2の外部接続端子22,24は、高融点金属22a,24aに低融点金属をメッキ技術を用いて成膜することにより形成することができ、またその他の周知の積層技術、膜形成技術を用いることによっても形成することができる。
 なお、第1、第2の外部接続端子22,24は、金属バンプや金属ポストを用いて形成する他にも、導電メッキ層や、導電ペーストを塗布することにより形成された導電層により形成してもよい。
 また、第1、第2の外部接続端子22,24は、保護素子10が実装される回路基板等の実装対象物側に予め設け、保護素子10が実装された実装体において、第1、第2の外部接続電極21,23と接続されるようにしてもよい。
 [保護素子の使用方法]
 このような保護素子10は、図4に示すように、例えばリチウムイオン二次電池のバッテリパック30内の回路に組み込まれて用いられる。バッテリパック30は、例えば、合計4個のリチウムイオン二次電池のバッテリセル31~34からなるバッテリスタック35を有する。
 バッテリパック30は、バッテリスタック35と、バッテリスタック35の充放電を制御する充放電制御回路40と、バッテリスタック35の異常時に充電を遮断する本発明が適用された保護素子10と、各バッテリセル31~34の電圧を検出する検出回路36と、検出回路36の検出結果に応じて保護素子10の動作を制御する電流制御素子37とを備える。
 バッテリスタック35は、過充電及び過放電状態から保護するための制御を要するバッテリセル31~34が直列接続されたものであり、バッテリパック30の正極端子30a、負極端子30bを介して、着脱可能に充電装置45に接続され、充電装置45からの充電電圧が印加される。充電装置45により充電されたバッテリパック30の正極端子30a、負極端子30bをバッテリで動作する電子機器に接続することによって、この電子機器を動作させることができる。
 充放電制御回路40は、バッテリスタック35から充電装置45に流れる電流経路に直列接続された2つの電流制御素子41、42と、これらの電流制御素子41、42の動作を制御する制御部43とを備える。電流制御素子41、42は、たとえば電界効果トランジスタ(以下、FETと呼ぶ。)により構成され、制御部43によりゲート電圧を制御することによって、バッテリスタック35の電流経路の導通と遮断とを制御する。制御部43は、充電装置45から電力供給を受けて動作し、検出回路36による検出結果に応じて、バッテリスタック35が過放電又は過充電であるとき、電流経路を遮断するように、電流制御素子41、42の動作を制御する。
 保護素子10は、たとえば、バッテリスタック35と充放電制御回路40との間の充放電電流経路上に接続され、その動作が電流制御素子37によって制御される。
 検出回路36は、各バッテリセル31~34と接続され、各バッテリセル31~34の電圧値を検出して、各電圧値を充放電制御回路40の制御部43に供給する。また、検出回路36は、いずれか1つのバッテリセル31~34が過充電電圧又は過放電電圧になったときに電流制御素子37を制御する制御信号を出力する。
 電流制御素子37は、たとえばFETにより構成され、検出回路36から出力される検出信号によって、バッテリセル31~34の電圧値が所定の過放電又は過充電状態を超える電圧になったとき、保護素子10を動作させて、バッテリスタック35の充放電電流経路を電流制御素子41、42のスイッチ動作によらず遮断するように制御する。
 以上のような構成からなるバッテリパック30において、本発明が適用された保護素子10は、図5に示すような回路構成を有する。すなわち、保護素子10は、発熱体引出電極16を介して直列接続された可溶導体13と、可溶導体13の接続点を介して通電して発熱させることによって可溶導体13を溶融する発熱抵抗体14とからなる回路構成である。また、保護素子10では、たとえば、可溶導体13が充放電電流経路上に直列接続され、発熱抵抗体14が電流制御素子37と接続される。保護素子10の2個の電極12のうち、第1の電極は、第1の外部接続端子22を介してA1に接続され、第2の電極は、第2の外部接続端子24を介してA2に接続される。また、発熱体引出電極16とこれに接続された発熱体電極18は、P1に接続され、他方の発熱体電極18は、P2に接続される。
 このような保護素子10が実装された実装体であるバッテリパック30の回路構成において、保護素子10は、可溶導体13を介して接続されている第1、第2の外部接続電極21,23間の導通抵抗よりも、第1の外部接続端子22と第2の外部接続端子24との合成抵抗が低く構成されている。これにより、バッテリパック30は、保護素子10が素子全体として定格が向上され、大電流に対応することができる。
 また、バッテリパック30は、保護素子10の発熱抵抗体14が発熱されると、可溶導体13が溶融し、図6に示すように、その濡れ性によって、発熱体引出電極16上に引き寄せられる。その結果、保護素子10は、可溶導体13が溶断することにより、確実に電流経路を遮断することができる。
 なお、本発明の保護素子は、リチウムイオン二次電池のバッテリパックに用いる場合に限らず、電気信号による電流経路の遮断を必要とする様々な用途にももちろん適用可能である。
 [変形例1]
 図7は、発熱抵抗体14の配置位置を変えたものを用いた場合の変形例である。なお、以下の説明において、上述した保護素子10の構成と同じ構成については、同じ符号を付してその詳細を省略する。
 図7に示すように、保護素子70は、絶縁基板11と、絶縁基板11に内蔵された発熱抵抗体14と、絶縁基板11の両端に形成された電極12(A1),12(A2)と、絶縁基板11上に発熱抵抗体14と重畳するように積層された発熱体引出電極16と、両端が電極12(A1),12(A2)に接続され、中央部が発熱体引出電極16に接続された可溶導体13とを備える。
 また、保護素子70は、絶縁基板11の第1、第2の電極12(A1),12(A2)が形成された表面に、第1の電極12(A1)と連続する第1の外部接続電極21、第1の外部接続電極21上に設けられた第1の外部接続端子22、第2の電極12(A2)と連続する第2の外部接続電極23、第2の外部接続電極23上に設けられた第2の外部接続端子24が形成されている。
 なお、保護素子70は、絶縁基板11の表面上を保護するカバー部材19が設けられている。また、可溶導体13は、表面上に、フラックス17が塗布されている。保護素子70は、発熱抵抗体14が絶縁基板11に内蔵された点、及び絶縁部材15が設けられていない点を除いて、上述した保護素子10と同様の構成を有する。
 この保護素子70は、発熱抵抗体14が絶縁基板11に内蔵されることにより、絶縁基板11の表面11aが平坦化され、これにより、発熱体引出電極16を電極12(A1),12(A2)と同一平面上に形成することができる。そして、保護素子70は、発熱体引出電極16を電極12(A1),12(A2)と同じ高さにすることにより、平坦化された可溶導体13を接続することができる。したがって、保護素子70は、可溶導体13の溶断特性を向上させることができる。
 また、保護素子70は、絶縁基板11の材料として熱伝導性に優れたものを用いることにより、発熱抵抗体14によって、ガラス層等の絶縁部材15を介した場合と同等に可溶導体13を加熱することができる。
 さらに、保護素子70は、絶縁部材15が不要となり、また、電極12(A1),12(A2)、発熱体引出電極16及び第1、第2の外部接続電極21,23を構成する導電ペーストを平坦な絶縁基板11の表面11aに塗布することにより、電極12(A1),12(A2)、発熱体引出電極16及び第1、第2の外部接続電極21,23を一括して形成することができるため、製造工程の省力化を図ることができる。また、保護素子70は、発熱抵抗体14を絶縁基板11に内蔵し、11aの表面上において発熱抵抗体14と発熱体引出電極16と重畳させていないため、絶縁基板11の厚さ方向の低背化による小型化を図ることができる。
 [変形例2]
 図8は、発熱抵抗体14の配置位置を変えたものを用いた場合の変形例である。
 図8に示すように、保護素子80は、絶縁基板11と、絶縁基板11の裏面11bに積層され、絶縁部材15に覆われた発熱抵抗体14と、絶縁基板11の両端に形成された電極12(A1),12(A2)と、絶縁基板11上に発熱抵抗体14と重畳するように積層された発熱体引出電極16と、両端が電極12(A1),12(A2)に接続され、中央部が発熱体引出電極16に接続された可溶導体13とを備える。
 また、保護素子80は、絶縁基板11の第1、第2の電極12(A1),12(A2)が形成された表面に、第1の電極12(A1)と連続する第1の外部接続電極21、第1の外部接続電極21上に設けられた第1の外部接続端子22、第2の電極12(A2)と連続する第2の外部接続電極23、第2の外部接続電極23上に設けられた第2の外部接続端子24が形成されている。
 なお、保護素子80は、絶縁基板11の表面上を保護するカバー部材19が設けられている。また、可溶導体13は、表面上に、フラックス17が塗布されている。保護素子80は、発熱抵抗体14が絶縁基板11の裏面11bに積層された点を除いて、上述した保護素子10と同様の構成を有する。
 この保護素子80においても、発熱抵抗体14が絶縁基板11の裏面11bに積層されることにより、絶縁基板11の表面11aが平坦化され、これにより、発熱体引出電極16を電極12(A1),12(A2)と同一平面上に形成することができる。そして、保護素子80は、発熱体引出電極16を電極12(A1),12(A2)と同じ高さにすることにより、平坦化された可溶導体13を接続することができる。したがって、保護素子80は、可溶導体13の溶断特性を向上させることができる。
 また、保護素子80は、絶縁基板11の材料として熱伝導性に優れたものを用いることにより、発熱抵抗体14によって、絶縁基板11の表面11a上に積層した場合と同等に可溶導体13を加熱することができる。
 さらに、保護素子80は、電極12(A1),12(A2)、発熱体引出電極16及び第1、第2の外部接続電極21,23を構成する導電ペーストを平坦な絶縁基板11の表面11aに塗布することにより、電極12(A1),12(A2)、発熱体引出電極16及び第1、第2の外部接続電極21,23を一括して形成することができるため、製造工程の省力化を図ることができる。
 [変形例3]
 図9は、発熱抵抗体14の配置位置を変えたものを用いた場合の変形例である。
 図9に示すように、保護素子90は、絶縁基板11と、絶縁基板11の表面11a上に積層された発熱抵抗体14と、絶縁基板11の表面11a上に形成された電極12(A1),12(A2)と、絶縁基板11の表面11a上の電極12(A1),12(A2)間に積層され、発熱抵抗体14と電気的に接続された発熱体引出電極16と、両端が電極12(A1),12(A2)に接続され、中央部が発熱体引出電極16に接続された可溶導体13とを備える。
 また、保護素子90は、絶縁基板11の第1、第2の電極12(A1),12(A2)が形成された表面に、第1の電極12(A1)と連続する第1の外部接続電極21、第1の外部接続電極21上に設けられた第1の外部接続端子22(図示せず)、第2の電極12(A2)と連続する第2の外部接続電極23、第2の外部接続電極23上に設けられた第2の外部接続端子24(図示せず)が形成されている。保護素子90は、発熱体引出電極16が、発熱抵抗体14から連続して形成されている。
なお、保護素子90は、絶縁基板11の表面上を保護するカバー部材が設けられている(図示せず)。また、可溶導体13は、表面上に、フラックスが塗布されている(図示せず)。保護素子90は、発熱抵抗体14が絶縁基板11の表面11aに積層された点を除いて、上述した保護素子10と同様の構成を有する。なお、発熱抵抗体14は、図示しない絶縁層によって表面が被覆されている。
 この保護素子90は、発熱抵抗体14が絶縁基板11の表面11aに積層されることにより、絶縁基板11の表面11aが平坦化され、これにより、発熱体引出電極16を電極12(A1),12(A2)と同一平面上に形成することができる。そして、保護素子90は、発熱体引出電極16を電極12(A1),12(A2)と同じ高さにすることにより、平坦化された可溶導体13を接続することができる。したがって、保護素子90は、可溶導体13の溶断特性を向上させることができる。
 また、保護素子90は、発熱抵抗体14と発熱体引出電極16とを連続させて積層することにより、発熱した熱を効率よく可溶導体13に伝達することができ、絶縁部材15を介して発熱抵抗体14と発熱体引出電極16とを重畳させた場合と同等に可溶導体13を加熱することができる。
 さらに、保護素子90は、電極12(A1),12(A2)、第1、第2の外部接続電極21,23、及び発熱体引出電極16を構成する導電ペーストを平坦な絶縁基板11の表面11aに塗布することにより、電極12(A1),12(A2)、第1、第2の外部接続電極21,23、及び発熱体引出電極16を一括して形成することができるため、製造工程の省力化を図ることができる。また、保護素子90は、発熱抵抗体14を絶縁基板11の表面11aに形成し、かつ発熱体引出電極16と重畳させていないため、絶縁基板11の厚さ方向の低背化による小型化を図ることができる。
 [変形例4]
 図10は、導電性ペーストを塗布、焼成することにより発熱抵抗体14を形成する構成に代えて、発熱素子を用いて、これを電極12(A1),12(A2)の近傍に隣接させた場合の変形例である。
 図10に示すように、保護素子100は、絶縁基板11と、絶縁基板11の表面11a上に積層された発熱素子101と、絶縁基板11の表面11a上に発熱素子101と隣接して形成された電極12(A1),12(A2)及び第1、第2の外部接続電極21,23と、絶縁基板11の表面11a上の電極12(A1),12(A2)間に積層され、発熱素子101と電気的に接続された発熱体引出電極16と、両端が電極12(A1),12(A2)に接続され、中央部が発熱体引出電極16に接続された可溶導体13とを備える。保護素子100は、発熱抵抗体14に代えて、発熱素子101が絶縁基板11の表面11aに実装され、発熱体引出電極16と接続されるとともに、発熱素子電極102と接続されている点を除いて、上述した保護素子10と同様の構成を有する。発熱素子101は、絶縁基板11の表面11aに形成されたランド部103上に実装されている。
 保護素子100は、発熱素子電極102と上述した電流制御素子37とが接続され、バッテリセル31~34のいずれかについて異常電圧を検出すると、発熱素子101が動作され、バッテリスタック35の充放電経路を遮断する。
 この保護素子100においても、発熱素子101が絶縁基板11の表面11aに、電極12(A1)に隣接して実装されることにより、絶縁基板11の表面11aが平坦化され、これにより、発熱体引出電極16を電極12(A1),12(A2)と同一平面上に形成することができる。そして、保護素子100は、発熱体引出電極16を電極12(A1),12(A2)と同じ高さにすることにより、平坦化された可溶導体13を接続することができる。したがって、保護素子100は、可溶導体13の溶断特性を向上させることができる。
 また、保護素子100は、発熱素子101を電極12(A1),12(A2)に隣接して実装することにより、発熱した熱を効率よく可溶導体13に伝達することができ、絶縁部材15を介して発熱抵抗体14と発熱体引出電極16とを重畳させた場合(図1参照)と同等に可溶導体13を加熱することができる。
 さらに、保護素子100は、電極12(A1),12(A2)、第1、第2の外部接続電極21,23及び発熱体引出電極16を構成する導電ペーストを平坦な絶縁基板11の表面11aに塗布することにより、電極12(A1),12(A2)、第1、第2の外部接続電極21,23及び発熱体引出電極16を一括して形成することができるため、製造工程の省力化を図ることができる。また、保護素子100は、絶縁基板11の表面11a上に発熱抵抗体14を発熱体引出電極16と重畳させて形成するもの(図1参照)ではないため、絶縁基板11の厚さ方向の低背化による小型化を図ることができる。
 また、保護素子100は、発熱素子101として、種々のものを選択、実装することができ、可溶導体13の溶断に適した高温を発熱する素子を用いることができる。
10 保護素子、11 絶縁基板、12 電極、13 可溶導体、14 発熱抵抗体、15 絶縁部材、16 発熱体引出電極、17 フラックス、18 発熱体電極、18a 発熱体接続端子、19 カバー部材、20 絶縁層、21 第1の外部接続電極、22 第1の外部接続端子、23 第2の外部接続電極、24 第2の外部接続端子、30 バッテリパック、31~34 バッテリセル、36 検出回路、37 電流制御素子、40 充放電制御回路、41,42 電流制御素子、43 制御部、45 充電装置 

Claims (11)

  1.  絶縁基板と、
     上記絶縁基板に配置された発熱抵抗体と、
     上記絶縁基板に積層された第1及び第2の電極と、
     上記第1及び第2の電極の間の電流経路上で該発熱抵抗体に電気的に接続された発熱体引出電極と、
     上記発熱体引出電極から上記第1及び第2の電極にわたって積層され、加熱により、該第1の電極と該第2の電極との間の電流経路を溶断する可溶導体と、
     上記絶縁基板の上記可溶導体が設けられた面と同一面に形成され、上記第1の電極と連続する第1の外部接続電極と、上記第1の外部接続電極上に設けられる1又は複数の第1の外部接続端子と、上記第2の電極と連続する第2の外部接続電極と、上記第2の外部接続電極上に設けられる1又は複数の第2の外部接続端子とを備え、
     上記第1、第2の外部接続電極間の導通抵抗よりも、上記第1の外部接続端子と上記第2の外部接続端子との合成抵抗が低いことを特徴とする保護素子。
  2.  上記外部接続端子が、金属バンプ又は金属ポストである請求項1記載の保護素子。
  3.  上記金属バンプ又は金属ポストは、高融点金属の表面に低融点金属層が形成されている請求項2記載の保護素子。
  4.  上記高融点金属は銅又は銀を主成分とし、上記低融点金属は錫を主成分とする鉛フリー半田である請求項3記載の保護素子。
  5.  上記外部接続端子が、錫を主成分とする鉛フリー半田からなる金属バンプである請求項1記載の保護素子。
  6.  上記可溶導体が、高融点金属と低融点金属による積層構造体である請求項1~5のいずれか1項に記載の保護素子。
  7.  上記可溶導体が、内層を高融点金属、外層を低融点金属とする積層構造体である請求項6記載の保護素子。
  8.  上記可溶導体が、外層を高融点金属、内層を低融点金属とする積層構造体である請求項6記載の保護素子。
  9.  上記可溶導体が、上層を高融点金属層、下層を低融点金属層とする2層積層構造体である請求項6記載の保護素子。
  10.  上記可溶導体を構成する上記高融点金属はAg若しくはCu又はこれらのうちのいずれかを主成分とする金属であり、上記低融点金属はSnを主成分とする金属である請求項6記載の保護素子。
  11.  保護素子が実装対象物に実装された実装体において、
     上記保護素子は、
     絶縁基板と、
     上記絶縁基板に配置された発熱抵抗体と、
     上記絶縁基板に積層された第1及び第2の電極と、
     上記第1及び第2の電極の間の電流経路上で該発熱抵抗体に電気的に接続された発熱体引出電極と、 
     上記発熱体引出電極から上記第1及び第2の電極にわたって積層され、加熱により、該第1の電極と該第2の電極との間の電流経路を溶断する可溶導体と、
     上記絶縁基板の上記第1、第2の電極が形成された面と同一表面に形成され、上記第1の電極と連続する第1の外部接続電極及び上記第2の電極と連続する第2の外部接続電極とを備え、
     上記第1の電極が上記第1の外部接続電極上に接続された第1の外部接続端子を介して上記実装対象物と接続され、上記第2の電極が上記第2の外部接続電極上に接続された第2の外部接続端子を介して上記実装対象物と接続され、
     上記第1、第2の外部接続電極間の導通抵抗よりも、上記第1の外部接続端子と上記第2の外部接続端子との合成抵抗が低いことを特徴とする実装体。
PCT/JP2014/065067 2013-06-13 2014-06-06 保護素子、及び保護素子が実装された実装体 WO2014199911A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480033542.7A CN105324829B (zh) 2013-06-13 2014-06-06 保护元件及安装保护元件的安装体
KR1020167000147A KR102217413B1 (ko) 2013-06-13 2014-06-06 보호 소자, 및 보호 소자가 실장된 실장체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-125080 2013-06-13
JP2013125080A JP6058476B2 (ja) 2013-06-13 2013-06-13 保護素子、及び保護素子が実装された実装体

Publications (1)

Publication Number Publication Date
WO2014199911A1 true WO2014199911A1 (ja) 2014-12-18

Family

ID=52022207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065067 WO2014199911A1 (ja) 2013-06-13 2014-06-06 保護素子、及び保護素子が実装された実装体

Country Status (5)

Country Link
JP (1) JP6058476B2 (ja)
KR (1) KR102217413B1 (ja)
CN (1) CN105324829B (ja)
TW (1) TWI629701B (ja)
WO (1) WO2014199911A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107134558B (zh) * 2016-02-29 2020-02-04 比亚迪股份有限公司 电池模组和笔记本电脑
CN109148414A (zh) * 2017-06-13 2019-01-04 中芯国际集成电路制造(上海)有限公司 一种电可编程熔丝结构及电子装置
JP7393898B2 (ja) * 2019-09-04 2023-12-07 デクセリアルズ株式会社 保護素子

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122350U (ja) * 1982-02-15 1983-08-20 株式会社フジクラ ヒユ−ジブルリンク
JP2000285777A (ja) * 1999-03-31 2000-10-13 Nec Kansai Ltd 保護素子
JP2000348583A (ja) * 1999-06-07 2000-12-15 Uchihashi Estec Co Ltd 合金型温度ヒュ−ズ
JP2004185960A (ja) * 2002-12-03 2004-07-02 Kamaya Denki Kk 回路保護素子とその製造方法
JP2010003665A (ja) * 2008-05-23 2010-01-07 Sony Chemical & Information Device Corp 保護素子及び二次電池装置
JP2011134700A (ja) * 2009-11-28 2011-07-07 Kyocera Corp 抵抗温度ヒューズパッケージおよび抵抗温度ヒューズ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8824122B2 (en) * 2010-11-01 2014-09-02 Avx Corporation Solid electrolytic capacitor for use in high voltage and high temperature applications

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122350U (ja) * 1982-02-15 1983-08-20 株式会社フジクラ ヒユ−ジブルリンク
JP2000285777A (ja) * 1999-03-31 2000-10-13 Nec Kansai Ltd 保護素子
JP2000348583A (ja) * 1999-06-07 2000-12-15 Uchihashi Estec Co Ltd 合金型温度ヒュ−ズ
JP2004185960A (ja) * 2002-12-03 2004-07-02 Kamaya Denki Kk 回路保護素子とその製造方法
JP2010003665A (ja) * 2008-05-23 2010-01-07 Sony Chemical & Information Device Corp 保護素子及び二次電池装置
JP2011134700A (ja) * 2009-11-28 2011-07-07 Kyocera Corp 抵抗温度ヒューズパッケージおよび抵抗温度ヒューズ

Also Published As

Publication number Publication date
TWI629701B (zh) 2018-07-11
JP2015002030A (ja) 2015-01-05
KR102217413B1 (ko) 2021-02-18
TW201511059A (zh) 2015-03-16
JP6058476B2 (ja) 2017-01-11
KR20160019086A (ko) 2016-02-18
CN105324829B (zh) 2017-12-05
CN105324829A (zh) 2016-02-10

Similar Documents

Publication Publication Date Title
JP6249602B2 (ja) 保護素子
JP6437253B2 (ja) 保護素子及び実装体
KR102115999B1 (ko) 단락 소자, 및 이것을 사용한 회로
KR102099799B1 (ko) 퓨즈 소자
JP7281274B2 (ja) 保護素子及びバッテリパック
WO2013146889A1 (ja) 保護素子
JP5952674B2 (ja) 保護素子及びバッテリパック
WO2014021157A1 (ja) 保護素子及びバッテリパック
JP6161967B2 (ja) 短絡素子、およびこれを用いた回路
WO2016017567A1 (ja) 保護素子及び保護回路
WO2015045278A1 (ja) 短絡素子
JP6246503B2 (ja) 短絡素子、およびこれを用いた回路
WO2015186739A1 (ja) 短絡素子
KR102233539B1 (ko) 단락 소자 및 단락 회로
JP6356470B2 (ja) 保護素子
WO2014199911A1 (ja) 保護素子、及び保護素子が実装された実装体
JP6078332B2 (ja) 保護素子、バッテリモジュール
WO2021210634A1 (ja) 保護素子及びバッテリパック
JP2016035881A (ja) 短絡素子
TW201816824A (zh) 保護元件
JP2014170727A (ja) 短絡素子、およびこれを用いた回路
WO2022181652A1 (ja) 保護素子及びバッテリパック
WO2015075928A1 (ja) 短絡素子
WO2015107633A1 (ja) 保護素子、バッテリモジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480033542.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14811628

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167000147

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14811628

Country of ref document: EP

Kind code of ref document: A1