WO2014199811A1 - ハイブリッド車両及びその制御方法 - Google Patents

ハイブリッド車両及びその制御方法 Download PDF

Info

Publication number
WO2014199811A1
WO2014199811A1 PCT/JP2014/063867 JP2014063867W WO2014199811A1 WO 2014199811 A1 WO2014199811 A1 WO 2014199811A1 JP 2014063867 W JP2014063867 W JP 2014063867W WO 2014199811 A1 WO2014199811 A1 WO 2014199811A1
Authority
WO
WIPO (PCT)
Prior art keywords
braking torque
braking
torque
motor generator
determination line
Prior art date
Application number
PCT/JP2014/063867
Other languages
English (en)
French (fr)
Inventor
治雄 鈴木
芳久 小泉
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2014199811A1 publication Critical patent/WO2014199811A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/10Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels by utilising wheel movement for accumulating energy, e.g. driving air compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/58Combined or convertible systems
    • B60T13/585Combined or convertible systems comprising friction brakes and retarders
    • B60T13/586Combined or convertible systems comprising friction brakes and retarders the retarders being of the electric type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/198Conjoint control of vehicle sub-units of different type or different function including control of braking systems with exhaust brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18136Engine braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/04Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning exhaust conduits
    • F02D9/06Exhaust brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • B60T2270/604Merging friction therewith; Adjusting their repartition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/89Repartition of braking force, e.g. friction braking versus regenerative braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a hybrid vehicle including a hybrid system having a function of using both an internal combustion engine and a motor generator as a driving source for driving the vehicle. More specifically, the present invention maximizes the use of braking energy as charging energy. However, the present invention relates to a hybrid vehicle and a control method thereof that can sufficiently secure a braking torque during deceleration of the hybrid vehicle.
  • a hybrid vehicle equipped with both an internal combustion engine and a motor generator
  • the vehicle is roughly divided into electricity generated by a generator driven by the internal combustion engine or driven by electricity from a battery charged with the generated electricity.
  • a deceleration comparison unit that compares a preset target deceleration and an actual deceleration due to the regenerative torque generated by the regenerative power generation when using the regenerative torque generated by the regenerative power generation of the motor as the braking force when decelerating the motor;
  • the engine and electric motor will work together, and both the engine brake of the engine and the regenerative torque of the electric motor will be used as braking force.
  • Hybrid vehicle and the like have been proposed having a regeneration control section, the that.
  • this hybrid vehicle has a traveling form in which the engine and the motor cooperate in the next deceleration when the deceleration during the traveling by the electric motor alone is insufficient with the regenerative torque of the electric motor alone. Therefore, at the time of deceleration during traveling by the initial electric motor alone, the vehicle is decelerated only by insufficient regenerative torque of the electric motor, so that there is a problem that a braking torque of the hybrid vehicle cannot be sufficiently secured.
  • the present inventor aims to provide a hybrid vehicle and a control method thereof that can sufficiently secure a braking torque when the hybrid vehicle is decelerated while using the braking energy as charging energy.
  • the target required braking torque required for deceleration can be applied only by the regenerative torque generated by generating power with the motor generator, only the regenerative torque of the motor generator is set, and the target required braking torque is set.
  • the braking torque by the engine brake of the internal combustion engine is added to the regenerative torque of the motor generator, and further, the target required braking torque is equal to the regenerative torque of the motor generator. If the sum of the maximum value and the maximum braking torque by the engine brake is exceeded, the motor regenerative torque and engine The braking torque by the brake, considered that the braking control operation by adding the braking torque due to the exhaust brake.
  • the engine brake is simply set to the maximum value of the regenerative torque. If the braking torque due to or the braking torque due to the exhaust brake is added, the target required braking torque will be exceeded. Therefore, in order to make the entire braking torque coincide with the target required braking torque, it is necessary to reduce the regenerative torque on the motor generator side by an amount exceeding the target required braking torque, and the regenerative energy is reduced accordingly. The problem of end.
  • a compression release brake also called a Jake brake
  • a compression release brake is used in a diesel engine or the like to assist braking torque of a large vehicle.
  • this compression release brake the compression of air in the cylinder is released by opening the exhaust valve without injecting fuel when the piston reaches near the top dead center in the compression stroke of the diesel engine.
  • the braking torque can be adjusted by adjusting and controlling the timing and degree of opening of the exhaust valve.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a hybrid vehicle including a hybrid system having a function of using both an internal combustion engine and a motor generator as a driving source for traveling the vehicle. It is an object of the present invention to provide a hybrid vehicle and a control method therefor that can sufficiently secure a braking torque when the hybrid vehicle is decelerated while using braking energy as charging energy to the maximum.
  • a hybrid vehicle of the present invention is a hybrid vehicle having a hybrid system having a function of using both an internal combustion engine and a motor generator as a driving source for driving the vehicle, and controls the hybrid system.
  • a control device that performs a first determination line indicating the maximum value of the braking torque of the motor generator based on the number of revolutions, and the braking torque of the compression release brake of the internal combustion engine is added to the braking torque of the first determination line.
  • Braking control data provided with a second determination line indicating the braking torque to which the value is added is prepared in advance, and the target required braking torque required for decelerating the hybrid vehicle is the first determination line and zero
  • the first braking control operation in which a braking torque is applied only by the regenerative torque generated by the power generation by the motor generator.
  • the required braking torque is in the second determination region between the first determination line and the second determination line, the regenerative torque generated by the power generation by the motor generator is braked by the compression release brake of the internal combustion engine.
  • the second brake control operation is performed with torque applied.
  • This braking control data is expressed by map data (deceleration cooperative control map), a function based on the number of revolutions, etc., and this number of revolutions is the number of revolutions of the axle or wheels of the hybrid vehicle,
  • map data deceleration cooperative control map
  • this number of revolutions is the number of revolutions of the axle or wheels of the hybrid vehicle.
  • the rotational speed of the motor generator and the rotational speed of the internal combustion engine, and these rotational speeds are closely related to each other. What is necessary is just to select and use a rotation speed.
  • This compression release brake is a mechanism that opens the exhaust valve without injecting fuel when the piston reaches near the top dead center during the compression stroke of the engine, and exhausts when the piston reaches near the top dead center. By opening the valve and letting the compressed air escape to the exhaust passage, the pressure energy is released and more energy loss is generated. Furthermore, if the exhaust valve is closed after the piston has passed through the top dead center, there is no fuel combustion, so the pressure in the cylinder decreases as the piston descends, making it resistant to piston lowering and crankshaft rotation. . As a result, braking torque is generated.
  • the regenerative torque of the motor generator is generated in the first braking control operation, and power is generated by the regenerative control of the motor generator.
  • the braking energy is obtained by adding the braking torque by the compression release brake of the internal combustion engine to the regenerative torque of the motor generator in the second braking control operation. The braking torque at the time of deceleration of the hybrid vehicle can be sufficiently ensured while maximally utilizing as the charging energy.
  • the compression release brake can adjust the braking torque by adjusting and controlling the timing and degree of opening of the exhaust valve, so that the regenerative torque by the motor generator is maximized.
  • the regenerative energy can be utilized to the maximum by the motor generator.
  • the braking control data indicates a braking torque obtained by adding a maximum value of a braking torque of an exhaust brake provided in an exhaust passage connected to the internal combustion engine to a braking torque of the second determination line.
  • 3 determination lines are set in advance, and the control device generates power with the motor generator when the target required braking torque is in a third determination region between the second determination line and the third determination line. If the third braking control operation is performed by adding the braking torque generated by the operation of the exhaust brake to the regenerative torque generated in this manner and the braking torque generated by the compression release brake of the internal combustion engine, the following effects can be obtained.
  • the braking torque due to the operation of the exhaust brake referred to here means that the exhaust pressure is increased by closing an exhaust brake valve provided in the middle of the exhaust passage, and the pumping loss is further increased. Is a braking torque obtained by increasing.
  • the target required braking torque cannot be ensured even if the braking torque by the compression release brake of the internal combustion engine is added to the regenerative torque of the motor generator, the regenerative torque of the motor generator and the By adding the braking torque by the operation of the exhaust brake in addition to the braking torque by the compression release brake of the internal combustion engine, the target required braking torque can be sufficiently ensured while using the braking energy as the charging energy.
  • a hybrid vehicle control method for achieving the above object is a hybrid vehicle control method including a hybrid system having a function of using both an internal combustion engine and a motor generator as a drive source for running the vehicle. Based on the number of revolutions, the first determination line indicating the maximum value of the braking torque of the motor generator, and the braking torque of the first determination line are set to the maximum value of the braking torque by the compression release brake of the internal combustion engine. Using the braking control data provided with the second determination line indicating the added braking torque, the target required braking torque required for decelerating the hybrid vehicle is between the first determination line and zero.
  • a first braking control operation is performed in which energy is recovered by applying braking torque to the wheels of the hybrid vehicle only by power generation of the motor generator,
  • the target required braking torque is in the second determination region between the first determination line and the second determination line, the braking torque is applied to the wheels by the power generation of the motor generator to recover energy.
  • the second braking control operation for generating the braking torque of the wheel by the compression release brake of the internal combustion engine is performed.
  • the braking torque is increased by adding the braking torque by the compression release brake of the internal combustion engine to the regenerative torque of the motor generator.
  • the braking torque at the time of deceleration of the hybrid vehicle can be sufficiently secured while maximally using energy as charging energy.
  • the maximum value of the braking torque of the exhaust brake provided in the exhaust passage connected to the internal combustion engine is added to the braking torque of the second determination line in the braking control data.
  • a third determination line indicating a braking torque is set in advance, and when the target required braking torque is in a third determination region between the second determination line and the third determination line, the motor generator generates power.
  • the third braking control operation is performed by adding the braking torque generated by the operation of the exhaust brake to the braking torque generated by the compression release brake of the internal combustion engine and the braking torque generated by the operation of the internal combustion engine, the regenerative torque of the motor generator Even when the braking torque by the compression release brake is applied, even if the target required braking torque cannot be secured, the braking torque by the operation of the exhaust brake can be further applied. In, while the most of the braking energy as a charging energy, the target braking torque demand can be sufficiently secured.
  • the target required braking torque at the time of deceleration of the vehicle can be ensured only by the regenerative torque of the motor generator
  • the target required braking torque is obtained by performing the regeneration control with the motor generator.
  • the electricity generated by this regenerative control can be charged to the battery. If the target required braking torque cannot be ensured only with the regenerative torque of the motor generator, the braking torque generated by the compression release brake of the internal combustion engine is added to the regenerative torque of the motor generator.
  • a part of the braking energy can be utilized to the maximum as the charging energy.
  • the target required braking torque is insufficient even when the braking torque by the compression release brake of the internal combustion engine is added to the braking torque of the motor generator, the braking torque by the operation of the exhaust brake is further generated.
  • the braking torque that can be generated during deceleration of the hybrid vehicle can be further increased.
  • FIG. 1 is a diagram illustrating an example of a control flow relating to a hybrid vehicle control method according to an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the target required braking torque.
  • FIG. 3 is a diagram schematically illustrating an example of the deceleration control map.
  • FIG. 4 is a diagram for explaining a selection method of deceleration control.
  • FIG. 5 is a diagram schematically showing a range of regenerative torque that can be converted into regenerative energy.
  • FIG. 6 is a diagram showing a configuration of the hybrid vehicle according to the embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an operation state of the first deceleration control operation.
  • FIG. 8 is a diagram illustrating an operation state of the second deceleration control operation.
  • FIG. 9 is a diagram illustrating an operation state of the third deceleration control operation.
  • a hybrid vehicle (HEV: hereinafter referred to as a vehicle) 1 according to this embodiment uses both an engine (internal combustion engine) 10 and a motor generator (traveling motor / generator) 20 for traveling.
  • This is a parallel hybrid vehicle that uses a power source.
  • a parallel hybrid vehicle will be described as an example.
  • the parallel hybrid vehicle is not necessarily used, and a function capable of using both the engine 10 and the motor generator 20 as a power source for traveling is used. Any hybrid vehicle may be used.
  • the hybrid vehicle 1 As shown in FIG. 6, the power of the engine 10 is transmitted to the transmission 30 via the torque converter 14 connected to the engine 10 and the engine clutch 15 in the connected state, and further from the transmission 30 via the propeller shaft 31. It is transmitted to the differential gear 32 and transmitted from the differential gear 32 to the wheel 34 via the drive shaft 33. Thereby, the power of the engine 10 is transmitted to the wheels 34, and the vehicle 1 travels.
  • the power charged (charged) in the battery 22 is supplied to the motor generator 20 via the inverter 21, and the motor generator 20 is driven by this power to generate power.
  • the power of the motor generator 20 is transmitted to the transmission 30 through the connected motor generator clutch 23, and further transmitted from the transmission 30 to the differential gear 32 through the propeller shaft 31, and is driven from the differential gear 32. It is transmitted to the wheel 34 via the shaft 33. Thereby, the motive power of the motor generator 20 is transmitted to the wheels 34 and the vehicle 1 travels.
  • transmission and disconnection of the power of the engine 10 to the wheels 34 is performed by switching operation of the engine clutch 15 and switching of the engine clutch 15, and the motor generator is switched by switching operation of the clutch 23 of the motor generator and switching of the motor clutch.
  • the transmission of the power of 20 to the wheel 34 is cut off, and the transmission of the power of the engine 10 or the motor generator 20 can be switched appropriately, and the engine clutch 15 and the motor generator clutch 23 are necessarily provided. There is no need.
  • the exhaust gas G generated by this combustion includes NOx (nitrogen oxide), PM (Particulate Matter: fine particles).
  • NOx nitrogen oxide
  • PM Pulfine Matter: fine particles
  • an exhaust gas purification device 13 having an oxidation catalyst device, a NOx reduction catalyst device, a PM trapping filter device, and the like is disposed in the exhaust passage 11, and the exhaust gas purification device 13 allows NOx in the exhaust gas G, PM etc. are purified.
  • the purified exhaust gas Gc is released into the atmosphere via a muffler (not shown) or the like.
  • a mechanical service brake such as a drum brake or a disc brake provided on the wheel 34, which is operated when the brake pedal is depressed, is provided.
  • a mechanical service brake such as a hydraulic type, a pneumatic type, a combined air-hydraulic type or the like is relatively small compared to the weight of the vehicle 1.
  • an exhaust brake valve (shutter valve) 12 is provided in the exhaust passage 11.
  • This compression release brake is a mechanism that opens the exhaust valve without injecting fuel when the piston reaches near the top dead center in the compression stroke of the engine 10.
  • the kinetic energy of the engine 10 is converted into pressure energy and compression heat due to the compression of air in the cylinder.
  • the piston passes the top dead center while keeping the cylinder airtight, the compressed air expands, The pressure energy of air is converted back into kinetic energy, but when the piston reaches the top dead center, the exhaust valve is opened to release the compressed air to the exhaust passage and release the pressure energy. More energy loss.
  • the exhaust valve is closed after the piston has passed through the top dead center, there is no fuel combustion, so the pressure in the cylinder decreases as the piston descends, making it resistant to piston lowering and crankshaft rotation. . As a result, braking torque is generated.
  • the exhaust brake closes the exhaust brake valve 12 and increases the exhaust pressure in the cylinder of the engine 10, thereby increasing the pumping loss and increasing the rotational resistance of the internal combustion engine. Can be obtained.
  • the exhaust brake valve 12 is disposed upstream of the exhaust gas purification device 13 in the exhaust passage 11, but the exhaust brake valve 12 is disposed downstream of the exhaust gas purification device 13. However, the same braking torque can be generated.
  • control apparatus 40 for controlling the engine 10, the motor generator 20, the hybrid system, and the vehicle 1 is provided.
  • the overall control of the engine 10 including the compression release brake control, the inverter 21 is provided.
  • the overall control of the motor generator 20 by the control, the overall control of the hybrid system including the connection / disconnection control of the engine clutch 15 and the connection / disconnection control of the motor generator clutch 23, and the opening / closing control of the exhaust brake valve 12 of the vehicle 1 Perform general control and so on.
  • FIG. 1 The control flow of FIG. 1 is repeatedly executed by the advanced control flow when the vehicle 1 is started.
  • the control flow returns to the advanced control flow by interruption, and the advanced control flow. It is shown as a control flow that stops with the stop.
  • step S11 it is determined in step S11 whether or not a braking torque for decelerating the vehicle 1 is necessary.
  • an accelerator pedal depression amount, a brake pedal depression amount, or the like is used. For example, when the accelerator pedal is released and the amount of depression becomes zero or the brake pedal is depressed, the vehicle 1 is instructed to decelerate, and it is determined that braking torque is required.
  • step S11 If it is determined in step S11 that braking torque is not necessary (NO), the process returns to step S11 after elapse of a preset first time (time related to the determination interval in step S11). If it is determined in step S11 that braking torque is required (YES), the process proceeds to the next step S12.
  • step S12 the target required braking torque Tt is calculated.
  • the target required braking torque Tt varies depending on the depression amount ( ⁇ , ⁇ , ⁇ ) of the brake pedal and the vehicle speed, in other words, the propeller shaft 31, the drive shaft 33, the wheels 34, and the like.
  • the rotational speed of the horizontal axis shown in FIG. 2 the rotational speed of the propeller shaft 31, the drive shaft 33, or the wheel 34 of the vehicle, or these rotational speeds are closely related to each other.
  • the number of rotations of the output shaft of the transmission 30 the number of rotations of the motor generator 20, or the number of rotations of the internal combustion engine 10 a representative number of rotations is selected and used.
  • the rotational speed N of the internal combustion engine 10 is used.
  • the driver When the driver (driver) needs to decelerate the vehicle 1, the driver releases the accelerator pedal and depresses the brake pedal.
  • the rotation speed N1 set in advance according to the depression amounts ⁇ , ⁇ , and ⁇ of the brake pedal.
  • the required target torque Tt1 is calculated.
  • the required amount of torque Tt1 increases as the amount of depression increases, the absolute amount of torque on the required target torque Tt line Lt (L ⁇ , L ⁇ , L ⁇ ) based on the rotational speed N increases.
  • the target required braking torque line Lt depends on the amount of depression ⁇ , ⁇ , ⁇ of the brake pedal of the driver in addition to the rotational speed N of the internal combustion engine 10, so the target required braking torque line Lt It moves up and down according to the depression amounts ⁇ , ⁇ , ⁇ . More specifically, when the brake pedal depression amounts ⁇ , ⁇ , ⁇ are the second depression amount ⁇ larger than the first depression amount ⁇ , a larger target required braking torque Tt is required. This is the required braking torque line L ⁇ . Further, when the brake pedal depression amounts ⁇ , ⁇ , ⁇ are the third depression amount ⁇ larger than the second depression amount ⁇ , the target required braking torque Tt is further increased, and therefore the target required braking torque line L ⁇ . It becomes.
  • the target required braking torque line L ⁇ to be selected is selected, the target required braking torque Tt1 corresponding to the rotational speed N1 of the internal combustion engine 10 is calculated on the selected target required braking torque line L ⁇ .
  • the target required braking torque Tt1 calculated in step S12 is the first determination region R1 and second determination region R2 of the “deceleration control map (deceleration control data)” M1 as shown in FIG.
  • the third determination region R3 is determined.
  • the “deceleration control map” M1 in FIG. 3 has the first determination line L1, the second determination line L2, and the third determination with the rotational speed N of the internal combustion engine 10 as the horizontal axis and the braking torque T as the vertical axis. It is the figure which set line L3.
  • This “braking control data” M1 is set in advance based on experimental data of a running experiment and the like, and is incorporated in the control device 40.
  • the first determination line L1 is a line indicating the maximum value T1max of the regenerative torque (braking torque) T1 of the motor generator 20 based on the rotation speed N.
  • a region between the first determination line L1 and the horizontal axis L0 indicating zero braking torque is a first determination region R1
  • a region between the first determination line L1 and the second determination line L2 is a second determination region R2.
  • a region between the second determination line L2 and the third determination line L3 is defined as a third determination region R3.
  • the target required braking torque Tt when the vehicle 1 is decelerated can be sufficiently generated while using as charging energy.
  • step S13 when it is determined in step S13 that the target required braking torque Tt is in the second determination region R2 (eg, point B in FIG. 4; Ttb) between the first determination line L1 and the second determination line L2, step Proceeding to S15, as shown in FIG. 8, the maximum value T1max of the regenerative torque T1 generated by the motor generator 20 is generated, and the braking torque T2 generated by the compression release brake of the engine 10 is generated. A second braking control operation that generates Ttb is performed.
  • Ttb the target required braking torque Ttb when the vehicle 1 is decelerated
  • Ttb the braking torque Ttb when the vehicle 1 is decelerated
  • step S13 when it is determined in step S13 that the target required braking torque Tt is in the third determination region R3 (for example, point A in FIG. 4; Tta) between the second determination line L2 and the third determination line L3, step Proceeding to S16, as shown in FIG. 9, in addition to the regenerative torque T1 generated by the motor generator 20 and the braking torque T2max due to the operation of the compression release brake, the exhaust brake valve 12 is throttled (closed), and the exhaust brake valve The third braking control operation for generating the braking torque T3 by the operation of No. 12 is performed.
  • Tta ⁇ T1max ⁇ T2 the braking torque
  • steps S14, S15, and S16 the first, second, and third braking control operations are performed, and after a preset second time (time related to the control interval) has elapsed, the process returns to step S11. Steps S11 to S13 to S11, S11 to S14 to S11, and S11 to S15 to S11 are repeated. Then, when the operation of the vehicle 1 is stopped, the vehicle 1 returns by interruption and returns to the advanced control flow, and stops together with the stop of the advanced control flow.
  • a target required braking torque line L ⁇ corresponding to the brake pedal depression amount (for example, ⁇ ) by the driver is selected with reference to FIG. 3, and is shown in FIG.
  • the rotation speed N at that time is, for example, the rotation speed is Na
  • the target required torque Tt is calculated as Tta at the point A, and is determined to be in the third determination region R3 and the third braking control operation is performed.
  • the rotational speed N decreases.
  • the target required torque Tt moves on the target required braking torque line L ⁇ to the left side of FIG. 4 and enters the second determination region R2.
  • the braking control operation is performed, and further moves on the target required braking torque line L ⁇ to the left side of FIG. 4 and enters the first determination region R1.
  • the first braking control operation is performed.
  • FIG. 5 schematically shows a range of recovery torque (cross-hatched portion) that can be used as a recovery energy source when moving on the target required braking torque line L ⁇ .
  • the recovered torque can be utilized to the maximum, so the range of the recovered torque that can be used as a recovered energy source (cross-hatched portion) changes along the first determination line L1. .
  • the target required braking torque Tt when the vehicle 1 is decelerated can be secured only by the regenerative torque (braking torque T1) of the motor generator 20, By performing regenerative control only with the generator 20, the target required braking torque Tt can be secured, and the battery 22 can be charged with electricity generated by this regenerative control. Further, when it is determined that the target required braking torque Tt when the vehicle 1 is decelerated cannot be secured only by the regenerative torque T1 of the motor generator 20, the braking torque T1 of the motor generator 20 is determined by the compression release brake of the engine 10.
  • the target required braking torque Tt when the vehicle 1 is decelerated is secured by adding the braking torque T2, the vehicle 1 is decelerated while utilizing a part of the braking energy as the charging energy by the generation of the maximum regenerative torque. Sufficient braking torque can be secured.
  • the target required braking torque Tt is insufficient even if the braking torque T2 due to the compression release brake of the engine 10 is added to the braking torque T1 of the motor generator 20, in addition to these starting torques T1 and T2
  • the braking torque T3 generated by the operation of the exhaust brake valve 12 can be generated to generate the target required braking torque Tt that is required when the vehicle 1 is decelerated.
  • a part of the braking energy can be utilized to the maximum as charging energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 内燃機関10と電動発電機20の両方を車両1の走行用の駆動源とする機能を有するハイブリッドシステムを備えたハイブリッド車両1において、ハイブリッド車両1の減速時の目標要求制動トルクTtが、電動発電機20の回生トルクT1のみで十分な場合には電動発電機20による回生トルクT1のみを与え、不十分な場合には電動発電機20による回生トルクT1に加えて、圧縮開放ブレーキによる制動トルクT2を発生する。また、目標要求制動トルクTtが、電動発電機20の回生トルクT1と圧縮開放ブレーキによる制動トルクT2の和でも不十分な場合には排気ブレーキ12による制動トルクT3を加える。これにより、制動エネルギーを充電エネルギーとして最大限に利用しながら、車両1の減速時の制動トルクを十分に確保する。

Description

ハイブリッド車両及びその制御方法
 本発明は、内燃機関と電動発電機の両方を車両の走行用の駆動源とする機能を有するハイブリッドシステムを備えたハイブリッド車両に関し、より詳細には、制動エネルギーを充電エネルギーとして最大限に利用しながら、ハイブリッド車両の減速時の制動トルクを十分に確保することができるハイブリッド車両及びその制御方法に関する。
 内燃機関と電動発電機の両方を搭載するハイブリッド車両(HEV)においては、大別して、内燃機関に駆動される発電機で発電した電気、又は、発電した電気を充電したバッテリからの電気で駆動する電動機(走行用モータ)のみを走行用の動力源とするシリーズ型ハイブリッド車両と、内燃機関と電動発電機(走行用モータ)との両方を走行用の動力源とするパラレル型ハイブリッド車両とがある。
 このハイブリッド車両においては、車両が減速状態にあり、車両の車輪から回生エネルギーを回収できる場合は、電動発電機で回生発電し、このとき電動発電機で発生する制動トルクで車両の減速を行うが、大きな制動トルクが必要な場合は、電動発電機による制動トルクのみでは、車両の減速で必要とされる制動トルクを確保できず、ハイブリッド車両の減速を確実に行うことができないという問題がある。
 この問題に関連して、例えば、日本出願の特許第4988046号公報に記載されているように、電動機の回生トルクを制動力として利用する際のドライバビリティを向上させるために、電動機のみによる走行中の減速時に電動機の回生発電により生じる回生トルクを制動力として利用する際に、予め設定されている目標減速度と回生発電により生じる回生トルクによる実減速度とを比較する減速度比較部と、電動機が最大の回生トルクを発生しているにも係わらず減速度比較部の比較結果により実減速度が目標減速度以下となる状態が所定のパターンで生じたとき、今回の減速が終了した後の次回の減速時には、エンジンと電動機とが協働する走行形態とし、エンジンのエンジンブレーキと電動機の回生トルクとを共に制動力として利用する回生制御部と、を有するハイブリッド自動車等が提案されている。
 しかし、このハイブリッド自動車は、電動機のみによる走行中の減速時に、電動機の回生トルクのみでは減速が不十分であったときに、その次の減速時に、エンジンと電動機とが協働する走行形態とするものであるため、当初の電動機のみによる走行中の減速時では、電動機の不十分な回生トルクのみで減速するため、ハイブリッド自動車の制動トルクを十分に確保できない状態が発生するという問題がある。
 特に、トラックやバス等では、乗用車に比べて車重が大きく、この車重に比べて相対的にドラムブレーキ等の機械的なブレーキの容量が小さくなってしまうため、機械的なブレーキで発生する制動トルクよりも大きな制動トルクを発生する必要がある。そのため、排気ブレーキやリターダ等の補助ブレーキを装備している。
日本出願の特許第4988046号公報
 そのため、本発明者は、制動エネルギーを充電エネルギーとして利用しながら、ハイブリッド車両の減速時の制動トルクを十分に確保することができるハイブリッド車両及びその制御方法を提供することを目的に、ハイブリッド車両を減速するために必要とされる目標要求制動トルクが、電動発電機で発電して発生する回生トルクのみで制動トルクを与えることができる間は、電動発電機の回生トルクのみとし、目標要求制動トルクが、電動発電機の回生トルクの最大値を超えたときは、電動発電機の回生トルクに内燃機関のエンジンブレーキによる制動トルクを加え、さらに、目標要求制動トルクが、電動発電機の回生トルクの最大値とエンジンブレーキによる制動トルクの最大値の和を超えたときは、電動発電機の回生トルクとエンジンブレーキによる制動トルクに、排気ブレーキによる制動トルクを加えた制動制御運転を行うことを考えた。
 しかしながら、この場合においては、エンジンブレーキによる制動トルク及び排気ブレーキによる制動トルクは徐々に大きくすることができず、ある程度大きい制動トルクを発生させることになるため、単純に回生トルクの最大値にエンジンブレーキによる制動トルクや排気ブレーキによる制動トルクを加えると、目標要求制動トルクを超えてしまう。そのため、全体の制動トルクを目標要求制動トルクに一致させるためには、この目標要求制動トルクを超える分だけ、電動発電機側の回生トルクを小さくする必要があり、その分回生エネルギーが減少してしまうという問題が生じた。
 一方で、大型車両の制動トルクを補助するものとして、ジェイクブレーキとも呼ばれる圧縮開放ブレーキがディーゼルエンジンなどで使用されている。この圧縮開放ブレーキでは、ディーゼルエンジンの圧縮行程でピストンが上死点付近に達した段階で、燃料を噴射せずに排気バルブを開くことで、シリンダ内の空気の圧縮を開放しており、エンジンブレーキと異なり、排気バルブの開放の時期や度合いを調整制御することで、制動トルクを調整することができる。
 本発明は、上記のことを鑑みてなされたものであり、その目的は、内燃機関と電動発電機の両方を車両の走行用の駆動源とする機能を有するハイブリッドシステムを備えたハイブリッド車両において、制動エネルギーを充電エネルギーとして最大限に利用しながら、ハイブリッド車両の減速時の制動トルクを十分に確保することができるハイブリッド車両及びその制御方法を提供することである。
 上記の目的を達成するための本発明のハイブリッド車両は、内燃機関と電動発電機の両方を車両の走行用の駆動源とする機能を有するハイブリッドシステムを備えたハイブリッド車両において、前記ハイブリッドシステムを制御する制御装置が、回転数をベースに、前記電動発電機の制動トルクの最大値を示す第1判定線と、該第1判定線の制動トルクに前記内燃機関の圧縮開放ブレーキによる制動トルクの最大値を加算した制動トルクを示す第2判定線を設けた制動制御用データを予め備え、前記ハイブリッド車両を減速するために必要とされる目標要求制動トルクが、前記第1判定線とゼロとの間の第1判定領域にあるときは、前記電動発電機で発電して発生する回生トルクのみで制動トルクを与える第1制動制御運転を行い、前記目標要求制動トルクが、前記第1判定線と前記第2判定線の間の第2判定領域にあるときは、前記電動発電機で発電して発生する回生トルクに前記内燃機関の圧縮開放ブレーキによる制動トルクを加えた第2制動制御運転を行うように構成される。
 この制動制御用データは、マップデータ(減速時協調制御マップ)や回転数をベースにした関数等で表現されるものであり、また、この回転数は、ハイブリッド車両の車軸又は車輪の回転数や、電動発電機の回転数や内燃機関の回転数であり、これらの回転数は相互に密接な関係を持っているので、これらの回転数のうちの代表的な回転数、例えば、内燃機関の回転数を選択して用いればよい。
 この圧縮開放ブレーキは、エンジンの圧縮行程でピストンが上死点付近に達した段階で、燃料を噴射せずに排気バルブを開放する機構であり、ピストンが上死点付近に達した段階で排気バルブを開放し、圧縮されていた空気を排気通路に逃がすことで、圧力エネルギーを放出して、より多くのエネルギー損失を発生させる。さらに、ピストンが上死点を通過した後に排気バルブを閉じると、燃料の燃焼が無いのでピストンの下降に伴ってシリンダ内の圧力が下がり、ピストンの下降及びクランクシャフトの回転に対して抵抗となる。これらにより、制動トルクを発生する。
 この構成によれば、電動発電機の回生トルクのみで目標要求制動トルクを確保できる場合は、第1制動制御運転で電動発電機の回生トルクを発生させると共に、電動発電機の回生制御で発電した電気をバッテリに充電することで、制動エネルギーを充電エネルギーとして利用しながら、ハイブリッド車両の減速時の制動トルクを十分に確保できる。また、電動発電機の回生トルクのみで目標要求制動トルクを確保できない場合は、第2制動制御運転で電動発電機の回生トルクに、内燃機関の圧縮開放ブレーキによる制動トルクを加えることで、制動エネルギーを充電エネルギーとして最大限に利用しながら、ハイブリッド車両の減速時の制動トルクを十分に確保できる。
 この場合においては、圧縮開放ブレーキは、エンジンブレーキと異なり、排気バルブの開放の時期と度合いを調整制御することで、制動トルクを調整することができるので、電動発電機による回生トルクを最大にして、全体の制動トルクを目標要求制動トルクに一致させるように、圧縮開放ブレーキによる制動トルクを調整することにより、電動発電機で回生エネルギーを最大限に利用できる。
 上記のハイブリッド車両において、前記制動制御用データに、前記第2判定線の制動トルクに、前記内燃機関に接続する排気通路に設けた排気ブレーキの制動トルクの最大値を加算した制動トルクを示す第3判定線を予め設定し、前記制御装置が、前記目標要求制動トルクが、前記第2判定線と前記第3判定線の間の第3判定領域にあるときは、前記電動発電機で発電して発生する回生トルクと前記内燃機関の圧縮開放ブレーキによる制動トルクに、前記排気ブレーキの作動による制動トルクを加えた第3制動制御運転を行うように構成すると、次の効果を奏することができる。
 なお、ここでいう、排気ブレーキの作動による制動トルクとは、排気通路の途中に設けられた排気ブレーキ弁を閉じることで排気圧力を高めて、ポンピングロスをより大きくして、内燃機関の回転抵抗を増加させて得られる制動トルクである。
 この構成によれば、電動発電機の回生トルクに内燃機関の圧縮開放ブレーキによる制動トルクを加えても、目標要求制動トルクを確保できない場合に、第3制動制御運転で電動発電機の回生トルク及び内燃機関の圧縮開放ブレーキによる制動トルクに加えて、排気ブレーキの作動による制動トルクを加えることで、制動エネルギーを充電エネルギーとして利用しながら、目標要求制動トルクを十分に確保することができる。
 そして、上記の目的を達成するためのハイブリッド車両の制御方法は、内燃機関と電動発電機の両方を車両の走行用の駆動源とする機能を有するハイブリッドシステムを備えたハイブリッド車両の制御方法において、回転数をベースにした、前記電動発電機の制動トルクの最大値を示した第1判定線と、該第1判定線の制動トルクに、前記内燃機関の圧縮開放ブレーキによる制動トルクの最大値を加算した制動トルクを示す第2判定線を設けた制動制御用データを用いて、前記ハイブリッド車両を減速するために必要とされる目標要求制動トルクが、前記第1判定線とゼロとの間の第1判定領域にあるときは、前記電動発電機の発電のみで前記ハイブリッド車両の車輪に制動トルクを与えてエネルギーを回収する第1制動制御運転を行い、前記目標要求制動トルクが、前記第1判定線と前記第2判定線の間の第2判定領域にあるときは、前記電動発電機の発電により前記車輪に制動トルクを与えてエネルギーを回収すると共に、前記内燃機関の圧縮開放ブレーキによる前記車輪の制動トルクを発生する第2制動制御運転を行うことを特徴とする方法である。
 この方法によれば、電動発電機の回生トルクのみで目標要求制動トルクを確保できない場合であっても、電動発電機の回生トルクに、内燃機関の圧縮開放ブレーキによる制動トルクを加えることで、制動エネルギーを充電エネルギーとして最大限に利用しながら、ハイブリッド車両の減速時の制動トルクを十分に確保できる。
 また、上記のハイブリッド車両の制御方法において、前記制動制御用データに、前記第2判定線の制動トルクに、前記内燃機関に接続する排気通路に設けた排気ブレーキの制動トルクの最大値を加算した制動トルクを示す第3判定線を予め設定し、前記目標要求制動トルクが、前記第2判定線と前記第3判定線の間の第3判定領域にあるときは、前記電動発電機で発電して発生する回生トルクと前記内燃機関の圧縮開放ブレーキによる制動トルクに、前記排気ブレーキの作動による制動トルクを加えた第3制動制御運転を行うようにすると、電動発電機の回生トルクに内燃機関の圧縮開放ブレーキによる制動トルクを加えても、目標要求制動トルクを確保できない場合であっても、さらに、排気ブレーキの作動による制動トルクを加えることで、制動エネルギーを充電エネルギーとして最大限に利用しながら、目標要求制動トルクを十分に確保することができる。
 本発明のハイブリッド車両及びその制御方法によれば、電動発電機の回生トルクのみで車両の減速時の目標要求制動トルクを確保できる場合は、電動発電機で回生制御を行うことで目標要求制動トルクを確保し、この回生制御で発電した電気をバッテリに充電できる。また、電動発電機の回生トルクのみで目標要求制動トルクを確保できない場合は、電動発電機の回生トルクに内燃機関の圧縮開放ブレーキによる制動トルクを加えるので、車両の減速時の制動トルクを十分に確保することができ、また、回生トルクを最大で発生させることにより、制動エネルギーの一部を充電エネルギーとして最大限に利用することができる。
 さらに、目標要求制動トルクが、電動発電機の制動トルクに、内燃機関の圧縮開放ブレーキによる制動トルクを加えても不足する場合に、さらに排気ブレーキの作動による制動トルクを発生させるように構成すると、ハイブリッド車両の減速時に発生可能な制動トルクをより大きくすることができる。
図1は、本発明の実施の形態のハイブリッド車両の制御方法に関する制御フローの一例を示す図である。 図2は、目標要求制動トルクの説明用の図である。 図3は、減速制御用マップの一例を模式的に示す図である。 図4は、減速制御の選択方法の説明のための図である。 図5は、回生エネルギーに変換可能な回生トルクの範囲を模式的に示す図である。 図6は、本発明の実施の形態のハイブリッド車両の構成を示す図である。 図7は、第1減速制御運転の運転状態を示す図である。 図8は、第2減速制御運転の運転状態を示す図である。 図9は、第3減速制御運転の運転状態を示す図である。
 以下、本発明に係る実施の形態のハイブリッド車両及びその制御方法について説明する。図6に示すように、この実施の形態のハイブリッド車両(HEV:以下車両とする)1は、エンジン(内燃機関)10と電動発電機(走行用電動機兼発電機)20の両方を走行用の動力源とするパラレル型ハイブリッド車両である。
 なお、ここでは、パラレル型ハイブリッド車両を例にして説明するが、必ずしもパラレル型ハイブリッド車両でなくてもよく、エンジン10と電動発電機20の両方を走行用の動力源とすることができる機能を有するハイブリッド車両であればよい。
 最初に、本発明に係る実施の形態のハイブリッド車両1について説明する。図6に示すように、このエンジン10の動力は、エンジン10に接続するトルクコンバータ14、接続状態のエンジン用クラッチ15を介してトランスミッション30に伝達され、さらに、トランスミッション30よりプロペラシャフト31を介してデファレンシャルギア32に伝達され、デファレンシャルギア32よりドライブシャフト33を介して車輪34に伝達される。これにより、エンジン10の動力が車輪34に伝達され、車両1が走行する。
 一方、電動発電機20の動力に関しては、バッテリ22に充電(蓄電)された電力がインバータ21を介して電動発電機20に供給され、この電力により電動発電機20が駆動され動力を発生する。この電動発電機20の動力は、接続状態の電動発電機用クラッチ23を介してトランスミッション30に伝達され、更に、トランスミッション30よりプロペラシャフト31を介してデファレンシャルギア32に伝達され、デファレンシャルギア32よりドライブシャフト33を介して車輪34に伝達される。これにより、電動発電機20の動力が車輪34に伝達され、車両1が走行する。
 そして、エンジン用クラッチ15の接続と断絶の切替操作により、エンジン10の動力の車輪34への伝達と遮断を行い、また、電動発電機用クラッチ23の接続と断絶の切替操作により、電動発電機20の動力の車輪34への伝達と遮断を行うが、エンジン10又は電動発電機20の動力の伝達と遮断を適宜切り替えることができれば良く、エンジン用クラッチ15及び電動発電機用クラッチ23を必ずしも設ける必要はない。
 なお、このエンジン10では、エンジン10内で燃料を燃焼させてピストンを動かすことで動力を発生させるが、この燃焼により生じた排気ガスGにはNOx(窒素酸化物)、PM(Particulate Matter:微粒子状物質)等が含有されるため、そのまま、何の処理も施さず大気中に放出すると環境汚染の面から好ましくない。そのため、酸化触媒装置やNOx低減触媒装置やPM捕集フィルタ装置等を備えた排気ガス浄化装置13を排気通路11に配設して、この排気ガス浄化装置13により、排気ガスG中のNOx、PM等を浄化処理している。この浄化処理された排気ガスGcは、マフラー(図示しない)等を経由して大気中に放出される。
 この車両1の制動トルク(ブレーキ力)を発生するものとして、ブレーキペダルの踏み込みにより作動する、車輪34に備えられたドラムブレーキやディスクブレーキ等の機械的な常用ブレーキを備えている。しかしながら、トラック等の大型車両では、車両1の重量に比べて、この油圧式、空気圧式、空気油圧複合式等の機械的な常用ブレーキの制動トルクが相対的に小さいので、圧縮開放ブレーキに加えて、補助ブレーキとして、排気通路11に排気ブレーキ弁(シャッターバルブ)12を備えている。
 この圧縮開放ブレーキは、エンジン10の圧縮行程でピストンが上死点付近に達した段階で、燃料を噴射せずに排気バルブを開放する機構である。圧縮行程ではエンジン10の運動エネルギーはシリンダ内の空気の圧縮による圧力エネルギーと圧縮熱に変換され、シリンダの気密を保ったままピストンが上死点を過ぎると、圧縮されていた空気が膨張し、空気の圧力エネルギーは再び運動エネルギーへと変換されるが、ピストンが上死点付近に達した段階で排気バルブを開放することで、圧縮されていた空気を排気通路に逃がして圧力エネルギーを放出して、より多くのエネルギー損失を発生させる。さらに、ピストンが上死点を通過した後に排気バルブを閉じると、燃料の燃焼が無いのでピストンの下降に伴ってシリンダ内の圧力が下がり、ピストンの下降及びクランクシャフトの回転に対して抵抗となる。これらにより制動トルクが発生する。
 一方、排気ブレーキは、排気ブレーキ弁12を閉じてエンジン10のシリンダ内の排気圧力を高めることで、ポンピングロスをより大きくして、内燃機関の回転抵抗を増加させることができ、これにより制動トルクを得ることができる。なお、図6においては、排気通路11で、排気ブレーキ弁12を排気ガス浄化装置13の上流側に配設しているが、排気ブレーキ弁12を排気ガス浄化装置13の下流側に配設しても、同様な制動トルクを発生することができる。
 そして、エンジン10、電動発電機20、ハイブリッドシステム、及び車両1の制御を行うための制御装置40が設けられ、この制御装置40により、圧縮開放ブレーキ制御を含むエンジン10の全般の制御、インバータ21による電動発電機20の全般の制御、エンジン用クラッチ15の断接制御と電動発電機用クラッチ23の断接制御を含むハイブリッドシステムの全般の制御、排気ブレーキ弁12の開閉制御を含む車両1の全般の制御等々を行う。
 次に、本発明に係る実施の形態のハイブリッド車両の制御方法について、図1~図4を参照しながら説明する。この図1の制御フローは、車両1の運転開始と共に上級の制御フローにより、繰り返し呼ばれて実施され、車両1の運転停止時には、割り込みによりリターンして上級の制御フローに戻り、上級の制御フローの停止と共に停止する制御フローとして示してある。
 この制御フローが、上級の制御フローに呼ばれてスタートすると、ステップS11で、車両1を減速するための制動トルクが必要か否かを判定する。この判定では、アクセルペダルの踏み込み量や、ブレーキペダルの踏み込み量等を使用する。例えば、アクセルペダルが離され、踏み込み量がゼロになったり、ブレーキペダルが踏み込まれたりする等すると、車両1の減速が指示されており、制動トルクが必要であると判定する。
 このステップS11の判定で制動トルクが必要でないと判定されると(NO)、予め設定した第1時間(ステップS11の判定のインターバルに関係する時間)を経過した後、ステップS11に戻る。また、このステップS11の判定で制動トルクが必要であると判定されると(YES)、次のステップS12に行く。
 ステップS12では、目標要求制動トルクTtを算出する。この目標要求制動トルクTtは、図2に示すように、ブレーキペダルの踏み込み量(α、β、γ)によっても、車速、言い換えれば、プロペラシャフト31、ドライブシャフト33、車輪34等によっても異なる。なお、図2に示す横軸の回転数としては、車両のプロペラシャフト31、若しくは、ドライブシャフト33、若しくは、車輪34の回転数、又は、これらの回転数は相互に密接な関係を持っているトランスミッション30の出力軸の回転数若しくは電動発電機20の回転数若しくは内燃機関10の回転数の内、これらの回転数のうちの代表的な回転数を選択して用いる。ここでは、内燃機関10の回転数Nとする。
 ドライバー(運転者)は、車両1を減速させる必要が生じると、アクセルペダルを離し、ブレーキペダルを踏み込むが、このブレーキペダルの踏込量α、β、γに応じて予め設定されている回転数N1に対する要求目標トルクTt1が算出される。
 図2に示すように、この要求目標トルクTt1は、踏み込み量が大きくなるほど回転数Nをベースとした要求目標トルクTtの線Lt(Lα、Lβ、Lγ)のトルクの絶対量が大きくなり、踏み込み量α、β、γが小さくなるほど回転数Nをベースとした要求目標トルクTtの線Lt(Lα、Lβ、Lγ)のトルクの絶対量が小さくなる。アクセルペダルの踏み込み量が同じであると、回転数N1の低下に伴い、要求目標トルクTt1は徐々に小さくなる。
 つまり、この目標要求制動トルク線Ltは、内燃機関10の回転数Nの他に、ドライバーのブレーキペダルの踏込量α、β、γに依存するため、目標要求制動トルク線Ltは、ブレーキペダルの踏込量α、β、γに応じて上下に移動する。より詳細には、ブレーキペダルの踏込量α、β、γが、第1の踏込量αより大きい第2の踏込量βであるときは、より大きな目標要求制動トルクTtを必要とするため、目標要求制動トルク線Lβとなる。また、ブレーキペダルの踏込量α、β、γが、第2の踏込量βより大きい第3の踏込量γであるときは、目標要求制動トルクTtがさらに大きくなるため、目標要求制動トルク線Lγとなる。
 そして、ドライバーによるブレーキペダルの踏込量(α、β、γ等)に対応する目標要求制動トルク線(Lα、Lβ、Lγ等)の中から、実際のブレーキペダルの踏込量(例えばβ)に対応する目標要求制動トルク線Lβを選定した後、この選定した目標要求制動トルク線Lβ上で、内燃機関10の回転数N1に応じた目標要求制動トルクTt1を算出する。
 次のステップS13で、このステップS12で算出した目標要求制動トルクTt1が、図3に示すような「減速制御用マップ(減速制御用データ)」M1の第1判定領域R1、第2判定領域R2、第3判定領域R3のいずれにあるかを判定する。
 図3の「減速制御用マップ」M1は、内燃機関10の回転数Nを横軸に、制動トルクTを縦軸にして、第1判定線L1と、第2判定線L2と、第3判定線L3を設定した図である。この「制動制御用データ」M1は、予め走行実験の実験データ等を基に設定され、制御装置40に組み込まれる。
 この第1判定線L1は、回転数Nをベースに、電動発電機20の回生トルク(制動トルク)T1の最大値T1maxを示す線である。また、第2判定線L2は、第1判定線L1で示された電動発電機20の回生トルクT1の最大値T1maxに、エンジン10の圧縮開放ブレーキによる制動トルクT2の最大値T2maxを加算した制動トルクTa(=T1max+T2max)を示す線である。さらに、第3判定線L3は、この制動トルクTaにエンジン10の排気ブレーキ弁12の作動による制動トルクT3の最大値T3maxを加算した制動トルクTb(=Ta+T3max=T1max+T2max+T3max)を示す線である。
 この第1判定線L1と制動トルクゼロを示す横軸L0との間にある領域を第1判定領域R1とし、第1判定線L1と第2判定線L2の間にある領域を第2判定領域R2とし、第2判定線L2と第3判定線L3の間にある領域を第3判定領域R3とする。
 このステップS13の判定で、目標要求制動トルクTtが第1判定線L1とトルクゼロを示す横軸L0との間の第1判定領域R1(例えば、図4のC点;Ttc)にあるときは、ステップS14へ進み、図7に示すように、電動発電機20の回生制御で発生する回生トルクT1のみで、車両1の車輪34に制動トルクTを与える第1制動制御運転を行う。この第1制動制御運転を行うことで、電動発電機20の回生トルクT1(=Ttc)を発生させると共に、電動発電機20の回生制御で発電した電気をバッテリ22に充電することで、制動エネルギーを充電エネルギーとして利用しながら、車両1の減速時の目標要求制動トルクTtを十分に発生できる。
 また、ステップS13の判定で、目標要求制動トルクTtが第1判定線L1と第2判定線L2の間の第2判定領域R2(例えば、図4のB点;Ttb)にあるときは、ステップS15へ進み、図8に示すように、電動発電機20の発電による回生トルクT1の最大値T1maxを発生すると共に、エンジン10の圧縮開放ブレーキによる制動トルクT2を発生し、全体として目標要求制動トルクTtbを発生する第2制動制御運転を行う。
 この第2制動制御運転を行うことで、電動発電機20の回生トルクT1の最大値T1maxに、エンジン10の圧縮開放ブレーキによる制動トルクT2(=Ttb-T1max)を加えて、制動エネルギーを充電エネルギーとして利用しながら、車両1の減速時の目標要求制動トルクTtbを発生することができ、車両1の減速時の制動トルクTtbを確保できる。
 この場合は、圧縮開放ブレーキによる制動トルクT2は徐々に大きくすることができるので、目標要求制動トルクTtcになるように、回生トルクT1の最大値T1maxに圧縮開放ブレーキによる制動トルクT2(=Ttc-T1max)を加える。従って、電動発電機20側の回生トルクT1を最大値T1maxとすることができ、電動発電機20による最大の回生トルク発生状態で、制動エネルギーを回生エネルギーに変換することができ、制動エネルギーの一部を充電エネルギーとして最大限に利用することができる。
 また、ステップS13の判定で、目標要求制動トルクTtが第2判定線L2と第3判定線L3の間の第3判定領域R3(例えば、図4のA点;Tta)にあるときは、ステップS16へ進み、図9に示すように、電動発電機20の発電による回生トルクT1と圧縮開放ブレーキの作動による制動トルクT2maxに加えて、排気ブレーキ弁12を絞り(閉弁し)、排気ブレーキ弁12の作動による制動トルクT3を発生させる第3制動制御運転を行う。
 この場合も、排気ブレーキ弁12による制動トルクT3は徐々に大きくすることができず、ある程度大きい制動トルクT3を発生させることになるが、圧縮開放ブレーキによる制動トルクT2は徐々に大きくすることができるので、目標要求制動トルクTtaになるように、回生トルクT1の最大値T1maxと排気ブレーキによる制動トルクT3に圧縮開放ブレーキによる制動トルクT2(=Tta-T1max-T3)を加える。従って、電動発電機20側の回生トルクT1を最大値T1maxとすることができ、電動発電機20による最大の回生トルク発生状態で、制動エネルギーを回生エネルギーに変換することができ、制動エネルギーの一部を充電エネルギーとして最大限に利用することができる。
 この第3制動制御運転を行うことで、制動トルクT3(=Tta-T1max-T2)を加えて、制動エネルギーを充電エネルギーとして利用しながら、車両1の減速時の目標要求制動トルクTtaを発生することができ、車両1の減速時の制動トルクTtaを確保できる。
 そして、ステップS14、S15、S16では、第1、第2、第3の制動制御運転をそれぞれ行い、予め設定した第2時間(制御のインターバルに関係する時間)を経過した後、ステップS11に戻り、ステップS11~S13~S11、S11~S14~S11、S11~S15~S11を繰り返し行う。そして、車両1の運転停止時には、割り込みによりリターンして上級の制御フローに戻り、上級の制御フローの停止と共に停止する。
 なお、実際の制御では、減速要求が出ると、ドライバーによるブレーキペダルの踏込量(例えばβ)から、図3を参考に、これに対応する目標要求制動トルク線Lβが選定され、図4に示すように、その時の回転数Nが、例えば、回転数がNaのときは、目標要求トルクTtはA点のTtaと算出され、第3判定領域R3にあると判定されて第3制動制御運転がなされ、回転数Nは低下する。
 そのまま、ブレーキペダルの踏込量(例えばβ)が変化しない場合は、目標要求トルクTtは、目標要求制動トルク線Lβ上を図4の左側に移動し、第2判定領域R2に入るので、第2制動制御運転がなされ、目標要求制動トルク線Lβ上を更に図4の左側に移動し、第1判定領域R1に入る。この第1判定領域R1では、第1制動制御運転がなされることになる。
 また、図5に、目標要求制動トルク線Lβ上を移動する場合の回収エネルギー源として使用できる回収トルクの範囲(クロスハッチングの部分)を模式的に示す。圧縮開放ブレーキを用いる場合には、回収トルクを最大限に利用できるので、回収エネルギー源として使用できる回収トルクの範囲(クロスハッチングの部分)は、第1判定線L1に沿って変化することになる。
 上記の構成のハイブリッド車両及びその制御方法によれば、電動発電機20の回生トルク(制動トルクT1)のみで、車両1の減速時の目標要求制動トルクTtを確保できると判定した場合は、電動発電機20のみで回生制御を行うことで目標要求制動トルクTtを確保し、この回生制御で発電した電気をバッテリ22に充電できる。また、電動発電機20の回生トルクT1のみでは、車両1の減速時の目標要求制動トルクTtを確保できないと判定した場合は、電動発電機20の制動トルクT1に、エンジン10の圧縮開放ブレーキによる制動トルクT2を加えて、車両1の減速時の目標要求制動トルクTtを確保するので、最大の回生トルクの発生により制動エネルギーの一部を充電エネルギーとして最大限に利用しながら、車両1の減速時の制動トルクを十分に確保することができる。
 さらに、目標要求制動トルクTtが、電動発電機20の制動トルクT1に、エンジン10の圧縮開放ブレーキによる制動トルクT2を加えても不足すると判定した場合は、これらの始動トルクT1、T2に加えて排気ブレーキ弁12の作動による制動トルクT3を発生させて、車両1の減速時に必要とされる目標要求制動トルクTtを発生することができる。また、最大の回生トルクの発生により、制動エネルギーの一部を充電エネルギーとして最大限に利用することができる。
1 車両(ハイブリッド車両:HEV)
10 エンジン(内燃機関)
11 排気通路
12 排気ブレーキ弁
13 排気ガス浄化装置
14 トルクコンバータ
15 エンジン用クラッチ
16 クランクシャフト
20 電動発電機
21 インバータ
22 バッテリ
23 電動発電機用クラッチ
30 トランスミッション
31 プロペラシャフト
32 デファレンシャルギア
33 ドライブシャフト
34 車輪
40 制御装置(ECU)
L0 横軸(制動トルク=ゼロ)
L1 第1判定線
L2 第2判定線
L3 第3判定線
M1 減速制御用マップ(減速制御用データ)
T1 電動発電機による回生トルク
T1max 電動発電機による回生トルクの最大値
T2 圧縮開放ブレーキによる制動トルク
T2max 圧縮開放ブレーキによる制動トルクの最大値
T3 排気ブレーキによる制動トルク
T3max 排気ブレーキによる制動トルクの最大値
Tt、Ta、Tb、Tc 目標要求制動トルク

Claims (4)

  1.  内燃機関と電動発電機の両方を車両の走行用の駆動源とする機能を有するハイブリッドシステムを備えたハイブリッド車両において、
     前記ハイブリッドシステムを制御する制御装置が、回転数をベースに、前記電動発電機の制動トルクの最大値を示す第1判定線と、該第1判定線の制動トルクに前記内燃機関の圧縮開放ブレーキによる制動トルクの最大値を加算した制動トルクを示す第2判定線を設けた制動制御用データを予め備え、
     前記ハイブリッド車両を減速するために必要とされる目標要求制動トルクが、前記第1判定線とゼロとの間の第1判定領域にあるときは、前記電動発電機で発電して発生する回生トルクのみで制動トルクを与える第1制動制御運転を行い、
     前記目標要求制動トルクが、前記第1判定線と前記第2判定線の間の第2判定領域にあるときは、前記電動発電機で発電して発生する回生トルクに前記内燃機関の圧縮開放ブレーキによる制動トルクを加えた第2制動制御運転を行うように構成されていることを特徴とするハイブリッド車両。
  2.  前記制動制御用データに、前記第2判定線の制動トルクに、前記内燃機関に接続する排気通路に設けた排気ブレーキの制動トルクの最大値を加算した制動トルクを示す第3判定線を予め設定し、
     前記制御装置が、前記目標要求制動トルクが、前記第2判定線と前記第3判定線の間の第3判定領域にあるときは、前記電動発電機で発電して発生する回生トルクと前記内燃機関の圧縮開放ブレーキによる制動トルクに、前記排気ブレーキの作動による制動トルクを加えた第3制動制御運転を行うように構成されていることを特徴とする請求項1に記載のハイブリッド車両。
  3.  内燃機関と電動発電機の両方を車両の走行用の駆動源とする機能を有するハイブリッドシステムを備えたハイブリッド車両の制御方法において、
     回転数をベースに、前記電動発電機の制動トルクの最大値を示す第1判定線と、該第1判定線の制動トルクに前記内燃機関の圧縮開放ブレーキによる制動トルクの最大値を加算した制動トルクを示す第2判定線を設けた制動制御用データを用いて、
     前記ハイブリッド車両を減速するために必要とされる目標要求制動トルクが、前記第1判定線とゼロとの間の第1判定領域にあるときは、前記電動発電機で発電して発生する回生トルクのみで制動トルクを与える第1制動制御運転を行い、
     前記目標要求制動トルクが、前記第1判定線と前記第2判定線の間の第2判定領域にあるときは、前記電動発電機で発電して発生する回生トルクに前記内燃機関の圧縮開放ブレーキによる制動トルクを加えた第2制動制御運転を行うことを特徴とするハイブリッド車両の制御方法。
  4.  前記制動制御用データに、前記第2判定線の制動トルクに、前記内燃機関に接続する排気通路に設けた排気ブレーキの制動トルクの最大値を加算した制動トルクを示す第3判定線を予め設定し、
     前記目標要求制動トルクが、前記第2判定線と前記第3判定線の間の第3判定領域にあるときは、前記電動発電機で発電して発生する回生トルクと前記内燃機関の圧縮開放ブレーキによる制動トルクに、前記排気ブレーキの作動による制動トルクを加えた第3制動制御運転を行うことを特徴とする請求項3に記載のハイブリッド車両の制御方法。
PCT/JP2014/063867 2013-06-13 2014-05-26 ハイブリッド車両及びその制御方法 WO2014199811A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013124933A JP6182990B2 (ja) 2013-06-13 2013-06-13 ハイブリッド車両及びその制御方法
JP2013-124933 2013-06-13

Publications (1)

Publication Number Publication Date
WO2014199811A1 true WO2014199811A1 (ja) 2014-12-18

Family

ID=52022110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063867 WO2014199811A1 (ja) 2013-06-13 2014-05-26 ハイブリッド車両及びその制御方法

Country Status (2)

Country Link
JP (1) JP6182990B2 (ja)
WO (1) WO2014199811A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107264290A (zh) * 2016-04-06 2017-10-20 株式会社电装 发电控制装置
CN110182200A (zh) * 2019-07-24 2019-08-30 潍柴动力股份有限公司 一种用于串联式混合动力系统的制动控制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7236917B2 (ja) * 2019-04-04 2023-03-10 株式会社小松製作所 作業車両、作業車両の制御装置および制御方法
JP7314836B2 (ja) * 2020-02-28 2023-07-26 いすゞ自動車株式会社 パラメータ算出装置及びパラメータ算出方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08183367A (ja) * 1994-12-29 1996-07-16 Mitsubishi Motors Corp オートクルーズ制御方法
JPH11275708A (ja) * 1998-03-19 1999-10-08 Toyota Motor Corp 車両の制動エネルギー制御装置とその制御方法
JP2004189056A (ja) * 2002-12-10 2004-07-08 Nissan Motor Co Ltd 車両用制動装置
JP2009149173A (ja) * 2007-12-19 2009-07-09 Mitsubishi Fuso Truck & Bus Corp オートクルーズ装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4723931B2 (ja) * 2005-06-24 2011-07-13 トヨタ自動車株式会社 車両用駆動装置の制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08183367A (ja) * 1994-12-29 1996-07-16 Mitsubishi Motors Corp オートクルーズ制御方法
JPH11275708A (ja) * 1998-03-19 1999-10-08 Toyota Motor Corp 車両の制動エネルギー制御装置とその制御方法
JP2004189056A (ja) * 2002-12-10 2004-07-08 Nissan Motor Co Ltd 車両用制動装置
JP2009149173A (ja) * 2007-12-19 2009-07-09 Mitsubishi Fuso Truck & Bus Corp オートクルーズ装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107264290A (zh) * 2016-04-06 2017-10-20 株式会社电装 发电控制装置
CN107264290B (zh) * 2016-04-06 2021-10-01 株式会社电装 发电控制装置
CN110182200A (zh) * 2019-07-24 2019-08-30 潍柴动力股份有限公司 一种用于串联式混合动力系统的制动控制方法

Also Published As

Publication number Publication date
JP2015000606A (ja) 2015-01-05
JP6182990B2 (ja) 2017-08-23

Similar Documents

Publication Publication Date Title
JP4328973B2 (ja) ハイブリッド電気自動車の制御装置
CN101028821B (zh) 车辆控制装置和车辆控制方法
CN101913320B (zh) 一种气压混合动力传动系统和控制方法
US9650034B2 (en) Apparatus and method for controlling hybrid vehicle
JP6182990B2 (ja) ハイブリッド車両及びその制御方法
KR101534731B1 (ko) 하이브리드 차량의 회생 제동 장치 및 방법
JP6512116B2 (ja) 車両
JP2013075534A (ja) ハイブリッド自動車の制御装置
KR102200095B1 (ko) 마일드 하이브리드 자동차의 에너지 회생 장치 및 방법
WO2014199810A1 (ja) ハイブリッド車両及びその制御方法
JP5668946B2 (ja) 車両用制御装置
CN105644529A (zh) 一种动车拖车再生制动装置
JP4760726B2 (ja) 車両
JP2006220045A (ja) 車両の減速時制御方法
JP2013075540A (ja) ハイブリッド車両
JP6801220B2 (ja) ハイブリッド車両
WO2017086420A1 (ja) ハイブリッド車両及びその制御方法
KR102354195B1 (ko) Phev 청소차 주행 제어장치
JP4455572B2 (ja) ハイブリッド車両
JP3856302B2 (ja) 車両のハイブリッドシステム
RU152878U1 (ru) Гибридный силовой агрегат колесного транспортного средства
JP2018024392A (ja) 車両用制御装置
KR20100020382A (ko) 하이브리드 자동차의 브레이크 제어 장치 및 방법
KR20170000993A (ko) 하이브리드 차량의 제동 선형성 개선을 위한 모터토크 제어방법
KR102200102B1 (ko) 마일드 하이브리드 자동차의 에너지 회생 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14811148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14811148

Country of ref document: EP

Kind code of ref document: A1