WO2014199690A1 - Control device and control method for internal combustion engine - Google Patents

Control device and control method for internal combustion engine Download PDF

Info

Publication number
WO2014199690A1
WO2014199690A1 PCT/JP2014/056490 JP2014056490W WO2014199690A1 WO 2014199690 A1 WO2014199690 A1 WO 2014199690A1 JP 2014056490 W JP2014056490 W JP 2014056490W WO 2014199690 A1 WO2014199690 A1 WO 2014199690A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression ratio
variable
variable valve
valve mechanism
target
Prior art date
Application number
PCT/JP2014/056490
Other languages
French (fr)
Japanese (ja)
Inventor
清水 博和
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2014199690A1 publication Critical patent/WO2014199690A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/02Varying compression ratio by alteration or displacement of piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0234Variable control of the intake valves only changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/21Control of the engine output torque during a transition between engine operation modes or states
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2700/00Mechanical control of speed or power of a single cylinder piston engine
    • F02D2700/03Controlling by changing the compression ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2700/00Mechanical control of speed or power of a single cylinder piston engine
    • F02D2700/03Controlling by changing the compression ratio
    • F02D2700/035Controlling by changing the compression ratio without modifying the volume of the compression space, e.g. by changing the valve timing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

The present invention pertains to a control device and a control method for internal combustion engine provided with a variable valve actuation mechanism for varying the closing timing of the inlet valve, and a variable compression ratio mechanism for varying the top dead point position of the piston. According to this control device and control method, when the direction of change of the compression ratio produced by both mechanisms differs, the response of the compression ratio change produced by the variable valve actuation mechanism is delayed. Thus, in the event that the response of the compression ratio change produced by the variable valve actuation mechanism is faster as compared with that of the variable compression ratio mechanism, the change in compression ratio produced by the variable valve actuation mechanism is attuned to the change in compression ratio produced by the a variable compression ratio mechanism, minimizing transient states in which the effective compression ratio is momentarily too great or too small.

Description

内燃機関の制御装置及び制御方法Control device and control method for internal combustion engine
 本発明は、吸気バルブの閉時期を変更する可変動弁機構と、ピストンの上死点位置を変更して圧縮比を変更する圧縮比可変機構と、を備えた内燃機関の制御装置及び制御方法に関する。 The present invention relates to a control apparatus and control method for an internal combustion engine, comprising: a variable valve mechanism that changes the closing timing of the intake valve; and a variable compression ratio mechanism that changes the compression ratio by changing the top dead center position of the piston. About.
 特許文献1には、吸気バルブの閉時期を変更する可変動弁機構と、ピストンの上死点位置を変更して圧縮比を変更する圧縮比可変機構と、を備えた内燃機関において、内燃機関の起動時に、圧縮比可変機構により圧縮比をアイドリング時相当の高圧縮比に維持したまま、可変動弁機構によりクランキングの初期は吸気バルブの閉時期を下死点から離れた時期に設定し、クランキング開始後に吸気バルブの閉時期を下死点に近づける、制御装置が開示されている。 Patent Document 1 discloses an internal combustion engine that includes a variable valve mechanism that changes the closing timing of an intake valve and a compression ratio variable mechanism that changes a compression ratio by changing the top dead center position of a piston. At the start of the engine, the variable valve ratio mechanism maintains the compression ratio at a high compression ratio equivalent to idling, and the variable valve mechanism sets the closing timing of the intake valve at a time away from the bottom dead center at the initial stage of cranking. A control device is disclosed that closes the closing timing of the intake valve to the bottom dead center after cranking is started.
特開2002-276446号公報JP 2002-276446 A
 吸気バルブの閉時期を変更する可変動弁機構と、ピストンの上死点位置を変更して圧縮比を変更する圧縮比可変機構とを備えた内燃機関においては、可変動弁機構による閉時期IVCの変更に伴う圧縮比の変化速度と圧縮比可変機構による機械圧縮比の変化速度との違いによって、例えば、可変動弁機構と圧縮比可変機構とを並行して作動させたときに、閉時期IVCと機械圧縮比とで決まる有効圧縮比が一時的に過大若しくは過小になる場合があり、これが燃焼性の悪化やノッキングの要因になっていた。 In an internal combustion engine having a variable valve mechanism that changes the closing timing of the intake valve and a compression ratio variable mechanism that changes the compression ratio by changing the top dead center position of the piston, the closing timing IVC by the variable valve mechanism For example, when the variable valve mechanism and the variable compression ratio mechanism are operated in parallel, the closing timing is changed depending on the difference between the change speed of the compression ratio and the change speed of the mechanical compression ratio by the variable compression ratio mechanism. In some cases, the effective compression ratio determined by the IVC and the mechanical compression ratio becomes temporarily too large or too small, which has been a cause of deterioration in flammability and knocking.
 本発明は上記問題点に鑑みなされたものであり、有効圧縮比が過渡状態で一時的に過大若しくは過小になることを抑制できる内燃機関の制御装置及び制御方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a control device and a control method for an internal combustion engine that can prevent the effective compression ratio from temporarily becoming excessively high or low in a transient state.
 そのため、本発明に係る制御装置は、可変動弁機構と圧縮比可変機構との一方の作動状態に応じて他方の作動を変更する制御部を備えるようにした。
 また、本発明に係る制御方法は、以下のステップを含むようにした、
 前記可変動弁機構と前記圧縮比可変機構との一方の作動状態を検出し、
 前記作動状態に応じて他方の作動を変更する。
Therefore, the control device according to the present invention includes a control unit that changes the operation of the other in accordance with one operation state of the variable valve mechanism and the compression ratio variable mechanism.
The control method according to the present invention includes the following steps.
Detecting one operating state of the variable valve mechanism and the compression ratio variable mechanism;
The other operation is changed according to the operation state.
 上記発明によると、有効圧縮比が過渡状態で一時的に過大若しくは過小になることを抑制でき、以って、過渡状態で燃焼性の悪化やノッキングが発生することを抑制できる。 According to the above invention, it is possible to prevent the effective compression ratio from temporarily becoming too large or too small in the transient state, and thus it is possible to suppress the deterioration of combustibility and the occurrence of knocking in the transient state.
本願発明の実施形態における内燃機関のシステム図である。1 is a system diagram of an internal combustion engine in an embodiment of the present invention. 本願発明の実施形態における協調制御のパターンを示す図である。It is a figure which shows the pattern of the cooperative control in embodiment of this invention. 本願発明の実施形態において可変動弁機構における圧縮比の変化方向と圧縮比可変機構による圧縮比の変化方向が相互に異なる運転状態を例示する図であり、(A)は過給状態での作動を示し、(B)は燃費優先状態での作動を示す図である。In the embodiment of the present invention, it is a diagram illustrating an operating state in which the change direction of the compression ratio in the variable valve mechanism and the change direction of the compression ratio by the variable compression ratio mechanism are different from each other, and FIG. (B) is a figure which shows the operation | movement in a fuel consumption priority state. 本願発明の実施形態において可変動弁機構における圧縮比の変化方向と圧縮比可変機構による圧縮比の変化方向が相互に同じとなる運転状態を例示する図であり、(A)は始動状態での作動を示し、(B)はファストアイドル状態での作動を示す図である。It is a figure which illustrates the driving | running state in which the change direction of the compression ratio in a variable valve mechanism and the change direction of the compression ratio by a compression ratio variable mechanism become the same mutually in embodiment of this invention, (A) is a start state. The operation is shown, and (B) is a diagram showing the operation in the fast idle state. 本願発明の実施形態において可変動弁機構における圧縮比の変化方向と圧縮比可変機構による圧縮比の変化方向が相互に同じとなる運転状態を例示する図であり、(A)は弱過給状態での作動を示し、(B)はプレイグニッション又はノッキングの発生状態での作動を示す図である。It is a figure which illustrates the driving | running state in which the change direction of the compression ratio in a variable valve mechanism and the change direction of the compression ratio by a compression ratio variable mechanism become the same mutually in embodiment of this invention, (A) is a weak supercharging state (B) is a figure which shows the operation | movement in the generation | occurrence | production state of pre-ignition or knocking. 本願発明の実施形態において圧縮比可変機構のみを作動させる運転状態を例示する図であり、(A)は弱過給状態での作動を示し、(B)は高過給状態での作動を示す図である。It is a figure which illustrates the driving | running state which operates only a compression ratio variable mechanism in embodiment of this invention, (A) shows the action | operation in a weak supercharging state, (B) shows the action | operation in a high supercharging state. FIG. 本願発明の実施形態において可変動弁機構のみを作動させる運転状態を例示する図であり、(A)は低負荷かつ省燃費状態での作動を示し、(B)は中負荷かつ省燃費状態での作動を示す図である。It is a figure which illustrates the driving | running state which operates only a variable valve mechanism in embodiment of this invention, (A) shows the operation | movement in a low load and a fuel-saving state, (B) is in a medium load and a fuel-saving state. FIG. 本願発明の実施形態における協調制御を実施しない場合の圧縮比変化の様子を示すタイムチャートである。It is a time chart which shows the mode of the compression ratio change when not implementing cooperative control in embodiment of this invention. 本願発明の実施形態における協調制御を実施した場合の圧縮比変化の様子を示すタイムチャートである。It is a time chart which shows the mode of the compression ratio change at the time of implementing the cooperative control in embodiment of this invention. 本願発明の実施形態において圧縮比可変機構の目標値を補正する機能を示すブロック図である。It is a block diagram which shows the function which correct | amends the target value of a compression ratio variable mechanism in embodiment of this invention. 本願発明の実施形態における過補正用ゲインの演算処理を示すブロック図である。It is a block diagram which shows the calculation process of the overcorrection gain in embodiment of this invention. 本願発明の実施形態における制限処理用ゲインの演算機能を示すブロック図である。It is a block diagram which shows the calculation function of the gain for a restriction | limiting process in embodiment of this invention. 本願発明の実施形態において可変動弁機構の目標値を補正する機能を示すブロック図である。It is a block diagram which shows the function which correct | amends the target value of a variable valve mechanism in embodiment of this invention.
 以下に本発明の実施の形態を説明する。
 図1は、本発明に係る制御装置及び制御方法を適用可能な内燃機関の一例を示す図である。
 図1に示す内燃機関10は、ピストン33の上死点位置を変更して圧縮比を変更する圧縮比可変機構(VCR)50と、吸気バルブ81の閉時期IVCを変更する可変動弁機構(VTC)82と、を備えている。
Embodiments of the present invention will be described below.
FIG. 1 is a diagram showing an example of an internal combustion engine to which a control device and a control method according to the present invention can be applied.
The internal combustion engine 10 shown in FIG. 1 has a variable compression ratio mechanism (VCR) 50 that changes the compression ratio by changing the top dead center position of the piston 33, and a variable valve mechanism that changes the closing timing IVC of the intake valve 81. VTC) 82.
 圧縮比可変機構50は、クランクシャフト32とピストン33とを、ロアリンク11及びアッパリンク12で連結すると共に、コントロールリンク13でロアリンク11の移動を規制し、ピストン33の上死点位置を変更することで内燃機関10の圧縮比を変更する機構である。
 ロアリンク11は、左右の2部材に分割可能に構成され、略中央の連結孔でクランクシャフト32のクランクピン32bに取り付けられる。そして、ロアリンク11は、クランクピン32bを中心軸として回転する。
The variable compression ratio mechanism 50 connects the crankshaft 32 and the piston 33 with the lower link 11 and the upper link 12 and restricts the movement of the lower link 11 with the control link 13 to change the top dead center position of the piston 33. This is a mechanism for changing the compression ratio of the internal combustion engine 10.
The lower link 11 is configured to be split into two left and right members, and is attached to the crankpin 32b of the crankshaft 32 through a substantially central connecting hole. And the lower link 11 rotates centering on the crankpin 32b.
 クランクシャフト32は、複数のジャーナル32aとクランクピン32bとを備える。ジャーナル32aは、シリンダブロック31及びラダーフレーム34によって回転自在に支持される。クランクピン32bは、ジャーナル32aから所定量偏心しており、ここにロアリンク11が回転自在に連結する。
 ロアリンク11の一端は、連結ピン21を介してアッパリンク12に連結し、ロアリンク11の他端は、連結ピン22を介してコントロールリンク13に連結する。
The crankshaft 32 includes a plurality of journals 32a and a crankpin 32b. The journal 32 a is rotatably supported by the cylinder block 31 and the ladder frame 34. The crank pin 32b is eccentric by a predetermined amount from the journal 32a, and the lower link 11 is rotatably connected thereto.
One end of the lower link 11 is connected to the upper link 12 via a connecting pin 21, and the other end of the lower link 11 is connected to the control link 13 via a connecting pin 22.
 アッパリンク12の下端は、連結ピン21を介してロアリンク11の一端に連結し、アッパリンク12の上端は、ピストンピン23を介してピストン33に連結する。
 ピストン33は、燃焼圧力を受け、シリンダブロック31のシリンダ31a内を往復動する。
The lower end of the upper link 12 is connected to one end of the lower link 11 via the connecting pin 21, and the upper end of the upper link 12 is connected to the piston 33 via the piston pin 23.
The piston 33 receives the combustion pressure and reciprocates in the cylinder 31 a of the cylinder block 31.
 コントロールリンク13は、先端に設けた連結ピン22を介して、ロアリンク11に回動可能に連結し、コントロールリンク13の他端は、連結ピン24を介してコントロールシャフト25に対して偏心して連結し、コントロールリンク13は、連結ピン24を中心として揺動する。
 コントロールシャフト25にはギヤが形成されており、ギヤがアクチュエータ51の回転軸52に設けられたピニオン53に噛合する。そして、アクチュエータ51によってコントロールシャフト25が回転させられ、連結ピン24が移動する。
The control link 13 is rotatably connected to the lower link 11 via a connecting pin 22 provided at the tip, and the other end of the control link 13 is eccentrically connected to the control shaft 25 via a connecting pin 24. The control link 13 swings around the connecting pin 24.
A gear is formed on the control shaft 25, and the gear meshes with a pinion 53 provided on the rotation shaft 52 of the actuator 51. And the control shaft 25 is rotated by the actuator 51, and the connection pin 24 moves.
 制御装置70は、アクチュエータ51を制御してコントロールシャフト25を回転させることで、ピストン33の上死点位置を変更し、内燃機関10の圧縮比を変更する。
 尚、圧縮比可変機構50は、ピストン33の上死点位置を変更することで内燃機関10の機械圧縮比を変更する公知の機構であり、詳細な構造は、図1に示したものに限定されない。
The control device 70 controls the actuator 51 to rotate the control shaft 25, thereby changing the top dead center position of the piston 33 and changing the compression ratio of the internal combustion engine 10.
The variable compression ratio mechanism 50 is a known mechanism that changes the mechanical compression ratio of the internal combustion engine 10 by changing the top dead center position of the piston 33, and its detailed structure is limited to that shown in FIG. Not.
 可変動弁機構82は、一例として、クランクシャフト32に対する吸気カムシャフト83の相対回転位相角を変更することで、吸気バルブ81の開期間を進角方向及び遅角方向に変化させる公知の可変バルブタイミング機構である。
 ここで、可変動弁機構82により吸気バルブ81の開期間を進角させると、吸気バルブ81の開時期IVO及び閉時期IVCが進角方向に変化し、開期間を遅角させると、吸気バルブ81の開時期IVO及び閉時期IVCが遅角方向に変化するから、可変動弁機構82は、吸気バルブ81の閉時期IVCを変更する機構である。
As an example, the variable valve mechanism 82 is a known variable valve that changes the relative rotation phase angle of the intake camshaft 83 with respect to the crankshaft 32 to change the open period of the intake valve 81 in the advance direction and the retard direction. Timing mechanism.
Here, when the opening period of the intake valve 81 is advanced by the variable valve mechanism 82, the opening timing IVO and the closing timing IVC of the intake valve 81 change in the advance direction, and when the opening period is retarded, the intake valve 81 Since the opening timing IVO and the closing timing IVC of 81 change in the retarding direction, the variable valve mechanism 82 is a mechanism that changes the closing timing IVC of the intake valve 81.
 そして、可変動弁機構82により吸気バルブ81の閉時期IVCを変更することで圧縮比が変化し、例えば、ピストン33の下死点BDC後の角度領域で閉時期IVCを遅角すれば圧縮比は減少することになり、逆に、ピストン33の下死点BDC後の角度領域で閉時期IVCを進角すれば圧縮比は増加することになる。
 尚、可変動弁機構82は、クランクシャフト32に対する吸気カムシャフト83の相対回転位相角を変更する機構に限定されず、吸気バルブ81の閉時期IVCを可変とする公知の機構を適宜採用できる。
Then, the compression ratio is changed by changing the closing timing IVC of the intake valve 81 by the variable valve mechanism 82. For example, if the closing timing IVC is retarded in the angular region after the bottom dead center BDC of the piston 33, the compression ratio is changed. Conversely, if the closing timing IVC is advanced in the angular region after the bottom dead center BDC of the piston 33, the compression ratio increases.
The variable valve mechanism 82 is not limited to a mechanism that changes the relative rotational phase angle of the intake camshaft 83 with respect to the crankshaft 32, and a known mechanism that makes the closing timing IVC of the intake valve 81 variable can be appropriately employed.
 例えば、吸気バルブ81の開期間を可変とする可変動弁機構82を備える場合、吸気バルブ81の開期間の増減に伴って吸気バルブ81の閉時期IVCが遅角方向及び進角方向に変化することになる。
 即ち、吸気バルブ81の開期間の中心位相が一定である状態で、開期間を増加させれば閉時期IVCは遅角変化することになり、逆に開期間を減少させれば閉時期IVCは進角変化することになる。
For example, when the variable valve mechanism 82 that makes the opening period of the intake valve 81 variable is provided, the closing timing IVC of the intake valve 81 changes in the retard direction and the advance direction as the opening period of the intake valve 81 increases or decreases. It will be.
That is, if the opening period is increased while the central phase of the opening period of the intake valve 81 is constant, the closing timing IVC will be retarded, and conversely if the opening period is decreased, the closing timing IVC will be The lead angle will change.
 また、可変動弁機構82を、クランクシャフト32に対する吸気カムシャフト83の相対回転位相角を変更する第1の機構と、吸気バルブ81の開期間を可変とする第2の機構との組み合わせとすることができる。
 更に、電磁石などのアクチュエータによって吸気バルブ81を開閉駆動する電磁バルブ駆動装置を備える場合、開閉タイミングの制御によって吸気バルブ81の閉時期IVCを任意に変更することが可能であり、この場合、前述の電磁バルブ駆動装置は、吸気バルブ81の閉時期IVCを変更する可変動弁機構に相当する。
 また、排気バルブ91のバルブタイミングを可変とする排気側の可変バルブタイミング機構を備えることができる。
The variable valve mechanism 82 is a combination of a first mechanism that changes the relative rotational phase angle of the intake camshaft 83 with respect to the crankshaft 32 and a second mechanism that makes the opening period of the intake valve 81 variable. be able to.
Further, when an electromagnetic valve drive device that opens and closes the intake valve 81 by an actuator such as an electromagnet is provided, the closing timing IVC of the intake valve 81 can be arbitrarily changed by controlling the opening and closing timing. The electromagnetic valve driving device corresponds to a variable valve mechanism that changes the closing timing IVC of the intake valve 81.
Further, an exhaust-side variable valve timing mechanism that makes the valve timing of the exhaust valve 91 variable can be provided.
 内燃機関10は、燃料噴射装置41を備える。この燃料噴射装置41は、例えば、噴霧方向がシリダボアの軸心に対して斜めに交差するように、燃焼室側方にピストン33側を向くように傾けて配置され、筒内に燃料を直接噴射する。即ち、図1に示す内燃機関10は、筒内直接噴射式内燃機関である。
 但し、燃料噴射装置41は、筒内に燃料を直接噴射する装置に限定されず、吸気バルブ81上流側の吸気ポート内に燃料を噴射する装置とすることができ、また、内燃機関10は、筒内に燃料を直接噴射する装置と吸気ポート内に燃料を噴射する装置との双方を備えることができる。
The internal combustion engine 10 includes a fuel injection device 41. The fuel injection device 41 is disposed, for example, so as to incline toward the piston 33 side toward the combustion chamber side so that the spray direction obliquely intersects the axis of the cylinder bore, and directly injects fuel into the cylinder. To do. That is, the internal combustion engine 10 shown in FIG. 1 is a direct injection type internal combustion engine.
However, the fuel injection device 41 is not limited to a device that directly injects fuel into the cylinder, but can be a device that injects fuel into the intake port on the upstream side of the intake valve 81. Both a device for directly injecting fuel into the cylinder and a device for injecting fuel into the intake port can be provided.
 制御装置70は、圧縮比可変機構50を制御することでピストン33の上死点位置を変更し、可変動弁機構82を制御することで吸気バルブ81の閉時期IVCを変更し、また、燃料噴射装置41による燃料噴射、及び、点火プラグ42による点火時期などを制御する。
 制御装置70は、CPU、ROM、RAM、入出力インタフェースなどを備えたマイクロコンピュータを含んで構成され、各種センサからの検出信号を入力し、圧縮比可変機構50、可変動弁機構82、燃料噴射装置41、点火プラグ42の点火コイルなどの操作信号を出力する。
The control device 70 changes the top dead center position of the piston 33 by controlling the compression ratio variable mechanism 50, changes the closing timing IVC of the intake valve 81 by controlling the variable valve mechanism 82, The fuel injection by the injection device 41 and the ignition timing by the spark plug 42 are controlled.
The control device 70 includes a microcomputer having a CPU, a ROM, a RAM, an input / output interface, etc., and inputs detection signals from various sensors, and a compression ratio variable mechanism 50, a variable valve mechanism 82, a fuel injection. The operation signal of the ignition coil etc. of the apparatus 41 and the spark plug 42 is output.
 上記の各種センサとして、内燃機関10には、機関負荷TPを検出する負荷センサ61、機関回転速度NEを検出する回転センサ62、内燃機関10の冷却水の温度TWを検出する水温センサ63などを設けてある。
 そして、制御装置70は、各種センサの出力に基づいて内燃機関10の運転状態を検出し、内燃機関10の運転状態に応じて、圧縮比可変機構50、可変動弁機構82、燃料噴射装置41、点火プラグ42の点火コイルなどの操作量を決定する。
As the above various sensors, the internal combustion engine 10 includes a load sensor 61 that detects the engine load TP, a rotation sensor 62 that detects the engine rotational speed NE, a water temperature sensor 63 that detects the temperature TW of the cooling water of the internal combustion engine 10, and the like. It is provided.
The control device 70 detects the operating state of the internal combustion engine 10 based on the outputs of the various sensors, and the compression ratio variable mechanism 50, the variable valve mechanism 82, and the fuel injection device 41 according to the operating state of the internal combustion engine 10. The operation amount of the ignition coil of the spark plug 42 is determined.
 圧縮比可変機構50及び可変動弁機構82の制御において、制御装置70は、例えば、機関負荷TPや機関回転速度NEなど運転条件に応じて各機構の制御量の目標値を記憶したマップを参照して目標値を設定し、制御量の検出値と目標値との偏差に応じて操作量を演算して出力する。
 ここで、圧縮比可変機構50により内燃機関10の圧縮比が変更されると共に、可変動弁機構82により吸気バルブ81の閉時期IVCを変更することによって圧縮比が変化し、内燃機関10の有効圧縮比CReは、ピストン33の上死点位置及び吸気バルブ81の閉時期IVCによって決定される。
In the control of the compression ratio variable mechanism 50 and the variable valve mechanism 82, the control device 70 refers to a map that stores the target value of the control amount of each mechanism according to the operating conditions such as the engine load TP and the engine speed NE, for example. Then, the target value is set, and the manipulated variable is calculated and output according to the deviation between the control value detected value and the target value.
Here, the compression ratio of the internal combustion engine 10 is changed by the compression ratio variable mechanism 50, and the compression ratio is changed by changing the closing timing IVC of the intake valve 81 by the variable valve mechanism 82. The compression ratio CRe is determined by the top dead center position of the piston 33 and the closing timing IVC of the intake valve 81.
 このため、圧縮比可変機構50及び/又は可変動弁機構82を制御するときに、機構間における圧縮比応答の違いなどによって過渡的に有効圧縮比CReが過大若しくは過小になり、燃焼性の悪化やノッキングを発生させる可能性がある。
 例えば、圧縮比可変機構50によって圧縮比を増大させる制御に並行して、可変動弁機構82により閉時期IVCを変化させて圧縮比を低下させる制御を行う場合、可変動弁機構82による閉時期IVCの変化に伴う圧縮比CRivcの低下が、圧縮比可変機構50による圧縮比CRmの増大に先行して進むと、有効圧縮比CReが一時的に最終的な目標有効圧縮比CRetgを下回る現象が発生する。
For this reason, when the variable compression ratio mechanism 50 and / or the variable valve mechanism 82 are controlled, the effective compression ratio CRe becomes transiently excessive or excessive due to a difference in the compression ratio response between the mechanisms, and the combustibility deteriorates. And may cause knocking.
For example, in parallel with the control for increasing the compression ratio by the compression ratio variable mechanism 50, when the variable valve mechanism 82 is used to perform the control for decreasing the compression ratio by changing the closing timing IVC, the closing timing by the variable valve mechanism 82 is used. When the decrease in the compression ratio CRivc due to the change in IVC proceeds prior to the increase in the compression ratio CRm by the compression ratio variable mechanism 50, the phenomenon that the effective compression ratio CRe temporarily falls below the final target effective compression ratio CRetg. appear.
 逆に、圧縮比可変機構50によって圧縮比を減少させる制御に並行して、可変動弁機構82により閉時期IVCを変化させて圧縮比を増加させる制御を行う場合、可変動弁機構82による圧縮比CRivcの増加が、圧縮比可変機構50による圧縮比CRmの減少に先行して進むと、有効圧縮比CReが一時的に最終的な目標有効圧縮比CRetgを上回る現象が発生する。 On the contrary, in the case where the variable valve mechanism 82 performs the control to increase the compression ratio by changing the closing timing IVC in parallel with the control to decrease the compression ratio by the compression ratio variable mechanism 50, the compression by the variable valve mechanism 82 is performed. When the increase in the ratio CRivc proceeds prior to the decrease in the compression ratio CRm by the compression ratio variable mechanism 50, a phenomenon occurs in which the effective compression ratio CRe temporarily exceeds the final target effective compression ratio CRetg.
 また、圧縮比可変機構50と可変動弁機構82とのいずれか一方により有効圧縮比CReを変化させるときに、目標有効圧縮比CRetgへの収束が遅くなる場合がある。
 そこで、制御装置70は、可変動弁機構82と圧縮比可変機構50との一方の作動状態に応じて他方の作動を変更する処理を行うことで、機構間における応答性の違いによって過渡的に有効圧縮比CReが過大若しくは過小になることを抑制し、また、目標有効圧縮比CRetgへの収束応答性を向上させる。
 なお、以下では、可変動弁機構82と圧縮比可変機構50との一方の作動状態に応じて他方の作動を変更する処理を、協調制御ともいう。
Further, when the effective compression ratio CRe is changed by either the compression ratio variable mechanism 50 or the variable valve mechanism 82, convergence to the target effective compression ratio CRetg may be delayed.
Therefore, the control device 70 performs a process of changing the other operation in accordance with one operation state of the variable valve mechanism 82 and the compression ratio variable mechanism 50, thereby transiently depending on the difference in responsiveness between the mechanisms. The effective compression ratio CRe is prevented from becoming excessively large or small, and the convergence response to the target effective compression ratio CRetg is improved.
In the following, the process of changing the other operation according to one operation state of the variable valve mechanism 82 and the compression ratio variable mechanism 50 is also referred to as cooperative control.
 図2は、制御装置70による協調制御の特性を示す図であり、可変動弁機構82の作動状態と圧縮比可変機構50の作動状態との組み合わせパターン毎に協調制御の処理内容を示す。
 図2における第1列は、作動状態の組み合わせパターンの番号を示す。
FIG. 2 is a diagram showing the characteristics of the cooperative control by the control device 70, and shows the processing contents of the cooperative control for each combination pattern of the operating state of the variable valve mechanism 82 and the operating state of the compression ratio variable mechanism 50.
The 1st column in Drawing 2 shows the number of the combination pattern of an operation state.
 図2の第2列は、実有効圧縮比CReと目標有効圧縮比CRetgとの相関を示す。
 詳細には、目標有効圧縮比CRetgと実有効圧縮比CReとが略一致する状態、目標有効圧縮比CRetgが実有効圧縮比CReよりも高い状態、目標有効圧縮比CRetgが実有効圧縮比CReよりも低い状態との3パターンに区分されている。
 なお、目標有効圧縮比CRetgが実有効圧縮比CReよりも高い状態とは、実有効圧縮比CReを上昇させる操作状態であり、また、目標有効圧縮比CRetgが実有効圧縮比CReよりも低い状態とは、実有効圧縮比CReを減少させる操作状態である。
 また、圧縮比が目標値に略一致する状態とは、例えば、圧縮比制御における目標値を含む所定範囲内に実圧縮比が含まれる状態であって、実圧縮比を目標圧縮比に近づける操作が停止される状態である。
The second column in FIG. 2 shows the correlation between the actual effective compression ratio CRe and the target effective compression ratio CRetg.
Specifically, the target effective compression ratio CRetg and the actual effective compression ratio CRe substantially coincide with each other, the target effective compression ratio CRetg is higher than the actual effective compression ratio CRe, and the target effective compression ratio CRetg is higher than the actual effective compression ratio CRe. Are also divided into three patterns with a low state.
The state in which the target effective compression ratio CRetg is higher than the actual effective compression ratio CRe is an operation state in which the actual effective compression ratio CRe is increased, and the target effective compression ratio CRetg is lower than the actual effective compression ratio CRe. Is an operation state in which the actual effective compression ratio CRe is decreased.
The state in which the compression ratio substantially matches the target value is, for example, a state in which the actual compression ratio is included in a predetermined range including the target value in the compression ratio control, and an operation for bringing the actual compression ratio closer to the target compression ratio. Is in a state to be stopped.
 また、実有効圧縮比CReは、可変動弁機構82の制御量の検出値、及び、圧縮比可変機構50の制御量の検出値から求められ、目標有効圧縮比CRetgは、可変動弁機構82の制御量の目標値、及び、圧縮比可変機構50の制御量の目標値から求めることができる。
 また、可変動弁機構82により可変とされる実圧縮比CRivcは、可変動弁機構82の制御量の検出値から求められ、実圧縮比CRivcの目標値CRivctgは、可変動弁機構82の制御量の目標値から求めることができる。同様に、圧縮比可変機構50により可変とされる実圧縮比CRmは、圧縮比可変機構50の制御量の検出値から求められ、実圧縮比CRmの目標値CRmtgは、圧縮比可変機構50の制御量の目標値から求めることができる。
Further, the actual effective compression ratio CRe is obtained from the detected value of the control amount of the variable valve mechanism 82 and the detected value of the control amount of the variable compression ratio mechanism 50, and the target effective compression ratio CRetg is the variable valve mechanism 82. And the target value of the control amount of the compression ratio variable mechanism 50 can be obtained.
The actual compression ratio CRivc that is variable by the variable valve mechanism 82 is obtained from the detected value of the control amount of the variable valve mechanism 82, and the target value CRivctg of the actual compression ratio CRivc is the control value of the variable valve mechanism 82. It can be obtained from the target value of quantity. Similarly, the actual compression ratio CRm that is variable by the compression ratio variable mechanism 50 is obtained from the detected value of the control amount of the compression ratio variable mechanism 50, and the target value CRmtg of the actual compression ratio CRm is the value of the compression ratio variable mechanism 50. It can be obtained from the target value of the controlled variable.
 図2における第3例は、可変動弁機構82における目標圧縮比CRivctgと実圧縮比CRivcとの相関を示し、目標圧縮比CRivctgと実圧縮比CRivcとが略一致する状態、目標圧縮比CRivctgが実圧縮比CRivcよりも高い状態、目標圧縮比CRivctgが実圧縮比CRivcよりも低い状態との3パターンに区分されている。
 なお、目標圧縮比CRivctgが実圧縮比CRivcよりも高い状態とは、実圧縮比CRivcを上昇させる操作状態、閉時期IVCを下死点BDCに近づける操作状態であり、目標圧縮比CRivctgが実圧縮比CRivcよりも低い状態とは、実圧縮比CRivcを減少させる操作状態、閉時期IVCを下死点BDCから遠ざける操作状態である。
 そして、第2例の目標有効圧縮比CRetgが実有効圧縮比CReよりも高い状態及び目標有効圧縮比CRetgが実有効圧縮比CReよりも低い状態を、可変動弁機構82の圧縮比状態によりそれぞれ3パターンに場合分けする。
The third example in FIG. 2 shows the correlation between the target compression ratio CRivctg and the actual compression ratio CRivc in the variable valve mechanism 82. The target compression ratio CRivctg is substantially equal to the target compression ratio CRivctg. The pattern is divided into three patterns: a state where the actual compression ratio CRivc is higher and a state where the target compression ratio CRivctg is lower than the actual compression ratio CRivc.
The state in which the target compression ratio CRivctg is higher than the actual compression ratio CRivc is an operation state in which the actual compression ratio CRivc is increased and an operation state in which the closing timing IVC is brought close to the bottom dead center BDC. The state lower than the ratio CRivc is an operation state in which the actual compression ratio CRivc is decreased and an operation state in which the closing timing IVC is moved away from the bottom dead center BDC.
Then, the state in which the target effective compression ratio CRetg in the second example is higher than the actual effective compression ratio CRe and the state in which the target effective compression ratio CRetg is lower than the actual effective compression ratio CRe are determined depending on the compression ratio state of the variable valve mechanism 82, respectively. Cases are divided into 3 patterns.
 更に、図2の第4列は、圧縮比可変機構50における目標圧縮比CRmtgと実圧縮比CRmとの相関を示す。
 詳細には、目標圧縮比CRmtgと実圧縮比CRmとが略一致する状態、目標圧縮比CRmtgが実圧縮比CRmよりも高い状態、目標圧縮比CRmtgが実圧縮比CRmよりも低い状態との3パターンに区分されている。
 なお、目標圧縮比CRmtgが実圧縮比CRmよりも高い状態とは、実圧縮比CRmを上昇させる操作状態であり、目標圧縮比CRmtgが実圧縮比CRmよりも低い状態とは、実圧縮比CRmを減少させる操作状態である。
Further, the fourth column in FIG. 2 shows the correlation between the target compression ratio CRmtg and the actual compression ratio CRm in the variable compression ratio mechanism 50.
Specifically, the target compression ratio CRmtg and the actual compression ratio CRm substantially coincide with each other, the target compression ratio CRmtg is higher than the actual compression ratio CRm, and the target compression ratio CRmtg is lower than the actual compression ratio CRm. It is divided into patterns.
The state in which the target compression ratio CRmtg is higher than the actual compression ratio CRm is an operating state in which the actual compression ratio CRm is increased, and the state in which the target compression ratio CRmtg is lower than the actual compression ratio CRm is the actual compression ratio CRm. This is an operation state that reduces
 そして、第3例の目標圧縮比CRivctgと実圧縮比CRivcとが略一致する状態、目標圧縮比CRivctgが実圧縮比CRivcよりも高い状態及び目標圧縮比CRivctgが実圧縮比CRivcよりも低い状態を、圧縮比可変機構50の圧縮比状態によりそれぞれ3パターンに場合分けする。
 上記の第2列-第4列によって、圧縮比の制御状態が第1例に記載したように19パターンに分けられ、これらのパターン毎に圧縮比可変機構50、可変動弁機構82の制御を協調制御によってどのように変更するかを第5例-第9列に示してある。
Then, a state in which the target compression ratio CRivctg and the actual compression ratio CRivc of the third example substantially match, a state in which the target compression ratio CRivctg is higher than the actual compression ratio CRivc, and a state in which the target compression ratio CRivctg is lower than the actual compression ratio CRivc. The three patterns are divided according to the compression ratio state of the compression ratio variable mechanism 50.
The control state of the compression ratio is divided into 19 patterns as described in the first example by the above-mentioned second column to fourth column, and the compression ratio variable mechanism 50 and the variable valve mechanism 82 are controlled for each of these patterns. The fifth example-ninth column shows how the change is made by cooperative control.
 以下、図2に示した19パターンそれぞれでの制御内容を順に詳述する。
 まず、実有効圧縮比CReと目標有効圧縮比CRetgとが略一致する第1パターンは、圧縮比可変機構50及び可変動弁機構82の制御量が共に目標値に収束している定常状態であるから、圧縮比可変機構50及び可変動弁機構82の制御は不要である。
Hereinafter, the control contents in each of the 19 patterns shown in FIG. 2 will be described in detail.
First, the first pattern in which the actual effective compression ratio CRe and the target effective compression ratio CRetg substantially coincide is a steady state in which the control amounts of the compression ratio variable mechanism 50 and the variable valve mechanism 82 both converge to the target value. Therefore, control of the compression ratio variable mechanism 50 and the variable valve mechanism 82 is not necessary.
 第2パターン-第10パターンは、実有効圧縮比CReが目標有効圧縮比CRetgよりも低い状態であり、更に、第2パターン-第4パターンは、可変動弁機構82において目標圧縮比CRivctgと実圧縮比CRivcとが略一致している定常状態を、圧縮比可変機構50の圧縮比状態により3パターンに場合分けする。 The second pattern to the tenth pattern are states in which the actual effective compression ratio CRe is lower than the target effective compression ratio CRetg, and the second pattern to the fourth pattern are the actual compression ratio CRivctg and the actual compression ratio in the variable valve mechanism 82. The steady state in which the compression ratio CRivc substantially matches is divided into three patterns according to the compression ratio state of the compression ratio variable mechanism 50.
 第2パターンは、可変動弁機構82において目標圧縮比CRivctgと実圧縮比CRivcとが略一致していて、かつ、圧縮比可変機構50において目標圧縮比CRmtgと実圧縮比CRmとが略一致しているが、実有効圧縮比CReが目標有効圧縮比CRetgよりも低い状態を示す。
 但し、実際には、可変動弁機構82及び圧縮比可変機構50の制御量が共に目標値に収束しているのに、実有効圧縮比CReと目標値CRetgとが異なるという状態は有り得ず、第2パターンに対応する制御設定は不要である。
In the second pattern, the target compression ratio CRivctg and the actual compression ratio CRivc substantially match in the variable valve mechanism 82, and the target compression ratio CRmtg and the actual compression ratio CRm substantially match in the variable compression ratio mechanism 50. However, the actual effective compression ratio CRe is lower than the target effective compression ratio CRetg.
However, in reality, there is no possibility that the actual effective compression ratio CRe and the target value CRetg are different from each other even though the control amounts of the variable valve mechanism 82 and the compression ratio variable mechanism 50 converge to the target value. The control setting corresponding to the second pattern is not necessary.
 つまり、図2は、実圧縮比と目標圧縮比との大小関係に基づき区分けされる作動状態の組み合わせパターンを全て示すが、実際には有り得ないパターンを含んでいて、第2パターンは、この実際には有り得ないパターンに相当する。
 第3パターンは、可変動弁機構82において目標圧縮比CRivctgと実圧縮比CRivcとが略一致している一方、圧縮比可変機構50においては目標圧縮比CRmtgが実圧縮比CRmよりも高く、圧縮比可変機構50により圧縮比を増加させて、実有効圧縮比CReを目標有効圧縮比CRetgに向けて増加させる操作状態である。
In other words, FIG. 2 shows all combination patterns of operating states that are classified based on the magnitude relationship between the actual compression ratio and the target compression ratio, but includes patterns that are not possible in practice. This corresponds to a pattern that is impossible.
In the third pattern, the target compression ratio CRivctg and the actual compression ratio CRivc substantially coincide with each other in the variable valve mechanism 82, while the target compression ratio CRmtg in the variable compression ratio mechanism 50 is higher than the actual compression ratio CRm. This is an operation state in which the compression ratio is increased by the ratio variable mechanism 50 and the actual effective compression ratio CRe is increased toward the target effective compression ratio CRetg.
 ここで、圧縮比可変機構50のみを圧縮比の増加方向に操作するよりも、並行して可変動弁機構82を圧縮比の増加方向に操作した方が、実有効圧縮比CReは目標値CRetgに早く到達し、収束応答性が向上する。
 そこで、制御装置70は、圧縮比可変機構50により圧縮比CRmを増加させる通常制御に並行して、可変動弁機構82により吸気バルブ81の閉時期IVCを圧縮比の増大方向に変化させる協調制御を行うことで、実有効圧縮比CReの目標有効圧縮比CRetgに向けての増大を早め、目標有効圧縮比CRetgに十分に近づいた後、圧縮比可変機構50による圧縮比CRmの増大が進行するに従って閉時期IVCを目標値にまで徐々に戻す処理を実施する。
Here, the actual effective compression ratio CRe is the target value CRetg when the variable valve mechanism 82 is operated in the direction of increasing the compression ratio in parallel rather than operating only the variable compression ratio mechanism 50 in the direction of increasing the compression ratio. The convergence response is improved.
Accordingly, the control device 70 performs cooperative control in which the variable valve mechanism 82 changes the closing timing IVC of the intake valve 81 in the increasing direction of the compression ratio in parallel with the normal control in which the compression ratio variable mechanism 50 increases the compression ratio CRm. , The actual effective compression ratio CRe is accelerated toward the target effective compression ratio CRetg, and after sufficiently approaching the target effective compression ratio CRetg, the compression ratio CRm is increased by the variable compression ratio mechanism 50. Then, the process of gradually returning the closing timing IVC to the target value is performed.
 つまり、可変動弁機構82においては、機関運転状態に応じた目標圧縮比CRivctgと実圧縮比CRivcとが略一致しているから、可変動弁機構82により閉時期IVCを動かす必要はないが、実有効圧縮比CReを応答良く増加させるために、圧縮比可変機構50により圧縮比CRmを増加させる操作に並行して閉時期IVCを圧縮比の増大方向に変更し、実有効圧縮比CReの目標有効圧縮比CRetgへの到達を早める。
 これにより、内燃機関10の運転状態の変化に応じた目標有効圧縮比CRetgの増大変化に対して実有効圧縮比CReを応答良く追従変化させて、圧縮温度の確保などを図ることができる。
That is, in the variable valve mechanism 82, the target compression ratio CRivctg corresponding to the engine operating state and the actual compression ratio CRivc substantially coincide with each other, so there is no need to move the closing timing IVC by the variable valve mechanism 82. In order to increase the actual effective compression ratio CRe with good response, the closing timing IVC is changed in the direction of increasing the compression ratio in parallel with the operation of increasing the compression ratio CRm by the compression ratio variable mechanism 50, and the target of the actual effective compression ratio CRe is increased. Achieving an effective compression ratio CRetg is accelerated.
As a result, the actual effective compression ratio CRe can be followed and changed with good response to an increase in the target effective compression ratio CRetg corresponding to a change in the operating state of the internal combustion engine 10, thereby ensuring a compression temperature.
 第4パターンは、可変動弁機構82において目標圧縮比CRivctgと実圧縮比CRivcとが略一致している一方、圧縮比可変機構50においては目標圧縮比CRmtgが実際値CRmよりも低いのに、目標有効圧縮比CRetgが実有効圧縮比CReよりも高い状態を示す。
 但し、可変動弁機構82が目標に収束している定常状態で、圧縮比可変機構50の操作方向と実有効圧縮比CReの操作方向とが異なる状態は有り得ず、第4パターンは第2パターンと同様に実際には有り得ないパターンであり、第4パターンに対応する制御設定は不要である。
In the fourth pattern, while the target compression ratio CRivctg and the actual compression ratio CRivc substantially coincide with each other in the variable valve mechanism 82, the target compression ratio CRmtg in the variable compression ratio mechanism 50 is lower than the actual value CRm. The target effective compression ratio CRetg is higher than the actual effective compression ratio CRe.
However, in the steady state where the variable valve mechanism 82 converges to the target, there is no possibility that the operation direction of the compression ratio variable mechanism 50 differs from the operation direction of the actual effective compression ratio CRe, and the fourth pattern is the second pattern. Similarly to the above, the pattern is impossible in practice, and the control setting corresponding to the fourth pattern is unnecessary.
 第5パターン-第7パターンは、可変動弁機構82において目標圧縮比CRivctgが実圧縮比CRivcよりも高い状態を、圧縮比可変機構50の圧縮比状態により3パターンに場合分けする。
 第5パターンは、圧縮比可変機構50において実圧縮比CRmが目標圧縮比CRmtgに収束している状態で、可変動弁機構82により圧縮比CRivcを増大させ、実有効圧縮比CReを目標有効圧縮比CRetgに向けて増大させる状態である。
The fifth pattern to the seventh pattern divide the state where the target compression ratio CRivctg is higher than the actual compression ratio CRivc in the variable valve mechanism 82 into three patterns depending on the compression ratio state of the compression ratio variable mechanism 50.
In the fifth pattern, the compression ratio CRivc is increased by the variable valve mechanism 82 in a state where the actual compression ratio CRm converges to the target compression ratio CRmtg in the variable compression ratio mechanism 50, and the actual effective compression ratio CRe is set to the target effective compression. This is a state of increasing toward the ratio CRetg.
 この場合、可変動弁機構82のみを圧縮比の増加方向に操作するよりも、並行して圧縮比可変機構50を圧縮比の増加方向に操作した方が、実有効圧縮比CReは目標有効圧縮比CRetgに早く到達することになる。
 そこで、制御装置70は、可変動弁機構82により圧縮比を増加させる通常制御に並行して、圧縮比可変機構50により圧縮比を増大させる協調制御を行うことで、実有効圧縮比CReの目標有効圧縮比CRetgに向けての増大を速める。
In this case, the actual effective compression ratio CRe is equal to the target effective compression ratio when the variable compression ratio mechanism 50 is operated in parallel to increase the compression ratio, rather than only the variable valve mechanism 82 is operated in the increasing direction of the compression ratio. The ratio CRetg will be reached early.
Therefore, the control device 70 performs cooperative control for increasing the compression ratio by the compression ratio variable mechanism 50 in parallel with the normal control for increasing the compression ratio by the variable valve mechanism 82, thereby achieving the target of the actual effective compression ratio CRe. The increase toward the effective compression ratio CRetg is accelerated.
 そして、目標有効圧縮比CRetgに十分に近づいた後、可変動弁機構82による圧縮比の増大が進行するに従ってピストン33の上死点位置を圧縮比が低下する方向に徐々に変化させて実圧縮比CRmを目標圧縮比CRmtgに戻す処理を実施する。
 これにより、内燃機関10の運転状態の変化に応じた目標有効圧縮比CRetgの増大変化に対して、実有効圧縮比CReを応答良く追従変化させて、圧縮温度の確保などを図ることができる。
Then, after sufficiently approaching the target effective compression ratio CRetg, the top dead center position of the piston 33 is gradually changed in the direction in which the compression ratio decreases as the compression ratio increases by the variable valve mechanism 82, and the actual compression is performed. Processing for returning the ratio CRm to the target compression ratio CRmtg is performed.
As a result, the actual effective compression ratio CRe can be tracked and changed with good response to an increase in the target effective compression ratio CRetg in accordance with a change in the operating state of the internal combustion engine 10, thereby ensuring the compression temperature.
 第6パターンは、圧縮比可変機構50及び可変動弁機構82により圧縮比を増大させ、実有効圧縮比CReを目標有効圧縮比CRetgに向けて増大させる状態である。
 この場合、実圧縮比CRivcが目標値CRivctgを行き過ぎるオーバーシュートが発生するように可変動弁機構82の作動を変更する協調制御、つまり、可変動弁機構82による圧縮比CRivcの増大制御の応答を早める制御を実施することで、目標有効圧縮比CRetgに向けての実有効圧縮比CReの増加を促進させる。
The sixth pattern is a state in which the compression ratio is increased by the compression ratio variable mechanism 50 and the variable valve mechanism 82 to increase the actual effective compression ratio CRe toward the target effective compression ratio CRetg.
In this case, the response of the cooperative control for changing the operation of the variable valve mechanism 82 so that the actual compression ratio CRivc exceeds the target value CRivctg is generated, that is, the control for increasing the compression ratio CRivc by the variable valve mechanism 82. By implementing the early control, an increase in the actual effective compression ratio CRe toward the target effective compression ratio CRetg is promoted.
 これにより、内燃機関10の運転状態の変化に応じた目標有効圧縮比CRetgの増大変化に対して、実有効圧縮比CReを応答良く追従変化させて、圧縮温度の確保などを図ることができる。
 ここで、有効圧縮比CReを変化させる応答性は、圧縮比可変機構50に比べて可変動弁機構82の方が速いので、圧縮比可変機構50でオーバーシュートを発生させるよりも、可変動弁機構82でオーバーシュートを発生させた方が、有効圧縮比CReの増大変化の応答性を改善する効果が大きい。
 また、圧縮比可変機構50と可変動弁機構82との双方でオーバーシュートを発生させることもできるが、この場合は制御安定性が損なわれ、有効圧縮比CReが一時的に過大になる可能性があるので、本実施形態では可変動弁機構82でオーバーシュートを発生させる。
As a result, the actual effective compression ratio CRe can be tracked and changed with good response to an increase in the target effective compression ratio CRetg in accordance with a change in the operating state of the internal combustion engine 10, thereby ensuring the compression temperature.
Here, the responsiveness to change the effective compression ratio CRe is faster in the variable valve mechanism 82 than in the compression ratio variable mechanism 50, so that the variable valve mechanism is more apt to generate than an overshoot in the compression ratio variable mechanism 50. The effect of improving the responsiveness of the increase change in the effective compression ratio CRe is greater when the mechanism 82 generates the overshoot.
Further, overshoot can be generated in both the compression ratio variable mechanism 50 and the variable valve mechanism 82, but in this case, the control stability is impaired, and the effective compression ratio CRe may be temporarily excessively increased. Therefore, in this embodiment, the variable valve mechanism 82 generates an overshoot.
 第7パターンは、実有効圧縮比CReを増大変化させる状態であるものの、可変動弁機構82は圧縮比の増大方向に操作し、圧縮比可変機構50は圧縮比の減少方向に操作し、可変動弁機構82による圧縮比の増大代よりも圧縮比可変機構50による圧縮比の減少代が小さいことで、結果的に、両者における圧縮比変化の差分だけ実有効圧縮比CReを増大変化させる状態である。 In the seventh pattern, the actual effective compression ratio CRe is increased and changed. However, the variable valve mechanism 82 is operated in the increasing direction of the compression ratio, and the variable compression ratio mechanism 50 is operated in the decreasing direction of the compression ratio. The reduction ratio of the compression ratio by the compression ratio variable mechanism 50 is smaller than the increase ratio of the compression ratio by the variable valve mechanism 82, and as a result, the actual effective compression ratio CRe is increased and changed by the difference in the compression ratio change between the two. It is.
 係る第7パターンでは、圧縮比可変機構50に比べて可変動弁機構82による圧縮比変化の応答が速いため、圧縮比可変機構50による圧縮比CRmが目標圧縮比CRmtgにまで低下するよりも早く、可変動弁機構82による圧縮比CRivcが目標圧縮比CRivctgにまで増加して、実有効圧縮比CReが過渡的に目標有効圧縮比CRetgを超えて過大になる可能性がある。 In the seventh pattern, since the response of the change in the compression ratio by the variable valve mechanism 82 is faster than that in the compression ratio variable mechanism 50, the compression ratio CRm by the compression ratio variable mechanism 50 is earlier than when the compression ratio CRm decreases to the target compression ratio CRmtg. The compression ratio CRivc by the variable valve mechanism 82 increases to the target compression ratio CRivctg, and the actual effective compression ratio CRe may transiently exceed the target effective compression ratio CRetg and become excessive.
 そこで、制御装置70は、可変動弁機構82による圧縮比CRivcの増大応答を低下させ、可変動弁機構82による実圧縮比CRivcが目標圧縮比CRivctgに達する時間を圧縮比可変機構50による圧縮比CRmが目標圧縮比CRmtgに達する時間に近づける、圧縮比CRivcの増大を制限する処理を実施する。
 これにより、可変動弁機構82による圧縮比CRivcの増大変化が、圧縮比可変機構50による圧縮比CRmの減少変化に先行することを抑制でき、過渡的に実有効圧縮比CReが目標有効圧縮比CRetgを超えて過大となることを抑制できる。
Therefore, the control device 70 reduces the increase response of the compression ratio CRivc by the variable valve mechanism 82, and determines the time for the actual compression ratio CRivc by the variable valve mechanism 82 to reach the target compression ratio CRivctg by the compression ratio by the compression ratio variable mechanism 50. A process of limiting the increase in the compression ratio CRivc, which approaches the time when CRm reaches the target compression ratio CRmtg, is performed.
Thereby, it is possible to suppress the increase change of the compression ratio CRivc by the variable valve mechanism 82 from preceding the decrease change of the compression ratio CRm by the compression ratio variable mechanism 50, and the actual effective compression ratio CRe is transiently changed to the target effective compression ratio. Exceeding CRetg can be prevented from becoming excessive.
 第8パターン-第10パターンは、有効圧縮比CReを増大変化させる状態であって、かつ、可変動弁機構82において目標圧縮比CRivctgが実圧縮比CRivcよりも低い状態を、圧縮比可変機構50の圧縮比状態により3パターンに場合分けする。
 第8パターンは、有効圧縮比CReの増大操作状態であり、かつ、可変動弁機構82は圧縮比CRivcの減少操作状態であるのに、圧縮比可変機構50は目標に収束している定常状態である場合に相当する。
 係る状態は、有効圧縮比CReの操作方向と圧縮比CRivcの操作方向とが逆で、しかも、圧縮比可変機構50が定常であるから、実際には有り得ず、第8パターンは第2、第4パターンと同様に実際には有り得ないパターンであり、第8パターンに対応する制御設定は不要である。
The eighth pattern to the tenth pattern are states in which the effective compression ratio CRe is increased and changed, and in the variable valve mechanism 82, the target compression ratio CRivctg is lower than the actual compression ratio CRivc. The pattern is divided into three patterns according to the compression ratio state.
The eighth pattern is an operation state in which the effective compression ratio CRe is increased, and the variable valve mechanism 82 is in a decrease operation state of the compression ratio CRivc, but the compression ratio variable mechanism 50 is in a steady state that converges to the target. This is the case.
In such a state, since the operation direction of the effective compression ratio CRe and the operation direction of the compression ratio CRivc are opposite and the compression ratio variable mechanism 50 is stationary, it is impossible in practice. Like the four patterns, it is a pattern that is not actually possible, and control setting corresponding to the eighth pattern is unnecessary.
 第9パターンは、有効圧縮比CReを増大変化させる状態であるものの、可変動弁機構82は圧縮比CRivcの減少方向に操作し、圧縮比可変機構50は圧縮比CRmの増大方向に操作し、可変動弁機構82による圧縮比CRivcの減少代よりも圧縮比可変機構50による圧縮比CRmの増大代が大きいことで、結果的に、両者における圧縮比変化の差分だけ、有効圧縮比CReを増大変化させる状態である。
 係る第9パターンでは、圧縮比可変機構50に比べて可変動弁機構82による圧縮比変化の応答が速いため、圧縮比可変機構50において実圧縮比CRmが目標圧縮比CRmtgにまで増加するよりも早く可変動弁機構82において実圧縮比CRivcが目標圧縮比CRivctgにまで低下して、有効圧縮比CReが過渡的に目標有効圧縮比CRetgを超えて過小になる可能性がある。
Although the ninth pattern is a state in which the effective compression ratio CRe is increased and changed, the variable valve mechanism 82 is operated in the decreasing direction of the compression ratio CRivc, the compression ratio variable mechanism 50 is operated in the increasing direction of the compression ratio CRm, Since the increase margin of the compression ratio CRm by the compression ratio variable mechanism 50 is larger than the decrease margin of the compression ratio CRivc by the variable valve mechanism 82, as a result, the effective compression ratio CRe is increased by the difference in the compression ratio change between the two. It is a state to change.
In the ninth pattern, since the response of the compression ratio change by the variable valve mechanism 82 is faster than the variable compression ratio mechanism 50, the actual compression ratio CRm in the variable compression ratio mechanism 50 is larger than the target compression ratio CRmtg. There is a possibility that the actual compression ratio CRivc is quickly reduced to the target compression ratio CRivctg in the variable valve mechanism 82 and the effective compression ratio CRe transiently exceeds the target effective compression ratio CRetg and becomes too small.
 そこで、制御装置70は、可変動弁機構82による圧縮比CRivcの減少応答を低下させ、可変動弁機構82において実圧縮比CRivcが目標圧縮比CRivctgに達する時間を圧縮比可変機構50において実圧縮比CRmが目標圧縮比CRmtgに達する時間に近づける、圧縮比CRivcの減少を制限する処理を実施する。
 これにより、可変動弁機構82による圧縮比CRivcの減少変化が、圧縮比可変機構50による圧縮比CRmの増大変化に先行することを抑制でき、過渡的に実有効圧縮比CReが目標有効圧縮比CRetgを超えて過小となることを抑制できる。
Therefore, the control device 70 reduces the decrease response of the compression ratio CRivc by the variable valve mechanism 82, and the time that the actual compression ratio CRivc reaches the target compression ratio CRivctg in the variable valve mechanism 82 is actually compressed in the variable compression ratio mechanism 50. A process of limiting the decrease in the compression ratio CRivc is performed so as to approach the time when the ratio CRm reaches the target compression ratio CRmtg.
Thereby, it is possible to suppress the decrease change of the compression ratio CRivc caused by the variable valve mechanism 82 from preceding the increase change of the compression ratio CRm caused by the variable compression ratio mechanism 50, and the actual effective compression ratio CRe is transiently changed to the target effective compression ratio. It is possible to suppress the excess from CRetg.
 第10パターンは、有効圧縮比CReを増大変化させる状態であるものの、可変動弁機構82及び圧縮比可変機構50における目標圧縮比がいずれも実圧縮比よりも低く実圧縮比の減少操作が行われるパターンである。
 但し、可変動弁機構82及び圧縮比可変機構50が共に圧縮比の減少操作中であるのに、その結果として有効圧縮比CReが増大変化することはなく、第10パターンは実際には有り得ず、第10パターンに対応する制御設定は不要である。
The tenth pattern is a state in which the effective compression ratio CRe is increased and changed, but the target compression ratio in both the variable valve mechanism 82 and the compression ratio variable mechanism 50 is lower than the actual compression ratio, and the actual compression ratio is reduced. Pattern.
However, although both the variable valve mechanism 82 and the compression ratio variable mechanism 50 are in the process of decreasing the compression ratio, the effective compression ratio CRe does not increase and change as a result, and the tenth pattern is not actually possible. The control setting corresponding to the tenth pattern is not necessary.
 第11パターン-第19パターンは、目標有効圧縮比CRetgが実有効圧縮比CReよりも低く、実有効圧縮比CReを減少させるパターンであり、更に、第11パターン-第13パターンは、可変動弁機構82において実圧縮比CRivcが目標圧縮比CRivctgに略一致している定常状態を、圧縮比可変機構50の作動状態に応じてパターン分けしている。 The eleventh pattern to the nineteenth pattern are patterns in which the target effective compression ratio CRetg is lower than the actual effective compression ratio CRe and decreases the actual effective compression ratio CRe, and the eleventh pattern to the thirteenth pattern are variable valve actuations. The steady state in which the actual compression ratio CRivc substantially matches the target compression ratio CRivctg in the mechanism 82 is divided into patterns according to the operating state of the compression ratio variable mechanism 50.
 第11パターンは、可変動弁機構82は実圧縮比CRivcが目標圧縮比CRivctgに略一致している定常状態であって、かつ、圧縮比可変機構50において実圧縮比CRmが目標圧縮比CRmtgに略一致している定常状態である。
 但し、可変動弁機構82及び圧縮比可変機構50が共に定常状態であるのに、有効圧縮比CReの減少操作中であることは実際には有り得ず、第11パターンに対応する制御設定は不要である。
In the eleventh pattern, the variable valve mechanism 82 is in a steady state where the actual compression ratio CRivc substantially matches the target compression ratio CRivctg, and in the compression ratio variable mechanism 50, the actual compression ratio CRm becomes the target compression ratio CRmtg. It is a steady state that is approximately the same.
However, although both the variable valve mechanism 82 and the compression ratio variable mechanism 50 are in a steady state, it is actually impossible to reduce the effective compression ratio CRe, and the control setting corresponding to the eleventh pattern is unnecessary. It is.
 第12パターンは、可変動弁機構82において実圧縮比CRivcが目標圧縮比CRivctgに略一致している定常状態であって、かつ、圧縮比可変機構50において実圧縮比CRmが目標圧縮比CRmtgよりも低い圧縮比の増大操作中である。
 但し、この場合、実圧縮比CRmを増大させることで、有効圧縮比CReを減少変化させることはできず、第12パターンは実際には有り得ないパターンであり、第12パターンに対応する制御設定は不要である。
The twelfth pattern is a steady state in which the actual compression ratio CRivc substantially matches the target compression ratio CRivctg in the variable valve mechanism 82, and the actual compression ratio CRm in the variable compression ratio mechanism 50 is greater than the target compression ratio CRmtg. Is also in the process of increasing the compression ratio.
However, in this case, the effective compression ratio CRe cannot be decreased and decreased by increasing the actual compression ratio CRm, and the twelfth pattern is a pattern that is not actually possible. The control setting corresponding to the twelfth pattern is It is unnecessary.
 第13パターンは、可変動弁機構82において実圧縮比CRivcが目標圧縮比CRivctgに略一致している定常状態であって、かつ、圧縮比可変機構50において実圧縮比CRmが目標圧縮比CRmtgよりも高い圧縮比の減少操作中である。つまり、圧縮比可変機構50を作動させて有効圧縮比CReを減少させる状態である。
 この第13パターンでは、可変動弁機構82においては実圧縮比CRivcが目標圧縮比CRivctgに収束している定常状態であるものの、圧縮比可変機構50のみを作動させて有効圧縮比CReを減少させると、有効圧縮比CReの収束が遅れる。
The thirteenth pattern is a steady state in which the actual compression ratio CRivc substantially matches the target compression ratio CRivctg in the variable valve mechanism 82, and the actual compression ratio CRm in the variable compression ratio mechanism 50 is greater than the target compression ratio CRmtg. Is also in the process of reducing the high compression ratio. That is, the effective compression ratio CRe is decreased by operating the compression ratio variable mechanism 50.
In the thirteenth pattern, the variable valve mechanism 82 is in a steady state where the actual compression ratio CRivc converges to the target compression ratio CRivctg, but only the compression ratio variable mechanism 50 is operated to decrease the effective compression ratio CRe. Then, the convergence of the effective compression ratio CRe is delayed.
 そこで、制御装置70は、圧縮比可変機構50により圧縮比CRmを減少させる通常制御に並行して、可変動弁機構82により吸気バルブ81の閉時期IVCを圧縮比の減少方向に変化させる協調制御を行うことで、実有効圧縮比CReの目標有効圧縮比CRetgに向けての減少を早め、実有効圧縮比CReが目標有効圧縮比CRetgに十分に近づいた後圧縮比可変機構50による圧縮比CRmの減少が進行するに従って閉時期IVCを目標値にまで徐々に戻す処理を実施する。 Therefore, the control device 70 performs coordinated control in which the variable valve mechanism 82 changes the closing timing IVC of the intake valve 81 in the direction of decreasing the compression ratio in parallel with the normal control in which the compression ratio variable mechanism 50 decreases the compression ratio CRm. To accelerate the decrease of the actual effective compression ratio CRe toward the target effective compression ratio CRetg, and after the actual effective compression ratio CRe has sufficiently approached the target effective compression ratio CRetg, the compression ratio CRm by the compression ratio variable mechanism 50 The process of gradually returning the closing timing IVC to the target value is performed as the decrease in the value proceeds.
 つまり、可変動弁機構82においては目標圧縮比CRivctgと実圧縮比CRivcとが略一致しているから、可変動弁機構82により閉時期IVCを動かす必要はないが、有効圧縮比CReを速やかに減少させるために、圧縮比可変機構50により圧縮比CRmを減少させる操作に並行して、一時的に閉時期IVCを圧縮比の減少方向に変更して、実有効圧縮比CReの目標有効圧縮比CRetgへの到達を早める。
 これにより、内燃機関10の運転状態の変化に応じた目標有効圧縮比CRetgの減少変化に対して、実有効圧縮比CReを応答良く追従変化させて、圧縮温度の速やかな低下を図る。
That is, in the variable valve mechanism 82, the target compression ratio CRivctg and the actual compression ratio CRivc substantially coincide with each other, so there is no need to move the closing timing IVC by the variable valve mechanism 82, but the effective compression ratio CRe is quickly increased. In order to reduce the target compression ratio, the target effective compression ratio of the actual effective compression ratio CRe is changed by temporarily changing the closing timing IVC in the direction of decreasing the compression ratio in parallel with the operation of decreasing the compression ratio CRm by the variable compression ratio mechanism 50. Accelerate reaching CRetg.
As a result, the effective effective compression ratio CRe is followed and changed with good response to the decreasing change in the target effective compression ratio CRetg in accordance with the change in the operating state of the internal combustion engine 10, thereby promptly reducing the compression temperature.
 第14パターン-第16パターンは、目標有効圧縮比CRetgが実有効圧縮比CReよりも低く、実有効圧縮比CReを減少させるパターンであって、かつ、可変動弁機構82において実圧縮比CRivcが目標圧縮比CRivctgよりも低く実圧縮比CRivcの増大操作中である状態を、圧縮比可変機構50の作動状態に応じてパターン分けしている。 The fourteenth pattern to the sixteenth pattern are patterns in which the target effective compression ratio CRetg is lower than the actual effective compression ratio CRe, and the actual effective compression ratio CRe is decreased. In the variable valve mechanism 82, the actual compression ratio CRivc is The state in which the actual compression ratio CRivc is being increased is lower than the target compression ratio CRivctg and is divided into patterns according to the operating state of the compression ratio variable mechanism 50.
 第14パターンは、可変動弁機構82が実圧縮比CRivcの増大操作中であって、圧縮比可変機構50による圧縮比CRmが目標圧縮比CRmtgに略一致する状態である。但し、圧縮比可変機構50の定常状態で可変動弁機構82を圧縮比CRivcの増大方向に操作しても、実有効圧縮比CReを減少させることにはならないから、第14パターンは実際には有り得ない状態であり、第14パターンに対応する制御設定は不要である。 The 14th pattern is a state in which the variable valve mechanism 82 is operating to increase the actual compression ratio CRivc and the compression ratio CRm by the variable compression ratio mechanism 50 substantially matches the target compression ratio CRmtg. However, even if the variable valve mechanism 82 is operated in the increasing direction of the compression ratio CRivc in the steady state of the compression ratio variable mechanism 50, the actual effective compression ratio CRe will not be decreased. This is an impossible state, and control setting corresponding to the 14th pattern is unnecessary.
 第15パターンは、可変動弁機構82が実圧縮比CRivcの増大操作中であって、圧縮比可変機構50も圧縮比CRmの増大操作中である状態である。但し、可変動弁機構82及び圧縮比可変機構50が増大操作中であるときに、実有効圧縮比CReを減少させることにはならないので、第15パターンは実際には有り得ない状態であり、第15パターンに対応する制御設定は不要である。 The fifteenth pattern is a state in which the variable valve mechanism 82 is in the process of increasing the actual compression ratio CRivc and the variable compression ratio mechanism 50 is in the process of increasing the compression ratio CRm. However, since the actual effective compression ratio CRe is not decreased when the variable valve mechanism 82 and the compression ratio variable mechanism 50 are in the increasing operation, the fifteenth pattern is actually impossible. Control settings corresponding to 15 patterns are not required.
 第16パターンは、可変動弁機構82が実圧縮比CRivcの増大操作中であるときに、圧縮比可変機構50を圧縮比CRmの減少方向に操作することで、最終的に実有効圧縮比CReを減少させる状態である。
 係る第16パターンでは、圧縮比可変機構50に比べて可変動弁機構82による圧縮比変化の応答が速いため、圧縮比可変機構50において実圧縮比CRmが目標圧縮比CRmtgにまで減少するよりも早く可変動弁機構82において実圧縮比CRivcが目標圧縮比CRivctgにまで増加して、有効圧縮比CReが過渡的に目標値CRetgを超えて過大になる可能性がある。
In the sixteenth pattern, when the variable valve mechanism 82 is in the process of increasing the actual compression ratio CRivc, the actual effective compression ratio CRe is finally obtained by operating the compression ratio variable mechanism 50 in the decreasing direction of the compression ratio CRm. Is a state in which
In the sixteenth pattern, since the response of the compression ratio change by the variable valve mechanism 82 is faster than the compression ratio variable mechanism 50, the actual compression ratio CRm in the compression ratio variable mechanism 50 is less than the target compression ratio CRmtg. There is a possibility that the actual compression ratio CRivc will increase to the target compression ratio CRivctg early in the variable valve mechanism 82 and the effective compression ratio CRe will transiently exceed the target value CRetg and become excessive.
 そこで、制御装置70は、可変動弁機構82による圧縮比CRivcの増大応答を低下させ、可変動弁機構82において実圧縮比CRivcが目標圧縮比CRivctgに達する時間を圧縮比可変機構50において実圧縮比CRmが目標圧縮比CRmtgに達する時間に近づける、圧縮比CRivcの増大を制限する処理を実施する。
 これにより、可変動弁機構82による圧縮比CRivcの増大変化が、圧縮比可変機構50による圧縮比CRmの減少変化に先行することを抑制でき、過渡的に実有効圧縮比CReが目標有効圧縮比CRetgを超えて過大となることを抑制できる。
Therefore, the control device 70 reduces the increase response of the compression ratio CRivc by the variable valve mechanism 82, and the time for the actual compression ratio CRivc to reach the target compression ratio CRivctg in the variable valve mechanism 82 is actually compressed in the compression ratio variable mechanism 50. A process of limiting the increase in the compression ratio CRivc is performed so that the ratio CRm approaches the time for reaching the target compression ratio CRmtg.
Thereby, it is possible to suppress the increase change of the compression ratio CRivc by the variable valve mechanism 82 from preceding the decrease change of the compression ratio CRm by the compression ratio variable mechanism 50, and the actual effective compression ratio CRe is transiently changed to the target effective compression ratio. Exceeding CRetg can be prevented from becoming excessive.
 第17パターン-第19パターンは、目標有効圧縮比CRetgが実有効圧縮比CReよりも低く、実有効圧縮比CReを減少させるパターンであって、かつ、可変動弁機構82において実圧縮比CRivcが目標圧縮比CRivctgよりも高く実圧縮比CRivcの減少操作中である状態を、圧縮比可変機構50の作動状態に応じてパターン分けしている。 The seventeenth pattern to the nineteenth pattern are patterns in which the target effective compression ratio CRetg is lower than the actual effective compression ratio CRe, and the actual effective compression ratio CRe is decreased, and the actual compression ratio CRivc in the variable valve mechanism 82 is The state in which the actual compression ratio CRivc is being decreased is higher than the target compression ratio CRivctg, and is divided into patterns according to the operating state of the compression ratio variable mechanism 50.
 第17パターンは、可変動弁機構82が実圧縮比CRivcの減少操作状態である一方、圧縮比可変機構50は実圧縮比CRmと目標圧縮比CRmtgとが略一致する定常状態である。
 つまり、可変動弁機構82を操作して実圧縮比CRivcを低下させることで、実有効圧縮比CReを減少させる状況であるが、可変動弁機構82のみを圧縮比CRivcの減少方向に操作するよりも、並行して圧縮比可変機構50を圧縮比CRmの減少方向に操作した方が、実有効圧縮比CReは目標値CRetgにまで早く低下することになる。
In the seventeenth pattern, the variable valve mechanism 82 is in a decreasing operation state of the actual compression ratio CRivc, while the variable compression ratio mechanism 50 is a steady state in which the actual compression ratio CRm and the target compression ratio CRmtg substantially coincide.
That is, the actual effective compression ratio CRe is decreased by operating the variable valve mechanism 82 to decrease the actual compression ratio CRivc, but only the variable valve mechanism 82 is operated in the decreasing direction of the compression ratio CRivc. Rather, the actual effective compression ratio CRe quickly decreases to the target value CRetg when the compression ratio variable mechanism 50 is operated in the direction of decreasing the compression ratio CRm in parallel.
 そこで、制御装置70は、可変動弁機構82により圧縮比CRivcを減少させる通常制御に並行して、圧縮比可変機構50により圧縮比CRmを減少させる協調制御を行うことで、実有効圧縮比CReの目標有効圧縮比CRetgに向けての減少を早める。
 そして、実有効圧縮比CReが目標有効圧縮比CRetgに十分に近づいた後可変動弁機構82による圧縮比CRivcの減少が進行するに従ってピストン33の上死点位置を圧縮比CRmが増大する方向に徐々に変化させて目標圧縮比CRmtgに戻す処理を実施する。
 これにより、内燃機関10の運転状態の変化に応じた目標有効圧縮比CRetgの減少変化に対して、実際の有効圧縮比CReを応答良く追従変化させて、圧縮温度の速やかな低下などを図ることができる。
Therefore, the control device 70 performs the cooperative control in which the compression ratio variable mechanism 50 decreases the compression ratio CRm in parallel with the normal control in which the variable valve mechanism 82 decreases the compression ratio CRivc, so that the actual effective compression ratio CRe The reduction toward the target effective compression ratio CRetg is accelerated.
Then, after the actual effective compression ratio CRe becomes sufficiently close to the target effective compression ratio CRetg, the top dead center position of the piston 33 is increased in the direction in which the compression ratio CRm increases as the compression ratio CRivc decreases by the variable valve mechanism 82. A process of gradually changing to the target compression ratio CRmtg is performed.
As a result, the actual effective compression ratio CRe is tracked and changed with good response to the decrease in the target effective compression ratio CRetg corresponding to the change in the operating state of the internal combustion engine 10, thereby promptly reducing the compression temperature. Can do.
 第18パターンは、可変動弁機構82が実圧縮比CRivcの減少操作状態である一方、圧縮比可変機構50においては実圧縮比CRmが目標圧縮比CRmtgよりも低く実圧縮比CRmの増大操作状態である。つまり、第18パターンは、実圧縮比CRivcの減少操作に並行して実圧縮比CRmの増大操作が行われ、実圧縮比CRivcの減少代が実圧縮比CRmの増大代よりも大きい分だけ有効圧縮比CReを減少させる状況である。 In the eighteenth pattern, the variable valve mechanism 82 is in the decreasing operation state of the actual compression ratio CRivc, while in the compression ratio variable mechanism 50, the actual compression ratio CRm is lower than the target compression ratio CRmtg and the increasing operation state of the actual compression ratio CRm. It is. In other words, in the 18th pattern, the actual compression ratio CRm is increased in parallel with the actual compression ratio CRivc decreasing operation, and the actual compression ratio CRivc is more effective than the increasing amount of the actual compression ratio CRm. This is a situation where the compression ratio CRe is decreased.
 係る第18パターンでは、圧縮比可変機構50に比べて可変動弁機構82による圧縮比変化の応答が速いため、圧縮比可変機構50において実圧縮比CRmが目標圧縮比CRmtgにまで増加するよりも早く可変動弁機構82において実圧縮比CRivcが目標圧縮比CRivctgにまで低下して、有効圧縮比CReが過渡的に目標有効圧縮比CRetgを超えて過小になる可能性がある。 In the 18th pattern, since the response of the compression ratio change by the variable valve mechanism 82 is faster than the compression ratio variable mechanism 50, the actual compression ratio CRm in the compression ratio variable mechanism 50 is larger than the target compression ratio CRmtg. There is a possibility that the actual compression ratio CRivc is quickly reduced to the target compression ratio CRivctg in the variable valve mechanism 82 and the effective compression ratio CRe transiently exceeds the target effective compression ratio CRetg and becomes too small.
 そこで、制御装置70は、可変動弁機構82による圧縮比CRivcの減少応答を低下させ、可変動弁機構82において実圧縮比CRivcが目標圧縮比CRivctgに達する時間を圧縮比可変機構50において実圧縮比CRmが目標圧縮比CRmtgに達する時間に近づける、圧縮比CRivcの減少を制限する処理を実施する。
 これにより、可変動弁機構82による圧縮比CRivcの減少変化が、圧縮比可変機構50による圧縮比CRmの増大変化に先行することを抑制でき、過渡的に有効圧縮比CReが目標有効圧縮比CRetgを超えて過小となることを抑制できる。
Therefore, the control device 70 reduces the decrease response of the compression ratio CRivc by the variable valve mechanism 82, and the time that the actual compression ratio CRivc reaches the target compression ratio CRivctg in the variable valve mechanism 82 is actually compressed in the variable compression ratio mechanism 50. A process of limiting the decrease in the compression ratio CRivc is performed so as to approach the time when the ratio CRm reaches the target compression ratio CRmtg.
As a result, it is possible to suppress the decrease change of the compression ratio CRivc caused by the variable valve mechanism 82 from preceding the increase change of the compression ratio CRm caused by the compression ratio variable mechanism 50, so that the effective effective compression ratio CRe is transiently changed to the target effective compression ratio CRetg. It is possible to suppress the excess from exceeding.
 第19パターンは、可変動弁機構82が実圧縮比CRivcの減少操作状態である一方、圧縮比可変機構50においても実圧縮比CRmが目標圧縮比CRmtgよりも高く実圧縮比CRmの減少操作状態である。つまり、第19パターンは、実圧縮比CRivcの減少操作に並行して実圧縮比CRmの減少操作が行われて、双方の機構によって有効圧縮比CReを減少させる状況である。 In the nineteenth pattern, the variable valve mechanism 82 is in the decreasing operation state of the actual compression ratio CRivc, while the actual compression ratio CRm is also higher in the compression ratio variable mechanism 50 than the target compression ratio CRmtg. It is. That is, the nineteenth pattern is a situation in which the reduction operation of the actual compression ratio CRm is performed in parallel with the operation of reducing the actual compression ratio CRivc, and the effective compression ratio CRe is reduced by both mechanisms.
 この場合、可変動弁機構82による圧縮比CRivcが目標圧縮比CRivctgを行き過ぎるオーバーシュートが発生するように可変動弁機構82の作動を変更する協調制御、つまり、可変動弁機構82による圧縮比CRivcの減少制御の応答を速める制御を実施することで、目標有効圧縮比CRetgに向けての実有効圧縮比CReの減少を促進させる。
 これにより、内燃機関10の運転状態の変化に応じた目標有効圧縮比CRetgの減少変化に対して、実有効圧縮比CReを応答良く追従変化させて、圧縮温度の速やかな低下などを図ることができる。
In this case, cooperative control for changing the operation of the variable valve mechanism 82 so that an overshoot occurs in which the compression ratio CRivc by the variable valve mechanism 82 exceeds the target compression ratio CRivctg, that is, the compression ratio CRivc by the variable valve mechanism 82. By implementing the control that speeds up the response of the decrease control, the reduction of the actual effective compression ratio CRe toward the target effective compression ratio CRetg is promoted.
As a result, the actual effective compression ratio CRe can be tracked and changed with good response to a decrease in the target effective compression ratio CRetg corresponding to a change in the operating state of the internal combustion engine 10, thereby promptly reducing the compression temperature. it can.
 以上のように、図2に示した第1パターン-第19パターンのうち、実際には有り得ない状況は、第2パターン、第4パターン、第8パターン、第10パターン、第11パターン、第12パターン、第14パターン、第15パターンであり、制御装置70はこれ以外の状態においてそれぞれの状態に応じた協調制御を実施する。 As described above, among the first pattern to the nineteenth pattern shown in FIG. 2, the situations that are not actually possible are the second pattern, the fourth pattern, the eighth pattern, the tenth pattern, the eleventh pattern, the twelfth pattern. It is a pattern, 14th pattern, and 15th pattern, and the control apparatus 70 implements the cooperative control according to each state in states other than this.
 ここで、制御装置70の協調制御は、機関運転状態に応じた目標圧縮比をそのまま用いることで協調制御としての補正を双方の機構50,82について実質的に行わない処理と、目標圧縮比に向けての応答速度を標準よりも遅くすることで過渡的に圧縮比が過大又は過小となることを抑制するための可変動弁機構82についての制限処理と、圧縮比可変機構50と可変動弁機構82との一方について意図的に過渡応答を速くしてオーバーシュートを大きくすることで有効圧縮比CReの目標有効圧縮比CRetgに対する収束性を速くする過補正処理とに大別される。
 そして、補正を行わないのは第1パターンであり、制限処理は第7パターン、第9パターン、第16パターン、第18パターンで実施され、過補正処理は第3パターン、第5パターン、第6パターン、第13パターン、第17パターン、第19パターンで実施される。
Here, the cooperative control of the control device 70 uses the target compression ratio according to the engine operating state as it is, thereby correcting the cooperative control substantially for both mechanisms 50 and 82 and the target compression ratio. Limiting processing for the variable valve mechanism 82 for suppressing the compression ratio from excessively increasing or decreasing excessively by reducing the response speed toward the standard, and the compression ratio variable mechanism 50 and the variable valve One of the mechanisms 82 is roughly divided into overcorrection processing that speeds up the convergence of the effective compression ratio CRe to the target effective compression ratio CRetg by intentionally increasing the transient response and increasing the overshoot.
The correction is not performed on the first pattern, the limiting process is performed on the seventh pattern, the ninth pattern, the sixteenth pattern, and the eighteenth pattern, and the overcorrection process is performed on the third pattern, the fifth pattern, and the sixth pattern. The pattern, the 13th pattern, the 17th pattern, and the 19th pattern are used.
 以下では、制御装置70が協調制御を実施することになる内燃機関10の運転状態変化を例示する。
 図3は、圧縮比可変機構50による圧縮比CRmの変化方向と、可変動弁機構82による圧縮比CRivcの変化方向とが異なるようになる、機関運転状態の変化の一例である。
Below, the operating state change of the internal combustion engine 10 which the control apparatus 70 will implement cooperative control is illustrated.
FIG. 3 is an example of a change in the engine operating state in which the change direction of the compression ratio CRm by the variable compression ratio mechanism 50 and the change direction of the compression ratio CRivc by the variable valve mechanism 82 are different.
 図3(A)の運転状態においては、充填空気量を増大させ、また、排ガスの排気通路側への吸出し及び空気の燃焼室内への流入を促進させる作用を向上させるために、可変動弁機構82の作動としては、吸気バルブ81の閉時期IVCを下死点BDCに近づけ、バルブオーバーラップ期間を拡大させる。
 また、図3(A)の運転状態において、圧縮比可変機構50の作動としては、圧縮比CRmを低くして過給圧の上限をより高めるようにする。
In the operation state of FIG. 3 (A), a variable valve mechanism is provided in order to increase the amount of charged air and improve the action of sucking exhaust gas into the exhaust passage and promoting the inflow of air into the combustion chamber. As the operation of 82, the closing timing IVC of the intake valve 81 is brought close to the bottom dead center BDC, and the valve overlap period is expanded.
Further, in the operation state of FIG. 3A, as the operation of the compression ratio variable mechanism 50, the compression ratio CRm is lowered to further increase the upper limit of the supercharging pressure.
 一方、図3(B)の運転状態においては、可変動弁機構82の作動としては、図3(A)の運転状態のときよりも吸気バルブ81の閉時期IVCを下死点BDCから遅角し、図3(A)の場合よりも高膨張比とする。また、図3(B)の運転状態において、圧縮比可変機構50の作動としては、図3(A)の運転状態のときよりも圧縮比CRmを高くして圧縮温度を確保する。
 従って、図3(A)の運転状態から図3(B)の運転状態へと変化する過渡状態では、圧縮比CRivcを低下させる一方で圧縮比CRmを高めることになり、逆に、図3(B)の運転状態から図3(A)の運転状態へと変化する過渡状態では、圧縮比CRivcを増加させる一方で圧縮比CRmを低下させることになる。
On the other hand, in the operating state of FIG. 3B, the variable valve mechanism 82 is operated by delaying the closing timing IVC of the intake valve 81 from the bottom dead center BDC as compared with the operating state of FIG. The expansion ratio is higher than that in the case of FIG. Further, in the operation state of FIG. 3B, as the operation of the compression ratio variable mechanism 50, the compression ratio CRm is set higher than that in the operation state of FIG.
Therefore, in the transient state that changes from the operation state of FIG. 3A to the operation state of FIG. 3B, the compression ratio CRivc is decreased while the compression ratio CRm is increased. In a transient state that changes from the operation state of B) to the operation state of FIG. 3A, the compression ratio CRm is decreased while the compression ratio CRivc is increased.
 このように、圧縮比可変機構50による圧縮比CRmの変化方向と可変動弁機構82による圧縮比CRivcの変化方向とが異なる過渡状態としては、第1パターン-第19パターンのうち、第7パターン、第9パターン、第16パターン、第18パターンが該当し、いずれの場合も可変動弁機構82の作動応答を低下させる制限処理を実施する。
 つまり、圧縮比CRmの変化方向と逆方向に圧縮比CRivcを変化させるときに、圧縮比CRmの変化に対して圧縮比CRivcの変化が先行すると、圧縮比CRivcの変化方向に有効圧縮比CReが過剰に変化することになるので、圧縮比CRivcの変化を遅らせることで、有効圧縮比CReの過剰変化を抑制する。
As described above, as a transient state in which the change direction of the compression ratio CRm by the compression ratio variable mechanism 50 and the change direction of the compression ratio CRivc by the variable valve mechanism 82 are different, the seventh pattern of the first pattern to the nineteenth pattern is used. The ninth pattern, the sixteenth pattern, and the eighteenth pattern correspond to each other, and in any case, the limiting process for reducing the operation response of the variable valve mechanism 82 is performed.
That is, when the compression ratio CRivc is changed in the direction opposite to the change direction of the compression ratio CRm, if the change of the compression ratio CRivc precedes the change of the compression ratio CRm, the effective compression ratio CRe is changed in the change direction of the compression ratio CRivc. Since it changes excessively, the excessive change of the effective compression ratio CRe is suppressed by delaying the change of the compression ratio CRivc.
 図4は、圧縮比可変機構50による圧縮比CRmの変化方向と、可変動弁機構82による圧縮比CRivcの変化方向とが同じとなる、機関運転状態の変化の一例である。
 図4は、(A)の始動状態から(B)のファストアイドル状態への移行を示し、始動からファストアイドルへの移行に伴って内燃機関10の運転安定性を向上させるために、圧縮比CRmを増加させ、かつ、圧縮比CRivcを増加させる。
FIG. 4 is an example of a change in the engine operating state in which the change direction of the compression ratio CRm by the compression ratio variable mechanism 50 and the change direction of the compression ratio CRivc by the variable valve mechanism 82 are the same.
FIG. 4 shows the transition from the starting state of (A) to the fast idle state of (B). In order to improve the operational stability of the internal combustion engine 10 with the transition from the starting to the fast idle, the compression ratio CRm And the compression ratio CRivc is increased.
 このように、圧縮比可変機構50により圧縮比CRmを増加させ、かつ、可変動弁機構82により圧縮比CRivcを増加させる過渡状態としては、第1パターン-第19パターンのうちの第6パターンが該当し、この場合、可変動弁機構82の作動応答を速める過補正処理を実施することで、内燃機関10の運転安定性を向上させることができる有効圧縮比CReにまで応答良く変化させる。 As described above, in the transient state in which the compression ratio CRm is increased by the compression ratio variable mechanism 50 and the compression ratio CRivc is increased by the variable valve mechanism 82, the sixth pattern among the first pattern to the nineteenth pattern is Correspondingly, in this case, by performing an overcorrection process that speeds up the operation response of the variable valve mechanism 82, the effective compression ratio CRe that can improve the operational stability of the internal combustion engine 10 is changed with good response.
 図5は、同じく、圧縮比可変機構50による圧縮比CRmの変化方向と、可変動弁機構82による圧縮比CRivcの変化方向とが同じとなる、機関運転状態の変化の一例であり、(A)の弱過給圧状態においてプレイグニッションやノッキングなどの異常燃焼が発生した場合に、係る異常燃焼を解消するために(B)の圧縮比状態とする例を示す。
 この場合、異常燃焼を解消するために、可変動弁機構82では閉時期IVCを下死点BDCから遠ざけて圧縮比CRivcを低下させ、また、圧縮比可変機構50では圧縮比CRmを低下させて圧縮温度の低下を図る。
FIG. 5 is also an example of a change in the engine operating state in which the change direction of the compression ratio CRm by the compression ratio variable mechanism 50 and the change direction of the compression ratio CRivc by the variable valve mechanism 82 are the same. In the case of abnormal combustion such as pre-ignition or knocking in the weak boost pressure state of ()), an example of setting the compression ratio state of (B) to eliminate such abnormal combustion will be shown.
In this case, in order to eliminate abnormal combustion, the variable valve mechanism 82 moves the closing timing IVC away from the bottom dead center BDC to lower the compression ratio CRivc, and the compression ratio variable mechanism 50 lowers the compression ratio CRm. Reduce the compression temperature.
 つまり、圧縮比可変機構50により圧縮比CRmを低下させ、かつ、可変動弁機構82により圧縮比CRivcを低下させる過渡状態であり、係る作動状態としては、第1パターン-第19パターンのうちの第19パターンが該当する。
 そして、第19パターンでは、可変動弁機構82の作動応答を速める過補正処理を実施することで、異常燃焼を抑制できる有効圧縮比CReにまで応答良く変化させ、異常燃焼を速やかに抑制できるようにする。
That is, this is a transient state in which the compression ratio CRm is lowered by the compression ratio variable mechanism 50 and the compression ratio CRivc is lowered by the variable valve mechanism 82, and the operating state includes the first pattern to the nineteenth pattern. The 19th pattern is applicable.
In the nineteenth pattern, by performing an overcorrection process that speeds up the operation response of the variable valve mechanism 82, the effective compression ratio CRe that can suppress abnormal combustion is changed with good response so that abnormal combustion can be suppressed quickly. To.
 また、図6は、内燃機関10の運転状態の変化に基づく可変動弁機構82の作動要求はなく、内燃機関10の運転状態の変化に応じて圧縮比可変機構50のみを作動させるパターンの一例を示す。
 図6において、(A)に比べて(B)は過給圧がより高い運転状態であり、(A)の弱過給圧状態では、(B)の高過給圧状態よりも圧縮比CRmを高くすることで熱効率の確保を図る一方、(B)の高過給圧状態では、(A)の弱過給圧の場合よりも圧縮比CRmを低くすることで過給圧の上限を高めるようにする。
FIG. 6 shows an example of a pattern in which only the compression ratio variable mechanism 50 is operated in response to a change in the operating state of the internal combustion engine 10 without an operation request for the variable valve mechanism 82 based on a change in the operating state of the internal combustion engine 10. Indicates.
In FIG. 6, (B) is an operation state where the boost pressure is higher than (A), and the compression ratio CRm is higher in the weak boost pressure state of (A) than in the high boost pressure state of (B). While the thermal efficiency is secured by increasing the value, the upper limit of the supercharging pressure is increased by lowering the compression ratio CRm in the high supercharging pressure state of (B) than in the case of the weak supercharging pressure of (A). Like that.
 従って、(A)の弱過給圧状態から(B)の高過給圧状態への移行に伴って圧縮比可変機構50による圧縮比CRmを低下させ、逆に、(B)の高過給圧状態から(A)の弱過給圧状態への移行に伴って圧縮比可変機構50による圧縮比CRmを増加させる。
 係る作動状態は、第1パターン-第19パターンのうちの第3パターン、第13パターンが該当し、第3パターンは、(B)の高過給圧状態から(A)の弱過給圧状態への移行状態に該当し、第13パターンは、(A)の弱過給圧状態から(B)の高過給圧状態への移行に該当する。
Accordingly, the compression ratio CRm by the compression ratio variable mechanism 50 is lowered with the transition from the weak supercharging pressure state of (A) to the high supercharging pressure state of (B), and conversely, the high supercharging of (B). The compression ratio CRm by the compression ratio variable mechanism 50 is increased with the transition from the pressure state to the weak supercharging pressure state of (A).
The operation state corresponds to the third pattern and the thirteenth pattern of the first pattern to the nineteenth pattern, and the third pattern corresponds to the low supercharging pressure state of (A) from the high supercharging pressure state of (B). The thirteenth pattern corresponds to the transition from the weak supercharging pressure state of (A) to the high supercharging pressure state of (B).
 そして、この第3パターン及び第13パターンでは、内燃機関10の運転状態の変化に基づく可変動弁機構82の作動要求は発生しないが、有効圧縮比CReの収束応答を改善するために、圧縮比CRmの変化方向と同じ方向に圧縮比CRivcが変化するように可変動弁機構82を過渡的に作動させる。これにより、(A)の弱過給圧状態から(B)の高過給圧状態への移行状態においては過給圧の上限を速やかに高め、(B)の高過給圧状態から(A)の弱過給圧状態への移行状態においては熱効率の確保が速やかに得られる。 In the third pattern and the thirteenth pattern, an operation request for the variable valve mechanism 82 based on a change in the operating state of the internal combustion engine 10 does not occur, but in order to improve the convergence response of the effective compression ratio CRe, the compression ratio The variable valve mechanism 82 is transiently operated so that the compression ratio CRivc changes in the same direction as the change direction of CRm. As a result, in the transition state from the weak supercharging pressure state of (A) to the high supercharging pressure state of (B), the upper limit of the supercharging pressure is quickly increased, and from the high supercharging pressure state of (B) (A ) In the state of transition to the weak supercharging pressure state, it is possible to quickly obtain thermal efficiency.
 また、図7は、内燃機関10の運転状態の変化に基づく圧縮比可変機構50の作動要求はなく、内燃機関10の運転状態の変化に応じて可変動弁機構82のみを作動させるパターンの一例を示す。
 図7において、(A)及び(B)はいずれも省燃費運転状態であるが、(A)が低負荷状態であり、(B)がより機関負荷の高い中負荷状態の場合であり、省燃費運転を行うためにいずれの場合も圧縮比CRmを高めに設定して圧縮温度の確保を図るが、(A)の低負荷状態では、(B)に比べて閉時期IVCを下死点BDCから遠ざけて圧縮比CRivcをより低下させることで、(B)よりも高膨張比として燃費性能を向上させる。
FIG. 7 shows an example of a pattern in which only the variable valve mechanism 82 is operated in response to a change in the operating state of the internal combustion engine 10 without an operation request of the variable compression ratio mechanism 50 based on a change in the operating state of the internal combustion engine 10. Indicates.
In FIG. 7, (A) and (B) are both fuel-saving driving states, but (A) is a low-load state, and (B) is a medium-load state with a higher engine load. In either case, the compression ratio CRm is set higher to ensure the compression temperature in order to perform the fuel consumption operation. However, in the low load state of (A), the closing timing IVC is set to the bottom dead center BDC as compared to (B). By reducing the compression ratio CRivc further away from the fuel, the fuel efficiency is improved with a higher expansion ratio than in (B).
 従って、(A)の低負荷かつ省燃費状態から(B)の中負荷かつ省燃費状態への移行に伴って可変動弁機構82により圧縮比CRivcを増加させ、逆に、(B)の中負荷かつ省燃費状態から(A)の低負荷かつ省燃費状態への移行に伴って可変動弁機構82により圧縮比CRivcを低下させる。
 係る作動状態は、第1パターン-第19パターンのうちの第5パターン、第17パターンが該当し、第5パターンは、(A)の低負荷かつ省燃費状態から(B)の中負荷かつ省燃費状態への移行状態に該当し、第17パターンは、(B)の中負荷かつ省燃費状態から(A)の低負荷かつ省燃費状態への移行状態に該当する。
Accordingly, the variable valve mechanism 82 increases the compression ratio CRivc in accordance with the transition from the low load and fuel saving state of (A) to the medium load and fuel saving state of (B). The variable valve mechanism 82 lowers the compression ratio CRivc in accordance with the transition from the load and fuel saving state to the low load and fuel saving state (A).
The operating state corresponds to the fifth pattern and the seventeenth pattern of the first pattern to the nineteenth pattern. The fifth pattern corresponds to the low load and fuel saving state of (A) and the medium load and saving of (B). The 17th pattern corresponds to the transition state from the medium load and fuel saving state to the low fuel consumption state of FIG.
 そして、この第5パターン及び第17パターンでは、内燃機関10の運転状態の変化に基づく圧縮比可変機構50の作動要求は発生しないが、有効圧縮比CReの収束応答を改善するために、圧縮比CRivcの変化方向と同じ方向に圧縮比CRmが変化するように圧縮比可変機構50を過渡的に作動させ、有効圧縮比CReの収束応答を改善する。
 尚、図2に示した協調制御の全てを実施することに限定されるものではなく、過補正処理と制限処理とのいずれか一方を省略したり、過補正処理のうち圧縮比可変機構50についての処理又は可変動弁機構82についての処理を省略したり、制限処理のうち圧縮比が過大となることを抑制する処理と過小となることを抑制する処理とのいずれか一方を省略したりすることができる。
In the fifth pattern and the 17th pattern, an operation request for the compression ratio variable mechanism 50 based on a change in the operating state of the internal combustion engine 10 is not generated, but in order to improve the convergence response of the effective compression ratio CRe, the compression ratio The compression ratio variable mechanism 50 is transiently operated so that the compression ratio CRm changes in the same direction as the change direction of CRivc, thereby improving the convergence response of the effective compression ratio CRe.
2 is not limited to performing all of the cooperative control shown in FIG. 2, either the overcorrection process or the restriction process is omitted, or the compression ratio variable mechanism 50 in the overcorrection process is omitted. Or the process for the variable valve mechanism 82 is omitted, or one of the process for suppressing the compression ratio from being excessive and the process for suppressing the compression ratio from being limited is omitted. be able to.
 図8は、アクセルを全開から全閉に戻したときの圧縮比可変機構50及び可変動弁機構82の作動状態の一例を示す。
 図8に示す例では、目標有効圧縮比CRetgは、アクセルが全閉に操作されることでアクセル全開状態のときよりも低く変更されるが、係る目標有効圧縮比CRetgの低下は、可変動弁機構82によって吸気バルブ81の閉時期IVCを下死点後の領域で遅角させて圧縮比CRivcを低下させる一方で、圧縮比可変機構50により圧縮比CRmを増大させることで達成される。
FIG. 8 shows an example of the operating state of the variable compression ratio mechanism 50 and the variable valve mechanism 82 when the accelerator is fully opened to fully closed.
In the example shown in FIG. 8, the target effective compression ratio CRetg is changed to be lower than when the accelerator is fully opened by operating the accelerator to be fully closed. The mechanism 82 is achieved by retarding the closing timing IVC of the intake valve 81 in the region after the bottom dead center to decrease the compression ratio CRivc while increasing the compression ratio CRm by the compression ratio variable mechanism 50.
 つまり、目標有効圧縮比CRetgの低下代よりも可変動弁機構82における圧縮比CRivcの低下代を大きくし、圧縮比CRivcが過剰に低下する分だけ圧縮比可変機構50により圧縮比CRmを増大させて、実有効圧縮比CReが目標有効圧縮比CRetgに近づくようにする。
 係る圧縮比変化を生じさせるときに、可変動弁機構82による圧縮比変化の応答が圧縮比可変機構50による圧縮比変化の応答に比べて速いと、図8に例示したように、圧縮比CRmの増大に比べて圧縮比CRivcの低下が先行する結果、実有効圧縮比CReが目標有効圧縮比CRetgを超えて低下するオーバーシュートが発生し、実有効圧縮比CReが運転状態に応じた下限値CRminを過渡的に下回り、圧縮温度が一時的に過度に低下する可能性がある。
That is, the reduction ratio of the compression ratio CRivc in the variable valve mechanism 82 is made larger than the reduction margin of the target effective compression ratio CRetg, and the compression ratio CRm is increased by the compression ratio variable mechanism 50 by the amount that the compression ratio CRivc decreases excessively. Thus, the actual effective compression ratio CRe is made to approach the target effective compression ratio CRetg.
When the change in the compression ratio is caused, if the response of the change in the compression ratio by the variable valve mechanism 82 is faster than the response in the change in the compression ratio by the compression ratio variable mechanism 50, as illustrated in FIG. As a result of the decrease in the compression ratio CRivc preceding the increase in the engine, an overshoot occurs in which the actual effective compression ratio CRe decreases beyond the target effective compression ratio CRetg, and the actual effective compression ratio CRe is a lower limit value corresponding to the operating state. Transiently below CRmin, the compression temperature may temporarily drop excessively.
 つまり、図8において、時刻t1でアクセルが全開から全閉に切り替わり、これに応じて、圧縮比可変機構50における目標圧縮比CRmtgが増加する一方で、可変動弁機構82における目標圧縮比CRivctgが低下する。
 ここで、圧縮比可変機構50に比べて可変動弁機構82による圧縮比変化の応答が速いため、可変動弁機構82では、時刻t2において目標圧縮比CRivctgに実圧縮比CRivcが達するのに対し、圧縮比可変機構50では、時刻t2よりも遅い時刻t3において目標圧縮比CRmtgに実圧縮比CRmが達する場合がある。
That is, in FIG. 8, the accelerator is switched from fully open to fully closed at time t1, and accordingly, the target compression ratio CRmtg in the variable compression ratio mechanism 50 increases, while the target compression ratio CRivctg in the variable valve mechanism 82 is descend.
Here, since the response of the compression ratio change by the variable valve mechanism 82 is faster than the variable compression ratio mechanism 50, the variable valve mechanism 82 reaches the target compression ratio CRivctg at the time t2 while the actual compression ratio CRivc reaches the target compression ratio CRivctg. In the variable compression ratio mechanism 50, the actual compression ratio CRm may reach the target compression ratio CRmtg at a time t3 later than the time t2.
 係る目標圧縮比への応答時間の違いにより、時刻t1から時刻t2までの間では、実圧縮比CRmが殆ど変化しないのに対して、実圧縮比CRivcの減少が進行する結果、実有効圧縮比CReが目標有効圧縮比CRetgを下回るようになる可能性がある。
 そこで、制御装置70は、図9に例示したように、制限処理を実施しない場合に比べて圧縮比CRivcの変化を抑制する制限処理を行うことで、圧縮比CRmの増大に比べて圧縮比CRivcの低下が先行することを抑制し、圧縮比CRivcと圧縮比CRmとが略同時期に目標値に達するようにする。
Due to the difference in the response time to the target compression ratio, the actual compression ratio CRm hardly changes between time t1 and time t2, whereas the actual effective compression ratio CRivc is decreased. CRe may fall below the target effective compression ratio CRetg.
Therefore, as illustrated in FIG. 9, the control device 70 performs the restriction process that suppresses the change in the compression ratio CRivc as compared to the case where the restriction process is not performed, so that the compression ratio CRivc is greater than the increase in the compression ratio CRm. The compression ratio CRivc and the compression ratio CRm reach the target values at substantially the same time.
 図9において、時刻t1でアクセルが全開から全閉に切り替わり、これに応じて、圧縮比可変機構50における目標圧縮比CRmtgが増加し、可変動弁機構82における目標圧縮比CRivctgが低下する。
 ここで、制御装置70は、可変動弁機構82の制御において、運転状態に応じた目標圧縮比CRivctgに代えてこの目標圧縮比CRivctgに遅れて追従する制限処理用の目標値FCRivctgを設定し、この制限処理用の目標値FCRivctgに従って可変動弁機構82を制御し、目標圧縮比CRmtgに実圧縮比CRmが達する時刻t3付近で圧縮比CRivcが目標圧縮比CRivctgに収束するようにする。
 係る制限処理により、可変動弁機構82による圧縮比変化の応答が圧縮比可変機構50による圧縮比変化の応答に比べて速い場合であっても、実有効圧縮比CReが目標有効圧縮比CRetgを超えて低下することを抑制でき、以って、圧縮温度が過度に低下することを抑制できる。
In FIG. 9, at time t1, the accelerator switches from fully open to fully closed, and accordingly, the target compression ratio CRmtg in the variable compression ratio mechanism 50 increases and the target compression ratio CRivctg in the variable valve mechanism 82 decreases.
Here, in the control of the variable valve mechanism 82, the control device 70 sets a target value FCRivctg for limiting processing that follows the target compression ratio CRivctg instead of the target compression ratio CRivctg corresponding to the operation state, The variable valve mechanism 82 is controlled in accordance with the target value FCRivctg for the limiting process so that the compression ratio CRivc converges to the target compression ratio CRivctg near time t3 when the actual compression ratio CRm reaches the target compression ratio CRmtg.
Even if the response of the compression ratio change by the variable valve mechanism 82 is faster than the response of the compression ratio change by the compression ratio variable mechanism 50, the effective effective compression ratio CRe is equal to the target effective compression ratio CRetg. It can suppress that it falls exceeding, and can suppress that compression temperature falls too much.
 以下では、制御装置70による協調制御の具体的な処理内容の一例を説明する。
 前述の図2に示したように、圧縮比可変機構50については、協調制御としての作動を行わないパターンと、協調制御としての過補正処理を実施するパターンとのいずれかに分別され、協調制御としての過補正処理を実施するパターンは、第5パターン及び第17パターンである。
Below, an example of the specific processing content of the cooperative control by the control apparatus 70 is demonstrated.
As shown in FIG. 2 described above, the compression ratio variable mechanism 50 is classified into either a pattern that does not operate as cooperative control or a pattern that performs overcorrection processing as cooperative control. The patterns for performing the overcorrection processing are the fifth pattern and the seventeenth pattern.
 そこで、制御装置70は、有効圧縮比CRe、圧縮比CRivc及び圧縮比CRmの操作方向に基づき、圧縮比可変機構50について協調制御を行わない場合と、圧縮比可変機構50について協調制御としての過補正処理を実施する場合とに判別し、係る判別結果に基づき状態番号STVCRの設定を行う。
 ここで、図2の第9列に示すように、例えば、圧縮比可変機構50について協調制御を行わない場合は状態番号STVCR=0に設定し、圧縮比可変機構50について過補正処理を行う場合は状態番号STVCR=2に設定する。つまり、第5パターン及び第17パターンに該当するときに状態番号STVCR=2とし、それ以外では状態番号STVCR=0とする。
Therefore, the control device 70 does not perform cooperative control for the compression ratio variable mechanism 50 based on the operation directions of the effective compression ratio CRe, the compression ratio CRivc, and the compression ratio CRm, and performs excessive control as cooperative control for the compression ratio variable mechanism 50. When the correction process is performed, the state number STVCR is set based on the determination result.
Here, as shown in the ninth column of FIG. 2, for example, when cooperative control is not performed for the compression ratio variable mechanism 50, the state number STVCR = 0 is set, and overcorrection processing is performed for the compression ratio variable mechanism 50. Sets the state number STVCR = 2. That is, the state number STVCR = 2 is set when it corresponds to the fifth pattern and the 17th pattern, and the state number STVCR = 0 is set otherwise.
 一方、可変動弁機構82については、協調制御としての作動を行わないパターンと、協調制御としての過補正処理を実施するパターンと、協調制御としての制限処理を実施するパターンとのいずれかに分別され、協調制御としての過補正処理を実施するパターンは、第3パターン、第6パターン、第13パターン及び第19パターンであり、協調制御としての制限処理を実施するパターンは、第7パターン、第9パターン、第16パターン及び第18パターンである。 On the other hand, the variable valve mechanism 82 is classified into one of a pattern that does not operate as cooperative control, a pattern that performs overcorrection processing as cooperative control, and a pattern that performs restriction processing as cooperative control. The patterns for performing overcorrection processing as cooperative control are the third pattern, the sixth pattern, the thirteenth pattern, and the nineteenth pattern, and the patterns for performing restriction processing as cooperative control are the seventh pattern, Nine patterns, sixteenth pattern, and eighteenth pattern.
 そこで、制御装置70は、有効圧縮比CRe、圧縮比CRivc及び圧縮比CRmの操作方向に基づき、可変動弁機構82について協調制御を行わない場合と、可変動弁機構82について協調制御としての過補正処理を実施する場合と、可変動弁機構82について協調制御としての制限処理を実施する場合とに判別し、係る判別結果に基づき状態番号STVTCの設定を行う。 Therefore, the control device 70 does not perform cooperative control for the variable valve mechanism 82 based on the operating directions of the effective compression ratio CRe, the compression ratio CRivc, and the compression ratio CRm, and controls the variable valve mechanism 82 as excessive control as cooperative control. A determination is made between when the correction process is performed and when a limit process as cooperative control is performed for the variable valve mechanism 82, and the state number STVTC is set based on the determination result.
 ここで、図2の第8列に示すように、例えば、可変動弁機構82について協調制御を行わない場合は状態番号STVTC=0に設定し、可変動弁機構82について過補正処理を行う場合は状態番号STVTC=2に設定し、可変動弁機構82について制限処理を行う場合は状態番号STVTC=1に設定する。
 つまり、第3パターン、第6パターン、第13パターン及び第19パターンに該当するときに状態番号STVTC=2とし、第7パターン、第9パターン、第16パターン及び第18パターンに該当するときに状態番号STVTC=1とし、それ以外では状態番号STVTC=0とする。
Here, as shown in the eighth column of FIG. 2, for example, when cooperative control is not performed for the variable valve mechanism 82, the state number STVTC = 0 is set, and overcorrection processing is performed for the variable valve mechanism 82. Is set to state number STVTC = 2, and is set to state number STVTC = 1 when the variable valve mechanism 82 is subjected to restriction processing.
That is, the state number STVTC = 2 when corresponding to the third pattern, the sixth pattern, the thirteenth pattern, and the nineteenth pattern, and the state corresponding to the seventh pattern, the ninth pattern, the sixteenth pattern, and the eighteenth pattern. The number STVTC = 1, otherwise the state number STVTC = 0.
 ここで、制御装置70は、状態番号STVCR、STVTCに基づき圧縮比可変機構50及び可変動弁機構82について協調制御を行うか否かを判断し、協調制御を行わない場合には、内燃機関10の運転状態に基づいて設定される目標圧縮比MCRmtg、目標圧縮比MCRivctgをそのまま最終的な目標値FCRmtg、FCRivctgとして設定する。
 一方、制御装置70は、協調制御を行う場合には、目標圧縮比MCRmtg、目標圧縮比MCRivctgを補正した結果を最終的な目標値FCRmtg、FCRivctgとする。
Here, the control device 70 determines whether or not to perform cooperative control on the compression ratio variable mechanism 50 and the variable valve mechanism 82 based on the state numbers STVCR and STVTC. The target compression ratio MCRmtg and the target compression ratio MCRivctg set based on the operating state are set as final target values FCRmtg and FCRivctg as they are.
On the other hand, when performing cooperative control, the controller 70 corrects the target compression ratio MCRmtg and the target compression ratio MCRivctg as final target values FCRmtg and FCRivctg.
 そして、制御装置70は、最終的な目標値FCRmtg、FCRivctgに基づき圧縮比可変機構50、可変動弁機構82を制御する目標圧縮比の補正処理によって、協調制御を実行する。
 尚、目標圧縮比MCRmtg、目標圧縮比MCRivctgの設定に用いられる機関運転状態には、機関負荷、機関回転速度、機関温度、過給圧、異常燃焼の有無、始動状態であるか否かなどが含まれる。
Then, the control device 70 performs cooperative control by a target compression ratio correction process for controlling the compression ratio variable mechanism 50 and the variable valve mechanism 82 based on the final target values FCRmtg and FCRivctg.
The engine operating state used for setting the target compression ratio MCRmtg and the target compression ratio MCRivctg includes engine load, engine speed, engine temperature, supercharging pressure, presence / absence of abnormal combustion, and whether or not the engine is in a starting state. included.
 図10は、制御装置70による圧縮比可変機構50の目標値FCRmtgの演算処理を示すブロック図である。
 第1比較演算部101には、状態番号STVCRと、協調制御を実施しない場合の状態番号STVCRの値である「0」とが入力される。
 そして、状態番号STVCRが0であるときに、第1比較演算部101はHigh信号を出力し、状態番号STVCRが0以外であるときに、第1比較演算部101はLow信号を出力する。
FIG. 10 is a block diagram showing a calculation process of the target value FCRmtg of the compression ratio variable mechanism 50 by the control device 70.
The first comparison calculation unit 101 receives the state number STVCR and “0”, which is the value of the state number STVCR when the cooperative control is not performed.
When the state number STVCR is 0, the first comparison operation unit 101 outputs a High signal, and when the state number STVCR is other than 0, the first comparison operation unit 101 outputs a Low signal.
 第1比較演算部101の出力は、第1出力切り替え部102に切り替え制御信号として入力され、第1出力切り替え部102は、目標圧縮比MCRmtgの補正値として入力される2値のいずれか一方を第1比較演算部101の出力に応じて選択して出力する。
 目標圧縮比MCRmtgの補正値として、補正を実質的に行わない値と、可変動弁機構82におけるエラー量に応じた値とが、第1出力切り替え部102に入力される。
The output of the first comparison calculation unit 101 is input to the first output switching unit 102 as a switching control signal, and the first output switching unit 102 outputs one of the two values input as the correction value of the target compression ratio MCRmtg. Select and output according to the output of the first comparison operation unit 101.
As the correction value of the target compression ratio MCRmtg, a value that is not substantially corrected and a value corresponding to the error amount in the variable valve mechanism 82 are input to the first output switching unit 102.
 そして、第1出力切り替え部102は、第1比較演算部101の出力がHigh信号である場合、つまり、協調制御を実施しない場合、補正を実質的に行わない補正値を出力し、第1比較演算部101の出力がLow信号である場合、つまり、協調制御を実施する場合、可変動弁機構82におけるエラー量に応じた補正値を出力する。
 第1出力切り替え部102の出力は、補正部103の一方の入力端子に入力され、補正部103の他方の入力端子には目標圧縮比MCRmtgが入力される。
The first output switching unit 102 outputs a correction value that does not substantially perform correction when the output of the first comparison calculation unit 101 is a high signal, that is, when cooperative control is not performed, and the first comparison When the output of the calculation unit 101 is a Low signal, that is, when cooperative control is performed, a correction value corresponding to the error amount in the variable valve mechanism 82 is output.
The output of the first output switching unit 102 is input to one input terminal of the correction unit 103, and the target compression ratio MCRmtg is input to the other input terminal of the correction unit 103.
 そして、補正部103は、目標圧縮比MCRmtgを補正値で補正した結果を、補正処理後の目標値FCRmtgとして出力する。
 補正部103は、目標値FCRmtgを変換部104に出力し、変換部104は、補正後の目標圧縮比FCRmtgを圧縮比可変機構50の制御量に変換する。
Then, the correcting unit 103 outputs the result of correcting the target compression ratio MCRmtg with the correction value as the target value FCRmtg after the correction process.
The correction unit 103 outputs the target value FCRmtg to the conversion unit 104, and the conversion unit 104 converts the corrected target compression ratio FCRmtg into a control amount of the compression ratio variable mechanism 50.
 更に、変換部104から出力されるコントロールシャフト25の目標角度TGVCRは、制限部105に出力される。
 制限部105では、入力した目標角度TGVCRが上限値を超えていれば上限値を最終的な目標角度TGVCRとして出力し、入力した目標角度TGVCRが下限値を下回っていれば下限値を最終的な目標角度TGVCRとして出力し、入力した目標角度TGVCRが上限値と下限値とで挟まれる範囲内であれば、入力した目標角度TGVCRをそのまま最終的な目標角度TGVCRとして出力する。
Further, the target angle TGVCR of the control shaft 25 output from the conversion unit 104 is output to the limiting unit 105.
The limiting unit 105 outputs the upper limit value as the final target angle TGVCR if the input target angle TGVCR exceeds the upper limit value, and finally sets the lower limit value if the input target angle TGVCR is lower than the lower limit value. If the target angle TGVCR is output within the range between the upper limit value and the lower limit value, the input target angle TGVCR is output as it is as the final target angle TGVCR.
 そして、制御装置70は、最終的な目標角度TGVCRとコントロールシャフト25の実角度との偏差に基づく比例積分制御などに基づいてアクチュエータ51の操作量を演算して出力することで、目標角度TGVCRに実際のコントロールシャフト25の角度を近づけるフィードバック制御を実施する。 Then, the control device 70 calculates and outputs an operation amount of the actuator 51 based on proportional integral control based on a deviation between the final target angle TGVCR and the actual angle of the control shaft 25, and thereby outputs the target angle TGVCR. Feedback control is performed to bring the actual angle of the control shaft 25 closer.
 ここで、可変動弁機構82におけるエラー量に応じた目標圧縮比MCRmtgの補正値演算を詳述する。
 乗算部106には、可変動弁機構82におけるエラー量である、目標圧縮比CRivctgと実圧縮比CRivcとの偏差のデータと、エラー量を目標圧縮比MCRmtgの補正値に変換するためのゲインとが入力され、エラー量にゲインを乗算した結果を、目標圧縮比MCRmtgの補正値として出力する。
Here, the correction value calculation of the target compression ratio MCRmtg corresponding to the error amount in the variable valve mechanism 82 will be described in detail.
The multiplication unit 106 includes an error amount in the variable valve mechanism 82, a deviation data between the target compression ratio CRivctg and the actual compression ratio CRivc, and a gain for converting the error amount into a correction value of the target compression ratio MCRmtg. And the result of multiplying the error amount by the gain is output as a correction value for the target compression ratio MCRmtg.
 第2出力切り替え部107は、乗算部106にゲインを出力する。
 第2出力切り替え部107には、制限処理に適合して設定されたゲインと、過補正処理に適合して設定されたゲインとが入力され、第2比較演算部108の出力に応じて2つのいずれか一方を出力する。
 第2出力切り替え部107に入力される制限処理用ゲイン及び過補正用ゲインは、固定値として与えることができ、また、内燃機関10の運転条件に応じて可変に設定することができる。
The second output switching unit 107 outputs a gain to the multiplication unit 106.
The second output switching unit 107 receives a gain set in conformity with the limiting process and a gain set in conformity with the overcorrection process, and outputs two values according to the output of the second comparison operation unit 108. Either one is output.
The limiting process gain and the overcorrection gain input to the second output switching unit 107 can be given as fixed values, and can be variably set according to the operating conditions of the internal combustion engine 10.
 制限処理用ゲイン及び過補正用ゲインの可変設定に用いる運転条件としては、実有効圧縮比CRe、シリンダ吸入新気量、燃焼室における残留ガス量、圧縮温度、ノッキング感度などの有効圧縮比の過渡応答の要求レベルに関わる各種条件を用いることができる。
 なお、ノッキング感度とは、ノッキングの発生し易さを表す指標値である。
 即ち、目標圧縮比の補正レベルを大きくしないと、加速性能の低下、異常燃焼の発生、排気性状の悪化、燃焼性の悪化、始動不良などが発生する条件でゲインを大きくし、補正レベルを小さく抑制しても前述のような事象を十分に抑制できる場合にはゲインを小さくする。
The operating conditions used for variably setting the limiting processing gain and the overcorrection gain include transients of the effective compression ratio such as the actual effective compression ratio CRe, the cylinder intake fresh air amount, the residual gas amount in the combustion chamber, the compression temperature, and the knocking sensitivity. Various conditions related to the request level of response can be used.
The knocking sensitivity is an index value that represents the ease with which knocking occurs.
That is, if the correction level of the target compression ratio is not increased, the gain is increased and the correction level is decreased under conditions that cause a decrease in acceleration performance, occurrence of abnormal combustion, deterioration of exhaust properties, deterioration of combustibility, starting failure, etc. If the above event can be sufficiently suppressed even if it is suppressed, the gain is reduced.
 図11は、制御装置70における過補正用ゲインの演算機能を示すブロック図であり、実有効圧縮比CRe、シリンダ吸入新気量、燃焼室における残留ガス量、圧縮温度、ノッキング感度の各条件毎に過補正用ゲイン設定部301-305において、過補正用ゲインを設定する。
 過補正用ゲイン設定部301-305それぞれで設定された過補正ゲインは比較演算部306に出力され、比較演算部306は、過補正用ゲイン設定部301-305それぞれで設定された過補正用ゲインのうちで最も大きなゲインを、最終的な過補正用ゲインとして出力する。
FIG. 11 is a block diagram showing an overcorrection gain calculation function in the control device 70, for each condition of the actual effective compression ratio CRe, the cylinder intake fresh air amount, the residual gas amount in the combustion chamber, the compression temperature, and the knocking sensitivity. In addition, an overcorrection gain is set in an overcorrection gain setting unit 301-305.
The overcorrection gain set in each of the overcorrection gain setting units 301-305 is output to the comparison calculation unit 306, and the comparison calculation unit 306 sets the overcorrection gain set in each of the overcorrection gain setting units 301-305. The largest gain is output as the final overcorrection gain.
 ここで、実有効圧縮比CReに基づき過補正用ゲインを設定する過補正用ゲイン設定部301では、実有効圧縮比CReが機関運転条件に応じた可変範囲の中央値付近で過補正ゲインを小さくし、上下限値に近づくほど過補正ゲインを大きくする。
 これは、実有効圧縮比CReが可変範囲の中央値付近であれば、上下限値に達するまでの余裕代が大きく、実有効圧縮比CReの過渡変化に多少の遅れがあっても、可変範囲を外れてしまうことが抑制されるので、過補正ゲインを小さくする。一方、実有効圧縮比CReが上下限値に近い状態では、実有効圧縮比CReの過渡変化の遅れによって可変範囲を外れ易くなるため、過補正ゲインを大きくして上下限値を超えることを抑制する。
Here, in the overcorrection gain setting unit 301 that sets the overcorrection gain based on the actual effective compression ratio CRe, the overcorrection gain is reduced in the vicinity of the median value of the variable range according to the engine operating conditions. The overcorrection gain is increased as the upper and lower limit values are approached.
This is because if the actual effective compression ratio CRe is near the median value of the variable range, there is a large margin for reaching the upper and lower limits, and even if there is a slight delay in the transient change of the actual effective compression ratio CRe, Therefore, the overcorrection gain is reduced. On the other hand, in the state where the actual effective compression ratio CRe is close to the upper and lower limit values, it is easy to go out of the variable range due to a delay in the transient change of the actual effective compression ratio CRe, so the overcorrection gain is increased to prevent the upper and lower limit values from being exceeded. To do.
 また、シリンダ吸入新気量に基づき過補正用ゲインを設定する過補正用ゲイン設定部302では、新気量が多いほど過補正用ゲインをより大きな値に設定する。これは、新気量が多いことで圧縮温度が上がりノッキングが発生し易くなり、実有効圧縮比CReの応答遅れによってノッキングが発生し易くなるためである。
 また、残ガス量に基づき過補正用ゲインを設定する過補正用ゲイン設定部303では、残ガス量が多いほど過補正用ゲインをより小さい値に設定する。これは、残ガス量が多い場合には燃焼温度が下がりNOxを低減できるが、残ガス量が少ない場合に燃焼温度が上がり、これに有効圧縮比の応答遅れが重なることでNOxが増加することを抑制するためである。
Further, the overcorrection gain setting unit 302 that sets the overcorrection gain based on the cylinder intake fresh air amount sets the overcorrection gain to a larger value as the fresh air amount increases. This is because the amount of fresh air increases and the compression temperature rises and knocking is likely to occur, and knocking is likely to occur due to a response delay of the actual effective compression ratio CRe.
Further, the overcorrection gain setting unit 303 that sets the overcorrection gain based on the residual gas amount sets the overcorrection gain to a smaller value as the residual gas amount increases. This is because when the amount of residual gas is large, the combustion temperature decreases and NOx can be reduced. However, when the amount of residual gas is small, the combustion temperature rises, and this results in an increase in NOx due to the overlap of the response delay of the effective compression ratio. It is for suppressing.
 また、圧縮温度に基づき過補正用ゲインを設定する過補正用ゲイン設定部304では、圧縮温度が高いほど過補正用ゲインを小さくする。これは、圧縮温度が高い状態で有効圧縮比の増大応答を高くするとノッキングなどの異常燃焼が発生し易くなり、また、圧縮温度が高い状態で有効圧縮比の減少応答を高くすると、高負荷域での燃焼性悪化を発生させる可能性があるためである。
 また、ノッキング感度に基づき過補正用ゲインを設定する過補正用ゲイン設定部305では、ノッキング感度が高いほど過補正用ゲインを小さくする。これは、ノッキングが発生し易い条件で有効圧縮比の過渡応答を速くすると、ノッキングを発生させる可能性があるためである。
 なお、ノッキング感度が高い状態とは、例えば、使用燃料のアンチノック性が低い場合である。
The overcorrection gain setting unit 304 that sets the overcorrection gain based on the compression temperature decreases the overcorrection gain as the compression temperature increases. This is because abnormal combustion such as knocking is more likely to occur when the increase response of the effective compression ratio is increased with a high compression temperature, and when the decrease response of the effective compression ratio is increased with a high compression temperature, This is because there is a possibility of causing a deterioration in combustibility.
In addition, the overcorrection gain setting unit 305 that sets the overcorrection gain based on the knocking sensitivity decreases the overcorrection gain as the knocking sensitivity increases. This is because knocking may occur if the transient response of the effective compression ratio is increased under conditions where knocking is likely to occur.
The state where the knocking sensitivity is high is, for example, a case where the anti-knock property of the fuel used is low.
 一方、図12は、制御装置70における制限処理用ゲインの演算機能を示すブロック図である。
 制限処理用ゲインについても、実有効圧縮比CRe、シリンダ吸入新気量、燃焼室における残留ガス量、圧縮温度、ノッキング感度の各条件毎に制限処理用ゲイン設定部401-405において制限処理用ゲインを設定し、比較演算部406は、制限処理用ゲイン設定部401-405それぞれで設定された制限処理用ゲインのうちで最も大きなゲインを、最終的な制限処理用ゲインとして出力する。
On the other hand, FIG. 12 is a block diagram illustrating a function for calculating a limiting process gain in the control device 70.
As for the limiting processing gain, the limiting processing gain is set in the limiting processing gain setting unit 401-405 for each of the actual effective compression ratio CRe, the cylinder intake fresh air amount, the residual gas amount in the combustion chamber, the compression temperature, and the knocking sensitivity. The comparison calculation unit 406 outputs the largest gain among the limit processing gains set by the limit processing gain setting units 401 to 405 as the final limit processing gain.
 ここで、制限処理用ゲイン設定部401における実有効圧縮比CReに応じた制限処理用ゲインの設定特性は、過補正用ゲイン設定部301での特性と同様であるが、制限処理用ゲイン設定部402-405における制限処理用ゲインの特性は、過補正用ゲイン設定部302-305における過補正用ゲインの特性とは逆特性としてある。
 制限処理用ゲイン設定部402では、新気量が多いほど制限処理用ゲインをより小さい値に設定する。これは、新気量が少ない状態で実有効圧縮比CReが過渡的に過小になることで、内燃機関10の運転安定性が低下することを抑制するためである。
Here, the setting characteristic of the limiting process gain according to the actual effective compression ratio CRe in the limiting process gain setting unit 401 is the same as the characteristic in the overcorrection gain setting unit 301, but the limiting process gain setting unit The characteristic of the limiting processing gain in 402-405 is opposite to the characteristic of the overcorrection gain in the overcorrection gain setting unit 302-305.
The limit processing gain setting unit 402 sets the limit processing gain to a smaller value as the amount of fresh air increases. This is to prevent the operation stability of the internal combustion engine 10 from being deteriorated due to a transiently excessive decrease in the actual effective compression ratio CRe in a state where the amount of fresh air is small.
 また、制限処理用ゲイン設定部403では、残ガス量が多いほど制限処理用ゲインをより大きい値に設定する。これは、残ガス量が多く燃焼温度が下がるときに、実有効圧縮比CReが過渡的に過小になることで、内燃機関10の燃焼安定性が低下することを抑制するためである。
 また、制限処理用ゲイン設定部404では、圧縮温度が高いほど制限処理用ゲインを大きくする。これは、圧縮温度が高い状態で実有効圧縮比CReが過渡的に過大になることで、異常燃焼が発生することを抑制するためである。
Further, the limit processing gain setting unit 403 sets the limit processing gain to a larger value as the residual gas amount increases. This is to prevent the combustion stability of the internal combustion engine 10 from being lowered by the actual effective compression ratio CRe becoming transiently too low when the amount of residual gas is large and the combustion temperature is lowered.
Further, the restriction processing gain setting unit 404 increases the restriction processing gain as the compression temperature increases. This is to prevent abnormal combustion from occurring due to a transient excessive increase in the actual effective compression ratio CRe when the compression temperature is high.
 また、制限処理用ゲイン設定部405では、ノッキング感度が高いほど制限処理用ゲインを大きくする。これは、ノッキングが発生し易い条件で実有効圧縮比CReが過渡的に過大になることで、ノッキングを発生させる可能性があるためである。
 尚、過補正用ゲイン、制限処理用ゲインの可変設定に用いる運転条件として、前述した有効圧縮比などの5条件のうちの1つ或いは複数を組み合わせてゲインを設定することができ、更に、前述した5条件以外に、機関回転速度NE、冷却水温度TW、点火時期、空燃比、吸気温度など他の条件を用いることができる。
Further, the limit processing gain setting unit 405 increases the limit processing gain as the knocking sensitivity is higher. This is because knocking may occur due to a transient excessive increase in the actual effective compression ratio CRe under conditions where knocking is likely to occur.
As operating conditions used for variable setting of the overcorrection gain and the limit processing gain, the gain can be set by combining one or more of the five conditions such as the effective compression ratio described above. In addition to the above five conditions, other conditions such as the engine speed NE, the cooling water temperature TW, the ignition timing, the air-fuel ratio, and the intake air temperature can be used.
 更に、運転条件毎のゲインに重み付けを行ったり、有効圧縮比に基づく基本ゲインを他の運転条件に応じて補正するなどの構成とすることができる。
 また、後述する目標値FCRivctgの演算処理に用いる過補正用ゲイン及び制限処理用ゲインも、前述のようにして可変に設定することができる。
Further, the gain for each operating condition can be weighted, or the basic gain based on the effective compression ratio can be corrected according to other operating conditions.
Further, the overcorrection gain and the limit processing gain used in the calculation processing of a target value FCRivctg described later can also be set variably as described above.
 図10のブロック図において、第2比較演算部108には、状態番号STVCRと、制限処理を実施する場合の状態番号STVCRの値である「1」とが入力され、状態番号STVCRが1であればHigh信号を出力し、状態番号STVCRが1以外であればLow信号を出力する。 In the block diagram of FIG. 10, the state number STVCR and “1” which is the value of the state number STVCR when the restriction process is performed are input to the second comparison operation unit 108, and the state number STVCR is 1. If the state number STVCR is other than 1, the Low signal is output.
 そして、第2出力切り替え部107は、第2比較演算部108の出力がHigh信号である場合、換言すれば、状態番号STVCR=1である場合、制限処理に適合するゲインを出力し、第2比較演算部108の出力がLow信号である場合、換言すれば、状態番号STVCR=0又は状態番号STVCR=2である場合、過補正処理に適合するゲインを出力する。
 ここで、状態番号STVCRは、0又は2のいずれかに設定されるから、第2比較演算部108の出力はLow信号を保持し、第2出力切り替え部107の出力としては、過補正処理に適合するゲインに保持されることになる。
Then, when the output of the second comparison operation unit 108 is a High signal, in other words, when the state number STVCR = 1, the second output switching unit 107 outputs a gain suitable for the limiting process, When the output of the comparison operation unit 108 is a low signal, in other words, when the state number STVCR = 0 or the state number STVCR = 2, a gain suitable for overcorrection processing is output.
Here, since the state number STVCR is set to either 0 or 2, the output of the second comparison operation unit 108 holds the Low signal, and the output of the second output switching unit 107 is subjected to overcorrection processing. It will be held at a suitable gain.
 しかし、状態番号STVCR=0であって過補正処理を実施しないパターンである場合には、第1出力切り替え部102が目標圧縮比MCRmtgを変更しない値を補正値として出力する。
 従って、状態番号STVCR=2である過補正処理を実施するパターンであるときにのみ、可変動弁機構82におけるエラー量に応じた補正値で目標圧縮比MCRmtgが変更され、過補正処理が実行される。
However, if the state number STVCR = 0 and the pattern does not perform overcorrection processing, the first output switching unit 102 outputs a value that does not change the target compression ratio MCRmtg as a correction value.
Therefore, the target compression ratio MCRmtg is changed with the correction value corresponding to the error amount in the variable valve mechanism 82 only when the overcorrection process with the state number STVCR = 2 is performed, and the overcorrection process is executed. The
 例えば、圧縮比可変機構50における過補正処理の実施が設定される第5パターンでは、可変動弁機構82において目標圧縮比CRivctgが実圧縮比CRivcよりも高く実圧縮比CRivcを増加させるが、このとき、図10に示した機能による目標圧縮比MCRmtgの補正処理によって、可変動弁機構82におけるエラー量が大きいほど、目標圧縮比MCRmtgをより高圧縮比側に補正する。
 圧縮比可変機構50が、目標圧縮比MCRmtgと実圧縮比CRmとが略一致する定常状態である状態で、目標圧縮比CRmtgがより圧縮比の高い側に補正されれば、実圧縮比CRmを補正後の目標圧縮比CRmtgに追従させて増大させるべく、圧縮比可変機構50が作動されることになる。
For example, in the fifth pattern in which the overcorrection processing is set in the variable compression ratio mechanism 50, the target compression ratio CRivctg is higher than the actual compression ratio CRivc in the variable valve mechanism 82, and the actual compression ratio CRivc is increased. When the target compression ratio MCRmtg is corrected by the function shown in FIG. 10, the target compression ratio MCRmtg is corrected to the higher compression ratio side as the error amount in the variable valve mechanism 82 is larger.
If the compression ratio variable mechanism 50 is in a steady state in which the target compression ratio MCRmtg and the actual compression ratio CRm substantially coincide with each other, and the target compression ratio CRmtg is corrected to a higher compression ratio, the actual compression ratio CRm is changed. The variable compression ratio mechanism 50 is operated to increase the target compression ratio CRmtg after correction.
 これにより、可変動弁機構82を圧縮比CRivcが増大する側に作動させた当初、換言すれば、目標圧縮比CRivctgが増大変化した当初のエラー量が大きいときには、可変動弁機構82による実圧縮比CRivcの増大に並行して、圧縮比可変機構50による実圧縮比CRmの増大が行われ、実圧縮比CRivcと実圧縮比CRmとで決まる有効圧縮比CReは、可変動弁機構82のみを作動させる場合に比べて応答良く増大変化することになる。 As a result, when the variable valve mechanism 82 is operated to the side where the compression ratio CRivc increases, in other words, when the initial error amount when the target compression ratio CRivctg increases and changes is large, actual compression by the variable valve mechanism 82 is performed. In parallel with the increase in the ratio CRivc, the actual compression ratio CRm is increased by the compression ratio variable mechanism 50, and the effective compression ratio CRe determined by the actual compression ratio CRivc and the actual compression ratio CRm is determined only by the variable valve mechanism 82. Compared with the case where it operates, it increases and changes with good response.
 そして、可変動弁機構82において実圧縮比CRivcが目標圧縮比CRivctgに近づいて可変動弁機構82におけるエラー量が減少すると、係るエラー量の減少に応じて圧縮比可変機構50における目標圧縮比MCRmtgの増大補正量が減少し、目標圧縮比MCRmtgに制御される状態に戻って過補正処理が終了し、最終的には、有効圧縮比CReの増大要求分が可変動弁機構82による実圧縮比CRivcの増大分で満たされる状態に収束する。 When the actual compression ratio CRivc approaches the target compression ratio CRivctg in the variable valve mechanism 82 and the error amount in the variable valve mechanism 82 decreases, the target compression ratio MCRmtg in the compression ratio variable mechanism 50 corresponds to the decrease in the error amount. The increase correction amount of the engine is decreased, the control returns to the state controlled to the target compression ratio MCRmtg, the overcorrection process is terminated, and finally, the increase request amount of the effective compression ratio CRe is the actual compression ratio by the variable valve mechanism 82. It converges to a state that is satisfied by the increment of CRivc.
 また、圧縮比可変機構50における過補正処理の実施が設定される第17パターンでは、可変動弁機構82において目標圧縮比CRivctgが実圧縮比CRivcよりも低いため、第5パターンではエラー量がプラスになるのに対して、第17パターンではエラー量がマイナスの値となる結果、目標圧縮比MCRmtgが圧縮比の減少側に補正される。
 これにより、有効圧縮比CReの減少要求に対して、可変動弁機構82が圧縮比CRivcを減少させる側に作動し、並行して圧縮比可変機構50が圧縮比CRmを減少させる側に作動することで、有効圧縮比CReが応答良く減少することになる。
Further, in the seventeenth pattern in which the overcorrection processing is set in the variable compression ratio mechanism 50, the target compression ratio CRivctg is lower than the actual compression ratio CRivc in the variable valve mechanism 82. On the other hand, in the seventeenth pattern, the error amount becomes a negative value, so that the target compression ratio MCRmtg is corrected to the compression ratio decreasing side.
As a result, in response to a request for reducing the effective compression ratio CRe, the variable valve mechanism 82 operates to reduce the compression ratio CRivc, and the compression ratio variable mechanism 50 operates to decrease the compression ratio CRm in parallel. As a result, the effective compression ratio CRe decreases with good response.
 図13は、制御装置70による可変動弁機構82の目標値FCRivctgの演算処理を示すブロック図である。
 第1比較演算部201には、状態番号STVTCと、協調制御を実施しない場合の状態番号STVTCの値である「0」とが入力され、状態番号STVTCが0であるときに第1比較演算部201はHigh信号を出力し、状態番号STVTCが0以外であるときに第1比較演算部201はLow信号を出力する。
FIG. 13 is a block diagram showing a calculation process of the target value FCRivctg of the variable valve mechanism 82 by the control device 70.
The first comparison calculation unit 201 receives the state number STVTC and “0” which is the value of the state number STVTC when the cooperative control is not performed. When the state number STVTC is 0, the first comparison calculation unit 201 201 outputs a High signal. When the state number STVTC is other than 0, the first comparison operation unit 201 outputs a Low signal.
 第1比較演算部201の出力は、第1出力切り替え部202に切り替え制御信号として入力され、第1出力切り替え部202は、目標圧縮比MCRivctgの補正値として入力される2値のいずれか一方を第1比較演算部201の出力に応じて選択して出力する。
 目標圧縮比MCRivctgの補正値として、補正を実質的に行わない値と、圧縮比可変機構50におけるエラー量に応じた値とが、第1出力切り替え部202に入力される。
The output of the first comparison calculation unit 201 is input to the first output switching unit 202 as a switching control signal, and the first output switching unit 202 outputs one of the two values input as the correction value of the target compression ratio MCRivctg. Select and output according to the output of the first comparison operation unit 201.
As the correction value of the target compression ratio MCRivctg, a value that is not substantially corrected and a value corresponding to the error amount in the compression ratio variable mechanism 50 are input to the first output switching unit 202.
 そして、第1出力切り替え部202は、第1比較演算部201の出力がHigh信号である場合、つまり、協調制御を実施しない場合、補正を実質的に行わない補正値を出力し、第1比較演算部201の出力がLow信号である場合、つまり、協調制御を実施する場合、圧縮比可変機構50におけるエラー量に応じた補正値を出力する。
 第1出力切り替え部202の出力は、補正部203の一方の入力端子に入力され、補正部203の他方の入力端子には目標圧縮比MCRivctgが入力される。
Then, the first output switching unit 202 outputs a correction value that does not substantially perform correction when the output of the first comparison calculation unit 201 is a high signal, that is, when the cooperative control is not performed, and the first comparison When the output of the calculation unit 201 is a low signal, that is, when cooperative control is performed, a correction value corresponding to the error amount in the compression ratio variable mechanism 50 is output.
The output of the first output switching unit 202 is input to one input terminal of the correction unit 203, and the target compression ratio MCRivctg is input to the other input terminal of the correction unit 203.
 そして、補正部203は、目標圧縮比MCRivctgを補正値で補正した結果を、補正後の目標圧縮比FCRivctgとして出力する。
 補正部203は、補正後の目標圧縮比FCRivctgを変換部204に出力し、変換部204は、補正後の目標圧縮比FCRivctgをそのときの圧縮比可変機構50による圧縮比の状態に基づき可変動弁機構82における変換角度のデータに変換して、最終的な可変動弁機構82の制御目標値TGVTCとして出力する。
Then, the correcting unit 203 outputs the result of correcting the target compression ratio MCRivctg with the correction value as the corrected target compression ratio FCRivctg.
The correction unit 203 outputs the corrected target compression ratio FCRivctg to the conversion unit 204, and the conversion unit 204 changes the corrected target compression ratio FCRivctg based on the state of the compression ratio by the compression ratio variable mechanism 50 at that time. It converts into the data of the conversion angle in the valve mechanism 82, and outputs it as the final control target value TGVTC of the variable valve mechanism 82.
 そして、制御装置70は、最終的な目標変換角度TGVTCと実際の変換角度との偏差に基づく比例積分制御などに基づいて可変動弁機構82のアクチュエータの操作量を演算して出力することで、目標変換角度に実際の変換角度を近づけるフィードバック制御を実施する。 Then, the control device 70 calculates and outputs the operation amount of the actuator of the variable valve mechanism 82 based on proportional integral control based on the deviation between the final target conversion angle TGVTC and the actual conversion angle. Feedback control is performed to bring the actual conversion angle closer to the target conversion angle.
 続いて、圧縮比可変機構50におけるエラー量に応じた目標圧縮比MCRivctgの補正値演算を詳述する。
 乗算部206には、圧縮比可変機構50におけるエラー量である、目標圧縮比CRmtgと実圧縮比CRmとの偏差のデータと、エラー量を目標圧縮比MCRivctgの補正値に変換するためのゲインとが入力され、エラー量にゲインを乗算した結果を、目標圧縮比MCRivctgの補正値として出力する。
Subsequently, the correction value calculation of the target compression ratio MCRivctg corresponding to the error amount in the compression ratio variable mechanism 50 will be described in detail.
The multiplying unit 206 includes an error amount in the compression ratio variable mechanism 50, a deviation data between the target compression ratio CRmtg and the actual compression ratio CRm, and a gain for converting the error amount into a correction value of the target compression ratio MCRivctg. And the result of multiplying the error amount by the gain is output as a correction value for the target compression ratio MCRivctg.
 第2出力切り替え部207は、乗算部206にゲインを出力する。
 第2出力切り替え部207には、制限処理に適合して設定されたゲインと、過補正処理に適合して設定されたゲインとが入力され、第2比較演算部208の出力に応じて2つのいずれか一方を出力する。
 尚、第2出力切り替え部207に入力されるゲインは、図10に示した第2出力切り替え部107と同様に、機関運転条件に応じて可変とされるゲインとすることができる。
The second output switching unit 207 outputs a gain to the multiplication unit 206.
The second output switching unit 207 receives a gain set in conformity with the limiting process and a gain set in conformity with the overcorrection process, and two gains are set according to the output of the second comparison operation unit 208. Either one is output.
Note that the gain input to the second output switching unit 207 can be a variable that can be changed in accordance with the engine operating conditions, similarly to the second output switching unit 107 shown in FIG.
 第2比較演算部208には、状態番号STVTCと、制限処理を実施する場合の状態番号STVTCの値である「1」とが入力され、状態番号STVTCが1であればHigh信号を出力し、状態番号STVTCが1以外であればLow信号を出力する。
 そして、第2出力切り替え部207は、第2比較演算部208の出力がHigh信号である場合、換言すれば、状態番号STVTC=1である場合、制限処理に適合するゲインを出力し、第2比較演算部208の出力がLow信号である場合、換言すれば、状態番号STVTC=0又は状態番号STVTC=2である場合、過補正処理に適合するゲインを出力する。
The second comparison operation unit 208 is input with the state number STVTC and “1” which is the value of the state number STVTC when the restriction process is performed. If the state number STVTC is 1, a high signal is output. If the state number STVTC is other than 1, a Low signal is output.
The second output switching unit 207 outputs a gain suitable for the limiting process when the output of the second comparison operation unit 208 is a high signal, in other words, when the state number STVTC = 1, When the output of the comparison operation unit 208 is a low signal, in other words, when the state number STVTC = 0 or the state number STVTC = 2, a gain suitable for overcorrection processing is output.
 ここで、状態番号STVTCが0であって、可変動弁機構82において協調制御が実施されない場合にも、第2出力切り替え部207は、過補正処理に適合するゲインを出力することになる。
 しかし、状態番号STVTC=0であって過補正処理及び制限処理を実施しないパターンである場合には、第1出力切り替え部202が目標圧縮比MCRivctgを変更しない値を補正値として出力する。従って、状態番号STVTC=0である過補正処理及び制限処理を実施しないパターンの場合は、第2出力切り替え部207から過補正処理用のゲインが出力されても、目標圧縮比MCRivctgに過補正処理が施されることはない。
Here, even when the state number STVTC is 0 and cooperative control is not performed in the variable valve mechanism 82, the second output switching unit 207 outputs a gain suitable for the overcorrection processing.
However, when the state number STVTC = 0 and the pattern does not perform the overcorrection process and the restriction process, the first output switching unit 202 outputs a value that does not change the target compression ratio MCRivctg as a correction value. Therefore, in the case of the pattern in which the overcorrection process and the restriction process are not performed with the state number STVTC = 0, even if the gain for the overcorrection process is output from the second output switching unit 207, the overcorrection process is performed on the target compression ratio MCRivctg. Will not be applied.
 例えば、可変動弁機構82における過補正処理の実施が設定される第3パターンでは、圧縮比可変機構50において目標圧縮比CRmgが実圧縮比CRmcよりも高く実圧縮比CRmを増加させるが、このとき、図13に示した機能による目標圧縮比MCRivctgの補正処理によって、圧縮比可変機構50におけるエラー量が大きいほど、目標圧縮比MCRivctgをより圧縮比の高い側に補正する。
 可変動弁機構82において、目標圧縮比MCRivctgと実圧縮比CRivcとが略一致する定常状態である状態で、目標圧縮比MCRivctgがより圧縮比の高い側に補正されれば、実圧縮比CRivcを補正後の目標圧縮比CRivctgに追従させて増大させるべく、可変動弁機構82が作動されることになる。
For example, in the third pattern in which execution of overcorrection processing in the variable valve mechanism 82 is set, the target compression ratio CRmg is higher than the actual compression ratio CRmc in the compression ratio variable mechanism 50, but the actual compression ratio CRm is increased. When the target compression ratio MCRivctg is corrected by the function shown in FIG. 13, the target compression ratio MCRivctg is corrected to the higher compression ratio as the error amount in the compression ratio variable mechanism 50 increases.
In the variable valve mechanism 82, if the target compression ratio MCRivctg is corrected to a higher compression ratio in a steady state where the target compression ratio MCRivctg and the actual compression ratio CRivc substantially coincide with each other, the actual compression ratio CRivc is The variable valve mechanism 82 is operated to increase the target compression ratio CRivctg after correction.
 これにより、圧縮比可変機構50を圧縮比CRmが増大する側に作動させた当初、換言すれば、目標圧縮比CRmtgが増大変化した当初のエラー量が大きいときには、圧縮比可変機構50による実圧縮比CRmの増大に並行して、可変動弁機構82による実圧縮比CRivcの増大が行われ、実圧縮比CRivcと実圧縮比CRmとで決まる有効圧縮比CReは、圧縮比可変機構50のみを作動させる場合に比べて応答良く増大変化することになる。 As a result, when the variable compression ratio mechanism 50 is operated to the side where the compression ratio CRm increases, in other words, when the initial error amount when the target compression ratio CRmtg increases and changes is large, the actual compression by the compression ratio variable mechanism 50 is performed. In parallel with the increase in the ratio CRm, the actual compression ratio CRivc is increased by the variable valve mechanism 82, and the effective compression ratio CRe determined by the actual compression ratio CRivc and the actual compression ratio CRm is determined only by the compression ratio variable mechanism 50. Compared with the case where it operates, it increases and changes with good response.
 そして、圧縮比可変機構50において実圧縮比CRmが目標圧縮比CRmtgに近づいて圧縮比可変機構50におけるエラー量が減少すると、係るエラー量の減少に応じて可変動弁機構82における目標圧縮比MCRivctgの増大補正量が減少し、目標圧縮比MCRivctgに制御される状態に戻って過補正処理が終了し、最終的には、有効圧縮比CReの増大要求分が圧縮比可変機構50による実圧縮比CRmの増大分で満たされる状態に収束する。 When the actual compression ratio CRm approaches the target compression ratio CRmtg in the compression ratio variable mechanism 50 and the error amount in the compression ratio variable mechanism 50 decreases, the target compression ratio MCRivctg in the variable valve mechanism 82 according to the decrease in the error amount. The increase correction amount decreases, the control returns to the state controlled to the target compression ratio MCRivctg, and the overcorrection processing is terminated. Finally, the increase request amount of the effective compression ratio CRe is the actual compression ratio by the compression ratio variable mechanism 50. It converges to a state that is satisfied by the increment of CRm.
 また、可変動弁機構82における過補正処理の実施が設定される第13パターンでは、圧縮比可変機構50において目標圧縮比CRmtgが実圧縮比CRmよりも低いため、第3パターンではエラー量がプラスになるのに対して、第13パターンではエラー量がマイナスの値となる結果、目標圧縮比MCRivctgが減少側に補正されることになる。
 これにより、有効圧縮比CReの減少要求に対して、圧縮比可変機構50が圧縮比CRmを減少させる側に作動し、並行して可変動弁機構82が圧縮比CRivcを減少させる側に作動することで、有効圧縮比CReが応答良く減少することになる。
Further, in the thirteenth pattern in which execution of overcorrection processing in the variable valve mechanism 82 is set, since the target compression ratio CRmtg is lower than the actual compression ratio CRm in the compression ratio variable mechanism 50, the error amount is plus in the third pattern. On the other hand, in the thirteenth pattern, the error amount becomes a negative value, so that the target compression ratio MCRivctg is corrected to the decreasing side.
As a result, in response to a request to reduce the effective compression ratio CRe, the compression ratio variable mechanism 50 operates to reduce the compression ratio CRm, and in parallel, the variable valve mechanism 82 operates to decrease the compression ratio CRivc. As a result, the effective compression ratio CRe decreases with good response.
 また、可変動弁機構82における過補正処理の実施が設定される第6パターンでは、圧縮比可変機構50において目標圧縮比CRmtgが実圧縮比CRmよりも高いためエラー量がプラスの値となる結果、目標圧縮比MCRivctgが増大側に補正される。
 一方、可変動弁機構82では、目標圧縮比CRivctgが実圧縮比CRivcよりも高く、実圧縮比CRivcを増大させる操作状態であり、圧縮比可変機構50側でのエラー量に基づき目標圧縮比MCRivctgが増大側に補正されると、圧縮比可変機構50が目標圧縮比CRmtgに達していない状態で、可変動弁機構82における実圧縮比CRivcが目標圧縮比MCRivctgを超えて大きくなるオーバーシュートが発生する。
Further, in the sixth pattern in which the over-correction process is set in the variable valve mechanism 82, the error amount is a positive value because the target compression ratio CRmtg is higher than the actual compression ratio CRm in the compression ratio variable mechanism 50. The target compression ratio MCRivctg is corrected to the increasing side.
On the other hand, in the variable valve mechanism 82, the target compression ratio CRivctg is higher than the actual compression ratio CRivc, and the actual compression ratio CRivc is increased, and the target compression ratio MCRivctg is based on the error amount on the compression ratio variable mechanism 50 side. Is corrected to increase, an overshoot occurs in which the actual compression ratio CRivc in the variable valve mechanism 82 becomes larger than the target compression ratio MCRivctg in a state where the compression ratio variable mechanism 50 has not reached the target compression ratio CRmtg. To do.
 つまり、実圧縮比CRmが目標圧縮比CRmtgに達していないために有効圧縮比CReが目標よりも低い分だけ、可変動弁機構82による実圧縮比CRivcを目標圧縮比MCRivctgよりも高い値にまで変化させ、有効圧縮比CReを目標にまで速やかに収束させる。
 そして、圧縮比可変機構50におけるエラー量の減少に応じて、可変動弁機構82における最終的な目標FCRivctgが本来の目標圧縮比MCRivctgに戻り、可変動弁機構82の過補正処理は終了する。
That is, since the actual compression ratio CRm does not reach the target compression ratio CRmtg, the actual compression ratio CRivc by the variable valve mechanism 82 is increased to a value higher than the target compression ratio MCRivctg by the amount that the effective compression ratio CRe is lower than the target. The effective compression ratio CRe is quickly converged to the target.
The final target FCRivctg in the variable valve mechanism 82 returns to the original target compression ratio MCRivctg in accordance with the decrease in the error amount in the compression ratio variable mechanism 50, and the overcorrection processing of the variable valve mechanism 82 ends.
 また、前述した第6パターンに対し、第19パターンは、圧縮比可変機構50及び可変動弁機構82が共に圧縮比の減少方向に作動する場合であり、係る第19パターンでは、圧縮比可変機構50におけるエラー量がマイナスとなることから、可変動弁機構82における目標圧縮比MCRivctgが減少側に補正され、有効圧縮比CReを目標にまで応答良く減少させることになる。 In contrast to the above-described sixth pattern, the nineteenth pattern is a case where both the compression ratio variable mechanism 50 and the variable valve mechanism 82 operate in the decreasing direction of the compression ratio. In the nineteenth pattern, the compression ratio variable mechanism Since the error amount at 50 is negative, the target compression ratio MCRivctg in the variable valve mechanism 82 is corrected to the decreasing side, and the effective compression ratio CRe is reduced with good response to the target.
 また、可変動弁機構82における制限処理の実施が設定される第7パターンでは、圧縮比可変機構50において目標圧縮比CRmtgが実圧縮比CRmよりも低いため、圧縮比可変機構50でのエラー量がマイナスの値となる。
 一方、可変動弁機構82は、目標圧縮比CRivctgが実圧縮比CRivcよりも高い、実圧縮比CRivcを増大変化させる作動状態であるが、圧縮比可変機構50でのエラー量がマイナスの値となる結果、圧縮比可変機構50でのエラー量が大きいほど可変動弁機構82での目標圧縮比CRivctgがより減少側に補正される。
Further, in the seventh pattern in which the restriction processing in the variable valve mechanism 82 is set, since the target compression ratio CRmtg is lower than the actual compression ratio CRm in the compression ratio variable mechanism 50, the error amount in the compression ratio variable mechanism 50 is reduced. Is a negative value.
On the other hand, the variable valve mechanism 82 is in an operating state in which the target compression ratio CRivctg is higher than the actual compression ratio CRivc and the actual compression ratio CRivc is increased, but the error amount in the compression ratio variable mechanism 50 is a negative value. As a result, the target compression ratio CRivctg in the variable valve mechanism 82 is corrected to decrease as the error amount in the compression ratio variable mechanism 50 increases.
 このため、可変動弁機構82においては、目標圧縮比MCRivctgに向けた実圧縮比CRivcの増大変化の応答が遅れ、圧縮比可変機構50でのエラー量が零付近になってから、つまり、圧縮比可変機構50における実圧縮比CRmが目標圧縮比CRmtg付近に収束してから、可変動弁機構82における最終的な目標値FCRivctgが本来の目標圧縮比MCRivctgに戻ることになる。 Therefore, in the variable valve mechanism 82, the response to the increase change of the actual compression ratio CRivc toward the target compression ratio MCRivctg is delayed, and the error amount in the compression ratio variable mechanism 50 becomes close to zero, that is, the compression After the actual compression ratio CRm in the variable ratio mechanism 50 converges near the target compression ratio CRmtg, the final target value FCRivctg in the variable valve mechanism 82 returns to the original target compression ratio MCRivctg.
 従って、制限処理を実施することで、圧縮比可変機構50による実圧縮比CRmの変化に可変動弁機構82による実圧縮比CRivcの変化が同調し、圧縮比可変機構50の実圧縮比CRmが目標圧縮比CRmtg付近に収束するのに略同期して可変動弁機構82の実圧縮比CRivcが目標圧縮比MCRivctg付近に収束する。これにより、圧縮比可変機構50による圧縮比CRmの減少操作よりも可変動弁機構82による圧縮比MCRivcの増大操作が先行することで、有効圧縮比CReが過渡的に過大となることが抑制される。 Therefore, by performing the limiting process, the change in the actual compression ratio CRivc by the variable valve mechanism 82 is synchronized with the change in the actual compression ratio CRm by the variable compression ratio mechanism 50, and the actual compression ratio CRm of the variable compression ratio mechanism 50 is The actual compression ratio CRivc of the variable valve mechanism 82 converges to the vicinity of the target compression ratio MCRivctg substantially in synchronization with the convergence to the vicinity of the target compression ratio CRmtg. As a result, the effective compression ratio CRe is suppressed from becoming excessively transient because the operation of increasing the compression ratio MCRivc by the variable valve mechanism 82 precedes the operation of decreasing the compression ratio CRm by the variable compression ratio mechanism 50. The
 また、同じく可変動弁機構82の制限処理が実施される第9パターンでは、圧縮比可変機構50でのエラー量がプラスとなることから、可変動弁機構82での目標圧縮比MCRivctgが増大側に補正され、可変動弁機構82における圧縮比CRivcの減少が遅れることで、有効圧縮比CReが過渡的に過小となることを抑制する。 Similarly, in the ninth pattern in which the restriction process of the variable valve mechanism 82 is performed, the error amount in the compression ratio variable mechanism 50 is positive, so that the target compression ratio MCRivctg in the variable valve mechanism 82 is increased. And the reduction in the compression ratio CRivc in the variable valve mechanism 82 is delayed, thereby suppressing the effective compression ratio CRe from becoming transiently excessive.
 以上、好ましい実施形態を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の変形態様を採り得ることは自明である。
 図10及び図13に示した過補正処理,制限処理においては、可変動弁機構82、圧縮比可変機構50の目標値を補正するが、過補正処理,制限処理は目標値の補正処理に限定されず、図10及び図13に示した過補正処理,制限処理と同様な実圧縮比の変化を生じさせることができる種々の演算処理を適宜採用できる。
Although the contents of the present invention have been specifically described with reference to the preferred embodiments, it is obvious that those skilled in the art can take various modifications based on the basic technical idea and teachings of the present invention. It is.
10 and 13, the target values of the variable valve mechanism 82 and the compression ratio variable mechanism 50 are corrected. However, the overcorrection process and the limit process are limited to the target value correction process. Instead, various arithmetic processes that can cause a change in the actual compression ratio similar to the overcorrection process and the limit process shown in FIGS. 10 and 13 can be appropriately employed.
 目標値の補正処理に代わる処理としては、例えば、可変動弁機構82、圧縮比可変機構50の操作量の演算に用いる実圧縮比の検出値の補正や、エラー量に基づく操作量の演算におけるゲインの補正や、操作量の補正,制限,保持などがあり、更にこれらを複数組み合わせて用いることができる。 For example, in the correction of the detection value of the actual compression ratio used for the calculation of the operation amount of the variable valve mechanism 82 and the compression ratio variable mechanism 50, or in the calculation of the operation amount based on the error amount, as a process instead of the target value correction process There are gain correction, operation amount correction, limitation, holding, and the like, and these can be used in combination.
 また、可変動弁機構82の制限処理においては、圧縮比可変機構50の収束に可変動弁機構82の収束を同期させる処理に限定されず、可変動弁機構82による圧縮比変化の応答を、制限処理が実施されない場合よりも遅らせることで、有効圧縮比CReが過剰に変化することを抑制できる。 Further, the limiting process of the variable valve mechanism 82 is not limited to the process of synchronizing the convergence of the variable valve mechanism 82 with the convergence of the compression ratio variable mechanism 50, and the response of the compression ratio change by the variable valve mechanism 82 is It is possible to suppress the effective compression ratio CRe from changing excessively by delaying the restriction process from the case where the restriction process is not performed.
 また、上記実施形態では、機関運転状態に基づき目標圧縮比を設定し、協調制御において係る目標圧縮比を補正する構成としたが、機関運転状態に基づきコントロールシャフトの角度や閉時期IVCの変換角度を目標値として演算する構成とすることができ、前述した目標圧縮比は、目標角度や目標変換角度に読み替えることができる。 In the above embodiment, the target compression ratio is set based on the engine operating state and the target compression ratio is corrected in the cooperative control. However, the control shaft angle and the conversion angle of the closing timing IVC are based on the engine operating state. The target compression ratio can be read as the target angle or the target conversion angle.
 10…エンジン、33…ピストン、50…圧縮比可変機構、70…制御装置、81…吸気バルブ、82…可変動弁機構 10 ... Engine, 33 ... Piston, 50 ... Compression ratio variable mechanism, 70 ... Control device, 81 ... Intake valve, 82 ... Variable valve mechanism

Claims (15)

  1.  吸気バルブの閉時期を変更する可変動弁機構と、ピストンの上死点位置を変更して圧縮比を変更する圧縮比可変機構と、を備えた内燃機関に適用される制御装置であって、
     前記可変動弁機構と前記圧縮比可変機構との一方の作動状態に応じて他方の作動を変更する制御部を備える、内燃機関の制御装置。
    A control device applied to an internal combustion engine comprising: a variable valve mechanism that changes a closing timing of an intake valve; and a compression ratio variable mechanism that changes a compression ratio by changing a top dead center position of a piston,
    A control device for an internal combustion engine, comprising: a control unit that changes the operation of one of the variable valve mechanism and the compression ratio variable mechanism according to one operation state.
  2.  前記制御部は、前記可変動弁機構と前記圧縮比可変機構とを並行して作動させるときに、前記可変動弁機構の作動を変更する、請求項1記載の内燃機関の制御装置。 2. The control device for an internal combustion engine according to claim 1, wherein the control unit changes the operation of the variable valve mechanism when the variable valve mechanism and the compression ratio variable mechanism are operated in parallel.
  3.  前記制御部は、前記可変動弁機構と前記圧縮比可変機構とを並行して作動させるときに、前記可変動弁機構による有効圧縮比の変化方向と前記圧縮比可変機構による圧縮比の変化方向とに応じて前記可変動弁機構の応答速度を変更する、請求項2記載の内燃機関の制御装置。 When the control unit operates the variable valve mechanism and the compression ratio variable mechanism in parallel, the effective compression ratio change direction by the variable valve mechanism and the compression ratio change direction by the compression ratio variable mechanism. The control device for an internal combustion engine according to claim 2, wherein the response speed of the variable valve mechanism is changed according to
  4.  前記制御部は、前記可変動弁機構による有効圧縮比の変化方向と前記圧縮比可変機構による圧縮比の変化方向とが異なるときには、同じである場合に比べて前記可変動弁機構の応答速度を低下させる、請求項3記載の内燃機関の制御装置。 When the change direction of the effective compression ratio by the variable valve mechanism and the change direction of the compression ratio by the compression ratio variable mechanism are different, the control unit determines the response speed of the variable valve mechanism as compared to the same case. The control device for an internal combustion engine according to claim 3, wherein the control device is lowered.
  5.  前記制御部は、前記圧縮比可変機構の収束状態で前記可変動弁機構によって前記吸気バルブの閉時期を変更するときに、前記吸気バルブの閉時期の変更による有効圧縮比の変化方向と同方向に圧縮比を変更するように前記圧縮比可変機構を作動させる、請求項1記載の内燃機関の制御装置。 The control unit has the same direction as the change direction of the effective compression ratio due to the change of the intake valve closing timing when the variable valve mechanism changes the closing timing of the intake valve in the convergence state of the compression ratio variable mechanism. The control apparatus for an internal combustion engine according to claim 1, wherein the compression ratio variable mechanism is operated so as to change the compression ratio.
  6.  前記制御部は、前記可変動弁機構と前記圧縮比可変機構との一方のエラー量に応じて他方の目標値を変更する、請求項1記載の内燃機関の制御装置。 The control device for an internal combustion engine according to claim 1, wherein the control unit changes the other target value in accordance with an error amount of one of the variable valve mechanism and the compression ratio variable mechanism.
  7.  前記制御部は、前記可変動弁機構による圧縮比の変化方向と前記圧縮比可変機構による圧縮比の変化方向とが異なるときに、前記可変動弁機構による圧縮比変化の応答を遅らせる、請求項1記載の内燃機関の制御装置。 The control unit delays a response of a change in the compression ratio by the variable valve mechanism when a change direction of the compression ratio by the variable valve mechanism is different from a change direction of the compression ratio by the variable compression ratio mechanism. The control apparatus for an internal combustion engine according to claim 1.
  8.  前記制御部は、前記可変動弁機構による圧縮比の変化方向と前記圧縮比可変機構による圧縮比の変化方向とが同じときに、前記可変動弁機構による圧縮比変化の応答を速める、請求項1記載の内燃機関の制御装置。 The control unit accelerates a response of a change in the compression ratio by the variable valve mechanism when a change direction of the compression ratio by the variable valve mechanism and a change direction of the compression ratio by the variable compression ratio mechanism are the same. The control apparatus for an internal combustion engine according to claim 1.
  9.  前記制御部は、前記圧縮比可変機構の定常状態で前記可変動弁機構を作動させるときに、前記圧縮比可変機構を、前記可変動弁機構による圧縮比の変化方向と同じ方向に作動させる、請求項1記載の内燃機関の制御装置。 The controller, when operating the variable valve mechanism in a steady state of the compression ratio variable mechanism, operates the compression ratio variable mechanism in the same direction as the change direction of the compression ratio by the variable valve mechanism, The control device for an internal combustion engine according to claim 1.
  10.  前記制御部は、前記他方の機構の作動の変更度合を、機関運転条件に応じて可変に設定する、請求項1記載の内燃機関の制御装置。 The control device for an internal combustion engine according to claim 1, wherein the control unit variably sets the change degree of the operation of the other mechanism in accordance with an engine operating condition.
  11.  前記制御部は、前記他方の機構の作動の変更度合を、実有効圧縮比、新気量、残ガス量、圧縮温度、ノッキング感度のうちの少なくとも1つに応じて可変に設定する、請求項10記載の内燃機関の制御装置。 The control unit variably sets a change degree of operation of the other mechanism in accordance with at least one of an actual effective compression ratio, a fresh air amount, a residual gas amount, a compression temperature, and a knocking sensitivity. The control apparatus for an internal combustion engine according to claim 10.
  12.  吸気バルブの閉時期を変更する可変動弁機構と、ピストンの上死点位置を変更して圧縮比を変更する圧縮比可変機構と、を備えた内燃機関の制御方法であって、以下のステップを含むこと、
     前記可変動弁機構と前記圧縮比可変機構との一方の作動状態を検出し、
     前記作動状態に応じて他方の作動を変更する。
    A control method for an internal combustion engine, comprising: a variable valve mechanism that changes a closing timing of an intake valve; and a compression ratio variable mechanism that changes a compression ratio by changing a top dead center position of a piston. Including,
    Detecting one operating state of the variable valve mechanism and the compression ratio variable mechanism;
    The other operation is changed according to the operation state.
  13.  請求項12記載の内燃機関の制御方法において、
     前記作動を変更するステップは、以下のステップを含むこと、
     前記可変動弁機構と前記圧縮比可変機構とを並行して作動させるときに、前記可変動弁機構の作動を変更する。
    The control method of the internal combustion engine according to claim 12,
    The step of changing the operation includes the following steps:
    When the variable valve mechanism and the compression ratio variable mechanism are operated in parallel, the operation of the variable valve mechanism is changed.
  14.  請求項13記載の内燃機関の制御方法において、
     前記可変動弁機構の作動を変更するステップは、以下のステップを含むこと、
     前記可変動弁機構と前記圧縮比可変機構とを並行して作動させるときに、前記可変動弁機構による有効圧縮比の変化方向と前記圧縮比可変機構による圧縮比の変化方向とに応じて前記可変動弁機構の応答速度を変更する。
    The method of controlling an internal combustion engine according to claim 13,
    The step of changing the operation of the variable valve mechanism includes the following steps:
    When operating the variable valve mechanism and the compression ratio variable mechanism in parallel, the variable valve mechanism according to the change direction of the effective compression ratio by the variable valve mechanism and the change direction of the compression ratio by the compression ratio variable mechanism Change the response speed of the variable valve mechanism.
  15.  請求項12記載の内燃機関の制御方法において、
     前記作動を変更するステップは、以下のステップを含むこと、
     前記圧縮比可変機構の収束状態で前記可変動弁機構によって前記吸気バルブの閉時期を変更するときに、前記吸気バルブの閉時期の変更による有効圧縮比の変化方向と同方向に圧縮比を変更するように前記圧縮比可変機構を作動させる。
    The control method of the internal combustion engine according to claim 12,
    The step of changing the operation includes the following steps:
    When the closing timing of the intake valve is changed by the variable valve mechanism in the convergence state of the variable compression ratio mechanism, the compression ratio is changed in the same direction as the change direction of the effective compression ratio due to the change of the closing timing of the intake valve. Then, the compression ratio variable mechanism is operated.
PCT/JP2014/056490 2013-06-11 2014-03-12 Control device and control method for internal combustion engine WO2014199690A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-123069 2013-06-11
JP2013123069A JP6006178B2 (en) 2013-06-11 2013-06-11 Control device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2014199690A1 true WO2014199690A1 (en) 2014-12-18

Family

ID=52021996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056490 WO2014199690A1 (en) 2013-06-11 2014-03-12 Control device and control method for internal combustion engine

Country Status (2)

Country Link
JP (1) JP6006178B2 (en)
WO (1) WO2014199690A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193872A (en) * 2001-12-26 2003-07-09 Nissan Motor Co Ltd Control device for self-igniting engine
JP2005002931A (en) * 2003-06-13 2005-01-06 Nissan Motor Co Ltd Controller for internal combustion engine
JP2005030289A (en) * 2003-07-11 2005-02-03 Nissan Motor Co Ltd Reciprocal type variable compression ratio engine
JP2010261417A (en) * 2009-05-11 2010-11-18 Nissan Motor Co Ltd Variable compression ratio type internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193872A (en) * 2001-12-26 2003-07-09 Nissan Motor Co Ltd Control device for self-igniting engine
JP2005002931A (en) * 2003-06-13 2005-01-06 Nissan Motor Co Ltd Controller for internal combustion engine
JP2005030289A (en) * 2003-07-11 2005-02-03 Nissan Motor Co Ltd Reciprocal type variable compression ratio engine
JP2010261417A (en) * 2009-05-11 2010-11-18 Nissan Motor Co Ltd Variable compression ratio type internal combustion engine

Also Published As

Publication number Publication date
JP6006178B2 (en) 2016-10-12
JP2014240623A (en) 2014-12-25

Similar Documents

Publication Publication Date Title
US7647159B2 (en) Control method and control apparatus for internal combustion engine
JP4039374B2 (en) Control device for internal combustion engine
JP4103769B2 (en) Control device for internal combustion engine
JP5024216B2 (en) Ignition timing control device and ignition timing control method for internal combustion engine
EP2851539B1 (en) Control device and control method for internal combustion engine
JP2005098291A (en) Control apparatus for internal combustion engine
US20170037787A1 (en) Control Device and Control Method for Internal Combustion Engine
JP6350304B2 (en) Lean burn engine
JP2013144946A (en) Internal combustion engine control device
WO2016063639A1 (en) Engine control device
JP4789756B2 (en) Control device for internal combustion engine
US10400738B2 (en) Control device for internal combustion engine
JP2007032515A (en) Internal combustion engine control device
JP4841382B2 (en) Internal combustion engine
JP5900701B2 (en) Control device and control method for internal combustion engine
WO2014199690A1 (en) Control device and control method for internal combustion engine
JP4306586B2 (en) Valve characteristic control device for internal combustion engine
JP2010159683A (en) Internal combustion engine
JP5316129B2 (en) Intake air amount control device
JP2008202461A (en) Fuel injection control device for internal combustion engine
JP5930126B2 (en) Control device and control method for internal combustion engine
JP5041167B2 (en) Engine control device
WO2012004850A1 (en) Control device for internal combustion engine
JP2011144721A (en) Ignition timing control device of internal combustion engine
JP2012041852A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14811066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14811066

Country of ref document: EP

Kind code of ref document: A1