JP2010159683A - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
JP2010159683A
JP2010159683A JP2009002103A JP2009002103A JP2010159683A JP 2010159683 A JP2010159683 A JP 2010159683A JP 2009002103 A JP2009002103 A JP 2009002103A JP 2009002103 A JP2009002103 A JP 2009002103A JP 2010159683 A JP2010159683 A JP 2010159683A
Authority
JP
Japan
Prior art keywords
compression ratio
combustion
combustion mode
constant pressure
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009002103A
Other languages
Japanese (ja)
Inventor
Shunsuke Shigemoto
俊介 重元
Hirobumi Tsuchida
博文 土田
Koji Hiratani
康治 平谷
Daisuke Tanaka
大輔 田中
Akihiko Kakuho
章彦 角方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009002103A priority Critical patent/JP2010159683A/en
Publication of JP2010159683A publication Critical patent/JP2010159683A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

<P>PROBLEM TO BE SOLVED: To improve a specific power of an internal combustion engine, eliminating restrictions in knocking. <P>SOLUTION: The internal combustion engine includes a turbocharger and a variable compression ratio mechanism for varying a mechanical compression ratio. In a first operating range where a torque is increased by supercharging but a load is relatively small, a spark ignited combustion mode (SI) is set, where combustion approximated to a constant volume combustion cycle by a spark ignition of a premixed air fuel mixture is achieved. In a second operating range where the load is relatively large, a constant pressure combustion mode is set, where combustion approximated to a constant pressure combustion cycle by a control of a heat generating ratio is achieved. In the spark ignited combustion mode, a target compression ratio is set lower as the load increases. On the other hand, in the constant pressure combustion mode, the target compression ratio is set higher in order to compensate a time loss due to lengthening of the combustion. Thereby, a greater amount of fuel and fresh air can be supplied into a cylinder to improve the specific power. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、内燃機関の重量や外形寸法に対する最大出力つまり比出力を高く得るようにした内燃機関に関する。   The present invention relates to an internal combustion engine capable of obtaining a high maximum output, that is, a specific output with respect to the weight and external dimensions of the internal combustion engine.

内燃機関の大型化や重量増加を抑制しつつ最大出力を向上するために、従来から、過給技術や可変圧縮比機構が知られており、例えば特許文献1には、過給機と可変圧縮比機構と可変バルブタイミング機構とを組み合わせた火花点火式内燃機関が開示されている。このものでは、高負荷域では、過給を行いつつ可変圧縮比機構による圧縮比を低くし、さらに可変バルブタイミング機構により有効圧縮比を低下させて、ノッキングの防止を図っている。
特開昭63−120820号公報
In order to improve the maximum output while suppressing an increase in the size and weight of an internal combustion engine, a supercharging technique and a variable compression ratio mechanism are conventionally known. For example, Patent Document 1 discloses a supercharger and a variable compression. A spark ignition internal combustion engine that combines a ratio mechanism and a variable valve timing mechanism is disclosed. In this device, in a high load range, the compression ratio by the variable compression ratio mechanism is lowered while supercharging, and the effective compression ratio is lowered by the variable valve timing mechanism to prevent knocking.
JP 63-120820 A

周知のように、内燃機関のトルクはシリンダ内に供給された燃料量に相関し、つまり、シリンダ内にどれだけの新気を入れることができるか、によって最大出力が左右される。従って、限られた大きさや重量の中で高い最大出力を得るには、過給圧をより高く与える必要があるが、上記の特許文献1のように、高負荷域で圧縮比を低下させてノッキングを抑制するようにしたとしても、過給圧を高く設定すると、燃焼圧が過大となり、いずれはノッキングが生じるため、出力向上には限界がある。またノッキング回避のために圧縮比を低下させることに伴い、効率が悪化し、燃費の悪化を招来する。   As is well known, the torque of the internal combustion engine correlates with the amount of fuel supplied into the cylinder, that is, the maximum output depends on how much fresh air can be introduced into the cylinder. Therefore, in order to obtain a high maximum output in a limited size and weight, it is necessary to apply a higher boost pressure. However, as in Patent Document 1 described above, the compression ratio is reduced in a high load range. Even if knocking is suppressed, if the supercharging pressure is set high, the combustion pressure becomes excessive, and knocking occurs in any case, so there is a limit in improving the output. Further, as the compression ratio is lowered in order to avoid knocking, the efficiency deteriorates and the fuel consumption deteriorates.

そこで、この発明は、定圧燃焼サイクルを利用するとともに、高い過給圧と可変圧縮比機構とを組み合わせることによって、シリンダ内により多くの燃料ならびに新気を供給できるようにし、比出力の向上を図ったものである。すなわち、この発明に係る内燃機関は、過給機と、内燃機関の機械的圧縮比を変更する可変圧縮比機構と、負荷に応じた量の燃料をシリンダ内に噴射供給する燃料噴射装置と、点火装置と、を備え、予混合気の火花点火により定容燃焼サイクルに近似した燃焼を実現する火花点火燃焼モードと、熱発生率の制御により定圧燃焼サイクルに近似した燃焼を実現する定圧燃焼モードと、の切換が可能となっている。   Therefore, the present invention utilizes a constant pressure combustion cycle and combines a high supercharging pressure and a variable compression ratio mechanism to supply more fuel and fresh air into the cylinder, thereby improving the specific output. It is a thing. That is, an internal combustion engine according to the present invention includes a supercharger, a variable compression ratio mechanism that changes a mechanical compression ratio of the internal combustion engine, a fuel injection device that injects fuel in an amount corresponding to a load into a cylinder, A spark ignition combustion mode that realizes combustion approximated to a constant volume combustion cycle by spark ignition of a premixed gas, and a constant pressure combustion mode that realizes combustion approximated to a constant pressure combustion cycle by controlling the heat generation rate And can be switched.

そして、相対的に負荷が小さな第1の運転領域内では、上記火花点火燃焼モードとし、かつ負荷が高いほど上記可変圧縮比機構による圧縮比を低く設定し、また、相対的に負荷が大きな第2の運転領域内では、上記定圧燃焼モードとするとともに、上記可変圧縮比機構による圧縮比を高く設定することを特徴としている。   In the first operation region where the load is relatively small, the spark ignition combustion mode is set, and the compression ratio by the variable compression ratio mechanism is set to be lower as the load is higher. In the second operation region, the constant pressure combustion mode is set, and the compression ratio by the variable compression ratio mechanism is set high.

定圧燃焼モードでは、例えば上死点付近で熱発生を開始させ、かつ容積変化率に比例して発熱量が増大するように燃料供給を制御することで、定圧燃焼サイクルに近似した燃焼を実現でき、これにより、高過給でかつ多量の燃料を供給した状態でも、定容燃焼サイクルに比較して最大燃焼圧を低く抑制できる。そして、定圧燃焼サイクルでは、燃焼時間が長くなることから時間損失が増加するが、同時に圧縮比を高く設定することで、燃焼の長期化による効率低下が補われる。また相対的に負荷が小さな第1の運転領域内では、一般的な予混合火花点火内燃機関と同様の火花点火燃焼モードとなるため、いわゆるMBT点付近での点火により、高い効率が得られる。   In the constant pressure combustion mode, for example, by starting the generation of heat near top dead center and controlling the fuel supply so that the calorific value increases in proportion to the volume change rate, combustion approximating the constant pressure combustion cycle can be realized. As a result, even in a state where a large amount of fuel is supplied with high supercharging, the maximum combustion pressure can be suppressed lower than in the constant volume combustion cycle. In the constant pressure combustion cycle, the time loss increases because the combustion time becomes long, but at the same time, the efficiency reduction due to the prolonged combustion is compensated by setting the compression ratio high. Further, in the first operating region where the load is relatively small, the spark ignition combustion mode is the same as that of a general premixed spark ignition internal combustion engine, so that high efficiency can be obtained by ignition near the so-called MBT point.

第1の運転領域と第2の運転領域との境界は、例えば、火花点火燃焼モードにおいてMBT点での点火が可能な限界、つまりこれ以上負荷が高いとノッキング抑制のためにMBT点よりも点火時期を遅角する必要がある負荷の限界、に対応したものとなる。   The boundary between the first operation region and the second operation region is, for example, the limit at which ignition can be performed at the MBT point in the spark ignition combustion mode, that is, if the load is higher than this, the ignition is performed more than the MBT point to suppress knock This corresponds to the load limit that needs to be retarded.

なお、本発明においては、理論的に完全な定圧燃焼サイクルおよび定容燃焼サイクルを実現することを意味しているのではなく、2つの燃焼モードの対比として、一方が相対的に定圧燃焼サイクルに近く、他方が相対的に定容燃焼サイクルに近いものであれば足りる。   In the present invention, it does not mean that the theoretically complete constant pressure combustion cycle and constant volume combustion cycle are realized, but as a comparison between the two combustion modes, one of them is a relatively constant pressure combustion cycle. It is sufficient if the other is close and the other is relatively close to the constant volume combustion cycle.

この発明によれば、全負荷付近の負荷が高い領域でノッキングを回避しつつより多くの燃料をシリンダ内で燃焼させることが可能となり、内燃機関の比出力を向上させることができる。また点火時期の遅角や圧縮比の低下のよる効率低下がなく、高い効率を維持することができる。   According to the present invention, more fuel can be burned in the cylinder while avoiding knocking in a region where the load near the full load is high, and the specific output of the internal combustion engine can be improved. In addition, there is no reduction in efficiency due to the retard of the ignition timing or a reduction in the compression ratio, and high efficiency can be maintained.

以下、この発明の一実施例を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1に概略を示すように、この発明が適用される内燃機関1は、排気通路4と吸気通路3との間に、過給機としてターボ過給機2を備えており、過給圧センサ5が検出した過給圧に基づいてエンジンコントロールユニット6が排気バイパス弁7の開度を調整することで、過給圧が所望の目標過給圧に制御されるようになっている。   As schematically shown in FIG. 1, an internal combustion engine 1 to which the present invention is applied includes a turbocharger 2 as a supercharger between an exhaust passage 4 and an intake passage 3, and a supercharging pressure sensor. The engine control unit 6 adjusts the opening degree of the exhaust bypass valve 7 based on the supercharging pressure detected by the engine 5, so that the supercharging pressure is controlled to a desired target supercharging pressure.

図2は、内燃機関1のシステム構成を示しており、冠面に凹部22aを備えたピストン22がシリンダ21に摺動可能に嵌合しており、このピストン22によって画成される燃焼室23に吸気ポート24および排気ポート25が接続されているとともに、燃焼室23頂部に、燃料噴射弁26および点火栓27が配置されている。上記吸気ポート24および排気ポート25は、それぞれ排気弁28,吸気弁29によって開閉される。上記燃料噴射弁26には、燃圧制御装置30を介して高圧の燃料が供給され、かつコントロールユニット6からの制御信号に基づいて後述するように燃料噴射が行われる。燃料噴射弁26に供給される燃料の圧力つまり燃圧は、燃圧センサ31によって検出され、これに基づいてフィードバック制御されている。   FIG. 2 shows a system configuration of the internal combustion engine 1. A piston 22 having a recess 22 a on the crown surface is slidably fitted to a cylinder 21, and a combustion chamber 23 defined by the piston 22. An intake port 24 and an exhaust port 25 are connected to each other, and a fuel injection valve 26 and a spark plug 27 are disposed at the top of the combustion chamber 23. The intake port 24 and the exhaust port 25 are opened and closed by an exhaust valve 28 and an intake valve 29, respectively. High-pressure fuel is supplied to the fuel injection valve 26 via the fuel pressure control device 30, and fuel injection is performed based on a control signal from the control unit 6 as described later. The pressure of the fuel supplied to the fuel injection valve 26, that is, the fuel pressure, is detected by the fuel pressure sensor 31, and feedback control is performed based on the detected pressure.

内燃機関1全体の制御を行うコントロールユニット6は、上記のセンサ類等が接続されているほか、吸入空気量を検出するエアフロメータ32、運転者によって操作されるアクセルペダルの踏み込み量を検出するアクセル開度センサ33、クランク角センサ34、冷却水温センサ35、等の公知のセンサ類の信号が入力されている。   The control unit 6 that controls the entire internal combustion engine 1 is connected to the above-described sensors, an air flow meter 32 that detects the intake air amount, and an accelerator that detects the amount of depression of the accelerator pedal operated by the driver. Signals of known sensors such as an opening sensor 33, a crank angle sensor 34, and a coolant temperature sensor 35 are input.

また、この内燃機関1は、公知の複リンク式の可変圧縮比機構36を備えており、クランクシャフトに対するピストン22の位置を上下に変位させることで、圧縮比を可変制御できるようになっている。この可変圧縮比機構36は、特開2005−147068号公報や特開2002−61501号公報等に記載されている形式のものであり、またピストン22としては、前者の公報に開示されているように、ピンボス部を短くして、その両側をカウンタウェイトが通過するようにし、機関のロングストローク化を図ることが望ましい。   The internal combustion engine 1 includes a known multi-link variable compression ratio mechanism 36, and the compression ratio can be variably controlled by vertically displacing the position of the piston 22 with respect to the crankshaft. . This variable compression ratio mechanism 36 is of the type described in Japanese Patent Application Laid-Open No. 2005-147068, Japanese Patent Application Laid-Open No. 2002-61501, and the like, and the piston 22 is disclosed in the former document. In addition, it is desirable to shorten the pin boss portion so that the counterweight passes through both sides of the pin boss portion so that the engine has a longer stroke.

なお、本発明において、可変圧縮比機構36としては、上記の形式のものに必ずしも限定されず、種々の形式のものを利用可能である。   In the present invention, the variable compression ratio mechanism 36 is not necessarily limited to the above-mentioned type, and various types can be used.

定圧燃焼サイクルを実現するためには、図3(a)に示すような熱発生の特性とすればよい。また、図3(b)は、(a)に対応した筒内圧変化を示す。なお、これらはシミュレーションの数値計算によるものである。定圧燃焼サイクルでは、概ね上死点から熱発生を開始し、燃焼後期に向けて熱発生量を増大させる。そして、燃焼後期に最大の熱発生量を得て、燃焼は筒内全域で同時に完了する。熱発生量を燃焼過程の後期に向けて徐々に増大させるが、結果として得られる熱発生のパターンは、燃焼室23の容積変化と概ね比例関係となる。なお、いわゆるピストンオフセット等によるピストンモーションの違いに対応するためには、燃焼室の実際の容積変化率に対応して熱発生パターンを決定すればよい。   In order to realize the constant pressure combustion cycle, the heat generation characteristics as shown in FIG. FIG. 3B shows the in-cylinder pressure change corresponding to FIG. Note that these are based on numerical calculation of simulation. In the constant pressure combustion cycle, heat generation is started generally from the top dead center, and the heat generation amount is increased toward the later stage of combustion. Then, the maximum amount of heat generation is obtained in the later stage of combustion, and combustion is completed simultaneously throughout the cylinder. Although the amount of heat generation is gradually increased toward the latter stage of the combustion process, the resulting heat generation pattern is generally proportional to the volume change of the combustion chamber 23. In order to cope with the difference in piston motion due to so-called piston offset or the like, the heat generation pattern may be determined in accordance with the actual volume change rate of the combustion chamber.

定圧燃焼サイクルにおいては、燃焼室での圧縮端の圧力を略一定に保持するために、熱発生パターンと熱発生期間とを適切に制御する必要がある。また、定圧燃焼サイクルでは、上死点付近で着火燃焼が開始するが、自着火を抑制もしくは制御するために、いわゆる「噴霧燃焼」(特開2007−285244号公報、特開2008−121429号公報等参照)の形態での燃焼が行われる。そのため、燃料噴射弁26の噴射率は、図4に示すように、熱発生後期に向け徐々に大となるように制御される。   In the constant pressure combustion cycle, it is necessary to appropriately control the heat generation pattern and the heat generation period in order to keep the pressure at the compression end in the combustion chamber substantially constant. In the constant pressure combustion cycle, ignition combustion starts near the top dead center. In order to suppress or control self-ignition, so-called “spray combustion” (Japanese Patent Laid-Open No. 2007-285244, Japanese Patent Laid-Open No. 2008-121429). Etc.) is performed. Therefore, the injection rate of the fuel injection valve 26 is controlled so as to gradually increase toward the latter half of the heat generation, as shown in FIG.

図5(a)〜(c)は、このような定圧燃焼サイクルに適した燃料噴射弁26の一例を示しており、ニードル41によって先端の噴孔42が開閉されるとともに、ニードル41の先端にガイド部43が設けられており、低リフト時には、図(b)のようにガイド部43に案内されて広い円錐角でもって噴霧が噴射され、高リフト時には、図(c)のように、噴霧が直進して相対的に狭い円錐角でもって噴射される構成となっている。つまり、図6(a)から同図(b)に変化するような形態の噴射が可能である。このように噴射方向と噴射率を変化させることにより、筒内の空気利用率の向上が可能となり、理論空燃比での燃焼が可能となる。   FIGS. 5A to 5C show an example of the fuel injection valve 26 suitable for such a constant pressure combustion cycle. The needle hole 42 is opened and closed by the needle 41, and the tip of the needle 41 is also opened. A guide portion 43 is provided. When the lift is low, the spray is guided by the guide portion 43 with a wide cone angle as shown in FIG. 5B, and when the lift is high, the spray is sprayed as shown in FIG. Is straight and jetted at a relatively narrow cone angle. That is, it is possible to perform injection in a form that changes from FIG. 6A to FIG. By changing the injection direction and the injection rate in this manner, the air utilization rate in the cylinder can be improved, and combustion at the stoichiometric air-fuel ratio becomes possible.

図7は、燃焼モードと圧縮比との関係を示した特性図である。図示するように、相対的に負荷が小さな第1の運転領域内では、火花点火燃焼モード(図には「SI」と略記する)となり、全負荷付近の相対的に負荷が大きな第2の運転領域内では、定圧燃焼モードとなる。なお、運転領域のほぼ全域でターボ過給機2による過給が行われる。   FIG. 7 is a characteristic diagram showing the relationship between the combustion mode and the compression ratio. As shown in the figure, in the first operation region where the load is relatively small, the spark ignition combustion mode (abbreviated as “SI” in the drawing) is performed, and the second operation where the load is relatively large near the full load. Within the region, the constant pressure combustion mode is set. Note that supercharging by the turbocharger 2 is performed in almost the entire operation region.

火花点火燃焼モードは、一般的な予混合火花点火内燃機関と同じ定容燃焼サイクルに近似した燃焼を行うものであり、例えば吸気行程中に筒内に燃料を噴射して予混合気を形成し、かつMBT点においてこの予混合気に点火を行う。この定容燃焼サイクルでは、負荷が高いほどノッキングが生じやすいため、負荷が高いほど可変圧縮比機構36による目標圧縮比が低く設定される。なお、低速低負荷側の領域では高い目標圧縮比となり、図では高低2段階に目標圧縮比が示されているが、実際には、負荷に応じて連続的に目標圧縮比が変化する。   The spark ignition combustion mode performs combustion similar to a constant volume combustion cycle similar to that of a general premixed spark ignition internal combustion engine.For example, fuel is injected into a cylinder during an intake stroke to form a premixed gas. The premixed gas is ignited at the MBT point. In this constant volume combustion cycle, the higher the load, the more likely knocking occurs. Therefore, the higher the load, the lower the target compression ratio by the variable compression ratio mechanism 36 is set. Note that the target compression ratio is high in the low-speed and low-load region, and the target compression ratio is shown in two steps of high and low in the figure.

また、同じくノッキングを回避するために、第1の運転領域の高負荷側では、点火時期がMBT点よりも遅角側に制御される。図示した火花点火燃焼モードと定圧燃焼モードとの境界Lは、火花点火燃焼モードにおいてMBT点での点火が可能な限界、つまりこれ以上負荷が高いとノッキング抑制のためにMBT点よりも点火時期を遅角する必要がある負荷の限界、に実質的に対応している。   Similarly, in order to avoid knocking, the ignition timing is controlled to be retarded from the MBT point on the high load side of the first operating region. The boundary L between the spark ignition combustion mode and the constant pressure combustion mode shown in the figure is the limit at which ignition at the MBT point is possible in the spark ignition combustion mode, that is, if the load is higher than this, the ignition timing is set higher than the MBT point to suppress knocking. It substantially corresponds to the load limit that needs to be retarded.

一方、定圧燃焼モードは、上述したように定圧燃焼サイクルに近似した燃焼を行うものであり、上述したように、いわゆる「噴霧燃焼」として、上死点付近で燃料噴射を開始するとともに点火して熱発生を開始させ、かつ容積変化率に比例して発熱量が増大するように燃料供給を制御する。この定圧燃焼サイクルでは、定容燃焼サイクルに比較して同じトルクであっても最大燃焼圧が低くなり、従って、ノッキングに制約されることなくより多くの燃料を供給してトルクの向上を図ることができる。つまり、火花点火燃焼モードのみの場合に比べて、全開トルクをより高トルク側に設定することが可能となる。そして、この定圧燃焼サイクルでは、可変圧縮比機構36の目標圧縮比が高く設定される。なお、この第2の運転領域での目標圧縮比は、一定の高い圧縮比に固定的に設定するようにしてもよく、あるいは、負荷上昇に伴って圧縮比を低下させるようにしてもよい。定圧燃焼サイクルでは、燃焼時間が長くなることから時間損失が増加するが、このように圧縮比を高く与えることで、燃焼の長期化による効率低下が補われる。従って、第1の運転領域と第2の運転領域との境界では、基本的に、目標圧縮比が不連続な特性となる。   On the other hand, the constant pressure combustion mode performs combustion similar to a constant pressure combustion cycle as described above, and as described above, as so-called “spray combustion”, fuel injection is started near top dead center and ignition is performed. The fuel supply is controlled so that heat generation is started and the calorific value increases in proportion to the volume change rate. In this constant pressure combustion cycle, even when the torque is the same as that in the constant volume combustion cycle, the maximum combustion pressure is lowered, and therefore, more fuel is supplied without being restricted by knocking so that the torque can be improved. Can do. That is, compared with the case of only the spark ignition combustion mode, the fully open torque can be set to a higher torque side. In this constant pressure combustion cycle, the target compression ratio of the variable compression ratio mechanism 36 is set high. It should be noted that the target compression ratio in the second operating region may be fixedly set to a constant high compression ratio, or the compression ratio may be lowered as the load increases. In the constant pressure combustion cycle, the time loss increases because the combustion time becomes long. However, by giving a high compression ratio in this way, the efficiency reduction due to the prolonged combustion is compensated. Therefore, the target compression ratio basically has a discontinuous characteristic at the boundary between the first operation region and the second operation region.

第1の運転領域と第2の運転領域の判定つまり燃焼モードの切換は、図7に示すような機関回転数Neと負荷(例えば燃料噴射量)Teとをパラメータとした所定のマップに基づいて単純に行ってもよいが、望ましくは、図8のフローチャートに従って、各々の燃焼モードでの効率を演算し、その対比により効率の高い燃焼モードを選択するようにすることが望ましい。   The determination of the first operation region and the second operation region, that is, the switching of the combustion mode, is based on a predetermined map using the engine speed Ne and the load (for example, fuel injection amount) Te as parameters as shown in FIG. Although it may be simply performed, it is desirable to calculate the efficiency in each combustion mode according to the flowchart of FIG. 8 and to select a combustion mode with higher efficiency by comparison.

具体的には、先ずステップ1で機関回転数と要求トルクとから要求空気量を求める。ステップ2では、火花点火燃焼モードとした場合の目標圧縮比をマップに基づいて決定し、ステップ3では、火花点火燃焼モードとした場合の点火時期を決定する。なお、この点火時期は、上述したように基本的にMBT点であるが、吸気温度に基づく補正等を加えてもよい。一方、これと並行して、ステップ4で、定圧燃焼モードとした場合の目標圧縮比をマップに基づいて決定し、ステップ5で、定圧燃焼モードとした場合の燃焼期間を演算する。処理の簡略化のためには、燃料噴射期間を燃焼期間とみなすことができる。なお、この実施例では、定圧燃焼モードにおける点火時期は、上死点付近の一定点火時期となる。   Specifically, first, in step 1, the required air amount is obtained from the engine speed and the required torque. In step 2, the target compression ratio in the case of the spark ignition combustion mode is determined based on the map, and in step 3, the ignition timing in the case of the spark ignition combustion mode is determined. The ignition timing is basically the MBT point as described above, but correction based on the intake air temperature may be added. On the other hand, in parallel with this, at step 4, the target compression ratio when the constant pressure combustion mode is set is determined based on the map, and at step 5, the combustion period when the constant pressure combustion mode is set is calculated. In order to simplify the process, the fuel injection period can be regarded as a combustion period. In this embodiment, the ignition timing in the constant pressure combustion mode is a constant ignition timing near top dead center.

次に、ステップ6において、火花点火燃焼モードとした場合の効率と定圧燃焼モードとした場合の効率とを大小比較し、前者が高効率であれば火花点火燃焼モードを選択し、後者が高効率であれば定圧燃焼モードを選択する(ステップ7,8)。火花点火燃焼モードでの効率は、例えば、ステップ2で定めた目標圧縮比の下で、吸気量と機関回転数と点火時期とEGRガス量(所謂内部排気還流と外部排気還流の総和)との関数として求めることができる。他方、定圧燃焼モードでの効率は、ステップ4で定めた目標圧縮比の下で、吸気量と機関回転数と有効圧縮比と膨張比(これは燃焼期間によって変化する)との関数として求めることができる。なお、内燃機関1は、いずれかの燃焼モードで実際に運転されているので、一方の燃焼モードの効率はそのときの運転条件に応じた実際のパラメータを一部用いて逐次求められ、他方の燃焼モードの効率はそのときの運転条件に応じて逐次推定されることになる。   Next, in step 6, the efficiency in the spark ignition combustion mode is compared with the efficiency in the constant pressure combustion mode. If the former is high efficiency, the spark ignition combustion mode is selected, and the latter is high efficiency. If so, the constant pressure combustion mode is selected (steps 7 and 8). The efficiency in the spark ignition combustion mode is, for example, the amount of intake air, engine speed, ignition timing, and EGR gas amount (the sum of so-called internal exhaust gas recirculation and external exhaust gas recirculation) under the target compression ratio determined in step 2. It can be obtained as a function. On the other hand, the efficiency in the constant pressure combustion mode is obtained as a function of the intake air amount, the engine speed, the effective compression ratio, and the expansion ratio (which varies depending on the combustion period) under the target compression ratio determined in Step 4. Can do. Since the internal combustion engine 1 is actually operated in one of the combustion modes, the efficiency of one combustion mode is obtained sequentially using a part of actual parameters corresponding to the operation conditions at that time, and the other The efficiency of the combustion mode is sequentially estimated according to the operating conditions at that time.

火花点火燃焼モードにおいて点火時期がMBT点よりも遅角すると、効率は急に悪化する。極端な場合には、点火時期の遅角に伴う排気温度の上昇に対して所謂「燃料冷却」が必要になり、空燃比がリッチに設定されるので、効率は一層悪化する。一方、定圧燃焼サイクルは時間損失が大きく、点火時期をMBT点とした定容燃焼サイクルと比較すると、一般に効率が低い。従って、各々の燃焼モードでの効率を大小比較して効率の高い方を選択すると、結果的に、図6に示したようなMBT点の限界に沿った境界Lとなる。   If the ignition timing is retarded from the MBT point in the spark ignition combustion mode, the efficiency deteriorates rapidly. In an extreme case, so-called “fuel cooling” is required for the rise in the exhaust gas temperature accompanying the retardation of the ignition timing, and the efficiency is further deteriorated because the air-fuel ratio is set to be rich. On the other hand, the constant pressure combustion cycle has a large time loss and is generally less efficient than the constant volume combustion cycle with the ignition timing as the MBT point. Therefore, when the efficiency in each combustion mode is compared and the higher efficiency is selected, the boundary L along the limit of the MBT point as shown in FIG. 6 is obtained as a result.

次に、図9に示す実施例は、ノッキングが発生したことを検出するノッキングセンサ51を備えたものであり、火花点火燃焼モードにおいてノッキングが生じたときに、公知の手法により、点火時期をMBT点から遅角補正するようにしている。   Next, the embodiment shown in FIG. 9 is provided with a knocking sensor 51 that detects that knocking has occurred. When knocking occurs in the spark ignition combustion mode, the ignition timing is set to MBT by a known method. The delay angle is corrected from the point.

また、本発明においては、同様のノッキングセンサ51を用いて、火花点火燃焼モードでの運転中にノッキングを検出したときに、定圧燃焼モードへの切換を行うように構成してもよい。なお、定圧燃焼モードから火花点火燃焼モードへの切換は、例えば一定時間ノッキングが検出されないときに火花点火燃焼モードへ復帰させるなどの手法が可能である。   In the present invention, the same knocking sensor 51 may be used to switch to the constant pressure combustion mode when knocking is detected during operation in the spark ignition combustion mode. Note that switching from the constant pressure combustion mode to the spark ignition combustion mode can be performed by, for example, returning to the spark ignition combustion mode when knocking is not detected for a certain period of time.

次に、有効圧縮比を可変制御するために吸気弁側に可変動弁機構を設けた実施例について説明する。可変動弁機構としては、少なくとも吸気弁の閉時期を遅進させ得る構成であることが必要であり、例えば電磁駆動式の吸気弁や機械的な可変動弁機構(特開2002−89303号公報、特開2002−285898号公報等)など適宜な構成のものを用いることができる。この実施例では、定圧燃焼モードのとき(特に全負荷領域)に、可変動弁機構を用いて有効圧縮比を低下させることで、最大燃焼圧を抑制しつつ、より多くの燃料を燃焼させることが可能となる。なお、ここでは、可変動弁機構として、吸気弁の開時期をほぼ一定に保ちつつ吸気弁作動角を拡大・縮小できる形式の機械的な可変動弁機構が用いられている。従って、作動角を小さくすると、吸気弁閉時期が進角する関係となっている。   Next, an embodiment in which a variable valve mechanism is provided on the intake valve side in order to variably control the effective compression ratio will be described. The variable valve mechanism needs to be configured to at least delay the closing timing of the intake valve. For example, an electromagnetically driven intake valve or a mechanical variable valve mechanism (Japanese Patent Laid-Open No. 2002-89303) , JP-A-2002-285898, etc.) can be used. In this embodiment, in the constant pressure combustion mode (especially in the full load region), by reducing the effective compression ratio using a variable valve mechanism, more fuel is burned while suppressing the maximum combustion pressure. Is possible. Here, as the variable valve mechanism, a mechanical variable valve mechanism of a type capable of expanding and reducing the intake valve operating angle while keeping the opening timing of the intake valve substantially constant is used. Accordingly, when the operating angle is reduced, the intake valve closing timing is advanced.

図10は、有効圧縮比を低下させた状態での吸排気弁のバルブタイミングの一例を示しており、図示するように、吸気弁閉時期IVCが下死点よりも進角したいわゆる早閉じとなっている。これにより、図11のPV線図に線L1でもって示すように、有効圧縮比に対し膨張比が相対的に大きく、いわゆるミラーサイクルとなる。なお、図11の線L2で示す特性は、過給圧が低くIVCが下死点付近にある場合を示す。なお、周知のように、有効圧縮比を低下させるために、吸気弁閉時期IVCを下死点よりも遅角させるいわゆる遅閉じを採用することも可能である。   FIG. 10 shows an example of the valve timing of the intake / exhaust valve in a state where the effective compression ratio is lowered. As shown in the figure, the so-called early closing in which the intake valve closing timing IVC is advanced from the bottom dead center. It has become. As a result, as indicated by the line L1 in the PV diagram of FIG. 11, the expansion ratio is relatively large with respect to the effective compression ratio, resulting in a so-called mirror cycle. The characteristic indicated by the line L2 in FIG. 11 shows a case where the supercharging pressure is low and the IVC is near the bottom dead center. As is well known, in order to reduce the effective compression ratio, it is also possible to employ so-called delayed closing in which the intake valve closing timing IVC is retarded from the bottom dead center.

図12は、この実施例における燃焼モードと圧縮比と吸気弁作動角との関係を示した特性図である。図示するように、相対的に負荷が小さな第1の運転領域内では、火花点火燃焼モード(SI)となり、全負荷領域を含む相対的に負荷が大きな第2の運転領域内では、定圧燃焼モードとなる。なお、運転領域のほぼ全域でターボ過給機2による過給が行われる。   FIG. 12 is a characteristic diagram showing the relationship among the combustion mode, the compression ratio, and the intake valve operating angle in this embodiment. As shown in the figure, the spark ignition combustion mode (SI) is set in the first operation region having a relatively small load, and the constant pressure combustion mode is set in the second operation region having a relatively large load including the entire load region. It becomes. Note that supercharging by the turbocharger 2 is performed in almost the entire operation region.

火花点火燃焼モードでは、前述したように予混合気に対するMBT点付近での点火により定容燃焼サイクルに近似した燃焼が行われるが、可変圧縮比機構36による圧縮比制御は前述の実施例と同様であり、低速低負荷側の領域では高い目標圧縮比となり、負荷が高いほど目標圧縮比が低く設定される。そして、有効圧縮比に相関する作動角は、低速低負荷側の領域では小作動角となり、負荷の増加に応じて作動角が拡大して中作動角となる。なお、圧縮比と同様、作動角も連続的に変化する。   In the spark ignition combustion mode, as described above, combustion close to a constant volume combustion cycle is performed by ignition near the MBT point with respect to the premixed gas, but the compression ratio control by the variable compression ratio mechanism 36 is the same as in the above-described embodiment. In the region on the low speed and low load side, the target compression ratio is high, and the higher the load, the lower the target compression ratio is set. The operating angle correlated with the effective compression ratio becomes a small operating angle in the low-speed and low-load region, and the operating angle expands to a medium operating angle as the load increases. As with the compression ratio, the operating angle also changes continuously.

前述の実施例と同じく、火花点火燃焼モードと定圧燃焼モードとの境界L3は、火花点火燃焼モードにおいてMBT点での点火が可能な限界、つまりこれ以上負荷が高いとノッキング抑制のためにMBT点よりも点火時期を遅角する必要がある負荷の限界、に実質的に対応している。   As in the above-described embodiment, the boundary L3 between the spark ignition combustion mode and the constant pressure combustion mode is the limit at which ignition at the MBT point is possible in the spark ignition combustion mode, that is, the MBT point for suppressing knocking when the load is higher than this. This substantially corresponds to the limit of the load that needs to retard the ignition timing.

また、定圧燃焼モードは、「噴霧燃焼」により定圧燃焼サイクルに近似した燃焼を行うものであるが、前述の実施例と同じく、この定圧燃焼モードでは、可変圧縮比機構36の目標圧縮比が高く設定される。そして、有効圧縮比つまり吸気弁の作動角としては、線L4よりも上方の全負荷領域を除き、トルク確保のために大作動角となる。より詳しくは、負荷に伴って作動角が拡大し、線L4付近では吸気弁閉時期IVCが下死点付近となる。   In the constant pressure combustion mode, combustion similar to a constant pressure combustion cycle is performed by “spray combustion”. In this constant pressure combustion mode, the target compression ratio of the variable compression ratio mechanism 36 is high, as in the above-described embodiment. Is set. The effective compression ratio, i.e., the operating angle of the intake valve, is a large operating angle for securing torque except for the entire load region above the line L4. More specifically, the operating angle increases with load, and the intake valve closing timing IVC is near the bottom dead center near the line L4.

そして、定圧燃焼モードの領域の中でも、全負荷領域つまり線L4と線L5とに挟まれた領域では、作動角が小さく設定され、有効圧縮比が抑制される。これにより、ノッキングないし最大燃焼圧の過度の上昇を回避しつつ全開トルクをより高く得ることが可能となる。換言すれば、線L4の特性は、図7の実施例の全開トルクにほぼ相当するものとなり、可変動弁機構による有効圧縮比の低下と組み合わせることで、線L5にまで全開トルクを高めることが可能となる。   In the constant pressure combustion mode region, in the full load region, that is, the region sandwiched between the lines L4 and L5, the operating angle is set small, and the effective compression ratio is suppressed. As a result, knocking or excessive increase in the maximum combustion pressure can be avoided, and the full opening torque can be obtained higher. In other words, the characteristic of the line L4 substantially corresponds to the fully open torque of the embodiment of FIG. 7, and when combined with a decrease in the effective compression ratio by the variable valve mechanism, the fully open torque can be increased to the line L5. It becomes possible.

第1の運転領域と第2の運転領域の判定つまり燃焼モードの切換は、図12に示すような機関回転数Neと負荷(例えば燃料噴射量)Teとをパラメータとした所定のマップに基づいて単純に行ってもよいが、この実施例においても、前述した図8のフローチャートと同様の手順により、各々の燃焼モードでの効率を演算し、その対比により効率の高い燃焼モードを選択するように切り換えることが可能である。   The determination of the first operation region and the second operation region, that is, the switching of the combustion mode, is based on a predetermined map using the engine speed Ne and the load (for example, fuel injection amount) Te as parameters as shown in FIG. In this embodiment, the efficiency in each combustion mode is calculated in the same procedure as the flowchart of FIG. 8 described above, and a combustion mode with high efficiency is selected by comparison. It is possible to switch.

勿論、この場合には、そのときの運転条件に応じて目標の吸気弁開閉時期(つまり有効圧縮比)を定め、この有効圧縮比を考慮して各々の燃焼モードでの効率を算出することになる。   Of course, in this case, the target intake valve opening / closing timing (that is, the effective compression ratio) is determined according to the operating conditions at that time, and the efficiency in each combustion mode is calculated in consideration of this effective compression ratio. Become.

この発明に係る内燃機関の概略を示す説明図。Explanatory drawing which shows the outline of the internal combustion engine which concerns on this invention. この発明のシステム構成を示す説明図。Explanatory drawing which shows the system configuration | structure of this invention. 定圧燃焼サイクルのための(a)熱発生率の特性および(b)筒内圧の特性を示す特性図。The characteristic view which shows the characteristic of (a) heat release rate and (b) in-cylinder pressure for a constant pressure combustion cycle. 定圧燃焼サイクルの際の噴射率変化を示す特性図。The characteristic view which shows the injection rate change in the case of a constant pressure combustion cycle. 定圧燃焼サイクルに適した燃料噴射弁の一例を示す説明図。Explanatory drawing which shows an example of the fuel injection valve suitable for a constant pressure combustion cycle. この燃料噴射弁による噴霧の変化を示す説明図。Explanatory drawing which shows the change of the spray by this fuel injection valve. 運転条件に対する燃焼モードおよび目標圧縮比を示す特性図。The characteristic view which shows the combustion mode with respect to an operating condition, and a target compression ratio. 燃焼モード切換のフローチャート。The flowchart of combustion mode switching. ノッキングセンサを備えた実施例を示す説明図。Explanatory drawing which shows the Example provided with the knocking sensor. 可変動弁機構を備えた実施例におけるバルブタイミングチャート。The valve timing chart in the Example provided with the variable valve mechanism. この実施例のPV線図。The PV diagram of this Example. 運転条件に対する燃焼モード等を示す特性図。The characteristic view which shows the combustion mode etc. with respect to driving | running conditions.

1…内燃機関
2…ターボ過給機
6…エンジンコントロールユニット
36…可変圧縮比機構
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 2 ... Turbocharger 6 ... Engine control unit 36 ... Variable compression ratio mechanism

Claims (6)

過給機と、
内燃機関の機械的圧縮比を変更する可変圧縮比機構と、
負荷に応じた量の燃料をシリンダ内に噴射供給する燃料噴射装置と、
点火装置と、
を備え、予混合気の火花点火により定容燃焼サイクルに近似した燃焼を実現する火花点火燃焼モードと、熱発生率の制御により定圧燃焼サイクルに近似した燃焼を実現する定圧燃焼モードと、の切換が可能な内燃機関であって
相対的に負荷が小さな第1の運転領域内では、上記火花点火燃焼モードとし、かつ負荷が高いほど上記可変圧縮比機構による圧縮比を低く設定し、
相対的に負荷が大きな第2の運転領域内では、上記定圧燃焼モードとするとともに、上記可変圧縮比機構による圧縮比を高く設定することを特徴とする内燃機関。
A turbocharger,
A variable compression ratio mechanism for changing the mechanical compression ratio of the internal combustion engine;
A fuel injection device that injects fuel in an amount corresponding to the load into the cylinder;
An ignition device;
Switching between a spark ignition combustion mode that realizes combustion approximating a constant volume combustion cycle by spark ignition of a premixed gas and a constant pressure combustion mode that realizes combustion approximated to a constant pressure combustion cycle by controlling the heat generation rate In the first operating region where the load is relatively small, the spark ignition combustion mode is set, and the higher the load, the lower the compression ratio by the variable compression ratio mechanism is set.
In the second operating region where the load is relatively large, the constant pressure combustion mode is set, and the compression ratio by the variable compression ratio mechanism is set high.
そのときの運転条件に対して、火花点火燃焼モードでの効率と定圧燃焼モードでの効率とを逐次算出し、相対的に高い効率となる燃焼モードに切り換えることを特徴とする請求項1に記載の内燃機関。   The efficiency in the spark ignition combustion mode and the efficiency in the constant pressure combustion mode are sequentially calculated with respect to the operating conditions at that time, and the combustion mode is switched to a combustion mode that has a relatively high efficiency. Internal combustion engine. 吸気弁の少なくとも閉時期を変更して有効圧縮比を変化させる可変動弁機構をさらに備え、上記の第2の運転領域の最大負荷近傍では該可変動弁機構により有効圧縮比を縮小することを特徴とする請求項1または2に記載の内燃機関。   A variable valve mechanism for changing the effective compression ratio by changing at least the closing timing of the intake valve; and reducing the effective compression ratio by the variable valve mechanism in the vicinity of the maximum load in the second operating region. The internal combustion engine according to claim 1 or 2, characterized by the above. 定圧燃焼モードでは、上死点付近で燃料噴射を開始するとともに点火して熱発生を開始させ、かつ容積変化率に比例して発熱量が増大するように燃料供給を制御することを特徴とする請求項1〜3のいずれかに記載の内燃機関。   In the constant pressure combustion mode, fuel injection is started near top dead center, ignition is started to start heat generation, and fuel supply is controlled so that the heat generation amount increases in proportion to the volume change rate. The internal combustion engine according to any one of claims 1 to 3. 噴射率可変の燃料噴射弁を用い、その噴射率制御により定圧燃焼サイクルに近似した燃焼を実現することを特徴とする請求項1〜4のいずれかに記載の内燃機関。   The internal combustion engine according to any one of claims 1 to 4, wherein a fuel injection valve having a variable injection rate is used, and combustion close to a constant pressure combustion cycle is realized by controlling the injection rate. 火花点火燃焼モードにおける点火時期をノッキングの検出に基づいてMBT点から遅角補正する点火時期補正手段をさらに備え、上記火花点火燃焼モードと定圧燃焼モードとが、この遅角補正が生じる負荷付近で切り換えられることを特徴とする請求項1〜5のいずれかに記載の内燃機関。   There is further provided ignition timing correction means for correcting the ignition timing in the spark ignition combustion mode from the MBT point based on the detection of knocking, and the spark ignition combustion mode and the constant pressure combustion mode are arranged in the vicinity of a load where the retardation correction occurs. 6. The internal combustion engine according to claim 1, wherein the internal combustion engine is switched.
JP2009002103A 2009-01-08 2009-01-08 Internal combustion engine Pending JP2010159683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009002103A JP2010159683A (en) 2009-01-08 2009-01-08 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009002103A JP2010159683A (en) 2009-01-08 2009-01-08 Internal combustion engine

Publications (1)

Publication Number Publication Date
JP2010159683A true JP2010159683A (en) 2010-07-22

Family

ID=42577032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009002103A Pending JP2010159683A (en) 2009-01-08 2009-01-08 Internal combustion engine

Country Status (1)

Country Link
JP (1) JP2010159683A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245567A (en) * 2012-05-23 2013-12-09 Toyota Motor Corp Internal combustion engine
CN106840684A (en) * 2017-01-13 2017-06-13 西华大学 A kind of constant volume constant pressure mixing theory Constant Volume Bomb and its control method
CN110594024A (en) * 2018-06-13 2019-12-20 宝马股份公司 Method and control device for operating a reciprocating piston internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245567A (en) * 2012-05-23 2013-12-09 Toyota Motor Corp Internal combustion engine
CN106840684A (en) * 2017-01-13 2017-06-13 西华大学 A kind of constant volume constant pressure mixing theory Constant Volume Bomb and its control method
CN106840684B (en) * 2017-01-13 2023-06-06 西华大学 Constant volume-constant pressure mixed combustion simulation experiment device and control method thereof
CN110594024A (en) * 2018-06-13 2019-12-20 宝马股份公司 Method and control device for operating a reciprocating piston internal combustion engine
CN110594024B (en) * 2018-06-13 2023-08-08 宝马股份公司 Method and control device for operating a reciprocating piston internal combustion engine

Similar Documents

Publication Publication Date Title
JP3885524B2 (en) Compression self-ignition internal combustion engine
US8050846B2 (en) Apparatus and method for controlling engine
US7628013B2 (en) Control device of charge compression ignition-type internal combustion engine
JP5858971B2 (en) Control device and method for internal combustion engine
JP2009197740A (en) Intake exhaust control method and intake exhaust control device for engine
JP7223271B2 (en) Homogeneous mixture compression ignition engine controller
JP7167831B2 (en) Compression ignition engine controller
JP5040772B2 (en) Engine intake valve control method and intake valve control apparatus
JP2009103122A (en) Method and device of controlling internal combustion engine
JP4803151B2 (en) Control unit for gasoline engine
JP2013064387A (en) Spark ignition direct injection engine and method for controlling the same
JP2019194456A (en) Control device for compression ignition type engine
JP2019194464A (en) Control device for compression ignition type engine
JP2019194455A (en) Control device for compression ignition type engine
JP2019194458A (en) Control device for compression ignition type engine
JP2018040263A (en) Control device for internal combustion engine
JP2019194462A (en) Control device for compression ignition type engine
JP2019194463A (en) Control device for compression ignition type engine
JP2019194461A (en) Control device for compression ignition type engine
JP2019194457A (en) Control device for compression ignition type engine
JP5098985B2 (en) Control device for internal combustion engine
JP2010159683A (en) Internal combustion engine
JP2006194096A (en) Controller for internal combustion engine
JP2011058372A (en) Control method for engine, and control device for the same
JP2008051017A (en) Premixed compression self-igniting internal combustion engine