JP2005002931A - Controller for internal combustion engine - Google Patents

Controller for internal combustion engine Download PDF

Info

Publication number
JP2005002931A
JP2005002931A JP2003168662A JP2003168662A JP2005002931A JP 2005002931 A JP2005002931 A JP 2005002931A JP 2003168662 A JP2003168662 A JP 2003168662A JP 2003168662 A JP2003168662 A JP 2003168662A JP 2005002931 A JP2005002931 A JP 2005002931A
Authority
JP
Japan
Prior art keywords
switching
variable
compression ratio
internal combustion
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003168662A
Other languages
Japanese (ja)
Inventor
Toru Noda
徹 野田
Ryosuke Hiyoshi
亮介 日吉
Takanobu Sugiyama
孝伸 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003168662A priority Critical patent/JP2005002931A/en
Publication of JP2005002931A publication Critical patent/JP2005002931A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress or avoid the occurrence of knocking at a change-over transient time. <P>SOLUTION: This controller for an internal combustion engine has a variable compression ratio mechanism VCR capable of changing compression ratio of the engine and a valve timing change device VTC capable of changing opening and closing time of a suction valve. When it is determined that time is simultaneous change-over demand time when change-over to "ON" which is a high filling efficiency side from "OFF" of VTC and change-over to a low compression ratio side of VCR are simultaneously demanded at S15, operation advances to S16 from S15, and change-over start time of VTC is delayed by a predetermined delay period to limit its change-over. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、可変圧縮比装置と可変吸気装置とを有する火花点火式の内燃機関に関し、特に、可変圧縮比装置による切換と可変吸気装置による切換とが同時に要求された場合のノッキングの発生を抑制・回避する技術に関する。
【0002】
【従来の技術】
特許文献1には、吸気弁と排気弁の双方に、バルブタイミングを可変とするバルブタイミング変更機構を設け、機関回転数や機関負荷に応じて吸気弁の開閉時期と排気弁の開閉時期とを適切に制御する技術について記載されている。
【0003】
【特許文献1】
特開平6−235307号公報
【0004】
【発明が解決しようとする課題】
上述したバルブタイミング変更機構のように機関の吸気充填効率を可変とする可変吸気装置に加え、機関圧縮比を可変とする可変圧縮比装置を併用する火花点火式の内燃機関では、次のような課題がある。発進加速時等において、可変圧縮比装置による低圧縮比側への切換と、可変吸気装置による高充填効率側への切換と、を同時に行うと、過渡的にノッキングが生じ易くなり、燃焼安定性を損ねるおそれがある。つまり、加速要求等に応じて可変吸気装置により充填効率を高める際、ノッキングの発生を回避するために可変圧縮比装置による低圧縮比側への切換を同時に行っても、可変圧縮比装置の応答遅れ等に起因して、過渡的にノッキングを生じ易くなることがある。
【0005】
本発明はこのような課題に鑑みてなされたものであり、可変圧縮比装置による低圧縮比側への切換と可変吸気装置による高充填効率側への切換とをともに行う切換過渡期のノッキングの発生を効果的に抑制・回避する新規な内燃機関の制御装置を提供することを主たる目的としている。
【0006】
【課題を解決するための手段】
本発明は、機関の圧縮比を可変とする可変圧縮比装置と、機関の吸気充填効率を可変とする可変吸気装置と、を備える火花点火式の内燃機関に適用される。上記可変圧縮比装置による低圧縮比側への切換と、上記可変吸気装置による高充填効率側への切換と、が同時に要求される同時切換要求時には、上記可変吸気装置の切換を制限する。
【0007】
【発明の効果】
可変圧縮比装置による低圧縮比側への切換と、可変吸気装置による高充填効率側への切換と、が同時に要求された場合、可変吸気装置の切換が制限されるため、切換過渡期のノッキングの発生を効果的に抑制・回避することができる。
【0008】
【発明の実施の形態】
以下、本発明の好ましい実施の形態を図面に基づいて詳細に説明する。なお、同じ構成要素には同一参照符号を用いて重複する説明を適宜省略する。
【0009】
図1は、本発明の第1〜4実施例に係る内燃機関の制御装置を示すシステム構成図である。この内燃機関は、シリンダヘッド1とシリンダブロック2とにより大略構成されており、かつ、ピストン3の上方に画成される燃焼室4内の混合気を火花点火する点火プラグ9を備えたガソリンエンジン等の火花点火式内燃機関である。この内燃機関は、周知のように、吸気ポート7を開閉する吸気弁5と、排気ポート8を開閉する排気弁6と、吸気ポート7に燃料を噴射する燃料噴射弁10と、図外の吸気コレクタの上流側を開閉して吸入空気量を調整するスロットル弁と、を有し、かつ、機関圧縮比を変更可能な可変圧縮比装置としての可変圧縮比機構(以下、単にVCRとも呼ぶ)20を備えている。
【0010】
ECU(エンジン・コントロール・ユニット)11は、CPU,ROM,RAM及び入出力インターフェースを備えた周知のデジタルコンピュータであり、アクセル開度を検出するアクセル開度センサ12,機関水温を検出する水温センサ13,機関回転数を検出するクランク角センサ14,及びノッキングの有無を検出するノックセンサ15等の各種センサからの検出信号等に基づいて、燃料噴射弁10,点火プラグ9,スロットル弁の駆動装置,及び可変圧縮比機構20の駆動装置21等の各種アクチュエータへ制御信号を出力して、燃料噴射量,燃料噴射時期,点火時期,スロットル開度,及び機関圧縮比等を統括的に制御する。
【0011】
機関の吸気充填効率を可変とする可変吸気装置として、この例では、少なくとも吸気弁5の閉時期を変更可能な可変動弁装置、より詳しくは、クランクシャフトに対する吸気側カムシャフトの位相を変化させることにより、吸気弁の開閉時期を変更可能なバルブタイミング変更機構(VTC)5aが設けられている。この種のバルブタイミング変更機構5aとしては、上記特開平6−235307号公報のようにヘリカルスプラインを利用したものや、ベーン式のもの等が公知であり、具体的な説明は省略する。
【0012】
図18を参照して、上記のVCR20は、クランクシャフト22のクランクピン23に回転可能に装着されたロアリンク24と、このロアリンク24とピストン3とを連携するアッパリンク25と、偏心軸28が設けられたコントロールシャフト27と、偏心軸28とロアリンク24とを連携するコントロールリンク26と、を有している。上記の駆動装置21(図1参照)によりコントロールシャフト27の回転位置を変更することにより、コントロールリンク26によるロアリンク24の運動拘束条件が変化し、ピストン3のストローク特性、すなわちピストン3の上死点位置及び機関圧縮比が連続的に変更・制御される。
【0013】
図6は、本発明の第1実施例に係る制御の流れを示すフローチャートである。S(ステップ)11では、各種センサの検出信号を読み込む。S12では、上記センサの検出信号等に基づいて、機関回転数Neや機関負荷Te等の運転状態を演算・判断する。S13では、VTC5aによる切換判断を行う。つまり、VTCの制御目標値に基づいて、VTCの切換の有無を判断する。S14では、VCRによる切換判断を行う。つまり、VCRの制御目標値に基づいて、VCRの切換の有無を判断する。
【0014】
S15では、可変圧縮比装置としてのVCRによる低圧縮比側への切換と、可変吸気装置としてのVTCによる高充填効率側への切換と、が同時に要求されている同時切換要求時であるかを判断する。VTCは、初期状態である「OFF」のときに遅角設定とされ、「ON」のときに進角設定とされる。進角設定では、遅角設定に比して、吸気閉時期の下死点に対する遅角量が少なく、充填効率が高い。従って、VTCの「OFF」から「ON」への切換が、高充填効率側への切換となる。
【0015】
VCRの制御目標値は、例えば、機関回転数Neと機関負荷Teとに基づいて、予め設定される図2に示すようなVCR用の切換制御マップを参照して求められる。VTCの制御目標値は、例えば、機関回転数Neと機関負荷Teとに基づいて、予め設定される図3に示すようなVTC用の切換制御マップを参照して求められる。例えば、図2及び図3に示すアイドル等の運転状態Aから運転状態Bへ加速する発進加速時には、負荷の上昇に応じて充填効率が高くなるように、VTCによる遅角設定OFFから進角設定ONへの切換が要求されると同時に、ノッキングの発生を回避するように、VCRによる高圧縮比の設定状態High−CRから低圧縮比の設定状態Low−CRへの切換が要求されることとなる。
【0016】
再び図6を参照して、同時切換要求が検出されると、S15からS16へ進み、VTCの切換を制限する(制限手段)。具体的には図5に示すようにVTCの切換開始時期を所定のディレイ期間Δtだけ遅らせる。続くS17では、上記S16の切換制限処理を加味してVTCの切換制御を実行し、S18ではVCRの切換制御を実行する。同時切換要求がない場合には、S15からS17へ進み、S16のVTC切換制限処理を行うことなく、VTC及びVCRの切換制御が要求に応じて行われる(S17,S18)。
【0017】
図4及び図5は、上記同時切換要求時のタイムチャートであり、図4は上記のVTC切換制限処理(S16)のない比較例、図5はVTC切換制限処理(S16)を有する上記第1実施例に対応している。図中の実線は制御目標値・指令値であり、破線は指令値に対して応答遅れをもって追従する実際の値である。
【0018】
図4に示す比較例では、同時切換要求がなされたタイミングt1で、VTCの切換を何ら制限することなく、VTCの切換とVCRの切換とを同時に開始している。従って、切換の過渡期に、機関圧縮比が十分に低くなる前に吸気弁の閉時期が進角してノッキングを生じ易くなり、燃焼安定性を損ねるおそれがある。
【0019】
これに対し、図5に示す本実施例では、同時切換要求がなされたタイミングt1で、先ずVCRによる高圧縮比側から低圧縮比側への切換を何ら制限することなく優先的に開始し、所定のディレイ期間Δt経過した後にVTCによるOFFからONへの切換を開始している。このようにVTCの切換を制限しているため、VCRの切換過渡期におけるノッキングの発生を有効に抑制・回避することができ、燃焼安定性が向上する。
【0020】
図7及び図8を参照して本発明の第2実施例を説明する。この第2実施例では、上述した第1実施例と同様に同時切換要求時にはVTCの切換開始を所定のディレイ期間Δt3だけ遅らせてVTCの切換を制限していることに加え、VCRとVTCとの切換終了時期t3がほぼ一致するように、言い換えるとVTCの切換終了時期をVCRの切換終了時期t3の近傍まで遅らせるように、VTCの切換開始時期t2あるいはディレイ期間Δt3を演算・制御している。具体的には、図8のS15で同時切換要求が検出されるとS16aへ進み、VTCの切換終了時期t3を設定する。このt3はVCRの切換開始時期t1と切換期間Δt1から演算・設定することができる。続くS16bでは、VCRの切換期間Δt1とVTCの切換期間Δt2とに基づいて、VTCの切換開始時期t2又はディレイ期間Δt3を演算する。得られたt2又はΔt3に基づいてVTCの切換が制限される(S17)。
【0021】
この第2実施例によれば、第1実施例と同じ様に同時切換要求時にVTCの切換を制限してノッキングの発生を有効に抑制・回避しつつ、VCRとVTCとの双方の切換終了時期をほぼ同時期とすることができ、VTCの切換開始時期を遅らせているにもかかわらず、実質的な切換応答性の低下を招くことがない。
【0022】
図9及び図10を参照して本発明の第3実施例を説明する。この第3実施例では、VTCの切換速度を低下することにより、第2実施例と同じようにVTCの切換を制限するとともにVCRとVTCの切換終了時期t3をほぼ一致させている。具体的には、図10のステップ15において、同時切換要求時と判定されると、S16cへ進み、VCRとVTCの切換終了時期t3がほぼ一致するように、VTCの切換速度あるいは切換速度の低下量を設定している。この第3実施例によれば、第2実施例と同様、切換応答性の低下を招くことなく、切換過渡期のノッキングの発生を有効に抑制・回避することができる。
【0023】
図11を参照して本発明の第4実施例を説明する。VCRが連続的又は3段階以上に切換可能な構成では、圧縮比の切換量に応じて、VTCの切換の制限度合いを変更・制御する。例えば、中圧縮比の設定状態Middle−CRから低圧縮比の設定状態Low−CRへ切り換える場合のVTCのディレイ期間Δt4を、高圧縮比設定状態High−CRから低圧縮比の設定状態Low−CRへ切り換える場合のVTCのディレイ期間Δt(図5),Δt3(図7)よりも小さく設定している。つまり、圧縮比の切換量が小さいほどVTCの切換制限度合いを小さくし、圧縮比の切換量が大きいほどVTCの切換制限度合いを大きくしている。これにより、圧縮比の切換量に応じてより適切にVTCの切換を制限することができる。
【0024】
図12〜14を参照して本発明の第5実施例を説明する。この第5実施例では、吸気充填効率を可変とする可変吸気装置として、図1のバルブタイミング変更機構(VTC)5aに代えて、吸気コレクタ7bの下流側で分岐する吸気分岐通路7c,7dを切り換えて用いることにより吸気充填効率を可変とする吸気通路切換装置が用いられている。図12を参照して、この吸気通路切換装置は、吸気コレクタ7bの下流側で分岐する吸気分岐通路としての主吸気ポート7d及び副吸気ポート7cと、主吸気ポート7dを開閉する吸気ポート切換弁16と、この切換弁16を駆動する駆動装置16aと、を有している。この駆動装置16aの動作は上記ECU11からの指令信号により制御される。
【0025】
図13を参照して、VCRの低圧縮比側への切換と、吸気ポート切換弁16による「開」から「閉」への切換(高充填効率側への切換)とが同時に要求される場合には、吸気ポート切換弁の切換開始時期を所定のディレイ期間Δt5だけ遅らせて、この吸気ポート切換弁の切換を制限している。
【0026】
具体的には図14に示すように、S13dでは切換弁16aによる吸気ポート7c,7dの切換判断を行い、S14ではVCRの切換判断を行う。S15dでは、切換弁16による「開」から「閉」への切換、すなわち副吸気ポート7cへの切換と、VCRによる低圧縮比側への切換と、が同時に要求される同時切換要求時であるかを判定する。同時切換要求時であると判定されると、S16dへ進み、切換弁16による「閉」側への切換開始時期を所定のディレイ期間Δt5だけ遅らせて、可変吸気装置としての切換弁16による切換を制限する。
【0027】
この第4実施例のように、可変吸気装置として吸気通路切換装置を用いた場合でも、VTCを用いた場合とほぼ同様の作用・効果を得ることができる。
【0028】
図15〜17を参照して本発明の第6実施例を説明する。この第6実施例では、吸気充填効率を可変とする可変吸気装置として、過給機(の排気バイパス弁18a)を利用している。この過給機は、周知のようにコンプレッサ17と排気タービン18とを備え、かつ、排気タービン18をバイパスする排気バイパス通路18bを開閉するウエイストゲート(W/G)弁としての排気バイパス弁18aと、この排気バイパス弁18aを駆動する駆動装置18cと、を備えている。また、スロットル弁19の下流側の吸気通路には過給圧を検出する過給圧センサ30が設けられている。ECU11は、各種センサの検出信号に基づいて、排気バイパス弁18aの駆動装置18cやスロットル弁19の駆動装置19aに制御信号を出力し、その動作を制御する。
【0029】
排気バイパス弁18aは、本来、機関が高回転・高負荷にある場合に、余分な排気を逃がす目的で「開」側に制御されるものであるが、排気の流量が比較的小さい低回転・高負荷では、排気タービン18の効率を高めるために「閉」側に制御される。また、低負荷時には排気タービン18を駆動して過給を行う必要が無いため、排気を速やかに排出するために「開」側に設定されている。主に低回転における加速時には、排気バイパス弁18aを「開」から「閉」側に切り換えることで排気タービン18を駆動し、吸気の充填効率を高める様、機関が制御される。従って、この実施例では、図16に示すように、排気バイパス弁18aによる「開」から「閉」側への切換と、VCRの低圧縮比側への切換と、がともに要求される同時切換要求時t1には、排気バイパス弁18aの「閉」側への切換開始時期を所定のディレイ期間Δt6だけ遅らせることにより、切換過渡期のノッキングを抑制・回避している。
【0030】
具体的には図17に示すように、S13eでは排気バイパス弁18aの切換判断を行い、S14eではVCRの切換を判断を行う。S15eでは、排気バイパス弁18aによる「閉」方向への切換と、VCRの低圧縮比側への切換と、の双方が要求されている同時切換要求を判定する。同時切換要求時と判定されると、S16eへ進み、所定のディレイ期間Δt6だけ排気バイパス弁18aの「閉」方向への切換を遅延し、可変吸気装置としての過給機の排気バイパス弁18aの切換を制限する。S17eでは、S16eの切換制限処理を加味して排気バイパス弁18aの開度が制御される。同時切換要求時でない場合、S16eの処理が行われることなくS15eからS17eへ処理が移行する。
【0031】
なお、この第6実施例では、上述した第1〜5実施例とは異なり、S15eでの同時切換要求の判定前にVCRの切換処理(S18)を行っているが、同時切換要求時にVCRの切換制御が制限されることはないので問題はない。
【0032】
このように可変吸気装置として過給機を利用した第6実施例においても、上述した実施例と同じように同時切換要求時におけるノッキングの発生を有効に回避・抑制することができる。
【0033】
以上のように本発明を具体的な実施例に基づいて説明してきたが、本発明は上記実施例に限定されるものではなく、その趣旨を逸脱しない範囲で種々の変形・変更を含むものである。例えば、第4実施例のように可変圧縮比装置による圧縮比の変換量に応じて可変吸気装置による切換制限度合いを制御する技術を、他の実施例に適用することもできる。
【図面の簡単な説明】
【図1】本発明の第1〜4実施例に係るバルブタイミング変更機構を備えた内燃機関の制御装置を示すシステム構成図。
【図2】可変圧縮比機構の切換制御マップ。
【図3】バルブタイミング変更機構の切換制御マップ。
【図4】比較例に係る同時切換要求時のタイムチャート。
【図5】第1実施例に係る同時切換要求時のタイムチャート。
【図6】第1実施例に係る制御の流れを示すフローチャート。
【図7】第2実施例に係る同時切換要求時のタイムチャート。
【図8】第2実施例に係る制御の流れを示すフローチャート。
【図9】第3実施例に係る同時切換要求時のタイムチャート。
【図10】第3実施例に係る制御の流れを示すフローチャート。
【図11】第4実施例に係る制御の流れを示すフローチャート。
【図12】本発明の第5実施例に係る吸気通路切換装置を備えた内燃機関の制御装置を示すシステム構成図。
【図13】第5実施例に係る同時切換要求時のタイムチャート。
【図14】第5実施例に係る制御の流れを示すフローチャート。
【図15】本発明の第6実施例に係る過給機を備えた内燃機関の制御装置を示すシステム構成図。
【図16】第6実施例に係る同時切換要求時のタイムチャート。
【図17】第6実施例に係る制御の流れを示すフローチャート。
【図18】可変圧縮比装置としての可変圧縮比機構を示す構成図。
【符号の説明】
5a…バルブタイミング変更機構(可変吸気装置)
16a…吸気ポート切換弁(可変圧縮比装置)
18a…排気バイパス弁(可変圧縮比装置)
20…可変圧縮比機構(可変圧縮比装置)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a spark ignition type internal combustion engine having a variable compression ratio device and a variable intake device, and particularly suppresses occurrence of knocking when switching by a variable compression ratio device and switching by a variable intake device are requested at the same time. -It relates to technology to avoid.
[0002]
[Prior art]
In Patent Document 1, both the intake valve and the exhaust valve are provided with a valve timing changing mechanism that makes the valve timing variable, and the opening / closing timing of the intake valve and the opening / closing timing of the exhaust valve are set according to the engine speed and the engine load. It describes techniques for proper control.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 6-235307
[Problems to be solved by the invention]
In a spark ignition type internal combustion engine that uses a variable compression ratio device that makes the engine compression ratio variable in addition to a variable intake device that makes the intake charge efficiency of the engine variable like the valve timing changing mechanism described above, There are challenges. When starting acceleration, etc., when switching to the low compression ratio side by the variable compression ratio device and switching to the high filling efficiency side by the variable intake device are performed simultaneously, transient knocking is likely to occur, and combustion stability May be damaged. In other words, when the charging efficiency is increased by the variable intake device in response to the acceleration request, the response of the variable compression ratio device is not affected even if the variable compression ratio device is switched to the low compression ratio side at the same time to avoid the occurrence of knocking. Due to a delay or the like, knocking may easily occur transiently.
[0005]
The present invention has been made in view of such a problem, and it is possible to perform knocking in a switching transition period in which switching to a low compression ratio side by a variable compression ratio device and switching to a high charging efficiency side by a variable intake device are performed together. The main object is to provide a novel control device for an internal combustion engine that effectively suppresses and avoids the occurrence.
[0006]
[Means for Solving the Problems]
The present invention is applied to a spark ignition type internal combustion engine that includes a variable compression ratio device that makes the compression ratio of the engine variable and a variable intake device that makes the intake charge efficiency of the engine variable. When the switching to the low compression ratio side by the variable compression ratio device and the switching to the high charging efficiency side by the variable intake device are simultaneously requested, switching of the variable intake device is limited.
[0007]
【The invention's effect】
When switching to the low compression ratio side by the variable compression ratio device and switching to the high filling efficiency side by the variable intake device are requested at the same time, the switching of the variable intake device is restricted, so knocking in the transitional period Can be effectively suppressed and avoided.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. Note that the same components are denoted by the same reference numerals, and redundant description is omitted as appropriate.
[0009]
FIG. 1 is a system configuration diagram showing a control device for an internal combustion engine according to first to fourth embodiments of the present invention. This internal combustion engine is roughly constituted by a cylinder head 1 and a cylinder block 2 and is provided with a spark plug 9 for spark-igniting an air-fuel mixture in a combustion chamber 4 defined above a piston 3. This is a spark ignition type internal combustion engine. As is well known, this internal combustion engine includes an intake valve 5 that opens and closes an intake port 7, an exhaust valve 6 that opens and closes an exhaust port 8, a fuel injection valve 10 that injects fuel into the intake port 7, and an intake air (not shown). A variable compression ratio mechanism (hereinafter also simply referred to as a VCR) 20 as a variable compression ratio device having a throttle valve that opens and closes the upstream side of the collector and adjusts the intake air amount, and that can change the engine compression ratio. It has.
[0010]
The ECU (engine control unit) 11 is a well-known digital computer having a CPU, ROM, RAM, and an input / output interface, and includes an accelerator opening sensor 12 that detects the accelerator opening, and a water temperature sensor 13 that detects the engine water temperature. , Based on detection signals from various sensors such as a crank angle sensor 14 for detecting the engine speed and a knock sensor 15 for detecting the presence or absence of knocking, a fuel injection valve 10, a spark plug 9, a drive device for a throttle valve, In addition, control signals are output to various actuators such as the drive device 21 of the variable compression ratio mechanism 20 to comprehensively control the fuel injection amount, fuel injection timing, ignition timing, throttle opening, engine compression ratio, and the like.
[0011]
In this example, as a variable intake device that makes the intake charge efficiency of the engine variable, at least a variable valve device that can change the closing timing of the intake valve 5, more specifically, the phase of the intake camshaft with respect to the crankshaft is changed. Thus, a valve timing changing mechanism (VTC) 5a capable of changing the opening / closing timing of the intake valve is provided. As this type of valve timing changing mechanism 5a, those using a helical spline, vane type, etc., as disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 6-235307, are well known, and detailed description thereof is omitted.
[0012]
Referring to FIG. 18, the VCR 20 includes a lower link 24 rotatably mounted on a crankpin 23 of a crankshaft 22, an upper link 25 that links the lower link 24 and the piston 3, and an eccentric shaft 28. , And a control link 26 that links the eccentric shaft 28 and the lower link 24. When the rotational position of the control shaft 27 is changed by the driving device 21 (see FIG. 1), the motion restraint condition of the lower link 24 by the control link 26 changes, and the stroke characteristics of the piston 3, that is, the top dead of the piston 3 The point position and the engine compression ratio are continuously changed and controlled.
[0013]
FIG. 6 is a flowchart showing the flow of control according to the first embodiment of the present invention. In S (step) 11, detection signals of various sensors are read. In S12, based on the detection signal of the sensor, etc., the operation state such as the engine speed Ne and the engine load Te is calculated and determined. In S13, switching determination by the VTC 5a is performed. That is, it is determined whether or not VTC is switched based on the VTC control target value. In S14, switching determination by the VCR is performed. That is, it is determined whether or not the VCR is switched based on the VCR control target value.
[0014]
In S15, whether the switching to the low compression ratio side by the VCR as the variable compression ratio device and the switching to the high filling efficiency side by the VTC as the variable intake device are at the same time when simultaneous switching is requested. to decide. The VTC is set as a retard angle when it is “OFF”, which is the initial state, and is set as an advance angle when it is “ON”. In the advance angle setting, as compared with the retard angle setting, the amount of retardation relative to the bottom dead center of the intake closing timing is small, and the filling efficiency is high. Therefore, switching from “OFF” to “ON” of VTC is switching to the high filling efficiency side.
[0015]
The control target value of the VCR is obtained, for example, with reference to a VCR switching control map as shown in FIG. 2, which is set in advance, based on the engine speed Ne and the engine load Te. The VTC control target value is obtained, for example, based on the engine speed Ne and the engine load Te with reference to a preset switching control map for VTC as shown in FIG. For example, at the time of start acceleration that accelerates from the operation state A such as the idle state to the operation state B shown in FIGS. 2 and 3, the advance setting is performed from the retard setting OFF by the VTC so that the charging efficiency increases as the load increases. At the same time as switching to ON is required, switching from the high compression ratio setting state High-CR by the VCR to the low compression ratio setting state Low-CR is required so as to avoid the occurrence of knocking. Become.
[0016]
Referring to FIG. 6 again, when a simultaneous switching request is detected, the process proceeds from S15 to S16, and VTC switching is limited (limiting means). Specifically, as shown in FIG. 5, the VTC switching start timing is delayed by a predetermined delay period Δt. In subsequent S17, the VTC switching control is executed in consideration of the switching restriction process in S16, and in S18, the VCR switching control is executed. If there is no simultaneous switching request, the process proceeds from S15 to S17, and VTC and VCR switching control is performed in response to the request without performing the VTC switching restriction process of S16 (S17, S18).
[0017]
4 and 5 are time charts at the time of the simultaneous switching request, FIG. 4 is a comparative example without the VTC switching restriction process (S16), and FIG. 5 is the first having the VTC switching restriction process (S16). This corresponds to the embodiment. The solid line in the figure is the control target value / command value, and the broken line is the actual value that follows the command value with a response delay.
[0018]
In the comparative example shown in FIG. 4, at the timing t1 when the simultaneous switching request is made, the switching of the VTC and the switching of the VCR are started simultaneously without limiting the switching of the VTC. Therefore, during the transition period of switching, the closing timing of the intake valve is advanced before the engine compression ratio becomes sufficiently low, and knocking is likely to occur, which may impair combustion stability.
[0019]
On the other hand, in this embodiment shown in FIG. 5, at the timing t1 when the simultaneous switching request is made, the switching from the high compression ratio side to the low compression ratio side by the VCR is first preferentially started without any limitation, After a predetermined delay period Δt has elapsed, switching from OFF to ON by VTC is started. Since the VTC switching is thus limited, the occurrence of knocking in the VCR switching transition period can be effectively suppressed and avoided, and the combustion stability is improved.
[0020]
A second embodiment of the present invention will be described with reference to FIGS. In the second embodiment, VTC switching is limited by delaying VTC switching start by a predetermined delay period Δt3 when simultaneous switching is requested, as in the first embodiment described above. The VTC switching start timing t2 or the delay period Δt3 is calculated and controlled so that the switching end timing t3 substantially coincides, in other words, the VTC switching end timing is delayed to the vicinity of the VCR switching end timing t3. Specifically, when the simultaneous switching request is detected in S15 of FIG. 8, the process proceeds to S16a, and the VTC switching end time t3 is set. This t3 can be calculated and set from the VCR switching start timing t1 and the switching period Δt1. In the subsequent S16b, the VTC switching start timing t2 or the delay period Δt3 is calculated based on the VCR switching period Δt1 and the VTC switching period Δt2. Based on the obtained t2 or Δt3, switching of VTC is restricted (S17).
[0021]
According to the second embodiment, as in the first embodiment, the switching end timing of both the VCR and the VTC is controlled while restricting the switching of the VTC at the time of the simultaneous switching request and effectively suppressing and avoiding the occurrence of knocking. Can be set substantially at the same time, and the switching responsiveness is not substantially lowered in spite of delaying the VTC switching start timing.
[0022]
A third embodiment of the present invention will be described with reference to FIGS. In the third embodiment, by switching the VTC switching speed, the switching of the VTC is restricted and the switching end timing t3 of the VCR and the VTC is made substantially the same as in the second embodiment. Specifically, if it is determined in step 15 of FIG. 10 that simultaneous switching is requested, the process proceeds to S16c, where the VTC switching speed or the switching speed decreases so that the VCR and VTC switching end timings t3 substantially coincide. The amount is set. According to the third embodiment, similarly to the second embodiment, it is possible to effectively suppress and avoid the occurrence of knocking in the switching transition period without causing a decrease in switching response.
[0023]
A fourth embodiment of the present invention will be described with reference to FIG. In a configuration in which the VCR can be switched continuously or in three or more stages, the degree of limitation of VTC switching is changed / controlled according to the switching amount of the compression ratio. For example, the VTC delay period Δt4 when switching from the medium compression ratio setting state Middle-CR to the low compression ratio setting state Low-CR is changed from the high compression ratio setting state High-CR to the low compression ratio setting state Low-CR. Is set to be shorter than the delay periods Δt (FIG. 5) and Δt3 (FIG. 7) of the VTC when switching to. That is, the smaller the compression ratio switching amount, the smaller the VTC switching restriction degree, and the larger the compression ratio switching amount, the larger the VTC switching restriction degree. Thereby, switching of VTC can be more appropriately limited according to the switching amount of the compression ratio.
[0024]
A fifth embodiment of the present invention will be described with reference to FIGS. In the fifth embodiment, instead of the valve timing changing mechanism (VTC) 5a shown in FIG. 1, the intake branch passages 7c and 7d that branch on the downstream side of the intake collector 7b are used as variable intake devices that make the intake charge efficiency variable. An intake passage switching device that makes intake charge efficiency variable by switching and using is used. Referring to FIG. 12, this intake passage switching device includes a main intake port 7d and a sub intake port 7c as intake branch passages that branch downstream of intake collector 7b, and an intake port switching valve that opens and closes main intake port 7d. 16 and a drive device 16a for driving the switching valve 16. The operation of the driving device 16a is controlled by a command signal from the ECU 11.
[0025]
Referring to FIG. 13, when switching to the low compression ratio side of the VCR and switching from “open” to “closed” (switching to the high charging efficiency side) by the intake port switching valve 16 are required at the same time. The intake port switching valve switching start time is delayed by a predetermined delay period Δt5 to limit the switching of the intake port switching valve.
[0026]
Specifically, as shown in FIG. 14, in S13d, switching of the intake ports 7c, 7d by the switching valve 16a is determined, and in S14, switching determination of the VCR is performed. In S15d, there is a simultaneous switching request in which switching from "open" to "closed" by the switching valve 16, that is, switching to the auxiliary intake port 7c and switching to the low compression ratio side by the VCR are simultaneously required. Determine whether. If it is determined that the simultaneous switching is requested, the process proceeds to S16d, where the switching start time to the “closed” side by the switching valve 16 is delayed by a predetermined delay period Δt5, and switching by the switching valve 16 as the variable intake device is performed. Restrict.
[0027]
Even when the intake passage switching device is used as the variable intake device as in the fourth embodiment, substantially the same operations and effects as when the VTC is used can be obtained.
[0028]
A sixth embodiment of the present invention will be described with reference to FIGS. In the sixth embodiment, a supercharger (the exhaust bypass valve 18a) is used as a variable intake device that makes intake charge efficiency variable. As is well known, this supercharger includes a compressor 17 and an exhaust turbine 18, and an exhaust bypass valve 18a serving as a waste gate (W / G) valve that opens and closes an exhaust bypass passage 18b that bypasses the exhaust turbine 18. And a drive unit 18c for driving the exhaust bypass valve 18a. A supercharging pressure sensor 30 that detects the supercharging pressure is provided in the intake passage on the downstream side of the throttle valve 19. The ECU 11 outputs a control signal to the drive device 18c of the exhaust bypass valve 18a and the drive device 19a of the throttle valve 19 based on detection signals of various sensors, and controls its operation.
[0029]
The exhaust bypass valve 18a is originally controlled to “open” for the purpose of escaping excess exhaust when the engine is at high speed and high load. However, the exhaust gas flow rate is relatively low. At high loads, the “closed” side is controlled to increase the efficiency of the exhaust turbine 18. Further, since there is no need to perform supercharging by driving the exhaust turbine 18 at low load, it is set to the “open” side in order to quickly exhaust the exhaust. When accelerating mainly at low speed, the engine is controlled so as to drive the exhaust turbine 18 by switching the exhaust bypass valve 18a from the “open” side to the “closed” side to increase the charging efficiency of the intake air. Therefore, in this embodiment, as shown in FIG. 16, simultaneous switching is required for both switching from "open" to "closed" by the exhaust bypass valve 18a and switching to the low compression ratio side of the VCR. At the request time t1, the switching start timing of the exhaust bypass valve 18a to the “closed” side is delayed by a predetermined delay period Δt6 to suppress / avoid knocking in the switching transition period.
[0030]
Specifically, as shown in FIG. 17, the switching determination of the exhaust bypass valve 18a is performed in S13e, and the switching of the VCR is determined in S14e. In S15e, a simultaneous switching request is requested in which both the switching to the “closed” direction by the exhaust bypass valve 18a and the switching to the low compression ratio side of the VCR are required. If it is determined that the simultaneous switching is requested, the process proceeds to S16e, where the switching of the exhaust bypass valve 18a in the “closed” direction is delayed by a predetermined delay period Δt6, and the exhaust bypass valve 18a of the supercharger as the variable intake device is delayed. Limit switching. In S17e, the opening degree of the exhaust bypass valve 18a is controlled in consideration of the switching restriction process in S16e. If it is not at the time of simultaneous switching request, the process proceeds from S15e to S17e without performing the process of S16e.
[0031]
In the sixth embodiment, unlike the first to fifth embodiments described above, the VCR switching process (S18) is performed before the determination of the simultaneous switching request in S15e. There is no problem because the switching control is not limited.
[0032]
As described above, also in the sixth embodiment using the supercharger as the variable intake device, it is possible to effectively avoid and suppress the occurrence of knocking at the time of the simultaneous switching request as in the above-described embodiment.
[0033]
As described above, the present invention has been described based on the specific embodiments. However, the present invention is not limited to the above embodiments, and includes various modifications and changes without departing from the spirit of the present invention. For example, a technique of controlling the switching restriction degree by the variable intake device according to the amount of compression ratio conversion by the variable compression ratio device as in the fourth embodiment can be applied to other embodiments.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram showing a control device for an internal combustion engine provided with a valve timing changing mechanism according to first to fourth embodiments of the present invention.
FIG. 2 is a switching control map of a variable compression ratio mechanism.
FIG. 3 is a switching control map of a valve timing changing mechanism.
FIG. 4 is a time chart at the time of simultaneous switching request according to a comparative example.
FIG. 5 is a time chart at the time of simultaneous switching request according to the first embodiment.
FIG. 6 is a flowchart showing a flow of control according to the first embodiment.
FIG. 7 is a time chart at the time of a simultaneous switching request according to the second embodiment.
FIG. 8 is a flowchart showing a flow of control according to the second embodiment.
FIG. 9 is a time chart at the time of a simultaneous switching request according to the third embodiment.
FIG. 10 is a flowchart showing a flow of control according to the third embodiment.
FIG. 11 is a flowchart showing a flow of control according to a fourth embodiment.
FIG. 12 is a system configuration diagram showing a control device for an internal combustion engine including an intake passage switching device according to a fifth embodiment of the present invention.
FIG. 13 is a time chart at the time of simultaneous switching request according to the fifth embodiment.
FIG. 14 is a flowchart showing a flow of control according to the fifth embodiment.
FIG. 15 is a system configuration diagram showing a control device for an internal combustion engine including a supercharger according to a sixth embodiment of the present invention.
FIG. 16 is a time chart at the time of simultaneous switching request according to the sixth embodiment;
FIG. 17 is a flowchart showing a flow of control according to the sixth embodiment.
FIG. 18 is a configuration diagram showing a variable compression ratio mechanism as a variable compression ratio device.
[Explanation of symbols]
5a ... Valve timing changing mechanism (variable intake device)
16a ... Intake port switching valve (variable compression ratio device)
18a ... Exhaust bypass valve (variable compression ratio device)
20 ... Variable compression ratio mechanism (variable compression ratio device)

Claims (9)

機関の圧縮比を可変とする可変圧縮比装置と、機関の吸気充填効率を可変とする可変吸気装置と、を有する火花点火式の内燃機関に適用される制御装置において、
上記可変圧縮比装置による低圧縮比側への切換と、上記可変吸気装置による高充填効率側への切換と、が同時に要求される同時切換要求時には、上記可変吸気装置の切換を制限する制限手段を有することを特徴とする内燃機関の制御装置。
In a control device applied to a spark ignition type internal combustion engine having a variable compression ratio device that makes the compression ratio of the engine variable, and a variable intake device that makes the intake charge efficiency of the engine variable,
Limiting means for restricting switching of the variable intake device at the time of simultaneous switching request for simultaneously switching to the low compression ratio side by the variable compression ratio device and switching to the high filling efficiency side by the variable intake device A control apparatus for an internal combustion engine, comprising:
上記制限手段は、上記可変吸気装置の切換開始時期を所定のディレイ期間だけ遅らせることを特徴とする請求項1に記載の内燃機関の制御装置。2. The control apparatus for an internal combustion engine according to claim 1, wherein the limiting means delays the switching start timing of the variable intake device by a predetermined delay period. 上記制限手段は、上記可変吸気装置の切換終了時期を上記可変圧縮比装置の切換終了時期の近傍まで遅らせることを特徴とする請求項1又は2に記載の内燃機関の制御装置。3. The control device for an internal combustion engine according to claim 1 or 2, wherein the limiting means delays the switching end timing of the variable intake device to the vicinity of the switching end timing of the variable compression ratio device. 上記制限手段は、上記可変吸気装置の切換速度を低下することを特徴とする請求項1〜3のいずれかに記載の内燃機関の制御装置。The control device for an internal combustion engine according to any one of claims 1 to 3, wherein the limiting means reduces a switching speed of the variable intake device. 上記制限装置は、上記可変圧縮比装置の切換量に応じて、上記可変吸気装置の切換制限度合いを制御することを特徴とする請求項1〜4のいずれかに記載の内燃機関の制御装置。The control device for an internal combustion engine according to any one of claims 1 to 4, wherein the restriction device controls a switching restriction degree of the variable intake device in accordance with a switching amount of the variable compression ratio device. 上記可変吸気装置が、少なくとも吸気弁の閉時期を可変とする可変動弁装置であることを特徴とする請求項1〜5のいずれかに記載の内燃機関の制御装置。The control apparatus for an internal combustion engine according to any one of claims 1 to 5, wherein the variable intake device is a variable valve device that makes at least the closing timing of the intake valve variable. 上記可変動弁装置が、クランクシャフトに対するカムシャフトの位相を可変とすることにより吸気弁の開閉時期を制御するバルブタイミング変更機構であることを特徴とする請求項6に記載の内燃機関の制御装置。7. The control apparatus for an internal combustion engine according to claim 6, wherein the variable valve operating mechanism is a valve timing changing mechanism that controls the opening / closing timing of the intake valve by making the phase of the camshaft relative to the crankshaft variable. . 上記可変吸気装置が、吸気コレクタから分岐する複数の吸気分岐通路を切り換える通路切換装置であることを特徴とする請求項1〜5のいずれかに記載の内燃機関の制御装置。6. The control device for an internal combustion engine according to claim 1, wherein the variable intake device is a passage switching device that switches a plurality of intake branch passages branched from an intake collector. 上記可変吸気装置が、排気バイパス弁を備えた過給機であることを特徴とする請求項1〜5のいずれかに記載の内燃機関の制御装置。6. The control apparatus for an internal combustion engine according to claim 1, wherein the variable intake device is a supercharger provided with an exhaust bypass valve.
JP2003168662A 2003-06-13 2003-06-13 Controller for internal combustion engine Pending JP2005002931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003168662A JP2005002931A (en) 2003-06-13 2003-06-13 Controller for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003168662A JP2005002931A (en) 2003-06-13 2003-06-13 Controller for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2005002931A true JP2005002931A (en) 2005-01-06

Family

ID=34094030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003168662A Pending JP2005002931A (en) 2003-06-13 2003-06-13 Controller for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2005002931A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005059335A1 (en) * 2003-12-17 2005-06-30 Honda Motor Co., Ltd. Device and method for controlling internal combustion engine with universal valve gear system and variable compressing mechanism
JP2007056796A (en) * 2005-08-25 2007-03-08 Toyota Motor Corp Internal combustion engine equipped with variable compression ratio mechanism
JP2007182828A (en) * 2006-01-10 2007-07-19 Toyota Motor Corp Control device for internal combustion engine
JP2010196588A (en) * 2009-02-25 2010-09-09 Hitachi Automotive Systems Ltd Control device for variable valve train
JP2013245567A (en) * 2012-05-23 2013-12-09 Toyota Motor Corp Internal combustion engine
WO2014199690A1 (en) * 2013-06-11 2014-12-18 日立オートモティブシステムズ株式会社 Control device and control method for internal combustion engine
US9037382B2 (en) 2012-08-13 2015-05-19 Nissan Motor Co., Ltd. Control system for internal combustion engine
JP2017025891A (en) * 2015-07-28 2017-02-02 マツダ株式会社 Control device of engine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005059335A1 (en) * 2003-12-17 2005-06-30 Honda Motor Co., Ltd. Device and method for controlling internal combustion engine with universal valve gear system and variable compressing mechanism
US7506620B2 (en) 2003-12-17 2009-03-24 Honda Motor Co., Ltd. Device and method for controlling internal combustion engine with universal valve gear system and variable compressing mechanism
JP2007056796A (en) * 2005-08-25 2007-03-08 Toyota Motor Corp Internal combustion engine equipped with variable compression ratio mechanism
JP2007182828A (en) * 2006-01-10 2007-07-19 Toyota Motor Corp Control device for internal combustion engine
JP2010196588A (en) * 2009-02-25 2010-09-09 Hitachi Automotive Systems Ltd Control device for variable valve train
JP2013245567A (en) * 2012-05-23 2013-12-09 Toyota Motor Corp Internal combustion engine
US9037382B2 (en) 2012-08-13 2015-05-19 Nissan Motor Co., Ltd. Control system for internal combustion engine
WO2014199690A1 (en) * 2013-06-11 2014-12-18 日立オートモティブシステムズ株式会社 Control device and control method for internal combustion engine
JP2014240623A (en) * 2013-06-11 2014-12-25 日立オートモティブシステムズ株式会社 Internal combustion engine controller
JP2017025891A (en) * 2015-07-28 2017-02-02 マツダ株式会社 Control device of engine

Similar Documents

Publication Publication Date Title
JP5152135B2 (en) Intake air amount control device for supercharged engine
EP1848885B1 (en) Control method and control apparatus for internal combustion engine
KR101497861B1 (en) Control device for internal combustion engine
JP2007085258A (en) Supercharging pressure control device for internal combustion engine
US6691506B2 (en) Device and method for controlling variable valve timing of internal combustion engine
JP6350304B2 (en) Lean burn engine
JP4655980B2 (en) Control device and control method for internal combustion engine
JP2005002931A (en) Controller for internal combustion engine
JP4797868B2 (en) Turbocharged engine
JP2007077840A (en) Internal combustion engine
JP2008297929A (en) Internal combustion engine controlling device
JP6296430B2 (en) Engine control device
JP2009085069A (en) Control device for internal combustion engine
JP2007182828A (en) Control device for internal combustion engine
JP5263249B2 (en) Variable valve timing control device for an internal combustion engine with a supercharger
JP6403102B2 (en) Control device for turbocharged engine
JP2009216035A (en) Control device of internal combustion engine
JP4502030B2 (en) Control device for internal combustion engine
JP2007247434A (en) Control device and control method for internal combustion engine
JPH09166030A (en) Combustion controller for internal combustion engine
JP2004019554A (en) Control device of internal combustion engine
JP2019039405A (en) Engine controller
JP5041167B2 (en) Engine control device
JP4200356B2 (en) Fuel control apparatus for in-cylinder internal combustion engine
WO2019145991A1 (en) Internal combustion engine control method and internal combustion engine control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080603