JP2007077840A - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
JP2007077840A
JP2007077840A JP2005264517A JP2005264517A JP2007077840A JP 2007077840 A JP2007077840 A JP 2007077840A JP 2005264517 A JP2005264517 A JP 2005264517A JP 2005264517 A JP2005264517 A JP 2005264517A JP 2007077840 A JP2007077840 A JP 2007077840A
Authority
JP
Japan
Prior art keywords
exhaust
temperature
catalyst
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005264517A
Other languages
Japanese (ja)
Inventor
Ryosuke Hiyoshi
亮介 日吉
Susumu Ishizaki
晋 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005264517A priority Critical patent/JP2007077840A/en
Publication of JP2007077840A publication Critical patent/JP2007077840A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress generation of an unburnt HC quantity by early activation of an exhaust emission purification catalyst. <P>SOLUTION: This internal combustion engine 1 is provided with: a variable valve train 16 for variably controlling a lift characteristic and an opening/closing timing characteristic of an inlet valve and an outlet valve in response to an engine operation condition; and a turbocharger 2 for executing supercharging by driving a turbine by an exhaust gas; and is so controlled that, in a cooling idle time, a lift amount and an opening period of an exhaust vale are reduced, an inlet valve opening period is increased and charging pressure is increased, relative to those in a warming idle time. Thereby, push-out loss in an exhaust process is relatively drastically increased and the internal combustion engine 1 is inevitably operated in a high-load state, whereby a further large quantity of a hot exhaust gas can be provided and the exhaust emission purification catalyst 17 can be activated in a further early stage. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、排気系に排気浄化用の触媒を備えた内燃機関に関し、特に吸気弁及び排気弁のバルブリフト特性を可変制御可能な可変動弁機構と、排気ガスによりタービンを駆動して過給を行うターボチャージャを備えた内燃機関に関する。   The present invention relates to an internal combustion engine having an exhaust purification catalyst in an exhaust system, and in particular, a variable valve mechanism capable of variably controlling the valve lift characteristics of an intake valve and an exhaust valve, and supercharging by driving a turbine with exhaust gas. The present invention relates to an internal combustion engine equipped with a turbocharger that performs the above.

特許文献1には、排気ガスタービンを備えた内燃機関において、少なくとも吸気弁または排気弁の一方の位相を変更することで、加速要求に応じて排気ガス量を増大させ、排気ガスタービンのタービン回転数の立ち上がりを速くするようにした可変バルブタイミング装置が開示されている。
特開平9−125994号公報
In Patent Document 1, in an internal combustion engine equipped with an exhaust gas turbine, at least one of the phases of an intake valve or an exhaust valve is changed to increase the amount of exhaust gas in response to an acceleration request, and the turbine rotation of the exhaust gas turbine A variable valve timing device is disclosed in which the rise of the number is made faster.
JP-A-9-125994

しかしながら、この特許文献1の技術では、冷機アイドル時に暖機アイドル時よりも排気弁のリフト量・開弁期間を縮小し、かつ排気弁開時期を遅角化するように排気弁を制御されておらず、ターボチャージャ回転速度上昇遅れによって遅れて開始する過給圧上昇過程において、排気熱エネルギ量を最大化するように排気弁リフト量・開度・中心角が適切に制御されていない。そのため、冷機時アイドル運転開始初期における排気流量が、排気弁開度によって律束されるため排気流量を増大することができず、触媒昇温に使用される排気熱エネルギ量を増大することができなかったため、触媒温度上昇速度が遅くなり触媒が活性化するまでに排出する未燃HC量が増大する虞がある。また、冷機時アイドル運転から暖機時アイドル運転への移行期において触媒温度・水温が上昇している時、排出される排気熱エネルギが過剰になり、燃費が悪化してしまう虞がある。   However, in the technique of Patent Document 1, the exhaust valve is controlled so that the lift amount and the valve opening period of the exhaust valve are reduced at the time of cold idling and the opening time of the exhaust valve is retarded compared to the warm idling. In addition, the exhaust valve lift amount, the opening degree, and the central angle are not properly controlled so as to maximize the exhaust heat energy amount in the process of increasing the supercharging pressure that is delayed by the turbocharger rotational speed increase delay. Therefore, the exhaust flow rate at the beginning of cold idle operation is limited by the exhaust valve opening, so the exhaust flow rate cannot be increased, and the exhaust heat energy amount used for catalyst temperature rise can be increased. Therefore, there is a possibility that the unburned HC amount discharged before the catalyst is activated is increased because the rate of increase in the catalyst temperature is slow. Further, when the catalyst temperature and the water temperature are rising in the transition period from the cold idling operation to the warm idling operation, the exhaust heat energy discharged becomes excessive, and the fuel consumption may be deteriorated.

そこで、本発明の内燃機関は、冷機アイドル時には、暖機アイドル時よりも排気弁のリフト量及び開弁期間を縮小し、吸気弁開弁期間を増大し、かつ過給圧を増大するよう制御されることを特徴としている。   Therefore, the internal combustion engine of the present invention is controlled to reduce the lift amount and the valve opening period of the exhaust valve at the time of cold idling, increase the intake valve opening period, and increase the supercharging pressure at the time of cold idling. It is characterized by being.

冷機アイドル時の排気弁リフト量を暖機後の排気弁リフト量よりも小さくすることで、高温・高圧の排気ガスが、わずかに開いた排気弁の隙間からピストンの上昇によって強制的に排出されるため、排気行程における排気ガスの押出損失が大幅に増加する。そのため、暖機後と同等の軸トルクおよび機関回転速度を維持するためには、燃料の増量が必要となり、より高負荷運転を行うことになる。これにより、より大量でかつ高温の排気ガスが排出され、排気浄化触媒の早期活性化を行うことが可能となる。   By making the exhaust valve lift amount at the time of cold idling smaller than the exhaust valve lift amount after warm-up, high temperature and high pressure exhaust gas is forcibly exhausted by the lift of the piston through the slightly open exhaust valve gap. Therefore, the extrusion loss of the exhaust gas in the exhaust stroke is greatly increased. Therefore, in order to maintain the same shaft torque and engine rotation speed as after warm-up, it is necessary to increase the amount of fuel and perform a higher load operation. As a result, a larger amount of high-temperature exhaust gas is discharged, and the exhaust purification catalyst can be activated early.

また、排気弁のリフト量を小さくするだけではなく排気弁の開時期を下死点以降にまで遅らせるようにすると、膨張行程で燃焼した既燃ガスが下死点後に再度圧縮されて高温・高圧となり、排気の押出仕事がリフト量の小リフト化のみの場合よりもさらに増加する。そのため、さらに高温の排気ガスが排出されるようになり、排気浄化触媒の温度が急速に上昇する。   Also, if not only reducing the lift amount of the exhaust valve but also delaying the opening timing of the exhaust valve until after the bottom dead center, the burnt gas burned in the expansion stroke is compressed again after the bottom dead center, resulting in high temperature and high pressure. Thus, the exhaust extrusion work is further increased as compared with the case where only the lift amount is reduced. As a result, higher-temperature exhaust gas is discharged, and the temperature of the exhaust purification catalyst rises rapidly.

そして、さらに過給圧を増大させると、さらに大量の排気ガスが排出されるようになる。   When the supercharging pressure is further increased, a larger amount of exhaust gas is discharged.

本発明によれば、冷機アイドル時に排気弁のリフト量及び開弁期間を縮小し、排気弁開時期を遅角化し、吸気弁開弁期間を増大し、過給圧を増大することで、排気行程での押出損失が大幅に増加し、必然的に、より負荷の高い状態で内燃機関が運転されることになるため、高温の排気ガスが一層大量に得られ、排気浄化触媒を一層早期に活性化できる。   According to the present invention, the exhaust valve lift amount and the valve opening period are reduced during cold idling, the exhaust valve opening timing is retarded, the intake valve opening period is increased, and the supercharging pressure is increased. Extrusion loss in the process is greatly increased, and the internal combustion engine is inevitably operated at a higher load, so that a larger amount of high-temperature exhaust gas can be obtained, and the exhaust purification catalyst can be used earlier. Can be activated.

以下、本発明の一実施形態を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、この発明に係る内燃機関1の吸排気系も構成を示したものであり、図示するように、この内燃機関1は、過給機としてターボ過給機2を備えている。このターボ過給機2は、内燃機関1の排気通路3に位置する排気タービン4と吸気通路5に位置するコンプレッサ6とを同軸状に配置した構成であり、運転条件に応じて過給圧を制御するために、排気タービン4の上流側から下流側へ排気の一部をバイパスさせる排気バイパス弁7を備えている。吸気通路5のコンプレッサ6下流側には、コンプレッサ6により温度上昇した吸気を冷却する吸気冷却手段として、インタークーラ8が介装されている。このインタークーラ8は、例えば水冷式として構成されており、その冷却水の循環を制御することで冷却量を調節することが可能である。   FIG. 1 shows the configuration of an intake / exhaust system of an internal combustion engine 1 according to the present invention. As shown in the figure, the internal combustion engine 1 includes a turbocharger 2 as a supercharger. The turbocharger 2 has a configuration in which an exhaust turbine 4 located in the exhaust passage 3 of the internal combustion engine 1 and a compressor 6 located in the intake passage 5 are coaxially arranged, and the supercharging pressure is set according to operating conditions. In order to control, an exhaust bypass valve 7 for bypassing a part of the exhaust from the upstream side to the downstream side of the exhaust turbine 4 is provided. An intercooler 8 is interposed on the downstream side of the compressor 6 in the intake passage 5 as intake air cooling means for cooling intake air whose temperature has increased by the compressor 6. This intercooler 8 is configured, for example, as a water-cooled type, and the amount of cooling can be adjusted by controlling the circulation of the cooling water.

また、排気タービン4下流の排気通路3には、排気浄化用の排気浄化触媒17が介装されている。この排気浄化触媒17には、触媒温度を検出する温度検知手段としての触媒温度センサ18が配置されている。さらに、内燃機関1には、冷却水温度を検出する水温センサ19と、アクセルペダルに開度を検出するアクセル開度センサ20と、車速を検出する車速センサ21とを備えており、これらセンサ類の検出信号はそれぞれエンジンコントロールユニット(以下、ECUと記す)22に入力されている。   An exhaust purification catalyst 17 for exhaust purification is interposed in the exhaust passage 3 downstream of the exhaust turbine 4. The exhaust purification catalyst 17 is provided with a catalyst temperature sensor 18 as temperature detection means for detecting the catalyst temperature. The internal combustion engine 1 further includes a water temperature sensor 19 for detecting the coolant temperature, an accelerator opening sensor 20 for detecting the opening of the accelerator pedal, and a vehicle speed sensor 21 for detecting the vehicle speed. These detection signals are respectively input to an engine control unit (hereinafter referred to as ECU) 22.

内燃機関1は、4サイクルガソリン機関であり、その吸気弁及び排気弁の開閉時期をECU22からの制御信号により可変制御される可変動弁機構16を備えている。   The internal combustion engine 1 is a four-cycle gasoline engine, and includes a variable valve mechanism 16 that variably controls the opening and closing timings of the intake valve and the exhaust valve by a control signal from the ECU 22.

上記可変動弁機構16は、例えば、吸気弁のリフト・作動角を変化させるリフト・作動角可変機構12と、そのリフトの中心角の位相(クランクシャフトに対する位相)を進角もしくは遅角させる位相可変機構13と、を組み合わせたものとして構成されているが、公知の種々の形式のものが適用可能である。上記リフト・作動角可変機構の一例は、例えば特開平11−107725号公報などに記載されている。この可変動弁機構16では、リフト・作動角を大小変化させると同時にそのリフト全体を遅進させることにより、吸気弁の開時期および閉時期をそれぞれ独立して制御することができ、運転条件に応じた吸気弁の開閉時期を得ることが可能である。特に、吸気弁の開時期を変化させることで、バルブオーバラップを大小変化させることができ、内部排気還流の還流量を可変制御できる。   The variable valve mechanism 16 includes, for example, a lift / operation angle variable mechanism 12 that changes the lift / operation angle of the intake valve, and a phase that advances or retards the phase of the center angle of the lift (phase with respect to the crankshaft). Although it is configured as a combination of the variable mechanism 13, various known types can be applied. An example of the lift / operating angle variable mechanism is described in, for example, Japanese Patent Application Laid-Open No. 11-107725. In this variable valve mechanism 16, the opening / closing timing of the intake valve can be controlled independently by changing the lift / operating angle at the same time and simultaneously delaying the entire lift. It is possible to obtain the opening / closing timing of the corresponding intake valve. In particular, by changing the opening timing of the intake valve, the valve overlap can be changed in magnitude, and the recirculation amount of the internal exhaust gas recirculation can be variably controlled.

図2は、本実施形態における内燃機関1の冷機アイドル時の吸排気弁のバルブリフト特性と、暖機アイドル時の吸排気弁のバルブリフト特性とを対比させて示したものである。   FIG. 2 shows a comparison between the valve lift characteristics of the intake / exhaust valves when the internal combustion engine 1 is cold idling and the valve lift characteristics of the intake / exhaust valves when the engine is warm idle.

この図2に示すように、本実施形態における内燃機関1の可変動弁機構16は、冷機アイドル時(図中の太実線)には、暖機アイドル時(図中の細実線)よりも排気弁のリフト量及び開弁期間を縮小し、排気弁開時期を遅角化し、吸気弁のリフト量及び吸気弁開弁期間を増大するよう制御される。さらに、図3のタイミングチャートに示すように、ターボ過給機2によって、冷機アイドル時の過給圧(冷機時アイドル過給圧)が、暖機アイドル時の過給圧(暖機時アイドル過給圧)よりも大きくなるよう制御される。換言すれば、内燃機関1は、冷機アイドル時に暖機アイドル時よりも過給圧が増大するよう制御されている。   As shown in FIG. 2, the variable valve mechanism 16 of the internal combustion engine 1 according to the present embodiment is more exhausted at the time of cold idling (thick solid line in the figure) than at the time of warm idling (thin solid line in the figure). Control is performed to reduce the lift amount and valve opening period of the valve, retard the exhaust valve opening timing, and increase the lift amount and intake valve opening period of the intake valve. Further, as shown in the timing chart of FIG. 3, the turbocharger 2 causes the supercharging pressure at the time of cold idling (cold idling supercharging pressure) to become the supercharging pressure at the warm idling idling (idle superheat at warm up). It is controlled to be larger than (supply pressure). In other words, the internal combustion engine 1 is controlled so that the supercharging pressure increases at the time of cold idling than at the time of warm idling.

図3のタイミングチャートを用いて、冷機始動時における可変動弁機構16の具体的な制御例を詳述する。   A specific control example of the variable valve mechanism 16 at the time of cold start will be described in detail using the timing chart of FIG.

内燃機関1は、冷機アイドル時は冷機時アイドル回転速度となるよう制御され、暖機アイドル時は冷機時アイドル回転速度よりも小さい暖機時アイドル回転速度となるよう制御される。尚、本実施形態においては、燃焼開始後、機関回転速度が暖機時アイドル回転速度になるまでを冷機アイドル時と呼ぶものとする。   The internal combustion engine 1 is controlled so as to have a cold idle speed when the engine is cold, and is controlled so as to have a warm idle speed smaller than the cold idle speed when the engine is warm. In the present embodiment, after the start of combustion, the time until the engine rotational speed reaches the idle rotational speed during warm-up is referred to as cold idling.

ターボ過給機2による過給圧は、燃焼開始後、機関回転速度が冷機時アイドル回転速度に達するまでの第1制御区間で増大する。   The supercharging pressure by the turbocharger 2 increases in the first control section after the start of combustion until the engine speed reaches the cold idle speed.

この第1制御区間においては、排気弁のリフト量・開弁期間が実質的に増大するよう制御されている。換言すると、触媒温度の温度上昇に応じて排気弁のリフト量・開弁期間が増大するよう制御されている。   In the first control section, the exhaust valve lift amount and the valve opening period are controlled to substantially increase. In other words, the lift amount and the valve opening period of the exhaust valve are controlled to increase as the catalyst temperature rises.

尚、ここで、触媒温度と冷却水温度との間には相関があり、冷却水温度は触媒温度と同一の値とはならないが、両者の機関始動後の温度変化傾向は略相似する。つまり、冷却水温度から触媒温度を推定可能であり、触媒温度から冷却水温度を推定可能である。そこで、冷却水温度または触媒温度のうちの少なくとも一方の温度を検知し、冷却水温度または触媒温度のうちの少なくとも一方の温度上昇に応じて排気弁のリフト量・開弁期間が増大するよう制御するようにしてもよい。   Here, there is a correlation between the catalyst temperature and the cooling water temperature, and the cooling water temperature does not have the same value as the catalyst temperature, but the temperature change tendency after the engine start is substantially similar. That is, the catalyst temperature can be estimated from the cooling water temperature, and the cooling water temperature can be estimated from the catalyst temperature. Therefore, the temperature of at least one of the cooling water temperature and the catalyst temperature is detected, and control is performed so that the lift amount and the valve opening period of the exhaust valve increase according to the temperature rise of at least one of the cooling water temperature and the catalyst temperature. You may make it do.

また、排気弁のリフト中心角の位相及び吸気弁のリフト中心角の位相は、上述した第1制御期間において遅角するよう制御されている。そして、第1制御区間においては、触媒温度の上昇に応じて、吸気量が相対的に増大するよう制御されている。尚、第1制御区間における吸気量は、冷却水温度または触媒温度のうちの少なくとも一方の温度上昇に応じて、相対的に増大するように制御してもよい。   Further, the phase of the lift center angle of the exhaust valve and the phase of the lift center angle of the intake valve are controlled so as to be retarded in the first control period described above. In the first control section, the intake air amount is controlled to increase relatively as the catalyst temperature increases. Note that the intake air amount in the first control section may be controlled to relatively increase in accordance with the temperature rise of at least one of the cooling water temperature and the catalyst temperature.

冷機時かつ始動開始後の冷機時アイドル回転速度に至るまでの機関回転速度上昇過程においては、冷機時始動開始後直ちに排気弁小リフト量・小開弁期間設定として排気温度を上昇させる。その後、まだ過給圧が低い時は排気弁からの排気期間中排気流出速度がほぼ音速となるように排気弁を小リフト量・小開弁期間とすることにより排気熱エネルギを最大化して触媒温度上昇を急速化する。   In the process of increasing the engine rotational speed from the cold start to the cold idle idle speed after starting, the exhaust temperature is raised immediately after starting the cold start as the exhaust valve small lift amount / small valve opening period setting. After that, when the supercharging pressure is still low, the exhaust heat energy is maximized by setting the exhaust valve to a small lift amount and a small valve opening period so that the exhaust outflow speed from the exhaust valve is almost sonic. Rapid increase in temperature.

尚、排気弁のリフト特性を小リフト化し、排気弁閉時期を遅角した際には、排気温度を上昇させるために点火時期は遅角化されているが、排気温度上昇の促進化の観点からみれば、排気弁の小リフト化と排気弁閉時期の遅角化が終了して後に、点火時期の遅角化を開始するのが望ましい
その後、タービン回転速度上昇に伴う過給圧上昇によって生じる冷却水温上昇または触媒温度上昇を検出し、冷却水温上昇または触媒温度上昇応じて排気弁リフト量・開弁期間を増大することによって、排気弁からの排気流量が排気弁開口面積によって律束されることを回避し、排気流量増大・排気浄化触媒17に与える排気熱エネルギ量を増大するようにすることで、触媒温度上昇をさらに急速化することができる。
When the lift characteristics of the exhaust valve are reduced and the exhaust valve closing timing is retarded, the ignition timing is retarded to increase the exhaust temperature. In view of this, it is desirable to start retarding the ignition timing after the exhaust valve has been made smaller and the exhaust valve closing timing retarded. By detecting the cooling water temperature rise or catalyst temperature rise that occurs and increasing the exhaust valve lift amount and valve opening period according to the cooling water temperature rise or catalyst temperature rise, the exhaust flow rate from the exhaust valve is regulated by the exhaust valve opening area. By avoiding this, and increasing the exhaust heat energy amount applied to the exhaust gas flow rate increase / exhaust purification catalyst 17, the catalyst temperature rise can be further accelerated.

そして、冷機時アイドル開始後過給圧上昇開始時に過給圧上昇に応じて排気弁リフト量・開弁期間を増大することによってエンジントルクが増大し、機関回転速度を設定回転まで増大することができる
さらに、触媒温度が上昇して触媒活性化温度に達してからは(第2制御区間)、排気浄化触媒17の温度上昇に必要な排気熱エネルギ量を減少することができるため、排気弁のリフト量・開弁期間を増大して排気押出し損失を減少させる。これに伴い機関回転速度を一定に維持するため吸気弁リフト量を減少させることにより、排気熱エネルギ量が減少し、排気浄化触媒17を活性化させると同時に燃費悪化を回避できる。
Then, the engine torque is increased by increasing the exhaust valve lift amount and the valve opening period in accordance with the boost pressure increase at the start of the boost pressure increase after the start of idling at the time of cooling. Further, after the catalyst temperature rises and reaches the catalyst activation temperature (second control section), the amount of exhaust heat energy necessary for the temperature rise of the exhaust purification catalyst 17 can be reduced. Increase the lift amount and valve opening period to reduce exhaust extrusion loss. Along with this, by reducing the intake valve lift amount in order to keep the engine speed constant, the exhaust heat energy amount is reduced, the exhaust purification catalyst 17 is activated, and at the same time, deterioration of fuel consumption can be avoided.

さらに、吸気弁のリフト中心角の位相は、触媒温度が触媒活性化温度に達してからは、触媒温度の上昇に応じて吸気弁閉時期を下死点から遠ざかるように進角し、排気弁のリフト中心角の位相は、触媒温度の上昇に応じて進角するよう制御されている。そのため、冷機アイドル時には過給圧の上昇に応じて吸気量の増大を抑制できる。   Furthermore, after the catalyst temperature reaches the catalyst activation temperature, the phase of the lift valve center angle of the intake valve is advanced so that the intake valve closing timing is moved away from the bottom dead center as the catalyst temperature rises. The phase of the lift center angle is controlled to advance in accordance with the increase in the catalyst temperature. Therefore, it is possible to suppress an increase in the intake air amount in accordance with the increase in the supercharging pressure during cold idling.

上記実施形態から把握し得る本発明の技術的思想について、その効果とともに列記する。   The technical idea of the present invention that can be grasped from the above embodiment will be listed together with the effects thereof.

(1) 吸気弁及び排気弁のリフト特性と開閉タイミング特性を機関運転状態に応じて可変制御する可変動弁機構と、排気ガスによりタービンを駆動して過給を行うターボチャージャと、を備え、冷機アイドル時には、暖機アイドル時よりも排気弁のリフト量及び開弁期間を縮小し、吸気弁開弁期間を増大し、かつ過給圧を増大するよう制御される。これによって、負荷の高い状態で内燃機関が運転されることになるため、高温の排気ガスが一層大量に得られ、排気浄化触媒を一層早期に活性化できる。   (1) A variable valve mechanism that variably controls the lift characteristics and opening / closing timing characteristics of the intake and exhaust valves according to the engine operating state, and a turbocharger that performs supercharging by driving the turbine with exhaust gas, At the time of cold idling, control is performed such that the lift amount and valve opening period of the exhaust valve are reduced, the intake valve opening period is increased, and the supercharging pressure is increased as compared with warm idling. As a result, the internal combustion engine is operated under a high load condition, so that a larger amount of high-temperature exhaust gas can be obtained and the exhaust purification catalyst can be activated earlier.

尚、暖機後の機関運転時には、燃費が良くなるように適切な点火時期と適度な筒内ガス流動に設定することが望ましく、筒内ガス流動を過剰に増大して燃焼安定性を向上させることは、冷却損失やポンピング損失を増加させるため望ましくない。一方、冷機時の排気の昇温制御中においては、燃費よりも排気温度を上昇させて触媒の早期活性化を進めることが優先されるため、点火時期の大幅なリタードを可能にすることが望ましい。そこで冷機時の排気の昇温制御中においては、暖機後よりも吸気弁のリフト量を大きく吸入空気量を増大しエンジン負荷を増大することで燃焼安定性を向上させ、大幅な点火時期リタードによる排気温度を可能にすることが効果的である。   In addition, it is desirable to set an appropriate ignition timing and an appropriate in-cylinder gas flow so as to improve fuel efficiency during engine operation after warm-up, and excessively increase the in-cylinder gas flow to improve combustion stability. This is undesirable because it increases cooling and pumping losses. On the other hand, during the temperature control of the exhaust when cold, priority is given to promoting early activation of the catalyst by raising the exhaust temperature rather than fuel consumption, so it is desirable to allow a significant retard of the ignition timing. . Therefore, during the temperature rise control of the exhaust when cold, the intake valve lift amount is larger than after warm-up, the intake air amount is increased, and the engine load is increased to improve the combustion stability and the ignition timing retarded greatly. It is effective to enable the exhaust temperature by.

(2) 上記(1)に記載の内燃機関において、内燃機関の冷却水温度または排気浄化を行う排気浄化触媒の触媒温度のうち少なくとも一方の温度を検出する温度検知手段を備え、冷機時に、冷却水温度または触媒温度のうち少なくとも一方の温度上昇に応じて排気弁のリフト量・開弁期間を増大するよう制御される。これによって、冷却水温度または触媒温度の上昇に応じて排気押出し損失を相対的に減少させることができ、それにより排気ガス流量が増大し、その結果さらに過給圧が増大し燃焼ガス量が増大することができるため、排気浄化触媒を早期に活性化すると同時に、燃費悪化を回避できる。   (2) The internal combustion engine according to (1), further comprising temperature detection means for detecting at least one of a cooling water temperature of the internal combustion engine or a catalyst temperature of an exhaust purification catalyst that performs exhaust purification, and when cooling, Control is performed so as to increase the lift amount / valve opening period of the exhaust valve in accordance with the temperature rise of at least one of the water temperature and the catalyst temperature. This makes it possible to relatively reduce exhaust extrusion loss in response to an increase in cooling water temperature or catalyst temperature, thereby increasing the exhaust gas flow rate, resulting in further increase in supercharging pressure and combustion gas amount. Therefore, the exhaust purification catalyst can be activated early, and at the same time, deterioration of fuel consumption can be avoided.

(3) 上記(1)に記載の内燃機関において、内燃機関の冷却水温度または排気浄化を行う排気浄化触媒の触媒温度のうち少なくとも一方の温度を検出する温度検知手段を備え、冷機時に、冷却水温度または触媒温度のうち少なくとも一方の温度上昇に応じて排気弁のリフト量・開弁期間を増大し、かつ排気弁のリフト中心角の位相を遅角するよう制御される。   (3) The internal combustion engine according to (1), further including temperature detection means for detecting at least one of a cooling water temperature of the internal combustion engine or a catalyst temperature of an exhaust purification catalyst that performs exhaust purification, Control is performed so as to increase the lift amount / valve opening period of the exhaust valve and retard the phase of the lift central angle of the exhaust valve in accordance with the temperature rise of at least one of the water temperature and the catalyst temperature.

(4) 上記(1)に記載の内燃機関は、冷機アイドル時には、暖機アイドル時よりも排気弁開時期を遅角するよう制御される。   (4) The internal combustion engine according to the above (1) is controlled so that the exhaust valve opening timing is retarded at the time of cold idling than at the time of warm idling.

(5) 上記(1)〜(4)のいずれかに記載の内燃機関は、排気浄化を行う排気浄化触媒の触媒温度を検出する温度検知手段を備え、冷機時において、触媒温度が触媒活性化温度に達した後は、触媒温度の上昇に応じて吸気量を相対的に減少させるよう制御される。   (5) The internal combustion engine according to any one of the above (1) to (4) includes temperature detection means for detecting a catalyst temperature of an exhaust purification catalyst that performs exhaust purification, and the catalyst temperature is activated when it is cold. After reaching the temperature, the intake air amount is controlled to be relatively decreased as the catalyst temperature increases.

(6) 上記(1)〜(5)のいずれかに記載の内燃機関は、排気浄化を行う排気浄化触媒の触媒温度を検出する温度検知手段を備え、冷気時において、排気触媒が触媒活性化温度に達した後は、触媒温度の上昇に応じて吸気弁のリフト中心角を進角させるよう制御される。これによって、吸気量の増大を抑制できる。   (6) The internal combustion engine according to any one of the above (1) to (5) includes a temperature detection unit that detects a catalyst temperature of an exhaust purification catalyst that performs exhaust purification, and the exhaust catalyst is activated when cold. After reaching the temperature, the lift central angle of the intake valve is controlled to advance in accordance with the increase in the catalyst temperature. As a result, an increase in the intake air amount can be suppressed.

(7) 上記(1)〜(6)のいずれかに記載の内燃機関は、排気浄化を行う排気浄化触媒の触媒温度を検出する温度検知手段を備え、冷気時において、排気触媒が触媒活性化温度に達した後は、排気弁のリフト中心角を進角させるよう制御される。   (7) The internal combustion engine according to any one of (1) to (6) includes temperature detection means for detecting a catalyst temperature of an exhaust purification catalyst that performs exhaust purification, and the exhaust catalyst is activated in cold air. After reaching the temperature, control is performed to advance the lift center angle of the exhaust valve.

この発明に係る内燃機関の吸排気系の構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 本発明に係る内燃機関の冷機アイドル時の吸排気弁のバルブリフト特性と、暖機アイドル時の吸排気弁のバルブリフト特性とを対比して示す説明図。FIG. 5 is an explanatory view showing a comparison between the valve lift characteristics of the intake / exhaust valve during cold idling of the internal combustion engine according to the present invention and the valve lift characteristics of the intake / exhaust valve during warm-up idle. 本発明に係る内燃機関の冷機時始動から暖機された状態に至るまでの各種パラメータのタイミングチャート。4 is a timing chart of various parameters from when the internal combustion engine according to the present invention is started up to when it is warmed up.

符号の説明Explanation of symbols

1…内燃機関
2…ターボ過給機
16…可変動弁機構
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 2 ... Turbocharger 16 ... Variable valve mechanism

Claims (7)

吸気弁及び排気弁のリフト特性と開閉タイミング特性を機関運転状態に応じて可変制御する可変動弁機構と、排気ガスによりタービンを駆動して過給を行うターボチャージャと、を備え、冷機アイドル時には、暖機アイドル時よりも排気弁のリフト量及び開弁期間を縮小し、吸気弁開弁期間を増大し、かつ過給圧を増大するよう制御されることを特徴とする内燃機関。   A variable valve mechanism that variably controls the lift characteristics and opening / closing timing characteristics of the intake and exhaust valves according to the engine operating state, and a turbocharger that performs supercharging by driving the turbine with exhaust gas. An internal combustion engine that is controlled to reduce the lift amount and valve opening period of the exhaust valve, to increase the intake valve opening period, and to increase the supercharging pressure as compared with the warm-up idle time. 内燃機関の冷却水温度または排気浄化を行う排気浄化触媒の触媒温度のうち少なくとも一方の温度を検出する温度検知手段を備え、冷機時に、冷却水温度または触媒温度のうち少なくとも一方の温度上昇に応じて排気弁のリフト量・開弁期間を増大するよう制御されることを特徴とする請求項1に記載の内燃機関。   A temperature detecting means for detecting at least one of a cooling water temperature of an internal combustion engine or a catalyst temperature of an exhaust purification catalyst that performs exhaust purification is provided, and responds to an increase in temperature of at least one of the cooling water temperature or the catalyst temperature during cooling. The internal combustion engine according to claim 1, wherein the internal combustion engine is controlled to increase a lift amount and a valve opening period of the exhaust valve. 内燃機関の冷却水温度または排気浄化を行う排気浄化触媒の触媒温度のうち少なくとも一方の温度を検出する温度検知手段を備え、冷機時に、冷却水温度または触媒温度のうち少なくとも一方の温度上昇に応じて排気弁のリフト量・開弁期間を増大し、かつ排気弁のリフト中心角の位相を遅角するよう制御されることを特徴とする請求項1に記載の内燃機関。   A temperature detecting means for detecting at least one of a cooling water temperature of an internal combustion engine or a catalyst temperature of an exhaust purification catalyst that performs exhaust purification is provided, and responds to an increase in temperature of at least one of the cooling water temperature or the catalyst temperature during cooling. The internal combustion engine according to claim 1, wherein the internal combustion engine is controlled to increase the lift amount / valve opening period of the exhaust valve and retard the phase of the lift center angle of the exhaust valve. 冷機アイドル時には、暖機アイドル時よりも排気弁開時期を遅角するよう制御されることを特徴とする請求項1に記載の内燃機関。   2. The internal combustion engine according to claim 1, wherein the exhaust valve opening timing is controlled to be retarded at a cold idling time than at a warm idling time. 排気浄化を行う排気浄化触媒の触媒温度を検出する温度検知手段を備え、冷機時において、触媒温度が触媒活性化温度に達した後は、触媒温度の上昇に応じて吸気量を相対的に減少させるよう制御されることを特徴とする請求項1〜4のいずれかに記載の内燃機関。   Equipped with a temperature detection means that detects the catalyst temperature of the exhaust purification catalyst that performs exhaust purification. After the catalyst temperature reaches the catalyst activation temperature in the cold state, the intake air amount is relatively decreased as the catalyst temperature increases. The internal combustion engine according to any one of claims 1 to 4, wherein the internal combustion engine is controlled to operate. 排気浄化を行う排気浄化触媒の触媒温度を検出する温度検知手段を備え、冷気時において、排気触媒が触媒活性化温度に達した後は、触媒温度の上昇に応じて吸気弁のリフト中心角を進角させるよう制御されることを特徴とする請求項1〜5のいずれかに記載の内燃機関。   A temperature detection means for detecting the catalyst temperature of the exhaust purification catalyst that performs exhaust purification is provided.After the exhaust catalyst reaches the catalyst activation temperature in cold air, the lift central angle of the intake valve is adjusted according to the increase in the catalyst temperature. The internal combustion engine according to claim 1, wherein the internal combustion engine is controlled to advance. 排気浄化を行う排気浄化触媒の触媒温度を検出する温度検知手段を備え、冷気時において、排気触媒が触媒活性化温度に達した後は、排気弁のリフト中心角を進角させるよう制御されることを特徴とする請求項1〜6のいずれかに記載の内燃機関。   A temperature detection means for detecting the catalyst temperature of the exhaust purification catalyst that performs exhaust purification is provided, and is controlled to advance the lift central angle of the exhaust valve after the exhaust catalyst reaches the catalyst activation temperature in cold air. The internal combustion engine according to any one of claims 1 to 6, wherein
JP2005264517A 2005-09-13 2005-09-13 Internal combustion engine Pending JP2007077840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005264517A JP2007077840A (en) 2005-09-13 2005-09-13 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005264517A JP2007077840A (en) 2005-09-13 2005-09-13 Internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007077840A true JP2007077840A (en) 2007-03-29

Family

ID=37938431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005264517A Pending JP2007077840A (en) 2005-09-13 2005-09-13 Internal combustion engine

Country Status (1)

Country Link
JP (1) JP2007077840A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242582A (en) * 2009-04-03 2010-10-28 Denso Corp Engine waste heat control apparatus
WO2011132264A1 (en) 2010-04-20 2011-10-27 トヨタ自動車株式会社 Control device for an internal combustion engine
JP2012184775A (en) * 2012-07-04 2012-09-27 Denso Corp Engine waste heat control apparatus
WO2014068670A1 (en) * 2012-10-30 2014-05-08 トヨタ自動車 株式会社 Control device for internal combustion engine
WO2017126277A1 (en) * 2016-01-22 2017-07-27 日産自動車株式会社 Waste gate valve control method and control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159431A (en) * 1987-12-14 1989-06-22 Mazda Motor Corp Valve timing controller for engine
JPH05263669A (en) * 1992-03-23 1993-10-12 Toyota Motor Corp Internal-combustion engine with mechanical supercharger
JP2004176688A (en) * 2002-11-29 2004-06-24 Nissan Motor Co Ltd Controller for compression self-ignition engine and hybrid vehicle
JP2005163743A (en) * 2003-12-05 2005-06-23 Nissan Motor Co Ltd Internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159431A (en) * 1987-12-14 1989-06-22 Mazda Motor Corp Valve timing controller for engine
JPH05263669A (en) * 1992-03-23 1993-10-12 Toyota Motor Corp Internal-combustion engine with mechanical supercharger
JP2004176688A (en) * 2002-11-29 2004-06-24 Nissan Motor Co Ltd Controller for compression self-ignition engine and hybrid vehicle
JP2005163743A (en) * 2003-12-05 2005-06-23 Nissan Motor Co Ltd Internal combustion engine

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8402757B2 (en) 2009-04-03 2013-03-26 Denso Corporation Waste heat control apparatus
JP2010242582A (en) * 2009-04-03 2010-10-28 Denso Corp Engine waste heat control apparatus
US8973563B2 (en) 2010-04-20 2015-03-10 Toyota Jidosha Kabushiki Kaisha Internal combustion engine control apparatus
WO2011132264A1 (en) 2010-04-20 2011-10-27 トヨタ自動車株式会社 Control device for an internal combustion engine
CN102439276A (en) * 2010-04-20 2012-05-02 丰田自动车株式会社 Control device for an internal combustion engine
JP4968387B2 (en) * 2010-04-20 2012-07-04 トヨタ自動車株式会社 Control device for internal combustion engine
JP2012184775A (en) * 2012-07-04 2012-09-27 Denso Corp Engine waste heat control apparatus
JP5825432B2 (en) * 2012-10-30 2015-12-02 トヨタ自動車株式会社 Control device for internal combustion engine
WO2014068670A1 (en) * 2012-10-30 2014-05-08 トヨタ自動車 株式会社 Control device for internal combustion engine
US9739211B2 (en) 2012-10-30 2017-08-22 Toyota Jidosha Kabushiki Kaisha Control apparatus of internal combustion engine
WO2017126277A1 (en) * 2016-01-22 2017-07-27 日産自動車株式会社 Waste gate valve control method and control device
CN108463620A (en) * 2016-01-22 2018-08-28 日产自动车株式会社 The control method and control device of exhaust gas by-pass valve
JPWO2017126277A1 (en) * 2016-01-22 2018-12-13 日産自動車株式会社 Wastegate valve control method and control device
EP3406880A4 (en) * 2016-01-22 2019-01-16 Nissan Motor Co., Ltd. Waste gate valve control method and control device
RU2720700C2 (en) * 2016-01-22 2020-05-12 Ниссан Мотор Ко., Лтд. Bypass valve control method and control device
US10683797B2 (en) 2016-01-22 2020-06-16 Nissan Motor Co., Ltd. Waste gate valve control method and control device

Similar Documents

Publication Publication Date Title
JP3997477B2 (en) Control device for internal combustion engine
JP5772025B2 (en) Control device for internal combustion engine
CN111788378B (en) Internal combustion engine and control method thereof
JP6236960B2 (en) Control device and control method for spark ignition internal combustion engine
JP2013530329A (en) Engine control device
JP6520982B2 (en) Control device for internal combustion engine
JP2007077840A (en) Internal combustion engine
JP2009074366A (en) Variable valve gear of internal combustion engine
JP2909219B2 (en) Engine warm-up device
JP2002332877A (en) Four-stroke engine for car
JP4061280B2 (en) Control unit for gasoline engine with variable nozzle mechanism turbocharger
EP4083407A1 (en) Method of reducing cold start emissions in hybrid electric vehicles
JP2009103014A (en) Internal combustion engine control system
JP2005299408A (en) Device for raising temperature of engine
JP4285221B2 (en) Internal combustion engine
JP2005299409A (en) Device for raising temperature of engine
JP3807126B2 (en) Control device for variable valve engine
JP6046918B2 (en) Valve timing control device
JP5429148B2 (en) Premixed compression self-ignition engine
JP2001241340A (en) Contol device for internal combustion engine
JP5263249B2 (en) Variable valve timing control device for an internal combustion engine with a supercharger
JP6595875B2 (en) Exhaust gas purification control device for internal combustion engine
JP2004019554A (en) Control device of internal combustion engine
JP7359221B2 (en) Catalyst warm-up operation control method and catalyst warm-up operation control device for vehicle internal combustion engine
JP6493508B1 (en) Engine start control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100803